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Cavity quantum electrodynamics (QED) allows the study of light-matter in-

teractions at the most basic level, through precise identification of the coherent and

incoherent (dissipative) parts of the system evolution. We present measurements of

light from a cavity QED system consisting of a high-finesse optical resonator coupled

to a beam of cold Rb atoms. The novelty of the design lies in the interplay of two

degenerate and orthogonal polarization modes. One mode (driven) behaves as the

canonical cavity mode of the Jaynes-Cummings Hamiltonian, coherently exciting

the atoms with a modest coupling strength; the other mode (undriven) collects a

small fraction of spontaneously emitted light and provides a probe of the dissipative

processes.

We first demonstrate the ability to detect individual atoms passing through

the cavity modes in real time by coincidence detection of photons from the un-

driven mode. Calculation of statistics and correlation functions from the complete

photon detection record allows the determination of detection probabilities and the

reconstruction of atomic trajectories. We next present evidence of quantum coher-



ence that is created, modified, and measured in the excitation-spontaneous emission

cycle. The coherence appears as a long-lived quantum beat at the ground-state

Larmor frequency, visible in the intensity autocorrelation function of the undriven

mode. Quantum jumps of the atomic state, occurring in between the detections of

photons from the cavity, result in substantial changes in the frequency and spectral

width of the beats. We present the results of a full quantum Monte Carlo calculation

in order to quantitatively explain the measurements.
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Chapter 1

Two-Mode Cavity Quantum Electrodynamics

1.1 Introduction

A cavity quantum electrodynamic (QED) system consists of an atom or other

quantum object coupled to a small number of modes of a cavity [1]. Such a system

provides a simple structure in which to investigate fundamental aspects of matter-

light interactions, and may also be used for applications in quantum information

science [2, 3, 4, 5]. Several cavity QED geometries operating over a wide range of

the electromagnetic spectrum have now been demonstrated experimentally (see for

example [1, 6, 7, 8].)

This thesis presents a collection of experiments performed on a particular cav-

ity QED system, a two-mode optical cavity and cold atomic source first described

in [9] and [10]. We begin with a theoretical overview of the system and the mea-

surement goals. As the basic setup is common to all of the experiments discussed in

this thesis, we give a thorough account of the technical details in this chapter, with

additional details for each specific measurement in the subsequent chapters.
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g
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Figure 1.1: The optical cavity QED system. g: atom-photon dipole
coupling frequency; γ: free-space atomic decay rate; κ: cavity field mode
decay rate; Edrive: coherent driving field amplitude.

1.2 Theoretical models

1.2.1 The Jaynes-Cummings model

The Jaynes-Cummings (JC) model provides the simplest realization of quan-

tized light-atom interactions [11]. The model considers a single two-level atom, a

saturable absorber, coupled to a mode of the electromagnetic field, a harmonic os-

cillator of equally-spaced energy levels; the mode is typically defined by the mirror

boundaries in an optical cavity (see Fig. 1.1.) Coherent electric-dipole coupling

between the atom and a single photon (an excitation quantum of the mode) takes

place at the Rabi frequency

g = µE/h̄ =
µ

h̄

√
h̄ωc
2ε0V

, (1.1)

where µ is the atomic transition dipole moment and E is the amplitude of the

electric field of a single photon, with mode volume V and frequency ωc. The system
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Hamiltonian without dissipation is

HJC = h̄ωaσz + h̄ωca
†a− ih̄g(σ+a− a†σ−). (1.2)

Here ωa is the natural atomic transition frequency, a is the annihilation operator

for the cavity field, and σ±,z are the Pauli spin operators for a two-level atom. The

evolution in this case is simply a continuous, reversible exchange of energy between

the atom and the cavity mode.

Dissipation may be added by considering separate reservoirs coupled to the

cavity mode and atomic radiation pattern. Once traced over, non-reversible decay

into these reservoirs brings lifetimes 1/κ and 1/γ for the cavity field and atomic ex-

cited state population, respectively [12]. The effect of a single photon on the atomic

state is characterized by the saturation photon number, nsat ≡ γ2/(8g2), which may

reach values much less than one for sufficiently strong coupling. The effect of an

atom on the cavity field is similarly characterized by the single-atom cooperativity

parameter, C1 ≡ g2/(κγ), which expresses the ratio of coherent coupling to dissipa-

tion rates. For the case of N atoms coupled identically to the mode, constructive

interference enhances the emissions into the cavity mode, and the cooperativity

parameter increases to C = NC1 [13].

Driving the cavity on resonance with a laser field of amplitude Edrive (outside

the cavity) causes the build-up of a coherent field inside the cavity, the amplitude of

which depends on C. The steady-state behavior of the system is given by the state

equation, first introduced in the context of optical bistability [13]:

Y = X(1 + 2C/(1 +X))2, (1.3)
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where Y is the intracavity photon number without atoms, and X is the number

with atoms (both are normalized to nsat.) This form is exact for a plane-wave mode

in a traveling-wave (ring) cavity, and it exhibits bistable behavior for large values of

C and X. In the limit of weak driving (X � 1), the equation takes on the simpler

form:

Y = X(1 + 2C)2. (1.4)

This equation shows that X is smaller than Y by the factor 1/(1 + 2C)2, primarily

due to the drive light radiated into free space by the atoms.

1.2.2 JC model versus reality

Experimental realization of the JC Hamiltonian entails a number of approxi-

mations. True two-level atomic systems are rare. Even the alkalis, a staple of atomic

physics experiments because of their relatively simple spectra, exhibit complicated

magnetic hyperfine structure and are susceptible to optical pumping. An example is

the 85Rb D2-line F = 3 → F ′ = 4 manifold shown in figure Fig. 1.2a. An effective

two-level atom in such a level structure can be realized experimentally by optically

pumping to the F = 3,m = +3(−3) ground state and using a σ+ (σ−) circularly

polarized cavity mode to drive the F = 3,m = +3(−3) → F ′ = 4,m′ = +4(−4)

cycling transition, provided that light polarization and magnetic fields are carefully

controlled.

Real cavity mode structure is likewise complicated. In a standing-wave cavity

of length l and in the transverse electromagnetic (TEM) basis, longitudinal modes

4
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Figure 1.2: a) Diagram of 85Rb levels used in the experiments. b) Simpli-
fied three-level atomic model with coupling constants for the two cavity
modes.

are separated by a free spectral range, FSR = c/2l, with each of these split into

multiple transverse modes. The requirement of a single spatial mode in the JC

model means that all other modes must be separated from the mode of interest by

several cavity linewidths. In addition, each transverse mode supports two orthogonal

polarizations. The frequency splitting between the modes is determined by the rate

of cross-coupling between polarizations due to cavity mirror birefringence. True

single-mode excitation is accomplished by driving one of the polarization eigenmodes

(generally elliptically polarized), but for sufficiently small birefringence an arbitrary

polarization may be used.

A greater and still outstanding problem experimentally is keeping a single atom

localized in the cavity mode within a region of much less than one half-wavelength,

such that the value of g, which varies spatially with the mode structure of E, is
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constant and known. Early cavity QED experiments operated with a thermal beam

of atoms, giving a random and changing distribution of coupling strengths and

atom number, and non-adiabatic interaction dynamics due to the high speeds [14].

Individual neutral atoms trapped inside a cavity mode have been demonstrated, but

still with time-varying values of g and a substantial warping of the level structure

due to light shifts [15, 16]. Single ions trapped in a cavity hold more promise, but

face their own technical challenge owing to the close presence of dielectric mirrors

[17].

Our goal in this work is to explore the dynamics of a real cavity QED system

in full quantitative detail beyond the limits of the single-mode JC Hamiltonian.

The atoms are multitudinous and freely moving, but can be reduced in number

to allow detection and manipulation of individual atoms. The magnetic structure

entails all sixteen levels shown in Fig. 1.2a, and supports the creation of ground-

state coherence that does not exist for two-level atoms. The cavity birefringence

is small enough to permit two degenerate polarization modes, but large enough to

give substantial contributions to the measured signals.

We first consider a simple extension to the JC model in order to motivate

the measurements that follow. In the subsequent chapters we will introduce greater

complexity into the model, requiring a quantum Monte Carlo simulation for the full

calculations.
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1.2.3 Two modes and three levels

As a first complication, we consider a three-level Λ-type atom (Fig. 1.2b)

inside a cavity with two orthogonal and degenerate polarization eigenmodes, with

annihilation operators a and b ([10]). The |1〉-to-|2〉 transition dipole couples to a

photon in mode a with Rabi frequency g, and the |2〉-to-|3〉 transition dipole couples

to a photon in mode b with Rabi frequency G. The total spontaneous emission rate

is the sum of the emission in the two channels, γtot = γ + Γ. The atom starts in

state |1〉 and the excitation is sufficiently weak such that the probability of being

transferred to state |3〉 and subsequently re-excited by the driving light is negligibly

small. This avoids the problem that the atom in Fig. 1.2b gets pumped to a dark

state of the driving laser (π polarization), while the real level structure in Fig. 1.2a

has no dark states.

The cavity is driven with a coherent field (inside the cavity) of amplitude ε in

mode a. The effective Hamiltonian in between quantum jumps and in the rotating-

wave approximation is [12, 10]:

Hmode =
ε

κ

(
a− a†

)
+ ih̄g

(
a

N∑
i=1

|2〉i〈1| − a†
N∑
i=1

|1〉i〈2|
)

+ih̄G

(
b
N∑
i=1

|2〉i〈3| − b†
N∑
i=1

|3〉i〈2|
)

−ih̄κ
(
a†a+ b†b

)
− ih̄γ + Γ

2

N∑
i=1

|2〉i〈2|, (1.5)

where the sums are over the N atoms, each considered to be identically coupled to

the mode.

We now have two single-atom cooperativity parameters, C1 = g2/(κγtot) for
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the driven mode and C̃1 = G2/(κγtot) for the orthogonal mode. The effect of C̃1 on

the driven mode is to reduce the cooperativity by an amount commensurate with

emission into the orthogonal mode; instead of C = NC1, we define a new driven

mode cooperativity,

C ′ =
C1N

1 + 2C̃1

. (1.6)

Defining separate values of the intracavity photon number X for the driven (X‖)

and orthogonal (X⊥) modes, the state equations become [10]:

X‖ = Y
1

(1 + 2C ′)2
≈ Y (1− 4C ′) , (1.7)

X⊥ = Y

[
2C̃1

1 + 2C̃1

] [
C ′

(1 + 2C ′)2

]
≈ Y 2C̃1C

′, (1.8)

where the lowest-order approximations are valid for 2C � 1 and 2C̃1 � 1, and we

assume weak drive (X �1). The population of the driven mode decreases with C ′

as before, while the population of the orthogonal mode increases with C ′; in other

words, X⊥ contains a fraction of the light Y −X‖ that would otherwise have been

radiated into free space.

