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Chapter 1: Introduction 

 The past decade has seen growing attention in designing and developing 

cognitive assessments that tap into and are informed by cognitive processes that 

students engage in during learning or test-taking (Ercikan & Pellegrino, 2017). The 

advent of computer technology and availability of rich data have concurrently 

brought forth opportunities for a range of approaches to modeling response and 

response process data that hold promise for building a holistic understanding of the 

processes that test-takers engage in and strategies they use as they interact with the 

assessment tasks and test-taking environment. Cognitive diagnostic models (CDMs) 

configure assessment tasks as functions of component skills and relate their features 

to skills required for performing them through a Q-matrix (Leighton & Gierl, 2007; 

Mislevy, 2018; Nichols, Chipman, & Brennan, 1995; Rupp, Templin, & Henson, 

2010). Latest advances in cognitive diagnostic modeling have seen the integration of 

the response process data in the modeling of responses for cognitive diagnosis (Jiao, 

Liao, & Zhan, 2019; Zhan, Jiao, Liao, 2018a). This joint modeling approach, 

however, has largely been limited to response time (RT) data only, although other 

relevant data sources can potentially inform ability estimation and diagnosis of 

students’ mastery status on the skills and attributes of interest. One recent example of 

integrating response process data other than RT is the integration of answer changes 

(ACs) data in cognitive diagnosis modeling, an approach validated by an empirical 

data analysis (Jiao, Ding, & Yin, 2020). The model, however, does not address local 

dependencies incurred by testlets. Testlets are widely used units of test construction 

in educational assessments for assessing skills and competencies across domains. 
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Motivated by these developments, this dissertation research proposes to expand on 

current models of responses and response time (RT) by incorporating answer changes 

(ACs) as an additional supplemental data for testlet-based cognitive diagnostic 

assessments.  

1.1 Statement of the Problem 

 CDMs are process models for assessment tasks that closely resemble the 

knowledge, patterns, and rules people use when responding to the tasks (Kane & 

Mislevy, 2017).  CDMs structure assessment tasks around selected attributes or skill 

sets sampled from a narrowly-defined domain of interest and model item responses as 

functions of an assembly of required skills, based upon which process-model 

interpretations and inferences are drawn regarding what examinees can or cannot do 

and are often at a finer grain size compared to summary statements. As psychometric 

models, specific CDMs are multivariate discrete latent variable models which assume 

a theory of cognitive processes for the responses to the items. Examples include the 

deterministic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001; 

Macready & Dayton, 1977), the deterministic noisy “or” gate (DINO; Templin & 

Henson, 2006; Templin, 2016) and the linear logistic model (LLM; Hagenaars, 1993). 

CDMs are widely used in learning and assessment applications, particularly in 

formative assessments to understand students’ mastery or nonmastery of core skills 

and strategies of interest (e.g., Deonovic, Chopade, Yudelson, de la Torre, & van 

Davier, 2019; Leighton & Gierl, 2007; Rupp et al., 2010).  

 Advances in cognitive diagnostic modeling have seen a joint modeling 

approach integrating response and response process data from computer-based 
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assessments of student learning (Jiao et al., 2019; Zhan et al., 2018a).  This approach 

extends van der Linden’s (2007) hierarchical framework for modeling speed and 

accuracy to incorporate RTs in the modeling of response data for cognitive diagnosis. 

Compared to stand-alone CDMs such as the DINA model, the joint model of item 

responses and RTs improves attribute level and attribute profile level classification 

accuracy and yields more accurate and precise estimates of model parameters (Zhan 

et al., 2018a).  

 Response processes are the thought process, strategies, and behaviors of the 

examinees as they interact with assessment tasks (Ercikan & Pellegrino, 2017). In 

computer-based assessments, data on examinee response processes can be collected 

through response logs which document examinee interaction with stimulus materials 

and indicate which task elements are used and manipulated. Examples of response 

process data include RT (van der Linden, 2006, 2009), answer changes (ACs; Jeon, 

De Boeck, & van der Linden, 2017; Liu, Bridgeman, Gu, Xu, & Kong, 2015; 

Sinharay & Johnson, 2016; van der Linden & Jeon, 2012), eye-tracking (Cho, Brown-

Schmidt, Naveiras, & De Boeck, 2020; Oranje, Gorin, Jia, & Kerr, 2017; van Gog & 

Sheiter, 2010), and hint requests (Bolsinova, Deonovic, Attali, & Maris, 2020). RT as 

a widely used response process data records the lengths of time an examinee spends 

on an item or particular aspects of the item. Eye-tracking data, as another example, 

include traces of performance and thinking and points of gaze on the computer screen 

(Man & Harring, 2019). ACs are another type of response process data, the patterns, 

and outcomes of which are closely associated with test-takers ability level (Liu, 

Bridgeman, Gu, Xu, & Kong, 2015). As such, response process data can provide 
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information about examinees’ engagement with assessment tasks and the extent to 

which examinees utilize resources and information related to test items.  

 With the use of computer technology and digital devices becoming 

ubiquitous, rich response process data become readily available. The modeling of 

response process data is emerging and can be integrated with standard item response 

models. To date, however, response modeling incorporating process data other than 

RT is limited. The joint modeling approach proposed by Zhan et al. (2018a) and Jiao 

et al. (2019) illustrates the use of RT to improve parameter estimation and 

classification accuracy in CDMs. As discussed by Jiao et al. (2019), the effects of 

integrating response process data in the modeling of responses for cognitive diagnosis 

can be evident when a test is not ideally designed for cognitive diagnosis and can 

potentially improve model parameter estimation. A recent development in the joint 

modeling of response and response process data is the integration of ACs as an 

additional process data in the modeling of response and RT for cognitive diagnosis, 

an approach which is validated by analyses of empirical data (Jiao, Ding, & Yin, 

2020). The joint model of response, RT, and ACs proposed in this study, however, 

does not address local dependencies incurred by testlets. Testlet-based assessments 

are widely used in educational assessments for assessing skills and competencies at 

various levels and across domains. Studies have shown that models incorrectly 

assuming local item independence can result in biased parameter estimates (Yen, 

1993). Considering this, this dissertation research proposes to extend the joint 

modeling of response and response process data for cognitive diagnosis by integrating 
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both RT and ACs as process data to specifically account for the testlet design and 

examine their effects on model fit and parameter estimation.   

1.2 Purpose of the Study 

 This dissertation study proposes an extension of the joint model of response 

and RT for cognitive diagnosis (Jiao et al., 2019; Zhan et al. 2018a) by incorporating 

another type of response process data, ACs, as an additional data source in testlet-

based cognitive diagnostic assessments. Its primary purpose is to identify whether the 

inclusion of ACs can improve classification accuracy at the attribute and attribute 

profile level, model fit, and parameter estimation compared to the joint model of 

response and RT only.  

ACs, also called erasures or response revisions, refer to the fact that 

examinees, after making an initial decision, subsequently revisit the decision and 

revert to an alternative option as their best choice (Jeon, Deboeck, & van der Linden, 

2017). Patterns and outcomes of ACs are associated with examinee ability, with high-

performing examinees making more wrong to right changes and attaining greater 

score gains from making them compared to low-performing examinees (e.g., Jeon et 

al., 2017, Liu et al., 2015; Milia, 2007). ACs directly contribute to changes in 

response patterns. The inclusion of ACs as an additional response process data for 

cognitive diagnostic assessments thus may result in improved estimation of examinee 

ability and diagnosis of skills and strategies specified in the assessment blueprint.  

 This dissertation study additionally examines the effects of ignoring 

dependency of response and RT on model performance and parameter estimation in 

testlet-based cognitive diagnostic assessments. Testlets are units of test construction 
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that aggregate a group of test items around a common stimulus (Wainer & Kiely, 

1987). The use of testlets in educational assessments is a common practice and is 

likely to induce local response dependence, with responses to groups of items 

embedded within the same context. In joint models of response and RT, testlet design 

can additionally induce dependency among RT, resulting in local RT dependence. As 

fitting standard IRT models to testlet responses can produce overestimation of 

measurement precision, and biased estimation of item parameters, this dissertation 

research proposes to investigate how the exclusion of testlet effects in joint models of 

responses, RTs, and ACs in testlet-based cognitive diagnostic assessments affects the 

performance of the proposed joint models in comparison with alternative comparison 

models and the estimation of model parameters.  

 This research conducts a simulation study to investigate the effects of 

including ACs in addition to RTs and of accounting for local response and RT 

dependence on model performance and parameter estimates in the joint model of 

responses, RTs, and ACs in testlet-based cognitive diagnostic assessments. It 

manipulates three factors identified as likely contributing to systematic variation in 

parameter estimates: sample size, correlation between speed and ability, and testlet 

effect size. These factors simulate the conditions in the real world educational tests 

that likely vary by the magnitude of the testlet effects and by the time constraints 

identified as likely contributing to different levels of correlation between speed and 

ability (van der Linden, 2009).  

 The simulation study in this dissertation research is guided by the following 

research questions:  
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1. How does the proposed joint model of response, RT, and ACs for testlet-based 

cognitive diagnostic assessment perform compared to testlet-based joint model of 

response and RT in terms of model fit, attribute and attribute profile classification 

accuracy, and parameter estimates?  

2. How do the factors manipulated in this study, i.e., correlation between speed and 

ability, testlet effects size, and sample size, affect comparisons of the joint model 

of response, RT, and ACs for testlet-based cognitive diagnostic assessment and 

testlet-based joint model of response and RT? 

3. How does the proposed joint model of response, RT, and ACs accounting for 

testlet effects perform compared to the alternative model ignoring these effects in 

terms of model fit, attribute and attribute profile classification accuracy, and 

parameter estimation? 

4. How do the factors manipulated in this study, i.e., the correlation between speed 

and ability, the magnitude of the testlet effects, and the sample size, affect 

comparisons of the joint model of response, RT, and ACs accounting for testlet 

effects and the joint model of response, RT, and ACs ignoring testlet effects? 

 To evaluate and validate the proposed joint model, this research conducts an 

analysis of an empirical dataset consisting of the response, RT, and ACs of 71 

examinees for a standardized large-scale mathematics assessment. The empirical data 

analyses are guided by research questions 3 to identify the best-fitting model, based 

upon which parameter estimates, mixing proportions, and attribute patterns are 

summarized.   
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1.3 Significance of the Study 

 As noted earlier in this chapter, capacities for response and response process 

data collection have significantly expanded as computer technology becomes 

increasingly integrated into learning and assessment practices, and computer-based 

assessments have become the norm rather than the exception. Through the use of 

response logs and other data collection techniques, rich process data such as RT, eye-

tracking data, ACs, and examinees’ use of help features become readily available, 

promoting considerations of new approaches to modeling and integrating different 

types of process data. Response modeling incorporating process data other than RT is 

emerging and yet is very limited. Methodologically, a modeling approach integrating 

response data and different types of process data for cognitive diagnosis can generate 

improved parameter estimates and diagnosis of examinees’ mastery status on the 

skills and strategies assessed by the educational tests compared to existing models 

that only consider response and RT. To this end, this dissertation study as an 

extension of the joint model of responses and RT by Jiao et al. (2019) and Zhan et al. 

(2018a) to incorporate a second type of process data, ACs, for cognitive diagnosis 

will likely serve as a modeling approach to incorporating multiple response process 

data in the modeling of responses for cognitive diagnosis, with possible extensions to 

accommodate other types of response process data and psychometric models other 

than CDMs.  

 Moreover, the proposed joint model distinguishes from existing models by 

explicitly accounting for testlet effects likely resulting from groups of items nested 

within the same content area and sharing the same stimulus and examines the effects 
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of fitting standard joint models of response and response process data on model 

performance and parameter estimation in testlet-based cognitive diagnostic 

assessments. van der Linden’s (2007) hierarchical modeling framework assumes 

independence of response given ability and of RT given speed, and independence 

between response and RTs given examinees’ speed and ability. In reality, the 

assumption of local independence of response and RT are unlikely to be tenable given 

the prevalent use of testlets as units of test construction in educational assessments. 

As such, by explicitly accounting for testlets effects in testlet-based cognitive 

diagnostic assessments and examining their effects under simulated conditions that 

resemble real world scenarios, the proposed model will likely demonstrate how the 

inclusion of testlet parameters will yield improved model fit, parameter estimates, and 

classification accuracy at the attribute and attribute profile level.  

 Finally, as stated in the Standards for Educational and Psychological Testing 

(American Educational Research Association, American Psychological Association, 

& National Council on Measurement in Education, 2014), “validity refers to the 

degree to which evidence and theory support the interpretations of test scores for the 

proposed use of tests. The process of validation involves accumulating relevant 

evidence to propose a sound scientific basis for proposed score interpretations” (p.11, 

as cited in Kane & Mislevy, 2017). Advances in the use of computer technology for 

educational assessments expand evidence accumulation as going beyond traditional 

summary scores indicating overall achievement in a specific domain to encompass 

evidence garnered from supplemental data such as RT and log files. Fine-grained 

inferences regarding examinees’ use of component skills and strategies as enabled by 
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CDMs modeling tasks as functions of component skills and abilities can be 

supplemented with additional response process data to support both trait 

interpretations and process-model interpretations of the meaning of test scores (Kane 

& Mislevy, 2017). In this regard, integrating additional process data in the modeling 

of responses in testlet-based diagnostic assessment is a step forward in extending 

validation of score meaning with supplemental response process data.   

1.4 Overview of the Chapters 

 This chapter describes recent advances in educational assessments and 

psychometric modeling that motivate this research study and states the purposes of 

this research and its significance. The following chapters are organized as follows. 

Chapter 2 is a comprehensive review of current approaches to cognitive diagnostic 

modeling and the modeling of testlet effects, RT, and ACs, and distinct frameworks 

for modeling speed and accuracy. This chapter additionally introduces the model 

estimation method to be used in this research: fundamentals of Bayesian inference, 

the Monta Carlo simulation method, and diagnostics for assessing model 

convergence. Chapter 3 proposes the joint model, describing its formulation and 

parameterization, and the design of a simulation study to investigate the impact of the 

manipulated factors on model performance and parameter estimates, and concludes 

with a description of an empirical study designed to evaluate and validate the 

proposed model. Results of the simulation study and empirical data analyses are 

presented in Chapters 4. This dissertation concludes with Chapter 5 discussing the 

results of the simulation study and empirical data analyses and addressing limitations 

of this research.  
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Chapter 2: Literature Review 

This chapter reviews approaches and methods for cognitive diagnostic 

modeling, and for modeling of RT, testlets, and AC patterns, which lays the 

foundation for the proposed modeling approach in Chapter 3. The first three sections 

review cognitive diagnostic models, testlet models, and RT models, with emphasis on 

the DINA model, the G-DINA model, the testlet response model (Wainer, Bradlow, 

& Wang, 2007), and van der Linden’s (2006) lognormal RT model. The fourth 

section reviews the methods for jointly modeling responses and RTs. The last section 

presents Bayesian MCMC method for parameter estimation of the proposed model 

and the rationale for employing this method.  

2.1 Cognitive Diagnostic Modeling 

Cognitive diagnostic models, also known as diagnostic classification models, 

restricted latent class models, structured located latent class models, or multiple 

classification latent class models, were originally a collection of models of within-

person production system to between-person measurement models characterized by 

coarser-grained attributes (Mislevy, 2018; Nichol, Chipman, & Brennan, 1995). 

Persons and tasks are described in terms of attributes, i.e., clusters or properties of 

knowledge and rules comprising a production system. Link functions such as identity, 

logit, or logarithmic determine the probability distributions for a person’s 

performance on a task given the person and task values with respect to the attributes 

(Mislevy, 2018). 
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1.1.1 Latent Class Analysis 

Specifically, latent class analysis (LCA) conditions response probabilities 

upon an unobserved latent categorical variable known as class membership 

(Macready & Dayton, 1977). This model is based upon three assumptions: a) 

response probabilities are class-specific and class-dependent; b) local independence, 

i.e., observed responses are independent given their class membership; and c) classes 

are mutually exclusive and exhaustive (von Davier & Lee, 2019). Mathematically, 

probabilities of response patterns in LCA are given as:  

𝑃(𝑋𝑟 = 𝑥𝑟) = ∑𝑣𝑐

𝐶

𝑐=1

∏𝜋𝑖𝑐
𝑥𝑖𝑟

𝐼

𝑖=1

(1 − 𝜋𝑖𝑐)
1−𝑥𝑖𝑟 (2.1) 

where 𝑋𝑟 and 𝑥𝑟 are the observed responses, 𝑥𝑖𝑟 is the response to item i,  𝜋𝑖𝑐 is the 

probability of a correct response to item i for examinees in class c, and 𝑣𝑐 is the 

mixing proportion, i.e., the proportion of examinees in class c. The joint probability 

of a particular response pattern is thus given as the product of the probability of a 

correct response and of an incorrect response across all items, assuming independence 

of item responses given class membership. This is weighted by the mixing proportion 

𝑣𝑐 of a given latent class and summed across all latent classes, giving the marginal 

likelihood of observed response patterns. An unrestricted LCA model of responses to 

i items generates 2i response patterns or latent classes, with 2i-1 mixing proportions 

and 2ii item parameters to be estimated.  

1.1.2 The DINA Model 

The deterministic inputs, noisy “and” gate (DINA) model is essentially a 

restricted latent class model (Macready & Dayton, 1977), and is considered the 
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foundation of several cognitive diagnostic models (Junker & Sijtsma, 2001). This 

model identifies latent response variables as   

𝜉𝑖𝑗 = ∏ 𝛼𝑖𝑘 = ∏𝛼
𝑖𝑘

𝑄𝑗𝑘

𝐾

𝑘=1𝑘:𝑄𝑗𝑘=1

(2.2) 

where 𝛼𝑖𝑘  indicates whether examinee i possesses attribute k and Qjk indicates 

whether attribute k is required for task or item j. Specific attributes required for 

correctly responding to an item is fixed a priori by a J×K Q-matrix where the J rows 

are items and K columns are attributes that the items are designed to measure 

(Embreston, 1984; Tatsuoka, 1995). In this matrix, the qjkth element yields a value of 

1 when a correct response to the jth item requires mastery of the kth attribute; 

otherwise it takes on a value of zero. The notation  𝜉𝑖𝑗  indicates whether examine i 

has all the attributes required for item j. Tatsuoka (1995) defines the latent vectors αi. 

= (αi1, αi2,…, αik ) as knowledge states, and the vectors 𝝃𝑖. = (𝜉𝑖1 , 𝜉𝑖2 , … , 𝜉𝑖𝑗) as 

representing a deterministic prediction of task performance based on each examinee’s 

knowledge state.  

 The Item Response Function for a given item is presented as follows:  

𝑃(𝑋𝑖𝑗 = 1|𝛼, 𝑠, 𝑔) = (1 − 𝑠𝑗)
𝜉𝑖𝑗

𝑔
𝑗

1−𝜉𝑖𝑗 (2.3) 

where 𝑠𝑗 = P(𝑋𝑖𝑗 = 0|𝜉𝑖𝑗 = 1) and 𝑔𝑗 = P(𝑋𝑖𝑗 = 1|𝜉𝑖𝑗 = 0). Item parameters  𝑠𝑗 

and gj , mnemonically termed slipping and guessing probabilities, are false negative 

and false positive rates for detecting 𝜉𝑖𝑗  from noisy observations Xij (Junker & 

Sijtsma, 2001).  𝜉𝑖𝑗  as a binary function of binary inputs yields a value of 1 if and 

only if all the inputs are 1s and functions as the “and” gate component combining 
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deterministic input 𝛼
𝑖𝑘

𝑄𝑗𝑘
. Assuming local independence, the joint probability of all 

responses is:  

𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗 , 𝑖, 𝑗|𝛼, 𝑠, 𝑔) = ∏∏[

𝐽

𝑗=1

(1 − 𝑠𝑗)
𝑥𝑖𝑗

𝑠𝑗
1−𝑥𝑖𝑗

]𝜉
𝑖𝑗

𝑁

𝑖=1

[𝑔𝑗
𝑥𝑖𝑗

(1 − 𝑔𝑗)
1−𝑥𝑖𝑗

]1−𝜉𝑖𝑗
 

(2.4) 

1.1.3 The G-DINA Model 

Based upon the DINA model, the G-DINA (generalized deterministic inputs, 

noisy “and” gate) model is a saturated model with more relaxed assumptions 

postulated to relate several CDMs with different formulations (de la Torre, 2011; de 

la Torre & Minchen, 2019). Assuming 𝐾𝑗
∗ attributes are required to correctly respond 

to item j, the G-DINA model classifies examinees into 2𝐾𝑗
∗

 latent groups, where 𝐾𝑗
∗ =

 ∑ 𝑞𝑗𝑘
𝐾
𝑘=1  denotes the number of attributes required for item j, and 𝛼𝑙𝑗

∗  denotes the 

reduced attribute vector the elements of which are required for item j.  For two given 

attribute vectors 𝜶𝑙𝑗
∗  and 𝜶𝑙′𝑗

∗ , 𝜶𝒍𝒋
∗  ≤ 𝜶𝒍′𝒋

∗  if and only if 𝜶𝒍𝒌
∗  ≤ 𝜶𝒍′𝒌

∗ , i.e., a reduced 

vector subsuming another reduced vector will have more ones. The G-DINA model 

estimates 2𝐾𝑗
∗

 number of parameters for item j and is thus a generalization of the more 

restricted DINA model. 

