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Nonlinear Instabilities in TCP-RED
Priya Ranjan and Eyad H. Abed

Abstract—This work introduces a discrete time model for
a simplified TCP network with RED control. It is argued
that by sampling the state space at certain instants, the dy-
namics of the system can be described explicitly as a discrete
time feedback control system. This system is used to analyze
the operating point of TCP-RED and its stability with re-
spect to various controller and system parameters. With the
help of bifurcation diagrams, it is numerically shown that
non-trivial (not due to the discontinuity in the system or the
control law) instabilities in the system are possible due to
the presence of a strong nonlinearity in the characteristics
of TCP throughput of a sender as a function of drop prob-
ability at the gateway. Some of the bifurcations observed
in the system are the period-doubling sequence and border
collisions leading to a change in the system periodicity and
chaos. Analytical techniques are provided to help in the un-
derstanding of this kind of anomalous behavior. An explicit
stability condition in terms of different parameters is given.

Keywords—Congestion, computer networks, chaos, bifur-
cation, control

I. INTRODUCTION

Computer networks are highly complicated systems,
both in their temporal and spatial behavior [1]. Although
they have traditionally been modeled and analyzed using
stochastic methods, there have recently been several pa-
pers that use deterministic nonlinear modeling and analy-
sis (e.g., [6], [7], [8], [16], [14], [5]).

In this paper, we study a modified deterministic dynam-
ical model of a simple computer network running TCP at
the sender end and implementing RED at the router end.
The basic model that we consider was proposed recently
by Firoiu and Borden [5]. We modify their model with a
simpler TCP throughput function [3], [4] to facilitate anal-
ysis. The calculations we give here show that the model
exhibits a rich variety of bifurcation behavior leading to
chaotic behavior of the computer network. The bifurca-
tions occur as control parameters are slowly varied, mov-
ing the dynamics from a stable fixed point to oscillatory
behavior and finally to a chaotic state.

A glimpse at the history of network congestion con-
trol reveals significant attempts to control congestion in
the general network and telephony literature. Conges-
tion and synchronization in tandem telephone queues have
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been studied in [15] using a piecewise affine model. A
similar model has been applied to the dynamics of choke
packets in a LAN to explain synchronization and sustained
oscillations [16]. These models indeed explain qualitative
changes in the operation of a network or that of a network
component as parameters cross critical values. In contrast
to the deterministic setting of [15] and [16], multi-stability
or emergence of pseudo-stable states has been reported in
a stochastic setting in [14]. The paper discusses the qual-
itative changes in the stochastic behavior of the network
due to parameter change, which may lead to degradation
in network performance.

There have been several attempts to deal with conges-
tion in TCP which is the most popular network mechanism
for data transfer. The most important scheme to avoid im-
pending congestion was published in [2] and is known as
random early drop, or RED. The basic idea of RED is to
sense impending congestion before it happens and try to
give feedback to the sender by dropping its packets. The
dropping probability is the control administered by the
gateways once they detect queue build-up beyond a cer-
tain threshold. This scheme involves three parameters: 1)
pmax, 2) qmax, and 3)qmin that need to be selected. (The
meanings of these parameters will be identified in the next
section.) Most of the rules for setting these parameters are
empirical, and come from networking experience. These
rules have been evolving as the effects of controller pa-
rameters is not very clearly understood. There are papers
discouraging implementation of RED (e.g., [9]), arguing
that there is insufficient consensus on how to select con-
troller parameter values, and that RED does not provide a
drastic improvement in performance.

Initially, there was very little in the way of mathemat-
ical modeling of TCP-RED. However, with the recent ef-
forts toward modeling TCP throughput for a transmission
line with a packet drop probability [5], [6], [7], [8], [4],
several papers have discussed TCP-RED in the framework
of feedback control systems. Most of the models used are
continuous-time and the analysis uses basic control the-
oretic results. The biggest problem with the continuous-
time models is their inability to reflect delay, which is
prominent in networks and can be very significant for large
trunks [7], [8]. Continuous-time models with variable
(state dependent) delay are hard to analyze [8]. The analy-
sis reported on these models deals mostly with the stability
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of fixed points and limit cycles under different parameter
settings. For the first time, chaotic behavior of TCP has
been reported in [13]. The evidence for this irregularity is
mostly explored by simulations. Some theoretical work on
flow synchronization in TCP has been reported in [4], [17],
but one of the very important issues which currently isn’t
well understood is how does a smoothly operating network
transition into chaos. To borrow dynamical systems termi-
nology, the route to chaos starting from a stable fixed point
is not well-studied.