This thesis studies light emission from the two modes for a variety of ex-

perimental parameters. In particular, we study time-resolved photon correlation

measurements of light from X⊥, which reveal information on atomic dynamics and

coherences that are invisible in the steady-state average.
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1.3 Apparatus

1.3.1 Physics cavity

We perform measurements on light escaping from a high-finesse Fabry-Perot

interferometer (referred to below as the “physics cavity”.) The mirrors that form

the cavity have reflective coatings from Research Electro-Optics of Boulder, CO,

with transmissions T1 = 15 ppm and T2 = 270 ppm at a wavelength of λ = 780

nm, where the larger transmission T2 corresponds to the mirror on the output side

[9]. The spacing between the reflective surfaces is l = 2.2 mm, and the mirrors have

radii of curvature 25 cm and 10 cm, respectively. The cavity supports a TEM00

mode with 1/e field waist w0 = 56 µm and Rayleigh range πw2
0/λ = 1.2 cm, i.e. the

mode diameter changes little over the distance between the mirrors. The cavity free

spectral range is FSR = c/(2l) = 68 GHz.

Barring additional losses, we expect cavity finesse F = 2π/(T1 + T2) = 22

000 and resonance full width at half maximum (FWHM) 2κ/(2π) = FSR/F = 3.1

MHz. We measure instead a FWHM of 5.8 MHz and a finesse of F = 12 000. We

infer from this an additional loss channel approximately equal in magnitude to the

larger mirror transmission. This loss is most likely due to residual glue deposited on

the mirror surface during construction. When inferring the photon number inside

the cavity, we increase our estimate by a factor of two due to this loss. This agrees

with the results of full Quantum Monte Carlo simulations of the system discussed

in Chapter 3. The cavity also has a small intrinsic birefringence, which results

in a slight (less than 200 kHz) splitting between the two (elliptical) polarization

9
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Figure 1.3: Schematic (not to scale) of vacuum chamber containing op-
tical cavity and LVIS apparatus.

eigenmodes. Because this splitting is much less than κ/(2π), we can effectively

choose an arbitrary polarization basis for driving the cavity (typically vertical and

horizontal) and suffer only a small background of coherent light in the undriven

mode due to birefringence coupling.

The cavity length is controlled by two shear piezo-electric transducers (PZT)

to which the mirrors are glued. The PZT’s are glued to a stainless steel base,

which rests on a stack of alternating layers of Sorbothane (a synthetic polymer from

Sorbothane, Inc.) and lead for acoustic isolation [18]. The unit resides in a small

stainless steel vacuum chamber at 10−8 Torr (Fig. 1.3), with electrical feedthroughs

10



for the PZT’s. One PZT is driven by the amplified output of a Stanford Research

Systems SIM960 Proportional-Integral-Differential (PID) controller, with a feedback

bandwidth of about 1 kHz. The other PZT is connected to a high-voltage direct

current (DC) power supply to correct for slow thermal drift. A LabVIEW program

monitors the output of the PID controller and adjusts the DC voltage to keep the

error signal output near zero. The power supply voltage spans about three cavity

FSR’s.

1.3.2 Atomic source

We extract a continuous cold beam of 85Rb atoms from a modified magneto-

optical trap (MOT). The atoms are supplied by a Rb dispenser from SAES Get-

ters, Inc., operated at a current of 3.4 A. The trap uses a pair of coils in near

“anti-Helmholtz” configuration (8 cm diameter and 5 cm separation) to produce a

magnetic field gradient of 10 G/cm. We cool the atoms with three orthogonal retro-

reflected beams at 780 nm tuned below the F = 3 → F ′ = 4 cycling transition.

Each beam has a power of approximately 15 mW and a diameter of 2 cm. The

detuning from resonance is approximately -20 MHz, which we vary by changing the

frequency of a double-passed acousto-optic modulator (AOM). The exact parame-

ters are optimized to give the greatest flux of atoms. A repumping beam resonant

with transitions from the F =2 ground state to the F ′ = 3 or 4 excited states is

mixed with the MOT beams on a polarizing beam splitter (PBS).

The atoms exit via a 1.5 mm-diameter hole in the vertical beam retro-reflecting

11



optic, which consists of a quarter-wave plate (λ/4) atop a gold mirror, placed at the

bottom of the MOT chamber. The radiation imbalance above the hole pushes out

a continuous beam of atoms in a Low-Velocity Intense Source (LVIS) configuration

[19]. The atoms have a mean longitudinal velocity of about 20 m/s, determined from

comparison of measured data with Monte Carlo simulation (see Chapter 3.) The

beam intersects the cavity mode at near normal incidence, 3-4 cm below the hole

in the mirror. We estimate a maximum flux of about 1 × 107 atoms s−1 that pass

through the cavity mode, corresponding to a mean mode occupation of 50 atoms

with an average transit time of 5 µs. For some measurements, we reduce the flux

of atoms in order to have a mean mode occupation of less than one atom. This is

accomplished by changing the detuning or power of the MOT beams.

As part of the measurements, we require control of the magnetic field inside

the cavity, in particular the components parallel to the input laser polarization

(vertical) and parallel to the cavity axis (horizontal). To adjust the field in the

vertical direction, we implement a third coil below the “anti-Helmholtz” coil pair.

This allows us to vary the field in the cavity between ± 12 G (corresponding to a

splitting between ground-state Zeeman levels of approximately γ/2) while affecting

the field in the MOT region only slightly. We use an additional pair of coils oriented

with axis parallel to the cavity axis to control the magnetic field in that direction

as well.

Coming out of the MOT in LVIS configuration with a vertical magnetic field

applied, the atoms are left primarily in the m = 3 ground state, with the exact

distribution sensitive to laser alignment and detuning. Before they enter the cavity

12
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Figure 1.4: a.) Example of absorption fraction X/Y in driven mode
as a function of common detuning of laser and cavity frequency from
central m =0 to m′ =0 transition. The optical pumping beam shifts the
population toward the center. The magnetic field value is approximately
5 G and drive strength is approximately one photon in the cavity, with
drive polarization parallel to the magnetic field. Solid lines are least-
square fits of the data points to a Lorentzian line shape. b.) Count rates
from the undriven mode measured concurrently with data in (a), with
Lorentzian fits.
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mode, we optically pump the atoms to the m = 0 state using a beam resonant with

the F = 3→ F ′ = 3 transition and with polarization vector parallel to the vertical

magnetic field. The beam is combined with light from the repumper laser in a

50/50 polarization-maintaining single-mode fiber splitter, and collimated to a waist

diameter of 0.5 mm in order to pass between the top of the cavity mirrors and the

upper edge of the viewport. Due to strong scattering into the photon detectors from

multiple reflections, we are unable to use the beam in a retro-reflected configuration.

Therefore, the beam imparts a net momentum kick to the atoms, which must be

compensated for with atomic beam alignment. Alternatively, a configuration of

MOT beams may be found which leaves a broader distribution of population over

the ground states. In this case the optical pumping beam acts as a filter, ejecting

those atoms which are not already in m = 0. The intensity of the optical pumping

beam and repumper are optimized as a compromise between moving most of the

atoms to m = 0 while not ejecting too many from the beam.

Figure 1.4 shows a typical measurement sequence used for optimization of the

optical pumping beam. The effect of the beam is to shift and narrow the line shapes

for both absorption and emission, with the goal of having narrow Lorentzian peaks

centered around 0 MHz (the resonance frequency of the F = 3,m = 0 → F ′ =

4,m′ = 0 transition.) The distributions do not always shift completely to the center

(an effect evident in Fig. 1.4); this is likely due to some combination of incomplete

optical pumping and a small (∼ 1 MHz) drift in the frequency setpoint of the

saturated absorption spectroscopy reference, arising from temperature-dependent

amplitude modulation (AM) in the electro-optic modulator (EOM) that generates
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Figure 1.5: Schematic of the laser system used for stabilizing and probing
the optical cavity, and for cooling and trapping the atoms.

frequency modulation (FM) sidebands for the error signal (see below).

1.3.3 Laser system

Figure 1.5 shows a schematic of the apparatus, focusing on the laser sys-

tem. The primary source of light at 780 nm is a Titanium:Sapphire MBR-110 laser

(Ti:Sapph), driven by a 10 W pump laser at 532 nm (Verdi V-10), both from Co-

herent, Inc. A reference cavity-based lock internal to the MBR housing narrows the

Ti:Sapph linewidth to less than 100 kHz. Long-term frequency stability and abso-

lute frequency referencing are accomplished by saturated-absorption spectroscopy

in a magnetically-shielded Rb vapor cell. The error signal is derived from the 85Rb

F = 3 → (F ′ = 3, F ′ = 4) hyperfine crossover transition. We generate the signal

by imprinting FM sidebands at 12 MHz with an EOM, detecting the saturated ab-
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sorption with a fast photodiode, and mixing the amplified photodiode output with

the radio frequency (RF) local oscillator. Locking is accomplished with a SIM960

PID controller, the output of which is fed to the external scan input on the MBR

control box. The light output of the MBR at this frequency is approximately 1 W.

We stabilize the length of the physics cavity with a Toptica DL-100 diode

laser at 820 nm, which interacts negligibly with the atomic beam but still reflects

strongly from the cavity mirrors. The diode laser frequency itself is stabilized to the

Ti:Sapph frequency with a transfer cavity technique. First, we adjust the current

to the Toptica laser diode such that both lasers are simultaneously resonant with a

TEM00 mode of the physics cavity, changing the cavity length if necessary to find

a suitable point. We then find a similar resonance overlap for a 25 cm confocal

(transfer) cavity into which light from both lasers has been injected, adjusting the

length of the transfer cavity as necessary. We use the Ti:Sapph light to lock the

transfer cavity length with the Pound-Drever-Hall (PDH) technique [20], a PID

controller, and PZT’s. Finally, we stabilize the diode laser frequency to the transfer

cavity resonance with another PDH signal, derived from FM sidebands at 9 MHz

generated by directly modulating the laser diode current.

The rest of the light from the Toptica diode laser is used to generate a PDH

signal for stabilizing the length of the physics cavity. Before reaching the cavity, the

light goes through an AOM in double-passed configuration and enters a single-mode

polarization-maintaining fiber. The AOM allows for scanning the cavity frequency

by ±40 MHz. A monitor photodiode after the fiber output is read by an analog-to-

digital sampling card and monitored by a LabVIEW program, which controls the
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RF drive power to the AOM in order to maintain the light output from the fiber at a

constant power. This is especially important when scanning the cavity frequency, as

residual AM sidebands from modulating the diode current give a power-dependent

DC offset to the PDH error signal for the physics cavity; this results in a nonlinear

scan due to the frequency-dependent AOM diffraction efficiency.