Three link functions used in specifying models for cognitive diagnosis are 

identity, logit, and logarithmic (de la Torre, 2011). Regardless of the link functions, 

all models in their saturated forms result in an estimation of 2𝐾𝑗
∗

 number of 

parameters for item j and provide identical model-data fit. The G-DINA model using 

the identity link expresses the response probability given 𝛼𝑙𝑗
∗  as:  
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𝑃(𝛼𝑙𝑗
∗ ) =  𝛿𝑗0 + ∑ 𝛿𝑗𝑘𝛼𝑙𝑘 +

𝐾𝑗
∗

𝑘=1

∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

…+ 𝛿𝑗12…𝐾𝑗
∗ ∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 

(2.5) 

In this expression, 𝛿𝑗0 is the intercept for item j, representing the probability of a 

correct response in the absence of mastery of none of the required attribute. 𝛿𝑗𝑘 is the 

main effect of 𝛼𝑘  and indicates a change in the probability attributable to mastery of 

𝛼𝑘 . 𝛿𝑗𝑘𝑘′  is a first-order interaction effect of 𝛼𝑘  and 𝛼𝑘′  , denoting the change in 

probability due to the mastery of both 𝛼𝑘  and 𝛼𝑘′. This effect is above and beyond the 

main effects of 𝛼𝑘  and 𝛼𝑘′  .  𝛿𝑗12…𝐾𝑗
∗  is the interaction effect of α1, …, and 𝛼𝐾𝑗

∗, 

representing the change in probability as a result of mastery of all required attributes, 

This effect is above and beyond the main effects of the required attributes and the 

lower-order interaction effects.  

 The general CDM model using the logit link is equivalent to the log-linear 

CDM (Hagenaars, 1993; Henson & Templin, 2019) and is expressed as follows:  

logit[𝑃(𝛼𝑙𝑗
∗ )] =  휆𝑗0 + ∑ 휆𝑗𝑘𝛼𝑙𝑘 +

𝐾𝑗
∗

𝑘=1

∑ ∑ 휆𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

…+ 휆𝑗12…𝐾𝑗
∗ ∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 

(2.6) 

Similarly, using the log link, the response probability given 𝛼𝑙𝑗
∗  is expressed as:  

log𝑃(𝛼𝑙𝑗
∗ ) =  𝜐𝑗0 + ∑ 𝜐𝑗𝑘𝛼𝑙𝑘 +

𝐾𝑗
∗

𝑘=1

∑ ∑ 𝜐𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

…+ 𝜐𝑗12…𝐾𝑗
∗ ∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 

(2.7) 
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Notwithstanding similar formulations in the three general CDMs, the nature of the 

effects described by these models is different (de la Torre, 2011). G-DINA and logit 

CDM describes the additive effect of attribute mastery on the probability and logit of 

the probability of success, whereas in the log CDM the effect is multiplicative. De la 

Torre (2011) notes the importance of noting this distinction as different link functions 

result in different reduced models even as the same set of constraints are imposed. 

1.1.4 Summary and Discussion  

 LCA was developed as probabilistic models for classifying examinees with 

respect to mastery of specific concepts or skills (Macready & Dayton, 1977). The 

within-class model of LCA assumes independence of responses, which can be 

violated in assessment situations where test structure can induce highly related 

responses, as in testlet-based assessments (see section 2.2 for a detailed discussion of 

testlet modeling). The other drawback of LCA is its flexibility in accounting for 

dependence between observed variables by increasing the number of latent classes, 

which can result in the model overfitting the observed dependencies and a substantial 

increase in the number of parameters to be estimated (von Davier & Lee, 2019).  

 The DINA model is a commonly used CDM based upon which fine-grained 

inferences about cognitive information of the items and attribute profiles can be 

drawn to inform classroom instruction and learning and is appropriate to use when 

assessment tasks require the conjunctive use of several equally important attributes, 

and when lacking one required attribute is the same as lacking all required attributes 

(de la Torre, 2008; de le Torre & Douglas, 2004; Rupp et al 2010). This model is 

restrictive and parsimonious as only two parameters, a slipping parameter and a 
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guessing parameter, are required for estimating each item. As described earlier in this 

section, an integral component of the DINA model is the Q-matrix, which describes 

how items are related to attributes. Fit analysis in the DINA model assumes that the 

Q-matrix is correctly specified. Model fit analysis without verification of the 

completeness and accuracy of the Q-matrix can only be incomplete and partial (de la 

Torre, 2008). Further, as a non-compensatory model which specifies that the lack of 

one or more of the attributes required for correctly responding to an item cannot be 

compensated for by the presence of another, the DINA model assumes the attribute 

vectors in the same group to have the same probability of correctly responding to the 

items, which may not always be true. Attribute vectors in the same group may have 

varying level of deficiency with regard to the required attributes, hence their 

probabilities of producing a correct response may not be identical (de la Torre, 2011). 

Additionally, the DINA model was found to be affected by identifiability issues, with 

one empirical study showing it not being able to identify all attribute patterns 

(DeCarlo, 2011), and other studies showing that model identifiability requires the use 

of single-loaded items that only measures one attribute (DeCarlo, 2011; Fang, Liu, & 

Ying, 2017).  

 As a generalization of the DINA model, the G-DINA model extends the 

flexibility and usefulness of cognitive diagnostic modeling by allowing the fitting of 

different reduced models without necessitating estimation of the parameters from the 

original response data (de la Torre, 2011). Parameter estimation for several saturated 

models and a special class of reduced models can use the more efficient maximum 

likelihood estimation (MMLE), which is faster than the Markov chain Monte Carlo 
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(MCMC) algorithm. The model’s flexibility becomes useful when researchers cannot 

specify the reduced CDMs a priori as they can still obtain parameter estimates based 

on the final model specification. Additional strengths include the possibility of using 

several CDMs simultaneously to construct a test, and of empirically verifying 

researchers’ hypothesis regarding the underlying process for a subset or all of the 

items. This framework, however, cannot be used when constraints need to be set 

across items, as it allows for reduced models to be estimated one item at a time. The 

other drawback is the model’s maximum likelihood estimation method which is not 

applicable to parameter estimates for reduced models that do not belong to the special 

class of reduced models (de la Torre, 2011). 

  In the joint model of response, RT, and ACs in testlet-based assessments for 

cognitive diagnosis proposed in this research study, the DINA model is the CDM 

chosen to fit the response data. As described above, the DINA model is a 

parsimonious CDM specifying two parameters for every item and is thus more 

interpretable and tractable compared to other CDMs. Examples of the application of 

the DINA model can be found in Macready and Dayton (1977), Junker and Sijstma 

(2001) and de la Torre and Douglas (2004). Given the prevalent use of testlets in 

educational assessments and dependence of responses likely resulting from this, the 

DINA model can be extended to specifically account for local response dependence. 

The next section reviews measurement models specifically addressing local item 

dependence induced by testlets.   
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2.2 Testlet Modeling 

 A testlet, also known as an item cluster or item bundle, is a unit of test 

construction that aggregates a group of items around a single content area (Wainer & 

Kiely, 1987). Testlets are typically characterized by a predetermined and fixed 

number of paths that an examinee can take, hierarchical, linear, or a combination of 

both. Compared to stand-alone items, testlets leverage tests’ capabilities for 

efficiently addressing problems such as contextual effects, item ordering, and content 

balancing (Wainer & Kiely, 1987; Wainer & Lewis, 1990). The use of testlets as 

testing units is likely to induce local item dependence, as responses to a group of 

items embedded within the same context are likely to be more highly related and are 

thus a violation of the assumption of conditional independence (CI) for standard item 

response theory (IRT) models (Yen, 1993). Fitting standard IRT models to testlet 

responses induces overestimation of measurement precision and biased estimation of 

item difficulty and discrimination parameters, resulting in inaccurate inferences about 

the parameters (Wainer & Wang, 2000; Yen, 1993). 

2.2.1 The Bayesian Random Effects Model for Testlets 

Testlet models are developed primarily to account for the nesting of items 

within the same testlets and dependence of item responses as incurred by a common 

stimulus. Jiao, Wang, and He (2013) summarizes multiple perspectives on testlet 

modeling as indicative of how testlet effects are conceptualized. Essentially viewing 

the lack of CI as a form of unidimensional proficiency model misfit, Bradlow, 

Wainer, and Wang (1999) proposed the Bayesian random-effects model for testlets to 

explicitly account for the dependence structure of testlet items. Their Bayesian 
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hierarchical model modifies standard two-parameter IRT models to include an 

additional interaction term to model person-specific testlet effects for item test scores 

composed of a mixture of binary independent and testlet items. This model was 

extended into a three-parameter testlet model (Wainer, Bradlow, & Du, 2000), and to 

tests composed of a mixture of binary and polytomous items, independent and nested 

within testlets (Wang, Bradlow, & Wainer, 2002).  

 The general Bayesian model for testlets as proposed by Wang et al (2002) 

builds upon two basic IRT models: the three-parameter logistic model for binary 

items (Birnbaum, 1968) and Samejima's (1969) polytomous IRT model. These 

models are given as:  

𝑝𝑖𝑗(1) = 𝑃(𝑦𝑖𝑗 = 1|휃, 𝜔𝑗) = 𝑐𝑗 + (1 − 𝑐𝑗)𝑙𝑜𝑔𝑖𝑡−1(𝑡𝑖𝑗), and 

𝑝𝑖𝑗(𝑟) = 𝑃(𝑦𝑖𝑗 = 𝑟|휃, 𝜔𝑗 , 𝑑) = Φ(𝑔𝑟 − 𝑡𝑖𝑗) − Φ(𝑔𝑟−1 − 𝑡𝑖𝑗), (2.8) 

where 𝑝𝑖𝑗(𝑟) is the probability of examine 𝑖 = 1,… , 𝐼 receiving score 𝑟 = 1, … , 𝑅𝑗 on 

item 𝑗 = 1, … , 𝐽, 𝑐𝑗 is the lower asymptote for binary item 𝑗, 𝜔𝑗 is the set of item 𝑗’s 

parameters, 𝑔𝑟 is the latent cutoff for the polytomous items, Φ is the normal 

cumulative density function, and 𝑡𝑖𝑗 is the latent linear score predictor. Standard form 

for the linear predictor 𝑡𝑖𝑗 is given as:  

𝑡𝑖𝑗 = 𝑎𝑗(휃𝑖 − 𝑏𝑗) (2.9) 

where 𝑎𝑗, 𝑏𝑗, and 휃𝑖 are standard item slope, item difficulty, and latent trait 

parameters. Bradlow, Wainer, and Wang (1999) extends it to  

𝑡𝑖𝑗 = 𝑎𝑗(휃𝑖 − 𝑏𝑗 − 𝛾𝑖𝑑(𝑗)), (2.10) 

where 𝛾𝑖𝑑(𝑗) denotes the testlet effect of item 𝑗 to person 𝑖 nested within testlet 𝑑(𝑗).  
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Prior distributions for the set of parameters in this model as embedded in the 

Bayesian hierarchical framework are specified as follows:  

𝑎𝑗~𝑁(휇𝑎 , 𝜎𝑎
2) 

𝑏𝑗~𝑁(휇𝑏 , 𝜎𝑏
2) 

𝑞𝑗~𝑁(휇𝑞, 𝜎𝑞
2) 

휃𝑖~𝑁(0,1) 

𝛾𝑖𝑑(𝑗)~𝑁(0, 𝜎𝑑(𝑗)
2 ) (2.11) 

where 𝑁(휇, 𝜎2) denotes a Gaussian distribution with mean 휇 and variance 𝜎2 and 

𝑞𝑗 = 𝑙𝑜𝑔𝑖𝑡 (𝑐𝑗). The mean and variance of the ability distribution are fixed at 0 and 1 

to identify the model. 𝜎𝑑(𝑗)
2  representing testlet-specific excess dependence is allowed 

to vary across testlets. Hyperpriors for the means of the set of parameters in the prior 

distributions are specified as 휇𝑎~(0,𝑉𝑎), 휇𝑏~(0, 𝑉𝑏), and 휇𝑞~(0,𝑉𝑞), where 𝑉𝑎
−1 =

𝑉𝑏
−1 = 𝑉𝑞

−1 were set to 0. Slightly informative hyperpriors specified for all prior 

variances are given by 𝜎𝑧
2~𝜎𝑔𝑧

2  which is an inverse chi-square random variable with 

𝑔𝑧 degrees of freedom where 𝑔𝑧 = 0.5 for all distributions.   

2.2.2 The Rasch Testlet Model 

Similarly, Wang and Wilson (2005) proposed the Rasch testlet model for both 

dichotomous and polytomous items in testlet-based tests, demonstrating it to be a 

special case of the multidimensional random coefficients multinomial logit model 

(MRCMLM).  

The one-parameter Rasch testlet model is given as:  
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𝑝𝑛𝑖1 =
exp(휃𝑛 − 𝑏𝑖 + 𝛾𝑛𝑑(𝑖))

1 + exp(휃𝑛 − 𝑏𝑖 + 𝛾𝑛𝑑(𝑖))
(2.12) 

This equation can be expressed as:  

log (
𝑝𝑛𝑖1

𝑝𝑛𝑖0
) = 휃𝑛 − 𝑏𝑖 + 𝛾𝑛𝑑(𝑖) (2.13) 

where 𝑝𝑛𝑖1 and 𝑝𝑛𝑖0 are the probabilities for scoring 1 and 0 on item 𝑖 for person 𝑛. 

For polytomous items, this can be extended to:  

log(
𝑝𝑛𝑖𝑗

𝑝𝑛𝑖(𝑗−1)
) = 휃𝑛 − 𝑏𝑖𝑗 + 𝛾𝑛𝑑(𝑖), (2.14) 

where 𝑝𝑛𝑖𝑗  and 𝑝𝑛𝑖(𝑗−1) are the probabilities for scoring 𝑗 and 𝑗 − 1 on item 𝑖 for 

person 𝑛 and 𝑏𝑖𝑗  is the 𝑗th step difficulty for item 𝑖. Let  

𝑏𝑖𝑗 = 𝑏𝑖 + 𝜋𝑖𝑗 (2.15) 

where 𝑏𝑖 is the difficulty of item 𝑖, and 𝜋𝑖𝑗 is the 𝑗th threshold parameter of item 𝑖. 

Constraining the threshold parameters to be the same across items, such as 𝜋𝑖𝑗 = 𝜋𝑗, 

the Rasch testlet model for polytomous items is reduced to 

log(
𝑝𝑛𝑖𝑗

𝑝𝑛𝑖(𝑗−1)
) = 휃𝑛 − (𝑏𝑖 + 𝜋𝑖) + 𝛾𝑛𝑑(𝑖) (2.16) 

휃 and γ are assumed to be independently and normally distributed. Thus 휃′ =

[휃, 𝛾1, … , 𝛾𝑑 , … , 𝛾𝐷] has a multivariate normal distribution 𝑁(휇, Σ), where for model 

identification, μ is set to zero, and Σ is constrained to be a diagonal matrix.  

 2.2.3 Higher Order Testlet Response Models 

To simultaneously account for both testlet design and hierarchical structure in 

latent traits, Huang and Wang (2012) developed higher order testlet response models 

on the basis of higher order IRT models for hierarchical latent traits (e.g. de la Torre 
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& Douglas, 2004; de la Torre & Hong, 2010; de la Torre & Song, 2009) and testlet 

response models (Bradlow et al, 1999; Wainer et al, 2000; Wainer et al, 2007; Wang 

& Wilson, 2005). In these models, the relationship between first and second order 

latent traits is specified as:  

휃𝑛𝑣
(1)

= 𝛽𝑣휃𝑛
(2)

+ 휀𝑛𝑣
(1) (2.17) 

where the 𝑣th first-order latent traits denoted by 휃𝑛𝑣
(1)

  for person 𝑛 is a linear function 

of the same second-order latent trait denoted by 휃𝑛
(2)

. 𝛽𝑣 is the regression weight 

(factor loading) indicating the magnitude of the effect of 휃𝑛
(2)

 on 휃𝑛𝑣
(1)

. The error term 

휀𝑛𝑣
(1)

 is assumed to be normally distributed with a mean of zero and independent of 

other 휀 and 휃.  

 The 3 PL higher order testlet response model (3P-HTM) for dichotomous 

items accounting for hierarchical latent traits is given as:  

𝑃𝑛𝑖1𝑣 = 𝜋𝑖𝑣 + (1 − 𝜋𝑖𝑣) ×
exp [𝛼𝑖𝑣(𝛽𝑣휃𝑛

2 − 𝛿𝑖𝑣 + 휀𝑛𝑣
(1)

+ 𝛾𝑛𝑑(𝑖)𝑣)]

1 + exp [𝛼𝑖𝑣(𝛽𝑣휃𝑛
2 − 𝛿𝑖𝑣 + 휀𝑛𝑣

(1)
+ 𝛾𝑛𝑑(𝑖)𝑣)]

(2.18) 

where 𝑃𝑛𝑖1𝑣  is the probability of responding correctly to item 𝑖 in test 𝑣 for person 𝑛, 

𝜋𝑖𝑣 is the asymptotic parameter for item 𝑖 in test 𝑣, 𝛼𝑖𝑣 is the discrimination 

parameter, and 𝛿𝑖𝑣 is the item difficulty parameter. 𝛾𝑛𝑑(𝑖)𝑣 is the additional latent trait 

accounting for local dependence for items nested within testlet 𝑑 of test 𝑣 and is 

assumed to be normally and independently distributed (Wainer et al, 2007; Wang & 

Wilson, 2005).  

 The 3 PL higher order testlet response model (3P-HTM) for polytomous 

items, referred to as the generalized partial credit higher order testlet model (GP-

HTM) is given as:  
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log(
𝑃𝑛𝑖𝑗𝑣

𝑃𝑛𝑖(𝑗−1)𝑣
) = 𝛼𝑖𝑣(𝛽𝑣휃𝑛

2 − 𝛿𝑖𝑣 − 𝜏𝑖𝑗𝑣 + 휀𝑛𝑣
(1)

+ 𝛾𝑛𝑑(𝑖)𝑣) (2.19) 

where 𝑃𝑛𝑖𝑗𝑣  and 𝑃𝑛𝑖(𝑗−1)𝑣 are the probabilities of scoring 𝑗 and 𝑗 − 1 on item 𝑖 in test 

𝑣 for person 𝑛, and 𝜏𝑖𝑗𝑣  is the 𝑗th threshold parameter for item 𝑖 in test 𝑣.  

2.2.4 The Three-Level One-Parameter Testlet Model and Its Extensions 

Jiao, Wang, and Kamata (2005) proposed the three-level one-parameter model 

for dichotomous items where the contextual effect of testlets on items is accounted 

for from the hierarchical generalized linear modeling perspective, configuring it to be 

a three-level hierarchical generalized linear model for item analysis (Kamata, 2001). 

At level 1, the log-odds of person 𝑗 responding to item 𝑖 nested within testlet 𝑑 is 

expressed as: 

log(
𝑝𝑖𝑑𝑗

1 − 𝑝𝑖𝑑𝑗
) = 휂𝑖𝑑𝑗 = 𝛽𝑜𝑑𝑗 + ∑ 𝛽𝑞𝑑𝑗𝑋𝑞𝑖𝑑𝑗

𝑘−1

𝑞=1

(2.20) 

where 𝑝𝑖𝑑𝑗  is the probability of person 𝑗 correctly responding to item 𝑖 nested within 

testlet 𝑑, 𝑋𝑞𝑖𝑑𝑗 is the 𝑞th dummy variable for person 𝑗, 𝛽𝑜𝑑𝑗  is an intercept term 

representing the reference item effect, and 𝛽𝑞𝑑𝑗 , the coefficient for 𝑋𝑞𝑖𝑑𝑗  where 𝑞 =

1,… , 𝑘 − 1, and 𝑘 is the total number of items on the test, represents the unique effect 

for item 𝑞 relative to 𝛽𝑜𝑑𝑗 . Level 2 models the testlet effects and is given as:  

𝛽𝑜𝑑𝑗 = 𝛾00𝑗 + 휇0𝑑𝑗   and 

𝛽𝑞𝑑𝑗 = 𝛾𝑞0𝑗 (2.21) 

where level 1 reference item effect is decomposed into a fixed effect 𝛾00𝑗  and a 

random testlet effect 휇0𝑑𝑗 comparable to the testlet effect parameter 𝛾𝑗𝑑(𝑖) in the 
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general Bayesian random effects testlet model (Bradlow et al, 1999). Level 3 models 

person effects by further partitioning the level 2 fixed effect 𝛾00𝑗  into a fixed 

component and a random component. Level 3 model is given as 

𝛾00𝑗 = 𝜋000 + 𝜔00𝑗  and 𝛾𝑞0𝑗 = 𝜋𝑞00 (2.22) 

where 𝜔00𝑗~𝑁(0, 𝜎𝜔
2) is the random person effect and the effects for the items 

remain fixed. Jiao, Wang, and He (2013) demonstrate the equivalence between this 

model and the Rasch testlet model, as the three equations can be combined into 

𝑃𝑗𝑑𝑖 =
1

1 + exp[−(𝜔00𝑗 − (−𝜋000 − 𝜋𝑞00) + 휇0𝑑𝑗)]
(2.23) 

where 𝜔00𝑗 = 𝜽𝒋, −𝜋000 − 𝜋𝑞00 = 𝒃𝒋, 휇0𝑑𝑗 = 𝛾𝑗𝑑(𝑖). 

In educational settings, the nesting of students within classes and of classes 

within schools is a norm rather than an exception (Bryk & Raudenbush, 1992). 

Applying standard IRT models to tests with person dependence structure may result 

in biased parameter estimates, compromising the validity of the inferences we can 

draw regarding item parameters and student proficiency. To simultaneously account 

for both item dependence and person dependence, Jiao, Kamata, Wang, and Jin 

(2012) further extended the three level one-parameter testlet model to a four-level 

IRT model for dual local dependence, where the levels in their ascending order 

respectively represent item effects, testlet effects, the effects of persons fully crossed 

with testlets and items, and examinee group effects as incurred by the nesting of 

examinees within classes, schools, or school districts.   

The four-level IRT model for dual dependence for dichotomous items is given 

by 
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𝑃𝑗𝑑𝑖𝑔 =
1

1 + exp [−(휃𝑗 + 휃𝑔 − 𝑏𝑖 + 𝛾𝑗𝑑(𝑖)]
(2.24) 

where 휃𝑗 denotes the person-specific ability for person 𝑗, 휃𝑔 denotes the group-

specific ability for group 𝑔, 𝑏𝑖 is the item difficulty for item 𝑖, and 𝛾𝑗𝑑(𝑖) represents 

the testlet effect for person 𝑗 on testlet 𝑑. In this model,  𝜎𝜃𝑔

2  indicates the magnitude 

of the group effects. This model further assumes the effects of item-clustering and 

person-clustering, and person ability to be mutually exclusive and independent and 

the residuals variance to be uncorrelated after controlling for the three variances.  

