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In this dissertation we develop a class of bandwidth-efficient algorithms for

information relaying in large-scale wireless ad-hoc networks. The settings we con-

sider involve a single source communicating its data to a destination via the aid of

low-power low-cost relay nodes. In its simplest two-hop relaying form, data directly

broadcasted to the relays from the source are directly relayed to the destination

through a shared fading channel. We assume that the relays employ decode-and-

forward or amplify-and-forward preprocessing prior to forwarding their data to the

destination via beamforming. The beamforming weights are formed at the des-

tination and fedback to the relays via broadcasting. They are constructed using

knowledge of the relay-destination channel coefficients and an m-bit description of

each source-relay channel state information (CSI).

For both relay data preprocessing models, we present methods for optimizing

the m-bit quantizer employed at each relay for encoding its source-relay channel



quality level, and for choosing the beamforming weights at the destination, so as

optimize the destination uncoded bit error rates (Pr(e)). We also study the effect

of the relative source-relay relay-destination distances on the Pr(e) for both relay

preprocessing models. We use our findings to develop locally-optimized adaptive

data-preprocessing algorithms at the relays. We also develop extensions involving

multi-hop networks with hierarchal cluster-based relaying. At each hop of these relay

networks, each of the receiving relays obtains a beamformed version of the data of

a distinct subset of the transmitting relays. As our simulations and analysis reveal,

making available at each cluster head (CH) an optimized one-bit description of the

effective source-relay CSIs associated with the transmitting relays in its cluster is

sufficient. Specifically, not making fully available to the CHs, the source-relay CSIs,

results in only a minimal loss in the Pr(e).
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Chapter 1

Introduction

In this dissertation we present algorithmic techniques for information relaying in

a class of wireless multi-hop networks. The setting of interest involve a network

setting whereby a source is communicating its data to a destination via the aid

of a large-set of low-power low-cost relay nodes, and is depicted in its simplest

form in Fig. 1.1. Aside from conventional multi-hop wireless networks, these type

of problems arise in applications that involve the use of wireless sensor networks

for data collection [1]. Indeed, these types of networks are becoming increasingly

attractive in many military and civilian applications, including target tracking and

identification, and environmental monitoring [2–6].

The abundance of low-cost and low-power nodes in large-scale wireless net-

works, coupled with limitations in the available bandwidth, place constraints on

the type of processing and signaling that can be employed for relaying informa-

tion across the network. Given that a source can efficiently convey its messages to

1



Sender

Relay 1 Relay 2 Relay L

Destination

Wireless relay-destination channels

Wireless broadcast feedback channel

Wireless source-relay channels

Figure 1.1: Block diagram of a wireless ad-hoc network with feedback
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multiple neighboring relay nodes at the expense of no extra power or bandwidth

via broadcasting, there is an inherent need for relay-signaling techniques that can

provide spatial diversity benefits, while maintaining similar bandwidth efficiency.

Capacity of large-scale relaying wireless networks received considerable at-

tention in the information theory community. In their landmark paper Cover and

El Gamal [7] obtained the capacity of degraded, reversely degraded and feedback

non-faded relay channels. In [8], Gupta and Kumar considered n nodes network with

uniform traffic pattern and point to point coding. They showed that the aggregate

capacity grows by O(
√

n) in bits-meters per second for large n suggesting that the

throughput per node goes to zero as the number of nodes increases. Grossglauser

and Tse in [9] considered a modified version of the model in [8] that includes node

mobility. They showed that the aggregate capacity increases to O(n) bits per second

assuming unbounded delay allowed between a sender and a destination. Gasptar and

Vetterli [10] considered extensions for same model in [8], that allow for relay traffic

pattern and network coding. They showed that capacity of such n node wireless

network improves to O(log(n)) bits per second. Gupta and Kumar [11] developed

an information-theoretic scheme to develop the achievable rate region for wireless

ad-hoc networks with arbitrary size and topology.

Motivated by the large-scale economics of wireless ad-hoc networks as well

as promising information-theoretic results, there has been recently research efforts

to develop communication algorithms that exploit the spatial diversity provided by
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these networks. It is mainly based on the idea that a set of relay nodes with corre-

lated versions of an information bearing signal can collaboratively provide diversity

benefits at the destination when viewed as a virtual antenna array. The resulting

concept of cooperative transmission was originally explored in [12] in the context

of CDMA and [13–15] in the context of TDMA. Collectively, the works present co-

operative protocols and methods for evaluating their performance limits for various

relay strategies. In the case where the set of relays is small, it was shown that

cooperative transmission can provide spatial diversity gains as well as energy and

bandwidth savings. In dense networks with large numbers of relay nodes, however,

there is an even greater need for neighboring nodes to share the wireless medium in

relaying their messages, in a way that the total bandwidth employed by the relays

does not increase appreciably with the number of relays employed per hop in the

network.

Another class of applications in which dense networks are utilized for infor-

mation relaying involves large-scale wireless sensor networks. One class of research

activities of interest in this area, focus on the problem of resource-efficient data

fusion based on large collections of coarse encodings of measurements collected by

sensors in the networks. In [5, 16], optimal data fusion algorithms have been de-

veloped in the case where the sensor encodings are made available to the fusion

algorithm through orthogonal and noise-free channels. Recently, in [17], the fu-

sion algorithms have been generalized to the case where the sensor encodings are

4



transmitted to the fusion center over fading channels.

In this dissertation we focus on achieving reliable information relaying in

dense relay networks subject to limited bandwidth constraints. The majority of the

research efforts in the area of relay networks have focused on system models where

signaling from the relays to a destination is over orthogonal channels, and assume,

with the exception of [18], full knowledge at the destination of the channel state

information (CSI) of all channels involved in communication. The main potential

drawbacks associated with these two assumptions is the considerable additional

bandwidth required to establish relay-orthogonal communication and the amount

of signaling overhead and bandwidth needed for making available to the destination

the CSI vector of the associated source-relay channels.

The settings we consider involve a single source communicating its data to a

destination via the aid of low-power low-cost relay nodes. In its simplest two-hop

relaying form, data directly broadcasted to the relays from the source are directly

relayed to the destination through a shared fading channel. To account for the

inherent bandwidth limitations in these relay networks, we focus on the case that

the relays communicate their received versions of the source data over a shared

fading channel. In this context, the destination receives a linear superposition of

the signals transmitted by relays over nonselective fading channels. We also assume

that there is no direct link between the source and the destination and in general

there may be multi-hop connection between the source and the destination.

5



For the proposed relay-destination channel model, we consider relay-destination

beamforming algorithms whereby the processed signal at each relays is scaled by a

(complex) beamforming factor prior to transmission to the destination. Beamform-

ing has proved an efficient method for data transmission over fading channels as

proper selection of the beamforming weights used by the relays can yield spatial

diversity gains and energy savings [19, 20]. Beamforming has also proved to be

an efficient method for source localization; cf., [21] for detailed surveys on source

localization and beamforming. We consider two different relay pre-processing strate-

gies: i) Amplify-and-forward via beamforming (AFB), and ii) Decode-and-forward

via beamforming (DFB). Specifically, the received signals at the relays are either

amplified or decoded prior to forwarding to the destination.

We assume that the beamforming weights are computed at the destination

and fedback to the relays over a broadcast channel. We remark that despite the

fact that the feedback channel incurs an additional overhead bandwidth, it is still

relatively small compared to that required by orthogonal channels. This is due to the

relatively large network size addressed in our problems and the slowly time-variations

of the quasi-static non-selective fading channels involved in communications.

The quality of the beamforming algorithms depends on the composite relays-

destination channel and the quality of the CSI that is available at the destination

about the individual source-relay channels. We assume that the CSI of the composite

relays-destination channel is available at the destination; for instance, estimates of

6



the individual relay-destination fading coefficients can be obtained via pilot-assisted

techniques. As the CSI of the individual (slowly time-varying) source-relay channels,

however, is not directly observable at the destination, these schemes require that the

CSI information of the source-relay channels is communicated to the destination by

the relays. In particular, we focus on the case where each relay broadcasts to the

destination its individual source-relay CSI at various levels of precision.

In this dissertation we develop beamforming algorithms for the two relay-

ing preprocessing strategies that optimize the destination uncoded bit error rates

(Pr(e)). The beamforming weights are formed based on the relays-destination com-

posite CSI and quantized descriptions of the source-relay CSI. Several key challenges

arise in developing beamforming algorithms that exploit partial CSI of the source-

relay channels at the destination. Due to the complex dependence of the Pr(e) on the

beamforming weights and the available CSI, developing closed form expressions and

iterative algorithms to find the optimal beamforming weights appears intractable.

Most of the research approaches used in the literature amount to choosing the beam-

forming weights so as to minimize the received signal-to-noise (SNR) ratio at the

destination [12, 13]. Increasing (the notion of) SNR, however, does not translate

to lower Pr(e) performance. As we show beamformers can be developed for some

relay data-preprocessing models that outperform the SNR-maximizing beamformers

in terms of destination Pr(e). Another related challenging aspect of the problem

involves designing optimal m-bit quantizer of the source-relay CSI exploited at the

7



relays so as to optimize the destination Pr(e). The choice of the data relay models

at the relays can also affect the achievable Pr(e) performance. One key question in

this context is how to select the data preprocessor at each relay to locally optimize

the performance.

Scaling these approaches to multi-hop setting raises additional challenges. So

first, it is important to determine how approaches developed for the two-hop setting

can be efficiently extended to multi-hop settings. These include the selection of

the beamforming weights at each receiving relay (destination) as well as the CSI

information provided by the associated transmitting relays. In particular, as multi-

hop networks become large, joint optimization design of the beamforming weights

and the CSI provided becomes impractical. Alternatively, we can consider locally

optimized selection for the CSI quality at the relays and the beamforming weights

that exploit extensions of the two-hop settings.

To this end, we first develop beamformers for a two-hop network formed

based on the relay-destination CSI and m-bit quantized descriptions of the source-

relay CSI. We develop methods for optimizing the quantizer design at each relay

and selecting the associated beamforming weights that optimize the destination

Pr(e). We show that the beamformers based on an optimized one-bit source-relay

CSI provide most of the benefits in terms of the destination Pr(e) assuming full

knowledge of source-relay CSI is available at the destination.

We also determine the optimal relative relay location with respect to the

8



source and the destination associated with each relay preprocessing strategy. As-

suming the node locations are not available, we develop adaptive beamforming al-

gorithms. In these algorithms, the type of the preprocessing at each relay is selected

based on each relay source-relay and relay-destination CSI so as to optimize the

destination Pr(e) given any relative location.

We next provide extensions by considering the problem of finding the Pr(e)-

optimized beamforming weights for multi-hop networks. We consider a hierarchal

clustering approach in processing the information from the source to the destination.

At each hop, we assume that the nodes are grouped into clusters. Each cluster is

composed of transmitting relays and one receiving cluster head (CH). In this context,

we addressed the problem of finding the beamforming weights as well as the m-bit

source-relay CSI quantizer employed at the relays of each cluster. We develop a

systematic way to select the beamforming weights locally at each cluster as the data

flows from the source to the destination. In addition, we develop a power allocation

strategy for these multi-hop networks that optimize the Pr(e) values attained per

hop which in turn optimize the destination Pr(e).

1.1 Thesis outline

In this dissertation, we develop bandwidth-efficient beamforming algorithms for in-

formation relaying in wireless ad-hoc multi-hop networks.

In Chapter 2, we present the main components of the system model including

9



source signal and channel models, preprocessing relaying strategies as well as the

relay-destination model.

In Chapter 3, we consider the amplify-and-forward via beamforming (AFB)

relay model in a two-hop ad-hoc network setting. We develop beamformers based on

the relay-destination CSI and an m-bit quantized versions of the source-relay CSI.

We develop methods for optimizing the m-bit source-relay CSI quantizer so as to

minimize the destination Pr(e). Our simulations show that the Pr(e) performance

loss attained using only a one-bit source-relay CSI quantizer is negligible compared

to the Pr(e) values attained using full source-relay CSI. We then determine the opti-

mal relative relay location with respect to the source and destination that optimizes

the Pr(e) values.

In Chapter 4, we consider the decode-and-forward via beamforming (DFB)

relaying strategies whereby the relays decode their received signals in a two-hop

network setting. We present a class of beamforming algorithms based on an ”equiva-

lent” amplify-and-forward relay model of the decode-and-forward source relay model.

Furthermore, we present a framework for quantizing the source-relay CSI so as to

minimize the data Pr(e) at the destination. The algorithms we develop outperform

in terms of Pr(e) the SNR maximizing beamformers and are only slightly inferior

to beamformers that exploit perfect CSI knowledge of the source-relay channels at

the destination. We then determine the Pr(e)-optimized relative relay location for

the DFB model. We then develop a method for determining the preprocessing type
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at the relays that optimizes the Pr(e) for a given location.

In Chapter 5, we develop location-optimized adaptive beamforming algo-

rithms whereby the preprocessing strategy at each relay is selected based on its

source-relay and relay-destination CSI so as to optimize the destination Pr(e) at

any given relative relay location. We first develop beamforming algorithms for hy-

brid networks where a subset of the nodes is employing decode-and-forward and the

other subset is employing amplify-and-forward. We next develop node-by-node basis

destination-based and relay-based selection strategies. We explore the tradeoffs be-

tween the selection strategies in terms of the Pr(e) performance and the bandwidth

required for each strategy.

In Chapter 6, we develop beamforming algorithms for multi-hop networks

based on the beamformers developed in Chap. 3 and Chap. 4. We first develop

a system model that involves hierarchal clustering approach for aggregating the

information from the source to the destination. We develop a systematic way for

constructing the beamforming weights locally at each hop. For the case of using one-

bit source-relay CSI quantizer, we design the quantizers at each hop that optimize

the Pr(e) performance at each clustering level for both the amplify-and-forward and

the decode-and-forward relay models. We finally present algorithms for determining

the relative relay locations as well as the relay strategy at each hop that optimize

the Pr(e) at the destination.

Finally, a summary of the main contributions is presented in chapter 7 as
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well as future directions for the research problems considered in this dissertation.
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Chapter 2

Beamforming Algorithms for Ad-hoc

Networks: System Model

In this chapter, we present the system model of the two-hop ad-hoc relay network for

which beamforming algorithms are developed in Chap. 3, 4, & 5. In addition, the

model serves as the basic building block for the multi-hop relay networks presented

in Chap. 6. In particular, we consider two types of models for processing the received

data signals at the relays (which, in the case of sensor networks, may also represent

the measurements observed at the sensor “relays”) prior to forwarding them via

beamforming to the destination. In the first relay model, referred to as amplify-and-

forward via beamforming (AFB), the relays scale their received versions of the source

signal prior to transmission to the destination. In the second relay model, referred to

as decode-and-forward via beamforming (DFB), the relay data is first decoded and

then scaled via a beamforming weight prior to transmission to the destination. For

both relay models, we assume that the beamforming weights are constructed at the
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destination and subsequently fed back to the relays via a broadcast feedback channel.

We also suppress any timing/synchronization issues, i.e., we assume that the signals

transmitted from the relays arrive at the destination “fully synchronized” [22].

In the subsequent sections, we present the source signal, source-relay and

relay-destination channels model, as well as the relay and destination process models.

2.1 Signal and Channels Models

The setting we consider in this dissertation for a two-hop network is depicted in

Fig. 2.1 and involves a source communicating its data sequence, x[n], to a desti-

nation via the aid of L intermediate relay nodes. We assume that x[n] is a zero-

mean independent and identically distributed (IID) binary-valued sequence x[n],

with x[n] ∈ {1,−1}. We adopt frame-by-frame processing, according to which for

the duration of any frame, the source-relay and relay-destination channels are as-

sumed to remain constant. In particular, as shown in Fig. 2.1, the source-relay

channels are modeled as quasi-static mutually independent channels whereby the

nth observation in a given frame at the ith relay is given by

ysi
[n] =

√

Ps αsi
x[n] + vi[n], (2.1)

where Ps is the source transmit power, the source-relay channel fading coefficients

{αsi
} are zero-mean mutually IID circularly symmetric (CS) Gaussian random vari-

ables with variance E [|αsi
|2] = σ2

s , and the vi[n]’s are zero-mean mutually IID CS
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Gaussian random processes, each with variance σ2
v , and independent of the αsi

’s and

x[n]. The quality of each source-relay channel can be expressed in terms of its SNR,

defined as

γsi
=

Ps|αsi
|2

σ2
v

(2.2)

with average value

γ̄s =
Psσ

2
s

σ2
v

. (2.3)

Similarly, as shown in Fig. 2.1, the sequences yri
[n], corresponding to processed

versions of the associated received relay sequences, ysi
[n], are communicated by the

relays to the destination via a composite quasi-static fading channel, i.e., the nth

observation at the destination is given by

yd[n] =
L
∑

i=1

αri
yri

[n] + w[n] (2.4)

where the relay-destination channel fading coefficients {αri
} are mutually IID zero-

mean CS Gaussian random variables with variance σ2
r , while w[n] is a zero-mean

IID CS Gaussian random process with variance σ2
w. We further assume that x[n],

the {αsi
}’s the {vi[n]}’s, the {αri

}’s, and w[n] are mutually independent.