In this work, a discrete-time map will be used to model
the TCP-RED interaction. A dynamical systems approach
will be used to explain the loss of stability, bifurcation be-
havior, and routes to chaos in TCP-RED networks. We will
use bifurcation-theoretic ideas to explain nontrivial peri-
odic behavior of the system. The appearance of bifurca-
tion and chaos should not be surprising, considering that
the system response is nonlinear especially during heavy
load conditions. We will show the performance of the sys-
tem as a function of various control and system parameters
in general and try to explain these irregular behaviors with
the help of bifurcation diagrams.

Our work begins by realizing that the model proposed
in [5] can be viewed as a first-order (rather than third-
order) discrete nonlinear model. Our replacement of the
TCP throughput function of [5] with a simpler version
makes the analysis feasible. However, symbolic calcula-
tions could be used to allow treatment of the more complex
throughput function of [5]. The advantage of the current
work is that the calculations are simple enough that the
results are easily understood.

We borrow the model proposed by Firiou et al. [5] and
use the well known formula for TCP throughput proposed
by many others including [3], [4]. The motivation behind
not using Firiou’s forumla for TCP throughput is its com-
plexity. Complex operations like inverse of a function in
different parameters, which are needed to connect the TCP
to the control mechanism RED, demand simplicity in the
TCP throughput formulation. This seems to be the reason
why Firiou et al. postponed the study of their proposed
map [5]. Although this TCP-RED formulation may not
be the exact representation of the complicated mechanism,
it does give a qualitative handle on its dynamics and en-
hances our understanding of chaos and other instabilities.
We hope that this understanding will lead to monitor the
network congestion better and help us in formulating ro-
bust but simplified control mechanisms.

This paper is organized as follows. In Section 2, we de-
scribe the TCP-RED mechanism in control system frame-
work. Section 3 contains the discrete map of TCP-RED
mechanism. Section 4 deals with the stability of this map

which is the core of the paper. Section 5 tries to explain the
different nonlinear phenomena we have observed in our
models and try to make a connection with chaotic scenario.
Finally, in section 6 we discuss the results in networking
context.

II. TCP-RED: FEEDBACK SYSTEM MODELING

A computer network implementing TCP-RED is essen-
tially a feedback loop where senders adjust their sending
rate based on the feedback they receive from their near-
est routers in the form of dropped packets. Routers on
the other hand implement a control policy which can be
either drop tail or RED [2]. There have been different ap-
proaches to model the dynamics of TCP-RED and various
control schemes have been proposed [5], [6], [7], [8], [4]
not only to control the system but to also enhance its dy-
namic performance. We closely follow the approach taken
in [5] with a modified TCP throughput formula.
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Fig. 1. Simplified Network Diagram

Each flow at a router sends packets with raters,i. The
sending rates of alln flows combine at the buffer of link
l and generate a queue of sizeq which is limited by its
buffer sizeB. The controller at the router drops packets
with probability p which is a function of average queue
sizeq. For ith flow let the forwarding rate at the router be
rt,i which is the same asrs,i sans dropped packets. When a
sender notices that its packets are being dropped, it adjusts
its sending rate based on the drop probabilityp it observes.

This makes a control system with sender’s rate as con-
trol variable with the controller sitting at the router which
issues the feedback signal in the form of a drop probability.
The aim of this control system is to keep the cumulative
throughput below or equal to the link’s capacityc:

Σn
j=1rt,j ≤ c

Let’s assume for simplicity that TCP flows have a long
duration and that their numbern does not change, then
the throughput of each TCP flow follows the steady state
model derived in [3], [4].
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shown

rt,i = T (p, ,Ri)

T (p,R) =
M

R

k√
p

(1)

where

T = Throughput of a TCP flow (in bits/sec)

M = Maximum Segment Size or Packet Size

R = Round Trip Time

k = constant which varies between 1 and
√

8/3 [3]

p = probability of packet loss

To simplify matters even further let’s assume that all flows
are uniform or they all have same round trip timeR, same
maximum segment or packet sizeM and maximum con-
gestion window size advertised by TCP’s receiverWmax

is large enough to not affectT (p,R). This implies

rt,i(p,R) = rt,j(p,R), 1 ≤ i, j ≤ n and hence

≤ c

n

So this assumption enables us to reduce then-flow sys-
tem to a single flow system with feedback although it is
important to keep in mind that feedback is based on the
sending rate of all the flows since the router has no way to
differentiate between them, at least in this set up.