 This model was generalized into polytomous multilevel testlet models for 

person and item clustering for dichotomous and polytomous items (Jiao & Zhang, 

2015). Mathematically, this model is given as 

𝑃𝑗𝑡𝑖𝑔𝑘(𝑋𝑖 = 𝑥|𝑎𝑖 , 𝑑𝑖𝑘 , 휃𝑗𝑔 , 𝛿𝑔, 𝛾𝑗𝑡(𝑖)) =
𝑒𝑥𝑝[∑ 𝑎𝑖(휃𝑗𝑔 + 𝛿𝑔 + 𝛾𝑗𝑡(𝑖) − 𝑑𝑖𝑘)𝑥

𝑠=0 ]

∑ 𝑒𝑥𝑝[∑ 𝑎𝑖(휃𝑗𝑔 + 𝛿𝑔 + 𝛾𝑗𝑡(𝑖) − 𝑑𝑖𝑘
𝑘
𝑠=0 )]𝐾

𝑠=0

(2.25)

 

where ∑ 𝑎𝑖(휃𝑗𝑔 + 𝛿𝑔 + 𝛾𝑗𝑡(𝑖) − 𝑑𝑖𝑘)0
𝑠=0 = 0, 𝑎𝑖  is the item discrimination parameter, 

𝑑𝑖𝑘  is the item step difficulty, 𝛿𝑔 is the group effect, 휃𝑗𝑔  is the person-specific ability 

indicating the deviation of person 𝑗’s ability from the group ability, and 𝛾𝑗𝑡(𝑖) is the 

testlet effect for person 𝑗 interacting with testlet 𝑡. This equation thus represents the 

probability of person 𝑗 with person-specific ability 휃𝑗𝑔  in group 𝑔 receiving a score of 

𝑋 on item 𝑖 with a step difficulty of 𝑑𝑖𝑘  in testlet 𝑡. Person clustering effect 𝛿𝑔, if 

present, will vary across groups. Its variance indicates the magnitude of the person 

clustering effect. Likewise, item clustering effect 𝛾𝑗𝑡(𝑖) varies across persons and 

across testlets, but remains constant for the same person on the items nested within 

the same testlet. The variance of 𝛾𝑗𝑡(𝑖) indicates the magnitude of the item clustering 
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effect. Item clustering effects, person clustering effects, and person ability are 

additive, and assumed to be mutually exclusive and independent. Further, residual 

variances area assumed to be uncorrelated after controlling for the three random 

effects.  

2.2.5 The Bayesian Multilevel Multidimensional IRT (BMMIRT) Model for 

Locally Dependent Data 

 A Bayesian approach differs from frequentist approaches in treating the model 

parameters not as fixed but as random and uses distributions that reflect a priori 

knowledge to model beliefs about them (Levy & Mislevy, 2016). The BMMIRT 

model for locally dependent data was proposed to investigate whether the assumption 

about the orthogonality of the dimensional structure in previously reviewed models is 

justifiable and the extent to which it is violated (Fujimoto, 2018). Based upon the 

generalized partial credit model (Muraki, 1992), the probability of a response of 𝑐 to 

item 𝑘 by person 𝑖𝑗 (person 𝑖 in group 𝑗) given all model parameters (Ψ) is expressed 

as 

𝑃(𝑌𝑖𝑗𝑘 = 𝑐|Ψ) =
∏ 𝐻(휂𝑘𝑥)∏ [1 − 𝐻(휂𝑘𝑙)]

𝑚𝑘
𝑙=𝑐+1

𝑐
𝑥=0

∑ (
𝑚𝑘
𝑤=0

∏ 𝐻(휂𝑘𝑥)∏ [1 − 𝐻(휂𝑘𝑙)]
𝑚𝑘
𝑙=𝑤+1

𝑤
𝑥=0

(2.26) 

where 𝐻(휂𝑘𝑥) is the cumulative density function for the conditional probability of a 

response 𝑐 to item 𝑘 and is given as 

𝑃[𝑌𝑖𝑗𝑘 = 𝑐|𝑌𝑖𝑗𝑘 = 𝑐 ∨ 𝑌𝑖𝑗𝑘 = 𝑐 − 1,Ψ] = 𝐻(휂𝑘𝑐) =
exp(휂𝑘𝑐)

1 + exp(휂𝑘𝑐)
(2.27) 

The systematic component  (휂𝑘𝑐) for the model is 

휂𝑘𝑐 = 𝜉𝑘휃𝑖𝑗
𝑇 + 𝜉𝑘휃𝑗

𝑇 − (𝛽𝑘 + 𝜏𝑘𝑐), (2.28) 
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where  

𝜉𝑘 = 𝜒 ∘ 𝛼𝑘  and 

𝜉𝑘 = �̃� ∘ �̃�𝑘 (2.29) 

In this model, discrimination parameters are 𝛼𝑘 , �̃�𝑘 , 𝜒, and �̃�, where 𝛼𝑘  and �̃�𝑘  are 

the 1 x D vector of item-specific discriminations at Level 2 and Level 3, and 𝜒 and �̃� 

are 1 x �̃� vector of overall discriminations at Level 2 and Level 3. Latent trait 

parameters are 휃𝑖𝑗  and 휃𝑗, with 휃𝑖𝑗  being the 1 x D vector of latent trait dimensional 

positions for person 𝑖 in cluster 𝑗 at Level 2, and 휃𝑗 being the 1 x �̃� vector of latent 

trait dimensional positions for cluster 𝑗 at Level 3. 𝛽𝑘  is the overall difficulty for item 

𝑘 and 𝜏𝑘𝑐 is the 𝑐th element in the 1 x 𝑚𝑘 vector of relative intercepts, denoting item 

𝑘’s relative intercept for category 𝑐.  

2.2.6 The Bayesian Covariance Structure Model (BCSM) for Testlets 

 The Bayesian covariance structure model (BCSM) for testlets extends 

standard IRT models with a covariance structure to account for dependencies among 

testlet items (Fox, Wenzel, & Klotzke, 2020). Without using testlet effects, the model 

efficiently addresses problems such as sample size restrictions and computational 

burden as incurred by the inclusion of the testlet parameter to account for the 

dependence for each combination of testlet and test taker. By assuming a common 

covariance between responses to items in a test across test takers, BCSM estimates 

the same number of additional model parameters as the number of testlets, making it 

more suitable for small sample sizes, incomplete design, and for tests that contains 

just a few items for many testlets (Fox et al, 2020).  
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 The BCSM for testlets expresses the latent responses to testlet 𝑑  by 

individual 𝑖 as 

𝑍𝑖
𝑑 = 𝑎𝑑휃𝑖 − 𝑏𝑑 + 𝑒𝑖

𝑑 

휃𝑖~𝑁(0, 𝜎𝜃) 

𝑒𝑖
𝑑~𝑁(0, Σ𝑑) (2.30) 

where Σ𝑑 = I𝑛𝑑 + J𝑛𝑑𝜎𝑛𝑑 and I𝑛𝑑 and J𝑛𝑑 are the identify matrix and a matrix of 

ones, respectively, both of dimensions 𝑛𝑑. This model assumes the latent responses to 

items in testlet 𝑑 to be multivariate normally distributed. Further, 𝜎𝛾𝑑
 as a covariance 

parameter can be negative or zero, making it possible to represent a negative 

association among testlet items or no testlet effects.  

2.2.7 Summary and Discussion 

 All but one testlet models reviewed in this section are modifications of 

standard IRT models and higher-order latent trait models to include an additional 

interaction parameter to specifically model the testlet effects of persons interacting 

with items nested within a given testlet. As is demonstrated by Jiao et al. (2013), the 

general Bayesian model for testlets (Wang et al., 2002), the Rasch testlet model 

(Wang & Wilson, 2005), and the three-level one-parameter testlet model (Jiao et al., 

2005) are essentially equivalent models in terms of specifying the testlet effects as an 

additional parameter in the one-parameter Rasch model. Conceptually, however, in 

both the general Bayesian model for testlets and the Rasch testlet model, the testlet 

effects are represented by a person-specific random effects parameter, while the 

Rasch testlet model views them as additional dimensions, and the three-level one-

parameter testlet model describes them as representing the contextual effects on items 
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nested within a context. Additionally, both the general Bayesian model for testlets 

and the Rasch testlet model apply to both binary and polytomous items nested within 

testlets, yet the estimation methods are different for the two models. The general 

Bayesian model for testlest embeds the modified 3PL IRT model (Birnbaum, 1968) 

and Semijima’s (1969) polytomous IRT within the Bayesian framework and uses 

MCMC to obtain inferences regarding model parameters. The Rasch testlet model, 

demonstrated to be a special case of the MRCMLM, applies MMLE and Bock and 

Aitkin’s (1981) formulation of the EM algorithm (Dempster, Laird, & Rubin, 1977). 

By way of contrast, the three-level one-parameter testlet model uses another 

estimation method, the sixth-order approximation Laplace (Laplace) method, for 

parameter estimation.  

 Compared with models assuming conditional independence, the general 

Bayesian model for testlets yields unbiased estimates of the tests’ precision. An 

additional strength of the model is its use to score a test constructed of any 

combination of item formats, such as multiple-choice items, fill in the blank items, 

and items rated by expert raters, which allows test developers to choose item formats 

that best suit the constructs of interest. It further shows that as the sample size is 

increased, the root mean square error of the estimates decreases to an acceptable 

level. When fit to an empirical test data set, the Rasch testlet model fit the data 

statistically better than the standard IRT model, which overestimates the test 

reliability and yields difficulty estimates that shrink slightly toward the mean. This 

model additionally allows for simultaneous calibration of multiple tests (with or 

without testlets) and direct estimation of the correlations between latent traits and 
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more precise measures for individual persons than several calibrations of latent traits 

(Wang, Chen, & Cheng, 2004).  

 These models, however, only account for local item dependence, whereas in 

educational settings, the nesting of students within schools, and of schools within a 

larger geographical context can also incur person clustering and local person 

dependence. The four-level IRT model for dual dependence (Jiao et al., 2012) and its 

extension to polytomous items and complex sampling design, the polytomous 

multilevel testlet models (Jiao & Zhang, 2015), account for both testlet effects and 

person clustering effects. Compared to alternative models that ignore local item 

and/or person dependence, both models yield more accurate item and/or person 

ability parameter estimates and can be applied to K-12 state assessment programs and 

large-scale national and international assessment programs.  

 The other limitations with the general Bayesian model for testlets are the 

number of testlet parameters which can become very large if a test consists of many 

testlets and is administered to a large number of examinees and sample size 

restrictions which limits its applicability (Fox et al., 2020). An additional limitation is 

the use of the inverse-gamma prior for testlet variance, which is restricted to be 

positive and does not include the point of no testlet variance. As the testlet variance 

gets close to 0, the inverse-gamma prior can become biased by overstating the level 

of dependence of the testlet items. The BCSM for testlets (Fox et al., 2020) addresses 

these limitations by modeling the testlet dependences through an additional 

covariance structure, which significantly reduces the number of model parameters, 

and at the same time allowing testlet dependence to be set at 0 or negative when 
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estimating the model parameters. Compared to the general Bayesian model for 

testlets, the BCSM testlet model is more efficient and flexible and can be extended to 

model different types of clustered items.  

 The inclusion of a testlet parameter is the approach adopted in the proposed 

research study. One of the purposes of this research is to estimate the effects of 

accounting for dependence of responses and RTs on the precision with which model 

parameters, including person ability parameters and item parameters, are estimated. 

The proposed research additionally examines the effects of the inclusion of RT in the 

modeling of responses on model performance and parameter estimation. The next 

section reviews RT models, which is followed by a review of joint models of 

responses and RT with or without dependency in the Section 2.4.  

2.3 Response Time (RT) Modeling 

 Response time (RT), also known as reaction time, is an important source of 

information for understanding aspects of cognitive processes underlying test 

performance (De Boeck & Jeon, 2019; van der Linden, 2007). Experimental 

psychologists in their long-standing tradition decomposed reaction time into stages of 

information processing to understand the structure of mental activity (Sternberg, 

1969). From a test design perspective, RT as a type of process data translates directly 

into evidence accumulation and holds implications for the validity of the inferences 

regarding test-takers and test use.   

 Two traditions in RT modeling are distinct models for RT and models 

integrating response and RT (van der Linden, 2009). De Boeck and Jeon (2019) 

further classify approaches to RT modeling into four broad categories: a) RT models 
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with RT as the sole dependent variable; b) joint models in which RT and another kind 

of variable are both dependent variables; c) dependency models in which RT and 

other data are jointly modeled with the possibility of dependences; and d) RT as 

covariate models in which another variable varies as a function of RT. This section 

reviews distinct RT models and RT as covariate models, followed by a review of joint 

models for RT and response with or without dependences in Section 2.4.  

2.3.1 Lognormal Response Time Model 

 RT distributions are positively skewed, with their means and variances 

positively correlated (Luce, 1986; Maris, 1993; Townsend & Ashby, 1983). One of 

the widely used distributions reported as having a good fit to RT data is lognormal 

distribution. van der Linden (2006) proposed a lognormal model for RT on test items 

in which RT distributions are determined by a distinct set of item and person 

parameters. Assuming response time 𝑡𝑖 for a fixed person on item 𝑖 is the realization 

of a random variable 𝑇𝑖, the normal density for the distribution of the log RT, ln 𝑇𝑖, is 

written as:  

𝑓(𝑡𝑖; 𝜏, 𝛼𝑖 , 𝛽𝑖) =
𝛼𝑖

𝑡𝑖√2𝜋
exp {−

1

2
[𝛼𝑖(ln𝑡𝑖 − (𝛽𝑖 − 𝜏))]

2
} (2.31) 

where 𝜏 is the person speed parameter, 𝛽𝑖 denotes the time intensity of item 𝑖, and 𝛼𝑖 

is the discrimination parameter modifying the relationship between 𝑡𝑖 and its mean 

𝛽𝑖 − 𝜏. When estimating the item parameters, the following constraint is imposed on 

the set of values 𝜏𝑗 to identify the model: 

∑𝜏𝑗

𝑁

𝑗=1

= 0 (2.32) 
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This constraint implies that 

𝑛−1 ∑ 𝛽𝑖

𝑛

𝑖=1

= (𝑛𝑁)−1 ∑∑휇𝑖𝑗

𝑁

𝑗=1

𝑛

𝑖=1

(2.33) 

which equates the average item parameter 𝛽𝑖 to the expected log time averaged over 

persons and items. The values of the person parameter 𝜏𝑗 thus represents deviations 

from this average. The proposed model is analogous to the 2PL IRT model in 

imposing a similar structure on the means of the variables and having the same 

discrimination parameter moderating the effects of an item and person parameter. 

2.3.2 Alternative Distribution Models 

 Alternative distributions possessing the aforementioned properties are gamma, 

inverse Gaussian, ex-Gaussian, Weibull and Gumble, and shifted Wald (De Boek & 

Jeon, 2019; Maris 1993) and were used as descriptive distributions in the modeling 

and analysis of RT data. For example, Maris (1993) formulated additive, 

multiplicative, and combined additive-multiplicative models for gamma distributed 

random variables based upon which an analysis of response time data from a mental 

rotation experiment was conducted. Lo and Andrews (2015) in their reanalysis of 

three experiments investigating the effects of word frequency and stimulus quality 

applied generalized linear mixed-effect model (GLMM) to raw RT assuming Gamma 

or Inverse Gaussian distribution for the response time data. Relaxing the normality 

assumption for the dependent variable, GLMMs allows the assumptions regarding the 

relationship between the predictors and the dependent variable to be tested 

independently of the assumption for the dependent variable.  Loeys, Rosseel, and 

Baten (2011) proposed a joint model for the reaction time and accuracy assuming a 
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log-normal distribution and a shifted three-parameter Weibull distribution for the 

response time. Using a Bayesian hierarchical framework, their joint model provides 

for estimation of the correlation between item intensity and difficulty at the item 

level, and between speed and ability at the subject level. A simulation study shows 

the reduction in bias gains compared to the separate modeling approach.   

Ex-Gaussian and the shifted Wald distributions are used both as a 

measurement model and as an intra-individual cognitive process model for RT data 

(e.g., Anders, Alario, Van Maanen, 2016; Burbeck & Luce, 1982; Luce, 1986; Wald, 

1947). Anders et al (2014) describe the shifted Wald distribution as an accumulation 

process model that provides a clear signal-to-response threshold interpretation of the 

RT data, with its parameters 𝛾 corresponding to the accumulation of the internal 

signal 𝑋, 𝛼 to the threshold for initiating the physical process, and 휃 to the time 

lapsed external of signal accumulation. The versatility and usefulness of this model 

was demonstrated on three RT data sets representing different modes of responding. 

The ex-Gaussian distribution can be described by three parameters: the mean and 

standard deviation of the Gaussian component, 휇 and 𝜎, and the mean of the 

exponential component, 𝜏. This distribution was conjectured to represent the 

durations of various components of cognitive processing (e.g., Hohle, 1965). Matzke 

and Wagenmarkers (2009) on the other hand cautioned against interpreting the 

changes in the parameters of the ex-Gaussian and the shifted Wald distributions in 

terms of underlying cognitive processes. Their simulation study and empirical study 

demonstrated that the parameters of the two distributions do not correspond uniquely 

to the parameters of the diffusion model.  
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2.3.3 Response Time as a Function of Response Accuracy 

 RT as a function of response accuracy models are the models in which RT is 

the dependent variable (De Boeck & Jeon, 2019). van der Linden (2009) describes 

these models as “RT models that incorporate responses”. These models usually 

condition the RT distributions upon responses, with distributions for correct 

responses being different from the distributions for incorrect responses. A well-

known example of this type of models is Thissen’s (1983) lognormal RT model for 

timed testing using 2PL IRT. This model assumes that the variations in item 

responses and response times were attributable to the same sources, and that 

responses and latencies could both be used in the estimation of examinee ability and 

item easiness.  The model is given as 

log(𝑡𝑖𝑗) = 𝑣 + 𝑠𝑖 + 𝑢𝑗 − 𝑏(𝑎𝑗휃𝑖 + 𝑐𝑗) + 휀𝑖𝑗 , 휀𝑖𝑗~𝑁(0, 𝜎2) (2.34) 

where 𝑣 is the overall mean log response time, 𝑠𝑖 and 𝑢𝑗 are the person and item 

slowness parameters, 𝑏 is a regression parameter reflecting how latency relates to 

effective ability and item easiness, and 𝑎𝑗, 휃𝑖, and 𝑐𝑗 are the discrimination, effective 

ability and item easiness parameters in the 2PL model. The person and item slowness 

parameters 𝑠𝑖 and 𝑢𝑗 are introduced to represent the extra effect of the examines and 

items on the RT that are not related to the trait that the items are designed to measure.  

 2.3.4 Response Time as a Covariate Models 

 RT as covariate models are models in which RT functions as a covariate, and 

response accuracy is the dependent variable (De Boeck & Jeon, 2019). van der 

Linden (2009) describes them as response models incorporating RT. Two modeling 
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approaches fall into this category: models assuming speed-accuracy trade-off (SAT) 

and generalized linear mixed model (De Boeck & Jeon, 2019).  

Models Assuming SAT. SAT refers to the fact that there exists an inverse 

relationship between speed and accuracy. The relationship between mean RT and the 

probability of a correct response across conditions is called the Speed-Accuracy 

Trade-off Function (SATF) and is usually depicted as an increasing ogive-like 

function (Roskam, 1997). An example of this is Roskam’s (1987, 1997) Rasch 

response time model for time-limit tests. In this model, the probability of a correct 

response conditional upon the response time for a given condition, the Conditional 

Accuracy Function (CAF; Luce, 1986), is given as 

𝑃(𝑈𝑖𝑗 = 1|𝑡𝑖𝑗 , 𝑗, 𝑖) =
휃𝑗𝑡𝑖𝑗

휃𝑗𝑡𝑖𝑗 + 휀𝑖
=

exp(𝜉𝑗 + 𝜏𝑖𝑗 − 𝜎𝑖)

1 + exp(𝜉𝑗 + 𝜏𝑖𝑗 − 𝜎𝑖)
(2.35) 

where 휃 is person ability, 휀 is item difficulty, and 𝑡 is the RT. 𝜉, 𝜎, and 𝜏 are the 

logarithms of 휃, 휀, and 𝑡. Roskam defines “the effective ability parameter for item 𝑖” 

as “mental speed times processing time”. As the model implies, an increase in 𝑡 

results in an increase in CAF for item 𝑖, henceforth a trade-off between speed and 

accuracy. Roskam (1997) further assumes a Weibull distribution for RT where the 

hazard function defined as the probability density that the response is given at time 𝑡, 

conditional upon not given yet, is given as 

ℎ𝑖𝑗(𝑡) =
휃𝑗

휀𝑖𝛿𝑗
𝑡 (2.36) 

𝛿 is the person persistence in continuing working on item 𝑖. This function implies a 

direct relationship between item difficulty and RT, and between person persistence 
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and RT, and an inverse relationship between mental speed and RT. The hazard 

function defines the probability density and probability distribution functions.  

 Another example is Wang and Hanson’s (2005) four-parameter logistic 

response time (4PLRT) model that incorporates response times in the 3PL IRT model 

and can be applied to power tests. The probability of a correct response to item 𝑗 by 

person 𝑖 is given as 

𝑃(𝑥𝑖𝑗 = 1|휃𝑖 , 𝜌𝑖 , 𝑎𝑗, 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗 , 𝑡𝑖𝑗) = 𝑐𝑗 +
1 − 𝑐𝑗

1 + 𝑒
−1.7𝑎𝑗[𝜃𝑖−(

𝜌𝑖𝑑𝑗

𝑡𝑖𝑗
)−𝑏𝑗]

(2.37) 

where 𝑎, 𝑏, and 𝑐 are the discrimination, difficulty, and guessing parameters, and 휃 is 

the person ability parameter as they are interpreted in the 3PL IRT model. 𝑑 is the 

item slowness parameter, 𝜌 is the person slowness parameter, and 𝑡 is the RT by this 

person to this item. The person slowness parameter indicates test-takers’ work pace as 

they response to items. The item slowness parameter indicates how items react to RT. 