We drive the physics cavity with Ti:Sapph light that passes through a 780 nm

single-mode fiber electro-optical modulator (EOSpace) in Mach-Zender configura-

tion to imprint AM sidebands at 150 MHz from the carrier. One sideband is near

resonance with the atomic transition and the cavity, becoming the system drive,

while the carrier and all other sidebands are reflected from the front cavity mirror.

Changing the sideband frequency allows us to probe the frequency response of the

cavity-atom system without misalignment of the input laser coupling. Polarization

elements (better than 5 × 10−5 extinction) and mode-matching optics prepare the

driving laser before it enters the cavity.

Light at 780 nm used for repumping atoms in the MOT is generated from a

Sharp laser diode housed in a ThorLabs mount. The laser is slaved to a New Focus

Vortex diode laser, which is frequency stabilized to the repumping transition with

a Dichroic Absorption Vapor Laser Lock (DAVLL) and PID controller [21]. This

system generates about 20 mW of repumper light.

17



1.3.4 Detection system

A lens at the cavity output collimates the escaping light, and a zero-order half-

wave plate (HWP) aligns the polarization to a Wollaston prism, which separates

vertically and horizontally polarized light into separate beams. Additional optics

allow the choice of sending both beams to the detectors, or of blocking the vertically

polarized beam and splitting the horizontally polarized beam between two paths for

coincidence measurements. We split off a small fraction of the vertically polarized

beam first in order to monitor the intensity of transmitted light at 820 nm; the

rest of this light is removed from the signal with 5-nm wide interference filters

centered at 780 nm (Semrock MaxLine), such that no detectable level of light at

820 nm reaches the detectors. Passing through spatial filtering optics to remove

background light, the signal beams enter a dark box where they are detected by

two photomultiplier tube (PMT) units (Hamamatsu R636-10), which measure the

average light intensity; or, by remotely activating motorized flip mirrors, to two

avalanche photodiode (APD) units (Perkin Elmer SPCM-AQR-12 and -13) for time-

resolved photon counting, each with quantum efficiency greater than 50%. The total

detection efficiency of light from the cavity is about 30%, as calibrated by an optical

power meter and neutral density filters of known attenuation.

The electronic output pulses from the two APDs are first duplicated in a

transistor-transistor logic (TTL) voltage divider circuit. One copy of each goes to

a counter unit (SR400) for measuring average count rates, or to a nuclear instru-

mentation module (NIM) logical gate module for coincidence measurements. The
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other copy of each goes to a computer time-stamp correlator card (Becker and Hickl

DPC-230), which records both channels of TTL events with 164 ps resolution. For

measuring photon correlation functions, we record the arrival times of all photons

and compute the detector cross-correlation in post-processing with a C++ program,

with typical user-defined time resolution of 16.4 ns bins.
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Chapter 2

Detecting Single Atoms

2.1 Introduction

Many applications in atomic physics and quantum information hinge on the

ability to detect the presence of individual neutral atoms or molecules in order

to perform subsequent state manipulation protocols [22, 23]. Optical detection of

atoms involves identifying a change in average light intensity due to the presence of

the atom. This typically happens by one of two methods: fluorescence detection,

in which the atom adds light on top of a background level; or absorption detection,

in which the atom removes light from an incident field. Dispersive detection can

effectively operate in either of these limits, depending on whether the signal with no

atoms is bright or dark. All these techniques require the integration of photon flux

until a targeted signal-to-noise ratio is reached; this sets the probability of obtaining

a false positive for atom detection.

Fluorescence detection requires high-numerical aperture optics and careful

suppression of background light, and generally operates on time scales of tens of

milliseconds. The integration time limits the bandwidth with which new atoms can

be identified and then manipulated, making this method much better suited for

identifying stationary trapped atoms [24, 25, 26]. When detection speed is more

important (as when detecting freely moving particles that spend a limited time in
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an interaction region), a more useful technique is fluorescence burst detection [27],

which looks for above-average count rates over short time intervals [28, 29]. One

particularly impressive example [30] showed detection of falling atoms in free space

in 60 µs using highly-efficient mirrors and lenses.

In contrast to free-space methods that collect light from as many spatial modes

as possible, cavity-based methods limit the optical interactions to one or a few

resonant modes, yet give signal-to-noise ratios that may be orders of magnitude

larger. Collecting fluorescence in an optical cavity with axis perpendicular to the

driving laser gains the benefit of Purcell-enhanced emission [31] into the cavity mode

[32, 33, 34]. Experiments based on changes in cavity transmission, which require

strong atom-cavity coupling [35], have achieved single atom detection times of 20 µs

for moving atoms [7, 32, 36, 37], and as low as 10 µs [34, 38, 39] for trapped atoms.

Both methods enable strong suppression of background light through spatial filtering

of the output quasimode of the cavity.

We have developed a cavity technique for atom detection that combines ele-

ments of driven cavity QED detection and spontaneous emission collection [40]. The

technique allows rapid identification of atoms with near maximal coupling to the

cavity mode, and their subsequent emission dynamics. This chapter presents our

approach, in particular autocorrelation studies of the transmitted light. We identify

contributions to the autocorrelation signal from different physical processes, in the

short time (atomic decay) and in the long time (transit of atoms through the mode).
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2.2 Detection scheme

The basic components of our system are shown in Fig. 2.1. We resonantly

drive a TEM00 mode of the optical cavity, previously discussed, with a laser sideband

tuned to the 85Rb F = 3 to F ′ = 4 transition. Intersecting the cavity axis at near-

normal incidence is the beam of cold atoms, each of which interacts with the cavity

mode for some time before leaving. Because of the large difference in time scales

(5 µs transit time through the mode versus 26 ns excited state lifetime), the atoms

undergo dozens of spontaneous emission cycles while in the mode volume.

Atomic Beam

PBS
BSB

APD A
(start)

APD B
(stop)

Figure 2.1: Schematic of the apparatus with the basic optical elements
necessary for coincidence measurements. Vertically polarized laser light
(parallel) drives the high finesse cavity traversed by a continuous beam
of cold 85Rb atoms from a magneto-optical trap. The output light passes
through a polarizing beam splitter (PBS) that separates the horizontal
(perpendicular) polarization, sending it to a nonpolarizing beam split-
ter (BS) for coincidence measurements using two avalanche photodiodes
(APD). The direction of the magnetic field (B) inside the cavity can be
parallel to the exciting polarization (yellow arrow, π-polarized drive) or
parallel to the direction of light propagation (blue arrow, σ-polarized
drive).
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Figure 2.2: a) A linearly polarized driving field excites the atom, but a
transition to a ground state level with different m results in emission in
the orthogonal polarization. b) Simplified diagram of 85Rb levels relevant
to Faraday rotation in an applied magnetic field.

The crux of our detection scheme is the separation of the cavity output field

into two distinct polarization components relative to the polarization of the exciting

laser: one parallel (driven mode) which is little affected by the transiting atoms

(as the cooperativity parameter is relatively small), and the other perpendicular

(undriven mode) which in the ideal case is populated only by scattered light from

the atoms. This configuration in cavity QED was first used in [41]. As the coupling

of the two modes by mirror birefringence is small, the two eigenfrequencies are split

by less than 10% of the cavity linewidth, and we can use the two modes for excitation

and signal collection, respectively.

We consider two different configurations for excitation. The first has a weak

(< 10 G) magnetic field parallel to the incident polarization, forming the quan-

tization axis. The light drives π (∆m=0) transitions in the atoms in this basis
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(see Fig. 2.2a). An excited atom can return to its original ground-state m-level

through spontaneous or stimulated emission into the parallel (driven) mode; how-

ever, there is also some probability to relax into a different m-level through a σ+

or σ− (∆m = ±1) spontaneous emission transition, which produces light that is

circularly polarized with respect to the magnetic field axis and may be collected by

the perpendicular (undriven) cavity mode. Although the cavity coupling strength is

modest, the amount of collected light increases measurably from that in free space

[10].

The second configuration has a weak magnetic field along the cavity axis, while

keeping the same polarization arrangement (see Fig. 2.2b). The linearly polarized

drive can then be considered as the sum of two circular components with different

indices of refraction due to the Zeeman shift. This results in a Faraday rotation of

the drive into the perpendicular mode. Though the single-pass Faraday rotation is

small, the high cavity finesse allows the light to compound thousands of rotations

before escaping, and the effect becomes appreciable.

A polarizing beam splitter (PBS) sends the two modes to separate detectors,

which can resolve individual photon events. From the record of photon detections,

we analyze the statistics of emission to look for signs of single atom transits. One

advantage of collection into a cavity mode is that we can spatially filter out most

sources of background light. However, there are remaining contributions to the

perpendicular mode from cavity mirror birefringence and background light that

cannot be completely eliminated. The optimal parameters for operation minimize

the background influence on the atom detection confidence.
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2.3 Theory

To include the effects of Faraday rotation, we consider an atom with one ex-

cited state (m′ = 0) and three ground states (m = ±1, 0). (See Fig 2.2b). A

magnetic field B along the direction of light propagation lifts the ground state de-

generacy through the Zeeman effect, resulting in a shift in the dispersion curves and

a difference in the phase velocities of the two circular components of light, causing

Faraday rotation [42]. We excite the system with vertically polarized light, which

is an equal superposition of right- and left-circularly polarized light. The light in-

teracts with the atom and becomes elliptically polarized; the plane of polarization

rotates through an angle. The light then passes again through the atom after re-

flection on the mirror and compounds the rotation. When the light exits the cavity,

the total rotation is that of a single pass multiplied by the number of times the

light passes through the atom, indicated here by the presence of the cooperativity

C (which is proportional to F):

φ =
2gLµBB/h̄γtot

1 + (2gLµBB/h̄γtot)2
C, (2.1)

where gL is the Landé factor and µB is the Bohr magneton.

The addition of this effect changes Eq. 1.8 (assuming |φ| � 1) into:

X⊥ = Y
(
2C̃1C + |φ|2

)
. (2.2)

Equation 2.2 shows that the signal in the perpendicular mode now consists of two

parts: a background level of spontaneous emission (which may be considered as

(σ+ − σ−) polarization if the drive is (σ+ + σ−), in full analogy to the basis with
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π drive), and Faraday-rotated drive which increases from zero to a maximum value

of X⊥Faraday = Y C2/4 when B = h̄γtot/(2gLµB). For simplicity in what follows we

treat the atom-cavity coupling in the basis of π drive.

We analyze the two-time intensity autocorrelation function of the light from

the perpendicular mode to understand the dynamics of photon emissions that con-

tribute to the steady-state value of X⊥. We do not distinguish between the two

components in Eq. 2.2, treating both as arising from near-resonant scattering of

incident light (resonance fluorescence) in which the cavity serves only as a mode in

which to collect the light.

