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We present tools and techniques that facilitate wiki research and an analysis of

wikis found on the internet. We developed WikiCrawler, a tool that downloads and

analyzes wikis. With this tool, we built a corpus of 151 Mediawiki wikis. We also

developed a wiki analysis toolkit in R, which, among other tasks, fits probability

distributions to discrete data, and uses a Monte Carlo method to test the fit.

From the corpus we determined that, like Wikipedia, most wikis were authored

collaboratively, but users contributed at unequal rates. We proposed a distribution-

based method for measuring wiki inequality and compared it to the Gini coefficient.

We also analyzed distributions of edits across pages and users, producing data which

can motivate or verify future mathematical models of behavior on wikis. Future

research could also analyze user behavior and establish measurement baselines, fa-

cilitating evaluation, or generalize Wikipedia research by testing hypotheses across

many wikis.



ANALYZING THE WIKISPHERE: TOOLS AND METHODS FOR
WIKI RESEARCH

by

Jeffrey Stuckman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2010

Advisory Committee:
Professor James Purtilo, Chair/Advisor
Professor Amol Deshpande
Professor Adam Porter



c© Copyright by
Jeffrey C. Stuckman

2010



Acknowledgments

I thank everyone who inspired this thesis and motivated my interest in wikis

and measurement. First and foremost, I would like to thank Jim Purtilo, my advisor,

for giving me the freedom to pursue my interests and for clarifying the oft-mystifying

practices and traditions of academia. Next, I thank Jack Callahan for opening my

eyes to the collaborative possibilities of wikis, and Sean Fahey for emphasizing the

importance of measurement and evaluation. I would also like to thank our graduate

coordinator, Jennifer Story, for helping me navigate the university’s policies and

procedures.

I also thank the United States Office of Naval Research, which partially sup-

ported this research under contract N000140710329.



Table of Contents

List of Tables v

List of Figures vi

List of Abbreviations vii

1 Introduction 1

2 Fitting probability distributions to wiki data 3
2.1 Approaches to fitting probability distributions . . . . . . . . . . . . . 5
2.2 Some terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A framework for fitting probability distribution in the R programming

language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 A discussion of methods for fitting probability distributions . . 8
2.3.2 A generalized fitting procedure . . . . . . . . . . . . . . . . . 9
2.3.3 Defining a probability distribution family . . . . . . . . . . . . 10
2.3.4 Continuity correction . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Estimating parameters through optimization . . . . . . . . . . 13

2.4 Testing the goodness of the fit . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 A goodness-of-fit test . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Performing the Kolmogorov-Smirnov test . . . . . . . . . . . . 18
2.4.3 Interpreting the results of the Kolmogorov-Smirnov test . . . . 21
2.4.4 Choosing the number of iterations . . . . . . . . . . . . . . . . 23
2.4.5 The binomial test . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Visualizing the fitted data . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Histogram graphs . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Complementary CDF graphs . . . . . . . . . . . . . . . . . . . 27

2.6 Implementation challenges . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 Partial distribution fits . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Floating-point math and legal parameter ranges . . . . . . . . 30
2.6.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Handling large datasets . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.1 Maximum values in synthetic datasets . . . . . . . . . . . . . 34
2.7.2 Choosing significance levels for statistical tests . . . . . . . . . 35
2.7.3 Proper functioning of optimization algorithms . . . . . . . . . 37
2.7.4 Experimentwise error rates . . . . . . . . . . . . . . . . . . . . 39

2.8 Probability distribution families . . . . . . . . . . . . . . . . . . . . . 41
2.8.1 The Pareto distribution . . . . . . . . . . . . . . . . . . . . . 41
2.8.2 The Zeta distribution . . . . . . . . . . . . . . . . . . . . . . . 42
2.8.3 The Pareto Lognormal distribution families . . . . . . . . . . 43
2.8.4 The Levy distribution . . . . . . . . . . . . . . . . . . . . . . 44
2.8.5 Burr distributions . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



2.8.6 The Log-Normal distribution . . . . . . . . . . . . . . . . . . 45
2.8.7 The Log-Series distribution . . . . . . . . . . . . . . . . . . . 46
2.8.8 The Normal and Cauchy distributions . . . . . . . . . . . . . 46

3 Collecting wiki data 47
3.1 The WikiCrawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Architecture of the WikiCrawler . . . . . . . . . . . . . . . . . . . . . 50
3.3 Extracting data from HTML wiki pages . . . . . . . . . . . . . . . . 53
3.4 Experiences running the WikiCrawler . . . . . . . . . . . . . . . . . . 55

3.4.1 Recovering from intermittent failures . . . . . . . . . . . . . . 56
3.4.2 Handling persistent errors . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Handling modified wikis . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Detecting errors . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.5 Mediawiki version differences . . . . . . . . . . . . . . . . . . 57
3.4.6 Wikis modified during crawling . . . . . . . . . . . . . . . . . 58

4 Collecting a wiki corpus 58
4.1 Finding wikis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 The study population . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Sampling a subset of wikis . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Choosing wikis to study . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 An analysis of the collected data 63
5.1 Summary statistics of the wiki corpus . . . . . . . . . . . . . . . . . . 63
5.2 Concentration of work across wiki users . . . . . . . . . . . . . . . . . 64
5.3 Gini coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Power law behavior and user editing activity . . . . . . . . . . . . . . 67
5.5 Relationship between Gini coefficients and power-law tails . . . . . . 70
5.6 Other distributions in wiki data . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions and Future work 78

Bibliography 81



List of Tables

1.1 Number of papers in the ACM digital library with Wikipedia in the
abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Effects of α and α2 on the Type-I error rate of the K-S test . . . . . . 37

3.1 Comparison between ordinary web crawlers and the WikiCrawler . . 49

5.1 Gini coefficients of sampled wikis, measured across all users . . . . . . 67
5.2 Gini coefficients of sampled wikis, measured across active users . . . . 67
5.3 Number of wikis where the indicated distribution was plausible given

the indicated dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Number of wikis where plausible Zeta or Levy tails were found in the

distribution of edits per user . . . . . . . . . . . . . . . . . . . . . . . 78

v



List of Figures

2.1 Example of how cumulative distribution functions are adjusted in
order to make them non-decreasing . . . . . . . . . . . . . . . . . . . 19

2.2 Depiction of the K-S test being performed . . . . . . . . . . . . . . . 22
2.3 Effects of α and α2 on the Type-I error rate of the K-S test . . . . . . 38

3.1 Two examples of wikis hosted by Mediawiki . . . . . . . . . . . . . . 50
3.2 Block diagram showing the architecture of the WikiCrawler . . . . . . 51
3.3 A list of recent revisions to the Main Page on Wikipedia . . . . . . . 55

4.1 Sizes of wikis in our study population, depicted as a CDF and a
histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Number of articles per active user . . . . . . . . . . . . . . . . . . . . 62

5.1 Numbers of articles and average article length of wikis compared with
the number of users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Sample cumulative distributions of user contribution counts . . . . . 69
5.3 Changes in Gini coefficient . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Number of wikis where the indicated distribution was plausible for

the edits per user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Number of wikis where the indicated distribution was plausible for

the edits per page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 One wiki’s distribution of edits per user, as fit to the double Pareto

lognormal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



List of Abbreviations

PMF Probability Mass Function
CDF Cumulative Distribution Function
K-S Statistic Kolmogorov - Smirnov Statistic
K-S Test Kolmogorov - Smirnov Test



Chapter 1

Introduction

Wikis are web-based repositories that allow for the collaborative editing of

content. By making it easy to edit existing content and allowing editors to immedi-

ately see the results of their changes, wikis facilitate the collaborative construction

of online resources. The original wiki software, WikiWikiWeb, was developed by

Ward Cunningham [39] in 1995 and was used to construct an online knowledge base

of software design patterns1. The popularity of this wiki and others led to the de-

velopment of Wikipedia, a collaboratively constructed encyclopedia. The success

and massive growth of Wikipedia led to interest in the academic community, which

sought to describe the collective behavior of Wikipedia users, study ways that Wiki-

pedia could be improved, or harness Wikipedia as a tool to build ontologies or train

machine learning algorithms. Between April 2004 and February 2010, 322 papers

were published to the ACM Digital Library which mentioned Wikipedia in the ab-

stract, showing robust interest in Wikipedia research. Despite the growing maturity

of the Wikipedia project, research interest continues to grow (Table 1.1).

Although Wikipedia is a very popular wiki, wikis other than Wikipedia are

also useful. Corporations deploy wikis to facilitate employee collaboration, and

thousands of public wikis on the internet are used to build user-created knowledge

bases on a wide variety of topics. Despite this broad applicability of the wiki concept,

we are only aware of three published papers (excluding individual organizational case

1http://c2.com/cgi/wiki

Publication year 2004 2005 2006 2007 2008 2009

Number of papers 1 7 23 55 71 155

Table 1.1: Number of papers in the ACM digital library with Wikipedia in the abstract

1



studies) [29][30][13] that analyzed wikis other than Wikipedia. The result is that a

growing body of knowledge describes the behavior of Wikipedia users and suggests

technological or policy improvements that could improve it, but it is unclear that

this knowledge could be generalized to the broader population of wikis.

The lack of non-Wikipedia wiki research is partly because data on other wikis

is hard to obtain, and tools to analyze this data do not exist. Wikipedia releases

copies of its database (database dumps) to the general public, so anyone can study

and exploit its content. Tools such as WikiXRay [24] can process these dumps and

generate statistics from them with little additional work. In contrast, few wikis

other than Wikipedia release Wikipedia-style database dumps to researchers, and

therefore Wikipedia-specific tools cannot be used to analyze them.

For these reasons, we developed WikiCrawler, a tool that collects data from

public wikis through their ordinary web interfaces. We then assembled a collection

(or corpus) of 151 popular wikis, to allow wiki researchers to easily perform obser-

vational experiments on many wikis at once. Finally, we developed a framework in

the R programming language to analyze these wikis, and did a preliminary analysis

to suggest ways that this data could be mined in the future.

Because we were interested in fitting probability distributions in order to dis-

cover trends in large wiki databases, we needed a tool in the R programming lan-

guage (the language that we used to import and visualize wiki data) that could

fit probability distributions and test the goodness of the fit. Because we did not

find such a tool for R that satisfied our needs, we developed one. In Chapter 2, we

describe this tool, and we explain how past Wikipedia research could have benefited

from the additional rigor that this kind of inferential statistics provides. We then

developed the WikiCrawler, a Java-based tool that is designed to download and

tabulate data from wikis, cleanly scaling up to hundreds of wikis and hundreds of

thousands of individual documents. This tool is described in Chapter 3.



We then ran the WikiCrawler for several weeks in order to compile a large

dataset for analysis. Chapter 4 describes the process that we performed to obtain

this data and insure its integrity. More specifically, we demonstrated that the wikis

in our corpus were created through an organic collaborative process, rather than

having been automatically generated by reformatting another dataset. Although

we believe that this dataset will be valuable in the future, by allowing researchers to

test analytics and metrics on many wikis as a time, we also performed a preliminary

analysis, described in Chapter 5, to demonstrate the ways that the data could

be used. In this analysis, we discovered that, as in Wikipedia, users contribute

to wikis at highly unequal rates, with some users contributing heavy amounts of

content and other users contributing little. We also discovered that fitting power

law tails to rates of user contribution is an effective way of measuring this inequality,

as an alternative to the Gini coefficient which past Wikipedia research has utilized.

Finally, to suggest how models may be built that describe the behavior of wiki users,

we fit quantities within wikis to various probability distributions, with the aim of

motivating the development of models that fit these distributions. In Chapter 6, we

describe additional applications and future research that is facilitated by this work.

Chapter 2

Fitting probability distributions to wiki data

Probability distributions are often a component of computer science research

[32], including wiki research, due to their ability to summarize datasets and give

insight to the processes that were used to generate the data.

Previous research has noted that many quantities in Wikipedia, such as the

number of distinct authors of an article [39], the in-degree of links from other pages

[5], and the number of times that an article has been edited [5] are distributed ac-

cording to power-law distributions (sometimes known as “long-tailed distributions”

3



or “Pareto curves”). Simple descriptive statistics (such as the median) are mislead-

ing when applied to such datasets [32], making it inappropriate to measure quantities

such as the median number of revisions of wiki articles. Outside of wiki research,

probability distributions have been used to describe the link structure of web pages

[33], the distribution of file sizes [32], and the structure of certain networks of the

internet. Other research has noted how other discrete quantities, such as the relative

popularity of books [4] and the population of cities [32], conform to the power law.

Aside from existing wiki research which used methodologies involving proba-

bility distributions, we observed that other wiki research could have benefited from

the involvement of probability distributions as well. Much quantitative wiki research

has focused on measuring the concentration of effort found in the wiki. It has long

been observed that user activity in wikis is concentrated unequally, where a small

number of users is responsible for a large amount of the content, or a small amount

of pages attracts a disproportionate amount of attention. Therefore, measuring con-

centration of effort is important because it provides context for interpreting simple

descriptive statistics, such as the number of users or articles in the wiki. The extent

that effort in Wikipedia is concentrated is debated: Kittur et al. [12] tracked words

and revisions of articles to suggest that occasional users are responsible for an in-

creasing amount of Wikipedia’s content, while Ortega et al. [25] concluded that few

users are responsible for a bulk of the activity. While that research used the Gini

coefficient (see Section 5.3) to measure inequality, fitting a long-tailed distribution

to the data would have provided a scale-invariant way of measuring inequality in a

dataset. (Small datasets tend to have smaller Gini coefficients, even if the distribu-

tion of the data is the same [8]. In contrast, random subsets of a dataset should be

distributed in the same way that the entire dataset was.) We evaluate the use of

power-law distributions to measure inequality in Section 5.5.