The product of these two parameters determines the rate of increase in the probability 

of a correct answer as a function of RT. An increase in RT results in an increase in 

the probability of a correct response. Wang and Hanson further note that the person 

slowness parameter does not indicate the amount of time a test-taker spends on a 

particular item and may or may not relate to RT. As RT for a particular item increases 

to infinity, the 4PLRT model reduces to the 3PL IRT model.  

GLMM-based Models. Goldhammer, Steinwascher, Kroehne, & Naumann 

(2017) extends Roskam’s (1987, 1997) Rasch RT model for time-limit tests for a 

single condition to estimate RT effects both within and across conditions. Speed 

differences can be a confounding factor when interpreting observed differences in 
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ability estimates when individuals completing a test have the option to choose their 

speed, as differences can be attributed to ability, speed chosen, or both (van der 

Linden, 2009). By using a GLMM approach, the proposed SATF and residual CAF 

model address the relation between speed and accuracy both intra-individually and 

inter-individually.  

In this model, the observed RT of a person p 𝑝 = 1,… , 𝑃) completing item 

𝑖(𝑖 = 1,… , 𝐼) in speed condition 𝑐(𝑐 = 1, … , 𝐶) is decomposed into:  

𝑡𝑝𝑖𝑐 = 𝑡… + (𝑡..𝑐 − 𝑡…) + (𝑡𝑝.𝑐 − 𝑡..𝑐) + (𝑡.𝑖𝑐 − 𝑡..𝑐) + 𝑡𝑝𝑖𝑐
(∗) (2.38) 

where 𝑡… is the grand mean of RT, 𝑡..𝑐 is the condition average, 𝑡𝑝.𝑐 is the person 

average per condition, 𝑡.𝑖𝑐  is the item average per condition, and 𝑡𝑝𝑖𝑐
(∗)

 is the residual. 

The residual 𝑡𝑝𝑖𝑐
(∗)

 represents RT differences after removing the effects of item and 

person and is an indication of the extent to which the RT deviates from the expected 

RT in condition 𝑐 given the person’s speed and the item’s time intensity. This is the 

random response time effect model for multiple speed conditions.  

Goldhammer et al (2017) incorporate person and item differences in the 

SATF. The person SATF model describes the effect of within-person speed 

differences on the probability of a correct response and is given as 

𝑃(𝑋𝑝𝑖𝑐 = 1) = Ψ−1 (𝛽0 + 𝑏0𝑝 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑝)𝑡𝑝.𝑐 + (𝛽2 + 𝑏2𝑖)(𝑡.𝑖𝑐 − 𝑡..𝑐))

(2.39)
 

where Ψ−1 is the inverse logit function, 𝛽0 is the general intercept, 𝑏0𝑝  is the random 

person intercept for individual performance differences in the reference condition, 

and 𝑏0𝑖  is the random intercept across items or item easiness. 𝛽1 is the average person 

SATF slope representing the fixed effect of speed across conditions and 𝑏1𝑝  is the 
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random person SAFT slope representing the individual deviation from it. 𝛽2 is the 

fixed effect of relative time intensity across conditions, and 𝑏2𝑖 , the random item 

slope, is the related item-specific deviation. The person SATF slope 𝛽1 indicates the 

rate at which information is accumulated to give the response. The item SATF model 

describes the effect of intra-item differences in time intensity across speed conditions 

and is similarly given by 

𝑃(𝑋𝑝𝑖𝑐 = 1) = Ψ−1(𝛽0 + 𝑏0𝑝 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑝)(𝑡𝑝.𝑐 − 𝑡..𝑐) + (𝛽2 + 𝑏2𝑖)𝑡.𝑖𝑐  

(2.40) 

where 𝛽1 denotes the fixed effect of relative speed across conditions, 𝑏1𝑝  is the 

random person slope denoting related individual differences, 𝛽2 is the average item 

SATF representing fixed effect of item time intensity, and 𝑏2𝑖  is the random item 

SATF slope representing the related item-specific deviation. The item SATF slope 𝛽2 

indicates on average how fast information is gained and lost by item as speed 

changes.   

Using the RT residual 𝑡𝑝𝑖𝑐
(∗)

 as a predictor in the person SATF model, the 

overall SATF and residual CAF model is given by 

𝑃(𝑋𝑝𝑖𝑐 = 1) = Ψ−1 (𝛽0 + 𝑏0𝑝 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑝)𝑡𝑝.𝑐 + (𝛽2 + 𝑏2𝑖)(𝑡.𝑖𝑐 − 𝑡..𝑐)

+ (∑(𝛽3𝑐 + 𝑏3𝑝𝑐 + 𝑏3𝑖𝑐)𝐼𝑐=𝑘𝑡𝑝𝑖𝑐
(∗)

𝐶

𝑘=1

)) 

(2.41) 

where the variable 𝐼𝑐=𝑘 indicates whether the observation was made under condition 

𝑐. The last term in this expression represent the effects of the residual RT, where, for 
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a given condition, 𝛽3𝑐  is the residual CAF slope representing the fixed effect of 

residual RT, 𝑏3𝑝𝑐  is the random person component, and 𝑏3𝑖𝑐  is the random item 

component. The residual RT effects indicate how deviation from expected RT affect 

response accuracy. The CAF and residual CAF model for a single condition is given 

as 

𝑃(𝑋𝑝𝑖 = 1) = Ψ−1(𝛽0 + 𝑏0𝑝 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖)𝑡𝑝. + (𝛽2 + 𝑏2𝑝)𝑡.𝑖 +

(𝛽3𝑏3𝑝 + 𝑏3𝑖)𝑡𝑝𝑖𝑐
(∗)

) 

(2.42) 

where 𝛽1 is the average person CAF slope relating differences in speed to accuracy, 

𝑏1𝑖 is the variation of this relation across items, 𝛽2 is the average item CAF slope 

relating differences in item intensity to accuracy, and 𝑏2𝑝  is the variation of the 

relation across persons.  

 2.3.5 Summary and Discussion 

 This section reviews distribution models for RT, RT as a function of response 

accuracy models, and RT as a covariate model. Descriptive distributions used for the 

modeling and analysis of RT include lognormal, gamma, inverse Gaussian, ex-

Gaussian, Weibull and Gumble, and shifted Wald distributions. The lognormal RT 

model (van der Linden, 2006) is analogous to the 2PL IRT model with its own set of 

RT parameters: person speed parameter 𝜏, item time intensity parameter 𝛽𝑖 and 

discrimination parameter 𝛼𝑖. Other distribution models reported as having a good fit 

for RT data are used for fitting RTs data from psychological experiments, such as 

mental rotation experiments (Maris, 1993), lexical decision tasks (Lo & Andrews, 
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2013), and word recognition tasks (Loeys et al, 2011). Two of the distributions, ex-

Gaussian and the shifted Wald distributions, were used as both a measurement model 

and as an intra-individual cognitive process models for RT data, with parameters in 

the distribution model corresponding to the parameters in the cognitive process model 

(e.g., Anders et al, 2014; Burbeck & Luce, 1982; Luce, 1986; Wald, 1947).  Luce 

(1986) concludes that it is unclear how cognitive processes relate to RT distributions. 

Matzke and Wagenmakers (2009) similarly caution again interpreting changes in the 

parameters as indicative of underlying cognitive processes. On the same note, van der 

Linden (2006) notes that the exponential and gamma distributions models follow 

strict assumptions on the problem-solving process underlying responses to an item, 

which is these models’ weakness as the problem-solving process may not meet the 

assumptions of these models.  

 SAT models assume an inverse relationship between speed and accuracy and 

incorporate a RT parameter 𝑡𝑖𝑗 in IRT models for response accuracy such that an 

increase in 𝑡𝑖𝑗 results in an increase in the probability of a correct response (e.g., 

Raskam, 1997; Wang & Hanson, 2005). In reaction time research, SAT is typically 

represented by the positive relationship between the proportion of correct tasks and 

the average time on the tasks (e.g., Luce, 1986; van der Linden, 2009). As van der 

Linden (2009) notes, SAT in reaction time research is equivalent to speed-ability 

trade-off in testing, which is a within-person phenomenon and implies a 

monotonically decreasing relation between speed and ability. Speed-ability trade-off 

further implies that test scores do not reflect the level of test-takers’ abilities unless 

constancy of speed is assumed. In this sense, speed and ability are related through the 
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function 휃 = 휃(𝜏) and models of response and RT should treat the effective speed 

and ability of the test takers as fixed parameters (van der Linden, 2009). Thus, SAT 

models are for persons with fixed levels of ability and speed and seem to confound 

the within-person and fixed-person levels as speed-ability trade-off is only evidence 

when there is a change of strategy or condition (van der Linden, 2007).  

 The GLMM-based models provide for estimation of the effects of RT on 

response accuracy within and across experimental speed conditions (Goldhammer et 

al, 2017). The person and item SATF slope capture the between condition effects, 

indicating individuals’ efficiency in accumulating information regarding the 

correctness of the response. The residual CAF slopes estimate the within condition 

effects and are an indicator for the mode of information processing. These models are 

proposed for measures including simple cognitive tasks with a strong speed 

component and can be extended with additional person and item indicators to provide 

better understanding of factors affecting the individual and item differences in the RT 

effects (Goldhammer et al, 2017). Analyses of the empirical datasets applying the 

models suggest that the association between speed and accuracy depends on the tasks 

and that the association is less negative (or more positive) for more difficult items.  

 The proposed research adopts van der Linden’s (2006) lognormal RT model 

due to its fit to RT data for different item types in computer-based assessments and 

integrates it with the DINA model and partial credit AC model through a joint 

modeling approach. The next section reviews joint models of responses and RT with 

or without dependencies.   
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2.4 Joint Modeling of Response and Response Time 

 Joint modeling of response and RT entails distinct models for response and 

RT, each with its own set of parameters, with or without dependencies beyond those 

captured by latent variables and item parameters (De Boeck & Jeon, 2019; van der 

Linden, 2007, 2009). The prototypical model in this category is van der Linden’s 

(2007) hierarchical framework for modeling speed and accuracy (De Boeck & Jeon, 

2019). Two other joint models are the diffusion model (Ratcliff, 1978) and race 

model (Towsend &Ashby, 1978), which directly model cognitive processes using 

responses and RTs data but can be re-parameterized as item response models 

(Tuerlinckx & De Boeck, 2005). This section reviews joint models for response and 

RT with and without dependencies and extensions of the hierarchical framework to 

jointly model response and RT for cognitive diagnosis.  

2.4.1 Hierarchical Framework for Modeling Speed and Accuracy 

 van der Linden (2007) proposed a three-level hierarchical framework for the 

hybrid type of test having items with varying difficulty and requiring varying amount 

of cognitive processing. The first level of the framework specifies distinct 

measurement models for response and RT for each combination of person and item. 

The second level models represent the relations between the parameters in the first-

level models. Prior distributions for the second-level parameters or hyperparameters 

are specified at the third level.  Developed as a “plug-and-play” approach, this 

framework allows for plug-ins of alternative models for the response and RT 

distributions as well as distributions for their parameters.  
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 As an illustrative example, van der Linden adopted the 3PL normal-ogive 

model as the response model, and the lognormal model as RT model. The sampling 

distribution for the response vector and response-time vector (U𝑗 , 𝑇𝑗), 𝑗 = 1, … , 𝐽 for 

the items 𝑖 = 1,… , 𝐼, and the test-takers 𝑗 = 1, … , 𝐽 , given conditional independence 

of U𝑗 and 𝑇𝑗, are given as 

𝑓(𝑈𝑗, 𝑇𝑗; 𝜉𝑗 , Ψ) = ∏𝑓(𝑢𝑖𝑗; 휃𝑗 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)𝑓(𝑡𝑖𝑗; 𝜏𝑗 , 𝛼𝑖 , 𝛽𝑖)

𝐼

𝑖=1

(2.43) 

where 𝜉𝑗 = (휃𝑗 , 𝜏𝑗) denotes the vector with parameters for person 𝑗 and 𝜓𝑖 =

(𝑎𝑖, 𝑏𝑖 , 𝑐𝑖, 𝛼𝑖, 𝛽𝑖) denotes the vector of parameters for item 𝑖. Second-level models 

describe the joint distribution of the person parameters in a population, 𝒫, and a joint 

distribution for the item parameters in the domain of items, ℐ, as following a 

multivariate normal distribution. The values of 𝜉𝑗, assumed to be randomly drawn 

from a multivariate normal distribution, is 

𝜉𝑗~𝑓(𝜉𝑗; 휇𝒫 , Σ𝒫) (2.44) 

where the density function is 

𝑓(𝜉𝑗; 휇𝒫 , Σ𝒫) =
|Σ𝒫

−1|
1
2

2𝜋
exp [−

1

2
(𝜉𝑗 − 휇𝒫)

𝑇
Σ𝒫

−1(𝜉𝑗 − 휇𝒫)] (2.45) 

with mean vector 

휇𝒫 = (휇𝜃. 휇𝜏) (2.26) 

and covariance matrix 

Σ𝒫 = (
𝜎𝜃

2 𝜎𝜃𝜏

𝜎𝜃𝜏 𝜎𝜏
2
) (2.47) 

Likewise, parameter vector 𝜓𝑖 follows a multivariate normal distribution 
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𝜓𝑖~𝑓(𝜓𝑖; 휇ℐ , Σℐ) (2.48) 

with density function 

𝑓(𝜓𝑖 ; 휇ℐ, Σℐ) =
|Σℐ

−1|
1
2

(2𝜋)
5
2

exp [−
1

2
(𝜓𝑖  − 휇ℐ)

𝑇Σℐ
−1(𝜓𝑖  − 휇ℐ)] (2.49) 

mean vector  

휇ℐ = (휇𝑎 , 휇𝑏, 휇𝑐 , 휇𝛼 , 휇𝛽) (2.50) 

 and covariance matrix 

Σℐ =

(

 
 
 
 

𝜎𝑎
2 𝜎𝑎𝑏 𝜎𝑎𝑐 𝜎𝑎𝛼 𝜎𝑎𝛽

𝜎𝑏𝑎 𝜎𝑏
2 𝜎𝑏𝑐 𝜎𝑏𝛼 𝜎𝑏𝛽

𝜎𝑐𝑎 𝜎𝑐𝑎 𝜎𝑐
2 𝜎𝑐𝛼 𝜎𝑐𝛽

𝜎𝛼𝑎 𝜎𝛼𝑏 𝜎𝛼𝑐 𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛽𝛼 𝜎𝛽𝑏 𝜎𝛽𝑐 𝜎𝛽𝛼 𝜎𝛽
2
)

 
 
 
 

(2.51) 

The sampling distribution for the full model is 

𝑓(u, t; 𝜉,Ψ) = ∏∏𝑓(u𝑗, t𝑗; 𝜉𝑗 , Ψ𝑖)𝑓(

𝐼

𝑖=1

𝐽

𝑗=1

𝜉𝑗 ; 휇𝒫 , Σ𝒫)𝑓(𝜓𝑖; 휇ℐ , Σℐ) (2.52) 

Prior distributions for the population and item-domain models are specified as 

normal/inverse-Wishart distributions.  

2.4.2 Diffusion Model and Race Model 

 The diffusion model directly models the cognitive processes involved in 

simple single-stage two-choice decisions as encompassing an encoding process with 

duration 𝑢, the decision process with duration 𝑑, and a response output process with 

duration 𝑤 (Ratcliff, 1987; Ratcliff & McKoon, 2008). This model assumes a noisy 

evidence accumulation process with a starting point 𝑧 and culminating in one of two 

response criteria or boundaries labeled 𝑎 and 0, at which point a response is initiated. 
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This process is analogous to a random walk process between two boundaries. The rate 

of evidence accumulation is the drift rate (𝑣). Nondecision components are 𝑢 and 𝑤 

combined with mean duration 𝑇𝑒𝑟. In this model, the probability of a nonmatch (error 

rate) is given by 

𝛾 − (𝜉) =
𝑒

−(
2𝜉𝑎
𝑠2 )

− 𝑒
−(

2𝜉𝑧
𝑠2 )

𝑒
−(

2𝜉𝑎
𝑠2 )

− 1

(2.53) 

where 𝜉 denotes relatedness and is set equal to drift, and 𝑠2 is the variance in the drift. 

The finishing time density function for a nonmatch is given by 

𝑔 − (𝑡, 𝜉) =
𝜋𝑠2

𝑎2
𝑒

−(
𝑧𝜉
𝑠2)

∑ 𝑘𝑠𝑖𝑛 (
𝜋𝑧𝑘

𝑎
)𝑒

−
1
2(

𝜉2

𝑠2+
𝜋2𝑘2𝑠2

𝑎2 )𝑡
∞

𝑘=1

(2.54) 

Setting 𝜉 = −𝜉 and 𝑧 = 𝑎 − 𝑧 results in equivalent expressions for a match.  

 The Q-diffusion model is a modification of the diffusions model and is 

considered an alternate to the hierarchical model (De Boeck & Jeon, 2019). This 

model decomposes the drift rate and boundary separation into a person and item part 

denoted by 𝑣𝑝 , 𝑣𝑖 , 𝑎𝑝, and 𝑎𝑖 respectively and combines them into the diffusion 

parameters (van der Maas et al, 2011). The quotient function is applied to both 𝑣 and 

𝑎, such that 𝑣 =
𝑣𝑝

𝑣𝑖  and 𝑎 = 𝑎𝑝/𝑎𝑖. By extending Bock’s (1972) nominal response 

model, a general framework for modeling item responses for simple abilities, 

assuming that a diffusion process produces the item responses, is given by 

𝑃+ =
𝑒

𝑎𝑘
𝑝
𝑣𝑘

𝑝

𝑎𝑗
𝑖𝑣𝑗

𝑖
−𝐼𝑛(𝑀𝑗−1)

1 + 𝑒

𝑎
𝑘
𝑝
𝑣
𝑘
𝑝

𝑎𝑗
𝑖𝑣𝑗

𝑖
−𝐼𝑛(𝑀𝑗−1)

(2.55) 
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where the 2PL parameters are set to 𝛼∗ = 𝛼 and 𝛽∗ = 𝛽. As the two major latent 

variables in this model are cognitive efficiency, the drift rate, and cautiousness, the 

boundary separation, dimensions in the Q-diffusion model are considered a rotation 

of the ability and speed dimensions in the hierarchical model (De Boeck & Jeon, 

2019). 

 The race models are another type of cognitive process model of response 

choice and RT data based upon which inferences are drawn regarding the processes 

and mental representations underlying information-processing. An example of this is 

the lognormal race model proposed by Rounder, Province, Morey, Gomez, & 

Heathkote (2015). This model assumes an accumulator for each response option with 

a boundary. The response choice and RT are determined by the first accumulator that 

reaches its boundary. By modeling cognitive process as a race between accumulators, 

this model applies to any number of response choices and accommodates other 

models such as IRT and cell-mean models in its accumulation rates. This model is 

given by 

𝑥𝑗 = 𝑚 ⇔ 𝑦𝑚𝑗 = min
𝑖

(𝑦𝑖𝑗) (2.56) 

where 𝑥𝑗 denotes response choice for the 𝑖𝑡ℎ trial with 𝑥𝑗 = 1,… , 𝑛; and 𝑗 = 1,… , 𝐽. 

And 𝑦𝑖𝑗  denotes the finishing time for the 𝑖𝑡ℎ accumulator on the 𝑗𝑡ℎ trial. RT 𝑡𝑗 is 

𝑡𝑗 = 𝜓 + min
𝑖

(𝑦𝑖𝑗) (2.57) 

where 𝜓 is the shift parameter that reflects the contribution of nondecision processes 

such as encoding and response execution. Each finishing time 𝑦𝑖𝑗  is modeled as log 

normally distributed 

𝑦𝑖𝑗~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(휇𝑖 , 𝜎𝑖
2) (2.58) 
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The joint density function of choice 𝑚 at time 𝑡 is 

𝑓(𝑚, 𝑡) = 𝑔(𝑡 −  𝜓; 휇𝑚 , 𝜎𝑚
2 )∏(1 − 𝐺(𝑡 − 𝜓; 휇𝑖 , 𝜎𝑖

2))

𝑖≠𝑚

(2.59) 

where g and G are the density and cumulative distribution functions of the two-

parameters lognormal distribution. Another example is Ranger, Kuhn, Gaviria’s 

(2015) race model for response and RT that specifies two increasing stochastic 

processes for representing information accumulation associated with one of the two 

response options. The two latent variables in this model represent information 

accumulation for producing the correct response and misinformation accumulation 

for generating the incorrect response. De Boeck and Jeon (2019) describe race models 

with speed and ability as latent variables as they can be re-parameterized as effective 

speed and effective ability. Both diffusion models and race models are analogous to 

the hierarchical model in working with the same two-dimensional space represented 

by the latent variables.   

2.4.3 Local Dependency Models 

 Three different assumptions of conditional independence associated with 

modeling the relationship between response and RT in the hierarchical framework are 

independence between responses to difference items given ability, independence 

between RTs on different items given speed, and independence between response and 

RT on the same item given speed and ability (van der Linden, 2009; van der Linden 

& Glas, 2010). An additional assumption is constancy of speed and proficiency 

during the test (van der Linden & Glas, 2010). Fluctuation of speed and ability during 

test administration results in violations of local dependence, henceforth alternative 
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modeling approaches to accounting for conditional dependencies if occurring in a 

large and systematic fashion.  

Local dependency joint models capture dependencies beyond higher-level 

correlation between overall speed and ability by including local dependency 

parameters or through mixture modeling of different classes of responses (De Boek & 

Jeon, 2019). van der Linden and Glas (2010), for example, include an additional 

parameter representing the shift in the expected response on item 𝑖 as caused by a 

correct response to item 𝑘 by the same test taker as the alternative model for 

responses, and an extra parameter denoting the correlation between the log-times on 

items 𝑖 and 𝑘 by the same test taker in the RT model. De Boeck, Chen, & Davison 

(2017) specify general dependency and item-specific dependency of accuracy on RT 

in the CAF as  

휂𝑝𝑖 = 휃𝑝 + 𝛽𝑖 + 𝜔log𝑅𝑇𝑝𝑖 (2.60) 

and 

휂𝑝𝑖 = 휃𝑝 + 𝛽𝑖 + 𝜔𝑖log𝑅𝑇𝑝𝑖 (2.61) 

where 𝜔 and 𝜔𝑖 are general and item-specific time-dependency parameters. 