For a stream of photons scattered from a single two-level atom undergoing sta-

tionary, resonant excitation, the intensity autocorrelation function takes the familiar

form for resonance fluorescence antibunching [12]:

g
(2)
A (τ) = 1− e−(3γ/4)τ (cosh ζτ +

3γ

4ζ
sinh ζτ), (2.3)

where ζ = (γ/4)
√

1− 8Y is a function of the drive intensity Y . The antibunching

referred to here means an increasing slope for increasing times: dg(2)(τ)/dτ |τ>0 > 0.

The condition g(2)(0) < 1 indicates that the photons obey sub-Poisson statistics,

and is not a necessary condition for the photons to exhibit antibunching [43].

The modification of Eq. 2.3 for the case of an atomic beam passing through

a localized excitation region appears in Ref. [44], which adds a number of effects:

i., the multiplication of Eq. 2.3 by a window function to include the shape of the

mode function encountered by each transiting atom; ii., the scaling of Eq. 2.3 by the

inverse of the steady-state mean number of interacting atoms, N ; iii., the addition
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of a term |g(1)
A (τ)|2 to include the beating of fields emitted by different atoms (the

Hanbury Brown and Twiss effect [45]); iv., the addition of a constant offset of one

arising from uncorrelated emissions from different atoms; and v., the reduction of the

correlation factor due to the presence of completely uncorrelated background light.

Further generalizations appear in Refs. [46, 47], where the authors also consider the

product of the fields that come from atomic emission with a temporally uncorrelated

but spatially mode-matched field from background light.

We are able to describe the total correlation function as:

g(2)(τ) = 1 +
1

(1 +Rb/Rs)2

f(τ)g
(2)
A (τ)

N
+ F (τ ;Rb/Rs, N) (2.4)

where Rb and Rs are the average count rates for background and signal, respectively,

and

f(τ) = [cos(Ωτ)e−βτ + 1]e−(τ/T )2 (2.5)

is an empirically-determined window function describing motion of the atom through

the cavity mode with Gaussian temporal width T , where a small tilt of the atomic

beam with respect to the cavity axis normal results in motion through the standing-

wave lobes at frequency Ω. These oscillations decay at a rate β much faster than the

transit time, due to the spread in velocities from the atomic source. The function F

corresponds to any additional terms related to the beating of signals from different

atoms or of signal with background light; since this term represents classical noise

sources, it can only contribute light which is bunched around τ = 0 [48]. Any

observation of antibunching in our signal must come from the single-atom term

g
(2)
A (τ). An explicit observation of F would require a high atom density (N � 1)
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since the width is comparable to that of the antibunching signal. (A technique in

which the antibunching width was artificially made wider was demonstrated in [49]

in order to see this term.)

2.4 Preliminary data analysis

2.4.1 Faraday rotation

The Stokes parameter formalism [50] allows a measurement of the rotation

angle φ if the amplitudes of the electric field in the two polarizations ε⊥ and ε‖ are

known:

|φ| =
|ε‖ε⊥|

|ε‖|2 − |ε⊥|2
≈
∣∣∣∣∣ε⊥ε‖

∣∣∣∣∣ , (2.6)

where the approximation is made for |ε‖| � |ε⊥|. We measure the count rates in the

perpendicular mode as a function of applied magnetic field along the cavity axis to

determine the location of maximum Faraday rotation. For the measurements in this

chapter we do not optically pump the atoms to m = 0 before they enter the cavity.

The peak rotation is different depending on the sign of the magnetic field, probably

due to an asymmetry in the population distribution. We obtain a maximum of

|φ| = 0.035 ± 0.007 rad from the measured increase in the count rate with a field

magnitude of 3.3 Gauss (calibrated from Zeeman shifts in absorption.) To make

explicit the effects of the cavity, we estimate the effective number of maximally-

coupled atoms by using Eq. 1.7 and measuring the driven mode transmission. This

was greater than 0.95, giving a bound of C <0.01 or N <0.1 effective maximally-
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coupled atoms (for π transitions from m = 0). Calculating the free-space absorption

length for 0.1 atoms and our cavity waist, we would expect a maximum rotation of

the order of 3 µrad [42]. The enhancement by a factor of approximately 10,000 is a

result of the cavity finesse.

2.4.2 Photons per atom

The formula of Mandel relates the photon number distribution P (n) with the

atom number distribution Patom(m):

P (n) =
∑
m

P (n|m)Patom(m), (2.7)

where P (n|m) = (αm)n exp (−αm)/n! is the conditional probability of detecting n

photons when there are m atoms in the cavity volume, each contributing a mean of α

photons to the signal with a Poisson distribution of number [51]. This shows that the

super-Poisson fluctuations of the light arise from the combined Poisson fluctuations

in atom number and photons scattered, with α an extractable parameter.

We follow the method of Ref. [32] to relate the mean and mean-squared photon

number (〈n〉, 〈n2〉) to α:

〈n2〉
〈n〉
− 1 = 〈n〉gaa + α, (2.8)

where the atom-atom correlation function is gaa = (〈m2〉 − 〈m〉) /〈m〉2, which for

Poisson atomic fluctuations reduces to gaa = 1.

Figure 2.3 shows a detail of the plot of the experimental values for the left side

of equation (2.8) with the two different detection methods: Faraday rotation on the
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top and no Faraday rotation on the bottom. We calculate the statistics based on

300 s time series of photon detections that we divide into a series of time bins of

equal width. Longer bin sizes have a larger average number of counts (horizontal

axis). The intercept gives the value of α. A linear fit for bins from 50 µs to 100 µs

(〈n〉 = 1.81 to 3.63, off the scale of the plot in Fig. 2.3) in the Faraday case gives a

vertical axis intercept of α = 0.196± 0.003 photons detected per atom, and a slope

of 1.033 ± 0.001. The intercept in the no Faraday case (for a fit from 〈n〉 = 0.50 to

1.00) is α = 0.036± 0.002 photons detected per atom and a slope of 1.026± 0.003.

The drive in both cases is two photons. The values of the slopes indicate that the

assumption of Poisson statistics for the atom number is well justified.

Figure 2.4 shows the extracted values of α as a function of cavity photon

number (driving intensity) spanning more than two orders of magnitude. There are

data points (rhombs) that come from Faraday rotation and one with spontaneous

emission alone (circles). The latter is smaller by almost a factor of five. α increases

linearly with drive until atomic saturation intensity (nsat = 5.3 photons for the

m = 0 to m′ = 0 transition), where in addition to saturation of the scattering rate,

optical pumping effects also start to enter. Each point on Fig. 2.4 comes from a

least-squares fit similar to those in Fig. 2.3. The count rates in the perpendicular

mode and the values of α give an atomic flux through the mode of approximately

160,000 atoms s−1. (The flux is set much smaller than the maximum available in

order to isolate primarily single-atom events.)
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Figure 2.3: Examples of data (circles) and least-squares fits (continuous
line) to Eq. (2.8) in the large-〈n〉 region for Faraday rotation (top) and
for no Faraday rotation (bottom) in the cavity as a function of average
number of photons in a time bin (〈n〉).
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2.5 Analysis and optimization of detection

Three identifiable sources of background counts contribute to the measurement

of the perpendicular mode: intrinsic detector dark counts (approximately 300 s−1

each), scattered light from the MOT beams (approximately 2000 s−1), and the

birefringence of the cavity (less than 5× 10−5 of the driven mode count rate). The

light from the MOT dominates the background count rate at low driving intensity;

however, at higher intensity, light from cavity birefringence is the main contributor

to the degradation of the signal-to-background ratio. A single photon escaping in

the perpendicular mode most likely comes from an atom in the cavity; however,

there is at best still a 4% probability that it comes from background counts. We

suppress the probability of a false atom detection by requiring photon coincidences

in a time window smaller than the transit time of an atom across the cavity mode

[7]. We have implemented this in real time for preliminary measurements using

a NIM electronic coincidence module. The first perpendicularly polarized photon

detection (“start”) opens a gate of variable width which allows counting pulses from

the “stop” APD. Detection of one or more of these yields an atom detection event.

Figure 2.5 shows the signal-to-background ratio calculated from photon time

series for the rate of single photon detection (open rhombs), two-photon coincidence

(open squares), and three-or-more-photon coincidence events (open triangles) in a

1 µs window as a function of driving intensity. The maximum occurs at the same

driving intensity for all three. Two photons within a 1 µs window improves the

signal-to-background ratio by more than an order of magnitude compared to de-
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Figure 2.5: Signal-to-background ratio as a function of normalized driv-
ing laser intensity for single detection (open rhombs), double coincidence
detection (open squares), and triple coincidence detection (open trian-
gles) in a 1 µs window with Faraday rotation of the drive.

tection of single photons. The three-photon coincidence gives a better ratio but

significantly decreases the rate of detection as evident in the error bars associated

with each point. The three sets achieve their maxima just before the atomic satu-

ration intensity, due to background counts from cavity birefringence that continue

to increase linearly with drive. The contribution to the coincidences from detector

afterpulsing is small (less than 1%) and does not affect the results.

To evaluate the probability of making a false detection for various coincidence

gate times, we extract the fidelity of detection F versus gate length for two-photon

coincidence based on the time record. We calculate the waiting time distribution
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of photon arrivals on a single APD by making a histogram of the time separation

between consecutive detections. The integral of the waiting time distribution gives

the number of two-photon coincidences c in a given time window. We calculate c

with and without atomic flux to obtain:

F = 1− cwithout/cwith. (2.9)

The fidelity (one minus the probability of error) reaches more than 99% at 0.1

µs, and 99.7% at 1 µs with Faraday rotation, but only 96.7% at 1 µs with detection

of spontaneous emission alone. The fidelity decreases at longer times. The fidelity

is optimal for times between 1 and 5 µs, determined by the distribution of atom

transit times.

2.6 Intensity autocorrelation

We ensure that our coincidence detection scheme is sensitive to single atoms

by measuring the intensity autocorrelation function (g(2)(τ)) of the perpendicular

mode under very weak driving intensity at the same atomic beam density used

during detection measurements. If we consider the light in the perpendicular mode

as coming from resonance fluorescence, the antibunching can only arise from photon

pairs from the same atom. The observation of antibunching in our signal is strong

indication of our ability to detect photon coincidences from a single atom in less

than 1 µs.

Figure 2.6 shows two examples of an autocorrelation function around τ = 0

with and without Faraday rotation for the same driving intensity (0.4 nsat). The
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Figure 2.6: Intensity autocorrelation function (g(2)(τ)) of the perpendic-
ular mode with (triangles) and without (diamonds) Faraday rotation, at
a driving intensity of 0.4 nsat.

antibunching is visible and lasts for a time of the order of the excited state lifetime

(26 ns). The area under the curve is larger with Faraday rotation, indicating a

substantial increase in photon flux from individual atoms. The antibunching is less

pronounced without the rotation because of the lower signal-to-noise ratio.

