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_ ' ABSTRACT .. ":. :

This paper develops a new framework for the study of Markov decision processes in.
which the control problem is viewed as an optimization problem on the set of canonically
induced measures on the trajectory space of the joint state and control process. This
set is shown to be compact convex. One then associates with each of the usual cost
criteria (infinite horizon discounted cost, finite horizon, control up to an exit time) a
naturally defined occupation measure such that the cost is an integral of some function with
respect to this measure. These measures are shown to form a compact convex set whose
extreme points are characterized. Classical results about existence of optimal strategies are
recovered from this and several applications to multicriteria and constrained optimization
problems are briefly indicated.

KEY WORKDS Markov decision processes, optimal strategies, Markov strategies, sta-
tionary strategies, multicriteria optimization, constrained optimization.

1. Introduction

The study of Markov decision processes on a countable state space (equivalently, con-
trolled Markov chains) usually proceeds from the dynamic programming heuristic [7]. The
aim of this paper is to provide an alternative framework. The control problem is viewed
here as an optimization problem on the set of canonically induced probability measures on
the trajectory space by the joint state and control process. This set is shown to be compact
and convex. Next one associates with each of the usual cost criteria (infinite horizon dis-
counted cost control, finite horizon control, control up to an exit time) a naturally defined
concept of an occupation measure so that the cost is the integral of some function with
respect to this measure. The set of these occupation measures is then shown to be compact
convex and its extreme points are characterized. This way one recovers all the classical
existence theorems for optimal strategies from a different vantage point, uncovering in the
process much structure that is not transparent in the conventional approaches. The latter
has important implications in multiobjective and constrained control problems as will be
argued in the final section of this paper.

The notation we use is that of [3], [4]. Let X,,n = 1,2,..., be a controlled Markov
chain on state space S = [1,2,...] with transition matrix P, = {[p(7, 7, %:)]],7, jeS, indexed
by the control vector u = [uy,us,...]. Here, u;eD(7),7€8S, for some prescribed compact
metric spaces D(¢). The functions p(¢,7,+) are assumed to be continuous. By replacing
each D(i) by ILD(k) and p(z,7,-) by its composition with the projection ILD(k) — D(z),
one may assume that all D(z)’s are replicas of the same compact metric space D. We do
so and let L denote the countable product of copies of D.

For any Polish space Y, denote by M(Y') the space of probability measures on Y with
the topology of weak convergence. For n = 1, Z,...,00,Y" will denote the n-times product
of Y with itself. ‘ ' ' : )

A control strategy (CS) is a sequence {£n}, &n = [£a(1), €n(2), . ..] of L-valued random
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o '..'\(a,’_ri'é,b"l'gszé'uch-,t"}.la;t for zz-:S,n > 1,'.‘» ' | : N
P(Xpis = 6/ Xy bmym < 1) = p(Xajsiy £a(Xa))  © (L)

We say that the controlled Markov chain {X,,} is governed by the CS {£,} wherever (1.1)
holds. If for each n, &, is independent of X,,,m < n, and &,,,m < n, we call {¢,} a Markov
randomized strategy (MRS). If in addition &,,n > 1, are identically distributed, call it a
stationary randomized strategy (SRS). An MRS for which the law of each &, is a Dirac
measure will be called a Markov strategy (MS). Similarly, an SRS for which the law of
each £, is a Dirac measure will be called a stationary strategy (SS). The motivation for
this nomenclature is self-evident.

If the common law for £,,n > 1, of an SRS {¢{.} is ®cM (L), we denote it by «[®]. In
view of (1.1), it is clear that as long as we are interested only in the law of the S x D-valued
process {(Xn,&:(Xs))}, » > 1, under an SRS ~[®], we may assume ® to be a product
measureon L. Let ®;, 1eS, denote the image of ® under the projection from L onto its ¢-th
factor space. (Thus ® = II®; in view of the preceding comment). Under +[®], {X,} will
be a Markov chain with stationary transition probabilities given by the transition matrix
P[®] = [[f p(s,7,u)®i(du)]]. If v[®] is an SS with & = the Dirac measure at £cL, denote
it by 4{£} and the corresponding transition matrix by P{¢} = P.

Throughout this paper, we assume that the chain has a single communicating class
under all SRS. This is a convenient assumption to have in the background, but can be
relaxed to a varying extent for much of what follows, being completely unnecessary in
some cases.

Let h:S—> R*, k:SxD — R*, 1:IN xS xD— R*t, be continuous functions. The
various cost criteria one typically seeks to minimize over all CS are the following:

(C1) E[Y B k(X (X)), 0<pB<1 (1.2)
n=1
This is the ‘discounted cost control problem’.

(C2) E[Iill(n, Xy €a(X0)) +R(XN)], 1< N <o (1.3)

n=1

This is the ‘finite horizon control problem’.
7—1
(C3) B[ k(Xn, €a(Xa)) + R(X;)}, (1.4)
n=1

where for some prescribed finite subset A of S,
7 = min{n > 1|X,, € A}(= co if the set on the right is empty).

This is called the ‘control up to a first exit tiI;}e’.

(€  limsup =Y k(Xm fn(Xa).  (15)

c ‘ n—oo 10, 4
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L : Thls is the ‘long run, avera.ge cost control problem L :
. Of course, one assumes that the cost functional under con51dera.t10n is ﬁmte under some .