Bolsinova, De Boeck, and Leuven (2017) model conditional dependence between 

response and RT by incorporating the effects of the residual RT on the intercept and 

slope parameter of the 2PL model for response accuracy.  

 The alternative approach to modeling local dependencies between RT and 

accuracy is mixture modeling of two classes of response as determined by RT (De 

Boek & Jeon, 2019).  Different response processes may be used when subjects 

respond to different sets of items, giving rise to within-subject heterogeneity of the 
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item characteristics across the RT. Molenaar and De Boeck (2018) proposed a 

response mixture model for response and RT that specifies two item-specific latent 

classes underlying the responses of each item. In this model, class membership is 

regressed on RT and classes differ in their item characteristics. A mixture of two 

measurement models each with their distinct set of item discrimination and difficulty 

parameters is formulated for response probabilities given class membership, 

respectively as 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑋𝑝𝑖 = 1|휃𝑝, 𝛼0𝑖 , 𝛽0𝑖)] = 𝛼0𝑖휃𝑝 − 𝛽0𝑖 (2.62) 

and 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑋𝑝𝑖 = 1|휃𝑝, 𝛼1𝑖 , 𝛽1𝑖)] = 𝛼1𝑖휃𝑝 − 𝛽1𝑖 (2.63) 

for response probabilities given class membership 𝐶𝑝𝑖 = 0 and 𝐶𝑝𝑖 = 1. Class 

membership is then repressed on the subject and item-corrected log-RT to determine 

whether faster or slower RT are indicative of distinct class membership. Wang and 

Xu (2015) proposed a mixture hierarchical model for RT and response accuracy to 

account for differences in responses and RT associated with two test-taking 

behaviors: rapid guessing and solution behavior.  

2.4.4 Joint Modeling of Responses and Response Times for Cognitive 

Diagnosis 

 Joint modeling of response and RT has been extended to incorporate cognitive 

diagnostic models as an alternative response accuracy model (Jiao et al, 2019; Zhan et 

al 2018a), and to joint testlet models that accommodate local dependencies (Zhan et 

al, 2018b). Based upon the hierarchical framework for modeling responses and RTs, 

Zhan et al (2018b) proposed a joint RTs DINA (JRT-DINA) model with the DINA 
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model as the response accuracy model and the lognormal model as the RT model. 

The first-level models are the lognormal RT model (van der Linden, 2006) expressed 

as 

𝐿𝑜𝑔(𝑇𝑛𝑖) = 휁𝑖 − 𝜏𝑛 + 휀𝑛𝑖, 휀𝑛𝑖~𝑁(0,𝜎
𝑖
2 ) (2.64) 

and the reparameterized DINA model given by 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑛𝑖 = 1)) = 𝛽𝑖 + 𝛿𝑖 ∏𝛼𝑛𝑘
𝑞𝑖𝑘

𝐾

𝑘=1

(2.65) 

where 𝛽𝑖  is the item intercept parameter and 𝛿𝑖 is the interaction parameter and 

𝛽𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑔𝑖) 

𝛿𝑖 = 𝑙𝑜𝑔𝑖𝑡(1 − 𝑠𝑖) − 𝑙𝑜𝑔𝑖𝑡(𝑔𝑖). (2.66) 

The second level models specify the item parameters of the JRT-DINA model as 

following a trivariate normal distribution and the person parameters as following a 

bivariate normal distribution, respectively given by 

Ψ𝑖 = (
𝛽𝑖

𝛿𝑖

휁𝑖

)~𝑁((

휇𝛽

휇𝛿

휇
), Σ𝑖𝑡𝑒𝑚) (2.67) 

and 

Θ𝑛 = (
휃
𝜏
)~𝑁 ((

휇𝜃

휇𝜏
) , Σ𝑝𝑒𝑟𝑠𝑜𝑛) , Σ𝑝𝑒𝑟𝑠𝑜𝑛 = (

𝜎𝜃
2 𝜌𝜃𝜏𝜎𝜃𝜎𝜏

𝜌𝜃𝜏𝜎𝜃𝜎𝜏 𝜎𝜏
2

) (2.68) 

Bayesian estimation using MCMC indicates that joint modeling of response and RT 

in the DINA model would improve parameter estimation and classification accuracy 

rates for attributes and attribute profiles.  

 Zhan et al (2018b) extends the JRT-DINA model to account for local item 

dependency and item time dependency in joint modeling of response and RT for 

cognitive diagnosis. In this model, testlet effects as caused by the same stimulus are 
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defined as paired local dependence, i.e., dependency in RT, and dependency in 

response accuracy. Based upon the hierarchical framework for modeling RT and 

response accuracy (van der Linden, 2006), the first-level models are testlet-DINA 

model with an additional testlet parameter to represent the interaction effect between 

person and items on response accuracy, and a lognormal testlet model with an 

additional testlet parameter to denote the local RT dependency. They are given by 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑛𝑖 = 1)) = 𝛽𝑖 + 𝛿𝑖 ∏𝛼𝑛𝑘
𝑞𝑖𝑘

𝐾

𝑘=1

+ ∑ 휇𝑖𝑚𝛾𝑛𝑚

𝑀

𝑚=1

(2.69) 

and  

𝐿𝑜𝑔𝑇𝑛𝑖~𝑁(휁𝑖 − 𝜏𝑛 − ∑ 휇𝑖𝑚휆𝑛𝑚 , 𝜔𝑖
−2)

𝑀

𝑚−1

(2.70) 

where 휇𝑖𝑚  indicates whether or not item 𝑖 is part of testlet 𝑚, and 𝛾𝑛𝑚 and 휆𝑛𝑚 

denote the effect of testlet 𝑚 on response accuracy and RTs respectively. At the 

second level, the testlet effect parameters are assumed to follow a bivariate normal 

distribution 

Γ𝑛𝑚 = (
𝛾𝑛𝑚

휆𝑛𝑚
)~𝑁 ((

0
0
),Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑚) (2.71) 

where the same 휇𝑖𝑚  value is assumed in the response and RT models. Specification of 

the item and person parameters at this level are identical compared to the JRT-DINA 

model.  

2.4.5 Summary and Discussion 

 This section reviews joint models of response and RT, the hierarchical 

framework for modeling speed and ability, the diffusion model, the race model, local 

dependency models, and joint models of response and RT for cognitive diagnosis. 
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The hierarchical framework for modeling speed and ability is a complex two-

dimensional measurement model, with one dimension for response accuracy, and 

another dimension for RT (De Boeck & Jeon, 2019). The first-level models specify 

distributions for response and RT, while the second level specify multivariate 

distributions for the model parameters, allowing for estimation of the relation 

between speed and ability at the population level. Applied to educational and 

psychological testing, this framework simultaneously estimates IRT parameters and 

other parameters in this framework, which may lead to increased accuracy of the 

estimated parameters (van der Linden, 2007; van der Linden, Klein Entink, & Fox, 

2010). RT modeling in this framework can be used to improve the design of adaptive 

testing, handle the issue of speededness in testing (van der Linden, Breithaupt, Chuah, 

& Zhang, 2007), and detect aberrant test behaviors (van der Linden & Guo, 2008).  

 The diffusion model and race models, on the other hand, are finer-grained 

process models the parameterization of which maps onto elements of the cognitive 

processes contributing to decision making. The diffusion model assumes information 

accumulation between boundaries, while the race models assume a race among 

different accumulators (De Boeck & Jeon, 2019). Both types of models account for 

speed-accuracy trade-off and represent it as a complicated function of the model 

parameters. In addition, both types of models are amenable to latent variable 

modeling, with the dimensions in the models corresponding to the ability and speed 

dimensions of the hierarchical model (De Boeck & Jeon, 2019; Ranger et al, 2014; 

van der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011).   
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 Local dependency models capture extra dependency of the response and RT, 

beyond the relationship of their latent variables and item parameters. By specifying a 

general and item-specific dependency of accuracy on RT, De Boeck et al (2017) 

identified two kinds of speed effects: a speed-accuracy trade-off induced by imposed 

speed, and an opposite CAF effect associated with speed within conditions, which 

may occur as a result of within-person variation of the cognitive capacity. Bolsinova 

et al’s (2017) investigation of the residual dependence between RT and accuracy 

identified the dependence of item properties on the speed of responses: SAT holds for 

more difficult items, whereas for easier items, an opposite SAT exists, with slower 

responses associated with a lower probability of a correct response. Slower responses 

are also less informative for ability as their discrimination parameters decrease with 

residual RT. These findings are in line with Molenaar and De Boeck’s (2018) who 

found a similar effect, indicating local dependence of the response accuracy and RT 

conditioned on item properties. Using a hierarchical mixture modeling approach, 

Wang and Xu (2015) identify differences in RT patterns and responses attributable to 

two test-taking behaviors: problem-solving and rapid guessing and demonstrate that 

the model yields more accurate item and person parameter estimates than a non-

mixture model.  

 The JRT-DINA model (Jiao et al, 2019; Zhan et al, 2018a) and its extension to 

account for dual local response and RT dependence (Zhan et al, 2018b) are joint 

models of response and RT for cognitive diagnostic models built upon the 

hierarchical framework for modeling speed and accuracy (van der Linden, 2007). By 

incorporating RT modeling in the modeling of responses, the JRT-DINA model 
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yields improved attribute and profile correct classification rates and more accurate 

and precise estimation of the model parameters (Zhan et al, 2018a). This finding is in 

line with van der Linden et al (2006), suggesting that simultaneous estimation of the 

DINA model parameters and other parameters in the joint model can lead to increased 

accuracy of the estimated parameters. As noted by Jiao et al (2019), under certain 

circumstances when a test is not adequately designed for cognitive diagnosis, as 

indicated by Q-matrix not properly verified, inadequate test lengths, or poor item 

quality, the effect of incorporating RT in the modeling of responses on parameter 

estimation is evident.  

 RT is one of the most widely studied response process data in psychometric 

modeling. Another type of response process data is ACs. This next section review AC 

patterns and outcomes, indices for detecting aberrant ACs, and AC modeling.  

2.5 Answer Change Modeling 

 Answer changes (ACs), synonymous to erasures (Sinharary, 2018), response 

changes (Liu, Bridgeman, Gu, Xu, & Kong, 2015), or response revisions, refer to the 

fact that test-takers, after making an initial decision, subsequently revisit the decision 

and revert to an alternative option as their best choice (Jeon, De Boeck, & van der 

Linden, 2017; Malia, 2007). Distinctions are drawn between benign ACs and 

fraudulent ACs, with the former describing non-aberrant ACs and the latter 

suggesting test tampering by test-takers, test administrators, or educators (Sinharay, 

Duong, & Wood, 2017; Sinharay & Johnson, 2016). Sinharay and Johnson (2016) 

further distinguishes between two types of benign ACs: string-end ACs and random 

ACs. String-end ACs occur when examinees randomly guess on the remaining test 
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items due to time constraints, but subsequently revise some of the answers when 

additional time becomes available. Random ACs refer to the types of ACs that 

examinees make upon reconsidering the choices they initially make by accident 

(Wollack, Cohen, & Serlin, 2015). This section reviews research on AC patterns, 

aberrant ACs, and psychometric models of ACs and AC patterns.   

2.5.1 Patterns and Outcomes of Answer Changes (ACs) 

 ACs research dating back to the 1920s seeks answers to issues including 

outcomes of ACs, the relationship between ability and ACs, and factors affecting test-

takers’ AC behaviors (e.g., Bridgeman, 2012; Kruger et al, 2015; Liu et al, 2015; 

Malia, 2007; Jeon et al, 2017).  Results of ACs studies conducted at the aggregate 

level consistently suggest that, contrary to the belief that students should trust their 

first instinct and initial response choices are more accurate than subsequent responses, 

ACs are likely to result in score gains and improved test performance (e.g. 

Bridgeman, 2012; Liu et al, 2015). A majority of the students change answers during 

a test (Al-Hamly & Coombe, 2005; Liu et al, 2015). Although only a small portion of 

the test items are typically changed during a test, the majority of the students benefit 

from changing their answers (Al-Hamly & Coombe, 2005; Liu et al, 2015; Milia, 

2007). Limited research on computer-adaptive tests (CAT) yields similar findings, 

i.e., although ACs occur for only a small portion of the test items, more test-takers 

change their answers than those who do not, and those who do usually gain scores 

from changing their answers (Liu et al., 2015).  

 The extent to which test-takers gain scores from ACs is moderated by test-

takers’ ability level and depends on the nature of responses test-takers change during 
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the test (Al-Hamly & Coombe, 2005; Jeon et al, 2017; Liu et al, 2015; McMorris, 

DeMers, & Schwarz, 1987; Milia, 2007). High-performing examinees were more 

likely to make wrong-to-right changes and fewer right-to-wrong changes (Al-Hamly 

& Coombe, 2005; Milia, 2007). High-performing examinees tend to gain more from 

ACs than low-performing examinees, as indicated by significantly higher gain-to-loss 

ratios by the high-performing group (Liu et al, 2015). Score gains are minimal for the 

low-ability test takers, as compared to minor to moderate gains for test-takers with 

moderate to high ability levels (Jeon et al, 2017; McMorris, et al, 1987). In addition, 

the nature of the responses that test-takers change affects the effect of ACs. Score 

gains are more likely for responses that test-takers initially and mistakenly make due 

to carelessness or time constraints and are able to correct subsequently, but less likely 

for responses resulting from misconception or confusion over alternative options on 

multiple-choice items (Higham & Gerrard, 2005; Liu et al, 2015).  

2.5.2 Indices for Detecting Aberrant Answer Changes (ACs) 

Considerable research focuses on the analysis of ACs or erasure analysis to 

derive indices for detecting fraudulent erasures and test tampering (e.g. Belov, 2011, 

2015, 2017; Sinhary, 2018; Sinharay, Duong, & Wood, 2017; Sinharay & Johnson, 

2016; Wollack, Cohen, & Eckerly, 2015).  Belov (2015) for example proposed the D-

index based on the Kullback-Leibler divergence (KLD; Kullback & Leibler, 1951) 

measure of the difference between posteriors of ability computed from responses to 

two subsets: one subset with ACs and one subset without ACs to detect aberrant ACs. 

Wallack et al (2015) suggested the erasure detection index (EDI) based on Bock’s 

(1972) nominal response model for fraud detection at the individual level. Wallack 
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and Eckerly (2017) extended the EDI to detection of fraudulent erasures at the group 

level. Sinharay et al (2017) proposed the L-index based on the likelihood ratio test 

(LRT; e.g., Cox & Hinkley, 1974) of the equality of the model parameters underlying 

the subset of items with ACs and the subset without ACs for detection of aberrant 

ACs. Simulation studies of the performance of these indices demonstrate their 

robustness and/or usefulness for fraudulent erasures for dichotomous items.  

2.5.3 Models of Answer Changes (ACs) 

 ACs models represent AC behaviors as a sequence consisting of an initial 

stage where test-takers give initial responses to test items and a final stage in which 

they either confirm or replace their initial responses (Jeon, De Boeck, & van der 

Linden, 2017; van der Linden & Jeon, 2012). van der Linden and Jeon (2012) 

proposed an IRT-based approach to model the probability of test-takers changing 

answers upon reviewing their initial choices for multiple-choice paper-and-pencil 

tests, based on the assumption that test-takers are allowed enough time to respond to 

all items on the test and review their answers upon completing a first pass. This 

model distinguishes three types of erasure patterns: a RW erasure that occurs when 

the initial correct response is replaced by an incorrect response, a WW erasure which 

replaces an initial incorrect response with another incorrect response, and a WR 

erasure which replaces the initial incorrect response with a correct response. In this 

model, the final stage responses, conditional on the initial responses, are given by 

Pr{𝑈𝑛𝑖
(2)

= 1|𝑈𝑛𝑖
(1)

= 1} =
exp [𝑎1𝑖(휃𝑛

(1)
− 𝑏1𝑖)]

1 + exp [𝑎1𝑖(휃𝑛
(1)

− 𝑏1𝑖)]
(2.72) 

the complement of which is the probability of a RW erasure, and 
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Pr{𝑈𝑛𝑖
(2)

= 1|𝑈𝑛𝑖
(1)

= 0} =
exp [𝑎0𝑖(휃𝑛

(1)
− 𝑏0𝑖)]

1 + exp [𝑎0𝑖(휃𝑛
(1)

− 𝑏0𝑖)]
(2.73) 

which is the probability of a WR erasure and the complement of which is a compound 

event of a WW erasure or a test-taker confirming an incorrect response given at the 

initial stage. In this model the item parameters 𝑎𝑖 and 𝑏𝑖 are free but the final stage 

ability parameters are set to equal to their initial values such that 휃𝑛
(2)

= 휃𝑛
(1)

 . 

 Jeon et al (2017) adopted a similar approach in an application of the 

generalized IRT tree model to model AC behaviors. The leaves in the IRT tree in this 

model represents four possible outcomes of AC behavior: WW (both initial and final 

responses are wrong), WR (the initial response is wrong and the final response is 

right), RW (the initial response is right and the final response is wrong), and RR (both 

the initial and final responses are right). Three nodes represent three latent abilities 

contributing to the four AC patterns, with the node at the top defining the ability to 

correctly respond to an item when initially reviewed, and the two nodes in the middle 

representing two different abilities, the ability to make a correct change when the 

initial response is wrong and propensity to make no change when the initial response 

is right.  Node-specific response probabilities denoted by 𝑌𝑝𝑖
(1)

, 𝑌𝑝𝑖
(2)

, 𝑌𝑝𝑖
(3)

 are given 

by the 2PL IRT model specifying them as a function of three distinct sets of ability 

and item parameters. The following T matrix shows how the outcomes denoted as 𝑍𝑝𝑖 

relate to the node-specific response probabilities 
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𝑌𝑝𝑖
(1)

𝑌𝑝𝑖
(2)

𝑌𝑝𝑖
(3)

𝑍𝑝𝑖 = 1 (𝑊𝑊)

𝑍𝑝𝑖 = 2 (𝑊𝑅)

𝑍𝑝𝑖 = 3 (𝑅𝑊)

𝑍𝑝𝑖 = 4 (𝑅𝑅) [
 
 
 
 
0 0 𝑁𝐴

0 1 𝑁𝐴

1 𝑁𝐴 0

1 𝑁𝐴 1 ]
 
 
 
 

(2.74) 

The probabilities of the observed outcomes are then computed as the product of the 

node-specific probabilities as follows: 

Pr(𝑍𝑝𝑖 = 1|휃𝑝) = Pr (𝑌𝑝𝑖
(1)

= 0|휃𝑝
(1)

)Pr (𝑌𝑝𝑖
(2)

= 0|휃𝑝
(2)

, 𝑌𝑝𝑖
(1)

= 0) 

Pr(𝑍𝑝𝑖 = 2|휃𝑝) = Pr (𝑌𝑝𝑖
(1)

= 0|휃𝑝
(1)

)Pr (𝑌𝑝𝑖
(2)

= 1|휃𝑝
(2)

, 𝑌𝑝𝑖
(1)

= 0) 

Pr(𝑍𝑝𝑖 = 3|휃𝑝) = Pr (𝑌𝑝𝑖
(1)

= 1|휃𝑝
(1)

)Pr (𝑌𝑝𝑖
(3)

= 0|휃𝑝
(3)

, 𝑌𝑝𝑖
(1)

= 0) 

Pr(𝑍𝑝𝑖 = 4|휃𝑝) = Pr(𝑌𝑝𝑖
(1)

= 1|휃𝑝
(1)

) Pr(𝑌𝑝𝑖
(3)

= 1|휃𝑝
(3)

, 𝑌𝑝𝑖
(1)

= 1) (2.75) 

Simpler models can be specified by constraining the item and person parameters to be 

the same across the three nodes.  

2.5.4 Summary and Discussion 

 This section reviews AC patterns and outcomes, indices for detecting aberrant 

ACs, and AC models. As described in this section, the majority of the students 

change their answers during a test and the majority of the students gain scores from 

changing them (Al-Hamly & Coombe, 2005; Liu et al, 2015; Milia, 2007). Further, 

AC outcomes are associated with test-takers’ ability level, with high-performing 

students gaining from making more wrong to right changes (Al-Hamly & Coombe, 

2005; Milia, 2007). Indices for detecting aberrant ACs are the D-index based on the 

KLD, the EDI based on Bock’s (1972) nominal response model, and the L-index 

based on the LRT. IRT-based approach and IRT tree model are used to model the 
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probability of AC patterns: WW, WR, RW, and RR. AC patterns and outcomes are 

closely associated with test-takers’ ability level. In addition, AC outcomes directly 

contribute to changes in response patterns. ACs as a response process data can 

provide more information for the estimation of person ability and the assessment of 

students’ mastery status on the attributes of interest. Thus incorporating ACs as a 

process data in the joint model of responses and RT can provide more information 

about the estimation of students’ ability level, resulting in improved attribute and 

attribute profile classification accuracy and more accurate and precise estimation of 

the ability parameter.  