Since we record the photon detections as continuous time series, we can also

look at the long-term behavior of the autocorrelation in the context of resonance

fluorescence as presented in Ref. [44, 46, 47]. We fit the data to Eq. 2.4 with free

parameters N , T , β, and Ω, excluding the term F (τ) and the region |τ | <50 ns
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where it is important. We find excellent agreement in this outer region (reduced

χ2=1.03 for points out to ±5 µs). Fig. 2.7 shows the fit to the data taken at a

driving intensity of 0.24 nsat. The damped oscillation at Ω=1.5 MHz corresponds

to motion through the standing wave with a period of 0.67 µs (a velocity of 0.58

m/s along the cavity axis) and a damping time of 1/β=0.29 µs. Monte Carlo

simulations of the transit show good agreement with this damping time based on

the geometric collimation of transverse velocities from the source [19]. The Gaussian

background gives a mean atom number of N=0.88, and a 1/e waist of T=2.7 µs (a

mean velocity of 20.7 m/s across the Gaussian mode). The ratio of the velocities

gives a beam tilt of 1.6◦ with respect to the cavity axis normal. Although we take

care to align the cavity under the exit hole of the atomic source, the cavity mode is

not necessarily centered on the two mirrors, and the transverse beam width allows

for small inclinations of the beam.

The full structure of the correlation function depends not only on the above

parameters (properties of the atomic beam), but also on the intensity of the drive,

which can change the atomic response or increase the amount of background light

from cavity birefringence. Fig. 2.8 shows the evolution of the autocorrelation func-

tion as the driving intensity increases by two orders of magnitude. We observe a

transition from antibunching to bunching with higher drive. The behavior comes

from the term F (τ) in Eq. 2.4 which includes beating of the birefringence light

with the atomic emissions. This is in contrast to the transition seen in Ref. [49],

where the atomic density is increased such that the constant |g(1)
A (τ)|2 term (part

of our F (τ)) becomes visible. In separate experiments at low intensity we have also
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Figure 2.7: Intensity autocorrelation function (g(2)(τ)) of the perpen-
dicular mode at 0.24 nsat. The continuous line is the theoretical fit to
Eq. 2.4.
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Figure 2.8: Intensity autocorrelation function (g(2)(τ)) of the perpendic-
ular mode for different values of photon number (intensity) in the driven
mode.

followed the disappearance of the antibunching as we increase the number of atoms.

Even when the actual density of atoms is kept constant, the effective excitation

volume and thus the value of N increases with power, as atoms near the nodes and

wings of the mode start to interact [52]. This process reaches a maximum above

saturation intensity, when the only unsaturated atoms are too weakly coupled to

emit into the mode. Fig. 2.9a. shows the extracted values of N versus driving
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intensity for the autocorrelations in Fig. 2.8. The line shows the expected shape

of the saturation, assuming that the probability of collecting a photon from an

atom is proportional to the product of a constant g2(x, y, z) for collection and a

saturating strength of excitation ([(n/nsat)g
2(x, y, z)]/[1+(n/nsat)g

2(x, y, z)]), which

is consistent with the expression Y 2C̃1C in Eq. 1.8, modified for strong driving. We

obtain the theoretical line by integrating this product over a volume much larger

than the cavity mode, and using a least-squares fit to scale the vertical axis and

nsat.

Using the extracted parameters of mean atom number and mean transit time

from the two-APD correlation measurements, together with the extracted values of

α from the one-APD measurements, we can predict the expected macroscopic count

rates as Rs = Nα/2T . Fig. 2.9b shows that we obtain excellent agreement for

low intensities, while the highest intensity drive (largest birefringence background)

disagrees significantly. This comes from the large contribution from the beating be-

tween background and signal, which generates the large central peak in the measured

autocorrelation.

We emphasize that although the mean number of interacting atoms is ap-

proximately one, this is not the same as the effective number of maximally-coupled

atoms, since most are weakly coupled. To explore this numerically, we use the work

of Carmichael and Sanders [53]. We distribute atoms randomly and uniformly across

the cavity mode function such that the mean density is 0.88 atoms within two mode

waists (similar to the measured value for low driving intensity). Allowing the atom

number to fluctuate with a Poisson distribution, we sum the individual coupling
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Figure 2.9: a) Measured mean number of interacting atoms, and theory
curve showing the expected saturation. b) Measured (filled rhombs)
count rates in the perpendicular mode together with those predicted
(open squares) from the extracted mean number of atoms, photons per
atom, and transit time.
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strengths for each configuration of atoms and weight by the atomic number distri-

bution to obtain the mean steady-state effective number of atoms, which in this case

is 0.04. Using the mean value of C1=0.09 for π transitions from the ground state,

this gives a driven mode transmission of approximately 0.99 from Eq. 1.7, consis-

tent with the experimental conditions for single atom detection. A rapid decrease in

probability above one effective atom indicates that we operate in a density regime

of single-atom coupling, with a low probability of having two atoms simultaneously

coupled by more than half of the maximum value. This numerical result together

with the antibunching in the perpendicular mode counts confirms that the measured

signals indeed arise primarily from single-atom emission bursts.
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Chapter 3

Ground-State Quantum Beats

3.1 Introduction

Quantum beats are oscillations in the radiation intensity of an ensemble of ex-

cited atoms due to interfering emission pathways. They must be counted amongst

the earliest predictions of quantum mechanics [54]. So-called “Type-I” atoms ex-

hibit beats at the separation frequency of two excited states which, prepared in a

superposition, decay to a common ground state. The preparation may be achieved

in a number of ways, e.g., through pulsed optical excitation [55, 56] or cascade

emission [57]. In all cases the coherence lasts for the excited state lifetime, unlike

ground-state coherence, which can last long enough to be interrogated later and, for

this reason, is favored by the field of quantum information.

We consider an unusual situation where ground -state coherence gives rise to

a long-lived quantum beat in spontaneous emission [58]. As repeatedly noted [54,

59, 60], QED predicts no beat in the decay of a “Type-II” atom to non-degenerate

ground states, since they are orthogonal. Nevertheless, while beats may be absent

from the mean intensity, they can still lie hidden in the fluctuations. In an elegant

experiment in the 1950’s, Forrester et al. [61] showed this for the (classical) beating

of light from a pair of incoherent sources. We proceed in similar spirit; we recover

a long-lived quantum beat from fluctuations.
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In contrast to recent experiments [62, 63], which aim for deterministic quantum

control, the ground-state coherence in our experiment is both prepared and read out

by spontaneous emission. Moreover, our measured beat is different from that seen

by Schubert et al. [64], where an interference occurs in absorption rather than

emission.

Creation of coherence through spontaneous emission, so-called spontaneously

generated coherence, has been discussed in the theoretical literature [65, 66, 67]

and indirect experimental evidence reported for spontaneous creation of electron

spin coherence in charged GaAs quantum dots [68]. We detect only spontaneous

emission, and therefore make a direct and unambiguous observation of spontaneously

generated coherence. We realize, in a continuously driven variation, the scheme

of Zajonc [69] for generating ground-state quantum beats on the principle of the

quantum eraser [70].

3.2 Theoretical model

Beginning with an outline of the scheme, we consider first one idealized atom

then a realistic atomic ensemble. Consider an atom with Zeeman structure in its

ground and excited states (Fig. 3.1a) interacting with degenerate, orthogonally po-

larized cavity modes, H and V ; a weak magnetic field sets the quantization axis

in the V direction, and mode V is weakly and continuously driven (Fig. 3.1b).

The atom is prepared in state |g0〉 from which it is excited to |e0〉 by the V mode

(Fig. 3.2A). It may return to the ground state emitting a π, σ+ or σ− photon, or
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Figure 3.1: Experimental system for observation of ground-state quan-
tum beats. (a) π-excitation of an F = 3 to F ′ = 4 transition with
scattering of a first (red) and second (blue) photon into the H mode;
b) schematic of the apparatus, HWP: half-wave plate, PBS: polarizing
beam-splitter, BS: beam-splitter, APD: avalanche photodiode.
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Figure 3.2: Simplified model of quantum eraser process. A) π excitation
from g0 to e0; (B) Spontaneous decay by σ transitions to superposition
of g−1 and g+1; (C) π excitation to superposition of e−1 and e+1; (D)
Spontaneous decay by σ transitions back to g0.
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any linear combination conserving angular momentum. In the given geometry, only

σ+ or σ− light couples to the H mode, with the helicity undetermined; thus, if the

emitted photon escapes the cavity before being reabsorbed, its detection places the

atom in the superposition |ψ′〉 = |g−1〉 + |g+1〉 (Fig. 3.2B). The atom is now in the

ground state with angular momentum perpendicular to the magnetic field, and thus

performs Larmor precession. When subsequently reexcited by the driven V mode,

state

|ψ′〉 = eiφ(τ)|e−1〉+ e−iφ(τ)|e+1〉 (3.1)

is reached, with phase ±φ(τ) gained through its precession in the ground state

(Fig. 3.2C). From here the atom can decay back to |g0〉, emitting a second H-mode

photon (Fig. 3.2D). The probability to do so depends on φ(t), giving rise to quantum

beats.

In summary, there are two paths for scattering a pair of photons into the H

mode: |g0〉 → |e0〉 → |g+1〉 → |e+1〉 → |g0〉 and |g0〉 → |e0〉 → |g−1〉 → |e−1〉 →

|g0〉. The phase gained from the ground-state Zeeman shift (precession) differs

along the two paths, which interfere to produce oscillations in the rate of delayed

coincidences—i.e., in the correlation function g(2)(τ). Note that after the first pho-

ton is detected “which path” information is available, since |g+1〉 and |g−1〉 are

distinguishable in principle. This information is erased by the second detection.

What we have presented is a single-atom idealization. It neglects the pres-

ence of more than one atom in the cavity (not admissible for an atomic beam),

spontaneous emission to non-cavity modes, the finite cavity decay rate, and the full
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complement of magnetic sublevels for the employed F = 3 to F ′ = 4 transition

(Fig. 3.1a). These features are included in a full quantum trajectory treatment,

including a Monte Carlo simulation of an atomic beam [71]. Two approximations

are adopted: (i) the driven mode is treated semiclassically (with absorption still

taken into account), and (ii) reabsorption of H-mode photons is neglected. The

approximations are justified by our moderate dipole coupling strength.