2.2 Relay Preprocessing Model

In this section, we consider two types of front-end processing at the relays: (i) the

amplify-and-forward via beamforming (AFB) relay model, and (ii) the decode-and-

forward via beamforming (DFB) relay model. The AFB relay model is shown in
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Figure 2.1: System block diagram including data model, relay model and source-

relay and relay-destination channel models.

Fig. 2.2 and corresponds to first scaling the received sequences at the relays, ysi
, to

achieve unit-power output signals prior to forwarding the signal to the destination.

In particular, without loss of generality, the received relay sequences ysi
[n] at the

ith relay are scaled by the gain factor

Gi =
1

αsi

√

Ps (1 + ξsi)
, (2.5)

resulting in the following unit-power nth relay output,

zai
[n] =

1
√

1 + ξsi

x[n] +

√

ξsi
√

1 + ξsi

v̄i[n] (2.6)

where ξsi is the inverse of γsi
and the v̄i[n]’s are independent CS IID Gaussian

random processes, independent of x[n] and with v̄i[n] ∼ N (0, 1).

As shown in Fig. 2.3, in the DFB relay model the received sequences ysi
[n]
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}

{qi}F(γsi
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Figure 2.2: Block diagrams of the relays and the destination processors for the

amplify-and-forward relay model.

are first decoded (using a matched filter followed by a slicer) prior to forwarding via

beamforming to the destination. The nth decoded output at the ith relay can be

modeled as,

zdi
[n] = ǫi[n] x[n] (2.7)

where ǫi[n] denotes a set of mutually independent IID error sequences, satisfying

ǫi[n] =















1, with probability 1 − psi

−1, with probability psi

, (2.8)

and where psi
denotes the “instantaneous” BER associated with the given frame

channel realization and can be viewed as a metric of the individual source-relay CSI

quality. Specifically, psi
can be expressed in terms of the instantaneous SNR, γsi

, as
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Figure 2.3: Block diagrams of the relays and the destination processors for the

decode-and-forward model.

follows

psi
= Q(

√

2γsi
) . (2.9)

Similarly the frame-averaged BER, p̄s, is given by

p̄s = E [psi
] = 0.5

(

1 −
√

γ̄s

1 + γ̄s

)

, (2.10)

where γ̄s is given by (2.3). For both relay processing models, it is assumed that each

relay has full knowledge of its own source-relay CSI, i.e., the relay knows psi
(or,

equivalently, either γsi
, or ξsi).
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2.3 Relay-destination Processing Model

In light of the composite channel (2.4), we consider employing relay-destination

beamforming where the output of the ith relay is scaled by a complex beamforming

weight βi prior to transmission over the shared channel. As a result, yd[n] in (2.4)

is given by

yd[n] =
L
∑

i=1

αri
βizi[n] + w[n] , (2.11)

where the sequence zi[n] represents zai
[n] in the AFB relay model and zdi

[n] in the

DFB relay model, and where we assume a total transmit power constraint at the

relays
L
∑

i

|βi|2 = Pd. (2.12)

In light of (2.11)–(2.12), the quality of the ith relay-destination channel can be

expressed in terms of the ith relay-destination channel SNR γri
= Pd |αri

|2/σ2
w, or,

equivalently, its inverse, ξri = γ−1
ri

.

Also shown in Figs. 2.2 and 2.3 is the processing performed at the destination

for the AFB and DFB relay models, respectively. In addition to implementing a

straightforward matched filter detector, the destination computes and broadcasts

back subject to (2.12) a set of beamforming weights, {βi}, that are to be used by

the relays for signaling, according to (2.11). In computing the {βi}’s we assume

that the {αri
}’s (and, thus, the associated {ξri}’s) are known at the destination,

and consider various levels of knowledge available at the destination regarding the

source-relay CSIs. Aside from the case of perfect CSI available (the destination
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knows {γsi
} or, {psi

}), we also consider the case where the ith relay sends to the

destination a quantized representation of the source-relay CSI (represented by γsi

and psi
for the AFB and DFB relay models, respectively), obtained using a quantizer,

F(·).

We also consider adaptive beamforming strategies whereby the destination

can select, based on the available knowledge of the source-relay and relay-destination

CSIs, the type of processing to be performed at each relay. In particular, the des-

tination sends over its feedback channel L bits to the L relays informing each one

whether to use the AFB relay model or the DFB relay model. In Chap. 5, we de-

velop these adaptive beamforming algorithms and examine its Pr(e) performance

against using only AFB or DFB relay models.

2.4 Quantizer Model

Letting {̺k}Kk=1, with K = 2m, denote the set of quantizer levels of an m-bit quan-

tizer, we focus on quantizers for which the individual quantizer-level preimages,

Ik = F−1(̺k), are contiguous regions of the nonnegative real axis for all k. We re-

mark that any two such m-bit quantizers with the same set of individual quantizer-

level preimages {Ik} provide the same information about the source-relay channels,

provided the quantization levels (i.e., the ̺k’s) are distinct for each quantizer. As a

result, such quantizers are effectively fully described via the set of their quantization
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thresholds. Without loss of generality, we thus set the quantization levels as follows,

̺k = k, for k = 0, 1, 2, . . . ,K. (2.13)

Although the quantizer can be applied to either the {γsi
}’s or the {psi

}’s, in order

to easily distinguish between the quantizer designs for the two distinct relay models

of interest, we consider quantizing the {γsi
}’s for the AFB model and the {psi

}’s for

the DFB relay model. As a result, we use {γtk
} and {ptk} to denote the quantizer

thresholds for the AFB and DFB relay models, respectively. In summary, we focus

on quantizers described via their preimages as follows

Ik = F−1(k) for k ∈ {1, 2 · · · , K} (2.14)

whereby for the AFB relay model,

Ik = [γtk
, γtk+1

) (2.15)

with quantizer thresholds satisfying γt0 = 0 < γt1 < . . . < γtK+1
= ∞, while for the

DFB relay model,

Ik = [ptk , ptk+1
) (2.16)

with quantizer thresholds satisfying pt0 = 0 < pt1 < . . . < ptK+1
= ∞.

As a result, in the AFB relay model shown in Fig. 2.2, the output of the ith

source-relay CSI quantizer (with input the ith source-relay CSI γsi
) is given by

qi = F(γsi
) = k, if γsi

∈ Ik , (2.17)
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with Ik given by (2.15). Similarly, in the DFB relay model shown in Fig. 2.3, the

output of the ith source-relay CSI quantizer (with input the ith source-relay CSI

psi
) is given by

qi = F(psi
) = k, if psi

∈ Ik , (2.18)

with Ik given by (2.16). As shown in Fig. 2.2 and Fig. 2.3, the destination uses

its knowledge of the relay-destination channel coefficients {αri
} and the available

source-relay CSI {qi} to compute the beamforming weights to be broadcasted to the

relays.

In this thesis, our objectives can be summarized as follows:

• Given full knowledge of the relay-destination CSI and an m-bit description

of each source-relay CSI at the destination, select the m-bit description (i.e.,

the 2M -level quantizer, or, equivalently the {γtk
}’s for the AFB relay model

and the {ptk}’s for the DFB relay model) and the associated beamforming

algorithms subject to (2.12), so as to minimize the destination Pr(e).

• Develop adaptive beamforming algorithms that exploit feedback information

from the destination which determines for each relay its processing type. In

addition, examine the tradeoff between the feedback information and the Pr(e)

performance if the relay processing is locally decided at each relay rather than

being determined by the destination.

• Develop beamforming algorithms for multi-hop relay networks. In particular,
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we determine bandwidth-efficient methods for selecting the weights at each

hop using the beamforming algorithms developed for the two-hop networks.
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Chapter 3

Beamforming Algorithms for

Amplify-and-Forward Relay Model

In this chapter, we develop relay-destination beamforming algorithms for informa-

tion relaying for the amplify-and-forward relay model under bandwidth constraints.

We consider the system model developed in Chap. 2. In particular, we develop relay-

destination beamforming algorithms for the amplify-and-forward model whereby the

beamforming weights are formed via the composite relays-destination CSI and m-bit

descriptions of the individual source-relay CSIs. We present methods for choosing

the source-relay CSI quantizer so as to minimize the data bit error rates (BERs) at

the destination. The algorithms we develop, even in the case when only a single bit is

used to describe the source relay CSI, are only slightly inferior to beamformers that

exploit perfect CSI knowledge of the source-relay channels at the destination [23,24].

The outline of this chapter is as follows. In Sec. 3.1, we present a class of

beamforming algorithms for the amplify-and-forward relay model assuming full and
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partial knowledge of the source-relay CSI is available at the destination, respectively.

We also present a method for designing the source relay CSI quantizer. In Sec. 3.2,

we present a performance evaluation of the proposed beamforming algorithms.

3.1 Beamforming Algorithms

In this section, we present beamforming algorithms for the AFB relay model that

are based on the individual relay-destination channel coefficients and various levels

of source-relay channel CSI at the destination. We first determine lower bounds on

Pr(e) at the destination by considering the case where full knowledge of the {γsi
}’s

is available at the destination. We then develop beamforming algorithms for the

case that only their quantized versions from (2.17) are available at the destination.

3.1.1 Full Source-Relay CSI Lower Bound

We first develop beamforming algorithms that minimize the Pr(e) at the destination

by considering the case that the {γsi
}’s are fully known at the destination. The Pr(e)

at the destination can be expressed in terms of the (instantaneous) destination SNR,

γd, as follows,

Pr(e) = Eγd

[

Q(
√

2γd)
]

(3.1)

where Q(x) , 1
2π

∫

∞

x
exp(−y2) dy and where, given a set of relay-destination channel

coefficients, {αri
}, a set of source-relay CSI, {γsi

}, and using (2.6) and (2.11), the
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SNR, γd, at the destination can be represented as follows,

γd =

∣

∣

∑

i

(

αri
βi/
√

1 + ξsi

)∣

∣

2

∑

i

(

|β|2i |αri
|2 [ξsi/(ξsi + 1)]

)

+ σ2
w

. (3.2)

Since minimizing the right-hand side of (3.1), is equivalent to maximizing

(3.2), we focus our attention on beamforming algorithms that maximize the instan-

taneous γd, attained at the destination subject to the constraint (2.12). Under this

constraint, the SNR expression γd in (3.2) can be rewritten as follows,

γd =

∣

∣

∑

i

(

αri
βi/
√

1 + ξsi

)∣

∣

2

∑

i

(

|β|2i [ξsi/(ξsi + 1) + ξri]
) . (3.3)

By applying the Cauchy-Schwartz inequality defined as,

E [X Y ] ≤
√

|E [X] |2 |E [Y ] |2 (3.4)

where the equality occurs when X ∝ Y , on the SNR expression (3.3) by setting

X = βi

[

√

[ξsi/(ξsi + 1) + ξri]
]

, (3.5)

and

Y =
αri

[(ξsi + 1)(ξri + 1) − 1]
. (3.6)

The SNR-maximizing beamformers for the amplify-and-forward relay model subject

to the constraint (2.12) are given by

βi ∝
√

ξsi + 1

αri
[(ξsi + 1)(ξri + 1) − 1]

, (3.7)

yielding a maximum SNR at the destination

γd,max =
∑

i

1

[(ξsi + 1)(ξri + 1) − 1]
. (3.8)
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We then develop a closed form expression for the destination Pr(e) perfor-

mance of the beamformers in (3.7) at high average source-relay and relay-destination

SNR values. The destination Pr(e) performance for such case provides a lower bound

on the destination Pr(e) of the beamforming algorithms formed based on quantized

source-relay channel CSI. The Pr(e) expression defined in (3.1) can be rewritten in

the following expanded form

Pr(e) =

∫

∞

0

Q(
√

2γ)pγd,max
(γ) dγ, (3.9)

where pγd,max
(·) denotes the probability density function of γd,max defined in (3.10).

At high values of average SNR γ̄s and γ̄r, the maximum SNR γd,max defined in (3.8)

can be reduced to,

γd,max =

L
∑

i

1

ξsi + ξri

=
L
∑

i

γsi
γri

γsi
+ γri

.

(3.10)

As it will be shown later via simulations, that the above expression of the maximum

SNR at the destination approximates well the Pr(e) performance even at moderate

average SNR values. To obtain an expression for the Pr(e) at the destination, we

use the method developed in [15, 25]. This method depends on the observation

that as the average SNR values increase, the Pr(e) values are mainly dictated by

the values of the probability density function, pγd,max
(·) around zero. This is due

to the fact that the effect of the values of Q(·) function in (3.9) away from zero,

decreases significantly as the average SNR increases. As a result, a closed form
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of Pr(e) expression (3.9) that almost captures the exact values of the Pr(e) can

be obtained by approximating the behavior of the probability density function of

pγd,max
(·) around zero. In [25], the authors develop a close approximations of the

probability density function of pγd,max
(·) using McLaurin series. Given that the first

non-zero term of the series is the kth term, the McLaurin series representation of

pγd,max
(·) can be given as follows,

pγd,max
(γ) =

∂kpγd,max

∂γk
(0)γk + o(γk), (3.11)

where we assume that lim
γ→0

o(γ)/γ = 0. By applying the expression (3.11) in the

Pr(e) expression (3.9) and perform simple integration, we can deduce the Pr(e)

expression as the average SNR goes to infinity is given by [25],

Pr(e) →

k+1
∏

i=1

(2i − 1)

(k + 1)2(k+2)
.
1

k!

∂kpγd,max

∂γk
(0). (3.12)

To evaluate the Pr(e) expression, we need to calculate the first non-zero McLuarin

coefficient
∂kpγd,max

∂γk (0). As shown in [15], the first non-zero coefficient McLaurin

coefficient is the Lth term and was found by using initial value theorem and Laplace

transformation to be equal to

∂kpγd,max

∂γk
(0) =

L
∏

i=1

[

pγsi
(0) + pγri

(0)
]

. (3.13)

where pγsi
(0) and pγri

(0) are the zero value of the probability density function of

the source-relay and relay-destination channel, respectively. Given the Rayleigh

distribution model assumed for the source-relay and relay-destination channels, the
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values of pγsi
(0) and pγri

(0) are given by,

pγsi
(0) =

1

γ̄s
pγri

(0) =
1

γ̄r
, (3.14)

which by applying to the Pr(e) expression in (3.12) and performing simple algebraic

simplifications, the asymptotic Pr(e) of the amplify-and-forward model (as average

SNR goes to infinity) can be expressed as follows,

Pr(e) →

L+1
∏

i=1

(2i − 1)

(L + 1)2(L+2)
.
1

L!

[

1

γ̄s
+

1

γ̄r

]L

. (3.15)

The destination Pr(e) of the beamformers in (3.7) provides a lower bound on the

destination Pr(e) of the beamforming algorithms that exploit quantized source-relay

channel CSIs.

3.1.2 Partial Source-Relay CSI Beamforming Algorithm

In this section, we develop beamforming algorithms in the case that only the {qi}’s

from (2.17) (i.e., only quantized values of the source-relay channels coefficients) are

available at the destination. To this end, we first obtain a closed-form expression

for the Pr(e) at the destination that is valid when the number of relays becomes

large, and use it to construct methods for selecting the beamforming weights and

the source-relay CSI quantizer thresholds so as to minimize the destination Pr(e).

The optimal detector at the destination is simply a matched filter followed

by a slicer. Omitting for convenience the dependence of random sequences on the
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time index n, we note that

E [yd|x, {αri
}, {ξsi}, {βi}] = xAejθ, (3.16)

for some A ≥ 0 and some −π ≤ θ < π, which may depend on the {αri
}′s, the

{ξsi}′s, and the set of beamforming vectors {βi}. Letting R(t) denote the real part

of a complex number t, the optimal detector in this case selects x̂ = 1, if R(yde
−jθ)

is positive and x̂ = −1 otherwise. Without loss of generality, we shall assume that

θ = 0, since, choosing any set of βi’s yielding a nonzero θ = θo is equivalent (in terms

of performance) to choosing beamforming weights βie
−jθo , yielding θ = 0. With this

assumption the optimal detector is given by,

R(yd)
x̂=1

R
x̂=−1

0 (3.17)

where yd, using (2.4) and (2.6), is given by

yd =
L
∑

i

βi αri
√

ξsi + 1
x +

L
∑

i

βi αri
ξsi

√

ξsi + 1
v̄i + w . (3.18)

As a prelude to designing beamforming methods that exploit knowledge of

the quantized source-relay CSIs

q =

[

q1 q2 · · · qL

]T

(3.19)

with qi given by (2.17), and the relay-destination channel CSIs

αr =

[

αr1 αr2 . . . αrL

]T

(3.20)
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it is instructive to consider the destination Pr(e) conditioned on q and αr in the

following form

Pr(e|αr,q) = Pr(R(yd) < 0|αr,q) . (3.21)

Computing Pr(e|αr,q) via (3.21) requires knowledge of the probability density func-

tion (p.d.f) of yd in (3.18) given αr, and q, which, as (3.18) reveals, is not Gaussian.