2.6 Model Estimation 

2.6.1 Bayesian Inference  

 Bayesian inferences regarding a parameter 휃 are drawn in terms of probability 

statements that are conditional on the observed value of 𝑦 denoted as 𝑝(휃|𝑦) 

(Almond, Mislevy, Steinberg, Yan, &Williamson, 2015; Gelman, Carlin, Stern, 

Dunson, Vehtari, & Rubin, 2014; Levy & Mislevy, 2016). The level of conditioning 

on observed data distinguishes Bayesian inferences from the alternative approach to 

statistical inference which retrospectively evaluates the procedure used to estimate 휃 

over the distribution of possible 𝑦 values conditional on the true unknown value of  휃 

(Gelman et al, 2014). Applying the basic property of conditional probability, defined 

as Bayes’ rule, the posterior density is expressed as 

𝑝(휃|𝑦) =
𝑝(휃, 𝑦)

𝑝(𝑦)
=

𝑝(휃)𝑝(𝑦|휃)

𝑝(𝑦)
(2.76) 
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where the joint probability mass or density function 𝑝(휃, 𝑦) is written as the product 

of the prior distribution 𝑝(휃) and the sampling distribution 𝑝(𝑦|휃), and 𝑝(𝑦) =

∑ 𝑝(휃)𝑝(𝑦|휃)𝜃  is summed over all possible values of 휃. In response data modeling, 

the posterior density of the parameter 휃  translates into probability beliefs about the 

parameters based on prior and response data information (Fox, 2010; Levy & 

Mislevy, 2016). As the factor 𝑝(𝑦) does not depend on 휃 and can be considered a 

constant, the unnormalized posterior density omitting the factor 𝑝(𝑦) can be written 

as 

𝑝(휃|𝑦) ∝ 𝑝(휃)𝑝(𝑦|휃) (2.77) 

As such, applications of Bayesian inferences are primarily concerned with modeling 

𝑝(휃, 𝑦) and summarizing 𝑝(휃|𝑦) in appropriate ways (Gelman et al, 2014).  

2.6.2 Markov Chain Monte Carlo 

 Markov chain simulation, also called Markov Chain Monte Carlo (MCMC), is 

a method that draws values of 휃 from approximate distributions and then corrects 

them to better approximate the target posterior distribution, 𝑝(휃|𝑦) (Gelman et al, 

2014). In this method, sampling is done sequentially, and the resulting distribution of 

the sampled draws depends only on the value last drawn, hence forming a Markov 

chain. Markov chain simulation is used when sampling 휃 directly from 𝑝(휃|𝑦) is not 

possible, as in many hierarchical models where marginal posteriors are intractable 

and the dimensionality of the problem results in difficulties in sampling 휃 directly 

from 𝑝(휃|𝑦) (Fox, 2010; Gelman et al, 2014).    

 One of the Markov chain algorithms often used in many multidimensional 

problems is the Gibbs sampler (Fox, 2010; Gelman et al, 2014). The Gibbs sampler 
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partitions the parameter vector 휃 into 𝑑 subvectors, 휃 = (휃1, … , 휃𝑑). Each iteration of 

the Gibbs sampler consists of 𝑑 steps cycling though the 𝑑 subvectors and drawing 

each subset conditional on the values of all the others (Gelman et al, 2014). At each 

iteration 𝑡, the 𝑑 subvectors are ordered and each subvector is updated conditional on 

the latest values of the other subvectors of 휃, resulting in the iteration 𝑡 values for the 

subvectors already updated and the iteration 𝑡 − 1 values for the others.  

 The Metropolis-Hastings algorithm refers to a family of Markov chain 

simulation methods for sampling from Bayesian posterior distributions and is a 

generalization of the basic Metropolis algorithm (Gelman et al, 2014; Levy & 

Mislevy, 2016). The Metropolis algorithm, defined as an adaptation of a random 

walk, computes acceptance/rejection probabilities for mixing a proposal distribution 

and a jumping distribution and cycling through the process until convergence to the 

target distribution is reached (Gelman et al, 2014). As described by Gelman et al 

(2014; see also Levy & Mislevy, 2016), the algorithm consists of an initial draw of a 

starting point 휃0 from a starting distribution 𝑝0(휃) and subsequently sampling a 

proposal 휃∗ from a symmetric jumping distribution or proposal distribution at time 𝑡, 

𝐽𝑡(휃
∗|휃𝑡−1), at which point the ratio of densities  

𝑟 =
𝑝(휃∗|𝑦)

𝑝(휃𝑡−1|𝑦)
(2.78) 

is computed. Specifying the acceptance/rejection rule as 

휃𝑡 = {
휃∗       with probabilitymin(r, 1)

휃𝑡−1  otherwise                             
(2.79) 

the algorithm generates the transition distribution 𝑇𝑡(휃
𝑡|휃𝑡−1) as a weighted jumping 

distribution 𝐽𝑡(휃
𝑡|휃𝑡−1) that adjusts for the acceptance rate.  
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 The Metropolis-Hastings algorithm generalizes the Metropolis algorithm by 

allowing asymmetric jumping distributions and correcting for the asymmetry in the 

jumping rule with a reformulation of the ratio 𝑟 as a ratio of ratios: 

𝑟 =

𝑝(휃∗|𝑦)

𝐽𝑡(휃
∗|휃𝑡−1)

𝑝(휃𝑡−1|𝑦)

𝐽𝑡(휃
𝑡−1|휃∗)

(2.80) 

Asymmetric jumping rule in the Metropolis-Hasting algorithm increases the speed of 

the random walk and improves computational efficiency (Gelman et al, 2014).  

2.6.3 Convergence Assessment 

 Iterative simulations can yield significant underrepresentation of the target 

distribution if convergence is not reached. Serial correlation, although not necessarily 

problematic at convergence, can cause computational inefficiencies. Assessment of 

convergence in iterative simulations involves checking mixing and stationarity by 

comparing within- and between-sequence variation (Gelman et al, 2014; Levy & 

Mislevy, 2016). For quantities with normal marginal posterior distributions, Gelman 

et al (2014) recommend assessing convergence by estimating the factor by which the 

scale of the distribution for the scalar estimand 𝜓 might be reduced if the simulations 

were continued to infinity. For simulations 𝜓𝑖𝑗  with 𝑚 chains each of length 𝑛, the 

potential scale reduction factor is 

�̂� = √
𝑣𝑎�̂�+(𝜓|𝑦)

𝑊
(2.81) 

where 𝑊 is the within-sequence variance, and 𝑣𝑎�̂�+(𝜓|𝑦) is a weighted average of 

the within-sequence variance 𝑊 and between-sequence variance 𝐵 given by 
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𝑣𝑎�̂�+(𝜓|𝑦) =
𝑛 − 1

𝑛
𝑊 +

1

𝑛
𝐵 (2.82) 

The potential scale reduction factor decreases to 1 as 𝑛 approaches infinity. If �̂� is 

close to 1, the inference that iterations approximate the target distribution is justified. 

For extreme quantiles or for parameters with multimodal posterior distributions, 

Gelman et al (2014) recommend also monitoring the extreme quantiles of the between 

and within sequences.   

2.7 Summary of Literature Review 

This chapter is a comprehensive review of current approaches to cognitive 

diagnostic modeling and the modeling of testlet effects, RT, and ACs, and 

frameworks for modeling speed and accuracy, which provides the context and 

theoretical background for the joint model of responses, RT, and ACs in testlet-based 

assessments for cognitive diagnosis proposed in this research. This chapter 

additionally introduces the model estimation method to be used in this research: 

fundamentals of Bayesian inference, the Monta Carlo simulation method, and 

diagnostics for assessing model convergence. Chapter 3 proposes the joint model, 

describing its formulation and parameterization, the design of a simulation study to 

investigate the impact of the manipulated factors on model performance and 

parameter estimates, and a description of an empirical study to evaluate and validate 

the proposed model.  
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Chapter 3: Methods 

 This chapter proposes a joint model of responses, RTs, and ACs in testlet-

based assessments for cognitive diagnosis, the components of which are drawn from 

the modeling approaches and methodologies reviewed in Chapter 2. Section 3.1 

presents the overall framework for modeling the responses, RT and AC patterns in 

testlet-based cognitive diagnostic assessment, followed by a description of model 

specification and parameterization for each of the componential measurement models 

in this framework. Section 3.2 specifies the prior distributions of the model 

parameters and hyperparameters discussed in Section 3.1 and methods for estimating 

them from the Bayesian inference perspective. Section 3.3 delineates the design of the 

simulation studies and introduces the fixed versus manipulated factors and criteria for 

evaluating model fit and parameter recovery. This chapter concludes with a 

description of the empirical data and analytic procedures employed to evaluate and 

validate the performance of the proposed model.  

3.1 The Proposed Model 

 The research study proposed in this chapter adopts and extends van der 

Linden’s (2007) hierarchical framework for the modeling and analysis of response 

accuracy, RT, and an additional source of information about test-takers, ACs, in 

testlet-based assessment for cognitive diagnosis. As reviewed in Chapter 2, the 

hierarchical framework is the prototypical model in the joint modeling of response 
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and RT for tests typically administered in computer-based testing programs (De 

Boeck & Jeon, 2019) and has been used extensively in joint models of response and 

RT (e.g., Klein Entink, Fox, & van der Linden, 2009; Loeys et al, 2011; Zhan et al, 

2018a; Zhan et al, 2018b). By accounting for dependencies between the item and 

person parameters in a higher-level structure, the hierarchical framework is flexible in 

allowing alternative models for the distributions of responses, RT, and their 

parameters and the modeling of the relationship between speed and accuracy and 

between the time and response parameters of the items at the population level (van 

der Linden, 2007).  

 The first level models in the proposed joint model are distinct models for 

cognitive diagnosis, RT, and ACs: the DINA model (Junker & Sijtsma, 2001; 

Macready & Dayton, 1977), the lognormal RT model (van der Linden, 2006), and 

partial credit model for ACs (Masters, 1982). Following Zhan et al (2018b), testlet 

parameters are incorporated in the response and RT model to specifically address the 

testlet effects. The following subsections describes in detail formulation of the model 

and specification of the model parameters for the three first-level models and for the 

second level models that capture the relations between person parameters, item 

parameters, and testlet parameters.  

3.1.1 Higher-Order Latent Trait DINA Model for Testlet-Based Assessment  

 The first-level response model is the higher-order latent trait DINA model (de 

la Torre & Douglas, 2004; Junker & Sijtsma, 2001; Macready & Dayton, 1977). As 

reviewed in Chapter 2, the DINA model is a non-compensatory parsimonious 

cognitive diagnostic model that specifies response probabilities as a function of two 



69 

 

parameters: a slipping parameter and a guessing parameter, for each item (e.g., Junker 

& Sijtsma, 2001; Macready & Dayton, 1977). The latent response variables 𝜉𝑖𝑗  is a 

binary function of binary inputs and functions as the “and” gate component 

combining deterministic input 𝛼
𝑖𝑘

𝑄𝑗𝑘
 where 𝛼𝑖𝑘  indicates whether examinee 𝑖 possesses 

attribute 𝑘 and 𝑄𝑗𝑘  indicates whether attribute 𝑘 is required for task or item 𝑗. 

Following Zhan et al (2018a), the IRF for a given item can be reexpressed as 

𝑃(𝑌𝑖𝑗 = 1) = 𝑔𝑗 + (1 − 𝑠𝑗 − 𝑔𝑗)∏𝛼
𝑖𝑘

𝑄𝑗𝑘

𝐾

𝑘=1

(3.1) 

and, using the logit scale, reparameterized as  

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗 = 1)) = 𝛽𝑗 + 𝛿𝑗 ∏𝛼𝑖𝑘
𝑞𝑖𝑘

𝐾

𝑘=1

(3.2) 

where  

𝛽𝑙 = 𝑙𝑜𝑔𝑖𝑡(𝑔𝑗) (3.3) 

and 

𝛿𝑗 = 𝑙𝑜𝑔𝑖𝑡(1 − 𝑠𝑗) − 𝑙𝑜𝑔𝑖𝑡(𝑔𝑗) (3.4) 

This reformulated IRF can be easily extended to incorporate a testlet parameter to 

account for the contextual effects of testlets on items (Zhan et al, 2018b; see also Im, 

2017). Following Zhan et al (2018b), the DINA model for testlet-based assessment is 

given by 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗 = 1)) = 𝛽𝑗 + 𝛿𝑗 ∏𝛼𝑖𝑘
𝑞𝑖𝑘

𝐾

𝑘=1

+ ∑ 𝜒𝑗𝑑𝛾𝑖𝑑(𝑗)

𝐷

𝑑=1

(3.5) 

where 𝜒𝑗𝑑  is a 1/0 variable that indicates whether item 𝑗 is an item nested within 

testlet 𝑑 and 𝛾𝑖𝑑(𝑗)~𝑁(0, 𝜎𝛾𝑑(𝑗)
2 ) denotes the testlet effect of item 𝑗 to person 𝑖 nested 



70 

 

within testlet 𝑑(𝑗). 𝜎𝛾𝑑(𝑗)
2  represents the magnitude of the testlet effects and is allowed 

to vary across testlets (Wang et al., 2002; Wang & Wilson, 2005). All testlet effects 

𝛾𝑖𝑑(𝑗)s are assumed to be independent of each other.  

 Assuming attributes and their acquisition as related to a more-broadly defined 

latent construct of general intelligence or aptitude denoted as 휃, the higher-order 

latent structural model specifies the probability for attribute 𝛼 conditional on 휃 as a 

logistic regression model with latent covariate 휃 (de la Torre & Douglas, 2004). 

Using the logit scale, it can be reformulated as  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝛼𝑖𝑘 = 1|휃𝑖)) = 휅𝑘휃𝑖 − 휄𝑘 (3.6) 

where 휅𝑘  and 휄𝑘  are the slope and intercept for attribute 𝑘 (Zhan et al., 2018a).  This 

implies an estimation of 2𝐾 parameters, which greatly reduces the complexity of the 

higher-order structural model. Further, this high-order structure model generates an 

estimate 휃̂ beyond the attribute profiles yielded by classification of 𝛼𝑖𝑘 . 

3.1.2 The Lognormal RT Model for Testlet-based Assessment 

 As reviewed in Chapter 2, the lognormal RT model is a flexible model for 

fitting RT data generated by different item types in computer-based tests. It specifies 

RT distributions for a fixed person as determined by the person speed parameter 𝜏𝑖, 

the time intensity of item 𝑗 denoted as 휁𝑗, and the discrimination parameter 𝜔𝑗 

modifying the relationship between time 𝑡𝑖𝑗 and its mean (van der Linden, 2006). 

This model assumes conditional independence of the RT given person speed at the 

level of a fixed person, i.e., person speed and ability are constant, and once a person’s 

choice of ability and speed level is made, only person speed accounts for the RT 
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distributions. A second level of modeling captures the dependence between speed and 

ability at the population level.  

In this research the RT model is the lognormal RT testlet model which 

extends the lognormal RT model to specifically account for local RT dependence (Im, 

2017; Zhan et al, 2018b). This model is given by 

𝑇𝑖𝑗~𝑓(𝑡𝑖𝑗;  𝜏𝑖, 𝜔𝑗 , 휁𝑗 , 휆𝑖𝑑(𝑗)) =
𝜔𝑗

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝜔𝑗(log 𝑡𝑖𝑗 − (휁𝑗 − 𝜏𝑖 − ∑ 𝜒𝑗𝑑휆𝑖𝑑(𝑗)))]

𝐷

𝑑=1

2

}

(3.7)

 

which is equivalent to 

log𝑇𝑖𝑗 ~𝑁(휁𝑗 − 𝜏𝑖 − ∑ 𝜒𝑗𝑑휆𝑖𝑑(𝑗), 𝜔𝑗
2)

𝐷

𝑑=1

(3.8) 

where log 𝑡𝑖𝑗 is the log RT, 𝜒𝑗𝑑  indicates testlet membership, and 휆𝑖𝑑(𝑗)~𝑁(0, 𝜎𝜆𝑑

2 ) is 

the testlet parameter representing the effect for person 𝑖 on testlet 𝑑.  The variance of 

the testlet effect 𝜎𝜆𝑑

2  indicates its magnitude. Further, all testlet effects 휆𝑖𝑑(𝑗)s are 

assumed to be independent of each other.  

3.1.3 Partial Credit AC Model 

  In the proposed model, partial credit model is chosen to fit the AC data. The 

partial credit model is a polytomous item response model that applies Rasch’s model 

for dichotomies to each pair of adjacent categories in an ordered sequence (Master, 

1982, 2018; Masters & Wright, 1996). As a Rasch family model, PCM features 

separable person and item parameters and sufficient statistics, which allows objective 

comparisons of persons and items (Masters, 2018; Rasch, 1977). Two sets of 

parameters in the model, one for persons and one for items, represent locations on the 
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underlying measurement variable. PCM is applied to tests using items with two or 

more ordered response categories and is easy to implement in practice due to 

simplicity of its formulation (Masters, 2018).   

 The reviewed studies distinguish four AC behaviors based on a comparison of 

the initial and final response: WW (both the initial and final responses are wrong), 

WR (the initial response is wrong and the final response is right), RW (the initial 

response is right and the final response is wrong), and RR (both the initial and final 

response are right) (Jeon at al., 2017; van der Linden & Jeon, 2012). ACs studies 

reviewed in Chapter 2 additionally associate AC outcomes with test-takers’ ability 

level: high-performing are more likely to make WR ACs and fewer RW ACs and they 

benefit more from ACs compared to low-performing examinees (e.g., Jeon et al, 

2017, Liu et al, 2015; Milia 2007). By adopting the PCM as the AC model, the 

proposed research assumes that AC patterns follow a categorical sequence ordered as 

WW, RW, WR, and RR, with RR indicating a final confirmation of an initially right 

answer and WW suggesting either a change from one wrong answer to another or a 

final confirmation of an initially wrong answer. This model further assumes that the 

probability of a given AC pattern is a function of test-takers’ latent ability and item 

step difficulty (Jiao et al, 2020).   

 Assuming the response categories followed an intended order 0 < 1 <,… ,<

𝐴𝑗, in the PCM the conditional probability of scoring a 𝑎 rather than a 𝑎 − 1 using 

Rasch’s model of dichotomies is given by 

𝑃{𝑈𝑖𝑗 = 𝑎}

𝑃{𝑈𝑖𝑗 = 𝑎 − 1} + 𝑃{𝑈𝑖𝑗 = 𝑎}
=

exp(휃𝑖 − 𝑏𝑗𝑎)

1 + exp(휃𝑖 − 𝑏𝑗𝑎)
(3.9) 
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This can be re-expressed as the unconditional probability of each possible outcome of 

person 𝑖 responding to item 𝑗 given by 

𝑃{𝑈𝑖𝑗 = 𝑎} =
exp ∑ (휃𝑖 − 𝑏𝑗𝑘)𝑎

𝑘=0

∑ exp ∑ (휃𝑖 − 𝑏𝑗𝑘)ℎ
𝑘=0

𝐴𝑖
ℎ=0

(𝑎 = 0, 1,… , 𝐴𝑖) (3.10) 

where 

∑(휃𝑖 − 𝑏𝑗𝑘) = 0

0

𝑘=0

 and ∑(휃𝑖 − 𝑏𝑗𝑘) =

ℎ

𝑘=0

 ∑(휃𝑖 − 𝑏𝑗𝑘)

ℎ

𝑘=1

(3.11) 

휃𝑖 is the ability of person 𝑖 as in the response model, and 𝑏𝑗𝑘  is the item step 

parameter for item 𝑗 getting a score category of 𝑎. The higher-order ability parameter 

휃 connects the attributes and AC patterns. The item step parameter 𝑏𝑗𝑘  is 

reparametrized into an item location parameter 𝑏𝑗 and the threshold parameter 𝑏𝑗𝑎  for 

𝑎 − 1 score categories.   

3.1.4 Specification of the Second-level Models  

 Following van der Linden’s (2007) hierarchical framework, subsections 3.1.1 

through 3.1.3 present the first-level models. This subsection presents the second-level 

models specifying the joint distributions of the person, item, and testlet parameters. 

These models describe the relations between the person, item, and testlet parameters 

in the first level models for response, RT, and AC patterns. In the first model, the 

person parameters are assumed to follow a bivariate normal distribution:  

ξ𝑖 = (
휃𝑖

𝜏𝑖
)~𝑁 ((

휇𝜃

휇𝜏
) , Σperson) , Σperson = (

𝜎𝜃
2 𝜎𝜃𝜏

𝜎𝜃𝜏 𝜎𝜏
2
) (3.12)  

The second model describes the relations between the item parameters, which are 

assumed to follow a multivariate normal distribution  
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 Ψ𝑗 =

(

 
 

𝛽𝑗

𝛿𝑗

휁𝑗

𝑏𝑗)

 
 

~𝑁

(

 
 

(

휇𝛽

휇𝛿

휇
휇𝑏

) , Σ𝑖𝑡𝑒𝑚

)

 
 

(3.13)  

The residual error variance 𝜎
𝑗
2  is assumed to be independently distributed and is not 

included in Ψ𝑗. The third model captures the relations between testlet parameters in 

testlet 𝑑, which are assumed to follow a bivariate normal distribution 

Γ𝑖𝑗(𝑑) = (
𝛾𝑖𝑑(𝑗)

휆𝑖𝑑(𝑗)
)~𝑁 ((

0

0
) , 𝛴𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑) , Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑 = (

𝜎𝛾
2 𝜎𝛾𝜆

𝜎𝛾𝜆 𝜎𝜆
2) (3.14) 

To establish identifiability, the following constraints are set  

휇𝜃 = 0, 𝜎𝜃
2 = 1, 휇𝜏 = 0 (3.15) 

The first two constraints are similar to constraints for the 휃 parameters in higher-order 

latent trait models and IRT models and function to identify the scale between 휃𝑖 and 

𝜏𝑖 and between 휃𝑖 and 𝑏𝑗. The third constraint fixes the zero of 𝜏𝑖  and removes the 

tradeoff between 휁𝑗 and 𝜏𝑖. Fixing the location of 𝜏𝑖 identifies the scale between 𝜏𝑖 

and 휁𝑗. The proposed model further assumes independence of the attributes given 휃𝑖, 

independence of the responses given 𝛼𝑖 and 𝛾𝑖𝑑(𝑗), independence of the RTs given 𝜏𝑖 

and 휆𝑖𝑑(𝑗), and independence between responses and RTs for a given item given 

person parameters and testlet parameters.  

3.2 Model Parameter Estimation 

 This research uses the Bayesian approach to estimate the parameters in the 

join model of response, RT, and ACs in testlet-based assessment for cognitive 

diagnosis. Parameter estimation will be implemented using the program “Just 
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Another Gibbs Sampler” Version 4.3.0 (JAGS; Plummer, 2017). The JAGS program 

interfaces with the R program via the package R2jags (Su & Yajima; 2020).   