:"CS, the problem being vacuous otherwise. In this paper, we shall concern ourselves with
(C 1) — (C 3) only. (C 4) has been adequately treated in the companion paper [4] (see
also [3].).

The organization of this paper is as follows: Section II establishes the compactness and
convexity of the laws of {X,, £,(X,))} as subsets of M((S x D)*) under various classes
of CS. Sections III — V study the control problems corresponding to (C 1) — (C 3) in
that order. They follow a standard pattern. First one associates an appropriate notion
of an ‘occupation measure’ for the joint state and control process. The attainable set of
these measures under all CS is then shown to remain the same if one restricts attention to
SRS in the first and the third case and MRS in the second. Furthermore, this set is shown
to be compact convex using the results of Section II and its extreme points are shown to
correspond to SS in the first and the third case and MS in the second. The choice of these
measures is such that the corresponding cost can be written as an integral with respect
to these measures. In view of the foregoing, this leads to the appropriate existence results
for an optimal SS (or MS as the case may be) in each set-up. (Recall that a CS is optimal
if the corresponding cost is the minimum cost over all CS.) Section VI discusses several
potential applications of the foregoing to problems arising in multicriteria and constrained
optimization of Markov decision processes. .

Given the vast extent of the existing literature on this subject, it is impossible to give
a decent summary of it in the short span of this introduction. We shall content ourselves
with referring to the excellent texts [2], [7] as general pointers in that direction.

2. Compactness and Convexity of Attainable Laws

Let Ac, Amr, Asr, Aum, As denote the sets of attainable laws of [(X1, &1(X7)),
(X2, £2(X3)), .. .] viewed as subsets of M((S x D)*) as the control strategy varies over all
CS, all MRS, all SRS, all MS and all SS respectively, the initial law being held fixed. For
simplicity, we take the latter to be the point mass concentrated on 1eS. In this section,
we show that the above sets are compact and A¢ is convex.

For n > 1 and any CS {¢,.}, denote by P*({{},-)eM(S) the law of X,, under {{n},
i.e., P"({én},J) = P(Xn =), jeS, when {X,,} is governed by {{m}.

Lemma 2.1 For each n > 1, the set P*({{m},-) as {én} varies over all CS is tight in
M(S).

Proof We proceed by induction. The claim is trivial for n = 1. Suppose it holds for some
n > 1. Let € > 0. Pick N > 1 such that

PA<X;<N,1<i<n)>1—¢/2

for all CS. This is possible by the induction hypothesis. For each 1S and u, — u in D,
we have p(¢,7,un) — p(7,5,u) for all jeS and hence by Scheffe’s theorem ([1], pp. 224),
p(i,+,u,) — p(i,-,u) in total variation and hence in M(S). Thus p(7,-,u), ueD, is tight in
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M(S). Pick N’ (i} such that

i'r&f > p(i‘,j,u)é 1—¢/2°F?
FSN'()
Let N = max{N'(1),N'(2),...,N'(N),N}. Then a straightforward computation using

(1.1) shows that
PI<X;<N,1<i<n+1)>1-c¢

under all CS. The claim follows by induction. QED

Theorem 2.1 A¢ is compact in M((S x D)*).

Proof Let {X™}, m > 1, be a sequence of controlled Markov chains governed by CS
{€ér}, m > 1, respectively, with X7* = 1 for all m. By the above lemma and compactness
of L, the laws of (X, &%), m > 1, are tight in M(S X L) for each fixed n. Hence
for €™ = [é1,€7,...], X™ = [X, X7, ...], the laws of (£™, X™), m > 1, are tight in
M(L® x S°°) and therefore converge along a subsequence to the law of some L x S*-
valued random variable (£, X*°). Restrict attention to this subsequence and denote
it by {m} again by abuse of notation. By Skorohod’s theorem ([1], pp. 29), we may
assume that (é™, X™), m = 1,2,...,00, are defined on a common probability space and
(€™, X™) = (£€°, X*®) a.s. in L® X S, Let £*° = [£°,£6°,...], X®° = [X{°, X5°,...]. Let
n > 1. Let f: S — R be a function of finite support and ¢ : (S x L)* — R a bounded
continuous function. Then the function F : (S x L)**' — R defined by

F((z1,u1), ..o (Znt1sUns1)) = (f(@nt1) — Zjesp(@n, 7, un(z0)) £ (7))
g((z1,u1)s- -5 (Zny un)) (2.1)

is seen to be bounded continuous. For m =1,2,...,

E((f(Xm) — 2o p(X0 5, 2 (X)) F(5) o (X7, €7)s - -5 (X5 63))] = 0. (2:2)

jeS

Letting m — oo, the continuity of (2.1) implies that (2.2) holds for m = co. A standard
monotone class argument estabhishes (1.1) with {X?}, {2} replacing {X,.},{&.}. The
claim follows. QED.

Corollary 2.1 Aprg, Asr, Au, As are compact in M((S x D)®).