Consequently, for finite L, (3.21) does not provide a computationally efficient al-

gorithm for obtaining the Pr(e)-minimizing beamforming vectors. In the large L

(L → ∞) case, however, the right hand side of (3.18) converges to a Gaussian

random variable, yielding the following limit on the Pr(e|αr,q) in (3.21)

lim
L→∞

Pr(e|αr,q) = Q(
√

2γdq), (3.22)

where the SNR γdq at the destination is given by

γdq = γd(β,q, αr) =
|E [yd|αr,q] |2

E [|yd − E [yd|αr,q] |2|αr,q]
, (3.23)

and

β = β(q, αr) =

[

β1 β2 . . . βL

]T

, (3.24)

is the vector of beamforming weights.

We next determine the choice of the beamforming vector β that maximizes

the SNR expression γdq in (3.23). Using (2.6) and (2.11), the signal power quantity

|E [yd|αr,q] |2 can be expressed as follows,

|E [yd|αr,q] |2 =

∣

∣

∣

∣

∣

∑

i

αri
βi E

[

(1/
√

1 + ξsi)
∣

∣

∣
q
]

∣

∣

∣

∣

∣

2

. (3.25)
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Similarly, the denominator in (3.23) represents the noise power which, after per-

forming algebraic manipulations, can be represented as follows,

E
[

|yd − E [yd|αr,q] |2|αr,q
]

=

∑

i

|αri
|2


|βi|2


1 −
∣

∣

∣

∣

∣

E

[

1
√

1 + ξsi

∣

∣

∣

∣

∣

qi

]∣

∣

∣

∣

∣

2






+ σ2
w.

(3.26)

Combining (3.25)-(3.26), the SNR in (3.23) can be represented as follows,

γdq =

∣

∣

∣

∣

∑

i αri
βi E

[

1√
1+ξsi

∣

∣

∣

∣

qi

]∣

∣

∣

∣

2

∑

i |αri
|2
(

|βi|2
[

1−
∣

∣

∣

∣

E

[

1√
1+ξsi

∣

∣

∣

∣

qi

]∣

∣

∣

∣

2
])

+σ2
w

. (3.27)

Also, by letting

ak =

γtk+1
∫

γtk

1
√

1 + (1/µ)

1

γ̄s
exp(− µ

γ̄s
)dµ, (3.28)

and

ck =

γtk+1
∫

γtk

1

γ̄s
exp(− µ

γ̄s
)dµ, (3.29)

we obtain

E

[

1√
1+ξsi

qi = k

]

=
ak

ck

. (3.30)

Using (3.28)–(3.30) in (3.27) yields

γdq =

∣

∣

∑

i αri
βiaic

−1
i

∣

∣

2

∑

i |αri
|2|βi|2(1 − a2

i

c2i
) + σ2

w

. (3.31)

Finally, by using the Cauchy-Schwartz inequality in (3.31), the beamforming weights,

βi, that maximize the SNR, γdq, subject to the constraint (2.12) can be expressed

as

βi ∝
α−1

ri

(

ai

ci

)

1 + ξri −
(

ai

ci

)2 , (3.32)
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yielding a maximum value of γdq given by

γdq,max =
∑

i

(

ai

ci

)2

1 + ξri −
(

ai

ci

)2 . (3.33)

We remark that as the quality of the source-relay CSI information available at

the destination improves towards the case where the {γsi
}’s are available at the

destination, the maximum SNR (3.33) converges to the one in (3.8). This can

be readily verified by considering a sequence of K-level quantizers with thresholds

γtk
= k/

√
K, and exploiting the fact that as K → ∞, γdq,max → γd,max, with γdq,max

and γd,max given by (3.8) and (3.33), respectively.

We next focus our attention on finding the source-relay CSI quantizer thresh-

olds that optimize the Pr(e) at the destination. As suggested by (3.33), finding

the set of thresholds that maximize the SNR, γdq,max, is equivalent to finding the

thresholds that maximize the individual terms in γdq,max. Each term in γdq,max can

be maximized by finding the optimal value of the ratio
(

ai

ci

)2

for a given qi.

Although in principle this method can be used in finding the set of quantizer

thresholds that maximize the SNR expression in (3.33), it has the disadvantage of

providing a set of thresholds that depend on the instantaneous relay-destination

SNR, ξri, and the quantized descriptions of the source-relay CSI received at the

destination. Alternatively, we consider choosing the thresholds that maximize the

value of
(

ai

ci

)2

over all the realizations of the quantization levels, qi, and at high

relay-destination SNR, i.e. ξri = 0. In particular, we focus on finding the set of
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thresholds that maximize the following

Λq =
∑

(

ai

ci

)2

Pr(qi) (3.34)

where Pr(qi) is the probability of the occurrence of one realization of {qi} and is

given by

Pr(qi) = ci (3.35)

where ci given by (3.29). Using (3.33)-(3.35), and letting ξri → 0, the average term

in (3.34) can be expressed as

Λq =
K
∑

k=1

a2
k

ck

. (3.36)

where ak and ck are given by (3.28) and (3.29), respectively. As shown Sec. 3.2.1,

the set of quantizer thresholds that maximizes (3.36) can be readily obtained using

offline numerical optimization techniques.

As is verified via simulations in Sec. 3.2, even when a two-level quantizer is

used (i.e., a single-bit is used to describe each source-relay CSI to the destination),

the optimized quantizer threshold and the associated beamforming weights obtained

based on the methods developed in this section yield destination bit error rates that

are a small fraction higher than those obtained assuming full knowledge of the

instantaneous values of the source-relay SNRs, {ξsi}, at the destination.
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3.2 Simulations

In this section, we conduct a performance analysis of the beamforming algorithms

developed for the AFB relay model in Sec. 3.1. We focus our attention on one-

bit quantizers employed at the relays, i.e., the destination receives only a one-

bit representation of the CSI of each source-relay channel. Although, the case of

the m-bit quantized source-relay CSI of each source-relay channel can be similarly

analyzed, as our simulations suggest, a one-bit source-relay CSI quantizer provides

destination Pr(e) sufficiently close to the one obtained when the quality of each

source-relay channel is precisely known at the destination.

We first develop rule-of-thumb expression for the one-bit quantizer threshold

that optimizes the Pr(e) at the destination for the AFB relay model. Based on these

optimized quantizer thresholds, we then present a performance evaluation of the

beamforming algorithms presented in Sec. 3.1, and comparison against beamforming

algorithms that exploit full source-relay CSIs at the destination. Finally, we study

the effect of the relative location of the relays with respect to the source and the

destination on the destination Pr(e) performance at the destination for the AFB

relay model. Based on these simulations, we derive a rule-of-thumb expressions for

the optimal relative relay locations considering the case of the AFB relay model.
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3.2.1 Quantizer Threshold Design

In this section, we investigate the effect of the choice of the threshold of the one-bit

source-relay CSI quantizer F(·) defined in (2.17) on the destination Pr(e).

As shown in Sec. 3.1, our objective is to find the quantizer threshold, defined

as γopt
t , that maximizes the value Λq, defined in (3.36) assuming a one-bit source-

relay CSI quantizer (K = 2). Inspection of (3.36) reveals that γopt
t is only a function

of the average source-relay channel SNR, γ̄s, which is convenient in terms of system

design as the threshold can be conveniently computed offline. As it will be shown

later via simulations, that obtained threshold γopt
t minimizes the Pr(e) performance

for the one-bit quantizer.

Numerical threshold optimization can be used to obtain rule-of-thumb ex-

pressions that provide an estimate of the value of γopt
t as a function of γ̄s. In partic-

ular, We develop rule-of-thumb expression via numerical techniques that determines

the value of γopt
t as a function of γ̄s. In particular, Fig. 3.2.1 depicts the dependence

of the threshold, γopt
t on the source-relay average CSI, γ̄s. The solid curve represents

γopt
t computed by numerically finding the value of γt that maximizes the expression

Λq defined in (3.36), while the dashed curve depicts the following rule-of-thumb

function,

CAF(γ̄s) = −(
γ̄s

10
)2 + 0.5483 γ̄s − 3.48, (3.37)

obtained via curve-fitting techniques. As the figure reveals, the function CAF(γ̄s)

approximates remarkably well the numerically obtained value of γopt
t for all values
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of γ̄s in the range 1-20 dB.
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Figure 3.1: Optimal quantizer threshold, γopt
t , as a function of γ̄s. The solid curve de-

picts γopt
t obtained using numerical methods while the dashed curve depicts CAF(γ̄s)

in (3.37).

We remark that this optimal threshold does not necessarily minimize the

Pr(e) at the destination, however, as our simulations reveal, the threshold obtained

by minimizing, Λq, provides the minimum Pr(e) at the destination.

3.2.2 Performance Analysis

In this section, we study the performance of the beamforming algorithms developed

in Sec. 3.1 based on Monte-Carlo simulations. We consider the performance of
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the beamforming algorithms formed assuming the destination has available one-bit

descriptions of the individual source-relay channel CSIs and where the associated

binary quantizer threshold is obtained using the techniques developed in Sec. 3.2.1.

In particular, we consider a two-hop network setting with a single source and a

destination communicating via L relays, whereby the average source-relay channel

CSI σ2
s = 1 and the average relay-destination channel CSI σ2

r = 1.

We first consider the case where full knowledge of source-relay CSI SNR is

available at the destination where fig. 3.2 compares the Pr(e) values obtained using

simulations and the Pr(e) expression (3.15) developed for high average SNR case.

In particular, the figure depicts the destination Pr(e) for various number of relay

nodes L = {2, 3}, as a function of the total average SNR γ̄sd = γ̄s + γ̄r. We define

the parameter µ as the ratio of the power allocated to the source node to the total

power i.e.,

µ =
γ̄s

γ̄sd
. (3.38)

In fig. 3.2 we consider the case of equal power distribution; γ̄s = γ̄r or equivalently

µ = 0.5. As the figure reveals, the Pr(e) values obtained using the expression (3.15)

accurately approximates the behavior of the Pr(e) function at the destination for

high average SNR.

We next study the performance of the quantized beamforming algorithms

for the case where only optimized one-bit quantized descriptions of the source-relay

CSIs are available at the destination. Fig. 3.3 depicts the Pr(e) at the destination
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Figure 3.2: The successively lower solid curves and the successively lower dash curves

depicts the destination Pr(e) for L = {2, 3} obtained using simulations and Pr(e)

expression (3.15), respectively, as a function of γ̄sd assuming the destination has full

knowledge of the source-relay CSI, γsi
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for L = 2 and 4, as a function of the total average SNR γ̄sd. The successively lower

solid curves marked by ’x’ depict the destination Pr(e), assuming the destination

has full knowledge of the source-relay channel CSI γsi
(or equivalently infinite bit

description of γsi
) for L = 2 and 4. The successively solid curves marked by ’o’

depict the destination Pr(e) assuming the destination has an one-bit description

of the each source-relay CSI, for networks with L = 2, and 4 relay nodes, respec-

tively. The source-relay CSI quantizer threshold is selected in each case according

to (3.37). Finally, the successively solid curves marked by ’▽’ depict the destination

Pr(e) assuming that destination has only the average of each source-relay CSI. As

the figure reveals, using these threshold-optimized one-bit source-relay CSIs at the

destination results in a small loss in Pr(e) performance (and no apparent loss in

diversity order) with respect to an AFB relay system that exploits precise source-

relay CSI knowledge at the destination. In particular, in the γ̄s range 0–20 dB, the

SNR loss does not exceed 1dB. In contrast, the Pr(e) performance (in addition to

the diversity order) degrades considerably if only the destination has the average of

each source-relay CSI.

We next determine the optimal power allocation among the source and the

relay nodes that minimizes Pr(e) at the destination or equivalently, we need to

determine the optimal value of µ. Based on the Pr(e) expression (3.15), we can

deduce that equal power distribution among the source and the relays provides the

minimum Pr(e) distribution for the case of full knowledge of source-relay SNR is
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Figure 3.3: The successively lower solid curves marked by ’x’, the successively lower

curves marked by ’o’, the successively lower curves marked by ’▽’ depict the des-

tination Pr(e) for L = {2, 4} as a function of γ̄sd assuming the destination has full

knowledge of the source-relay CSI, γsi
, optimized one-bit descriptions of γsi

, and

average value of γsi
, respectively.

41



available at the destination. For the case of only one-bit quantized versions of the

source-relay SNR is available at the destination, fig. 3.4 depicts the Pr(e) at the

destination as a function of µ for various values of γ̄sd = {5dB, 10dB, 15dB} and

L = 3. As the figure reveals, that equal power distribution provides the minimum

Pr(e) for the case of one-bit quantizers. In addition, it is shown that the Pr(e) values

provided by using the optimized one-bit quantizers almost close to those obtained

by using the exact values of source-relay SNR as mentioned before.

To verify that the quantizer threshold, γopt
t , developed in Sec. 3.2.1 optimize

the Pr(e) at the destination, fig. 3.5 depicts the Pr(e) performance of the beamform-

ing algorithms formed based on the optimized one-bit quantizers as a function of

the normalized quantizer threshold γt/γ
opt
t (in dB) for different values of L = 4 and

6, respectively and γ̄sd = 10 dB. As the figure reveals, the threshold γopt
t obtained

using (3.37) minimizes the destination Pr(e) for various values of L. In addition,

the figure suggests that the destination Pr(e) enhancement by selecting the optimal

γopt
t provides increases considerably as the number of nodes increase. Finally, we

remark that the destination Pr(e) is not sensitive to the optimal selection of the

threshold. For instance, as the figure reveals, the loss in the Pr(e) performance is

negligible within 2 dB range from the optimal threshold.
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Figure 3.4: The successively lower solid curves marked by ’x’ and the successively

lower curves marked by ’o’ depicts the destination Pr(e) for γ̄sd = {5dB, 10dB, 15dB}

as a function of µ assuming the destination has full knowledge of the source-relay

CSI, γsi
, and optimized one-bit descriptions of γsi

, respectively.
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Figure 3.5: The solid and the dashed curves depict the destination Pr(e) performance

of the one-bit beamforming algorithms as a function of γt/γ
opt
t (in dB) for L = 4

and 6, respectively, and γ̄sd = 10 dB.
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3.2.3 Optimal Relay Location

In this section, our objective is to determine the optimal relative relay location with

respect to the source and the destination that minimizes destination the Pr(e).We

focus on the case where single-bit source-relay CSI descriptions are available at

the destination, and assume that all the inter-relay distance is much smaller than

the source-destination distance, and that the relays are effectively within a small

distance from the straight line connecting the source and the destination.

Letting dsd and dsr denote the source-destination and source-relay distances,

respectively, we define the relative source-relay proximity index as

τ =
dsr

dsd

, (3.39)

and focus on quantifying the effect of τ on the destination Pr(e). To this end,

we define the average source-relay channel SNR and the average relay-destination

channel SNR, σ2
r via

σ2
s =

|K|2
dν

sr

, σ2
r =

|K|2
(dsd − dsr)ν

(3.40)

respectively, and where K is a constant that depends on the antenna design and ν

denotes the path loss exponent. In all our simulations we set K = 1 and ν = 3.

Fig. 3.6 depicts the Pr(e) of the proposed beamformers as a function of τ , and

where γ̄s = γ̄r = 5 dB. The successively lower solid curves represents the destination

Pr(e) for networks with L = 5, 10, and 15 nodes employing the AFB relay model.

As the figure reveals, the optimal source-relay proximity index is weakly dependent
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Figure 3.6: The successively lower solid curves marked by ’x’ and the successively

lower solid curves marked by ’o’ depicts the destination Pr(e) for L = {5, 10, 15} as

a function of τ for the decode-and-forward relay model and the amplify-and-relay

model, respectively.
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on L. In addition, the optimal relative source-relay proximity indexes is τ ≈ 0.5 for

the AFB relay model.
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Chapter 4

Beamforming Algorithms for

Decode-and-Forward Relay Model

In this chapter, we develop information relaying algorithms via beamforming for

the case of decode-and-forward relay model. Given the system model developed in

Chapter 2, we consider a network setting whereby data broadcasted by a source

are decoded at multiple relays and forwarded via beamforming to a destination

over a shared channel. The beamforming weights broadcasted by the destination

to the relays are formed based on the individual relay-destination fading channel

coefficients and a coarse description of the quality of the decoded data at each relay.

We present a class of beamformers that are formed via an ”equivalent” amplify-and-

forward source-relay model of the decode-and-forward model. As our simulations

and analysis reveal, the resulting beamformers provide uncoded bit-error-rates that

outperform the SNR maximizing beamformers for the decode-and-forward setting

[24, 26].
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The problem of finding the optimal beamforming weights for a decode-and-

forward relay model that minimize the Pr(e) at the destination has been addressed in

[13], [27]. It was assumed in [13], [27] that the decoded relay data are transmitted to

the destination over orthogonal fading channels. At the destination, the beamformer

are constructed knowing the average Pr(e) of the source-relay channels. In [27], it

was shown that the problem of finding optimal weights that minimize the Pr(e)

at the destination is mathematically intractable. As a result, a λ maximal ratio

combiner (λ−MRC) is introduced for a single relay channel setting according which

a constant λ, employed to scale the received decoded relay data, is numerically

optimized. In [13], the SNR maximal ratio combiner that performs directly on the

decode-and-forward relay channel model is proposed.