3.2.1 Specification of the Priors and Hyper Priors 

  The proposed model assumes conditional independence of response, RT, and 

ACs. Specification of the priors and hyper priors follows Jiao et al (2020; see also 

Zhan et al, 2018a; Zhan et al, 2018b). Prior distributions for the attributes, responses, 

RT, and ACs are specified as 

 

𝑌𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃(𝑌𝑖𝑗 = 1) 

 𝑙𝑜𝑔𝑇𝑖𝑗~𝑁(휁𝑗 − 𝜏𝑖 − ∑ 𝜒𝑗𝑑휆𝑖𝑑(𝑗), 𝜔𝑗
−2𝐷

𝑑=1 ) 

𝛼𝑖𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃(𝛼𝑖𝑘 = 1))  

𝑈𝑖𝑗~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑃(𝑈𝑖𝑗 = 0, 1, 2, 3)) (3.16) 

 

In the second-level models, the priors of the person parameters are specified 

as 

(
휃𝑖

𝜏𝑖
)~𝑁 ((

0

0
) , Σperson) (3.17)  

The variance of 휃𝑖 is constrained to 1 for identification purposes. Using the Chelosky 

decomposition, Σperson is reparameterized as Δ𝑝𝑒𝑟𝑠𝑜𝑛Δ𝑝𝑒𝑟𝑠𝑜𝑛
′ (Zhan et al, 2018a). 

Δ𝑝𝑒𝑟𝑠𝑜𝑛 is shown as 

 Δ𝑝𝑒𝑟𝑠𝑜𝑛 = (
1 0
𝜑 𝜓

) (3.18)  

and Δ𝑝𝑒𝑟𝑠𝑜𝑛
′  is its conjugate transpose. The prior elements in the Δ𝑝𝑒𝑟𝑠𝑜𝑛 are set as 

𝜑~𝑁(0,1) and 𝜓~𝐺𝑎𝑚𝑚𝑎(1, 1).  
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Priors for the slope and intercept parameter in the higher-order structural 

model are specified as 

휅𝑘~𝑁(0, 0.25), 휄𝑘~𝑁(0, 0.25)𝐼(휄𝑘 > 0) (3.19) 

 The priors of the item parameters are assumed to follow a multivariate normal 

distribution  

 

(

 
 

𝛽𝑗

𝛿𝑗

휁𝑗

𝑏𝑗)

 
 

~𝑁

(

 
 

(

휇𝛽

휇𝛿

휇
휇𝑏

) , Σ𝑖𝑡𝑒𝑚

)

 
 

,𝜎
𝑗
2 ~𝑖𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1,1) (3.20)  

Hyper priors for the parameters in this distribution are specified as following 

normal/inverse-Wishart distributions: 

 

휇𝑏𝑗
~𝑁(0, 1) 

휇𝛽~𝑁(−2.197, 2) 

휇𝛿~𝑁(4.394, 2)𝐼(휇𝛿 > 0) 

휇 ~𝑁(3, 2) 

Σ𝑖𝑡𝑒𝑚~𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 4). (3.21) 

 

On a logit scale, 휇𝛽  at −2.197 translates into a mean guessing probability of 0.1 and 

휇𝛿  indicates a mean slipping probability of 0.1. With a variance 2, the simulated 

mean guessing probabilities range from 0.026 to 0.314 and the range of the simulated 

mean slipping probability is from 0.007 to 0.653. On a natural log scale, 휇  at 3 with 

a variance of 2 indicates a mean RT of 20.086 and a range from 4.883 to 82.617 for 

the simulated RT means.  Item step parameters in the ACs model are assumed to 

follow a normal distribution: 
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 𝑏𝑗1~𝑁(0,1), 𝑏𝑗2~𝑁(0,1), 𝑏𝑗3 = −𝑠𝑢𝑚(𝑏𝑗1, 𝑏𝑗2) (3.22)  

 The priors of the testlet parameters for a given testlet are specified as 

 (
𝛾𝑖𝑑(𝑗)

휆𝑖𝑑(𝑗)
)~𝑁 ((

0
0
)) , Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑 (3.23)  

where 

 Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑~𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝑅𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑 , 2) (3.24)  

 For the specification of prior distributions and hyper priors, the joint posterior 

distribution of the parameters is given by 

 

𝑓(𝝃,𝝍, 𝚪, 휇𝑝𝑒𝑟𝑠𝑜𝑛 , 휇𝑖𝑡𝑒𝑚 , 휇𝑡𝑒𝑠𝑡𝑙𝑒𝑡 , Σ𝑝𝑒𝑟𝑠𝑜𝑛 , Σ𝑖𝑡𝑒𝑚 , Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡|𝒚, 𝒍𝒐𝒈(𝑻),𝒖)

∝ ∏∏𝑓(𝑦𝑖𝑗; 𝛼𝑖, 𝛽𝑗 , 𝛿𝑗, 𝛾𝑑)𝑓(log(𝑇) ; 휁𝑗 , 𝜏𝑖 , 휆𝑑)𝑓(𝑢𝑖𝑗; 휃𝑖 , 𝑏𝑗)𝑓(𝛼𝑖; 휃𝑖 , 휄𝑘, 휅𝑘)

𝐽

𝑗=1

𝐼

𝑖=1

× 𝑓( 𝜉𝑖; 휇𝑝𝑒𝑟𝑠𝑜𝑛 , Σ𝑝𝑒𝑟𝑠𝑜𝑛)𝑓(𝜓𝑗; 휇𝑖𝑡𝑒𝑚 , Σ𝑖𝑡𝑒𝑚)𝑓(Γ𝑑; 휇𝑡𝑒𝑠𝑡𝑙𝑒𝑡 , Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡) 

𝑓(휇𝑝𝑒𝑟𝑠𝑜𝑛,Σ𝑝𝑒𝑟𝑠𝑜𝑛)𝑓(휇𝑖𝑡𝑒𝑚 , Σ𝑖𝑡𝑒𝑚)𝑓(휇𝑡𝑒𝑠𝑡𝑙𝑒𝑡 , Σ𝑡𝑒𝑠𝑡𝑙𝑒𝑡)𝑓(휄𝑘)𝑓(휅𝑘) (3.25) 

 

3.2.2 Implementation of Markov Chain Monte Carlo 

 This research uses the Markov chain simulation method, the Gibbs sampler, to 

implement Bayesian estimation of model parameters. Bayesian inferences are based 

on the assumption that the distributions of the simulated values are close to the target 

distribution and use iterative simulation draws from 𝑝(휃|𝑦) to summarize the 

posterior density. As stated in Chapter 2, the Markov chain simulation draws values 

of 휃 from approximate distributions and subsequently corrects those draws to better 

approximate the target posterior distribution (Gelman et al, 2014). The Gibbs sampler 

is an appropriate method as it can treat the parameters in the domain-specific models 

as blocks of parameters and iterate through draws from the conditional distributions 
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of one block of parameters conditional on all remaining parameters. As suggested by 

Gelman et al (2014), this research simulates a minimum of two chains to allow 

effective monitoring of convergence. Further, it runs a sufficient number of iterations 

until convergence is reached. Within each chain, the first half iterations of the 

simulated runs are discarded to minimize the influence of the starting values. Each of 

the remaining chains are split up into the first and second half to allow simultaneous 

testing of mixing and stationarity. Convergence of the iterative simulation is 

diagnosed by the potential scale reduction factor �̂�.  �̂� close to 1 is an indication that 

convergence has reached, at which point posterior density will be summarized.   

3.3 Simulation Design 

 The simulation study proposed in this research addresses the fit of the 

proposed model and the degree to which model parameters are adequately recovered. 

This section describes the design of the simulation study conducted in this research, 

factors that are fixed versus manipulated, and criteria used to evaluate model fit and 

parameter recovery, followed by a description of the methodology adopted for the 

analysis of empirical data in section 3.4.  

3.3.1 Fixed Factors 

 The simulation study is designed to evaluate model performance and 

parameter estimation under simulated conditions and across three models 

differentiated on the inclusion or exclusion of testlet parameters or the AC 

component. The simulation design fixes specific factors to create conditions under 

which the fit of the different models and the precision with which model parameters 
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are estimated can be compared. Factors fixed in the simulation study are: a) test 

design including the Q-matrix design and the number of test items; and b) specific 

elements of the distributions for the priors and hyper priors that are not manipulated.   

 This research specifies a higher-order DINA model for the response data. An 

essential component of this model is the Q-matrix. To allow comparison across the 

models, a uniform test design and Q-matrix are used in the simulation study for data 

generation, model fitting, and parameter estimation. The test is a portion of a 

standardized large-scale Math Test featuring 25 item math test that measure five 

attributes and was used in an empirical analysis of the response, RT, and ACs data for 

cognitive diagnosis (Jiao, Ding, & Yin, 2020). Table 3.1 shows the Q-matrix for the 

portion of the test chosen for this research study. Items A1, A2, A5, A7, and A8 

depend on Attribute AF-1; items B2, B4, and B9 load on Attribute AF-10; items B3, 

B4, B19, and B28 measure Attribute AF-3; five items measure Attribute AF-5: items 

A9, A11, B10, B11, and B19; and the last attribute, Attribute DA-1, is measured by 9 

items: items B1, B5, B7, B12, B13, B15, B17, B22 and B23. For comparison 

purposes, this test design and Q-matrix are used for data generation and model 

estimation.  

Table 1  

Q-Matrix for the Simulation Study 

Item AF-1 AF-10 AF-3 AF-5 DA-1 

A1 1 0 0 0 0 

A2 1 0 0 0 0 

A3 0 0 1 0 0 

A4 0 0 1 0 0 

A5 1 0 0 0 0 

A7 1 0 0 0 0 

A8 1 0 0 0 0 

A9 0 0 0 1 0 
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A11 0 0 0 1 0 

B1 0 0 0 0 1 

B2 0 1 0 0 0 

B4 0 1 0 0 0 

B5 0 0 0 0 1 

B7 0 0 0 0 1 

B9 0 1 0 0 0 

B10 0 0 0 1 0 

B11 0 0 0 1 0 

B12 0 0 0 0 1 

B13 0 0 0 0 1 

B15 0 0 0 0 1 

B17 0 0 0 0 1 

B19 0 0 1 1 0 

B22 0 0 0 0 1 

B23 0 0 0 0 1 

B28 0 0 1 0 0 

 

Specific components of the distributions for the priors and hyper priors 

described in Chapter 2 are likewise fixed to compare models including or excluding 

the ACs model or the testlet parameters. As stated in Chapter 2,  

the person parameters in the proposed model are assumed to follow a bivariate 

normal distribution 

(
휃𝑖

𝜏𝑖
)~𝑁 ((

0

0
) , Σperson) (3.26) 

Person parameters will be generated from a normal distribution where 휃𝑖~𝑁(0,1) and 

𝜏𝑖  ~ 𝑁(0, 0.25). Higher-order structural parameters are fixed at 휅𝑘 = 1.5 for all 

attributes and 휄𝑘 = (= (−0.8, 0, 0.8, −0.8, 0.8), which indicates moderate correlations 

among attributes (Zhan et al, 2018b). Person attribute mastery parameter 𝛼𝑖𝑘  will be 

generated from a Bernoulli distribution 𝛼𝑖𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃(𝛼𝑖𝑘 = 1)), as specified in 

Chapter 2. The multivariate normal distribution from which item parameters will be 

generated is fixed as 
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(

 
 

𝛽𝑗

𝛿𝑗

휁𝑗

𝑏𝑗)

 
 

~𝑁

(

 
 

(

−2.197
   4.394
    4.000

0

) ,(

1.00
−0.8 1.00
−0.25 0.15 0.25
−0.5 0.16 0.36 1.00

)

)

 
 

(3.27) 

And 𝜎
𝑖
= .05 for all items. Item step parameters are fixed as  

𝑏𝑗1~𝑁(𝐼, 0,1), 𝑏𝑗2~𝑁(𝐼, 0,1), 𝑏𝑗3 = −𝑠𝑢𝑚(𝑏𝑗1, 𝑏𝑗2) (3.28) 

RA and RT testlet parameters will be generated from the same bivariate normal 

distribution 

Γ𝑖𝑗(𝑑) = (
𝛾𝑖𝑑(𝑗)

휆𝑖𝑑(𝑗)
)~𝑁 ((

0

0
) , 𝛴𝑡𝑒𝑠𝑡𝑙𝑒𝑡,𝑑) (3.29) 

where 𝜎𝛾𝜆 = −0.25. Parameters 𝜌𝜃𝜏 , 𝜎𝛾
2, and  𝜎𝜆

2 are manipulated factors in this 

simulation study, as will be discussed in the next subsection.   

3.3.2 Manipulated Factors 

 Factors manipulated in the simulation study are a) sample size; b) the variance 

of the testlet effects; and 3) the correlation between the speed parameter and the 

ability parameter. Different sample sizes and levels of the variances of the testlet 

effects and of the correlations between the speed and ability parameters are 

configured to examine the effects of the variation on the degree to which the proposed 

model and the comparison models recover the parameters of interest in this research 

study.  

 One of the most often manipulated factors in simulation studies of model 

performance and parameter estimation is sample size, the choice of which is 

contingent upon model specification and parameters of interest. Sample sizes vary 

across the simulation studies reviewed in Chapter 2, with some studies having a fixed 
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sample size, and others varying sample sizes to examine the conditions under which 

parameters can be optimally recovered. Studies with a fixed sample size often opt for 

1,000 as in studies specifying multilevel testlet models (Jiao et al, 2012; Jiao et al 

2013) and polytomous multilevel testlet models (Jiao & Zhang, 2015). Bolsinova and 

Tijmstra (2019) similarly fix the sample size at 1,000 when fitting a model 

differentiating RTs for correct and incorrect responses. In joint modeling of responses 

and RTs for cognitive diagnosis, Zhan et al. (2018a) and Zhan et al. (2018b) fix the 

sample size at 1,000. Other studies specify different sample sizes to examine the 

extent to which sample size affects model performance. Wang and Wilson (2005), for 

instance, compare recovery of the parameters in the Rasch testlet model for sample 

sizes of 200 and 500. Their simulation study suggests that as sample sizes increased, 

the root mean square errors of the parameter estimates decreased to an acceptable 

level. Fox et al. (2020) similarly set the sample size at 200, 500, and 1,000 in a 

simulation study that compares the Bayesian covariance structure model (BCSM) for 

testlets and the random effects models for testlets. Their study suggests that parameter 

estimation is more accurate for BCSM when sample size is small. In a simulation 

study of the performance of the 4PLRT model, Wang and Hanson (2005) opt for 

three different sample sizes, 1000, 2000, and 4000. Their study shows that increasing 

sample size consistently reduces standard error and root mean square error but does 

not necessarily result in smaller bias. Based on the review of the sample sizes set in 

these studies, this research sets sample size at 200 and 500 to examine the extent to 

which sample sizes affect parameter estimation in the proposed model.  
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The levels of testlet variance are indicative of the magnitude of the testlet 

effects and are one of the most-often examined factors in the modeling and estimation 

of testlet response models (e.g., Bradley et al, 1999; Fox et al, 2020; Jiao et al, 2012; 

Jiao et al, 2013; Jiao & Zhang, 2015; Wang et al, 2002; Wang & Wilson, 2005). In 

studies of testlet effects, varying sets of variances have been used to represent the 

magnitude to the testlet effects. Wang and Wilson (2005), for instance, set the 

variances of the random testlet variables at 0.25, 0.50, 0.75, and 1.00, presenting 

small to large effects of the testlets. Jiao et al (2012) used two levels of variances, 

0.25 and 1.00 to indicate low and moderate local item dependence and person 

clustering effects. Jiao et al (2013) specify four levels of testlet variance at 0, 0.25, 

0.5625, and 1, representing testlets effecting ranging from none to large. Fox et al 

(2020) focus on small testlet variances and set them at 0.1, 0.05, and 0.01. The review 

of relevant literature suggests that while the studies similarly use 0.25 and 0.5/0.5625 

to indicate small and moderate testlet effects, the labeling of a large testlet effect 

seems to be at the researchers’ discretion. In this dissertation study, local response 

and RT testlet variances are set at 0.25, 0.5, and 1.00 to represent small, moderate, 

and large testlet effects to simulate conditions under which model performance and 

parameter estimation can be examined.  

 The third factor for which different levels are chosen in this research study is 

the correlation between ability and speed. In examining the basic issues in RT 

modeling, van der Linden (2009) equates SAT in reaction time research with the 

speed-ability tradeoff in testing and concludes that the two are related through a 

distinct function 휃 = 휃(𝜏) for each test-taker, which models of responses and RT do 
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not need to incorporate but require fixed parameters for the effective speed and ability 

of the test-takers. Empirical evidence suggests that the correlations between the two 

parameters can be positive or negative, with studies reporting them to range from -

0.65 to 0.30 and suggesting that more capable students may have better time-

management skills and strategically speed up or slow down to meet the time 

constraint of the tests (van der Linden, 2009). In simulation studies of response and 

RT, various levels of the correlations between speed and ability are chosen. Molenaar 

and De Boeck (2018) set the correlation at 0.4 in response mixture modeling that 

accounts for heterogeneity in item characteristics across response times. Bolsinova 

and Tijmstra (2019), in their model differentiating RTs for correct and incorrect 

response, specify two different levels for correlations between speed and ability, 0, 

and 0.5, with 0 representing the baseline condition and 0.5 indicating that response 

speed provides collateral information for the estimation of ability. Zhan et al. (2018a) 

compared parameter estimates for four different levels of the correlation: -0.5, -0.3, 

0.3, and 0.5. To simulate testing conditions with varying time constraints and the 

varying degree to which response speed provides collateral information for the 

estimation of ability, this research uses four levels for the correlations between speed 

and ability, -0.5, -0.3, 0.3, and 0.5 as a facet of the manipulated conditions under 

which model performance and parameter recovery can be examined.   

 The three factors manipulated in this study intersect with the proposed model 

and comparison models to create a total of 24 conditions under which model 

performance and parameter estimates can be compared. 30 replications are run under 

each condition for each of the three model, yielding a total of 2,160 datasets. 
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3.3.3 Data Generation Procedure 

Data generation consists of the generation of item, person, and testlet 

parameters specified in the measurement models for response, RT, and ACs presented 

in sections 3.1.1 through 3.1.3, followed by plugging them into the models to 

generate item response, RT, and ACs datasets. The following steps comprise the 

procedure taken to generate the datasets.  

 Simulation of the Item and Item Step Parameters. The initial step in the data 

generation process is the generation of the item and item step parameters. As is stated 

under 3.1.4, the item parameters are 𝛽𝑗, 𝛿𝑗, 휁𝑗 , and 𝑏𝑗; they are generated from the 

multivariate distribution specified in Equation 3.27. 𝜔𝑗 are generated from 

𝑁(2, 0.25). Item step parameters are generated from the normal distributions 

specified in Equation 3.28. They are combined with the item parameters as true item 

parameters to provide a point of reference for determining the extent to which 

estimated item parameters diverge from them.  

 Simulation of the Person Parameters. The next step in this procedure is the 

generation of person parameters and higher-order structural parameters. As is stated 

under 3.1.4, the person parameters are 휃𝑖 and 𝜏𝑖; they were generated from the 

bivariate normal distribution specified in Equation 3.17. As is seen in this equation, 

the means of 휃𝑖 and 𝜏𝑖  are constrained to 0. 𝜎𝜃
2 is fixed as 1 and 𝜎𝜏

2 is fixed as 0.25. 

𝜌𝜃𝜏  is a manipulated factor that takes on the values of −0.5, −0.3, 0.3, and 0.5, 

resulting in the corresponding levels in 𝜎𝜃𝜏.  

Simulation of the Testlet Parameters. A total of 5 testlets are presumed to 

underly the 25 items presented in Table 1, each consisting of 5 items. As is presented 
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in Section 3.1.4, the testlet parameters are the response testlet effect parameter, 𝛾𝑖𝑑(𝑗) 

and the RT testlet parameter, 휆𝑖𝑑(𝑗). The five pairs of 𝛾𝑖𝑑(𝑗) and 휆𝑖𝑑(𝑗) are generated 

from the same bivariate normal distribution specified in equations 3.23, and 3.24. 

𝜎𝛾𝜆is fixed at −0.25. 𝜎𝛾𝑖𝑑(𝑗)

2  and 𝜎𝜆𝑖𝑑(𝑗)

2 are constrained to be the same, the magnitude 

of which is manipulated to take on three values as discussed under Section 3.3.2.  

Simulation of the Attribute Patterns. As is described under Section 3.3.1, the 

higher-order structural parameters are fixed at 휅𝑘 = 1.5 for all attributes and 휄𝑘 =

(−0.8, 0, 0.8,−0.8, 0.8). These are plugged into Equation 3.6 in Section 3.1.1 to 

generate the attribute pattern matrix indicating the probability of every examinee’s 

mastery status on the five attributes specified in the Q-matrix. Elements of the pattern 

matrix are specified as following a binomial distribution, serving as points of 

reference for calculating attribute and attribute profile classification accuracy.  

Simulation of the Response Data. The response data are simulated by 

plugging in the generated item parameters 𝛽𝑗 and 𝛿𝑗, the generated response testlet 

parameter 𝛾𝑖𝑑(𝑗) into Equation 3.5 to generate the probabilities of the examinees 

giving a correct response to the items. The latent response variable in this equation 

∏ 𝛼𝑖𝑘
𝑞𝑖𝑘𝐾

𝑘=1  is computed as the product of the generated attribute patterns and the Q-

matrix. The response data are specified as following a binomial distribution.  

Simulation of the RT Data. The RT time data are similarly simulated by 

plugging in the generated item time intensity parameter 휁𝑗, 𝜔𝑗, the person speed 

parameter 𝜏𝑖, and the RT testlet parameter 휆𝑖𝑑(𝑗) into Equation 3.8. They are specified 

as following a lognormal distribution.  



87 

 

Simulation of the ACs Data. The ACs data are likewise simulated by 

plugging in the generated item difficulty parameter 𝑏𝑗 and the item step parameters 

into Equation 3.10. Answer changes data set and the item response dataset follow the 

same dimension. The responses data are binary and consist of 0s and 1s; the answer 

change data are categorical and consist of 1s, 2s, 3s, and 4s. Conditional dependence 

is established through generating patterns 1 and 2 for responses that are 0 by 

generating the probability for category 1 and category 2. They are then  scaled up by 

a constant of 1 if the responses are 1. This results in the correspondence between the 

response and ACs data with a response of 0 only having an AC pattern of 1 or 2, and 

a response of 1 only having an AC pattern of 3 or 4.  