Consider first an atom prepared in |g0〉 that has not yet suffered a spontaneous

emission. Let |ai〉, |a′i〉, and |a′′i 〉 denote unnormalized states expanded, respectively,

over the mi = 0, mi = ±1, and mi = 0,±2 sub-manifolds, as indicated by the

black, red, and black plus blue levels of Fig. 3.1a. These states correlate with the

scattering of zero, one, and two photons into the H mode. Should the atom undergo

a spontaneous emission (to non-cavity modes), the expansion manifolds, after the

quantum jump, are unchanged for a π-emission but move one step to the right or

left for a σ-emission (mi → mi ± 1). Keeping track of these shifts, the system state

is expanded as

|ψ〉 = |0〉|A〉+ |1〉
(

N∑
i=1

|a′i〉|A〉i
)

+
√

2|2〉
N∑
i=1

1

2

N∑
j 6=i=1

|a′i〉|a′j〉|A〉ij + |a′′i 〉|A〉i

,
where |0〉, |1〉, and |2〉 denote zero, one, and two photons in the H mode, N is the

(time-varying) number of interacting atoms, |A〉 = |a1〉|a2〉 . . . |aN〉, |A〉i is the state

|A〉 with |ai〉 omitted from the product, and |A〉ij is the state |A〉 with |ai〉 and

|aj〉 omitted from the product. This base state evolves under the coherent drive

and coupling to the H mode, the coming and going of atoms as they transit the
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cavity, and spontaneous emission. From it, at regular sample times, we initiate

the collapsed state |ψ′〉 = b̂|ψ〉, where b̂ annihilates an H-mode photon; thus, the

ground-state coherence is prepared as an entangled state of N atoms, which then

evolves in parallel with |ψ〉:

|ψ′〉 = |0〉
N0∑
i=1

|b′i〉|A〉i

+|1〉
N0∑
i=1

 N∑
j 6=i=1

|a′j〉|b′i〉|A〉ij + |b′′i 〉|A〉i

, (3.2)

where |b′i〉 = |a′i〉 and |b′′i 〉 = 2|a′′i 〉 at the start of a sample, after which |b′i〉 (|b′′i 〉)

and |a′i〉 (2|a′′i 〉) differ due to their correlation with zero (one) rather than one (two)

H-mode photons; N0 ≤ N is the number of surviving entangled atoms, i.e., those

remaining in the cavity.

The source of the quantum beat is the atomic ground-state coherence preserved

in the vacuum of the cavity, i.e., the first term in Eq. (3.2). The system ground

state—both atoms and cavity—does not decay, and through π-excitation drives a

sustained excited-state oscillation in the atom mirroring Eq. (3.1):

gmi−1e
iδgτ

γ − i(mi − 1)∆
|emi−1〉+

gmi+1e
−iδgτ

γ + i(mi + 1)∆
|emi+1〉, (3.3)

with ∆ = δe − δg, where δg (δe) are ground-state (excited-state) Zeeman detunings,

gmi±1 are Clebsch-Gordan coefficients, and γ is the excited state linewidth; mi tracks

the state reached by atom i through possible spontaneous emissions. From Eq. (3.3),

oscillation at the ground -state frequency ±δg is passed to the probability amplitudes

for emitting a second H-mode photon through |b′′i 〉 and |a′j〉|b′i〉 in Eq. (3.2); note

that |b′i〉 is a source term driving the equation of motion for |b′′i 〉 (the blue wavy lines
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plus π-excitation in Fig. 3.1a). Only the amplitude and phase, but not the frequency

of the oscillation, will be affected by a detuning of the drive from the atom.

The probability for emitting a second H-mode photon contains a term pro-

portional to 〈b′′i |b′′i 〉, summed over all surviving entangled atoms. It accounts for

the scattering of a first and second photon by the same atom and shows the quan-

tum beat introduced above. There is also a term computed from the norm of

|a′j〉|b′i〉+ |a′i〉|b′j〉, i 6= j, which adds probability amplitudes for “a first photon from

atom i and a second from atom j,” and “a first photon from atom j and a second

from atom i.” If the scattered fields were classical, Ebi at time t and Eai at time t+ τ ,

one would have the intensity |Eaj Ebi +Eai Ebj |2, where the interference 2Re(Ea∗j EbjEb∗i Eai )

disallows assignment of the first detection (superscript b) to the intensity of either

source (similarly the second). An assignment may be made in principle, however,

since one and only one atom changes its ground state when the photon is detected.

The change could be seen if one looked, thus providing “which-path” information.

As we do not look, the two quantum paths, “atom i then j” and “atom j then i”,

interfere—after a second detection both atoms have changed state, so the “which-

path” information is erased. This interference also creates a quantum beat, as a

term analogous to the Hanbury Brown and Twiss thermal bunching peak [45], or to

the beating of light from independent atoms observed in Ref. [61].
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Figure 3.3: Intensity correlation function of the H mode for 4–6 photons
in the V mode (when no atoms are present) and a 5G magnetic field: a)
N̄ = 0.2 and b) N̄ = 2.0.
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3.3 Measurements

Figure 3.3a displays a measured correlation function at a magnetic field of 5G,

with a beat frequency of 4.9MHz. The V mode is populated with 4–6 photons, on

average, when no atoms are present, and the atomic flux corresponds to N̄ ≈ 0.2

effective maximally coupled atoms; most of the time there are no atoms well-coupled

to the mode [53]. The oscillation has low visibility and sits atop a raised Gaussian

background whose correlation time is given by the transit time of an atom (≈ 4µs).

The dominant beat for small N̄ is that arising from the emission of two photons

by the same atom (see Fig. 3.9c). Figure 3.3b displays the measured correlation

function with N̄ larger by a factor of 10 but otherwise similar conditions. The beat

visibility is improved. The background is also removed, evidence that there is now

an equal (at least) two-atom quantum beat (see Fig. 3.9d). The beat frequency

is reduced to 4.7MHz, an indirect effect of increased absorption by the additional

atomic flux, which reduces the V -mode photon number—by a factor of two—and

thus also the light shifts. A detailed study of light shifts is presented in Chapter 4.

Figure 3.4 shows a similar measured correlation function for a magnetic field of

4 G (A) and its calculated FFT power spectrum (B). The main peak near 3.5 MHz

corresponds to the quantum beat resonance. A smaller peak at half this frequency

is also visible, the result of homodyne interference with drive light mixed in by

cavity birefringence (see discussion below). The small sidebands on the main peak

correspond to a slight modulation of the beat envelope visible in (A). This is the

result of the small (1–2◦) deviation from normal incidence at which the atomic beam
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Figure 3.5: Evolution of g(2)(τ) with increasing magnetic field.

traverses the cavity mode standing wave, resulting in a sinusoidally varying value

of g and amplitude modulation in the spontaneous emission rate. (This is the same

modulation envelope from Fig. 2.7.)

Figure 3.5 illustrates the change of the autocorrelation function with increas-

ing magnetic field. The beat frequency increases while the envelope from the atomic

transits stays constant. The beat visibility decreases for large magnetic field. Fig.

3.6 shows the effect of stronger driving on the beats. The amplitude of oscillation

damps until at high drive only a thermal bunching peak remains. At even higher

drives this peak also disappears, the result of the larger fraction of coherent light in

the count rate, due to cavity birefringence and possibly the splitting of the sponta-
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Figure 3.7: Evolution of the quantum beat as V -mode light is mixed with
the H mode. Upper and lower extremes correspond to approximately six
times more detector counts from the V mode than spontaneous emission.
The parameters are 1.2 photons in the V mode, a magnetic field of 4G,
and N̄ = 1.

neous emission spectrum with strong driving. The mechanism for the disappearance

of the beats in these two figures will be explained in Chapter 4.

Figures 3.7 and 3.8 illustrate the change in the observed beat when the po-

larization presented to the detector is not taken orthogonal to the polarization of

the drive but is allowed to rotate by a few degrees. The rotation is controlled by

changing the angle of the HWP placed between the cavity and the PBS (Fig. 3.1b).

This mixes a small amount of drive light with the scattered light. With increas-

ing fraction of drive light, the beat is eventually dominated by a homodyne term

(Fig. 3.9e) arising from the correlation of a photon scattered into the H mode with

a photon from the drive; thus, as in the two-atom case, interfering time orders yield

a quantum beat. This beat oscillates at half the frequency and allows the correla-

tion function to dip below one. Generally, some drive light is coupled into the H
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mode through a small birefringence of the cavity mirrors. In Fig. 3.7, the evident

asymmetry with respect to angle is probably due to a small residual magnetic field

component in the direction of the cavity axis.

Quantum trajectory simulations agree well with the measurements. Figure 3.9a

displays a computed correlation function overlaying the data of Fig. 3.3b. A mean

velocity of 22 m/s fits the decay of coherence well. Other parameters, such as the

fidelity of the optical pumping, atomic beam tilt, and background from birefringence

or elsewhere are more difficult to accurately determine (no background correction

is made to the data). Note that with a background light amplitude β from birefrin-

gence, the post-detection state is |ψ′〉 + β|ψ〉, and β carries noise from the atomic

beam and spontaneous emission (absorption on the V mode). Plausible parameters

are used for the plots of Fig. 3.9, with the quality of the fit primarily determined by

the atomic beam density, which controls the relative size of the one- and two-atom

quantum beats, and the strength of the drive, which controls the level of sponta-

neous emission. For the parameters of Fig. 3.9a, an atom passing near the cavity

axis (within half a mode waist) typically undergoes ∼ 10 spontaneous emissions

to non-cavity modes during its transit, yet the coherence, merely passed between

different mi-multiplets, is preserved. In contrast, spontaneous emission decoheres

an excited-state beat.

Figure 3.9b displays an example of a correlation function with mixed drive light

(as in Fig. 3.7), together with its breakdown into three contributing quantum beats:

one-atom interference (frame c), two-atom interference (frame d), and homodyne

interference (frame e). The pieces lie in one-to-one correspondence with known
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terms in the intensity correlation function for a source comprised of many scatterers

and a coherent background, e.g. Eq. (11) of [46], where the correlation function is

the sum of a single-atom term, g
(2)
A (τ), two-atom term, |g(1)

A (τ)|2, and a homodyne

term, Re[g
(1)
A (τ)].
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Chapter 4

Backward Light Shifts and Quantum Jumps

4.1 Introduction

Spontaneous emission is a fundamental damping mechanism for coherence

stored in optically driven atoms [72]. At random intervals, the atomic dipole be-

tween ground and excited energy levels disappears in a sudden projection onto a

single state, an event referred to as a “quantum jump” [12]. Under certain condi-

tions quantum jumps are directly observable in the measurement record, as when an

atom jumps intermittently between “bright” and “dark” states [73, 74]; experimen-

tal measurements of switching in atomic [75, 76, 77] and photonic [8] systems provide

clear visualization of the discrete nature of the dynamics. Although quantum jumps

often bring decoherence and spectral broadening–they give breadth to the natural

linewidth of resonance fluorescence–certain coherences may also be preserved or even

created in these processes under appropriate conditions [58, 65].