In this chapter, we develop relay-destination beamforming algorithms whereby

the beamforming weights are formed via the composite relays-destination CSI and

quantized one-bit descriptions of the individual source-relay CSIs. In particular, we

present a class of beamforming algorithms based on an ”equivalent” amplify-and-

forward relay model of the decode-and-forward source relay model. Furthermore, we

present a framework for quantizing the source-relay CSI so as to minimize the data

Pr(e) at the destination. The algorithms we develop outperform in terms of Pr(e)

the SNR maximizing beamformers and are only slightly inferior to beamformers that

exploit perfect CSI knowledge of the source-relay channels at the destination.
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4.1 Beamforming Algorithms

In this section, we develop beamforming algorithms for the decode-and-forward relay

model assuming various level of knowledge of the source-relay channel CSI psi
. In

App. A, we develop an analytical expression for the destination Pr(e) in (A.1) at

the destination assuming full knowledge of the source-relay CSIs at the destination.

Although the resulting expression can in principle be used to determine the Pr(e) for

a given set of beamforming weights, it is only useful in determining the beamforming

weights that maximize the Pr(e) numerically for small L, as the number of terms in

(A.8) grows exponentially with L.

In the subsequent subsections, we consider an alternative approach that con-

structs SNR-maximizing beamformers for an “equivalent” amplify-and-forward via

beamforming model. As shown via simulations in Sec. 4.2, the proposed beamform-

ing algorithms can outperform the SNR maximizing beamformers introduced in [13]

that perform optimization directly on the decode-and-forward model. In addition,

the Pr(e) performance of the proposed algorithms is proved to be optimal in high

average relay-destination SNR region.

4.1.1 High Relay-Destination SNR Bounds

In this section we develop lower bounds on the Pr(e) of the proposed beamforming

algorithms. In particular, we present lower bounds on the destination Pr(e), by

considering the best linear detectors (linear combiners followed by thresholding) in
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the presence of infinite relay-destination SNR, i.e., assuming that the decoded relay

data {zi[n]} is available at the destination. The minimum-Pr(e) linear detector

of x[n] based on {zi[n]}, assuming knowledge of the psi
’s and high average relay-

destination SNR (i.e.γ̄r → ∞), takes the form

ℓ =
∑

i

λizdi

x̂=1

R
x̂=−1

0 (4.1)

where the weights λi are chosen to minimize the Pr(e) at the destination. The

weights λi can be found by developing an expression for the Pr(e) similar to that

developed in App. A then choosing λi that minimize Pr(e). This approach can be

shown to mathematically hard. An alternative yet a simple method for computing

the optimal λi is to consider finding the maximum likelihood detector for a given

vector zd. As we next show, the λi’s can be obtained by noting that the minimum-

Pr(e) detector of x[n] based on {zi[n]} is a linear detector. In particular, omitting

for convenience the dependence of x[n] and zi[n] on the time-index, n, the maximum

likelihood detector of x based on the vector zd is given by

Pr(zd|{psi
}, x = 1)

x̂=1

R
x̂=−1

Pr(zd|{psi
}, x = −1) (4.2)

where

Pr(zd|{psi
}, x) =

L
∏

i=1

Pr(zdi
|psi

, x) (4.3)

and

Pr(zdi
|psi

, x) = (1 − psi
)(

1+zdi
x

2
)p

(
1−zdi

x

2
)

si . (4.4)
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Alternatively, the maximum likelihood detector can be represented as follows,

L
∏

i=1

(1 − psi
)(

1+zdi
2

)p
(
1−zdi

2
)

si

x̂=1

R
x̂=−1

L
∏

i=1

(1 − psi
)(

1−zdi
2

)p
(
1+zdi

2
)

si (4.5)

Using simple algebraic implications, the above expression reduces to,

∑

i

log

(

1 − psi

psi

)

zdi

x̂=1

R
x̂=−1

0. (4.6)

By comparing (4.1) and (4.6), the λi’s for the best linear detector satisfy

λi ∝ log

(

1 − psi

psi

)

. (4.7)

Evidently, the Pr(e) performance of this detector provides a lower bound on the

Pr(e) achievable at the destination based on (2.11) in the case that the psi
’s are

known to the destination. Similarly, a lower bound on the Pr(e) in the case that

only the quantized values {qi = F(psi
)} are available at the destination is provided

by the Pr(e) of the optimal linear detector of x[n] based on {zi[n]} assuming the

detector knows qi’s. Similarly, the weights λi can be obtained by considering the

maximum likelihood detector for a given vector zd and set of qi’s which can be

expressed as follows,

Pr(zd|q, x = 1)
x̂=1

R
x̂=−1

Pr(zd|q, x = −1) (4.8)

where

Pr(zd|q, x) =

L
∏

i=1

Pr(zdi
|qi, x). (4.9)

Using Bayes’ rule, the term Pr(zdi
|qi, x) can be represented as follows,

Pr(zdi
|qi, x) = Pr(zdi

|psi
∈ Ik, x) = (1 − fi)

(
1+zdi

x

2
)f

(
1−zdi

x

2
)

i , (4.10)
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where

fi = Eqi
[psi

] = E [psi
|psi

∈ Ik] . (4.11)

Hence, the maximum likelihood detector can be represented as follows,

L
∏

i=1

(1 − fi)
(
1+zdi

2
)f

(
1−zdi

2
)

i

x̂=1

R
x̂=−1

L
∏

i=1

(1 − fi)
(
1−zdi

2
)f

(
1+zdi

2
)

i (4.12)

Using simple algebraic implications, the above expression reduces to,

∑

i

log

(

1 − fi

fi

)

zdi

x̂=1

R
x̂=−1

0. (4.13)

Hence, the optimal detector in this case is given by (4.1) with

λi ∝ log

(

1 − fi

fi

)

. (4.14)

Finally an upper bound on Pr(e) in the case the destination knows only the average

source-relay SNR, is provided by the Pr(e) of the detector given by (4.1) with

λi ∝ log

(

1 − p̄s

p̄s

)

. (4.15)

4.1.2 SNR maximizing Beamforming Algorithms

In this section, we review the SNR maximizing beamformers performed directly on

the decode-and-forward relay model developed in [13]. Assuming a set of relay-

destination channel fading coefficients, αri
and a set of source-relay channel quality

levels, psi
, the instantaneous SNR at the destination γdi

can be computed using

(2.8), (2.11) and (2.8) as follows,

γd =
|E [yd] |2

E [|yd|2] − |E [yd] |2
. (4.16)
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Using

E [zdi
] = 1 − 2psi

(4.17)

and

E
[

|zdi
|2
]

− |E [zdi
] |2 = 4 psi

(1 − psi
), (4.18)

we can deduce that

E [yd] =
∑

αri
βi(1 − 2psi

), (4.19)

and

E
[

|yd|2
]

− |E [yd] |2 =
∑

|β|2i |αri
|2(4 psi

(1 − psi
)) + σ2

w. (4.20)

Hence the instantaneous SNR, γd, can be expressed as follows,

γd =
|∑αri

βi(1 − 2psi
)|2

∑ |β|2i |αri
|2(4 psi

(1 − psi
)) + σ2

w

. (4.21)

Using Cauchy-Schwartz inequality, the SNR-maximizing beamformers for the decode-

and-forward relay model subject to the constraint (2.12) are then given by,

βi ∝
(1 − 2 psi

)

αri
[4psi

(1 − psi
) + ξri]

. (4.22)

As comparison of (4.7) and (4.22), the SNR maximizing beamformers are subop-

timal at high relay-destination SNR, since lim
ξri→0

βi 6= λi. Fig. 4.1.2 depicts the

functions log
(

1−psi

psi

)

and
(1−2 psi

)

[4psi
(1−psi

)]
defining the behavior of the optimal beamform-

ing weights and the SNR-maximizing beamforming weights. As the figure reveals,

the two weights are not equal and in addition the SNR-maximizing beamforming

weights provides much more weight to the nodes with lower psi
than the optimal
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λi. As it will be shown by simulations that the Pr(e) values obtained by using

SNR-maximizing beamforming weights is much higher than those obtained by our

proposed beamforming algorithms developed in the next section.
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Figure 4.1: The dashed curve depicts the SNR-maximizing beamforming weight

in (4.22) for high average relay-destination SNR while the solid curve depicts the

optimal weights in (4.7).

4.1.3 Beamforming via Equivalent Amplify-and-Forward Re-

lay Model

In this section we develop beamformers for the decode-and-forward relay setting

by viewing the problem as one of finding the SNR-maximizing beamformers for an
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“equivalent” amplify-and-forward relay setting. We develop an equivalent amplify-

and-forward source-relay model for the decode-and-forward model, and use it to

develop beamforming algorithms for the decode-and-forward setting.

Given a DFB relay model of interest, we first develop an “equivalent” AFB

relay model and then employ the model to develop beamforming algorithms for the

decode-and-forward setting. The approach amounts to selecting the source-relay

and relay-destination inverse SNRs {ξs
eff
i } and {ξri}, respectively, in the AFB relay

model so that the model is in some sense “equivalent” to the DFB relay model

of interest. As a prelude, we first present the SNR maximizing beamformers for

an equivalent amplify-and-forward setting with source-relay and relay-destination

inverse SNRs {ξs
eff
i } and {ξri}, respectively. Without loss of generality, after proper

scaling, the measurements at the relays can be considered in their unit-power form

as follows

xi[n] =
1

√

ξs
eff
i + 1

x[n] +

√

ξs
eff
i

√

ξs
eff
i + 1

v̄i[n] (4.23)

where v̄i[n] is an IID Gaussian random process with v̄i[n] ∼ N (0, 1) and ξs
eff
i is

the effective inverse SNR of the equivalent amplify-and-forward relay model. The

SNR-maximizing beamformers subject to the constraint (2.12) are given by

βi ∝

√

ξs
eff
i + 1

αri
[(ξs

eff
i + 1) (ξri + 1) − 1]

. (4.24)

The equivalent AFB relay model is chosen based on comparison of the optimal

linear detectors based on the relay data in the two relay model settings. Since the

optimal detector of x[n] based on the AFB model relay data is linear, the optimal
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linear detector based on the relay data from the equivalent model is given by (4.1)

with

λi ∝

√

ξs
eff
i + 1

ξs
eff
i

. (4.25)

Comparison of (4.7) and (4.25) suggests that we may view the linear fusion rule

arising from a decode-and-forward operation (2.8) as one arising from an amplify-

and-forward rule on the model (4.23) where the ξsi’s in the equivalent amplify-and-

forward setting are chosen so as to satisfy

log

(

1 − psi

psi

)

= D

√

ξs
eff
i + 1

ξs
eff
i

. (4.26)

for some arbitrary D > 0. An alternative interpretation that also provides the

proper choice of D involves comparison of the log-likelihood functions for the two

settings. In particular, for the source-relay setting (2.7) we have

lnPr[zi|x] = C1 + zix
1

2
log

(

1 − psi

psi

)

(4.27)

while for the amplify and forward setting (4.23)

ln f(xi|x) = C2 + xix 2

√

ξs
eff
i + 1

ξs
eff
i

(4.28)

and where C1 and C2 are independent of x. Eqns (4.27)-(4.28) suggest modeling

a decode-and-forward channel with source-relay CSI psi
via an equivalent amplify-

and-forward channel with ξs
eff
i chosen so as to satisfy equation (4.26) with D = 4.

Solving the resulting quadratic equation in ξs
eff
i yields the following positive root for

the inverse SNR of an equivalent amplify-and-forward source-relay channel

ξs
eff
i = 4Bi

[

2Bi +
√

4B2
i + 1

]

, (4.29)
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with

Bi =

[

log

(

1 − psi

psi

)]−1

. (4.30)

The preceding equivalent amplify-and-forward channel approach readily suggests

a simple yet attractive class of beamforming algorithms for various cases of CSI

information at the relays. In particular, in the case that the psi
’s are available at

the destination, the equivalent-channel SNR-maximizing beamformers are given by

(4.24) with ξs
eff
i given by (4.29)-(4.30). In the case that the destination only knows the

average source-relay SNR the equivalent-channel SNR-maximizing beamformers are

given by (4.24) with ξs
eff
i = ξ̄eff

s , where ξ̄eff
s is given by (4.29)-(4.30), with psi

replaced

by p̄s. Finally, in the case that the destination possesses an one-bit description of

psi
via F in (2.17), the equivalent-channel SNR-maximizing beamformers are given

by (4.24), (4.29), and

Bi =

[

log

(

1 − fi

fi

)]−1

. (4.31)

Finally, in Sec. 3.2.1, we present a method for determining the quantizer

thresholds in (2.17) so as to minimize the destination Pr(e) of the proposed beam-

forming algorithms.

4.2 Simulations

In this section, we conduct a performance analysis of the beamforming algorithms

developed Sec. 4.1. We first determine the optimal quantizer to be employed at the

relay for the case of one-bit quantizers. Then we perform Monte-Carlo simulations
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to study the performance of the beamforming algorithms based on the optimized

quantizers. Finally, we study the effect of the relative location of the relays with

respect to the source and the destination on the destination Pr(e) for the DFB

relay models. Based on these simulations, we derive rule-of-thumb expressions for

choosing the relay preprocessing model based on the relative relay locations.

4.2.1 Quantizer Threshold Design

For the decode-and-forward via beamforming model, we focus on selecting the

thresholds assuming an infinite relays-destination SNR. In particular, we are in-

terested in the quantizer threshold, pt, that minimizes the Pr(e) of the linear detec-

tor of x[n] based on the relay data {zdi
[n]}, assuming the destination has available

one-bit descriptions of the individual source-relay CSIs. In App. B, a closed-form

expression is derived for the Pr(e) of the detector given by (4.1) and (4.7). The

set of equations (2.17), (B.7), (B.5)-(B.9) developed in App. B provides a closed-

form expression for the Pr(e) of the optimal linear combiner of the relay decodings

assuming the F(psi
)’s are available at the destination. It can therefore serve as a

basis for numerically approximating the value of pt that minimizes the destination

Pr(e). Fig. 4.2 depicts this Pr(e) as a function of the threshold pt for a fixed average

source-relay BER, p̄s = 0.1. The figure suggests the existence of an optimum non-

zero threshold pt = popt
t that minimizes the Pr(e) Fig. 4.2.1 depicts the dependence

of popt
t on the source-relay average BER, p̄s, for various numbers of relay nodes, L.
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Figure 4.2: Pr(e) of the optimal linear detector (4.1), (B.1), (B.2) as a function of

the quantizer threshold assuming p̄s = 0.1, for L = 10 (dash), and L = 15 (solid).
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The dashed, dotted, and dash-dot curves depict the optimum pt for L = 5, L = 15

and L = 25. Interestingly, as the figure suggests, the optimum pt is very weakly

dependent on L.

Also shown in the figure is a solid curve representing the following function

CDF(p̄s) = 1.929p̄2
s + 0.5p̄s − 0.003841 (4.32)

obtained via a curve-fitting algorithm. As shown in the figure, the quadratic function

in (4.32) accurately approximates the numerically obtained popt
t values as a function

of p̄s for all the values of L in the figure.

4.2.2 Performance Analysis

In this section, we study the performance of the beamforming algorithms developed

in Sec. 4.1 via Monte-Carlo Simulations. We consider the case of the beamformers

developed based on full knowledge of psi
and the one-bit quantized versions of psi

where the quantizer threshold is selected based on the expression (4.32).

Fig. 4.4 depicts the Pr(e) performance of the beamforming algorithms based

on the equivalent-channel model as a function of γ̄sd where we assume equal power

distribution or equivalently µ defined in (3.38) is equal to 0.5. In particular, the

successively lower solid curves depict the destination Pr(e) of the beamforming al-

gorithms formed based on full knowledge of the values psi
for L = 2 and 4. The

successively lower dashed curves depicts the Pr(e) assuming the destination knows

an one-bit descriptions of the source-relay CSI, for L = 2, and 4. Finally, the succes-
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Figure 4.3: Optimal quantizer threshold, popt
t , as a function of p̄s. The dashed,

dotted, and dash-dot curves show popt
t for L = 5, 15, and 25, respectively, while the

solid curve depicts CDF(p̄s) in (4.32).
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sively lower dash-dot curves depict the Pr(e) assuming the destination knows only

the average source-relay CSI p̄s. As the figure reveals, the quantized beamforming

weights provide most of the benefits in terms of Pr(e) and diversity order attained by

using full knowledge of source-relay channel CSI, provided the quantizer threshold

is properly chosen. In addition, we note that employing the quantized beamforming

weights incurs a slight increase in SNR loss compared to the amplify-and-forward

model. In addition, the SNR loss increases as the total average SNR γ̄sd increases

which is due to the fact that the Pr(e) for low SNR region is mainly dominated

by the relay-destination SNR. Finally, as shown in the figure, the destination Pr(e)

degrades considerably compared to the one-bit case as well as the diversity order

for the case that the destination knows only the average source-relay CSI.