Aside from describing data or determining if it is distributed unequally, prob-



ability distributions are also useful for motivating or verifying generative models

that predict user behavior in wikis. For example, Wilkinson and Huberman [46]

proposed a stochastic model that describes how Wikipedia articles grow over time,

and then they verified this model by confirming that the measured lengths of articles

with a given age was log-normally distributed as expected. While rarely done in

wiki research, this kind of model development is more common when studying other

computing-related phenomena, as well as in economics, actuarial science, and other

fields. For example, the discovery of power-law fits led to the proposal of generative

models that explained numerous distributions on the World Wide Web [17], and

fitting other probability distributions motivated a model that predicts how file sizes

will be distributed on a system [19]. We believe that similar models could describe

phenomena seen in wikis, such as the emergence of frequent and infrequent wiki

contributers. Along with the other ways that probability distributions are used in

wiki research, this motivates our discussion of distribution fitting methodology and

our development of distribution fitting tools.

2.1 Approaches to fitting probability distributions

While some Wikipedia research has claimed that various quantities are dis-

tributed according to the power law, not all such research fitted and tested distribu-

tions in a statistically rigorous manner. Some wiki research used a visual method to

fit a power-law distribution, by observing that the probability distribution appears

as a straight line on a log-log scale. However, this method can yield misleading

results [32] and it cannot reliably determine the equation of the distribution, which

is useful both as a summary statistic and as a means of determining the parameters

of the model from which the long tailed distribution arose. Other wiki research used

statistically sound methods to fit the distributions and test the fits, but they im-

plemented their distribution fitting and data analysis algorithms from scratch each



time, making reproducibility more difficult. These one-off implementations also tend

to be specific to a certain probability distribution, making it difficult to make a fair

comparison between probability distributions to assess which one best fits the data.

While looking for a statistically sound and reproducible way to fit distributions

in our research, we discovered that the R programming language [26], a language

widely used for data analysis, lacked a consistent way to fit and test discrete prob-

ability distributions (as discussed in Section 2.3). Therefore, to facilitate our wiki

research, we have developed a framework that allows users to fit discrete (count)

data to various probability distributions, and statistically test the plausibility of

the fit in a distribution-neutral way. Aside from supporting the current research,

this framework will serve as a useful tool for future research into wikis or other

collaborative systems, and in any other place where the probability distributions of

discrete (count) data must be known. Additional probability distributions can be

defined by the user by entering a few formulas, further increasing the flexibility of

our framework.

2.2 Some terminology

From this point forward, we will use the following terminology when discussing

our framework.

• Probability mass function (PMF): A function defined over the natural numbers

which gives the probability of encountering each possible value.

• Density function: Often called probability density function: A function defined

over the real numbers (typically the positive real numbers in our case) which

has the properties generally associated with a probability density function.

• Cumulative distribution function (CDF): A function defined over the natural

numbers which gives the probability of encountering any value less than or



equal to the given value.

• Empirical distribution: A probability distribution computed by counting the

relative frequency of values in the user’s dataset (or empirical data).

• Distribution family : A term used in our framework to refer to parameterized

probability distributions without an associated parameter assignment. Param-

eters are assigned to a distribution family during the fitting process. The term

“family” is used in our framework to distinguish these from fitted distributions.

• Fitted distribution: The PMF and associated parameter assignment derived

from maximum-likelihood fitting of the user’s dataset.

2.3 A framework for fitting probability distribution in the R pro-

gramming language

The R programming language has many available packages that fit or do

goodness-of-fit tests on particular distributions [28], such as the Normal Distribution

(ADGofTest), and the Pareto Distribution (gPdtest). The fitdistrplus package

fits several univariate distributions and performs a chi-squared goodness of fit test,

while the distr package provides a number of distributions but does not provide

general methods to fit them. Some built-in functions provide PDFs and CDFs for

common distributions but do not fit them, while R’s built-in optimization functions

can be used for maximum likelihood estimation but require the user to supply the

appropriate function to optimize.

The model for our framework was the plfit [32] package, which fits power-law

(continuous or discrete Pareto) distributions and performs a Kolmogorov-Smirnov

goodness-of-test fit, in a single integrated workflow. Our methods are based on the

methods of this package, generalizing them to many other distributions, and im-



proving them so the methods used to fit the Pareto distribution (which only has a

single parameter) could be used to fit distributions with multiple parameters. So the

researcher does not need to implement or install new code for every experiment and

every distribution that is being fit, we created an integrated framework that allows

for probability distribution fits, goodness-of-fit tests, and graphical visualizations,

while making it easy to extend the system by adding new distribution families. Un-

like other probability distribution frameworks, we optimized the system for working

with discrete (count) data, because computer science research in collaboration and

graph theory normally ends up with such data.

An earlier version of the framework described in this section was developed as

a part of our previously published research [34].

2.3.1 A discussion of methods for fitting probability distributions

Any effort to describe data with a probability distribution must begin with

fitting the distribution. Fitting a probability distribution involves picking a param-

eterized distribution and then setting its parameters such that the fitted probability

distribution best matches the empirical distribution (what was observed in the data.)

One of the simplest ways to fit a probability distribution is the moment-

matching method [31], which entails choosing the parameters of the distribution

such that the moments of the distribution match the observed moments in the data.

The parameters of the distribution are easy to compute under this method, but

the method must be customized for each family of distribution being fitted because

the moments are computed differently for each one (and for many distributions,

the moments do not exist.) Also, in general, the moment matching method is not

a maximum-likelihood method because the probability of the data is not guaran-

teed to be at its maximum with the chosen parameters (although there are some

exceptions, such as the normal distribution [44]).



Another method to estimate parameters of probability distributions is max-

imum likelihood estimation. Maximum likelihood estimation entails choosing the

parameters such that the probability of the data is maximized under the selected

parameters. For some distributions, the maximum likelihood parameter assignment

can be computed directly, for example, in the case of the normal distribution (be-

cause the moment matching method gives a maximum likelihood estimate) [44] or

the Pareto distribution (because calculus can be used to directly maximize the like-

lihood function [32]). However, for most distributions, this cannot be done directly.

A more general solution is to use “hill-climbing” maximization optimization meth-

ods, using the likelihood of the data as the parameter to be maximized, and the

parameters of the distribution as the parameters to optimize over [37]. As with

all optimization, the algorithm could converge on a local maximum and return a

parameter estimate that does not maximize the probability of the data.

2.3.2 A generalized fitting procedure

We implemented a general optimization procedure to assign parameters to

a probability distribution. Although algorithms tuned to a particular probability

distribution family may produce better fits and more powerfully test the fit, we

sought to develop an algorithm that could be used for any distribution that the

researcher needs to work with.

Our fitting algorithm and test were motivated by the procedure developed by

Clauset et al [32] for power-law distributions. In this procedure, the parameters of

the distribution are estimated by maximizing the likelihood function, and the fit is

evaluated by computing the K-S statistic. It is not appropriate to use the likelihood

as a goodness-of-fit statistic because it does not have a consistent scale – varying

widely with the size of the dataset and the parameters of the distribution – and

also because Clauset et al observed that, by using the K-S statistic to evaluate the



fit, the choice of inappropriately small subsets (see Section 2.6.1) of data chosen for

fitting is avoided.

2.3.3 Defining a probability distribution family

Instead of hardcoding the supported probability distribution families into our

framework, we allow users of our framework to define their own probability distri-

bution families, so users are not limited to specific distributions. Probability distri-

butions are defined by an R data structure that contains several required equations

and settings. At a minimum, a PMF must be provided. The PMF should return

the natural logarithm of the probability. It is encouraged that the internal compu-

tations for the PMF are also computed in logarithms to improve accuracy. A CDF

may also be provided, which is used to compute the K-S statistic. If this function

is not specified, the framework will manually compute the CDF by taking the cu-

mulative sum of the probability mass function. When the CDF can be computed

without iteration, it should be explicitly defined to improve efficiency. The provided

CDF need not match the cumulative sum of the PMF, because inaccuracies due to

performing continuity corrections (see Section 2.3.4) may prevent this. However, if

the CDF is not provided, the cumulative sum of the PMF must approach 1 as the

terms approach infinity.

The probability distribution family defines the desired optimization method

(see Section 2.3.5) which will be used for fitting, along with a list of variables that

should be set during optimization. If the BFGS optimization method is chosen, the

partial derivatives of the log PMF (otherwise known as the gradient function) must

also be supplied, in order to improve the performance and accuracy of the likelihood

maximization algorithm.

In cases where an equation for the CDF is not known, but taking the cumu-

lative sum of the probability mass function is not appropriate due to continuity



corrections, the probability distribution family may define the CDF using R’s built-

in numerical integration function. Experimentally, we found that this resulted in

the cumulative distribution function having occasional “glitches”, where one value

of the CDF is lower than the previous value due to numerical integration inaccura-

cies. Our framework makes an attempt to detect and compensate for these glitches

(see Section 2.4.1).

Because our framework has been designed to process discrete count data, any

distributions should be designed with the assumption that it is impossible to en-

counter a value less than 1. The framework will assume that the entire probability

mass is in the range [1,∞] and distributions should be defined with this in mind.

Distributions can also define a higher minimum value, and exclude smaller data

points from the fit using the aforementioned data subset capabilities. Also, all func-

tions defined should accept vectors of data points as well as single data points,

because many internal functions of our framework are vectorized.

2.3.4 Continuity correction

Although our framework is designed to fit data to discrete probability distri-

butions, we allow users to fit discrete data to continuous probability distributions.

This may be done to make computations more tractable (such as when the nor-

mal distribution is used to approximate the binomial distribution[41], or when the

Pareto distribution is used to approximate the Zipf distribution[32]) or to utilize

a continuous distribution that has no discrete analog. A naive way to accomplish

this is to obtain the discrete PMF and CDF by evaluating the probability density

function and the continuous CDF at the integers. However, for the K-S statistic

to be computed properly, the cumulative sum of the resulting PMF should be rea-

sonably close to the corresponding value of the CDF. This means that applying an

appropriate continuity correction is necessary when defining a continuous probabil-



ity distribution in our framework.

Consider the case where the PMF and CDF are evaluated at 1. At this point,

the values of the PMF and CDF should be as close as possible. A naive solution is to

evaluate the density function at 1 to obtain the PMF, but this typically results in a

probability mass that is too high, because CDF(1) equals
∫ 1
0 PDF(x) dx, which is the

mean value of the density function between 0 and 1. Therefore, for the value of the

CDF to be close to the value of the PMF, the density function should be evaluated

at 0.5, which will be closer to the CDF (assuming that the density function strictly

increases or decreases during this interval.) Generalizing this reasoning, we then

let the PMF at x equal the density function at x − 0.5. Applying this continuity

correction makes the behavior of the CDF more consistent with the PMF.

Note that after applying the continuity correction, the resulting distribution

is no longer the same distribution as the original distribution. Also, the resulting

discrete distribution lacks properties that probability distributions are expected to

have – namely, the probabilities of all frequencies do not sum to 1, and the cumula-

tive sum of the PMF does not equal the cumulative distribution function. However,

the new distribution does have the two properties that are important to us – the

CDF approaches 1 as x approaches infinity, and the difference between successive

values of the CDF is close to the corresponding value of the PMF.

This procedure must be modified when the minimum allowable data point in

the discrete distribution should be greater than 1. The corresponding continuous

distributions typically define the CDF such that, if the minimum allowable data

point is xmin, CDF(xmin) = 0. If xmin is set to the minimum allowable data point in

the discrete dataset, then for the differences between successive values of the CDF

to be similar to the corresponding values of the PMF, the CDF must be evaluated

at x + 1 and the probability density function must be evaluated at x + .5.



2.3.5 Estimating parameters through optimization

Our framework fits probability distributions to discrete data by finding a pa-

rameter assignment that maximizes the likelihood of the observed data. Therefore,

this problem can be framed as an optimization (maximization) problem, allowing

us to use existing optimization techniques to fit arbitrary probability distributions.

The function to be optimized is the sum (over all data points) of the log of the

probability mass function, evaluating the probability mass function at each data

point with the parameter assignments being made by the optimization algorithm.

This results in a log-likelihood function, given the assumption that the samples in

the empirical dataset are independent.[37]

Two direct-search optimization methods [45] are available when using the

framework – the BFGS method and the Nelder-Mead method. These methods

were chosen because mature implementations of them are already built into the R

language. The Nelder-Mead method only requires the function being optimized to

be defined, while the BFGS method is a gradient-based method that also utilizes

the partial derivatives of the function with respect to each one of the function’s

parameters. This is satisfied by requiring users to supply the partial derivatives of

the log PMF, as described in Section 2.3.3.

One frequently encountered problem when optimizing is encountering a solu-

tion that is far from optimal due to terminating at a local minimum [18]. To help

counter this, our framework runs the optimization algorithm with multiple stating

points supplied, and only the best solution is used. Each probability distribution

family defines a grid of possible starting points, which represents the range of prac-

tical parameter values for each dimension. The spacing of points on the grid can

be defined with either linear or logarithmic spacing (it is expected that logarithmic

spacing will be used for parameters proportional to the points in the dataset, such

as the center of a normal distribution.) The starting points can also be computed



based on the dataset, by supplying a user-defined function to compute them.

Because the grid of possible starting points contains many starting points

where the data has extremely low likelihood, the likelihood of the data is first com-

puted at each starting point, and 30% of the starting points where the data had the

lowest likelihood are discarded. This was performed to avoid starting the search in

areas of the solution space where a solution is extremely unlikely (these areas of the

solution space could still be explored, unless the cell-constrained optimization de-

scribed later was also being used.) Any starting point where the mean log likelihood

of data points was less than −10 was also discarded for containing non-feasible so-

lutions. The optimization function is then applied once for every remaining starting

point, and the solution that maximizes the likelihood of the data is chosen.

To further improve the optimization algorithm, we added the option of possi-

bility of using the grid of starting points to actually constrain the values that the

optimization algorithm can try. Instead of only using the grid to select a set of

starting points, we also used the grid to partition the parameter space into cells,

where the points to the left and the right of the starting point become the left and

right boundaries of the cell (repeated for every dimension). The optimization is then

constrained to only explore values within the starting point’s cell. The cell bound-

aries are computed before discarding starting points, so whenever a starting point

is discarded by the aforementioned rule, any cells that the starting point touches

are no longer considered during optimization.