Proof In the above proof, note that if for m = 1,2,...,£> is independent of £, 1 <
n, X™,1 < n, then £ will be independent of £°,7 < n, X, < n,forn =1,2,.... This

is because independence is preserved under convergence in law. Similarly, if &7, €7°,.. .,
are identically distributed for m = 1,2,..., then £°, £5°,..., will be identically distributed.
The statement for Apsr, Asr follows. The statement for Apr, As follows from the further
observation that a limit of Dirac measures in M (L) is again a Dirac measure. QED

Remark Note that the above proofs in fact give the stronger claims that the attainable
laws of [(Xi, &1), (X2, &2),...] as measures in M((S x L)*) are compact as the CS varies
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over all CS MRS SRS MS or SS respectlvely However the above weaker vetsion sufﬁcesi '
for our purposes. g : '

: Corollai‘y 2.2 The law of [ X}, X5, ...] under an SRS ~|[®] (resp., an SS y{¢}) is a contin-
uous function of ¢ (resp., £) when viewed as a map from the subset of M (L) consisting of
product measures on L to M(S*) (resp. L to M(5%)).

This is immediate in view of the foregoing. We shall establish one other corollary in
anticipation of its later use in connection with the cost functional (C 3). Let A C S be
a prescribed finite set and ™, X™ m = 1,2,...,00, be as above. Define 7™ = min{n >
1|X™ ¢ A}, with 7™ = oo when X,eA for all n.

Corollary 2.3 ™ — 7% a.s. in [1,2,...,00].

Proof Outside a set of zero probability, X — X° a.s. for each n. Since these are discrete
valued, X' = X from some n onwards depending on the sample point. The claim follows
quite easily from this. QED

Theorem 2.2 Ac is convex.

Proof Let {X,},{Y.} be controlled Markov chains governed by the CS {£,}, {¢.} respec-
tively with X; = Y1 = 1. For n > 1, let Q1,Q2eM(S™ x D™ 1) (with S! x D° = S by
convention) denote the laws of [X1,..., Xa, &1(X1),. -+, &nct(Xn-1)], [Y1, .-+ Yo, 1(Y1), - - -y
Pn-1(Yn-1)] respectively ([Xi],[Y1] resp. when n = 1). Let oy, a¢[0,1] with a; + o =
1. Let Q. = aaQL + c2Q%,n > 1. We shall show that for each n,Q, is the law of
(Z1,. . Zpy ¥1(Z1), -+« s ¥Yn-1(Zn-1)] for some controlled Markov chain {Z,} governed by a
CS {¢,}. This will imply the statement of the theorem by virtue of the Kolmogorov ex-
tension theorem. We proceed by induction. The claim is trivial for n = 1. Suppose it is
true for some n > 1. Let s = [Z1,...,Zn,¥1,- -+ Yn-1]6S™ X D" (= [z4] for n = 1) and
§=[Z1y-++»Tnt1,Y1,-- - Yn]eS™ ! X D" denote typical elements of the respective spaces (to
be used as variables of integration). Forz = 1,2, let s — n'(s,:) : S*x D"! — M(D) de-
note any one representative of the regular conditional law of £,(X,) (resp., #n(Y)) given
(X105 X0y &(X1),s -0 Ena1(Xn-1)] (resp., [Y1,..., Y0, 01(Y1),. .., Pn-1(Yn_1)] ), defined
a.s. uniquely with respect to the law of the latter, with obvious modifications for n = 1.
For simplicity, take n > 2 in the following, the necessary modifications for n = 1 being
obvious. Let A ¢ ™, A' ¢ §,B C D™}, B' C D be measurable sets. Then

2
Qrii(AX A xBxB) = > Q1 (Ax A xBxB)
=1

e X[ @uds) [ Planzasn, un)n'(s,du).

Znt1CA! AxB

I

Define a measure QeM(S™ x D*) by

i=1

G(Ax Bx B) = > [ @i(ds) [ n(sdva)



" Note that the image of 'Qunaé-r the ISrojec,t'iloﬁ S™x D" —'+._S"">< D1 is»‘gi'yen.by ’ :
. » . 2 . ' A N v .
Z aiQ:; = Qn-
i=1

Thus Q can be disintegrated as
Q(ds,dys) = Qn(ds)n(s,dyn)

where s — 7(s,+) : S"x D" ' — M(D) is any representative of the appropriate regular con-
ditional law, defined Q,-a.s. By induction hypothesis, @, is the law of [Z,..., Z,,¥1(Z1),
eov3¥Pn-1(Zn-1)] for some controlled Markov chain Z;,7 < n, governed by a CS ¢;, 1 <
n — 1. By enlarging the underlying probability space of these processes if necessary
(e.g. by attaching to it a copy of D), construct on it a D-valued random variable ¥, (Z,)
such that the regular conditional law of ¥,(Z,) given Zi,...,Zs,¥1(Z1),. - ¥n-1(Zn-1)
is n([Z1y- -+ Zn, ¥1(Z1), .- -, ¥n-1(Zn-1)],"). By a further enlargement of this probability
space (e.g. by attaching to it a copy of S), construct on it an S-valued random variable
Zn41 such that the regular conditional law of Z,,, given Zy,...,Z,,¥1(Z1),...,%¥(Z,)
is p(Zn, -, ¥n(Z,)). By construction, the law of [Z1,..., Znt1,¥1(Z1),. .., ¥n(Zn)] is Qni1,
completing the induction step. The claim follows. QED.