We next determine the optimal power distribution among the source and

relays or equivalently the optimal µ defined in (3.38). Fig. 4.5 depicts the Pr(e)

at the destination as a function of µ for different values of the total average SNR

γ̄sd = {5dB, 10dB, 15dB}. The successively lower solid curves marked by ’x’ and

the successively lower curves marked by ’o’ depicts the Pr(e) for the case of full

knowledge of psi
and optimized one-bit descriptions qi, respectively, are available at

the destination. As it is shown by the figure, the equal power distribution (equiva-

lently µ = 0.5) is the optimal strategy for the decode-and-forward relay model. This

result was also verified in [15] for amplify-and-forward model and [18] for decode-

and-forward model at high SNR values.
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Figure 4.4: The successively lower solid, dashed, and dash-dot curves depict the

destination Pr(e) for L = {2, 4} as a function of γ̄sd assuming the destination has

full knowledge of the source-relay CSI, psi
, optimized one-bit descriptions of qi, and

average source-relay CSI p̄s, respectively.
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Figure 4.5: The successively lower solid curves marked by ’x’ and the successively

lower curves marked by ’o’ depicts the destination Pr(e) for γ̄sd = {5dB, 10dB, 15dB}

as a function of µ assuming the destination has full knowledge of the source-relay

CSI, psi
, and optimized one-bit descriptions qi, respectively.
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Figure 4.6: The solid curves marked by ’x’ and ’o’ depict the destination Pr(e)

performance of the one-bit beamforming algorithms as a function of pt/p
opt
t for L

= 4 and 6, respectively, and γ̄sd = 7 dB.

Similar to the case of the amplify-and-forward model, fig. 4.6 depicts the

Pr(e) performance of the one-bit quantized beamforming weights as a function of

the normalized quantizer threshold pt/p
opt
t . In particular, in fig. 4.6, the successively

lower curves marked by ’x’,’o’ depict the Pr(e) performance for L = 2 and 4, re-

spectively. As the figure reveals, the quantizer threshold popt
t given by the function

CDF(p̄s) optimizes the Pr(e) compared to other thresholds.
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Figure 4.7: The figure depicts the destination Pr(e) performance of the beamforming

algorithms formed based on psi
as function of D

4
for L = 3 and γ̄sd = 19 dB.

Fig. 4.7 depicts the effect of varying the constant D in the expression (4.26)

on the Pr(e) values at the destination. In particular, the figure depicts the Pr(e) for

the case of beamformers formed based on psi
as a function of a normalized D

4
where

D = 4 is the optimal value, for L = 3 and γ̄sd = 19 dB. As it was shown in Sec. 4.1,

that selecting the optimal value of D = 4 minimizes the Pr(e) at the destination.

For comparison purposes, fig. 4.8 depicts the performance of the SNR-maximizing

beamformers formed directly on the decode-and-forward model as presented in
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Sec. 4.1.2 (solid curves) and the equivalent-channel beamformers (dashed curves),

respectively, when the destination knows the psi
’s for L = 3, 4. As the figure re-

veals, the proposed algorithms outperform the SNR-maximizing algorithms for the

decode-and-forward setting especially for high SNR values.

4.3 Location-optimized Preprocessing Relay Strat-

egy

In this section, our objective is to determine the relative location of the relays

with respect the source and the destination for the decode-and-forward model. In

addition, we compare the Pr(e) performance of the AFB and DFB relays at relative

relay locations and determine the optimal preprocessing strategy at each relative

relay location. We focus our attention on the case where only single bit descriptions

of the source-relay CSI are available at the destination.

Fig. 4.9 depicts the Pr(e) of the one-bit beamformers as a function of τ

defined in (3.39) and γ̄s = γ̄r = 5dB. The successively solid curves marked by ’x’

and ’o’ represents the decode-and-forward relay model and the amplify-and-forward

model, respectively, for L = 5, 10, 15. As the figure reveals, the optimal location

of the relays for the decode-and-forward model as well as the amplify-and-forward

is weekly dependent on L. In addition, the optimal location of the relays for the

decode-and-forward model is given approximately by τ = 0.35. For the amplify-
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Figure 4.8: The successively lower solid curves marked by ’x’ and the successively

lower dash curves marked by ’o’ depicts the destination Pr(e) for L = {3, 4} as a

function of γ̄sd for the SNR-maximizing beamformers and the equivalent-channel

beamformers, respectively, when the destination knows the values of {psi
}′s
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Figure 4.9: The successively lower solid curves marked by ’x’ and the successively

lower solid curves marked by ’o’ depicts the destination Pr(e) for L = {5, 10, 15} as

a function of τ for the decode-and-forward relay model and the amplify-and-relay

model, respectively.
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and-forward model, the optimal location is half the distance between the source and

destination.

The figure also suggests a method for choosing between AFB and DFB relay-

ing based on the relative locations between the relays the source and the destination.

Specifically, if the source-relay proximity index is less that 0.5 (the relays are closer

to the source than the destination), then it is advantageous in terms of Pr(e) to

employ DFB relaying, while AFB relaying gives favorable Pr(e) performance if the

relays are closer to the destination (τ > 0.5). Also, as it is revealed by the fig-

ure, the Pr(e) benefits by picking the τ -optimized relaying strategy become more

substantial as the number of relays increases. Such significant Pr(e) benefits by

picking the right relaying strategy can be especially attractive in dense large-scale

sensor network applications, where it is possible to employ large numbers of nodes

as relays.

Also, the figure illustrates that the Pr(e) performance provided by employing

of both the amplify-and-forward and the decode-and-forward relay models model is

approximately the same as the relay nodes get closer to the source. This is due to

the fact the quality of the source-relay channels increases significantly as the relays

gets closer to the source. As a result, the source-relay channels can be effectively

viewed as perfect channels in the limit as τ → 0. This leads to the conclusion

that the type of processing employed at the relays has no effect on the Pr(e) at the

destination as the relay nodes with very high probability can have perfect estimates
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of the source signal x[n].

On the other side where τ → 1 or equivalently the relays get closer the

destination, the Pr(e) values at the destination for the amplify-and-forward relay

model outperform those attained by employing the decode-and-forward relay model.

For the case of τ → 1, the problem can be viewed as finding the optimal linear

detector based on either soft decisions zai
[n] defined in (2.6) or hard decisions, zdi

[n]

defined in (2.8) of x[n] for the case of amplify-and-forward model and decode-and-

forward model, respectively. This problem has been solved in the literature [28] and

it was shown that the Pr(e) performance of system detectors based on soft decodings

outperforms those who are based on hard decodings.

Fig. 4.9 also suggests a method for individual relay-dependent relaying in

cases where the individual source-relay proximity indexes differ from relay to relay.

In particular, due to the weak dependence of the optimal relaying strategy on the

number of nodes L, Fig. 4.9 also suggests that a viable approach is to have each node

choose its relaying strategy based on its own source-relay proximity index. Once the

relaying strategy is selected for a given relay node, its beamforming weight is readily

selected as the one (among the two provided in Secs. 3.1–4.1) corresponding to the

chosen relaying strategy. This location-optimized adaptive beamforming algorithms

will be shown in the next chapter.
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Chapter 5

Location-Optimized Adaptive

Beamforming Algorithms

In this chapter, we develop adaptive beamforming algorithms that optimize the

destination Pr(e) for every possible relative location of the relays. In particular, we

consider a network setting for which we develop a selection strategy that determines

the preprocessing type at each relay whether amplify-and-forward or decode-and-

forward so as to minimize the destination Pr(e). In Chaps. 3 and 4, we determine

the optimal preprocessing relaying strategy given any relative relay location. This

requires that the relay nodes must have the knowledge of its relative location. The

problem of determining the exact locations of the nodes is a challenging problem that

requires a lot of coordination between the nodes or employing Global positioning

system (GPS) at each nodes which are not desired in large-scale networks. Therefore,

in this chapter, we consider developing adaptive algorithms that can determine,

based on the available source-relay and relay-destination CSI rather than the relative
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relay location, the optimal preprocessing to be performed at each relay.

In general, the type of preprocessing relaying selected by each relay must

be agreed upon by the relays and the destination. This suggests two scenarios for

performing the selection strategy. The first is a destination-based selection strategy

where the destination based on the available CSI determines the processing at each

relay then fedback the results to each relay. The second is a relay-based selection

strategy where each relay determines its processing strategy then informs the des-

tination. Since we assume that destination has the knowledge of the source-relay

and relay-destination CSI compared to the relays which only know their source-relay

CSI, It is evident that the destination-based selection strategy must outperform the

relay-based selection strategy in terms of Pr(e). On the other hand,the destination-

based selection strategy requires additional feedback bandwidth to inform the relays

of their selected relaying strategies. In this chapter, we determine the tradeoffs in

terms of Pr(e) and bandwidth of the two selection strategies.

The adaptive beamforming algorithms developed in this chapter is charac-

terized by being performed on a node-by-node basis where for the destination-based

strategy the destination selects the processing at each relay in a way that only

depends on the channel state information of its source-relay and relay-destination

channels. While for the relay-based selection strategy, each relay decides based on its

source-relay CSI. This node-by-node basis strategy is computationally efficient and

requires minimum overhead bandwidth. For instance, in the case of the destination-
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based strategy, the problem of finding the optimal selection strategy requires that

the destination, based on the availability of the CSI of the channels involved in

communications , computes the instantaneous SNR at the destination for all the

possible combinations of the processing that can be selected for each relay. For

example, for a number of relay nodes L = 2, to find the optimal processing for each

of the two relays, the destination must compute the instantaneous SNR, for four

different cases; amplify-and-forward for both nodes, decode-and-forward for both

nodes, and amplify-and-forward for node 1 while decode-and-forward for node 2 or

vice versa. Clearly, this process requires a lot of computation by the destination

and most importantly that the computation process grows exponentially in L which

is considered a major disadvantage for sensor networks where the number of nodes

is in the order of thousands. Therefore, it is desirable that the selection strategy

at the destination can be performed on a node-by-node basis by only considering

the CSI of the source-relay and relay-destination of each relay node. For the case of

relay-based selection strategy, the optimal strategy requires that the relay node has

the knowledge of the source-relay and relay-destination CSIs. This has the problem

of increasing the overhead bandwidth considerably especially for large scale nodes.

As it will be shown in this chapter, that the node-by-node basis selection strategies

incur a negligible loss in Pr(e) compared to methods that exploit the available CSI

of all source-relay and relay-destination channels.

In contrast to Chap. 3 and Chap. 4, we develop beamforming algorithms
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for the cases where we assume that the relay nodes are all either amplifying-and-

forward or decoding-and-forward. For the case of adaptive beamforming algorithms,

this assumption is not necessarily valid. As depending on the node-by-node basis

selection strategy used, we can have a hybrid network setting where subset of the

relay nodes are selected to employ an amplify-and-forward relaying while decode-

and-forward relaying will be selected for the rest of the nodes. Therefore, in this

chapter, we develop beamforming algorithms assuming a hybrid network setting

that combine the output signals of the relays at the destination so as to minimize

the Pr(e).

As it will be shown in this chapter via simulations, the node-by-node basis

adaptive beamforming algorithms provide the best Pr(e) performance among the

decode-and-forward and amplify-and-forward relay model for all possible relative

relay locations with respect to the source and the destination. In addition, we show

that the location of the relay node relative to the source, if available, defined by τ in

(3.39) can be considered as a sole key design factor in selecting the optimal relaying

strategy for each relay node.

The outline of this chapter is as follows. In Sec. 5.1, we develop hybrid beam-

forming algorithms for the case where different processing strategies are employed

at the relays. Then, in Sec. 5.2, we first develop destination-based selection strategy

and its associated adaptive beamforming algorithm. To this end, we first deter-

mine the optimal selection strategy assuming that all the nodes can either amplify
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or decode. Based on this optimal strategy and by using the equivalent amplify-

and-forward model, we develop a node-by-node basis selection strategy where the

destination selects the type of processing to be employed at each node as well as

its associated beamforming weight based only on the CSI of its source-relay and

relay-destination channel. Finally, we develop relay-based selection strategy and

determine its Pr(e) performance compared to the destination-based selection strat-

egy.

5.1 Adaptive Beamforming Algorithms for Hy-

brid Networks

In this section, we develop adaptive beamforming algorithms for hybrid networks

where subset of the nodes are employing amplify-and-forward relaying while the

rest are employing decode-and-forward relaying. We first determine lower bounds

on Pr(e) by finding the beamforming weights for the case of high average relay-

destination SNR, γ̄r → ∞. Then based on the equivalent amplify-and-forward relay

model presented in Sec. 4.1, we next present a method for constructing the beam-

forming algorithms for the hybrid networks assuming various levels of information

available on the quality of the source-relay CSI.
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5.1.1 High Average Relay-Destination SNR Beamformers

In this section, we develop beamforming weights for the hybrid case assuming high

average relay-destination (γ̄r → ∞) and full knowledge of source-relay CSI (γsi
and

psi
) is available at the destination. Under these assumptions, the received signal at

the destination, based on (2.11) can be represented as follows,

yd =
La
∑

i=1

βai
zai

+

Ld
∑

i=1

βdi
zdi

(5.1)

where zai
and zdi

is defined in (2.6) and (2.8), respectively. The notations La and Ld

denotes the number of relay nodes that employ amplify-and-forward relaying and

decode-and-forward relaying, respectively.

Without loss of generality, we focus our attention on finding the optimal

weights for the case of L = 2 where an amplify-and-forward relaying is selected

for one node (La = 1) and the other node is employing decode-and-forward relaying

(Ld = 1). The extension for the case of any number of relay nodes can be adequately

generalized. Under this assumption, the expression, yd in (5.1) can be conveniently

expressed using (2.6) and (2.8) as follows,

yd = βa

(

1
√

1 + ξs

x +

√

ξs
√

1 + ξs

v̄

)

+ βd e x. (5.2)

where the subscript i is dropped for convenience. Our objective is to find the weights,

βa and βd, so as to minimize the Pr(e) at the destination. The Pr(e) expression given

the values of γs, ps based on (5.2) is given by ,

Pr(e|γs, ps) = (1 − ps ) Q
(

√

2γs(1 + χ)2
)

+ ps Q
(

√

2γs(1 − χ)2
)

, (5.3)
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where χ is defined as follows,

χ =
βd

βa

√

1 + ξs. (5.4)

It is evident from the above Pr(e) expression, that our objective is to find the ratio

βd

βa
that minimizes the Pr(e). By applying simple algebraic calculation, we can find

that the optimal ratio is given by,

βd

βa

=

[

1

4
log

(

1 − ps

ps

)]

[

ξs
√

ξs + 1

]

(5.5)

yielding a minimum Pr(e|γs, ps) given by,

Pr(e|γs , ps) = (1 − ps ) Q





√

2γs

(

1 +
ξs

4
log

(

1 − ps

ps

))2




+ ps Q





√

2γs

(

1 − ξs

4
log

(

1 − ps

ps

))2


 .

(5.6)

Since the preceding analysis was performed for the case of γ̄r → ∞, it can only

provides an expression for the optimal ratio βd/βa given by (5.5) rather the optimal

individual values of βd and βa. However, by comparing the obtained optimal ratio

in (5.5) with the beamforming weights obtained for high γ̄r defined by (3.7) for the

amplify-and-forward model and (4.7), we can deduce that,

βa ∝
√

ξs + 1

ξs
,

βd ∝ 1

4
log

(

1 − ps

ps

)

.

(5.7)

We remark that the above results suggest that the beamforming weights selected

for each relay node is independent of the type of the processing performed at the
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other relay nodes. As a result, the optimal beamforming weights can be selected

remarkably on a node-by-node basis. This is remarkably a desirable design feature

especially in the case of sensor nodes where each relay node has the freedom to select

its relaying strategy along with its associated beamforming weight without the need

to alter the beamforming weights of the remaining nodes. We also remark that

expression obtained for the optimal beamforming weight of the decode-and-forward

model for the case of hybrid networks verifies that the optimal D defined in Sec. 4.1

is equal to 4.

5.1.2 Equivalent Amplify-and-forward Beamformers for Hy-

brid Networks

In this section, we present beamforming algorithms for the hybrid networks based

on the equivalent amplify-and-forward method developed in Sec. 4.1. As shown

in Sec. 4.1, we present a method for developing an equivalent amplify-and-forward

source relay model to the decode-and-forward relay model by finding the effective

SNR of the equivalent model by comparing the optimal linear fusion rules of both

model as the average relay-destination γ̄r → ∞. The main advantage of this method

is that effective SNR for each source-relay node can be found on a node-by-node basis

as the effective SNR of each decode-and-forward model only depends on the CSI of

its source-relay and relay-destination channels. Also, it was shown in the previous

section that the optimal beamforming weight for a hybrid network as γ̄r → ∞
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for the decode-and-forward model is equivalent to the one developed for the case

where all the nodes employ decode-and-forward model. As a result, the equivalent

amplify-and-forward method can be readily used to find the beamforming weights.