One purpose of dividing the parameter space into cells is to prevent evaluating

extremely unlikely values that cause an overflow in the log-likelihood function. Our

framework begins any optimization by evaluating points on the grid, and noting

parameter assignments that result in an overflow. When cell-constrained optimiza-

tion is enabled, any cell that has an overflow point at its boundary is excluded from

optimization, even if the starting point (at the center of the cell) was not partic-



ularly unlikely. We found that this feature prevented the optimization algorithm

from crashing when the parameter space had numerous regions that would cause an

overflow and crash the optimizer (see Section 2.6.2).

We also discovered that optimizing with the cell boundaries also resulted in

better solutions being found in some cases. This is because we often encountered

a situation where the optimization would repeatedly converge on the same local

minimum, regardless of the choice of starting point. By restricting the boundaries

of the optimization, the algorithm can only converge on any given local minimum

when optimizing within the cell where the minimum is contained. The disadvantage

of using the cell-bounds optimization is that the optimization function must be run

numerous times to find a result, instead of being run just once.

2.4 Testing the goodness of the fit

Above, we described we the algorithm that we implemented to find the set

of parameters that maximizes the likelihood that a specific probability distribution

would generate the observed data. If we were already convinced that the data was

distributed according to a specific probability distribution family, this would be good

enough, and we would be finished. However, we also want to consider the possibility

that the data is not distributed according to the given distribution family at all.

Some previous wiki research (along with other computer science research [32])

has alleged the validity of a power-law fit by overlaying the a distribution line over

the empirical data on a graph. However, this technique for confirming a fit is mis-

leading [32] because it is difficult to visually determine that the inevitable differences

between the empirical distribution and the fitted distribution can be attributed to

natural variation or chance. Although the likelihood function gives the probability

that the observed data would be produced if a random dataset was drawn from

the fitted distribution, this cannot directly be translated into a probability that the



observed data was generated by such a process.

Rather than visually assessing the goodness of a probability distribution fit, it

is preferable to compute a goodness-of-fit statistic that gives an objective measure-

ment of how well the fitting process was able to make the fitted distribution conform

to the empirical data. Intuitively, a good result increases the researcher’s confidence

that the data was generated by the proposed distribution. One such statistic is

the Kolmogorov-Smirnov statistic (also known as the K-S statistic) [16]. If F0(x) is

the CDF of the fitted distribution and SN(x) is the cumulative step-function of the

empirical data, then the K-S statistic is [16]:

max
x
|F0(x)− SN(x)|

This statistic measures the farthest distance between the fitted CDF and the

empirical CDF, and can be used to gauge the goodness of a distribution fit [16].

However, a goodness-of-fit statistic alone isn’t sufficient for the researcher to judge

if a fit should be accepted or not. For this, a goodness-of-fit test is required. A

goodness-of-fit test is a statistical test that rejects a fit if the fitted distribution does

not sufficiently conform with the empirical distribution [16].

One common goodness-of-fit test is the chi-squared goodness-of-fit test [41]. In

this test, the range of data that could be generated by the probability distribution

is divided into bins, and the fitted distribution is used to compute the number of

data points that would be expected in each bin. If the actual number of data points

that falls in each bin is too different from the expected number, the fit is rejected.

Although this test is computationally efficient, its results depend on the way that

the range of possible values was divided into bins. Depending on how the datapoints

are binned, the test may arrive at different outcomes, complicating reproducibility

of the test results. Also, deviations from the fitted distribution will not be detected



if they don’t cause any data points to move from one bin to another. For these

reasons, we instead implemented a goodness-of-fit test based on one designed by

Clauset et al [32] , who used a simple Monte Carlo process to determine if the

K-S statistic of the fitted distribution is consistent with the assumption that the

empirical data was drawn from the fitted distribution.

Note that goodness-of-fit tests cannot determine with any certainty that a

dataset was generated by an underlying process conforming to a given probability

distribution (or that the dataset was “drawn” from that distribution). Even if the

observed data was indistinguishable from a typical dataset drawn from the fitted

distribution, it could have come from another distribution which is only impercep-

tibly different. What a goodness-of-fit test can do is reject that data came from its

fitted distribution (subject to a predetermined false-rejection rate). The goodness-

of-fit test is tuned so random datasets which are drawn from the distribution in

question are rejected at this predetermined false rejection rate, with the assumption

that anything not drawn from its fitted distribution should be rejected more often

than this.

2.4.1 A goodness-of-fit test

We implemented a goodness-of-fit test that compares the K-S statistic of the

fit with a threshold that is computed by a Monte Carlo process. Therefore, to

perform this test, we start by computing this statistic. The K-S statistic describes

the difference between the CDF of the fitted distribution and the empirical CDF (or

cumulative sum) of the data. If the fitted distribution perfectly fits the data, then

the two cumulative distributions will be identical, resulting in a K-S statistic of 0.

Our framework computes this statistic by first computing the empirical CDF

and then evaluating the fitted CDF at each point within the range of the observed

data. This is straightforward, except in cases where the CDF as defined by the prob-



ability distribution family is not well-behaved. Some probability distribution fami-

lies use the numerical integration capabilities built into R to compute their CDFs,

because the formula to directly compute the CDF may not be known. However,

R’s numerical integration algorithm does not return perfect results, and occasional

“glitches” may be encountered, where the value returned from the integration is

higher or lower than it should be. Even in cases where R’s numerical integration

function is not being used, the CDF can still decrease slightly in cases where an

internal loss of precision occurs. To compensate for these problems, our framework

detects when a point on the CDF is higher than the one that follows (see Figure

2.1), and the erroneous points are replaced with ones interpolated from the adja-

cent values. The end result is a non-decreasing CDF, which prevents errors from

occurring when the CDF is being used.

2.4.2 Performing the Kolmogorov-Smirnov test

Because the K-S statistic acts as a measure of how well a fitted distribution

conforms to the empirical data, we can use it to test if the data came from the

distribution being fitted. Consider the case where the empirical data was drawn

from a certain, known distribution. Because of random variation in the selection

process, it is unlikely that the empirical distribution that results from this process

will perfectly match the fitted distribution (which would result in a K-S statistic of

zero). Instead, the K-S statistic in this hypothetical case will have a distribution

of its own, which will become apparent if many empirical distributions are drawn

from this known distribution and their K-S statistics computed. This motivates the

Kolmogorov-Smirnov test. In the same way that a T-test can use the Student’s t

distribution to reject the null hypothesis of two means being equal, the K-S test can

use the distribution of the K-S statistic to reject the null hypothesis that a dataset

was drawn from a known distribution. [16]
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Figure 2.1: Example of how cumulative distribution functions are adjusted in order
to make them non-decreasing. In this case, the CDF of a Double Pareto Lognormal
distribution fit to one of our datasets was adjusted.



Accordingly, we implement the K-S test as a Monte Carlo process where we

must draw enough synthetic datasets to determine if the K-S statistic of our em-

pirical data lies within the critical region of the test. To accomplish this, first, the

empirical data is fit to the desired probability distribution family (resulting in one

primary fit), and the Kolmogorov-Smirnov statistic is computed. Next, datasets are

drawn from the fitted distribution and fitted to the same probability distribution

family (resulting in many secondary fits). The number of data points drawn into

one of these synthetic datasets must be equal to the number of data points in the

empirical dataset. To draw these data points from the fitted distribution, points

from the CDF of the fitted distribution must be computed and explicitly stored

in memory before drawing any datasets. This allows data points to be drawn by

choosing a random value from the uniform distribution and then performing a bi-

nary search on the points from the CDF. The K-S statistic of the secondary fits are

then compared with the K-S statistic of the primary fit. The p-value for the test is

computed as the proportion of the secondary fits with a K-S statistic greater than

that of the primary fit. In this way, the distribution of the Kolmogorov-Smirnov

statistic is implicitly computed while computing the p-value.

The secondary datasets are compared with the secondary fits, as opposed to

the primary fit, to compensate for the fact that the parameters of the distribution

being tested came from the data that it is being tested against. When performing

the chi-squared goodness-of-fit test, the experimenter compensates for the unknown

parameters by increasing the number of degrees of freedom of the test.[16] [28] In our

test, we use the methodology in [32] to compensate for it by re-fitting each dataset

drawn from the fitted distribution (which will be referred to as synthetic datasets).

The distribution of K-S statistics is computed by comparing each synthetic dataset

to its corresponding secondary fit.

Note that our framework allows for probability distribution families to selec-



tively omit data points from the fit (see Section 2.6.1), which is intended to be done

for tail-only fits, where a probability distribution describes the distribution of large

data values but not small ones. The omitted points are also ignored when comput-

ing the K-S statistic. This poses a problem when drawing the secondary datasets,

because the fitted distribution may not generate the small-valued data points that

the primary dataset had. To compensate for this, we apply the same procedure

used in [32], by randomly including the omitted points from the empirical dataset

in the synthetic dataset (along with points drawn from the fitted distribution). For

example, if 10% of the data points were omitted from the empirical dataset when

taking the primary fit, then there is a 10% chance that a data point being added

to a synthetic dataset will actually be drawn from these omitted points rather than

drawing a value from the primary fit.

2.4.3 Interpreting the results of the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test will conclude by returning a p-value. This p-

value should be interpreted as the probability that a dataset drawn from the fitted

distribution (a synthetic dataset) will have a Kolmogorov-Smirnov statistic that is

greater than the Kolmogorov-Smirnov statistic of the original dataset. Small p-

values are more likely if the fitted distribution poorly fits the empirical data, while

large p-values are more likely if the fit is good.

This motivates a more rigorous definition of the test. Define the null hypothesis

as the case where the dataset was drawn from the fitted distribution (in other words,

the null hypothesis is that the fitted distribution is the correct distribution.) We

now demonstrate that rejecting the null hypothesis when p < α for some threshold

α will result in a Type-I error rate of α. To compute the Type I error rate, consider

the case where the null hypothesis is true and the dataset has been drawn from the

fitted distribution. In this case, the empirical dataset and the synthetic datasets



1 5 10 50 500

0
.9

9
0

.9
0

l

l

l
l

l
l

lll
lll

l
l

lllllll

llllll l
l
l

l
l
l

l
l

l
l

l

l

l

l

l

Orig KS= 0.0509387883644953

1 5 10 50 500

0
.9

9
0

.9
0

l

l

l
l

l
ll

l
llll

l
l
lll

lll
lllllllll

l
l

l
l

l
l

l
l

l

l

l

l

l

KS= 0.0345359520735022

1 5 10 50 500

0
.9

9
0

.9
0

l

l

l
l

l
ll

lllll
lll

ll lllllll ll
llllllllll

l
l

l
l
l

l
l
l
l

l

l

l

l

l

KS= 0.040025228299817

1 10 100 1000 10000

0
.9

9
0
.9

0

l

l
l

l
l

l
l
lllll

ll
llllllll lllllllll

l
l
l

l
l
l
l

l
l

l

l

l

l

l

KS= 0.0408107923546065

1 2 5 10 20 50 200 500

0
.9

9
0
.9

0

l

l
l

l
l

l
l

l
l
l
ll

l
ll

llllll
lllllll

llll
l
l

l
l
l
l
l
l
l

l

l

l

l

l

KS= 0.0463667822280048

1 5 10 50 500

0
.9

9
0
.9

0

l

l

l
l

l
l

l
l
lllllll

lllllll
l
llll

llllll
l

l
l
l
l
l

l
l

l

l

l

l

l

KS= 0.0254203379814735

1 5 10 50 500

0
.9

9
0
.9

0

l

l

l
l

l
l

l
l

l
l
lll

llllllllllll
l
l
l ll

ll l
l
l
l
l
l

l
l

l
l

l

l

l

l

l

KS= 0.0395593183747142

1 5 10 50 500

0
.9

9
0
.9

0

l

l
l

l
l

l

l
l

lllllllllllllllllll
lllllll l

l
l
l
l
l
l

l
l
l

l

l

l

l

l

KS= 0.0475567330514831

1 2 5 10 20 50 100

0
.9

9
0
.9

0

l

l

l
l

l
l

ll
l

l
lllll

llll
ll l

llll lll ll
l

l
l
l

l
l
l

l
l

l

l

l

l

l

KS= 0.0442743958800960

1 5 50 500 5000

0
.9

9
0
.9

0

l

l

l
l

l
l

l
l
l
ll

l
lll

lllll
l
ll
lllllll ll

l
l
l
l

l
l

l
l

l

l

l

l

l

l

KS= 0.0432009189681309

Figure 2.2: Depiction of the K-S test being performed. In this case, the original dataset
and 9 synthetic datasets are fit to a Zeta distribution. The K-S statistic of the original
dataset was lower than the K-S statistic of 5 out of the 9 empirical datasets; therefore,
the fit was accepted.



were generated by exactly the exact same process. Therefore, the K-S statistics for

the empirical dataset and the synthetic datasets are effectively drawn from the same

distribution. For any given K-S test, this has the effect of drawing the resulting p-

value from a uniform distribution between 0 and 1 (assuming that the p-value can

only take on a finite number of values – this assumption is explored in Section 2.4.4

and tested experimentally in Section 2.7.2). Therefore, if α is set to some value, the

null hypothesis will be rejected with that probability. This means that the p-value

of this Kolmogorov-Smirnov test can be interpreted in the same way that one would

ordinarily interpret p-values.

Note that this test cannot prove that a dataset has been drawn from a specific

distribution, nor can it give the probability that it was. For example, it is impossible

to state with certainty that a dataset “has a power-law distribution” or “does not

have a power-law distribution” Generally, it is impossible to make such statements

because one could construct a distribution that is infinitesimally different from the

fitted distribution, and argue that the empirical dataset was drawn from that one

instead. This test can only conclude that it is implausible that the dataset conforms

to the fitted distribution. Increasing the α threshold will make it more likely that a

fit will be properly rejected when the data does not conform to it, while also making

it more likely that a fit will be improperly rejected when the data actually does

conform to it. Finally, it is impossible to state with certainty whether a dataset was

drawn from a given distribution or not, because an “unlucky” or “lucky” draw can

make this impossible to determine, regardless of the procedure used or the amount

of computational power available.

2.4.4 Choosing the number of iterations

Note that in the above definition of the test, the number of synthetic datasets

to generate was not specified. Because the p-value is determined by the proportion



of the K-S statistics of the synthetic datasets that are lower than the K-S statistic of

the empirical dataset, doing additional iterations (and hence computing additional

Kolmogorov-Smirnov statistics) can alter the results of the test.