Remarks We have not bothered here about the components of v, other than ¥,(Z,),
n > 1. These can be easily accommodated e.g. by using the trick we used in the beginning
of the preceding section to replace individual D(i)’s by a common space D.

3. The Discounted Cost Control Problem

Let {X,} be a controlled Markov chain governed by a CS {¢{,}. Associate with it the
discounted occupation measure veM (S x D) by

/ fdv = (87 = 1) E[£a8" (Xn, £n(Xn))]

for all bounded continuous f : S x D — R, f being as in (C 1). Let B, Bgg, Bs denote
respectively the sets of attainable v’s as the control strategy varies over all CS, SRS and
SS, the initial law being held fixed. The main result of this section is that B = Bggr and
is a compact convex set with its extreme points lying in Bg, which itself is compact.

Let v'e M (S) be the image of v under the projection S x D — S and disintegrate v as

[ fav =) [ 16,0)0:(du),
ieS
f as above, where the map 1 — ®; : S — M{(D) is any representative of the appropriate

regular conditional law. The suggestive notation is intentional: We associate with v an
SRS 4[®] where ® is the product measure IT;®;. '

Lemma 3.1 v remains unchanged it we use y[®] instead of {£,} as the control strategy,
the initial law being held fixed. o '



' Proof Let {X } be a. controlled Markov. chain’ governed by 'y[qﬁ] (correspondlng to sa.y,: ',
. {£}) with the same injtial law as {X,}. Let f : S X D — R be bounded contmuous and"

_deﬁne g:S— Rby
9(3) = E[ZaB" f(Xn, €,(X)) /Xy = 1], i€5.

Then ¢ is bounded and satisfies

= ﬂ/f(z,u)@,(du) +ﬂzjesg(j)/p(iaj,u)@i(du)'

Define
Zl = (Xl)
Zn = Zﬂ"‘ F(Xomy €m(Xm)) + B 19(Xs) ,n > 2
W, = Z,,+1—Zn
= B"f(Xn, €(Xn)) + B79(Xnt1) — B 9(X5), n > 1.
Then

E[Z B f (Xim, &m(Xm))] — Blg(X1)] = E[E Wan] = B"Elg(Xn41)]

m=1
Letting 7, = O'(Xm, €m, m < n), n > 1, the sequence

n

> (Wa — EWp/ 7))

m=1

is a zero mean { %, }-martingale with bounded increments. Thus

B3 Wl = E[S_ W/ 7]

m=1

:E[zn;lﬂ”‘( (Xoms (X)) + 3 9 (Xoms 5 em (X)) 9 (5) — B720(Xom))]

jesS

(3.1)

(3.2)

(3.3)

Substitute (3.3) in (3.2) and let n — oco. By the dominated convergence theorem, we get

E[Z B (Xims &m(Xm))] — Elg(X1)]

- E[iﬁn( F(Xmr &m(Xn)) + 32 2(Xoms s e (X)) 9 (5) — 710
- E[Zﬂ"/f o ) () + 3290) [ $Xms 5y 0) i, ()

—B71g(Xm))]

. (by our construction of ®)
= 0

Xom))]



by virtue of (3.1). This

BIS. 07 (X n )] = Bla(X0)]
= Elg(X))]

= B[] B" (X, (X))
m=1
The claim follows. QED

Theorem 3.1 Bsr = B and is compact convex.
Proof Follows immediately from Lemma 3.1 and Theorems 2.1, 2.2. QED

Theorem 3.2 Bs is compact and the extreme points of Bsg lie in Bg.

Proof The first claim follows from Corollary 2.1. Let 4[®] be an SRS with & = IL;®;
such that for some keS, the measure [ p(k,-,u)®x(du)eM(S) is not an extreme point
of the convex set {[ p(k,-,u)u(du),ucM(D)} C M(S). This means that there exist
ae(0,1), p1, p2eM (D) such that

P = apy + (1 — a)ps.

/p(k,j,u)ul(du) +# /p(k,j,u)uz(du) for some jeS.

By relabelling S if necessary, take £ = 1. Define p,9eM (L) by © = py X H;>2®; ,9 =
p2 X Mi>p®;. Let neM(S), identified with an infinite row vector n = [n({1}),n({2}),...]-
Let P*[®],n > 1, denote the n-times matrix product of P[®] with itself. Take m > 1 such
that the first element of n P™ {®](= P(X,, = 1) where {X,.} is a controlled Markov chain
governed by «[®] with initial law 5 ) is strictly positive. By our assumption of a single
communicating class, such an m exists. Let vy, 1;,v; denote respectively the discounted
occupation measures associated with the controlled Markov chain with initial law n and
governed by (i) the SRS ~[®], (ii) the MRS {£,} where the law of &, is ® except for n = m,
when it is ¢, (iii) the same with ¢ replacing . We shall show that

m=arv+(1—a)us (3.4)

Let f : S x D — R be bounded continuous and define f3 : S — R by

fa(i) = / f(i,u)®;(du), ieS.