In particular, for a network setting where La nodes are employing an amplify-

and-forward and Ld nodes are employing decode-and-forward model whose received

sequences at the destination is given by

yd =

La
∑

i

βai
αri

(

1
√

1 + ξsi

x +

√

ξsi
√

1 + ξsi

v̄

)

+

Ld
∑

i

βdi
αri

ei x + w, (5.8)

the equivalent amplify-and-forward model can be represented as follows

yd =

La
∑

i

βai
αri

(

1
√

1 + ξsi

x +

√

ξsi
√

1 + ξsi

v̄

)

+

La
∑

i

βdi
αri





1
√

1 + ξs
eff
i

x +

√

ξs
eff
i

√

1 + ξs
eff
i

v̄



+ w.

(5.9)

where ξs
eff
i is given by the expression (4.29) and (4.31). Similarly, using Cauchy-

Schwartz inequality, the beamforming weights that minimize the Pr(e) for the equiv-

alent amplify-and-forward model under the power constraint (2.12) can be given by,

βai
∝

√

ξsi + 1

αri
[(ξsi + 1)(ξri + 1) − 1] ,

βdi
∝

√

ξs
eff
i + 1

αri

[

(ξs
eff
i + 1)(ξri + 1) − 1

] .

(5.10)

We next consider developing beamforming algorithms for hybrid networks

assuming coarse one-bit descriptions of the source-relay channels are available at the

destination. We first develop an equivalent amplify-and-forward relay model for the

relay nodes employing decode-and-forward relaying by using the method developed
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in Sec. 4.1. In particular, the received sequences for the equivalent amplify-and-

forward relay model can be represented as follows,

yd =

La
∑

i

βai
αri

(

1
√

1 + ξsi

x +

√

ξsi
√

1 + ξsi

v̄

)

+

La
∑

i

βdi
αri





1
√

1 + ξs
eff
i

x +

√

ξs
eff
i

√

1 + ξs
eff
i

v̄



+ w.

(5.11)

where ξs
eff
i is given by (4.29) and (4.31). By using the Cauchy-Schwartz inequality,

the optimal beamforming weights, under the power constraint (2.12), and using the

analysis developed in Sec. 3.1.2 are given by

βai
∝ 1

αri







(

ai

ci

)

1 + ξri −
(

ai

ci

)2






,

βdi
∝

√

ξs
eff
i + 1

αri

[

(ξs
eff
i + 1)(ξri + 1) − 1

] .

(5.12)

where ξs
eff
i is given by (4.29) and (4.31).

We finally remark that the threshold for the quantizers employed at the

relays are selected according to the function CAF(·) defined in (3.37) and the func-

tion CDF(·) defined in (4.32) for the amplify-and-forward model and the decode-

and-forward model, respectively. This is due to the fact that employing optimal

beamforming algorithm for the equivalent amplify-and-forward model results in the

following maximum SNR at the destination

γmax
d =

La
∑

i=1

1

(1 + ξsi)(1 + ξri) − 1
+

Ld
∑

i=1

1

(1 + ξs
eff
i )(1 + ξri) − 1

. (5.13)

The above expression can be viewed as the sum of the maximum SNR attained by

the amplify-and-forward relay model and that attained by the decode-and-forward
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model. This suggests that the problem of finding the optimal threshold for each

processing model can be decoupled and solved separately and still the SNR expres-

sion defined in (5.13) is maximized. As a result, the optimal threshold functions,

CAF(·) and CDF(·) developed in Sec. 4.2.1 and Sec. 3.2.1, respectively, can be readily

used to optimize the Pr(e) for the case of hybrid networks.

5.2 Destination-based Relay Processing Selection

Strategy

In this section, we present a destination-based selection strategy for determining

the type of information processing to be employed at each relay so as to optimize

the Pr(e) at the destination. We assume that the selection strategy as well as the

associated beamforming weights are processed at the destination then fedback to the

relays over a broadcast feedback channel. The main characteristic of this strategy

that it is can be performed on a node-by-node basis where the preprocessing model at

each relay is selected based only the quality of its source-relay and relay-destination

channels and independent of the CSI of the channels of the other relays. This

node-by-node basis selection feature is advantageous in sensor networks where the

number of nodes are relatively large and computing the optimal selection strategy

is exponentially large in the number of nodes. In addition, this selection strategy

can adapt quickly to networks where the number of operating nodes can vary with
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time due to node mobility or nodes leaving the network due to their short battery

lifetime.

As it will be shown later, that the optimized selection strategy along with the

adaptive beamforming algorithms presented in Sec. 5.1 provide the best of the Pr(e)

performance achieved by either of the decode-and-forward and amplify-and-forward

model without the need for the knowledge of the location of the relays. This feature

is attractive in the area of wireless sensor networks where determining the accurate

location of the sensor node is difficult especially for large number of nodes [29–31].

Also, for application like target tracking or applications that involves mobility of

the nodes, the adaptive beamforming algorithms can adapt quickly to the channel

variations. This is definitely is achieved on the expense of increase of overhead

bandwidth as the destination has to inform each relay, as the channel varies, its

type of relay preprocessing model.

This section is organized as follows. We first consider a homogenous net-

work model where we assume that all the nodes are selected to employ either an

amplify-and-forward or decode-and-forward relaying, respectively. Given this net-

work model, we first present an optimal selection strategy that optimizes the Pr(e)

performance for all possible locations of the relays. Next, for the same network

model, we present an alternative selection strategy based on the equivalent amplify-

and-forward channel method that provides the same Pr(e) performance attained by

the optimal selection strategy. Finally, based on this equivalent-channel selection
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strategy, we develop a node-by-node basis selection strategy for hybrid network that

optimizes destination Pr(e) values.

5.2.1 Optimal Selection Strategy for Homogenous Networks

In this section, we present an optimal selection strategy to determine the processing

type at each relay for homogenous networks where we assume that the all nodes are

either amplifying or decoding. We consider the case of full knowledge of the CSI of

both source-relay and relay-destination channels are available at the destination.

We develop an optimal selection strategy whereby the destination determines

the type of processing employed at the relays based on comparing the Pr(e) values for

each realization of the destination SNR, γd, of the amplify-and-forward model and

the decode-and-forward model, respectively. Specifically, given the instantaneous

values of the CSI of the source-relay channels, γsi
and the relay-destination channels,

γri
, the destination compares the Pr(e) expression defined in (A.8) for the decode-

and-forward model where βi is given by (4.24) and (2.12) and the Pr(e) expression

for the amplify-and-forward model given by

Pr(e|γsi
, γri

) = Q

(

√

2
∑

i

1

[(ξsi + 1)(ξri + 1) − 1]

)

. (5.14)

This strategy is optimal in the sense of minimizing the Pr(e) at the destination as

comparing the Pr(e) expression for a given instantaneous CSI of the source-relay

and relay-channels minimizes the average Pr(e) at the destination.

We study the performance of the optimal selection strategy via Monte-Carlo
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simulations. Fig. 5.1 depicts the Pr(e) at the destination as function of the location

of the relay nodes defined by τ in (3.39) for L = 8 and γ̄sd = 5dB. The solid curves

marked by ’x’ and ’o’ depict the Pr(e) values for the case that the relay nodes

are always selected to decode-and-forward and amplify-and-forward, respectively.

The solid curve marked by ’▽’ depicts the Pr(e) at the destination provided by

the optimal selection strategy that utilizes the beamforming weights developed in

Sec. 5.1. As the figure reveals, the optimal selection strategy provides the minimum

of the Pr(e) values provided by the amplify-and-forward and decode-and-forward

relay models.

We next study the probability of using the decode-and-forward model versus

the amplify-and-forward provided by the optimal selection strategy as a function

of the location of the relays. Fig. 5.2 depicts the probability of using the decode-

and-forward model defined by PrDF as a function of the location of the relays τ .

The figure shows that, for values of τ < 0.5 (equivalently the relays are closer to

the source than the destination), the optimal selection strategy chooses the decode-

and-forward model with probability PrDF almost equal to one. As the values of τ

increases above 0.5, PrDF decreases sharply that almost approaches zero for values

of τ > 0.7. This figure suggests that the destination can select the optimal strategy

to be employed at the relays if the location of the relays are known to the destina-

tion or equivalently the average SNR values of the source-relay and relay-destination

channels. However, this type of information is difficult to obtain especially in the
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Figure 5.1: The solid curves marked by ’x’ and marked by ’o’ depicts the destination

Pr(e) for L = 8 and γ̄sd = 5dB as a function of τ assuming the destination has full

knowledge of the source-relay CSI. The solid curves marked by ’▽’ depicts the Pr(e)

provided with the optimal selection strategy developed in Sec. 5.2.1 for homogenous

networks.
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Figure 5.2: The solid curves marked by ’x’ depicts the probability that the selection

strategy chooses decode-and-forward model, PrDF, as a function of τ .

case of sensor network as it requires that a GPS should be implemented at each sen-

sor which increases the hardware complexity of the sensors. Therefore, the optimal

selection strategy can be proved useful in optimizing the Pr(e) if the exact location

of each relay is not available at the destination.

Finally, we remark that the optimal selection strategy has a major disad-

vantage that the strategy depends on the CSI of all the source-relay and relay-

destination channels. Hence, if any node decides to join or leave the network, the
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selection process needs to be recomputed for all the relay nodes which is not desirable

in terms of computational complexity and processing delay.

5.2.2 Equivalent-channel Relay Selection Strategy

In this section, we present an alternative strategy for the optimal selection strategy

presented in Sec. 5.2 based on the equivalent amplify-and-forward relay method

presented in Sec. 4.1.3. This equivalent-channel based relay selection strategy, as it

will be shown later, serves as a basis for developing the node-by-node basis selection

strategy.

The main idea of the equivalent-channel selection strategy is to find a method

to compare the maximum SNR attained by employing the optimal beamform-

ing weights developed in Sec. 5.1.2 for the equivalent-channel relay model with

that achieved with the amplify-and-forward model such that the destination Pr(e)

matches that attained by using the optimal selection strategy. In particular, we

compare the maximum SNR

γmax
d,DF =

L
∑

i=1

1

(1 + ξs
eff
i )(1 + ξri) − 1

. (5.15)

attained by the equivalent amplify-and-forward model with the maximum SNR

γmax
d,AF =

L
∑

i=1

1

(1 + ξsi)(1 + ξri) − 1
. (5.16)

We remark that we can not compare directly the values of γmax
d,AF and γmax

d,DF

to determine the relay processing strategy. We first note that for the amplify-and-
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forward relay model, the values of γmax
d,AF determines the values of the Pr(e), given

the values of ξri and ξsi, according to the following,

PrAF(e|ξsi, ξsi) = Q(
√

2γmax
d,AF). (5.17)

On the other hand, although the equivalent amplify-and-forward method provides

an effective SNR for the decode-and-forward model, this effective SNR was mainly

developed by matching the beamforming weights for the decode-and-forward relay

model and its equivalent amplify-and-relay model at high average relay-destination

SNR (γ̄r → ∞). Therefore, the Pr(e) attained at the destination can not be repre-

sented directly as Q(
√

2γmax
d,DF). However, we can compare a skewed version of the

equivalent-channel maximum SNR γmax
d,DF with the maximum SNR γmax

d,AF as follows

γmax
d,AF

AF

R
DF

κ γmax
d,DF. (5.18)

where the constant κ can be optimized by matching the Pr(e) values besides the

PrDF of the optimal selection strategy with the values obtained by using the above

selection strategy. Using numerical techniques, we find that the value of κ that

provide an almost the same Pr(e) performance as the optimal selection strategy is

equal to 2.9. Fig. 5.3 depicts the Pr(e) destination as a function of τ for L = 8 and

γ̄sd = 5dB. The solid curves marked by ’x’ and ’o’ depicts the Pr(e) obtained using

the optimal selection strategy and the equivalent-channel strategy, respectively. As

the figure reveals, the two strategies provides the same destination Pr(e) perfor-

mance. Fig. 5.4 depicts the probability of using decode-and-forward model for the
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Figure 5.3: The solid curves marked by ’x’ and marked by ’o’ depicts the destination

Pr(e) for L = 8 and γ̄sd = 5dB as a function of τ for the case of optimal selection

strategy and equivalent-channel selection strategy, respectively.

optimal selection strategy (marked by ’x’) and equivalent-channel selection strategy

(marked by ’o’) as a function of τ for L = 8 and γ̄sd = 5dB. As the figure reveals,

the PrDF obtained by using the equivalent-channel method with κ = 2.9 is equal to

that obtained using the optimal selection strategy.
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Figure 5.4: The solid curves marked by ’x’ and ’o’ depict the probability of employing

decode-and-forward relaying, PrDF, as a function of τ for the case of optimal selection

strategy and equivalent-channel selection strategy, respectively .
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5.2.3 Node-by-Node Basis Relay Selection Strategy

In this section, we develop a node-by-node basis selection strategy based on the

equivalent-channel selection strategy developed in Sec. 5.2.2. In particular, we de-

velop a strategy where the destination selects for each node whether to amplify

or decode independent of the type of processing at the other relays. This kind of

strategy results in the formation of hybrid networks where the network are parti-

tioned into two distinct networks with the first one employing amplify-and-forward

model and the second is employing decode-and-forward model cooperating using

beamforming to minimize the Pr(e) at the destination.

By examining the maximum SNR expression defined in (5.13) attained by

using the equivalent-channel for hybrid networks, we can deduce that using the

optimal beamforming weights results in viewing the channels from the source to the

destination as an equivalent L parallel channels each with maximum SNR value

γmax
i,AF =

[

1

(1 + ξsi)(1 + ξri) − 1

]

, (5.19)

and

γmax
i,DF =

[

1

(1 + ξs
eff
i )(1 + ξri) − 1

]

. (5.20)

for amplify-and-forward and decode-and-model, respectively. This suggest that se-

lecting the maximum of the individual values of γmax
i,DF and γmax

i,AF yields in maximizing

the combined SNR at the destination. However, as mentioned before, the effective

SNR obtained by using the equivalent-channel model can not be used to find the
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Pr(e). Therefore, we compare γmax
i,AF with a skewed version of γmax

i,DF similar to the

equivalent-channel selection strategy as follows,

γmax
i,AF

AF

R
DF

κ γmax
i,DF. (5.21)

where the constant κ was determined for the equivalent-channel selection strategy

to be equal to 2.9. As it is revealed by the above expression, the selection strategy

selects the processing at each relay independent of the processing performed at

the other relays as it depends on the CSI of its source-relay and relay-destination

channels.

We next study the performance of the node-by-node basis strategy and com-

pare it to the optimal selection strategy. Fig. 5.5 depicts the destination Pr(e) as a

function of τ for L = 8 and γ̄sd = 5dB. The solid curves marked by ’x’ and ’o’ de-

picts the Pr(e) for the case of optimal strategy and node-by-node selection strategy.

As the figure reveals, the node-by-node selection strategy incurs a very small loss

compared to the optimal selection strategy. Fig. 5.6 depicts the PrDF as a function

of τ for the optimal selection strategy (marked by ’x’) and the equivalent-channel

selection strategy (marked by ’o’). It is revealed by the figure that PrDF using the

node-by-node basis selection strategy approximates to a large extent the PrAF pro-

vided by the optimal selection strategy. We remark that the above simulations verify

the result that if the location of the relay node is below half of the distance to the

source, then the decode-and-forward relaying should be selected. While for nodes

located at more than half of the distance to the source, the amplify-and-forward
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Figure 5.5: The solid curves marked by ’x’ and marked by ’o’ depicts the destination

Pr(e) for L = 8 and γ̄sd = 5dB as a function of τ for the case of optimal selection

strategy and node-by-node selection strategy, respectively.

relaying is desirable.

We remark that if the location of the node is available upon joining the

network is available at the destination, then it can select the optimal preprocessing

model at the relays. However, for the case of mobile networks where the location

information could be hard to estimate, the method defined by (5.21) determines the

optimal processing strategy without the need for the knowledge of the location of
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Figure 5.6: The solid curves marked by ’x’ and ’o’ depict the probability of employing

decode-and-forward relaying, PrDF, as a function of τ for the case of optimal selection

strategy and node-by-node selection strategy, respectively .

96



the relays at the destination.

We finally note that for the case of one-bit source relay-CSI quantizers are

used at the relays, the same selection strategies can be used where the maximum

SNR for the amplify-and-forward model is given by (3.33). While for the decode-

and-forward relay model, the equivalent effective SNR is given by (4.29) where Bi

is given by (4.31).

5.3 Relay-based Preprocessing Selection Strat-

egy

In this section, we develop relay-based preprocessing selection strategy. In partic-

ular, we assume that the relays determine by themselves whether to use the AFB

relay model or the DFB relay model. The selection is made at each relay based on

its source-relay CSI. Specifically, if the source-relay CSI falls below a certain thresh-

old η, the relay selects the AFB relay model, otherwise, it selects the DFB relay

model. This selection has the advantage of eliminating the need for the destina-

tion to feedback to the relays the preprocessing strategies to be used. However, the

relay-based selection strategy suffers from the disadvantage that each relay must

only decide based on its source-relay CSI. This is in contrast to the destination-

based method where the destination has the knowledge of each source-relay CSI

and relay-destination CSI.
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The relay-based selection strategy for a given threshold η can be expressed

as follows,

γsi

DFB

R
AFB

η. (5.22)

Our objective is to determine the optimal value of η that optimize the destination

Pr(e) performance at any given location. Our approach in finding the optimal

threshold is to find the threshold that provides almost the same of behavior of PrDF

as a function of τ shown in fig. 5.6. Using exhaustive search techniques, we find

that the optimal threshold η that optimizes the Pr(e) value using the relay-based

strategy at any given location is equal to 0.45 .