Note that each iteration is an independent, random process, and the K-S

statistic of the empirical dataset is computed at the beginning of the algorithm and

does not change. Furthermore, the exact value of the K-S statistic for each iteration

does not matter for the purposes of computing the p-value – it only matters if the

statistic is above or below that of the empirical dataset. Therefore, we can consider

each iteration of the algorithm to be a Bernoulli trial, where the possible outcomes

are accepting and rejecting the probability distribution. A Bernoulli trial is defined

by specifying a probability (which we will call q) which determines the success rate

of the trial. [41] In our case, the probability q is a function of the empirical data

and its fitted probability distribution – so q is the unobservable probability that any

given K-S statistic will be higher than the empirical one.

It is impossible to directly determine the value of q because the distribution of

the Kolmogorov-Smirnov statistic cannot be directly computed in our case; however,

we can estimate this value by generating multiple synthetic datasets and hence

performing multiple Bernoulli trials. Note that the p-value that results from the test

will approach q as the number of trials approaches infinity. Also note that the user

must choose a threshold α to perform the Kolmogorov-Smirnov test. Therefore, if we

run the algorithm for an infinite number of iterations, and then then accept or reject

the fit per the procedure described in the previous section, we would be effectively

comparing the values of q and α, rejecting if q < α and accepting otherwise. Observe

that across all null hypothesis cases for a particular probability distribution, q will

be uniformly distributed between 0 and 1, meaning that the Type-I error rate is

properly controlled in this case.

This formalization of the K-S test also allows us to decide how many iterations



of the algorithm should be run. If, based on the Bernoulli trials run so far, it is

implausible that q < α or it is implausible that q > α, then the algorithm can

terminate because it must distinguish these two cases and it ruled one out. To

declare that a statement q < α is “implausible”, we must (1) obtain an estimate of

q, which will be called qobs, by performing Bernoulli trials, (2) observe that qobs > α,

and (3) determine that qobs and α are “different enough”, establishing that the

observation that qobs > α wasn’t a fluke. (Without loss of generality, the same

procedure could also determine that q > α is implausible.)

2.4.5 The binomial test

Note that, if qobs < α holds and q = α is declared implausible, then q > α

must also be declared implausible. (Without loss of generality, the same is true

when qobs > α holds.) Consequentially, instead of directly testing if q > α is

implausible, we can instead test if q = α is implausible, allowing us to use a standard

binomial test. The binomial test accepts or rejects the null hypothesis of q = α when

Bernoulli trials have been performed [40]. If this null hypothesis is rejected, then

we can conclude that q > α (or q < α) is also implausible, and therefore we can

stop doing iterations of the algorithm because only one plausible result remains. A

second threshold α2 (not to be confused with α) must be chosen for this intermediate

hypothesis test. In the binomial distribution, the probabilities of values away from

α decrease as n increases; therefore, choosing a smaller α2 will normally increase the

number of iterations that must be performed. This property of the binomial test

exposes a trade-off inherent in our Monte Carlo fit-testing algorithm – performing

more iterations will increase the certainty that the fit was correctly accepted or

rejected.

We must perform a two-tailed binomial test to ensure that the Type I error

rate does not climb above the indicated α2, but care must be taken when computing



the critical region because the binomial distribution is a discrete distribution and

is not generally symmetrical. To compute the critical region, we adopt the method

of small p-values [1]. First, we compute the binomial distribution’s PMF with a

success probability of α and a n equal to the number of iterations performed. Then,

we sum up the function’s smallest values until the sum is greater to or equal than

the desired α2. The set of values summed define the critical region, which will be

one or two contiguous regions at the extreme left and/or right of the distribution.

Next, we count the number of iterations where the K-S statistic of the secondary fit

was lower than the K-S statistic of the primary fit. If this number is in the critical

region, then the K-S test can terminate by accepting or rejecting the fit (depending

on which critical region the number was in). Otherwise, more iterations should be

performed.

2.5 Visualizing the fitted data

While assessing the goodness of the fit is better done with our fit-testing

algorithm than by inspecting a graph, it is still useful to graph the empirical data and

the fitted distribution, in order to better understand the nature of the distribution,

or why the fit was good or bad. Such graphs depict both the frequencies of empirical

data values and a line representing the expected empirical data frequencies based

on the fitted distribution. Our framework can automatically plot and visualize any

fitted distribution on two types of graphs: a histogram graph and a complementary

cumulative distribution graph.

2.5.1 Histogram graphs

Probability distributions are often visualized and explained by graphing their

probability density functions. For example, the famous “bell curve” of the normal



distribution comes from the graph of its probability density function. [41] Overlaying

the probability density function over the empirical data helps visualize the ways that

the data deviated from its empirical distribution.

However, because we are working with discrete data only, probability mass

functions are used instead of probability density functions. Also, the data may

be sparse in the sense that not all possible values may be represented when the

number of data points is not large enough. Binning the data and creating a bar-

graph histogram allows the fitted probability mass function to be graphed over

the original data while making the dataset neat enough to interpret. The x-axis

represents the range of possible values, and histogram bars are drawn so their left

and right edges represent the minimum and maximum value in each bin. The y-

axis represents a probability, where the height of the histogram bars is equal to the

proportion of values in the corresponding bin. A curve is drawn (with line segments

between integer points) that represents the probability mass function of the fitted

distribution.

An example can be seen in the second graph of Figure 4.1, where the empirical

dataset was fitted to a power-law distribution. In this example, the axes were drawn

with a logarithmic scale, in order to show more detail for low values and in order to

visualize the fitted distribution as a straight line.

2.5.2 Complementary CDF graphs

Although the histogram graph allows the distribution of the empirical data to

be visualized, it is not suitable for all purposes. Individual data points do not appear

on the graph, and it misleadingly portrays the degree that the empirical data devi-

ates from the fitted distribution because the Kolmogorov-Smirnov statistic is based

on the cumulative distribution function. For this reason, we added a second visu-

alization that shows the empirical data superimposed on the complementary CDF



of the fitted distribution, which is easier to interpret in such situations [32]. Such

graphs have been used to visualize the complementary CDFs (known as “survival

functions” in this case) of income distributions in economics research [2].

In this graph, the x-axis represents the range of possible values, while the y-

axis represents the cumulative probability of the data point along with all preceding

data points. As with the previous graph, the axes can be drawn with a logarithmic

scale as well. Because a logarithmic scale cannot represent all values between 0 and

1, the complementary CDF is drawn on the y-axis, instead of the regular CDF. This

results in a graph of the function log(1−CDF(x)) instead of the function CDF(x),

at a scale such that the maximum y-axis value is 0 and the minimum y-axis value

determines the cutoff. The cutoff should be chosen so all data points but the last

data point can be visualized. (The last data point is always omitted from the graph

because its CDF will be 1 and hence an infinite value would be graphed.) For

example, if there are 80 data points, then the CDF of the second to last data point

will be .9875. Choosing a minimum y-axis value of 2 with a base-10 logarithm will

result in a maximum CDF of .99, allowing all but one data point to be graphed.

An example can be seen in Figure 5.2 or in the first graph of Figure 4.1, where

the empirical dataset is fitted to a power-law distribution.

2.6 Implementation challenges

In the sections above, we described our algorithms for fitting probability dis-

tributions and testing the goodness of fit. Below, we describe some of the difficulties

we encountered when implementing these algorithms.



2.6.1 Partial distribution fits

Some probability distribution families may choose to include only a subset

of the empirical data in the fit, excluding data points that lie outside this subset.

Out of the distribution families that we implemented, the Pareto, Zeta, and Levy

distribution families (described in Section 2.8) only consider a subset of the data

points x|x ≥ xmin. This effectively splits datasets into a head and a tail with xmin

as the split point, and the resulting probability mass function only describes the

relative frequency of values that fall into the tail section of the distribution.

Such probability distribution families will determine this split point as part

of the fitting process itself, which complicates some steps of the fitting and testing

process. For this reason, our framework allows probability distribution families to

define a function indicating the subset of data points included in the fit. This will

be a function of one or more parameters of the probability distribution. Because

the likelihood of the data cannot be computed without the use of this function,

such parameters must be determined before optimization. The user must mark

such parameters as non-optimizing parameters, meaning that a brute-force pro-

cess is performed where the optimization is performed once for every assignment

of these parameters. (This methodology was used by [32] when determining xmin

for the Pareto distribution.) Excluded data points are then omitted from the log-

likelihood calculations, and are also omitted when computing the empirical CDF for

the Kolmogorov-Smirnov statistic. (The probability distribution family’s PMF and

CDF must normalize the returned values so the included subset of values constitutes

a valid probability distribution.)

Performing the Kolmogorov-Smirnov test becomes more complicated when

using a subset of the data, because the synthetic datasets would lack values under

xmin if they were only drawn from the fitted distribution. This is because the fitted

distribution only describes the distribution of a certain subset of values, but the



original data may have contained values outside of this subset. We again use the

procedure described by [32] to resolve this. First, the proportion of excluded values

in the empirical dataset is determined. Then, when generating a random data point

for a synthetic dataset, the framework will randomly (with the same probability as

in the empirical dataset) decide that the data point being drawn will be an excluded-

subset data point. Excluded-subset data points are drawn from the set of excluded

data points in the empirical distribution, while non excluded-subset data points

are drawn from the fitted distribution as usual. In other words, if the fit split the

data into a head and a tail, data points in the synthetic distributions will be drawn

from the original head or the fitted tail, at a probability equal to the proportions of

empirical data points that were in the original head or tail.

2.6.2 Floating-point math and legal parameter ranges

Because numerical optimization algorithms are used to maximize the likeli-

hood of the data and fit the distribution, the functionality of the algorithm depends

on being able to compute the likelihood of the data at any point in the parameter

space. Recall that either the BFGS method or the Nelder-Mead method can be

used for optimization. The BFGS method requires that both the partial derivatives

of the likelihood and the likelihood itself resolve to real numbers with any param-

eter assignment [26]. Under the BFGS method, the range of legal values for each

parameter is defined separately (making the region of legal values an n-dimensional

rectangle in the parameter space.) The Nelder-Mead method does not require the

derivative to be defined, and it is permissible for the likelihood to be undefined for

portions of the search space, meaning that a non-rectangular region of legal pa-

rameter assignments can be constructed using the cell-bounds method described in

Section 2.3.5. However, the algorithm may not fully explore such a non-rectangular

region. Both methods require that the likelihood be not be erroneous when defined.



This means that inaccurate likelihood computations and overflow errors while

computing the likelihood must be avoided. Because the optimization process will

evaluate many points in the search space without regard to their plausibility, the

PMF calculation may involve extremely unlikely values (nearing the smallest values

that can be represented with an R floating-point number.) Although the formula

used to compute the PMF may be sound in an algebraic sense, R’s computation

of it may result in internal overflow or underflow, because the end result of the

computation is too small to represent accurately, or because calculations may work

with extremely large intermediate results (for example, in the denominator of a

fraction.)

To make it easier to mitigate these problems, our framework expects probabil-

ity distribution families to define the logarithm of their probability density function,

meaning that some computations can be done entirely in logarithms, reducing the

impact of working with very large or very small numbers. However, this is still not

enough to mitigate the problem in some cases (for example, we experienced this

when working with the Double Pareto Lognormal distribution, which subtracts two

nearly identical quantities to obtain a very small probability – a computation which

cannot be transformed to logarithms.) In these cases, the only way to ensure accu-

rate results is to prevent problematic parameter assignments from being computed

in the first place.

This makes it important to carefully define a range of legal values for each

parameter. This range can be a function of the data (in this case, our framework

will compute one set of legal parameter values for each dataset.) Because the result

is an n-dimensional rectangle of legal parameter assignments, this only works when

all of the undesirable assignments lie outside the rectangle and nearly all of the

likely assignments are inside the rectangle. This is the case in most distributions;

however, for some complicated distributions, such a rectangle cannot be defined for



some datasets. In this case, a non-rectangular region of parameter assignments must

be defined. This can be done by preceding each PMF computation with an overflow

check. If the input data will cause an overflow, the function should return infinity.

When paired with the cell-bounds optimization described in Section 2.3.5, this will

allow a complex region of plausible parameter assignments to be approximated by

a cellular boundary. (Attempting to optimize within a cell that contains a non-

computable point at any of its corners will cause the cell to be skipped.)

2.6.3 Parallelization

Many computations in our framework have been vectorized, because the R lan-

guage contains constructs that encourage this programming style. This introduces

opportunities to parallelize computations when running on multiprocessor machines,

which could speed up the distribution fitting. We use the multicore R package [36]

to parallelize vectorized computations. This package introduces a function that al-

lows vectorized computations to be split up among multiple UNIX processes, where

the number of processes is equal to the number of installed processors.

Our first attempt at parallelization was to analyze data from multiple wikis

simultaneously, without parallelizing anything within the analysis of a single wiki.

This was easy to implement, but it resulted in low CPU utilization because some

wikis took dramatically longer to analyze than others, resulting in long computations

that could not be shared between CPUs. This led us to instead parallelize the

iterations of the Kolmogorov-Smirnov test, which speeds up goodness-of-fit testing

and allows interactive users of the software to take advantage of the parallelization.

Note that the worker processes use copy-on-write memory management to

share common data structures and avoid duplicating data already loaded into mem-

ory. This is important because the datasets could consume large amounts of memory,

and also because before performing the K-S test iterations, the CDF of the fitted



distribution is precomputed (in order to draw synthetic datasets from it.) This CDF

may be very large, but only one copy needs to be stored at a time.

2.6.4 Handling large datasets

The current version of our framework has been designed to work with datasets

that easily fit into main memory. All datasets that we processed with the framework

had fewer than 30,000 elements. However, it may be desirable to fit larger datasets

to probability distributions, such as those derived from analyzing data from large

wikis such as Wikipedia. This section describes the modifications that would have

to be performed to the framework to handle such datasets.

When fitting large datasets, several operations will consume double the mem-

ory that the entire dataset consumes. This can be a problem if the dataset is too

large to fit in memory (or if double the memory required to load the dataset is not

available):

• Initial sort – The framework begins by making a sorted copy of the dataset,

and deleting the original dataset.