Define f,,fy : S — R analogously. Identify fs with the infinite column vector fp =
[f2(1), f2(2),...]T and similarly for f,, fy. Then

(67 =17 [ fav = 3 prnP (@l fo
n—1

m—1 ) oo
=Y P N ®lfe + AP O fa + Y0 P T O)fs (3.5)
n=1 .

n=m+1



h w1th analogous expressxons for (ﬂ 1_ 1) ffdu‘, 1= 2 3. But . .
) npP™ 1[<I>]f¢ - aan*l[é]f,p (1 —a)y Pm—l[@} ' (3.8)

“and for n > m, '

nP"®|fs = anP™ '®|P[p]P" ™"[®]fs

+(1 — &) P™ @] P[] P ™[®]fs. (3.7)
Substituting (3.6), (3.7) in (3.5), (3.4) follows. Next we show that vy # v3. It suffices to
show that v} # 1§ where for ¢ = 2,3, 1] is the image of v under the projection S x D — S.
Note that the space [* of bounded f : S — R (with supremum norm) separates points of
M(S) in the sense that n; = 9, in M(S) if and only if [ fdn; = [ fdn, for all fel™. Note
also that 35 ) A" P"[®] as a map from I to I is invertible with inverse I — P[®], I being

the infinite identity matrix. In view of these and the explicit expansions for [ fdvl, 1 = 2,3,
along the lines of (3.5), it suffices to check that

nP™ @) Plp|f # nP™ '[®]|P[y|f

for some fel™, written as a column vector [f(1), f(2),...]7. Since v, coincide in all their
factors except the first and since the first component of n P™~![®] is strictly positive by
our choice of m, this reduces to

> £6) [ p(t g w)s(du) # 3 1G) [ p(L,,w)ia(du)

jesS jeS
for some fel®°, which is certainly true. Thus v, # v3 and hence v; cannot be an ex-
treme point of B = Bgg. It follows that if the discounted occupation measure for some
SRS «[®] with & = IL;®; is an extreme point of Bgg, then for each 7S, the measure
I p(s,,u)®;(du)eM(S) is an extreme point of the convex set {[ p(¢, -, u)p(du), uem(D)} C
M(S). Since the set of extreme points of the latter set is contained in {p(z,,u), ueD}, it

follows that P[®] = P{¢} for some eL. QED
Note that we have in fact the stronger claim that the extreme points of B = Bgg
correspond to v{¢},¢ = [£(1),£(2),...], for which p(7,-,£(2)) is an extreme point of

{p(%,-,u), ueD} for each ¢t€S. This is a necessary condition. It is not clear whether it
is also sufficient, i.e., whether all ¥{¢} satisfying the above extreme point property for
transition probabilities lead to v which are extreme points of B.

Theorem 3.3 The control problem with (C 1) as the cost criterion has an optimal SS
which is optimal for any initial law.
Proof (1.2) is of the form

B*r-1)"t / kdv = (871 —1)7! SLI\llp/(k A N)dv

and is thus a lower semicontinuous function of v. By Theorem 3.1, an optimal SRS ~[®]
exists. Let U be the discounted occupation measure corresponding to v[#] and B, the set
of extreme points of B. Then by Choquet’s thieorem [5],

/ch17= /B Ju(u)(/ kdv)
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for some ;LeM(B ). Since fkdu > f kdu for all usB 1t follows that. flcdu = fkdu for some S :

veB,. The claim now follows from* Theorém 3.2 wher the initial law is fixed. Let v{¢}
be an optimal SS for the initial law-n. Suppose it is not optimal for some other initial
law. Then it is easy to see that for some 7S and ¢'eL, the chain starting at X; = ¢ and
governed by v{¢'} has a strictly lower cost than the one governed by v{¢} with the same
initial law. Let m > 1 be such that the 7-th component of n P™ 1{¢} is strictly positive.
Let {X,} be a controlled Markov chain with initial law 7 and governed by the CS {¢,}
defined by &, = EI{n < m}+&I{n > m, X, # 1} +I{n >m,X,, =}, n > 1. Let {X}
be a controlled Markov chain governed by v{¢} and with initial law . Then

E[Z (X, En(X,))] = E[}: Bk (X, €(X)))
FE[T{Xn # i} i Bk (X, €(X)))] -+ E[I{Xne = i}
(‘Z B(X € (X))

The first two terms on the right are unchanged if we replace {X,} by {X]} and the third
becomes strictly larger. Thus {&,} gives a strictly lower cost than v{{}, a contradiction.
The claim follows. QED

Remarks It is not hard to recover the dynamic programming equations from the above.

4. The Finite Horizon Control Problem

In this and the next section, the development closely parallels that of the preceding
section. To emphasize this analogy and economize on notation, we duplicate much of
the notation of the preceding section here and again in the next section. We shall also
omit details of the arguments used when they are routine modifications of those employed

earlier.
Let N > 1beasin (C2). Let B = {1,2,...,N}. Let {X,,} be a controlled Markov chain
governed by the CS {¢,}. Define the ‘finite horizon occupation measure’ veM (B X S x D)

by

1N
/fdy = = 3 Blf(m, Xm, €n(Xn))] (4.1)

m=1
for bounded continuous f : Bx S x D — R. Let B, Bumg, By denote respectively the sets of
attainable 1’s as the control strategy varies over all CS, all MRS, all MS, with the initial

law held fixed. Let v’ denote the image of v under the projection B x D x S — B x D
and disintegrate v as

/fdu-* ZZV mz)} /fmz uzpm,(du)

m=1 ieS

WL e s AT E L s g AL AR AR TP A SR NI P LIS IS AR MR RIS S T P MR I T e 2 e T T T
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" for bounded continuous f . BxSxD > R, where the map (m, 1) — Pi 2 BXS = M(D) is .
any representative of the regular conditional law (defined v’ - a.s.). Let ¢, = ;3 ;e M (L)
“for m > 1. Let {X"} be a controlled Markov chain governed by an MRS {¢'} where the
“law of &! is 9, for each n, with the same initial law as {X,,}.