Fig. 5.7 compares the Pr(e) performance of the relay-based selection strategy

for η = 0.45 with the Pr(e) performance of the AFB and DFB relay model. As the

figure reveals, the Pr(e) attained by using the relay-based selection strategy incur

a small loss compared to the Pr(e) performance attained by the AFB relay model

if the relays are close to the source and similarly for the DFB relay model. Also,

it is evident that the destination-based selection strategy provides a better Pr(e)

performance compared the relay-based selection strategy on the expense of using

additional feedback bandwidth.

Fig. 5.8 depicts the probability of using the DFB relay model, PrDF as a func-

tion of τ . As the figure reveals, the PrDF values attained by using relay-based selec-

tion strategy does not exactly match that attained by using the destination-based

selection strategy. For example, when the value of τ = 0.9, the relay-based strategy
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Figure 5.7: The solid curves marked by ’x’, ’o’ ’▽’ depict the destination Pr(e) for

L = 10 and γ̄sd = 5dB as a function of τ for the case of relay-based selection strategy,

employing AFB relay model, and employing DFB relay model, respectively.

allows for 10% of the nodes to use DFB relay model while for the destination-based

strategy, the probability of using DFB relay model is almost zero. This explains

why the relay-based selection strategy does not provide the minimum Pr(e) at any

given relative relay location.
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Figure 5.8: The solid curve depicts the probability of employing decode-and-forward

relaying, PrDF, as a function of τ for the case of relay-based selection strategy.
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Chapter 6

Beamforming Algorithms for Multi-hop

Networks

In this chapter, we develop beamforming algorithms for networks that involve multi-

hop relaying. We develop extensions for the beamforming algorithms presented in

Chaps. 3 and 4. Multi-hop relaying is attractive in high dense networks where, due

to the limited power constraint, nodes can only transmit reliably to the neighboring

nodes that fall within its proximity. In addition, multi-hop relaying minimizes the

interference in the network as it limits the need to use extra power to achieve

successful transmission between a source and a far destination.

In delivering the data per hop, we consider a hierarchal clustering approach.

In particular, excluding the first broadcast data hop, each set of nodes is divided into

number of groups. Each group consists of a communication set of transmitting nodes

and receiving nodes. In the clustering approach, the communication set represents a

cluster where the receiving nodes transmit its data to a one receiving node denoted
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as the cluster head (CH).

Clustering has been proved resource-efficient useful for information propa-

gation and data fusion. In particular, clustering reduces the amount of energy for

transmitting the data across the network. In addition, it reduces the overall band-

width as it minimizes the communication overhead among the nodes. A variety of

clustering algorithms have been developed with the objective of achieving better

energy efficiency and minimizing the number of the clusters that covers the whole

network [32–34]. We remark that there exists other techniques to perform data ag-

gregation in multi-hop relaying such as the case where multiple transmitting nodes

are communicating to multiple receiving nodes. We did not consider these tech-

niques in our study as it requires a lot of coordination between the relay nodes.

This coordination is usually difficult to implement in large-scale networks.

Although the hierarchal clustering approach suggests the use of beamform-

ing methods, designing these beamforming weights properly for each cluster poses

many challenges that has been addressed in this chapter. We develop methods for

effectively capturing the channel state information (CSI) at each relay. Based on

these effective CSI, we present methods to construct the beamforming weights lo-

cally for each cluster which optimize the Pr(e) at the destination. For the case

of using optimized one-bit descriptions of the source-relay CSIs, we determine the

optimal quantizer to be used at each relay and its associated beamforming weight.

We also determine the type of relay preprocessing model to be employed at each
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hop. Finally, we develop algorithms for finding the optimal locations for any given

number of hop networks as well as the associated preprocessing relay model.

This chapter is organized as follows. We first present a system model for

a multi-hop network involving hierarchal clustering. We then develop algorithms

to select the beamforming weights at each hop for the amplify-and-forward and

decode-and-forward relay models. For the case of using one-bit quantizers, we show

how to select the quantizer threshold at each hop for each relay preprocessing type.

Finally, we develop an algorithm to find the optimal location of the relay nodes for

any given multi-hop network and the associated data preprocessing relay model.

6.1 System Model

We consider a setting of multi-hop relaying. The setting in its simplest form is

shown in Fig. 6.1 where first the data broadcasted from the source are beamformed

to a set of cluster heads (CHs) then the CHs form a cluster that beamforms the

received data to the destination. This setting includes two levels of clustering. In

general, M-level of clustering corresponds to M+1 levels of hops. We assume that

at the ith level of clustering, the nodes are divided into Ci clusters. We assume that

the number of nodes per cluster is equal and given by L and the power allocated to

each cluster at the same level is equal and denoted by Phi
. The number of clusters

formed at each level of clustering is given by

Ci = LM−i ∀i = 1, 2, . . . , M (6.1)
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Figure 6.1: A system model for a three-hop network.

with the total number of nodes used per hop is given by CiL = LM+1−i.

The system model that involves the source communicating to the level-1 CHs

is modeled similar to that developed in Chap. 2 for both amplify-and-forward and

decode-and-forward relay models. We next develop a concatenated index to label

the received signal at each relay. In particular, we assume that the signal received

at the destination is denoted by yd. For the relay nodes at the last hop, the received
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signals are denoted as y1,y2,. . .,yL. Now for the previous hop, the relays transmitting

to the second cluster, its received signals are denoted as y21, y22,. . .,yL2. Hence, we

define a concatenated index ζ which labels the received signal at each relay. For a

given relay, the index ζ for a given relay determines the path of data from this relay

to the destination. Hence, for an arbitrary index ζ , the received signal yζ[n] can be

expressed, using (2.11), as follows,

yζ [n] =

L
∑

i=1

αiζβiζziζ [n] + wζ [n] , (6.2)

where αiζ and βiζ denote the channel fading coefficient and the complex beamforming

weight, respectively, between the ith relay and its cluster head determined by the

index ζ . We assume that all the channels involved in communication are modeled

as mutually independent quasi-static Rayleigh fading channels with equal variance

σ2
iζ . The term wζ represents the noise and interference term and is modeled as white

Gaussian noise with zero mean and unit variance. The term ziζ denotes the output

preprocessed signal of the ith relay for the ζth CH. The term ziζ is determined by

the type of the relay preprocessing model employed at the ith relay and effective

CSI computed at this relay.

Specifically, we can exploit the fact that the received signal at the ith relay

can be viewed as being transmitted on a single channel between the source and the

ith relay with effective aggregate SNR γagg
iζ . This aggregate SNR combines all the

effects that the source signal encounters while being transmitted to the relay. To

explain how the aggregate SNR is computed, we first develop the aggregate SNR
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for the communication system between the source and the CH labeled by the index

ζ . Based on the expression (6.2), the aggregate SNR γagg
ζ can be represented as

follows,

γagg
ζ =

|∑L
i=1 βiζαiζE [ziζ ] |2

∑L

i=1 |βiζ |2|αiζ|2(E [|ziζ ] − E [ziζ |2]) + σ2
wζ

. (6.3)

The term ziζ is given by zai
defined in (2.6) or zdi

defined in (2.8) for the amplify-

and-forward and decode-and-forward relay models, respectively. Hence, the com-

munication system between the source and the ith cluster head can be alternatively

viewed as a single channel with aggregate SNR γagg
iζ (or equivalently its inverse ξagg

iζ ).

Thus, for the case if amplify-and-forward model is employed at the cluster head, the

received sequences in (6.2) after proper scaling can be rewritten as follows,

ziζ [n] =
1

√

1 + ξagg
iζ

x[n] +

√

ξagg
iζ

√

1 + ξagg
iζ

v̄i[n] (6.4)

Similarly, for the decode-and-forward relay model, the equivalent channel can be

represented as follows,

ziζ [n] = eiζ [n] x[n] (6.5)

where eiζ [n] denotes the IID error sequences given by

eiζ [n] =















1, with probability 1 − piζ

−1, with probability piζ

, (6.6)

where piζ is the bit error values associated with the equivalent channel between the

source and the cluster heads labeled by the index ζ . The values of piζ are determined

based on the processing employed at the relays. In particular, if amplify-and-forward
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is used, then piζ is determined as follows

piζ = Q
(√

2γagg
iζ

)

, (6.7)

while for the decode-and-forward model, piζ , can be determined by using equation

(A.8) as shown in App. A. Similarly, as the data flow through the network, the

communication channels between the source and the cluster heads are combined in

a single channel with effective aggregate SNR determined by the type of processing

employed at the relays, the number of nodes per cluster, the number of clusters

combined and the power allocated to each cluster. We remark that to compute the

aggregate SNR, each cluster head requires only the knowledge of the aggregate SNR

computed at the previous cluster heads rather than the individual SNRs of all the

communication channels up to this cluster head. This has the advantage of limiting

the communication overhead required to compute the beamforming weights at each

cluster.

6.2 Beamforming algorithms

In this section, we compute the beamforming weights selected for the clusters at

each hop so as to optimize the destination Pr(e). In particular, our objective is

to select the weights that aggregate information efficiently from the source to the

destination. Specifically, at a given hop, the beamforming weights are selected to

minimize the Pr(e) computed at the ζth cluster head by maximizing the aggregate
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SNR, γagg
ζ . The beamforming weights at each hop can then be computed based on

the methods developed in Sec. 3.1 and Sec. 4.1 for the amplify-and-forward model

and the decode-and-forward model, respectively. This is due to the fact that these

methods are mainly based on the instantaneous channel realizations of the source-

relay and relay-destination channels. Hence, for the case of multi-hop networks,

to compute the beamforming weights at each hop, it is only required to find the

aggregate SNR, γagg
ζ , from the source to the relays at this hop.

We first consider the case where full knowledge of the aggregate SNR at the

relays is available to its cluster head. For the amplify-and-forward model, the beam-

forming weights at the ith cluster head that maximizes the SNR can be expressed

using (3.7) and ξagg
iζ instead of ξsi as follows,

βi ∝

√

ξagg
iζ + 1

αri

[

(ξagg
iζ + 1)(ξriζ

+ 1) − 1
] . (6.8)

where ξriζ
=
(

Phi
αiζ/σ

2
wζ

)−1

. Similarly, for the decode-and-forward model, we

select the beamforming weights by using the equivalent channel method developed

in Sec. 4.1.3. In particular, the effective SNR of the aggregate SNR at each relay is

computed using (4.29) with Bi is given by

Bi = log

(

1 − piζ

piζ

)

(6.9)

where piζ is determined based on the processing performed at the previous hop as

mentioned before.

We next consider the case where the one-bit quantizers are employed at the
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relays. For such case, we need to compute the beamforming weights along with

the quantizer threshold for the relays at each hop. For the amplify-and-forward

model, the beamforming weights developed in Sec. 3.1.2 can be used to find the

optimized weights at each hop. However, we note that the computation of the

value of ai and ci in (3.30) depends on the probability distribution function of the

aggregate SNR computed at each relay. As a result, the values of ai and ci must be

recomputed at each hop as the information flows through the network. Similarly,

for the decode-and-forward model, the effective SNR at each hop depends on the

values of fi = E
[

piζ|ptζ
< piζ

]

which requires the knowledge of distribution function

of piζ at each relay. Therefore, the effective SNR must be recomputed at each hop

as the distribution function of piζ varies at each hop. We note that the computed

parameters ai, ci and fi at each hop remains fixed as the average SNR of all the

channels in the network is constant or equivalently the location of the nodes remains

fixed. Hence, this process of selecting the quantizer threshold can be performed

offline as long as the nodes have fixed locations.

To find the quantizer threshold for the amplify-and-forward model, we find

the value that maximize the average quantized SNR defined in (3.36) at each hop. It

is evident that the values of the threshold varies at each hop, therefore the expression

CAF in (3.37) does not necessarily approximate the value of the threshold at each

hop given that the average SNR in (3.37) is replaced with the average aggregate

SNR, γ̄agg
iζ = E

[

γagg
iζ

]

. This is due to the fact that the distribution function of γagg
iζ
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varies at each hop not only its average value. Similarly, for the decode-and-forward

model, the quantizer threshold must be recomputed at each hop by minimizing the

Pr(e) expression (A.8) developed in App. A. Also, the expression CDF in (4.32)

needs to be recalculated at each hop. As it will be shown in our simulations, that

simple relations can be obtained via simulations to compute the threshold at each

hop for both relay preprocessing models.

6.3 Performance Analysis and Power Allocation

Strategy

In this section, we perform Monte-Carlo simulations to study the performance of the

beamforming algorithms developed in Sec. 6.2. We focus our attention on the case

where one-bit quantizers are employed at the relays. In particular, our objective is

to find the quantizer threshold to be employed at the relays of each hop for both the

decode-and-forward and the amplify-and-forward relaying models. Then, we study

the Pr(e) performance using the obtained quantizer thresholds and compares it to

the Pr(e) performance attained by using full knowledge of the aggregate SNR at the

cluster heads.

In our simulations, we consider a network setting of four level of clustering

or equivalently five hops where the number of nodes per cluster, Lc = 3. Since we

assume that the clusters are of equal size, then the number of clusters formed at
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each hop is given as follows

C1 = 27, C2 = 9, C3 = 3, and C4 = 1. (6.10)

We assume that the values of the variances of the channel coefficients are set to

σ2
iζ = 1.

We next consider a strategy for allocating the total power P among the

clusters at different hops. As it was shown in Chaps. 3, 4, for the case of two-

hop networks, the optimum power allocation for equal average source-relay and

relay-destination SNR is to distribute the power equally between the source and the

relays. As a result, for the multi-hop network, our objective is to develop a power

allocation strategy that provides equal power distribution for each cluster and take

into consideration the effect of information aggregation across the network.

Taking these conditions into consideration, we develop a power allocation

strategy which can be explained through the following example. We consider a

three-hop networks where the number of nodes per cluster is given by L. We first

allocate power Ph2
to the single cluster at the last hop. We then select the power

allocated to the Lc clusters at the first hop as well as the source such that the

average aggregate SNR γ̄agg
iζ at the second hop is equal to γ̄riζ

= Ph2
/σ2

wζ
. This

power allocation strategy can be adequately generalized for multi-hop network with

any number of hops. Using this power allocation strategy and under the given

assumption, we find that the following power allocation results in Pr(e) values close

to the optimal values,
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Phi
=

(

2

L

)M−i

Po ∀i = 1, 2, . . . , M (6.11)

where Po is obtained based on the following expression,

P =
M
∑

i=1

Ci

(

2

L

)M−i

Po =
M
∑

i=1

2M−iPo. (6.12)

We remark that this power allocation strategy provides more power as the

CHs get closer to the destination. This is advantageous in terms of the practical

requirements of the hierarchial clustering approach where the cluster heads closer to

the destination are assumed to be nodes with better capabilities in terms of battery

life compared to the nodes away from the destination.

We first focus our attention on the amplify-and-forward relay model where

we determine the quantizer threshold to be employed at the relays of each hop so

as to minimize the Pr(e) at each cluster head. Due to the hierarchal clustering

approach, the quantizer threshold can be optimized at each cluster in a sequential

order. In particular, the optimal quantizer threshold at the first hop can be selected

by maximizing the average quantized aggregate SNR in (3.36) at the first cluster

head. Then, we can view the channels from the source to the cluster heads at the first

hop as effectively single channels with combined aggregate SNR computed using the

obtained quantizer threshold. These combined channels can be used to determine

the quantizer threshold at the cluster heads of the second hop where optimizing

this threshold will not affect that computed for the first hop. This process can be

computed at each hop to determine the optimized quantizer thresholds. We remark
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that for illustration purposes, it is convenient to introduce the notion of normalized

total power PN defined as follows,

PN =
P

∑M

i=1 Ci

. (6.13)

or equivalently the average amount of total power P allocated per cluster. For the

rest of the chapter, we present our simulation results in terms of PN .

Table 6.1 lists, for each hop, the value of the quantizer threshold normalized

to the mean of the aggregate SNR computed (γtiζ
/γ̄agg

iζ ) at this hop for various values

of a normalized SNR γ̄N = PN/σ2
w. As the table reveals, the values of normalized

quantizer threshold gets closer to the value of 0.7 as the data flows across the hops.

As it was shown in Fig. 3.5, the Pr(e) performance incurs a negligible amount of loss

within range of 2 dB of the optimal threshold, then normalized quantizer threshold

can be approximated well by setting its value to the 0.7.