• Subset extraction – If the algorithm will only fit a subset of the original dataset

(as described in Section 2.6.1), the subset is explicitly computed and stored

along with the original dataset

• Computing the log likelihood function and gradient – The entire dataset is

passed as a vector to the vectorized probability distribution and gradient func-

tions. The list of resulting likelihoods is as long as the dataset itself. This list

is then summed to obtain the overall log likelihood. If the list is very long, the

summation must be done such that internal loss of precision is not a problem.

Finally, even if the dataset does not have a massive number of values, a large

amount of memory may be consumed when computing the Kolmogorov-Smirnov



statistic, because arrays must be allocated for both the empirical and fitted cumula-

tive distributions, with one element for every integer that lies between the smallest

and largest fitted data point. Because the CDF is increasing, points may be omit-

ted from the cumulative distribution, because the maximum difference between the

fitted CDF and the empirical CDF will occur either on a data point (the only

points where the empirical CDF increases) or on the point immediately before a

data point. Therefore, computing the CDF on and immediately before data points

will capture both the maximum amount that the fitted cumulative distribution ex-

ceeds the empirical cumulative distribution, and vice versa. However, this process

cannot be used when computing the large CDF used to draw synthetic datasets. To

avoid running out of memory here, the maximum values in synthetic datasets could

be constrained (see Section 2.7.1) or values could be drawn into synthetic datasets

without pre-computing this large CDF (resulting in performance penalties.)

2.7 Threats to validity

Because the statistical test performed by our framework can be used to draw

scientific conclusions from the data, it is important to ensure that the test is valid

and well-understood. However, there are several pitfalls that could affect the results

of the test if not considered, such as properly configuring user-definable tuning

parameters.

2.7.1 Maximum values in synthetic datasets

As described above, our framework creates a number of synthetic datasets to

perform the Kolmogorov-Smirnov test, by mapping a uniform random variable to

the inverse function of the CDF of the fitted distribution. However, such a process

could result in arbitrarily large values being chosen, because nearly all probability



distributions assign non-zero probabilities to arbitrarily large values. We discovered

that choosing extremely large and unlikely values can rarely cause crashes or severe

performance problems when computing the K-S statistic, due to the large cumulative

distribution that must be computed.

Eliminating such values will have a minimal impact on the likelihood function

(because they are extremely unlikely and are dominated by the other numbers being

summed) or the K-S statistic (because both cumulative distributions converge to 1

at extremely large values, minimizing the potential for a large absolute difference

between the two cumulative distributions to exist at these large values.) Therefore,

we prevent extremely large values from being drawn into synthetic datasets. The

authors of [32] prevented such values from being drawn by excluding data points

from the synthetic dataset that are greater than xmax · 20, where xmax is the largest

data point in the empirical dataset. We take a similar approach, but we increase the

set of allowable points by also allowing any point where the CDF evaluates to .995 or

less, as long as such values are less than 100000. This ensures that sensible synthetic

datasets are created in cases where the fitted distribution has a high probability of

generating large values, while the empirical dataset contains no such values. These

thresholds must be modified when analyzing datasets where values over 100000 could

plausibly appear.

2.7.2 Choosing significance levels for statistical tests

The two statistical tests that we perform (described in Section 2.4.2 and Sec-

tion 2.4.5) require choosing significance levels (previously defined as α and α2) which

control the Type-I error rate of the tests. A low significance level will normally re-

duce the Type-I error rate while increasing the Type-II error rate. The α significance

level controls the rate that perfect distribution fits will be rejected when the K-S

test is functioning properly, while the α2 significance level will control that rate that



the K-S test malfunctions by not running the enough iterations of the Monte Carlo

process. In this sense, α2 is the maximum (worst-case) probability that the result of

the K-S test would have changed if the distribution of the K-S statistic could have

been directly computed instead of being inferred from the Monte Carlo process.

Because of the complex interplay between these two significance levels, it is no

longer obvious that the Type-I error rate of the K-S test will still equal α. (Note that

the Type-I error rate would differ from α slightly in any event, because the accept-

reject threshold α · n must be rounded to the nearest integer, causing the effective

value of α to be different. However, here we are concerned about the effects of

choosing α2.)

To determine if this procedure results in a well-behaved statistical test, we per-

formed simulations of our K-S test where the null hypothesis is always true. Because

q is uniformly distributed across empirical datasets in this case (see Section 2.4.4),

this simulation can be performed without actually drawing any synthetic datasets

or fitting any data. For this reason, rather than doing Monte Carlo trials, we were

able to track all possible binomial trial outcomes and compute their probabilities,

allowing us to simulate our K-S test and compute an exact Type-I error rate for

a perfectly fitting dataset with a given q. We then numerically integrated over all

q using R’s numerical integration function [26] in order to compute a Type-I error

rate for the entire process with a given assignment of α and α2. (The numerical

integration estimated that the computed Type-I error rates were accurate to within

0.0040)

The results of this simulation can be seen in Figure 2.3 and Table 2.1. Note

that the the Type-I error rate rises as expected when α is increased, and only small

differences exist between the two values. We tried several reasonable choices α2, but

they did not have a large effect on this difference. Therefore, we observe that the

significance level chosen when running our Kolmogorov-Smirnov test behaves in the



α2

α .01 .05 .1 .2

.05 .069 .067 .064 .064

.1 .100 .100 .099 .099

.15 .149 .148 .148 .145

.2 .198 .197 .196 .195

.25 .249 .247 .246 .245

.3 .300 .296 .295 .290

Table 2.1: Effects of α and α2 on the Type-I error rate of the K-S test. Ideally, the
Type-I error rate would be equal to α.

same way that significance levels are expected to behave in other statistical tests.

2.7.3 Proper functioning of optimization algorithms

The null hypothesis for the K-S test is that the data was drawn from a distri-

bution identical to the fitted distribution. Note that this may not be the desired null

hypothesis – it is often desirable to know if the data was drawn from from a given

distribution family, and not just if the data was drawn from a given distribution.

The problem stems from the fact that optimization is not guaranteed to return

the parameter assignment that results in the best fit. If the optimization algorithm

returns a poor fit for a particular dataset, then the K-S test may reject the distribu-

tion fit, even if the data was drawn from the desired distribution family. Although

the test’s level of significance is guaranteed to be maintained (per the argument in

Section 2.4.3), a poorly performing optimization function could lead to undesirable

results (such as a dataset that was drawn from a specific probability distribution, but

is incorrectly fitted to another distribution in the same family, and then rejected.)

Given some assumptions, though, we can informally argue that the K-S test

will function expected given one of the following:
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• The optimization function returns an optimal solution

• The solutions are non-optimal by roughly the same amount throughout the

parameter space

Note that the same optimization algorithm is used to optimize both the orig-

inal and the synthetic datasets when performing the K-S test. Assume that the

optimization algorithm performs poorly and results in a fit with a K-S statistic

that is ε higher than desired. If the fits of the synthetic datasets are similarly poor

and also result in fits with K-S statistics that are ε higher than desired, then the

probability distribution fit will correctly be accepted or rejected.

Even if the optimization function experiences inconsistent errors, the Type I

error rate will still equal α, as long as we state the null hypothesis appropriately

(that the empirical data was drawn from the fitted distribution.) This is because, in

the null hypothesis case, these inconsistent errors will affect every synthetic dataset

(as well as the empirical dataset) equally.

This serves as further caution against misinterpreting the resulting p-value

of the K-S test. The p-value cannot be interpreted as the “probability” that the

distribution fit is valid. The only statement that we can make is that if the data was

drawn from a distribution identical to the one that the fitting algorithm returned,

then the probability that the goodness-of-fit test will reject the fit is exactly α,

regardless how badly the optimization algorithm works.

2.7.4 Experimentwise error rates

Some experiments performed with our framework may entail fitting multiple

datasets to a probability distribution, or fitting a dataset to multiple probability

distributions, in order to discover which datasets have a statistically significant fit

to which distributions. The dangers of performing multiple statistical tests in one



experiment are well-known because incorrectly handling the possibility of a false

null hypothesis rejection could affect the integrity of the experiment. Methods to

control this experimentwise error rate often entail computing the overall probability

of a spurious null hypothesis rejection (Type I error) [41]. The probability of a

single spurious null hypothesis rejection can be controlled by setting a conservative

significance level α in the statistical test, which will be based on the number of tests

that are being performed.

This is complicated in our case, because the null hypothesis is the hypothesis

that the data came from the fitted distribution, and the null hypothesis is rejected

by discovering that the data is not consistent with its fit. Therefore, Type I errors

occur when a good fit is incorrectly rejected, while Type II errors occur when a

fit is accepted even if the data was not drawn from the fitted distribution. The

researcher can directly control the frequency of Type-I errors by adjusting the α

of the test, while the probability of Type-II errors cannot be generally defined or

expressed (as discussed in Section 2.4.3.) Because the Type-II error rate therefore

cannot be directly controlled, the experimentwise error rate cannot be controlled

either.

When performing multiple tests (which could entail fitting multiple probability

distributions to one dataset, or fitting one distribution to multiple datasets), the

probability of getting a Type I error will increase beyond the α. Normally, methods

to control the experimentwise error rate will bring the Type I error rate down

to α; however, these methods should not be applied to experiments that use our

framework. This is because a more “conservative” experiment is one where fewer

spurious fits are confirmed – in other words, increasing the Type I error rate actually

makes the experiment more conservative in these cases. The problem lies in the

fact that our tests cannot confirm that the empirical data came from the fitted

distribution – they can only exclude the possibility, by determining that the data



is not consistent with the distribution. When the fitted distribution is not rejected,

we can only conclude that the fit is plausible. Therefore, in our experiments, we

have not adjusted for the experimentwise error rate.

2.8 Probability distribution families

In this section, we describe the probability distribution families that we imple-

mented and included with our framework. Most of these distributions are continuous

probability distributions, meaning that we apply the continuity correction described

in Section 2.3.4 to the continuous equations.

2.8.1 The Pareto distribution

The Pareto distribution family contains distributions with density functions

of the form [32]:

(α− 1)xα−1
minx−α

The Pareto distribution family is important in Wiki research because re-

searchers have often used it to describe the tails of heavy-tailed distributions gen-

erated by real-world processes. [32]

It has been claimed that this distribution has been found in data extracted

from Wikipedia, such as the number of times that an article has been edited [5] or the

number of distinct authors of an article [39], as well as in non-wiki applications such

as the distribution of income or file sizes [19]. Such distributions arise from lower-

bounded multiplicative processes, in the same way that the normal distribution

arises from additive processes [19].

It has been observed that the tail of an empirical dataset often fits the Pareto

distribution, without the head fitting the distribution. For this reason, our Pareto

distribution fitting code only attempts to fit a subset x >= xmin of data points.



This is because when taking the product of a Pareto function and a slowly vary-

ing function, the Pareto component of the function will dominate for large x [32].

Therefore, a wide variety of functions will successfully fit a Pareto distribution if

only the tail of the distribution is considered. The procedure used to determine this

xmin is described in Section 2.6.1.

In our later experiments, we exclude partial fits that only describe a small

number of data points (when xmin is too large) because such fits can be statistically

significant but practically uninteresting.

2.8.2 The Zeta distribution

The Zeta distribution family contains distributions with PDFs of the form

[32]:

1

ζ(α, xmin)
x−α

where ζ is the Hurwitz zeta function.

The Zeta distribution family, is similar to the Pareto distribution family in

the sense that the probability mass function will appear as a straight line on a log-

log scale. However, unlike the Pareto distribution, it is a true discrete probability

distribution, with a probability mass function only defined on the natural numbers.

The Pareto distribution can be used to approximate the Zeta distribution for discrete

datasets, in the same way that the normal distribution is used to approximate the

binomial distribution. However, using the true Zeta distribution yields better results

[32].

Use of the Zeta distribution is better for datasets with many small values,

because it avoids the distorting effects of a continuity correction. However, its

computation is slow because of the need to compute the generalized Zeta function.



2.8.3 The Pareto Lognormal distribution families

The Pareto Lognormal distribution family contains distributions with density

functions of the form [27]:

f1(x) = αx−α−1A(α, ν, τ)Φ

(
log x− ν − ατ 2

τ

)

where Φ is the CDF of the normal distribution with mean 0 and standard deviation

1, and:

A(θ, ν, τ) = exp(θν +
θ2τ 2

2
)

The Double Pareto Lognormal distribution family contain distributions of the

form [27]:

β

α + β
f1(x) +

α

α + β
f2(x)

where f1 is as above, and f2 is:

f2(x) = βxβ−1A(−β, ν, τ)Φc

(
log x− ν + βτ 2

τ

)

where Φc is the complementary CDF of the normal distribution mentioned previ-

ously.

While fitting power-law (Pareto) tails to distributions has been effective in

many situations, it can be considered unsatisfactory in the sense that the fit de-

scribes the tail of the data well, but doesn’t describe the head. This indicates that,

although the true distribution of the data has a Pareto component, the distribu-

tion has other components not described by a Pareto distribution. For these cases,

we examine other distributions with Pareto-style tails, sometimes called generalized

Pareto distributions [15]. These distributions exhibit Pareto-tail behavior when de-

scribing data points with large values, while using alternative shapes for smaller data

points (in the head). We speculate that such distributions could fit entire datasets



when the Pareto distribution only fits the tail of the dataset.

The double Pareto lognormal distribution was suggested in [19] to be an al-

ternative for data that has a power-law tail but a lognormal head. When used to

analyze income distribution, this distribution describes a population, growing at a

fixed rate, with a log-normally distributed income upon entering the workforce and

income growth proportional to current income. [27] In computer science, the double

Pareto distribution was used to propose a generative model for the distribution of

file sizes [19], which were previously modeled with lognormal or Pareto distributions.

The Pareto lognormal distribution was developed by Colombi [27] as a pre-

decessor to the double Pareto lognormal distribution to model the distribution of

incomes. This distribution family describes distributions of the product of a Pareto-

distributed random variable and a log-normal distributed random variable [15]. Out

of general interest in generalized Pareto distributions, we also implemented the

Pareto lognormal distribution in our framework.