In contrast to the dynamical energy changes associated with quantum jumps

in a driven atom, light coupled to an atomic transition can also induce a structural

change in the energy levels through the AC Stark shift [78]. The energy eigenvalues

move in a direction determined by the sign of the light detuning from resonance,

but populations and coherences among the levels are preserved. For example, the

ground states of Fig. 4.1 exhibit equal but opposite AC Stark shifts when the laser
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is tuned halfway between the two π transitions; the energy of |g+〉 decreases and the

energy of |g−〉 increases, reducing the ground-state energy separation (a negative

differential light shift.) When preservation of coherence is paramount, quantum

state manipulation with lasers is typically performed far from resonance, where the

AC Stark shift is large but the spontaneous emission rate is small [79, 80]. Perhaps

for this reason, the evolution of coherence in the opposite regime, where AC Stark

shifts coexist with a large spontaneous emission rate, has not been exhaustively

investigated.

In this chapter we present measurements on a system near resonance where

high rates of spontaneous emission and quantum jumps not only preserve but dy-

namically modify a coherence, effectively changing the sign of the ground-state differ-

ential light shift of the configuration illustrated in Fig. 4.1. Our analysis generalizes

a decoherence mechanism in Rayleigh scattering recently reported in the literature

[81]. We show that it encompasses a coherent as well as incoherent aspect, depending

on the size of the detunings.

4.2 Experimental system

We measure differential light shifts in a beam of cold 85Rb atoms passing

through an optical cavity, using a ground-state interference technique [58]. A verti-

cally polarized cavity mode, V , is weakly driven with coherent light at 780 nm and

oriented with polarization vector parallel to a weak magnetic field (see Fig. 4.2).
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Figure 4.1: Four-level atom with unequal Zeeman shifts in the ground
(∆g) and excited (∆e) states. A coherent field α is resonant with the un-
shifted transition between ground and excited states (dashed lines) and
drives the two π transitions with equal coupling constants g. σ transi-
tions (not shown) allow the spontaneous creation of an initial coherence
between the ground states, starting from an unshifted and driven m = 0
to m′ = 0 transition.

PBS

Magnetic field 

BS

APDsV
H

Figure 4.2: Schematic of the apparatus for measuring g(2)(τ), with a
single atom represented in green and the magnetic field inside the cavity
aligned to the exciting polarization; PBS: polarizing beam-splitter, BS:
beam-splitter, APD: avalanche photodiode.
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Photons in V excite π transitions in the atoms between the F = 3 and F ′ = 4

manifolds, and also cause light shifts when a detuning exists between a transition

frequency and the laser frequency. A degenerate but horizontally polarized mode,

H, collects photons emitted spontaneously on σ transitions between the same two

manifolds; these photons have a bandwidth similar to that of the cavity, and can be

distinguished from those of the drive by polarization. Detection of a photon from H

spontaneously creates a coherent superposition among the magnetic ground states,

and conditional detection of a second photon from H reads out the coherence. This

setup enables a direct measurement of the Zeeman energy splitting of the ground

states as the frequency of a long-lived quantum beat in the intensity autocorrela-

tion function g(2)(τ). The measurement is sensitive to a differential light shift of

the ground states, which appears as an intensity-dependent change in the beat fre-

quency; and also to decoherence of the spontaneously-created superpositions, which

appears as a broadening of the resonance in the power spectrum of g(2)(τ).

Examples of the beat signals taken from a full quantum Monte Carlo simulation

of our system appear in Fig.4.3, and from recorded data in Fig.4.4. Both show the

frequency of oscillation increasing as a function of average photon number in V ,

evidently the result of a light shift. However, this behavior is contrary to that

expected from the AC Stark shift; our system roughly corresponds to the situation

depicted in Fig. 4.1, since most atoms are in a superposition of the m = ±1 ground

states while the laser is resonant with the unshifted m = 0 to m′ = 0 transition.

Stronger driving rapidly damps the coherence, bringing faster decay times to the

oscillations.
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Figure 4.3: Quantum Monte Carlo simulation of intensity autocorrela-
tion signal from H for four different photon numbers n in the driven
mode V . (B) Composite experimental autocorrelation data as in (A)
with amplitude color scaled to show detail.
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Figure 4.4: Composite experimental autocorrelation data as in Fig. 4.3
with amplitude color scaled to show detail.
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4.3 Theoretical model

We explain the origin of the light shifts and damping with the four-level atom

shown in Fig. 4.1, using the quantum trajectory formalism [12]. Our analysis applies

generally to any quantum system of this type and does not explicitly require a cavity,

which essentially provides a spatial mode for the optical excitation and detection.

The system is prepared at time t = 0 in the ground-state superposition |ψ〉 =

1√
2
(|g−〉 + |g+〉). (This occurs spontaneously in our apparatus after detection of a

single photon from H.) The weak coherent drive couples the ground and excited

states, with coefficients satisfying the equations:

ċe± = −γ
2
ce± ∓ i∆ece± + gαcg±,

ċg± = ∓i∆gcg± − gα∗ce±, (4.1)

where gα is the Rabi frequency, and ∆g and ∆e are ground and excited-state Zeeman

shifts. The ground-state superposition evolves in time as:

|ψg(t)〉 =
1√
2

(ei(∆g+∆AC)t|g−〉+ e−i(∆g+∆AC)t|g+〉), (4.2)

where

∆AC = − g2|α|2∆

(γ/2)2 + ∆2
(4.3)

is the ground-state AC Stark shift obtained from diagonalizing Eqs. 4.1 to lowest

order in g2|α|2, and ∆ = ∆e −∆g is the magnitude of the laser detuning from each

transition as depicted in Fig. 4.1. The differential ground-state AC Stark shift is

2∆AC , and it reduces the ground-state Zeeman splitting.
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Under weak driving and with no quantum jumps, the amplitudes in Eq. 4.2

drive a steady-state superposition in the excited state:

|ψe(t)〉 =

(
gα√

2

)(
ei(∆g+∆AC)t

γ/2− i∆
|e−〉+

e−i(∆g+∆AC)t

γ/2 + i∆
|e+〉

)
. (4.4)

The amplitudes of Eq. 4.4 oscillate at the ground-state splitting; the excited-state

splitting enters only through the factors γ/2± i∆, which imply a phase shift. Inter-

ference of the amplitudes in Eq. 4.4 produces the quantum beats which we measure.

We show now that spontaneous emission in the form of quantum jumps adds

both a coherent and incoherent contribution to the time evolution, changing the

measured differential light shift from 2∆AC to −2∆AC , while at the same time

decohering the ground-state superposition. (Here for simplicity we consider only

π jumps occurring in between the measured σ emissions; additional σ jumps serve

only to pump the coherence elsewhere in the manifold, changing Rabi frequencies

and adding additional detunings.) At jump rate Γ = γg2|α|2/((γ/2)2 + ∆2), the

driven dipole between ground and excited states turns off and the amplitudes of Eq.

4.4 are transferred to the ground states; in place of Eq. 4.2:

|ψg(t)〉 =
1√
2

 γ/2 + i∆√
(γ/2)2 + ∆2

ei(∆g+∆AC)t|g−〉+
γ/2− i∆√
(γ/2)2 + ∆2

e−i(∆g+∆AC)t|g+〉

 ,
(4.5)

where the ground-state superposition has acquired a phase advance. The process

repeats for additional quantum jumps, so the phase advance accumulates over time.

For a jump rate Γ, we average the |g+〉〈g−|-coherence against a Poisson distribution

of mean Γt, to obtain the expectation value of the ground-state coherence:

ρg+,g− = e−2i(∆g+∆AC)t1

2

∞∑
n=0

(
(γ/2− i∆)2

(γ/2)2 + ∆2

)n
(Γt)n

n!
e−Γt
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= e−2i(∆g+∆AC)t1

2
e−(Γdecoh+i2∆jump)t. (4.6)

The imaginary part of the exponent contains a new term, −2∆jumpt, where

∆jump = Γ
∆γ/2

(γ/2)2 + ∆2
= 2g2|α|2∆

(
γ/2

(γ/2)2 + ∆2

)2

. (4.7)

This term represents an additional frequency shift arising from the mean rate of

phase accumulation from quantum jumps. It is opposite in sign to the AC Stark

shift brought by the same driving laser (Eq. 4.3), and bigger than the AC Stark

shift by a factor of two when the detuning is small (i.e. when ∆ � γ/2). The net

differential ground-state light shift in this case becomes

2∆light = 2(∆AC + ∆jump) ≈ −2∆AC , (4.8)

with the sign of the differential AC Stark shift effectively reversed. The effect

requires at least the structure of a four-level atom, since jumps bring only an unob-

servable overall phase shift in a two-level atom.

The exponent in Eq. 4.6 also contains a damping term, −Γdecoht, which deco-

heres the quantum beats at a rate

Γdecoh = Γ
2∆2

(γ/2)2 + ∆2
= 2g2|α|2γ

(
∆

(γ/2)2 + ∆2

)2

. (4.9)

The origin of the decoherence is phase diffusion of the ground-state superposition,

which accompanies the net phase drift that constitutes the frequency shift. Both

aspects are expected from the stochastic nature of the jump process. Noting that

Γdecoh/(2∆jump) = 2∆/γ, we may speak of a well-resolved frequency shift when

∆ � γ/2. When this condition is not met, a single jump can result in a phase
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change of π, smearing out the fringes over multiple measurements. In general, we

require the product of the jump number fluctuation with the phase shift per jump

to be much less than π in order to maintain coherence in the averaging process.

Increasing the magnetic field (∆) or the drive strength (Γ) causes this product to

increase; this is the origin of the beat decoherence presented in Chapter 3.

The above analysis is valid for a four-level atom with constant coupling strength

to a weak coherent drive. Our experimental system brings many additional com-

plications. These include optical pumping within the full level structure of 85Rb, a

finite interaction time with the laser and fluctuations in coupling strength due to

the atomic beam traversing the cavity mode, (weak) multi-atom and cavity effects,

and saturation behavior with strong driving. For these reasons we implement the

theory as a full quantum Monte Carlo calculation in order to make quantitative

comparison with our measurements [58].

4.4 Data analysis

We analyze the data by calculating the Fast Fourier Transform (FFT) am-

plitude spectrum of each measured g(2)(τ) and extracting the center frequency and

FWHM of each ground-state beat resonance peak. Figure 4.5 shows the weak drive

region for four different magnetic field values, with linear fits to the data as dashed

lines; the slope increase is approximately linear with magnetic field (detuning). We

extract the natural (non-light-shifted) Larmor frequency for each magnetic field

value by extrapolating this portion of data to n=0. This point corresponds to the
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Figure 4.5: Center frequency of beat resonance at low photon number for
four magnetic field values. The dashed lines are linear fits to the data
used to extrapolate the unshifted beat frequency. In all the following
figures, error bars show ± one standard deviation confidence intervals
of Voigt profile fits to the resonance peaks. Experimentally determined
photon numbers have an uncertainty of 20%.
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Figure 4.6: Center frequency of beat resonance versus photon number
in V from FFTs of measured data (red filled triangles) and simulations
(blue open squares). The solid line is a fit to a simple saturation func-
tional form.

unshifted beat frequency 2∆g = 2µBBmag/3, where µB=1.4 MHz/G is the Bohr

magneton and Bmag is the magnitude of the magnetic field. From this frequency we

extract the value of Bmag and the detuning, ∆ = ∆g/2.