Lemma 4.1 v defined by (4.1) remains unchanged if { X,.}, {{.} are replaced by { X}, {¢.}
respectively.
Proof Let f: B xS X D — R be bounded continuous. Define ¢ : B X § — R by

E[anx' (X)X, =14, 1<m< N.

n—=m

Also, let g(N + 1,7) = 0, teS. Then g is bounded and satisfies

o) = [ £l umalde) + gl +19) [ 6o lomgld) (42

jes

for 1 <m < N, 1eS. Define
Zy = g(1,X1)
n—1
Z, = Z fm, X, (X)) +9(n, X)), 2<n<N

W. = Zopi— 2
= f(n,Xn, &(X0) +9(n+1,Xn1) —9(n, X,),1<n<N

Then
E[Z_Zlf(n s Xny €a(X0))] — Elg(1,X1)] = E[;Wn]

= E[§E[Wn/7n]]

with {7,} as before. This equals

B3 (1, X n(5)) + 32 0K 5, (K)ol 1,) — glom, X))

— B3 [ £ X, wbm () + 3 (4 1,5) [ P(Xoma 1) (da) — 9(om, X))

n=1 jes

(by the definition of ¥, )

"~ 0
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by (4.2). Thus’.

f(n,Xr},fn(Xn))]' = E[g(l’Xl)]

= E[g(l X3)]

= E[anX' X))l

M=

E|

S
Il
-

The claim folows. QED

Theorem 4.1 For a fixed initial law, B = Bysg and is compact convex with its extreme
points in Bys which itself is compact.

Proof This follows along the same lines as Theorems 3.1, 3.2 in view of the preceding
lemma. The only significant change required is in the part of the prooof of Theorem 3.2
where one proves v; # v;. Instead of considering bounded f : S — R as there, consider
now bounded f: B x S — R and then further restrict them to those which vanish outside
{m + 1} x S for m as in that proof. The rest is easy. QED

Theorem 4.2 The control problem with (C 2) as the cost criterion has an optimal Markov
strategy with the property that for any meB, the restriction of this strategy to the time
interval {n|m < n < N} is optimal for the control problem with the cost criterion

N-1

E[> Un, Xn, £a(X20)) + A(Xn))

n=m

with arbitrary initial data.

Proof Define f: Bx S x D — R by

f(m,i,u) = I(m,i,u), 1<m< N
f(N,7,u) = h(5).
Then (1.3) equals N [ fdv. Now argue along the lines of Theorem 3.3. QED

Corollary 4.1 TFor {X,},{X!} as in Lemma 4.1, the laws of X,, X! agree for each
n,1<n<N.
Proof Take f(m,1,u) = f(i) for m = n,o otherwise, f being an arbitrary bounded map
S — R. Then E[f(X,)] = E[f(X!)] by Lemma 4.1 and the claim follows. QED
Repeating this argument on successive time intervals {jN + 1,...,(j + 1)N}, j =
1,2,..., it follows that for any controlled Markov chain governed by an arbitrary CS,
there exists another controlled Markov chain governed by an MRS having the same one
dimensional marginals.
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5. Control up to an exit time

Let A,7 be as in (C 3). (See (1.4)). Before establishing the analogs of the results of
- Sections III, IV for (C 3), we shall first establish certain uniform moment bounds on 7.
Note that without any loss of generality we may assume the initial law to be supported in

A.
Lemma 5.1 There exists an N > 1 and ae(0,1) such that
sup P(r > N) < «

where the supremum is over all CS and all initial laws supported in A.

Proof Suppose not. Then there exists a sequence of controlled Markov chains {X7}, m=
1,2,..., governed by CS {¢™}, m = 1,2,..., resp. with initial laws supported in A and
satisfying: If 7™ = min{n > 1| X7 & A}(= oo if X[*cAVn), then

1
P(r™>m)>1-—,m=12,...
m

By dropping to a subsequence if necessary and invoking Skorohod’s theorem as in the proof
of Theorem 2.1, we may assume that these chains are defined on a common probability
space and there exists a controlled Markov chain {X°} governed by a CS {£7°} with initial
law supported in A such that [X7*, X, ..., &P &0, . ] — [ X, X530, ..., 69,650, . ] as.
Since

p(r™ > 7) = B[l I{XeA}], m,j =1,2,...,

a straightforward limiting argument shows that r®° = min{n > 1|X;° ¢ A}(= oo if
X®eA Y n) satisfies

1
P(r®*>m)>1——, m=1,2,...
m

This implies that 7° = oo a.s., i.e., XTeA for all n, a.s. This is possible only if there
exists a nonempty subset G of A such that for 1eG, j € G,

ir&f p(z,5,u) = 0.