2.8.4 The Levy distribution

The Levy distribution family contains distributions with density functions of

the form [21]: √
γ

2π

1

(x− δ)3/2
exp

(
− γ

2(x− δ)

)

Like the Pareto distribution, the Levy distribution has a shift parameter δ

which data points below this parameter have zero probability. Unlike the Pareto

distribution, the Levy distribution exhibits a power law tail while having a parabola-

like shape in the head, raising the possibility that a dataset described by a fitted

Pareto tail could better be described by this family of distributions.



2.8.5 Burr distributions

The 3-Parameter Burr distribution family contains distributions with density

functions of the form [2]:

αβ

x

(
x

σ

)β
(

1 +
(

x

σ

)β
)−(α+1)

The 2-Parameter Burr distribution family contains distributions with density

functions of the form [35]:

αβ

x
xβ
(
1 + xβ

)−(α+1)

The families of Burr distributions are Pareto-family distributions that have

been used to model stochastic processes such as inequality in household income. The

2-parameter Burr distribution is identical to the classical Burr Type XII distribution

[35], while the 3-parameter distribution adds a scaling parameter as suggested by

[2]. We implemented these distributions for the analysis of wiki data because the

families of Burr distributions are generalized Pareto distributions [2].

2.8.6 The Log-Normal distribution

The log-normal distribution family contains distributions with density func-

tions of the form [42]:

1

S
√

2πx
exp

(
−(ln x−M)2

2S2

)

We have chosen to implement log-normal distributions in our framework be-

cause past research has found that some quantities in Wikipedia are distributed in

this way. It was found that the number of edits per article in Wikipedia is log-

normal by a mechanism where the number of new edits is a varying proportion of

the number of total edits [47], and that the distribution of Wikipedia article lengths

is log-normal [39]. Stochastic processes which can be modeled as the product of



many independently distributed random variables can be modeled with log-normal

distributions. [42]

2.8.7 The Log-Series distribution

The log-series distribution family contains distributions with PDFs of the form

[43]:

− θn

n ln (1− θ)

Although we have not found any research where log-series were used to fit

quantities in wikis, this family was included in our framework for completeness be-

cause it is one of the few well-known discrete probability distributions. Because it is

a truly discrete probability distribution, continuity corrections and similar adjust-

ments do not need to be applied.

2.8.8 The Normal and Cauchy distributions

The Normal distribution family contains distributions with density functions

of the form [21]:

1√
2πσ

exp

(
−(x− µ)2

2σ2

)

The Cauchy distribution family contains distributions with density functions

of the form:

1

π

γ

γ2 + (x− δ)2

The Normal and Cauchy distributions are not expected to be of interest to

wiki researchers, but they were included in our framework for completeness. The

properties of these distributions are well-known and will not be discussed here.

Because these distributions have a non-zero probability of generating negative data,

and our framework only works with non-negative, discrete data, the distributions



are truncated below 0 and the probabilities are multiplied by a constant such that

the revised density function is a valid probability distribution despite the absence

of these values. Although the resulting distribution is technically not a normal or

Cauchy distribution, there is precedent for using the normal distribution to model

non-negative phenomena in the real world (such as when the normal distribution is

used to approximate the binomial distribution [41].)

Chapter 3

Collecting wiki data

The previous section of this paper described how the collected wiki data can

be analyzed to uncover the distributions and mathematical models that describe the

behavior of wiki users. In this section, we describe how data can be collected from

wikis for analysis.

Previous wiki research has focused almost exclusively on Wikipedia, mostly

because it is easy to collect and analyze its data. This is because Wikipedia makes

database dumps available to researchers for analysis1, while obtaining dumps of

other wikis would require the cooperation of their individual webmasters. Also,

because Wikipedia content is licensed under a free content license 2, research re-

sults can be published and shared without sanitization. However, the result of this

Wikipedia focus is a lack of information on how wikis other than Wikipedia are

being used, information that could increase the knowledge available to wiki practi-

tioners by making the increasingly sophisticated models and analysis of Wikipedia

applicable to wikis in general.

Much of this Wikipedia research has focused on descriptive statistical charac-

teristics on Wikipedia, often describing patterns of behavior in Wikipedia by fitting

1http://en.wikipedia.org/wiki/Wikipedia database
2http://creativecommons.org/licenses/by-sa/3.0/
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probability distributions to Wikipedia data. Discovering such distribution fits is

valuable in that knowing how a particular phenomenon is distributed gives some

insight into the underlying user behavior that resulted in the pattern seen in the

wiki. For example, Wilkinson and Huberman [46] proposed a stochastic model that

produces a log-normal distribution for the lengths of articles with a given age.

Although conducting research on Wikipedia provides insight into one of the

most popular websites on the internet, analyzing Wikipedia at the expense of other

wikis results in a lack of findings that can be generalized. Because the wiki format

itself may encourage common patterns of use and collaboration styles, quantitative

analysis of large numbers of wikis can uncover behaviors and patterns common to

many wikis, in the same way that quantitative analysis of Wikipedia gives insight

into the underlying processes that resulted in the encyclopedia that exists today.

3.1 The WikiCrawler

Because wikis present themselves to the user as ordinary websites , machine-

readable database dumps are not generally available. Clearly, some other means

of data collection is required to perform automated quantitative analysis on large

numbers of wikis. This led us to develop webcrawler-like software that facilitates

the mass analysis of wiki pages. We have identified several desirable characteristics

that a webcrawler that downloads wiki pages should have:

• The webcrawler can map wiki pages to the URLs that represent them, causing

each page to be downloaded exactly once

• Instead of indiscriminately following links, the webcrawler should parse the

appropriate indices to obtain lists of items to process

• The webcrawler should be sensitive to the data analysis that will be performed,

and only download the pages required to make the required measurements.



Normal web crawler WikiCrawler

All pages are parsed to find HREF link
tags

Index pages are parsed to find lists of
wiki pages

Text content is extracted from pages to
enable searching

Statistics are extracted from pages

Crawler works on valid HTML pages Crawler works on pages from a partic-
ular wiki

Table 3.1: Comparison between ordinary web crawlers and the WikiCrawler

• The webcrawler should be able to parse the contents of downloaded wiki pages

to extract the data that will be analyzed

• The webcrawler should be scalable enough to complete studies that require

data from hundreds of wikis and hundreds of thousands of pages

Note that the software we desire is quite different from general-purpose we-

bcrawlers, which simply follow links to download as many HTML pages as possible

[7]. In this sense, we have generalized the concept of web crawling to encompass the

collection of domain-specific wiki data.

Because the WikiCrawler extracts wiki-specific features from wiki pages, we

had to target a specific wiki platform and write our parsers to analyze wiki pages

from that platform. We decided to support Mediawiki, a popular open-source plat-

form used to host wikis. Mediawiki has gained popularity because it is the platform

underlying Wikipedia, and the data collected from Mediawiki installations will be

similar to data extracted from Wikipedia.

Despite the fact that Mediawiki permits extensive user interface customization,

most Mediawiki installations use consistent HTML element IDs on their UI elements.

For example, the two wikis depicted in Figure 3.1 look different, but similarities in

the underlying HTML allow information to be extracted from both. There are a few

variations in the HTML generated by different versions of Mediawiki, but most of



Figure 3.1: Two examples of wikis hosted by Mediawiki

the processing rules are identical across versions. For this reason, most Mediawiki

wikis can be analyzed by the WikiCrawler automatically.

The WikiCrawler was developed as a part of our previously published research

[34].

3.2 Architecture of the WikiCrawler

The WikiCrawler is a Java application which ingests a list of seed URLs, iden-

tifies wikis to study, downloads and parses all relevant data from the wikis, and

exports the data for further analysis. All operations of the crawler are managed

through an integrated workflow which parallelizes all download and processing ac-

tivities. The overall architecture of the WikiCrawler can be seen in Figure 3.2. The

WikiCrawler is built with an event-driven architecture, where components register

event handlers with a data abstraction layer, which then triggers events when data

objects are added or changed. In this way, there is a minimum of dependencies

between WikiCrawler components, and components maintain a minimal amount of



Derby-SQL 
database

Download 
threads

Download 
thread manager

Data 
summarizer

Job status 
tracker

Job sequence 
(chain) manager

Worker threads

Page parsers

Data 
abstraction 

layer

Console 
interface

Worker thread 
manager

Pending work 
queue

Figure 3.2: Block diagram showing the architecture of the WikiCrawler. All database
access is mediated by a data abstraction layer that allows for concurrent access to the
database by multiple threads while preventing sequences of calls that will lead to dead-
locks. Solid arrows represent the flow of data between the components, while dotted lines
represent events triggered by the data abstraction layer, which notifies components of the
WikiCrawler that a particular piece of data has changed.



internal state, allowing the crawler to be parallelized if necessary.

WikiCrawler operations are performed on objects called pages and sites, rep-

resenting individual wiki pages and entire wikis. The page objects keep track of

any pending downloading or processing work that the WikiCrawler must perform,

through the use of status variables indicating if pages are awaiting a download or

awaiting processing. Pages and sites are externally represented by rows in an Apache

Derby database and internally represented as data objects.

The operator of the crawler can initiate jobs that cause pages within a site to

be downloaded and processed in a particular way. For example, one job counts the

number of words in each article of the wiki, while another job counts the number of

times each article has been revised. Both jobs will begin by downloading the contents

of every page in the wiki, but the latter job requires the revision histories of the

pages to be downloaded as well, so the revision histories will be downloaded after

the page downloading is complete. In this way, the currently running job defines

the actions to be taken after a page has been downloaded and parsed. Parser and

job code is implemented in a hierarchical object model, allowing parsers and jobs

written for one task to be easily reusable for other tasks.

Every site with activity has a status variable representing the currently running

job. Different sites can have different jobs running at the same time, and the progress

of a particular site’s job is completely defined by the status variables of the pages

within that site. In this way, our crawler architecture becomes scalable – machines

with high network bandwidth can download 20 or more wiki pages simultaneously,

while multiprocessing machines can parse and analyze multiple pages and wikis at

once. Built-in limits prevent more than two pages from being downloaded from the

same host simultaneously, to avoid overloading the servers that we crawl. Because

the current crawler state is represented in the database, the crawler is resistant to

crashes and reboots, although pages being processed during the crash are flagged



and must be cleaned up manually.

The crawler is controlled by a console interface, where we implemented a

simple command language allowing objects within the crawler (pages and sites) to

be examined and manipulated. Summary commands generate customizable status

reports, while selection commands retrieve sets of pages and sites matching certain

criteria. Hence, manipulation commands, which can modify objects and start jobs,

are vectorized so they can operate on entire sets of pages and sites simultaneously.

We found this to be useful as we debugged our crawler and troubleshooted issues

with the wikis that we crawled, as described in Section 3.4.2.

3.3 Extracting data from HTML wiki pages

Wiki pages that the WikiCrawler downloads will be in the form of HTML

documents. To operate in a manner that would extract machine-readable data from

the pages, the crawler must perform two tasks: obtain URLs of pages that will

contain the desired data, and extract the relevant data from the downloaded HTML

pages.

Because the WikiCrawler only operates on wikis running the Mediawiki plat-

form, the functions performed by the wiki software are common across all wikis.

We must be able to retrieve: an article page (which contain the text of one wiki

page), the list of all articles in the wiki, the list of all users in the wiki, the edit

history of an article, and the edit history of a user. Because the WikiCrawler is not

a general-purpose webcrawler and it only downloads pages containing the aforemen-

tioned data, the crawler must craft specific URLs that will contain the information

of interest.

We use two strategies for constructing the URLs of pages to download. For

the WikiCrawler to analyze a wiki, it must first be given a seed (or bootstrapping)

URL that corresponds to some article in the wiki. When the page for the seed



URL is retrieved, two pieces of information are extracted from the page: the canon-

ical title of the article (as presented to the user by Mediawiki) and the canonical

URL of the retrieved page (because all Mediawiki pages contain a self-link that

loads the current page again.) From the canonical title and the canonical URL

of one page, the crawler constructs a template that allows arbitrary wiki pages to

be retrieved by title. Although the same Mediawiki software was running on all

sites that we analyzed, user customizations and web server configurations result in

URLs being constructed differently. For example, the following URLs could refer

to pages with the same title on three different wikis: http://en.wikipedia.org/

wiki/Main page http://wiki2.example.com/wiki/index.php/Main page http:

//wiki3.example.com/w/index.php?title=Main page

After inferring the mapping between URLs and articles in a wiki, the Wiki-

Crawler gains the ability to generate URLs that retrieve the lists of pages and users

in the wiki, as well as pages showing a list of edits made by a particular user. This

is because Mediawiki puts these lists in the same namespace as ordinary articles,

with titles such as Special:All pages.

All other URLs (such as URLs to retrieve the revision history of a page) are

obtained by locating a link to the desired page on a page that has already been

downloaded and parsed, and then reading the href attribute of this link. In this

way, the WikiCrawler is immune to further changes and customizations in the URL

formatting used by Mediawiki.

Features are extracted from the downloaded HTML documents by parsing the

HTML documents and locating the individual HTML elements that are known to

contain the desired data on Mediawiki installations. Although wikis may vary in

appearance, all analyzed wikis are running the Mediawiki software, and appearance

changes are usually implemented by writing custom CSS files, rather than modifying

the HTML code itself. This means that the downloaded HTML is consistent across



Figure 3.3: A list of recent revisions to the Main Page on Wikipedia. Because the
WikiCrawler parses these lists when collecting revision histories, the “newer” and “older”
links are automatically followed for paging purposes.

wikis, and HTML element IDs that remain consistent can be used to find the desired

data. For example, the link to the revision history of a wiki page is always contained

in a UI element with an ID of ca-history. Downloading lists of things, such

as revisions to a particular wiki page, is more challenging because retrieving the

entire list requires paging (Figure 3.3). Each page of the list must be downloaded

and analyzed separately, and the positions of the next/previous page buttons are

inferred from the index parameter found in the button’s URL parameters. (The

text of the button is not used for this purpose because the text can be customized

for localization.)