To define this control system mathematically, we model
the queue as a function of control variableq = G(p),
which acts like a plant in control system literature. To an-
alyze this control system we also need the control func-
tion p = H(q) implemented at the gateways. This control
functionH is given by the policy implemented at the drop
module, such as Drop-Tail or RED [2]. Now following the
procedure suggested in [5] we can define the plant function
G(p) as follows:

G(p) =

{
max(B, c

M (T−1
R (p, c

n)−R0)) : p ≤ p0

0 : otherwise

(2)
Where

Ro = propagation and transmission time and

po = T−1
p (c/n,R0)

T−1
R (c/n,R0) denotes the inverse ofT (p,R) in R,

T−1
p (c/n,R0) denotes the inverse ofT (p,R) in p andp0 is

maximum probability for which the system is fully utilized
i.e. for p ≥ p0 senders will have their rates too small to
keep the link fully utilized. ForT (p,R) defined by eq. 1.

p0 =

(
Mk

R0
c
n

)2

(3)

G(p) =

{
max(B, c

M ( Mk
c
n

√
p −R0) , if p ≤ p0

0 , otherwise
(4)

RED control law can be expressed as follows:

p = H(qe)

=




0 , 0 ≤ qe < qmin
qe−qmin

qmax−qmin
pmax , qmin ≤ qe < qmax

1 , qmax ≤ qe ≤ B

(5)

whereqe is the exponential weighted moving average of
queue size,qmin, qmax, pmax are configurable RED pa-
rameters, andB is buffer size.

III. D ISCRETE MODEL FORTCP-RED

It is argued in [5] that TCP adjusts its sending rate de-
pending on whether it has sensed that packets are dis-
carded. Hence, this process can be modeled as a strobo-
scopic map where the instant of observation is oneRTT
or return trip time. This technique has been utilized before
for different clocked systems in power electronics for mod-
eling the dynamics of power converters. Following simi-
lar arguments it seems reasonable to model TCP-RED dy-
namics as a discrete map. Although one would prefer that
the sampling interval be regular, there are models where
the dynamics is sampled at irregular intervals and the re-
sulting maps are known as “impact maps” [11].

Let pk be the drop probability attk. At time tk+1 =
tk + RTT the sender observes drop ratepk and in an av-
erage sense, adjust its sending rate. This in turn forces the
buffer to its new stateqk+1 = G(pk) following the queue
law in eq. 4. The RED module now computes a new esti-
mate of queue sizeqe,k+1 = A(qe,k, qk+1), following the
exponential weighted moving average:
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A(qe,k, qk+1) = (1− w)qe,k + wqk+1 (6)

wherew is the weight used for averaging. After comput-
ing qe,k+1, the RED module adjusts it dropping rate to
pk+1 = H(qe,k+1) given by its “feedback control law”
in eq. 5. This completes the description of a discrete time
dynamical system modeled as follows:

qk+1 = G(pk)
qe,k+1 = A(qe,k, qk+1)
pk+1 = H(qe,k+1) (7)

From eq. 7 one can derive a simple one dimensional re-
currence equation since mapG(.) and mapH(.) has no
dynamics. The only dynamics that comes into the picture
is in mapA(., .). After substitution one can easily derive
the following equation for exponential weighted moving
average for queue length at timetk+1:

qe,k+1 = (1− w)qe,k + wG(H(qe,k)) (8)

Below, we illustrate some interesting dynamical behavior
of eq. 8. This equation is rather simple in most of its do-
main of definition.

We know thatG(.) is identically0, ∀ p ≥ p0. So we
can find corresponding valueb1 of qe,k such that for any
qe,k ≥ b1, G(.) is identically0 if we assume a monotone
feedback law.

b1 =

{
p0(qmax−qmin)

pmax
+ qmin , if pmax ≥ p0

qmax , otherwise
(9)

This gives an explicit formula for map in eq. 8∀ qe,k ≥ b1:

qe,k+1 = (1− w)qe,k

Now consider the other boundary valueb2 of qe,k such
that ∀ qe,k ≤ b2 we haveG(.) = B or buffer is always
full. This value can be computed from eq. 4 and eq. 5.b2

is given by:

b2 =

(
nk

B+
R0c

M

)2

pmax
(qmax − qmin) + qmin (10)

This gives an explicit formula for map in eq. 8∀ qe,k ≤
b2:

qe,k+1 = (1− w)qe,k + wB

It is clear that most of the interesting dynamics happens
for b2 ≤ qe,k ≤ b1. Map in eq. 8 can be written for this
region as follows:
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qe,k+1 = (1− w)qe,k + w(
nk√

pmax(qe,k−qmin)

(qmax−qmin)

− R0c

M
)

:= f(qe,k, ρ) (11)

whereρ summarizes the parameters in the system.
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We remark that solving eq. 11 leads to a third degree
polynomial in fixed pointq∗e which interestingly does not
depend onw as should be expected since, both the “queue
law” and the “feedback control law” are not functions of
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w. The polynomial is given below.