We then study the probability density function (pdf) of the aggregate SNR

γagg
iζ at each hop. At the first hop, given the assumption of using quasi-static

Rayleigh fading channel, the pdf of the SNR γagg
1ζ is an exponential distribution

with mean γ̄agg
1ζ = Psσ

2
iζ/σ

2
wζ

. Fig. 6.2 depicts the exponential distribution for

γ̄agg
1ζ = 10 dB. Fig. 6.3 depicts the pdf of the aggregate SNR at the second, third,

fourth hop and the destination. As the figure reveals, the pdf of γagg
iζ converges to

a Gaussian distribution as the information flows across the hop. This result can be

explained by the fact that employing beamforming algorithms result in constructive

adding of the signals at each hop. As our simulations reveal, we have central-limit
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γ̄N 1 2 3 4

5 dB 0.4006 0.6234 0.7511 0.7893

10 dB 0.2073 0.5423 0.6711 0.7209

15 dB 0.1020 0.4995 0.6858 0.6817

Table 6.1: The optimal quantizer thresholds normalized to the mean of the aggregate

SNR, γtiζ
/γ̄agg

iζ , computed via Monte-Carlo simulations at each hop for a four multi-

hop network employing amplify-and-forward relaying.

theorem type of performance so we can deduce that as more number of signals are

added constructively across the hops, the pdf converges to Gaussian. As it is also

shown by the figure, the mean and the variance of the aggregate SNR changes as

the number of hop increases.

We then study the Pr(e) performance of the one-bit quantized beamforming

algorithms using the optimized quantizer thresholds. Fig. 6.4 depicts the Pr(e) per-

formance of the one-bit (solid curves) and infinite-bit (dashed-curves) beamforming

algorithms, respectively, at the first, second, third hop and the destination as a

function of γ̄N. As the figure reveals, that employing an optimized one-bit beam-

forming algorithms incur a small amount of loss in terms of Pr(e) compared to the

infinite-bit beamforming algorithms (equivalent to the full knowledge of the aggre-

gate SNR at the cluster heads). Also shown by the figure, that the Pr(e) values for

both beamforming algorithms decreases as the information flow across the hop.

We next turn our attention to the decode-and-forward relay model. We first
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Figure 6.2: The exponential probability density function of the SNR at the first

hop.

γ̄N 1 2 3 4

5 dB 0.8383 0.9809 0.8917 0.9041

10 dB 0.7246 0.9399 1.0213 1.0474

15 dB 0.5425 0.8692 0.9970 0.9661

Table 6.2: The optimal quantizer thresholds normalized to the mean of the aggregate

SNR, ptiζ
/p̄iζ, computed via Monte-Carlo simulations at each hop for a four multi-

hop network employing decode-and-forward relaying.
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Figure 6.3: The probability density function of the aggregate SNR at each hop for

an amplify-and-forward relaying system that employs optimized one-bit quantizers

at the relays.
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Figure 6.4: The successively lower solid curves and the dashed curves depict the

destination Pr(e) performance of the optimized one-bit and infinite-bit amplify-

and-forward beamforming algorithms, respectively, at the first, second, third and

fourth hop.
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determine the optimized quantizer thresholds normalized to the mean of average

probability of error values at this hop ptiζ
/p̄iζ at each hop. Table 6.2 lists the values

of the normalized quantizer thresholds computed via simulations at different hops

and for different power values. As the table reveals, that the optimal quantizer

threshold can be well approximated to the average probability of error at this hop

piζ as the number of hops increase. Fig. 6.5 depicts the pdf of the aggregate SNR

at each hop for the case of one-bit beamforming algorithms are used. The figure

also shows that the pdf of the aggregate SNR converges to Gaussian as the number

of hop increases. Finally, Fig. 6.6 shows that the one-bit beamforming algorithms

at the different hops provides Pr(e) performance very close compared to the Pr(e)

values attained by using full knowledge of aggregate SNR.

For the purpose of comparing the Pr(e) performance of the amplify-and-

forward and decode-and-forward relaying strategy attained at each hop, Fig. 6.7

shows that the decode-and-forward model outperforms the amplify-and-forward

model starting from the second hop to the destination. This is mainly due to the

fact that the mean of the aggregate SNR at each hop is increasing compared to the

average SNR from the relay at this hop to the destination which allows better Pr(e)

performance for the decode-and-forward model.
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Figure 6.5: The probability density function of the aggregate SNR at each hop for

an decode-and-forward relaying system that employs optimized one-bit quantizers

at the relays.
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Figure 6.6: The successively lower solid curves and the dashed curves depict the

destination Pr(e) performance of the optimized one-bit and infinite-bit decode-and-

forward beamforming algorithms, respectively, at the first, second, third and fourth

hop.
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Figure 6.7: The successively lower solid curves and the dashed curves depict the

destination Pr(e) performance of using amplify-and-forward and decode-and-forward

relaying algorithms, respectively, at the first, second, third hop and destination.
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6.4 Relay Location Strategy

In this section, we develop algorithms to determine the optimal location of the

relays for each hop for the amplify-and-forward and decode-and-forward model. We

consider the case where full knowledge of the aggregate SNR is available at each

cluster head. We define the average channel variances between the source and the

relays at the first hop as follows,

σ2
sh1

=
K

(dsh1
)ν

, (6.14)

while the average channel variances between the relays at the ith hop and (i + 1)th

hop as follows,

σ2
iζ =

K

(dhi,i+1
)ν

, (6.15)

and finally the average channel variances between the relays at the last M hop and

the destination as

σ2
d =

K

(dd)ν
. (6.16)

Throughout our simulations, we set K = 1 and ν = 3. Our objective is to determine

the optimal values of the distances associated with each relay processing type.

To this end, we develop a simple yet effective algorithm for determining the

optimal location by exploiting the hierarchal clustering approach. Based on the

results developed in Chap. 3 and Chap. 4, we determine the optimal location for the

two hop network. In particular, we show that the optimal location for the amplify-

and-forward model is half the distance between the source and the destination or
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equivalently τ = 0.5. While, for the decode-and-forward model, the optimal τ

is equal 0.35. Let us consider the case for three hop network where we need to

determine the optimal distance ratios

τh = dh1,2
/dsh1

and τd = dd/dsd. (6.17)

Based on the results obtained from the two-hop network and given the hierarchal

clustering approach, the optimal value of τh can be set to 0.5 for the amplify-

and-forward model and 0.35 for the decode-and-forward model independent of the

parameter τd. This reduces the complexity of the problem in the sense that we

need only to find the value of τd that minimize the Pr(e). This optimization process

can be adequately generalized for multi-hop networks as it can be performed in a

sequential manner to find the optimal location for each hop.

We next determine via simulations the optimal value of τd for the case of

the amplify-and-forward and decode-and-forward model. Fig. 6.8 depicts the Pr(e)

performance for the amplify-and-forward model (solid curve) and the decode-and-

forward model (dashed curve) for γ̄N = 10 dB assuming a two hop networks as a

function of (1 − τd). As the figure reveals, the optimal value of τd is 0.2 and 0.3

for the amplify-and-forward and decode-and-forward, respectively. Also, it is clear

that the location of the relays at the second hop gets closer, the decode-and-forward

model performs better than the amplify-and-forward model and vice versa.
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Figure 6.8: The destination Pr(e) as a function of 1−τd assuming three hop networks

and full knowledge of aggregate SNR available at the CHs. The solid curve represents

the amplify-and-forward model while the dash curve represents the decode-and-

forward model.
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Chapter 7

Conclusion and Future Directions

In this dissertation we developed a class of beamforming algorithms for information

relaying in wireless networks under bandwidth constraints. We considered a network

setting whereby a source is communicating to a destination via the aid of low-power

low-cost nodes. To amount for the bandwidth limitations in these networks, we

assumed that the relay nodes are communicating to the destination over a shared

nonselective fading channel. We considered two types of relay data-preprocessing

strategy. The first is amplify-and-forward via beamforming (AFB) for which the

received signals at the relays are first scaled to achieve unit-power form prior to for-

warding via beamforming to the destination. The second is decode-and-forward via

beamforming (DFB) where the nodes are first decoded (using matched filter followed

by a slicer) then scaled using beamforming weights. The beamforming weights are

formed based on the composite relays-destination channel state information (CSI)

and m-bit descriptions of the source-relay CSI.

125



For both the AFB and the DFB relay models, we presented methods for

optimizing the beamforming algorithms designed at the destination and the m-bit

quantizer function used at the relays to encode their data quality. We developed

rule-of-thumb expressions for the quantizer threshold that proved via simulations to

provide the optimal threshold value. The resulting Pr(e) values at the destination

even when an one-bit description of the source-relay channel CSI is available at the

destination, are slightly higher than the ones attained by beamforming algorithms

exploiting an full knowledge of the quality of the individual relay data.

We determined the effect of the relative relay location on the destination

Pr(e) performance for the AFB and DFB relay models. In particular, we showed

that if the relays are closed to the source, then it is advantageous in terms of

Pr(e) to employ DFB relay model, while AFB relay model gives favorable Pr(e)

performance if the relay nodes are closer to the destination. Based on our findings,

we develop locally-optimized adaptive data pre-processing algorithms at the relays.

These adaptive algorithms provide the best attainable Pr(e) performance at any

given relay location.

We developed extensions involving multi-hop networks with hierarchal cluster-

based relaying. In particular, we presented methods for systematically selecting the

beamforming weights at the relays of each cluster. We showed that the beamforming

algorithms optimize the Pr(e) performance at each hop and thus at the destination.

We developed power allocation strategies that determine the amount of power to
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be allocated to each cluster at each hop. We finally show the optimal relative relay

locations with respect to the source and the destination as well as the associated

relay preprocessing strategy to be used at each relay. As our simulations reveal, the

probability of using the DFB relay model increases considerably in comparison to

the AFB relay model as the data processing gets closer to the destination.

7.1 Future Directions

In this section, we discuss fruitful research extensions to the problems addressed

in this dissertation. The beamforming algorithms developed in this dissertation

mainly focused on uncoded communication system. However, these algorithms can

be readily integrated with any coding schemes like space-time coding or Turbo

coding to achieve

A one important extension to our work is to investigate the case of the feed-

back channel with limited bandwidth. In particular, a lossy yet efficient represen-

tation of the beamforming weights must be constructed to make efficient use of the

broadcast feedback channel. For instance, it was assumed that full representation

of the complex beamforming weights are feedback to the relays. Alternatively, we

can consider cases where only the phases of the weights are transmitted fully back

to the relays, while the amplitudes of the weights are quantized efficiently. There

is a lot of vector quantization efficient techniques that can be used to represent the

amplitude of the weights. Our beamforming algorithms provide a lower bound on

127



the Pr(e) performance attained by any vector quantization technique.

Channel estimation and prediction at the destination is a key design param-

eter for beamforming techniques as the quality of the channel estimates affects the

level of output SNR attained at the destination. In this dissertation, we focused

on pilot-based techniques where pilot signals are transmitted on a periodic basis

so as to allow the destination obtain estimates of the individual relay-destination

channels. Using pilot tones has the disadvantage of training overhead, which limits

the effective data rate over time-varying channels. In order to limit the use of pilot

tones, there is a need to employ efficient joint data-aided detection and channel esti-

mation methods. It is important to remark that the quality of the predicted channel

estimates is also affected by the beamforming vectors employed at the relays. As

a result, the beamforming vectors have to be chosen so as to achieve the following

closely coupled goals:

• Desired level of output SNR at the destination for the current frame;

• Reliable relay-destination predicted channel estimates as these affect the at-

tainable SNR level in future data frames.

As an important extension, we can investigate the problem of developing new

beamforming techniques for correlated relay-destination channels that allow efficient

joint data detection and reliable channel prediction at the destination. There exists

a trade off in achieving these closely-coupled objectives. In particular, there exists

a trade off in maximizing the output SNR and obtaining reliable channel estimates.
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This can be illustrated by assuming an L-relay network setting where all the relays

have the same information-bearing signal and where the relay-destination channels

remain constant for a data frame of length M . Then, given the initial channel

estimates, the beamforming vector developed in this dissertation can be chosen to

maximize the output SNR for all time slots within a frame. However, such selection

allows only accurate prediction of a linear sum of the signal paths received at the

destination, but not the individual relay channels. Hence, such selection provides

no information to improve the channel estimates and, as a result, the output SNR

for the subsequent frame can not be maximized. Therefore, there is a need to

develop new techniques for beamforming that provide reliable joint data detection

and channel estimation.
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Appendix A

Pr(e) Analysis for Decode-and-forward

Relay Model

In this appendix, we obtain an expression for computing the Pr(e) at the destination

for the decode-and-forward via beamforming model assuming full knowledge of the

source-relay CSIs at the destination. For convenience we omit the dependence of

random process on the time-index n. The desired Pr(e) quantity can be expressed

in the following form

Pr(e) = Eαr,ps
[Pr(e|αr,ps)] (A.1)

where

ps =

[

ps1 ps2 . . . psL

]T

(A.2)

and αr is given by (3.20). Furthermore, assuming that x = 1 is sent,

Pr(e|ps, αr) =
∑

zd ∈ Z

Pr(zd)Pr(e|zd,ps, αr) (A.3)
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where zd = [zd1
zd2

. . . zdL
]T , with zdi

given by (2.7) and Z is the (size 2L) domain

size 2L of the zd. In addition,

Pr(zd) =

L
∏

i=1

(1 − psi
)(

1+zdi
2

)p
(
1−zdi

2
)

si , (A.4)

and

Pr(e|zd, ,ps, αr) = Q
(√

2 R (δ)
)

(A.5)

where

δ =
(
∑

i βiαri
zdi

)

σw

(A.6)

can take both positive or negative values, depending on the error patterns that occur

at the relays. Eqn. (A.5) can also be conveniently expressed as follows,

Pr(e|zd,ps, αr) = Q
(√

2δ2
)

I(δ ≥ 0) +
(

1 −Q
(√

2δ2
))

I(δ < 0) (A.7)

where I(·) denotes the indicator function. Substituting (A.4) and (A.5) in (A.3),

we obtain

Pr(e|ps, αr) =
∑

zd∈Z

[

L
∏

i=1

(1 − psi
)(

1+zdi
2

)p
(
1−zdi

2
)

si

]

[

Q
(√

2δ2
)

I(δ ≥ 0) +
(

1 −Q
(√

2δ2
))

I(δ < 0)
]

,

(A.8)

which, when substituted in (A.1) provides an expression for computing the desired

Pr(e) quantity.
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Appendix B

Pr(e) Analysis for Decode-and-Forward

Relay Model at High Relay-destination

Average SNR

In this appendix, we obtain a closed-form expression for the Pr(e) in the decode-and-

forward via beamforming relay model that is valid in the infinite relay-destination

SNR limit. We may express ℓ in (4.1) as follows

ℓ =
L
∑

i=1

λizi =
N
∑

i=1

µ1zi +
L−N
∑

i=1

µ2zi , (B.1)

where

µi = log

(

1 − fi
fi

)

, (B.2)

f1 = E [psi
|psi

< pt] =
e−

γt
γ̄s Q(

√
2γt) − τQ(

√

2γt

τ
)

δo

, (B.3)

f2 = E [psi
|psi

> pt] = (p̄s − f1δ0)/(1 − δ0), (B.4)
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τ =
√

γ̄s

γ̄s+1
, and N denotes the number of “poor-data-quality” relay nodes, i.e.,

relay nodes with source-relay CSI satisfying psi
< pt. The Pr(e) of the optimal

linear detector can be expressed as follows

Pr(e) =
L
∑

k=0

Pr(e|N = k) Pr[N = k] (B.5)

where Pr[N = k] denotes the probability that k out of L nodes have poor-quality

data (i.e., have psi
< pt), and is given by,

Pr[N = k] =









L

k









δk
o (1 − δo)

(L−k) (B.6)

with

δ0 = Pr[psi
< pt] = exp(−γt

γ̄s
). (B.7)

The term Pr(e|N = k) denotes the bit error rate given that k (out of L) nodes have

psi
’s below pt. Given that r out of the N = k “poor-data-quality” nodes and m

out of the L−N = L− k “good-data-quality” nodes have decoded the source data

correctly, an error is made by the linear detector exploiting ℓ in (B.1), if ℓx < 0, or,

equivalently, if

rµ1+mµ2 <
Nµ1+(L−N)µ2

2
. (B.8)

By applying Bayes’ rule and exploiting (B.8), Pr(e|N = k) can be expressed as

follows,

Pr(e|N = k) =

rmax(k)
∑

i=0

mmax(k,i)
∑

j=0

Pr(e|N = k, r = i, m = j) Pr(r = i, m = j|N = k)
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where, due to (B.8),

rmax(k) = min

{

k,

⌊

k

2
+

L − k

2

µ2

µ1

⌋}

and

mmax(k, r) = min

{

L − k,

⌊

k − 2 r

2

µ1

µ2

+
L − k

2

⌋}

.

Finally, by exploiting the symmetry of error events corresponding to the same (r, m)

pairs, we obtain

Pr(e|N = k) =

rmax(k)
∑

i=0

mmax(k,i)
∑

j=0









L − k

L − k − j

















k

k − i









f1
k−i(1 − f1)

if2
L−k−j(1 − f2)

j

(B.9)

where f1 and f2 are given by (B.3), and (B.4), respectively. Substituting (B.6) and

(B.9) in (B.5) yields the desired expression.
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