Given our hypotheses on p(, ,-) and D, this infimum is 2 minimum attained at some point
in D. But this means that one can construct an SS y{¢} under which a chain starting

in G never leaves G, contradicting our assumption of a single communicating class. The
claim follows. QED

Corollary 5.1 Forn=1,2,...,
sup E[(r)"] < oo,

where the supremum is ove all CS and all ini’é’ial laws supported in A.
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" Proof Let {X,}. be a controlled Matkov chain goveriied by a 0S {¢:} with Xjed as. and.
let 7" be its first exit time from A: Then for N, « as in Lemma 5.1, ) ' :
P(r>nN) = E[I™Y [{X,cA}]

= EEMY e H{Xme A} Fnoyw I OV I{ X e A}

= E[P(r > nN/Fn_yn)I{r > (n - 1)N}]

< aP(r>(n—1)N)
where {7,} are defined as before. Iterating,

P(r >nN)<a

The claim follows easily from this. QED

In particular, E[r] < co. Thus given a controlled Markov chain {X,} governed by a
CS {¢,} with X eA a.s., we can associated with it the ‘occupation measure up to the first
exit from A’, denoted veM (A x D), by

/ fdu—E[z:f Xy &a(Xo))1/ (Blr] ~ 1) (5.1

for bounded continuous f : A X D — R. Let v'eM(A) be the image of v under the
projection A X D — A and disintegrate v as

/fdu_A /fzu¢,du)

f being as above, where the map ¢ — ¢; : A — M(D) is any representative of the
regular conditional law (defined v'-a.s.). Let & = IL;®;eM (L) with ®; = ¢; for €A,
arbitrary otherwise. Let {X'} be a controlled Markov chain with the same initial law as
{X,} but governed by the SRS ~[®], with {£,} denoting the actual control sequence. Let
7 = min{n > 1|X], ¢ A}(= oo if XA for all n).

Let M(A x D) denote the space of finite nonnegative measures on A X D with the
coarsest topology that makes the maps ueM (A x D) — [ fdueR continuous for continuous
f:Ax D — R. For v as in (5.1), define 5eM (A x D) by

/ fdo = (E[r]—1) / fdv (5.2)
= BIY (Xl X)) 5:9)

f being as before.

Lemma 5.2 D defined by (5.3) is unchanged if {X,},{é.}, 7 are replaced by { X}, {&.}, 7'
respectively.
Proof Let f:S x D — R be bounded continuous. Define g : § — R by

g(r) = E[Z f(X', (X1)/ X, =1] ,icA

= 0, otherw1se ‘
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. Then for ie A, g('z')"satis'ﬁes_ -

Define
Zy = (Xl)
In = Zme,sm( m)) + ¢(Xx)
Wo = Znes— Zn
= f(Xn, &(Xn)) + 9(Xnt1) — 9(X0).
Then o
E[zlf(xm,sm( m))] = Elg(X1)] ZWml

- E@E[Wn/ﬁn

by a straightforward application of the optional sampling theorem, since Y7 _;(Wn —
EW,/7.]), n=1,2,..., is an {41 }-martingale. The right hand side equals

E@l(f(xm,sm ) + 005X m(Xor)) = 9 X))

. E[z ([ (X 0B () + 3 905) [ p(Xim, 5y 0) @t (d) = 0(Xi)]

jeS
(by the definition of & )

by (5.4). Thus

E[Zme,Sm( m)] = Elg(X1)]

m=1

= Elg(X3)]
= E[Z_:lf(Xin, En(X2))]

The claim follows. QED
Let B, Bsg, Bs denote the sets of attainable I as the control strategy varies over all CS,
all SRS and all SS respectively, with the initia] law being held fixed at some neM(A).

Theorem 5.1 B = Bsr and is compact convex with 1ts extreme pomts lying in Bg whlch
~ itself is compact. :
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.‘Proof Lemma 5.2 1mp11es that B = BSR Convex1ty of B is 1mmed1ate fr()m Theorem 2. 2.
“Let {X™}, {7}, m=1,2,...,00, be as in the proof of Theorern 2.1 with the initial law
" now set equal to n. Define 7™, m = 1,2,..., 00, correspondingly as in Corollary 2.3. Let
"f:Ax D — R be continuous. By Corollary 2.3,

T —1 71

Z_)l AXT, & (X)) — Z_jl (X2, E2(X2)) as.