(q∗e − qmin)(q∗e +
R0c

M
)2 =

(nk)2

pmax
(qmax − qmin) (12)

IV. STABILITY

Stability of this fixed pointq∗e can be assessed by com-
puting its eigenvalue:

df(qe,k, ρ)
dqe,k

= 1− w − wnk

2(q∗e − qmin)
3
2

√
qmax − qmin

pmax

:= λ(ρ) (13)

Although λ(q∗e, ρ) is a function of the fixed pointq∗e it-
self, we know that the fixed point will always be bounded
from above byf(b2, ρ) and from below byf(b1, ρ). It is
also clear thatf(b2, ρ) > f(b1, ρ) since control mecha-
nism kicks in once the queue length at the router grows
beyondb2 decreasing the average queue length. In fact
f(qe,k, ρ) decreases monotonically in the intervalb2 to b1,
but the slope decreases in the magnitude. Hence an ap-
proximate stability condition for fixed point in terms of
parameters can be derived by taking the upper bound of
f(q∗e, ρ) which isf(b2, ρ) and thats whenf(qe,k, ρ) has its
eigenvalue negative and largest in magnitude. Hence, this
stability condition can be formulated as:

|λ(q∗e, ρ)| < 1, or by substitutingb2 by q∗e∣∣∣∣∣1− w − wnk

2(b2 − qmin)
3
2

√
qmax − qmin

pmax

∣∣∣∣∣ < 1 (14)

whereb2 is given by eq. 10. Please note that stability con-
dition given by eq. 14 involves the buffer sizeB despite
of the fact that fixed point of the map does not depend on
the the buffer size. The inclusion of buffer size makes the
result conservative but it can be argued that a conservative
design is good for the system’s convergence since it has
finite capacity and hence, even a marginally stable system
may not be acceptable in practise.

V. NUMERICAL RESULTS

The behavior of this map can be explored numerically
in parameter space to look for interesting dynamical phe-
nomena. As eigenvalue moves towards unit circle, fixed
point will become unstable and depending on the nature of
bifurcation there can be new fixed points or chaos. There is
also a possibility of fixed point colliding with either border
b1 or b2 which has its own rich world of bifurcations.

A whole range of different dynamical scenario is pre-
sented here. Lets first consider the effect of varyingqmin

on fixed point of the map with different values of expo-
nential averaging weightw. We analyze this effect with
the help of numerical bifurcation diagrams.

A. How to Read a Bifurcation Diagram

A bifurcation diagram shows the qualitative changes in
the nature or the number of solutions of a dynamical sys-
tem as a parameter varies. On the horizontal axis we plot
the different value of parameter (qmin or w in this case).
The vertical axis shows the corresponding value of fixed
points or periodic orbits, which is different queue build-
ups in this context. We have normalized the actual queue
buildup by dividing it with qmin for the easy of visual-
ization. Thats why the legend on the vertical axis reads
Norm. queueing at the router.The way to read a bifur-
cation diagram is fix a point on the horizontal axis and
draw a vertical line. The number of places the bifurcation
curve intersect that vertical line is the number of equilib-
rium points of the system. If there is only one point then it
is a stable fixed point for that parameter whereas the pres-
ence of more than one point indicates that system has a
stable periodic orbit. Since we have only plotted stable so-
lutions corresponding to the different value of parameters,
the intersection of vertical line and the bifurcation curve
only indicated the number of stable solutions. Disappear-
ance of a branch implies that, solution corresponding to
that branch became unstable and vice versa. All the bi-
furcation diagrams use three types of symbols. Red star,
green triangle and blue dot denote the normalized borders
b2, b1 and the system solution respectively.