3.4 Experiences running the WikiCrawler

By gathering URLs, downloading wiki pages, and extracting features from

them, it is possible for the WikiCrawler to collect all necessary data from a wiki

without human intervention. However, we encountered some situations where these

automatic processes failed and manual intervention was required. Here we describe

these experiences:



3.4.1 Recovering from intermittent failures

File downloads from wikis sometimes failed because of a temporary server

error or a connection timeout. Such failures resulted in empty or incomplete pages

which failed to parse, preventing their associated sites from finishing their jobs.

The WikiCrawler’s command console allowed us to locate such pages and manually

reset their states. A rare but troublesome failure mode was when the connection

would get into a state where Java’s built-in HTTP client would permanently lock

up, despite exceeding the specified timeout. Recovering from this rare situation

required us to manually stop and terminate the WikiCrawler.

3.4.2 Handling persistent errors

Due to minor bugs in the Mediawiki software or non-standard extensions to

Mediawiki, some wikis had pages which would fail with a server error whenever we

attempted to download the page. Dealing with this condition requires discretion –

if the crawler is unable to download a legitimate page, data will be missing from

the statistics we were trying to collect. A common cause of this error was a bug in

Mediawiki that allows users to create a wiki page with illegal characters in the name,

preventing the page from ever being viewed or modified. In these case, we manually

bypassed these pages, because they did not represent legitimate data. However, in

cases where many legitimate pages could not be viewed due to database corruption

or another bug, we struck the entire site from our analysis (as seen in Section 4.1).

3.4.3 Handling modified wikis

Some wiki site administrators install Mediawiki plugins to add new features

to the site. These plugins sometimes affected our analysis because they slightly

changed the HTML structure of wiki pages, preventing us from parsing them. For



some common plugins, we added exceptions to our parser to detect the modifications

and work around them. Other plugins (such as ones that restricted access to a

segment of the wiki to a specific user group) prevented us from analyzing the wiki

entirely, because they made it impossible to complete the data collection.

3.4.4 Detecting errors

To help ensure the integrity of the data, the WikiCrawler rejects data that

is apparently erroneous, such as empty pages or users that have never shown any

activity. Such situations sometimes arise because the wiki software experienced

an error while retrieving the requested data; however, we discovered that these

conditions sometimes exist in legitimate wikis. We worked around this by detecting

the locale-specific messages that appear when these conditions legitimately exist. In

cases where these messages are nonexistent or localized, we manually permitted the

WikiCrawler to accept this data.

3.4.5 Mediawiki version differences

During our large-scale crawling of wiki pages, we discovered that the structure

of HTML pages and URLs changed slightly between certain versions of Mediawiki.

For example, when viewing the changes made by a particular user, older Mediawiki

versions included a go=prev parameter in the URL of the button that moves to

the previous page, while newer versions call the parameter dir=prev. These issues

were discovered and corrected by manually inspecting pages that had failed parsing,

modifying the parser to handle these cases, and then issuing commands through the

WikiCrawler console to attempt parsing these pages again.



3.4.6 Wikis modified during crawling

One reoccurring problem that we experienced was dealing with wikis that

were modified while they were being crawled. While we intend for our analysis to

snapshot wikis at a point in time, it is likely that extremely large and active wikis

will change during crawling because it can take 12-24 hours to download every page

in a large wiki. This causes errors in cases where wiki pages were renamed or deleted

after downloading their corresponding index entries, which results in failure of the

crawler. In these cases, we instructed the crawler to re-download the index of pages,

which usually triggered the downloading of several new pages that didn’t exist in

the previous index.

Chapter 4

Collecting a wiki corpus

We developed the WikiCrawler in order to build a corpus of wikis by down-

loading and parsing the contents of several hundred randomly chosen wikis across

the internet. Aside from facilitating the analysis in the current research, this cor-

pus is also available to the broader research community in order to explore other

wiki-related research questions.

The data for this wiki corpus was collected as a part of our previously published

research [34].

4.1 Finding wikis

In order to build a corpus of wikis, we first obtained a list of wikis to analyze

and gathered seed URLs for these wikis for the crawler.

The S231 website, which has listings for tens of thousands of public wikis, has

1http://s23.org/wikistats/
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been used for past research that compared multiple wikis, such as [29] and [30].

However, we did not use this site, or similar sites such as WikiIndex2 because it was

unclear if the wikis in the directories were collected by humans, which could result

in a selection bias in our corpus. Similarly, we did not choose to obtain data from

a wiki hosting service such as Wikia 3 [13] for similar reasons.

Instead, we used search engines to prepare a list of wikis that would be free

from the bias of direct human selection. We obtained a list of candidate wikis to

analyze by using the Yahoo and Microsoft Live search web services to retrieve the

first 1000 results for the string Main Page. Because Mediawiki creates a page called

Main Page by default, this allows us to easily find Mediawiki instances. Using search

engines to form our sample ensures that the only bias is that the wikis were popular

enough to appear in a search result.

Filtering non-wikis and duplicates between the two search engines out of our

2000 seed URLs, we found 1445 wikis which could potentially be analyzed. Wiki-

media projects were excluded because they can be downloaded and analyzed more

easily by using the database dumps mentioned earlier.

The Robot Exclusion Standard4 allows websites to indicate that robots and

crawlers should not visit. (This standard is not enforced by technical means; there-

fore, compliance is voluntary.) We rejected 77 of the 1445 wikis because our crawling

would have violated this protocol.5

Because Mediawiki is an open-source product, users often customize it to im-

prove the appearance of the wiki or add new features. These customizations some-

times confound the HTML parsing component of our crawler, which checks for

inconsistencies in the downloaded pages to compensate for this. 182 sites were ex-

2http://www.wikiindex.org/
3http://www.wikia.com/Wikia
4http://www.robotstxt.org/orig.html
5This is an apparent contradiction, because our list of wikis originally came from search engines.

This would mean that major search engines are violating this protocol, or that the wikis can be
accessed from an alternate URL that falls outside of the restrictions.



cluded due to such inconsistencies, or because a password was required to access one

or more wiki pages, preventing accurate statistics from being compiled. In addition,

we manually removed 3 sites because they contained illegal or pornographic con-

tent, or because they were duplicates (which happens when multiple virtual hosts

are backed by the same wiki.) In the end, 1183 wikis were available for analysis.

4.2 The study population

We estimated the sizes of the 1183 available wikis by examining the lists of

main namespace articles. (The actual number of articles in the wiki is usually lower

than this estimate, due to redirection pages that contain no content themselves,

among other anomalies.)

The size estimates are depicted in Figure 4.1. Note that the sizes of wikis

with more than 300 pages are distributed with a discrete power law distribution

(p = .284, α = 1.77, xmin = 300). This is consistent with the finding by Roth [29]

that the sizes of wikis tracked on S23 have a power law distribution.

The number of wikis with less than 300 pages is smaller than what the power

law distribution would predict, possibly because the search engines we used were

more likely to return larger wikis than smaller ones.

4.3 Sampling a subset of wikis

Although we could have downloaded all 1183 wikis in our study population,

this would have been excessive for this research because of the large amount of data

to be collected (the 1183 wikis collectively contained over 6.2 million articles). For

this reason, we selected a random sample of the wikis in our study population to

build the corpus.6 We first excluded wikis not falling within a desirable size range,

6Despite the small number of wikis analyzed, we still downloaded more than 820,000 HTML
pages and the corpus consumes 33 GB on disk.
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Figure 4.1: Sizes of wikis in our study population, depicted as a CDF (Cumulative
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as it is somewhat more intuitive for visualizing the distribution of the population.
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only choosing among wikis with 50 or more pages (because very small datasets

cannot be meaningfully analyzed) and fewer than 32000 pages. (In the case of wikis

with more than 32000 pages, manually inspecting them revealed that they were large

because they were generated by robots which converted large amounts of database

data to a wiki format, instead of being organically created by a user base.)

We randomly selected 181 of the remaining wikis for our analysis. The pro-

cessing of 30 wikis failed because persistent errors were experienced while crawling

(see Section 3.4.2), leaving 151 wikis for analysis.

4.4 Choosing wikis to study

When studying a large population of wikis, it is important to determine if the

wikis are being used in the way that wikis are intended to be used (for collabo-

rative content development) or if many of them are being used as simple content-

management systems that discourage editing by ordinary users. This situation was

previously seen when excluding wikis with more than 32000 pages from the study

sample, and we propose a metric to determine if other wikis are being used in the

same way. For each wiki, we divided the number of articles by the number of active

users and plotted the results in Figure 4.2. (Active users are users that edited the

wiki at least once. We exclude inactive user accounts because they could have been

automatically generated.)



This measure was distributed along a continuum of 0.4-54.0 articles per active

user, with four outliers at 64, 128.3, 1100.0, and 1507.0 articles per active user. In-

specting the outliers shows that the third and fourth outlier wikis were automatically

generated from a database while the first and second outlier wikis are knowledge

bases that users cannot directly edit. Spot checks of other wikis (including the

data points closest to the outliers) do not reveal any similar cases (One wiki with

52.3 articles per user was partially generated but had later attracted an active user

base.) Therefore, we conclude that measuring the number of articles per active user

is an effective way of detecting artificially generated wikis, and that the wikis in our

sample are largely being authored collaboratively.

Chapter 5

An analysis of the collected data

After developing the WikiCrawler and generating a wiki dataset, we performed

a preliminary analysis of the dataset, in order to explore some of its properties

and demonstrate how more targeted experiments could be performed on the data.

To facilitate this analysis, we wrote a toolkit in the R language to import the

WikiCrawler data and compute some statistics (such as the Gini coefficient) on each

of the wikis in the dataset. In conjunction with the probability distribution fitting

framework described in Section 2, a complete wiki data analysis can be performed

without leaving the R environment.

The analysis in Sections 5.1 to 5.5 was previously published by us. [34]

5.1 Summary statistics of the wiki corpus

It is useful to visualize the number of authors, users, and words in our sample

of wikis, in order to observe the relationships between these basic measures. To do
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this, we used the WikiCrawler to count the articles, registered users, and words in

each wiki chosen for analysis. Figure 5.1 depicts the number of articles and users in

each analyzed wiki, along with the average article sizes. (This final article count is

not subject to the inaccuracies in the estimate mentioned previously.) Performing a

Spearman’s rank correlation test on the two depicted relationships shows a moderate

correlation between user and article counts. (p = 6.93 · 10−10, ρ = .474), while the

same test showed the number of users and the average article length to be slightly

correlated (p = .028, ρ = .178). These results indicate that having a large user

base is associated with a large number of articles appearing in a wiki, with a less

clear association between the number of users and the lengths of existing articles.

Studying if new users tend to create new articles over adding content to existing

ones is a topic for further research.

5.2 Concentration of work across wiki users

Past wiki researchers have studied the concentration of work in Wikipedia

(the degree that a small number of users is responsible for a large proportion of the

content.) In one such study, Kittur et al. [12] examined the claim that Wikipedia

reflects “the wisdom of crowds”, and concluded that the most active, “elite” users are

continually declining in influence. Other quantitative questions about wikis, such as

the hypothesis that interest in Wikipedia is plateauing and the long-term viability of

the project is threatened [22], could also benefit from measuring the concentration

of work (because measuring how interest is distributed could add more insight than

simply measuring the quantity of interest observed.) For this reason, we revisit these

measurements of concentration of work, and apply them to a larger sample of wikis

than Wikipedia alone.
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Figure 5.1: Numbers of articles and average article length of wikis compared with the
number of users. Each dot represents one wiki.



5.3 Gini coefficients

Originally developed to measure economic inequality, wiki researchers have

used the Gini coefficient to determine the degree that few users make a large pro-

portion of the contributions to Wikipedia. The Gini coefficient is a unitless quantity

that measures how fairly a variable (in our case, wiki edits) is distributed across a

population (in our case, users or articles), with 0 signifying perfect equality and

1 signifying the largest possible inequality (which would mean that all edits are

concentrated in a single user or article) [9].

To compute the Gini coefficient on a discrete dataset, we use the formula

presented in [9], which is a revision of the traditional formula that reduces the bias

for small datasets:

n
∑

i,j ‖yi − yj‖
2 (n− 1) n2ȳ

where y is the sequence of values and n is its length. (Wikipedia research such as

[25] did not include the n
n−1

correction factor when calculating the Gini coefficient,

but its effect is infinitesimal in large datasets such as Wikipedia.)

Ortega et al. [23], noted that 90% of the revisions were made by 10% of the

users of the English Wikipedia, resulting in a high Gini coefficient of .9360. Ortega

indicates that this high degree of inequality persists on a monthly basis [25], casting

doubt on the theory that wiki content represents “the wisdom of crowds”

To exclude wikis that were too small for a meaningful inequality measurement,

we measured inequality in the subset of sampled wikis that had more than 50 active

users and 300 pages (totaling 50 wikis). In Table 5.1, we present the inequality in

the contribution levels of all users as measured by the Gini coefficients. A large

amount of inequality was found, with most wikis having a Gini coefficient greater

than .96, which is slightly higher than the Gini coefficients found for Wikipedia

editions in [25] (although comparing Gini coefficients of very large and very small



(.57, 0.88] 3

(0.88, 0.92] 6

(0.92, 0.96] 11

(0.96, 0.98] 15

(0.98, 1] 15

Table 5.1: Gini coefficients of sampled wikis, measured across all users (0.0 would indicate
that all users contributed equally while 1.0 would represent that a single user contributed
everything.)

(.36, 0.80] 7

(0.80, 0.84] 6

(0.84, 0.88] 13

(0.88, 0.92] 16

(0.92, 0.98] 8

Table 5.2: Gini coefficients of sampled wikis, measured across active users

wikis can be misleading, as noted in [9]).

In Table 5.2, we calculate the Gini coefficients of wikis if inactive users (who

never edited the wiki) are excluded. (The presence of these users may skew the

results because wikis can share a user database with other information systems,

resulting in the appearance of many inactive users.) When excluding users who

never edited, the inequality is smaller but still notable, with a median above .87.

5.4 Power law behavior and user editing activity

The Gini coefficients of the wikis we studied showed that wiki users contribute

content to wikis at highly unequal levels. While the Gini coefficient is good for

measuring this inequality, it cannot further characterize this inequality or provide

insight into why it exists. By expressing user contribution levels with a curve and

fitting a probability distribution to this curve, more insight is provided into the data,



and it becomes possible to model the behavior of wiki users by considering models

that generate data distributed according to the fitted probability distribution.