By Corollary (5.1), {r™,m > 1} are uniformly integrable. Thus we can take expectations
in the above to conclude that

T™—-1 7°-1

E] Z FIXT & (X)) — E Z FX2, 62 (X))

The compactness of B follows. That of Bs follows by the same additional observations as
in the proof of Corollary 2.1. The proof that the extreme points of Bgg lie in Bg follows
along the lines of the proof of Theorem 3.2 with some important modifications, which are
given next. Let P;[®] denote the matrix whose (¢, j)-th element equals that of P{®] when
i,J € A and is zero otherwise, where A C A is the set {teA| the i-th component of nP["[®)
is > 0 for some m > 1}(= {1 A|P(Xpmar = 1) > 0 for some m > 1} where {X,,} is the
chain governed by ~[®] with initial law 7). Clearly, 5 is supported in A. Note that the
transition probabilities p(j,-,-) for j € A may be changed arbitrarily without affecting v.
In particular, they can be set equal to those corresponding to some SS. Thus we only need
repeat the argument of Theorem 3.2 for A, P;[®] replacing S, P[®] respectively with § =1
(which is okay because P[®] is a strictly substochastic matrix). The details are omitted.
QED

Theorem 5.2 For the control problem with cost criterion (C 3), an optimal stationary
strategy exists which is optimal for arbitrary initial data.
Proof Define f: A x D — R by

fE,u) = k(i,w) + > p(i,5,u)h(F) — h(z) (5.5)

je8S

Then

n

Z [ (Xm, fm( )) + h’(Xm+l) - h(Xm) - f(Xm’ gm(Xm))},

m=1
for n = 1,2,..., is an {F,;1}-martingale with zero mean and a simple application of
the optional sampling theorem shows that (1.4) equals [ fdo — E[h(X1)]. The rest of
the proof follows along the lines of that of Theorem 3.3 with a few minor modifications.
QED
For {X,},{X"}, 7,7 as in the proof of Lemma 5.2 and f as in (5.5) with & identically
equal to zero, we have »

I

E[Zf (Xom, & (X, Zf ))]-

G BB TN DR INTAR BN NG DRI TS TN IO TALTARERAI N, N n T SO DR+ s 8
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It is easy to see that this leads to
BIR(X,)] = ElA(X.)

implying that X,, X',, have the same law. (Compare this with Corollary 4.1).

6. Applications

In this section, we shall briefly indicate some situations, several of them arising from
multiobjective or constrained optimization problems, where the foregoing theory offers
some immediate insight. We shall confine ourselves to the discounted cost set-up. The
analogs thereof for the other two (or even mixed) situations will be self-evident. Let v
denote the discounted occupation measure for some B¢(0,1), defined as in Section III.

Let k; : S x D — R, 1 <1 < n, be bounded continuous and F : R* — R continuous.
Suppose we want to minimize F(f k;dv, ..., [ k,dv) over all CS. By Theorem 3.1, an opti-
mal SRS exists. If we are able to show the extreme point property for this SRS by some
means, an optimal SS will also exist.

A typical situation is F(z1,...,z,) = max{zi,...,Z,}. A related criterion is ||v — u||
where ueM (S x D) is prescribed and || - || denotes the total variation norm (i.e. we want
the occupation measure to approximate a prescribed distribution as closely as possible.).

This can be rewritten as
sup( [ fau — [ fav)

where the supremum is over all continuous f : S X D — R satisfying sup;, , |f(¢,u)| = 1.
Since this is a lower semicontinuous function of v, an optimal SRS exists.

Another analogous situation arises as follows: Suppose several optimal SRS exist for
the cost criterion (C 1) (with, say, bounded k for sake of simplicity). One may want to
pick from among those the SRS that minimizes the ‘variance’ of the cost given as

/ K2y — ( / kdv)? (6.1)

This fits the above framework with n = 2,k; = k%, k; = k and F(z,y) = z — y*. The set of
v corresponding to optimal SRS is easily seen to be compact. Thus an SRS that further
minimizes (6.1) exists.

A somewhat different situation arises when for {k;} as above, one wants to minimize
[ kydv with the constraints [ kidveA;,2 < i < n, for some prescribed closed subsets {A:}
of R. Again the existence of an optimal SRS follows from Theorem 3.1.

Suppose instead that we have a vector cost [f kidv,. .., [ k,dv] and we know its value
for a finite collection of CS. Then any value lying in the closed convex hull of these will
also be attainable for some SRS by virtue of Theorem 3.2. Such considerations may be
useful in implementational schemes which start with a few educated guesses and use some.
recursive adaptation to zero in on the desired strategy. For a work in this spirit (albeit
with a different cost criterion viz. (C 4)), see [6] where a similar situation arises from a
constrained optimization problem. '
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When the only optimal SRS available is not an SS, one may still want to approximate
it by a convex combination of finitely many SS in a suitable sense for implementational
ease. For example, one may want to approximate the v corresponding to the above SRS by
¥ | o;v; where o;e(0,1], 1 <1 < n, with 7, oy = 1 and 1; are the discounted occupation
measures corresponding to some SS v{&}, 1 < ¢ < n, respectively. One may then either
pick SS v{&;} with probability «; based on some random experiment performed beforehand
or interlace the v{¢;}'s along the time axis in a suitable manner (‘time-multiplexing’) to
obtain the desired result. (Again, see [6] for a representative situation in connection with
(C4).) Theorem 3.2 makes such approximations possible.

Theorem 3.1 also guarrantees an optimal CS for general cost criteria of the type

E[F([X1, Xs, ..., &2(X0), &(Xz), .. )] (6.2)

for a lower semicontinuous F : S® x D* — R such that (6.2) is finite for at least one
Cs.

Finally, the author would like to mention that the principal raison d’etre for this work
is the hope that the techniques of convex analysis can be made to have a direct and fruitful
bearing on the difficult problems of Markov decision processes such as multicriteria and
constrained optimization. The results here are only a small beginning in this direction.
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