B. Effect of Exponential Averaging Weightw

The following parameters are common to next three bi-
furcation plots [5].

qmax =100, qmin =50, c=1500kbps, k=
√

8/3
B=300 packets, R0 =0.1sec, M =0.5kb

n=20, w=bifurcation parameter

The first three bifurcation plots(Figs. 5,6,7) show the
effect of varying the exponential weightw with differ-
ent values ofpmax. For the small value ofw these plots
have a fixed point which looks like a straight line but after
some critical value ofw this straight line splits into two
and this map exhibits period-doubling bifurcation. This
is first indication of an oscillatory behavior appearing in
the system due to its inherent nonlinearity as opposed to
discontinuity in “queue or control law” which has been
proposed earlier. This period two oscillation starts batch-
ing load at the router as shown in the plots. Increasing
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w further shows that one of the branches collide, with the
upper border of the map showing a chaos type phenom-
ena. This is basically a bifurcation sequence expressed as
1 → 2 → chaos. We suspect this to be a case ofborder
collision bifurcation [12]. Border collision bifurcation is a
well understood phenomenon in piecewise linear systems
and has been shown responsible for chaos in different elec-
trical circuits and economic system models. A technical
proof for the border collision bifurcation will be reported
somewhere else.
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Fig. 5. Bifurcation diagram of average queue length w.r.t.w,
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Fig. 6. Bifurcation diagram of average queue length w.r.t.w,
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Fig. 7. Bifurcation diagram of average queue length w.r.t.w,
pmax = 1

We also plot the Lyapunov exponents for the bifurca-
tion scenario in fig. 5 wherepmax = 0.1. Fig. 8 shows that
in the beginning expoent is negative which corresponds to
the fixed point. It slowly increases to zero near period dou-
bling bifurcation and then goes negative again. Finally, it
jumps to a positive value when the border collides with the
periodic solution. Positive Lyapunov exponent conmfirms
the existence of chaos.
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Fig. 8. Lyapunov exponent computed for average queue length
w.r.t. w, pmax = 0.1

Lyapunov exponents for other two scenarios also exhibit
similar behavior.
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C. Effect of RED Control Parameterqmin

The following parameters are common to the next four
bifurcation plots [5].

pmax =0.3, qmax =100, c=1500kbps, k=
√

8/3
B=300 packets, R0 =0.1sec, M =0.5kb,

n=20, qmin =bifurcation parameter
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Fig. 9. Bifurcation diagram of average queue length w.r.t.qmin,
w = 2−5

1. w = 2−6
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Fig. 10. Bifurcation diagram of average queue length w.r.t.
qmin, w = 2−6

Similar phenomena are exhibited in these four scenar-
ios. Here also there is bifurcation sequence like1 → 2 →
chaos in figs. 9, 10 and 11 but scenario of fig. 12 shows
1 → 2 → 4 → chaos. It should be noted that2 → 4 is
not a smooth bifurcation like period doubling rather, it is a
border collision bifurcation.
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Fig. 11. Bifurcation diagram of average queue length w.r.t.
qmin,w = 2−7

3. w = 2−8
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Fig. 12. Bifurcation diagram of average queue length w.r.t.
qmin,w = 2−8

Finally, we plot the Lyapunov exponent corresponding
to the the bifurcation scenario in fig. 10. Lyapunov expo-
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nent shown in fig. 13 also stays negative in the beginning
like the other one plotted in fig. 8. In a similar fashion it
increases to zero when the system goes through a period
doubling bifurcation and again decreases when the system
has a stable period two trajectory. Finally, it jumps to a
positive value after border coliision bifurcation and stays
there.
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Fig. 13. Lyapunov exponent computed for average queue length
w.r.t. qmin, w = 2−6

VI. D ISCUSSION

We have demonstrated in this paper that instability in
TCP-RED can be induced by the inherent nonlinear be-
havior of the network, rather than by discontinuity in
the “queue or the control law” as has been believed so
far citeaqm1. The subharmonic load batching very clearly
indicates that the system can oscillate if the parameters are
not properly tuned. We have also given a conservative cri-
terion for stable parameter settings based on linearized sta-
bility analysis.

Although the simulations have indicated a period-two
oscillation with amplitude within five percent of the nom-
inal amplitude, the appearance of period doubling behav-
ior is of significance. The importance of period doubling
bifurcation is not in predicting the amplitude of the os-
cillation, but rather in explaining the routes to larger and
more pronounced oscillations including chaos. Also, the
results become still more significant when we think of the
network as a cascade involving multiple routers. If one
router starts oscillating, it may transfer this instability on
the routers up or downstream depending on the major traf-
fic direction. Also depending on traffic conditions this in-
stability may propagate throughout the network with dif-
ferent time scales and a systemic oscillation can develop.
This needs further study. In addition, although only anal-

ysis has been studied here, it would be interesting to con-
sider implications of the approach for control and for pro-
tocol design.
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