We first fit power law tails (as described in Section 2.8.1) to the distributions

of user activity levels. We chose the Pareto distribution because it is often asso-

ciated with high inequality, and because previous research in wikis has found that

this distribution fits several quantities in Wikipedia, such as the number of edits

to individual articles and the number of unique contributers to articles. Such dis-

tributions have also been found in a number of phenomena on the world wide web

[17].

We performed power-law fits for the user contribution distributions of the same

50 wikis analyzed in Section 5.3. To prevent the discovery of trivial fits where a

power-law tail encompasses only the last few data points, we restricted (see Sec-

tion 2.6.1) the possible values of xmin so the power law distribution describes at

least half of the unique values (or “counts”) that were observed in the empirical

distribution. All fits were performed at α = .10 (done by [32] in a similar analysis)

and α2 = .01, as described in Section 2.4.5.

We found that the user contribution distributions in 39 out of the 50 wikis

had tails which were consistent with power law distributions. Figure 5.2 presents

several examples of wikis that do and do not have clear power law distributions for

user contributions. Note that in the lower-right wiki, the number of users making

more than 24 edits is well-predicted by the power law fit, while the number of users

making fewer edits would be overestimated by the fitted distribution. These partial

fits have also been seen in [39], [6], and other Wikipedia studies that observed power

law distributions in various phenomena.

To explore these cases where the empirical distribution deviates from power law

behavior as the number of contributions shrinks, we compared the number of users

represented by the unfitted portion of the empirical distributions with the number
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Figure 5.2: Sample cumulative distributions of user contribution counts. The top two
graphs are examples of wikis where user contributions are not consistent with power law
distributions, while the bottom two graphs are examples of wikis where they are. Note
that the wiki in the lower-right quadrant had a partial fit for the power law tail. The
graphs are to be interpreted as in Figure 4.1



of users that would have been expected in that portion if the Pareto distribution

had held. 34 wikis had less probability mass than expected in this portion of the

empirical distribution, while 6 wikis had more.

This indicates that if the studied wikis had more “occasional editors”, then the

fitted power-law tail would better describe the observed distribution. This could be

a simple consequence of the Pareto being an inappropriate fit for the distribution,

with the underlying distribution of edits conforming to another power-law family

distribution with more flexibility in the curve’s head. However, we also consider the

possibility that the empirical data is deviating from the power law due to factors

which discourage occasional contributions, which depress the count of users who

made few edits. One such factor is that many wikis allow users to edit wiki pages

without a username, which provides a convenience for the occasional contributer, but

may be less attractive to frequent contributers who want their work to be recognized

and attributed. Because it is difficult to associate anonymous contributions with an

individual, the number of occasional editors may be undercounted, because many

such users may have edited the wiki anonymously and therefore cannot be tracked.

Other wikis that disallow anonymous contributions may introduce a barrier to entry

that has the effect of deterring occasional contributions altogether, depressing the

count of occasional contributers in a similar manner.

5.5 Relationship between Gini coefficients and power-law tails

We have seen that users make highly unequal amounts of wiki contributions as

measured by the Gini coefficient, and that most of the user contribution distributions

can be fitted with power-law tails. Next, we explore the relationship between the

parameters of these power-law tails and the measured Gini coefficients, in order to

determine the extent that these are two ways of measuring the same phenomenon.

For each wiki, we calculated the Gini coefficient of a synthetic power law tail
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Figure 5.3: Changes in Gini coefficient. Closed circles represent the actual Gini coeffi-
cient of a wiki’s user contribution levels, while open circles represent the Gini coefficient
that would have been predicted from the parameters of the fitted power law distribution.

with the same distribution parameters as the fitted distribution for that wiki and

the same number of users as in that wiki. We found that the Gini coefficients of the

synthetic tails were very close to those of the actual data, with a median absolute

difference of only .017. As seen in Figure 5.3, a few of the Gini coefficients rose or

dropped sharply when switching to the synthetic dataset, but most changed only

slightly, and all stayed within a general neighborhood (.13) of the original value.

Ortega [25] noted that in Wikipedia, the Gini coefficient of work performed

within successive time intervals slowly rises and eventually stabilizes. This was

cited as evidence that the contribution levels of Wikipedia users are not equalizing

over time, as claimed in [12]. We have demonstrated that the Gini coefficient is

mostly determined by the number of users being measured and the parameters of

the power law distribution that describes their concentration of work. This suggests

that monitoring the changing parameters of the user contribution distribution may

offer provide additional insight into the evolution of inequality in Wikipedia, insight



that cannot be gained by only monitoring the Gini coefficients.

5.6 Other distributions in wiki data

In the Section 5.4, we demonstrated that 39 out of the 50 wikis that we studied

had user contribution distributions with statistically significant power law tails.

Next, we sought to extend this finding by attempting to fit a variety of probability

distribution families to these same user contribution distributions. We also extended

the scope of this investigation by fitting the distributions of edits per article (having

previously fit distributions of edits per user).

Fitting a greater variety of probability distribution families to this data is

useful because finding a pattern of such fits can motivate the development of a

generative model of user activity that produces the observed distributions. To the

extent that many of the studied wikis fit the same distribution family, such a model

could be generalizable, providing researchers with another tool to explain how users

behave when using wikis. With this aim, previous research has attempted to model

the process in which Wikipedia articles accumulate edits. Wilkinson and Huberman

[46] discovered that the number of edits per article within a time slice is log-normally

distributed, leading to a proposed stochastic process that produces the empirical

distribution of concentration of work across Wikipedia articles. Outside of wiki

research, power-law fits led to the proposal of models that explained the appearance

of numerous phenomena on the World Wide Web [17]. For example, one common

model that explains how power law distributions develop in graphs is the preferential

attachment model, which specifies that new nodes tend to attach to nodes with many

edges [19].

As mentioned in Section 2.6.1, our power-law tail fits only required that a

subset of the data x ≥ xmin conforms to the power-law distribution. Because of

this, we attempted to fit other distributions to our user contributions data, despite



the fact that 39 out of 50 distributions were already found to have power law tails.

Finding a distribution that describes all of the observed data (and not just a subset

of it) makes the development of a model more practical. For example, Mitzenmacher

[19] argued that the distribution of file sizes fits a double-Pareto distribution, rather

than a lognormal or Pareto distribution as previously claimed, and this finding led

to a new generative model for the growth of computer files. [20]

We used our distribution fitting framework to fit the user and article edit

distributions in all 50 wikis studied in Section 5.3 to every distribution described

in Section 2.8. The framework’s goodness-of-fit test then rejected some of the fits

which were statistically insignificant at α = .10 and α2 = .01, only leaving us with

fits that were worth of further study. So the fitting algorithm would return after a

reasonable amount of time, we set a maximum of 360 iterations, even if the binomial

test’s p-value was still above α2 at that point. 60 out of the 1100 goodness-of-fit

tests terminated early for this reason. As in Section 5.4, we also restricted partial

distribution fits so the fitted distribution describes at least half of the unique values

(or “counts”) that were observed in the empirical distribution.

The results of this fitting process are depicted in Table 5.3 and in Figures

5.4 and 5.5, which present the number of wikis where the indicated probability

distribution could plausibly be fitted. In the event that all of the wikis conformed

to a hypothesized distribution perfectly, we would expect that 45 out of 50 of the

wiki distributions would be plausible, because the the K-S test will reject perfect

distributions at a rate α. Because it is unlikely that every wiki in our sample has

identically and perfectly distributed data, the number of plausible distribution fits

for a distribution should be less than 45.

Our results show that simple power law tails are the most broadly plausible

distributions for both edits per user and edits per article. The discrete power law

performed better for the edits per user (coming close to the theoretical maximum



Distribution Edits per user Edits per article

Levy 27 15

Double Pareto Lognormal 12 17

Pareto Lognormal 6 8

Log Series 1 1

3-parameter Burr 17 11

2-parameter Burr 11 1

Pareto 5 32

Zeta 39 34

Lognormal 3 12

Normal 0 0

Cauchy 1 6

Table 5.3: Number of wikis where the indicated distribution was plausible given the
indicated dataset. A total of 50 wikis were processed.

of 45 plausible distribution fits), while the both the discrete and continuous power

laws performed better for the edits per article. (The edits per article distribution

contained larger values than the edits per user distribution, making the use of the

continuous approximation to the discrete power law distribution more appropriate.)

We also found that, when considering the distribution of edits per user, the

Levy distribution is a plausible distribution for the power-law tails that we discov-

ered, as opposed to the simpler Pareto or Zeta distributions. In this distribution, 27

of the tails were consistent with the Levy distribution. In many cases (see Table 5.4),

the tail of the distribution was consistent with both the Levy and the Pareto/Zeta

distribution. This is not a contradiction because the K-S test only confirms that a

fit is plausible for the data – it cannot confirm that the data was actually drawn

from the given distribution. Because Levy distributions have power-law tails, it is

possible that data could be described by both Zeta and Levy tails, with the Levy

tail encompassing more data points. Our data showed a slight tendency toward
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Figure 5.4: Number of wikis where the indicated distribution was plausible for the edits
per user. A total of 50 wikis were processed.
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Figure 5.5: Number of wikis where the indicated distribution was plausible for the edits
per page. A total of 50 wikis were processed.
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Figure 5.6: One wiki’s distribution of edits per user, as fit to the double Pareto lognormal
distribution. This data did not fit the Pareto or Zeta distribution, but the double Pareto
lognormal distribution was a satisfactory fit.



Neither Zeta nor Levy 9

Zeta but not Levy 14

Levy but not Zeta 2

Zeta and Levy 25

Table 5.4: Number of wikis where plausible Zeta or Levy tails were found in the distri-
bution of edits per user. A total of 50 wikis were processed.

this – among datasets that could be described with both Levy and Pareto tails, the

Levy tail, on average, encompassed more data points than the Zeta tail did, with a

median difference of 23 and a mean difference of 15.08. To better determine if the

Levy or Zeta distribution is a better fit for our data, we would ultimately have to

perform a modified likelihood ratio test, as described in [32], which is outside the

scope of this work.

Finally, the three-parameter Burr distribution (in the case of edits per user)

and the Double Pareto Lognormal distribution (in the case of edits per article) fit a

sizable number of datasets, with 17 plausible fits each. Because both of these distri-

butions exhibit power-law behavior in their tails, this plausibility may indicate that

the Burr or Double Pareto Lognormal distributions are similar to a (still unknown)

distribution that fits most of the data. However, we cannot rule out the possibil-

ity that the plausible fits were discovered due to the K-S test being insufficiently

powerful for these distribution families.

Chapter 6

Conclusions and Future work

A major contribution of this research was to develop tools and methodology

that wiki researchers can use to draw further conclusions on large numbers of wikis,

as well as a corpus of wikis that facilitates easy hypothesis testing in cases where

our publicly released data is sufficient. The WikiCrawler and the probability distri-
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bution testing framework are general enough that they could be used for a variety

of quantitative wiki research. The limited research questions that we considered in

our analysis should not be construed as everything that can be done with these tools

and data.

The WikiCrawler allows researchers to study the characteristics of many wikis

over time, allowing for research that predicts the future growth of wikis based on

current characteristics. In [29], Roth et al tracked a few basic statistics on many

wikis over a time period, concluding that wikis with small, active user bases grow

more quickly. Because the WikiCrawler allows researchers to collect detailed page-

level and summary statistics, the same types of analysis could be performed with

far more sophistication. For example, researchers could use statistics such as Gini

coefficients to predict future wiki popularity, and the popularity of individual pages

could be predicted in a similar manner. This could lead to wiki assessment tools,

allowing corporate wiki practitioners to measure the health of a wiki, based on the

ultimate outcomes of wikis with similar statistical profiles.

Our tools could also facilitate future discoveries that define additional met-

rics, fit additional probability distributions to them, and use the results to develop

models of user behavior. In cases where it is only necessary to know the probability

distributions of the dataset’s tails, additional tests could be performed to determine

if Pareto or Levy distributions are more plausible (as discussed in Section 5.6.) If a

distribution that fits the entire dataset (and not just the tail) is required, we found

that the three-parameter Burr distribution or the Double Pareto Lognormal distri-

bution may be suitable starting points for finding a distribution; however, better

distribution fits may be found by more carefully choosing the quantity being dis-

tributed. For example, instead of simply fitting a distribution to the number of edits

per wiki article, Wilkinson and Huberman [46] fitted a distribution to the number

of Wikipedia edits to an article within a time slice. This methodology was more



successful, resulting in the discovery that this quantity was log-normally distributed.

Similarly, fitting probability distributions to model the behavior of users on many

wikis may be more successful when performing distribution fits on time-slices of

data in this manner.

Finally, the WikiCrawler and the corpus of wiki data provide an easy way to

revisit past Wikipedia research and determine if its conclusions can be extended

to wikis in general. This research explored the relative importance of occasional

and frequent contributers in wikis, revisiting work such as [23] and [25] which was

limited to Wikipedia. Other Wikipedia research [14] [38] examined the behavior of

Wikipedia users when they disagreed and engaged in “edit wars” over a particular

article – a concept which could be generalized to other wikis. More Wikipedia

research that could easily be generalized examines how authors self-organize into

networks or cliques based on shared interests [11] [3]. In short, some of the previous

research only focused on Wikipedia because of the convenient availability of data

and tools to analyze it, and our data and tools allow for the same research to be

applied to other wikis. (Note that some Wikipedia research involves the Wikipedia

category taxonomy [10], the Wikipedia governance structure, or assessment of the

quality of articles in Wikipedia [46]. Such research could not be generalized without

some modification.)

Ultimately, this research should only be seen as a first step toward a greater

understanding of wikis. Through the basic methodology that we introduce in this

paper – analyzing existing wikis to provide information that will assist wiki practi-

tioners in the future – we hope that future research findings will allow for wiki best

practices to be empirically supported in a way not possible until now.

The software and data described in this thesis are downloadable from our web

site. At the time of writing this thesis, the URL was http://seam.cs.umd.edu/

stuckman.
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