Figure 4.6 tracks the frequency shift (red filled triangles) for the data of Fig.

4.4, where a shift of 0 MHz corresponds to the natural Larmor frequency of 4.7 MHz

at 5 G magnetic field. The results taken from the quantum Monte Carlo calculations

are plotted as blue empty squares. The difference between the two is primarily due
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to the experimental uncertainty in intracavity photon number.

We find that despite the complications, the data points in the high intensity

region are described well by considering saturation of the jump rate as in a two-level

atom, i.e. Γ → (γ/2)(n/nsat)/(1 + n/nsat), where nsat ≡ γ2/(8g2) is the saturation

photon number for a two-level atom in a cavity. In the absence of optical pumping

effects, the effective saturation photon number for an atom in the m = ±1 ground

states of our system should be nsat = γ2/(3g2
max) = 5.7 photons, where gmax is the

peak value of g at the center of an antinode of the cavity Gaussian standing wave

mode function, and a factor of 3/8 has been included to account for the averaging

of g2 over the mode structure.

To match the frequency shift data in Fig. 4.6, we use the simple saturation

form for Γ together with Eq. 4.8 at lowest order in ∆:

2∆light =
Ashift∆(n/n′sat)

1 + n/n′sat

.

We expect the effective saturation photon number n′sat to be larger than nsat = 5.7 as

optical pumping puts the population in states with weaker coupling to the mode and

larger detunings. The scale factor of Ashift is to include any other optical pumping

and detuning effects. The two-parameter least-squares fit shown by the solid line

in Fig. 4.6 gives Ashift = 0.81 ± 0.01, n′sat = 9.2 ± 0.2, with a reduced χ2 = 0.32.

The statistical error bars in all the figures are the 68.3% confidence intervals for

the given parameter (center frequency or linewidth) from a least-squares fit of each

FFT resonance peak to a Gaussian profile.

Figure 4.7 shows the onset of decoherence with stronger driving, as extracted
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Figure 4.7: FWHM of beat resonance versus photon number in V for
measured data (red filled circles) and simulations (blue open squares).
The solid line is a fit to the data for a simple saturation functional form.
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from the widths of the resonance peaks from measured data (red filled circles) and

from the quantum Monte Carlo simulation (blue empty squares). The zero-photon

linewidth (0.23 MHz) arises from the finite transit time of the atoms traversing the

Gaussian cavity mode. To match the data, we apply a similar saturation form as

above to Eq. 4.9, at lowest order in ∆:

Γdecoh =
Awidthγ(n/n′sat)(2∆/γ)2

1 + n/n′sat

.

We convolve this Lorentzian width with the Gaussian FWHM arising from the

atom transits, 2Γgauss = 2π × 0.23 MHz, in a Voigt profile, using the numerical

approximation:

2Γvoigt ≈ 0.5346(2Γdecoh) +
√

0.2166(2Γdecoh)2 + (2Γgauss)2.

A two-parameter least-squares fit to the composite width (solid line) gives Awidth =

1.31±0.03, n′sat = 14.2±0.5, with a reduced χ2 = 1.6. Fig. 4.8 shows the broadening

and shift of three sample resonance peaks from the experimental data.

The results of the four-level model can be extended to include a detuning of

the drive laser from the unshifted (zero magnetic field) transition frequency (dashed

lines in Fig. 4.1), denoted below as δ. The formulas for the differential ground-state

light shift and decoherence rate become:

2∆light = 2(∆AC + ∆jump) = 2g2|α|2∆
(γ/2)2 −∆2 + δ2

[(γ/2)2 + (δ + ∆)2][(γ/2)2 + (δ −∆)2]

(4.10)

and

Γdecoh = 2g2|α|2γ ∆2

[(γ/2)2 + (δ + ∆)2][(γ/2)2 + (δ −∆)2]
. (4.11)
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Figure 4.9: Sensitivity of light shift and linewidth to drive detuning
δ from the central (zero magnetic field) transition frequency, with 5
G magnetic field and n =2 photons in V . Blue circles show shift in
the center frequency from the zero-intensity value of 4.6 MHz, and red
squares show the resonance FWHM. The solid lines are two-parameter
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confidence intervals of Gaussian profile fits to the resonance peaks, and
for the case of the linewidths are smaller than the squares used to plot
the points.
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Figure 4.9 presents the predicted and measured detuning dependence at a

magnetic field of 5 G. The photon number inside the cavity is kept constant at

n = 2 photons, compensating for the off-resonant response of the cavity and atoms.

The frequency shift (blue circles) decreases in both directions away from resonance.

We fit the data to Eq. 4.10 (blue line) with an amplitude scaling factor Ashift, while

keeping the same value obtained before for n′sat, which effectively scales g2 for the

multi-level atomic structure. We find Ashift = 0.71± 0.01 with a reduced χ2 = 7.6,

due to a poor fit at large detuning and some possible fine structure at small.

The resonance peak width (red squares) presents a similar structure, reducing

to the limiting value of 0.20 MHz (atom transit width) at a detuning of approx-

imately 10 MHz, where the differential phase shift from each quantum jump is

approximately zero. The red line is a fit to Eq. 4.11 convolved with transit broad-

ening, with amplitude scaling as a free parameter. We find Awidth = 0.64± 0.01 for

Eq. 4.11, with an order-of-magnitude discrepancy between the statistical error bars

from the resonance peak fits and the fluctuations about the theoretical form.

4.5 Comparisons

Our results generalize the work of Uys et al. [81], who analyzed the effect

of Rayleigh scattering on the decoherence of trapped ion qubits. Their result is

recovered from Eq. 4.11 in the limit ∆ � γ/2, i.e. under conditions where jumps

rarely occur but each carries a π phase shift, fully destroying the ground-state

coherence. More generally the character of the decoherence differs depending on
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the relative sizes of ∆, δ, and γ/2.

We have presented in the above an analysis of ground-state superpositions

driven weakly by coherent light. A related situation was investigated by Cohen-

Tannoudji [82, 83], who studied atoms excited by broadband thermal light. In this

case, the ground-state superposition (induced by an external RF field) jumps at

random times completely to an excited-state superposition, with no coherent dipole

between ground and excited states, and the Larmor frequency changes from 2∆g to

2∆e. Remaining in the excited state for an average time of 1/γ, the relative phase

advance per jump is thus 2(∆e −∆g)/γ = 2∆/γ. This should be compared to the

coherent driving case, where the relative phase advance per jump is 4∆/γ (from Eq.

4.5 with ∆ � γ/2.) The extra factor of two arises because the damping rate for

the dipole is γ/2, in contrast to the damping rate for the population, which is γ;

however, there is no AC Stark shift for broadband light near resonance, so the net

light shift in the two cases is exactly the same when δ = 0. This is a remarkable

result, considering that the situations differ completely in detuning dependence and

require entirely separate physical descriptions. We also note that the effect with

coherent drive is five orders of magnitude larger than that observed previously with

thermal light [82, 84, 85] and thus may need to be considered in some applications.
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Chapter 5

Conclusions and Future Directions

The experimental results reported in this thesis all rely on conditional mea-

surements of light from one mode of an optical cavity that probe the atom-cavity

interactions occurring in the other mode. Although the basic concept of the appa-

ratus is simple, the complexity of the components–in particular the presence of an

atomic beam, multi-level atoms, and a mode-matched source of background light–

has allowed observation of several surprising effects that may not appear in simpler

systems, e.g. in ones optimized for quantum information applications and precise

state control.

We demonstrated in Chapter 2 that a two-mode cavity QED system can func-

tion as a high-fidelity detector of single atoms. Our method can operate with a wide

range of photon fluxes and works for atoms traveling as fast as 20 m/s across the

mode. Because the cavity is frequency-selective and has a short lifetime (approxi-

mately equal to the atomic excited-state lifetime), the method guarantees that the

atom is in the F = 3 hyperfine ground state immediately after the detection of the

second photon. The scheme is sensitive enough to work without strong coupling of

the cavity and atoms, meaning that the detection volume can be kept large. We

also demonstrated how autocorrelation measurements of the emitted light show the

underlying dynamics of the atom as it traverses the Gaussian mode of the cavity
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and encounters the standing wave.

In Chapter 3 we presented observations of ground-state quantum beats in the

spontaneous emission from a continuously driven atomic ensemble. Contrasting de-

terministic manipulations [62, 63], we demonstrated the spontaneous creation and

readout of ground-state coherence, where in the spirit of Forrester et al. [61], we re-

trieve a hidden beat from the fluctuations. Our theoretical treatment via a quantum

Monte Carlo calculation, which is in good agreement with the measurements, de-

composes the signal into a one-atom beat, a two-atom beat (interference of emission

time order), and a homodyne beat due to interference with a drive photon mixed

through birefringenece.

In Chapter 4 we reported evidence of repeated quantum jumps modifying the

spontaneously-generated coherence without destroying it, as a net drift guiding a

stochastic phase diffusion. We presented a microscopic quantum trajectory model

that gives an intuitive explanation of the light shifts, and which also explains the

state decoherence at large detuning reported in Ref. [81]. Moreover, our results sug-

gest the tantalizing possibility of using dissipation as an additional tool for coherent

control.

Future upgrades to the experimental apparatus are planned. These include

adding additional viewports to the cavity chamber to allow for better control of

atomic state initialization as well as to give optical access to the cavity from the

side; building a new cavity with slightly stronger coupling strength and much smaller

absorptive photon losses; and implementing optical focusing of the atomic beam to

increase the density of atoms in the cavity. Details are given in Ref. [18].
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We plan to study conditional quantum feedback in this system, similar to that

first demonstrated in Ref. [86], in which the conditional evolution of the atom-cavity

system was frozen by application of a control pulse. Compared to the time scale

of coherence in that experiment (set by the atom and cavity lifetimes), we have

access to ground-state coherences that can last as long as the atom remains in the

cavity, which relaxes some of the technical requirements for conditional control. We

discuss details of one possible implementation in Ref. [87]. Other possibilities may

arise with the additional optical access to the side of the cavity, such as measuring

the correlation functions conditioned on a click directly from the (non-collective)

atomic emission; this spontaneous emission arises from the same quantum jumps

that give the measured light shifts. Another possibility is direct optical manipulation

of the atomic states through the side of the cavity, using the output of one of the

modes or some auxiliary control field. The flexibility of the system presents many

opportunities, some of which are bound to yield even more surprising results.
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