3.3.4 Evaluation Criteria 

 This dissertation research uses three sets of indices to evaluate the accuracy 

and precision with which parameters of interest are estimated by the Monta Carlo 

simulation study, comparative model fit, and classification accuracy for the proposed 

model and comparison models. The first set of indices compares parameter estimates 

and their true values generated by the proposed model and the comparison models. 

The level of estimation precision is determined by two indices, bias and standard 

error (SE) of the estimate, respectively given by 

𝐵𝑖𝑎𝑠(𝑦) =
∑ (�̂�𝑟 − 𝑦𝑡𝑟𝑢𝑒)

𝑅
𝑟=1

𝑅
(3.30) 

𝑆𝐸(𝑦) = √
1

𝑅
∑(�̂�𝑟 −

∑ �̂�𝑅
𝑟=1

𝑅
)

2𝑅

𝑟=1

(3.31) 
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where R denotes the total number of replications, 𝑦𝑡𝑟𝑢𝑒  is the true value of parameter 

if the parameter of interest, and �̂�𝑟 is an estimate of the parameter 𝑦 for replication 𝑟.  

𝐵𝑖𝑎𝑠(𝑦) is the systematic error indicating the extent to which estimated values 

deviate from the true value of the parameter across replications, and 𝑆𝐸(𝑦) is the 

random error indicating the variability among parameter estimates without 

referencing the true value of the parameter.  

 Indices used to evaluate and compare the fit of the proposed model and 

comparison models are the Akaike information criterion (AIC; Akaike, 1974), the 

Bayesian information criterion (BIC; Schwarz, 1978), and the deviance information 

criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002). Information 

criteria are measures of predicative accuracy and are typically based on the deviance, 

−2 log 𝑝(𝑦|휃̂) (Gelman et al, 2014). AIC corrects for the increase in predictive 

accuracy caused by the fitting of 𝑘 parameters by subtracting 𝑘 from the log 

predicative density given the maximum likelihood estimate, log𝑝(𝑦|휃̂𝑚𝑙𝑒), and 

multiplies it by −2. AIC is given by 

𝐴𝐼𝐶 = −2 log𝑝(𝑦|휃̂𝑚𝑙𝑒) + 2𝑘 (3.32) 

where log𝑝(𝑦|휃̂𝑚𝑙𝑒) is the log predicative density given the maximum likelihood and 

𝑘 is the number of fitted parameters. BIC replaces the maximum likelihood estimate 

휃̂ with the posterior mean 휃̂𝐵𝑎𝑦𝑒𝑠 = 𝐸(휃|𝑦) and 𝑘 with effective number of 

parameters. DIC is given by 

𝐷𝐼𝐶 = −2 log𝑝(𝑦|휃̂𝐵𝑎𝑦𝑒𝑠) + 2𝑝𝐷𝐼𝐶 (3.33) 
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where 휃̂𝐵𝑎𝑦𝑒𝑠  is the posterior mean and 𝑝𝐷𝐼𝐶  is the effective number of parameters. 

BIC corrects for the increase in predictive accuracy by a penalty that increases with 

the sample size 𝑛 and is given by 

𝐵𝐼𝐶 = −2 log𝑝(𝑦|휃̂) + 𝑘 log𝑛 (3.34) 

which penalizes large datasets more than AIC and thus performs better for simpler 

models. 

 Two indices are used to compare the attribute-level and pattern-level 

classification accuracy for the proposed model and comparison models: attribute 

correct classification rate (ACCR), and pattern correct classification rate (PCCR). 

ACCR evaluates attribute level classification rate and is given by 

𝐴𝐶𝐶𝑅 =
∑ ∑ 𝑊𝑖𝑘

𝐼
𝑖=1

𝑅
𝑟=1

𝑅 × 𝐼
(3.35) 

where R is the number of replications, I denotes items, and 𝑊𝑖𝑘 = 1 if �̂�𝑖𝑘 = 𝛼𝑖𝑘  and 

𝑊𝑖𝑘 = 0 if otherwise. PCCR is the pattern-level classification accuracy and is given 

by 

𝑃𝐶𝐶𝑅 =
∑ ∑ ∏ 𝑊𝑖𝑘

𝐾
𝑘=1

𝐼
𝑖=1

𝑅
𝑟=1

𝑅 × 𝐼
(3.36) 

where 𝐾 denotes attributes. Both indices are computed for the proposed model and 

the comparison models to determine the effect of AC data and testlet effects on the 

rate at which attributes and attribute patterns are correctly classified.  

 Within and across each simulated condition, this research uses bias and SE to 

evaluate and compare the level of precision with which parameters are estimated by 

the proposed model and comparison models. The proposed research compares model 
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fit indices AIC, BIC, and DIC for the proposed model and one of the comparison 

models to identify the best-fitting model.  

3.4 Empirical Data Analysis 

 This research used the proposed model and comparison models to fit and 

analyze data from a large-scale math test, which included binary data response data, 

RTs data, and ACs data for 71 respondents. The portion of math items used in the 

empirical data analysis includes a total of 58 items measuring five attributes. The Q-

matrix for this dataset is described in detail in section 4.2.  

 Two chains and 10000 iterations were run in the analysis of the empirical 

dataset. Within each chain, the first half of the iterations was discarded as burn-ins. 

Convergence was assessed by the potential scale reduction factor �̂�. Model fit indices 

AIC, DIC, and BIC described in Subsection 3.3.3 were used to evaluate and compare 

relative fit for the proposed model and comparison models.  

 Analyses of the empirical data set resulted in estimates of the person, item, 

and testlet parameters in the best-fitting model, which were be summarized as the 

mean vector and variance covariance matrices for the three sets of parameters. 

Estimated higher-order structure parameters and the posterior mixing proportions of 

the attribute patterns resulting from the analyses were also summarized.  
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Chapter 4: Results 

4.1 Results of the Simulation Studies 

The simulation study conducted in this research purport to examine 1) the fit 

of the proposed joint model of responses, RT, and AC patterns for testlet-based 

cognitive diagnostic assessments as compared to the two alternative models; 2) the 

impact of this modeling approach on parameter recovery and classification accuracy; 

and 3) the effect of three manipulated factors on model performance and parameter 

estimation for the proposed model.  

 The proposed model accounting for dual dependency of response and RT and 

including AC pattern as an additional data source is evaluated in the context of model 

comparison with two alternative models: 1) the JRT-DINA-R/RT/AC model 

neglecting testlet effects in responses and RT; and 2) the Joint Testlet-DINA model 

excluding AC patterns in model specification. The three models are compared on 

outcome measures including model fit, classification accuracy at the attribute and 

attribute profile level, and recovery of item and person parameters, higher-order 

structural parameters, and variance/covariance matrices for item, person, and testlet 

parameters. Table 2 summarizes and compares the specification of the three data-

fitting models in the simulation study.  

Three factors manipulated in the simulation studies are: the sample size, the 

correlation between latent ability and latent speed, and the magnitude of the testlet 

effects. These factors constitute a total of 24 simulated conditions. 30 replications 

were run for each simulated condition, resulting in a total of 720 replications. 

Bayesian estimation of model parameters was implemented simulating two chains 
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and running 10,000 iterations per chain. Within each chain, the first 5,000 iterations 

were discarded as burn-in. Convergence of the iterative simulation was determined by 

the potential scale reduction factor �̂�, which was close to 1 across the replications in 

all simulated conditions. Parameter estimation was summarized based on 10,000 

iterations. Throughout the simulation conditions and the replications, �̂� for the model 

parameters was ≤ 1.1. Estimation of all three models used around 5 hours per 

replication for a sample of 200 examinees and 6.5 hours for a sample of 500 

examinees.  

Table 2  

Specification of the Data-Fitting Models in the Simulation Study 

 

Model 

Distinction in Model Specification  

Dependency of Responses 

and Response Time 

Modeling of Answer 

Change Patterns 

Joint Testlet-DINA √ x 

JRT-DINA-R/RT/AC x √ 

JRT-AC-DINA for Testlets √ √ 

Note: √ indicates presence; x indicates absence.   

The following sections present the results of the simulation study and 

summarize them by the criteria used to evaluate and compare the three models. The 

first section presents and compares model fit indices for the two models that use the 

same set of data. The remaining sections examine the effects of accounting for testlet 

effects and of including AC patterns as an additional data source on parameter 

estimates by comparing the classification accuracy for the attributes and attribute 

profiles and the biases and SEs for the parameters estimated by the three models at 

the levels of the manipulated factors. Table 3 summarizes the types of parameters 

estimated by each model in the simulation study. 
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Table 3  

Summary of Parameters of Interest Estimated by the Models in the Simulation Study 
 

Categories 
 

Notation 
 

Description 
Presence/Absence in the Models 

JAD-TT  JAD JD-TT 
 

Item Parameter 
𝛽 
𝛿 
휁 
𝑏 

Item Intercept 
Item Interaction 
Item Time Intensity 
Item Difficulty 

√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 

√ 
√ 
√ 
× 

Person Parameter 휃 
𝜏 

Person Ability 
Person Speed 

√ 
√ 

√ 
√ 

√ 
√ 

Higher-Order 
Structural Parameter 

휄 
휅 

Attribute Easiness 
Attribute Discrimination 

√ 
√ 

√ 
√ 

√ 
√ 

 
Item Mean Vector 

휇𝛽  
휇𝛿  
휇  
휇𝑏  

Item Intercept 
Item Interaction 
Item Time Intensity 
Item Difficulty 

√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 

√ 
√ 
√ 
× 

 

 

 

 

 

Item Variance and 

Covariance Matrix 

𝜎𝛽
2 

𝜎𝛿
2 

𝜎2 

𝜎𝑏
2 

𝜎𝛽𝛿 

𝜎𝛽  

𝜎𝛽𝑏 

𝜎𝛿  

𝜎𝛿𝑏 

𝜎 𝑏 

Variance of Item Intercept 

Variance of Item Interaction 

Variance of Item Time Intensity 

Variance of Item Difficulty 

Covariance: Item Intercept & Interaction 

Covariance: Item Intercept & Time Intensity 

Covariance: Item Intercept & Difficulty 

Covariance: Item Interaction & Time Intensity 

Covariance: Item Interaction & Difficulty 

Covariance: Item Time Intensity & Difficulty 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

× 

√ 

√ 

× 

√ 

× 

× 

Person Variance and 
Covariance Matrix 

𝜎𝜏
2 

𝜎𝜃𝜏 
Variance of Person Speed 
Covariance of Person Ability & Speed 

√ 
√ 

√ 
√ 

√ 
√ 

Testlet Variance  𝜎𝛾
2 

𝜎𝜆
2 

Variance of Response Testlet Effect 
Variance of Response Time Testlet Effect 

√ 
√ 

× 
× 

√ 
√ 
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4.1.1 Performance of the Model Fit Indices 

Model performance was evaluated by using AIC, BIC, and DIC to compare 

the fit of the proposed model, JRT-AC-DINA for Testlets, with the alternative model 

that uses the same dataset: JRT-DINA-R/RT/AC. As described in Chapter 3, both 

information criteria are measures of predicative accuracy and are typically based on 

the deviance −2 log𝑝(𝑦|휃̂) (Gelman et al, 2014). For a given simulated condition, 

comparative model fit is determined by comparing the AIC, BIC, and DIC for the two 

data-fitting models and summarizing the number of replications by which the smallest 

values of AIC and BIC are identified.  

Table 4 summarizes the number of replications by which the smallest values 

of AIC and BIC are identified. Across all simulated conditions, AIC and BIC values 

for the proposed model, JRT-AC-DINA for Testlets, are consistently smaller 

compared to the JRT-DINA-R/RT/AC model, suggesting that the proposed model has 

better fit than the JRT-DINA-R/RT/AC model. The DIC values, however, are higher 

for the proposed model than for the JRT-DINA-R/RT/AC model, suggesting that the 

JRT-DINA-R/RT/AC model has a better model fit. More detailed discussion 

regarding the usability of the three indices and the caution that needs to be taken 

when using and interpreting them is presented in Subsection 5.1.2.  
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Table 4  

Number of Replications in Identifying the Best-Fitting Model in the Simulation Study 

Condition 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 

AIC  BIC  DIC 

JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

 JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

 JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

1 200 -0.5 0.25 30 0  30 0  0 30 

2   0.5 30 0  30 0  0 30 

3   1 30 0  30 0  0 30 

4  -0.3 0.25 30 0  30 0  0 30 

5   0.5 30 0  30 0  0 30 

6   1 30 0  30 0  0 30 

7  0.3 0.25 30 0  30 0  0 30 

8   0.5 30 0  30 0  0 30 

9   1 30 0  30 0  0 30 

10  0.5 0.25 30 0  30 0  0 30 

11   0.5 30 0  30 0  0 30 

12   1 30 0  30 0  0 30 

13 500 -0.5 0.25 30 0  30 0  0 30 

14   0.5 30 0  30 0  0 30 

15   1 30 0  30 0  0 30 

16  -0.3 0.25 30 0  30 0  0 30 

17   0.5 30 0  30 0  0 30 

18   1 30 0  30 0  0 30 

19  0.3 0.25 30 0  30 0  0 30 

20   0.5 30 0  30 0  0 30 

21   1 30 0  30 0  0 30 

22  0.5 0.25 30 0  30 0  0 30 

23   0.5 30 0  30 0  0 30 

24   1 30 0  30 0  0 30 
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4.1.2 Recovery of the Person Parameters  

 Person parameters evaluated in this study are the latent ability parameter, 휃𝑖, 

and latent speed parameter, 𝜏𝑖. Inferences are drawn regarding individuals’ latent 

ability and speed based on information provided by the person parameters. To 

evaluate the degree to which accounting for testlet effects and including AC pattern 

as an additional data source affect estimation of person parameters and classification 

accuracy at the attribute and attribute profile level, this section summarizes and 

compares the ACCR and PCCR for each of the estimation models and presents 

mixed-effect ANOVA results on the effects of the model type and manipulated 

factors on the biases and SEs of 휃𝑖  and 𝜏𝑖.  

Attribute Mastery Status. Examinees’ attribute mastery status is indicated by 

ACCR and PCCR. These are summarized for each of the data-fitting models, 

compared under all simulated conditions and presented in Tables A.1.1-4. As is 

indicated by the tables, across all the 24 simulated conditions, ACCRs for all five 

attributes for the proposed model, JRT-AC-DINA for Testlets, are > 0.90, and PCCR 

is  > 0.74, suggesting that overall and for each attribute, the attribute mastery status 

of more than 90% of the simulated examinees are correctly classified using the 

proposed model and the attribute profile for over 74% of the simulated examinees are 

correctly recovered by the proposed model. 

Further, compared with the PCCRs of the JRT-DINA-R/RT/AC model, the 

PCCRs for the proposed model are only slightly higher under all simulated 

conditions. The ACCRs for 𝛼4 and 𝛼5 for the proposed model are slightly  

higher than or equal to those for the JRT-DINA-R/RT/AC model in all 24 simulated 
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Figure 1 Marginal mean attribute correct classification rates (ACCRs) at each level of 

the correlation between higher-order person ability and speed. A1 to A5 indicates 

Attribute 1 to Attribute 5. 
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conditions, and in 23 out of the 24 conditions for 𝛼3, 21 out of 24 for 𝛼1, and 18 out 

of 24 for 𝛼2. When compared with the Joint Testlet-DINA model, however, the 

ACCRs and PCCRs for the proposed model are slightly less or equal across all 24 

simulated conditions. The differences, however, are small and can be considered 

negligible. 

Figures 1 through 4 show the marginal mean ACCRs and PCCRs for the three 

models being compared at each level of the three manipulated factors. Sample size 

and correlation between latent speed and ability do not appear to result in differences 

in ACCRs and PCCRs for the three models: they are similar across the levels of the 

two factors. The magnitude of the testlet effects does have an effect as both ACCRs 

and PCCRs decrease as the variance of the testlet effects parameters increases from 

0.25 to 1 and are the smallest for conditions that feature large testlet effects. The 

indicates that an increase in the magnitude of the testlet effects corresponds to 

reduced accuracy rate at both the attribute and attribute profile level.  

These results indicate the proposed model successfully recovers the attributes 

and attribute profiles. They further suggest that while accounting for dual dependency 

in responses and RT in the joint model of responses and RT slightly improves 

classification accuracy for attributes and attributes profiles compared with the model 

that ignores this dependency, when the testlet effects are accounted for, including AC 

patterns in the joint model does not necessarily lead to improved attribute and 

attribute profile correct classification rates.  
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Figure 2 Marginal mean attribute correct classification rates (ACCRs) at each level of 

the sample size. A1 to A5 indicates Attribute 1 to Attribute 5. 
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Figure 3 Marginal mean attribute correct classification rates (ACCRs) at each level of 

the testlet variance. A1 to A5 indicates Attribute 1 to Attribute 5. 
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Figure 4 Marginal mean attribute profile classification rates (PCCRs) at each level of 

the testlet variance. 

 Correlation between true and estimated person parameters. Table A.2 in 

Appendix A presents the correlation between true and estimated higher-ability and 

person speed parameters for the three models under the 24 simulated conditions. As is 

shown in the table, the correlation is > 0.79 for the higher-ability parameter and >

0.98 for the person speed parameter as estimated by the proposed model, indicating 

strong correlation between the true and generated person parameters.  
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 Of the three models being evaluated in the simulation study, the correlation 

for the higher-order ability parameter yielded by the proposed model is the strongest 

compared to the other two models across the 24 simulated conditions. Further, 

although overall the correlation computed using person ability parameter estimated by 

the proposed model is only slightly higher than that for the JRT-DINA-R/RT/AC 

model, compared to the Joint Testlet-DINA model, the correlation computed by using 

estimates from the two models are stronger by up to 5%. This indicates that the 

inclusion of AC pattern in the joint model of responses and RT contributes to 

improved correlation between true and estimated higher-ability parameter, and 

additionally accounting for testlet effects in the responses and RT slightly improves 

this correlation.   

 The proposed modeling approach, however, has little effects on correlation for 

the other person parameter, person speed parameter: across the simulated conditions 

correlation for this parameter is identical or only slightly different for the three 

models being evaluated. Thus, all three models yield estimated person speed 

parameter that correlates strongly with the true parameter and including AC pattern 

and accounting for testlet effects do not necessarily improve this correlation. 

While the manipulated factors have little effects on the correlation for the 

person speed parameter, the variance of the response and RT testlet effect parameters 

is related to the correlation for the higher-order ability parameter. Across all three 

models, as the variance of the testlet effect parameters increases from 0.25 to 1, the 

correlation decreases, and is the smallest for the conditions that have a large variance 

of 1. This indicates that an increase in the magnitude of the testlet effects corresponds 
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to weakened correlation between true higher-order ability parameter and its estimates 

by all three models.  

 These results indicate that the proposed model yields estimates of the higher-

order ability parameter that correlate more strongly with the true parameter compared 

with the other two models. Thus, modeling AC patterns in addition to responses and 

RT and accounting for the testlet effects lead to stronger correlation for the higher-

order person ability parameter. Further, consistent with the impact of the variance of 

the testlet effect parameter on the ACCRs and PCCRs, increasing magnitude of the 

testlet effects leads to weaker correlation between the generated higher-order ability 

parameter and its estimates yielded by all three models. 

 Higher-Order Ability and Person Speed Estimates. Person ability parameters 

include the higher-order ability parameter 휃𝑖, the person speed parameter 𝜏𝑖, and their 

corresponding mean vector and variance-covariance matrix. 휃𝑖 and 𝜏𝑖 are individual-

specific first-level parameters, and their corresponding mean vector and variance-

covariance matrix are population-specific second-level parameters. This section presents 

the bias and SE for the two parameters to evaluate their recovery.  

 Mixed-effect ANOVAs were employed to examine the effects of the data-fitting 

model type and the manipulated factors on the recovery of 휃𝑖 and 𝜏𝑖. Specifically, 

identifying the effects of the data-fitting model allows for inferences regarding the impact 

of including the modeling of AC patterns and testlet effects on the recovery of the two 

model parameters. Mixed-effects ANOVAs were performed separately for the two 

different sample sizes to ensure the robustness of the analyses to violation of the 

homogeneity of residual variances assumption. In the analyses, the higher-order ability 

parameter and person speed parameter were treated as subjects and their biases and SEs 
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were treated as the dependent variable. The within-subject factor was the model type, and 

the between-subject factors were the two other manipulated factors: correlation between 

휃𝑖 and 𝜏𝑖 and testlet variance.   

 The following sections report the statistically significant effects and their effect 

sizes. Only the highest-order significant interaction or main effects with at least a small 

effect size were reported as the interpretation of lower-order interaction or main effect 

would be misleading if higher-order interaction effects are significant. Table 5 

summarizes the highest-order significant effects with at least a small effect size and their 

effect sizes identified in the mixed-effect ANOVAs.  

Table 5  

Summary of Effect Sizes of the Highest-Order Significant Effects from the Mixed-

Effect ANOVA on the Recovery of the Higher-Order Ability and Person Speed 

Parameter 

N Effect Higher-Order Ability 휃𝑖  Person Speed 𝜏𝑖 

Bias SE  Bias SE 

200 Model*Testlet Variance  0.011    

 Model*Correlation*Testlet 

Variance 

   0.156  

500 Model     0.932 

 Model*Testlet Variance  0.019    

 Model*Correlation  0.030    

 Model*Correlation*Testlet 

Variance 

   0.134  

Note: Effect Size is classified as follows: Small (0.01≤partial 휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

At the sample size of 200, two manipulated factors, correlation between 휃𝑖 

and 𝜏𝑖 and testlet variance, interact with model to affect the bias of 𝜏𝑖 with a large 

effect size of 0.156. The SE of 휃𝑖 is significantly affected by the interaction between 

testlet variance and model type, the effect size for which is small at 0.011. At the 

sample size of 500, significant effect on the SE of 휃𝑖 stems from the interaction of the 

testlet variance and model type which results in a small effect size of 0.019. The two 
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manipulated factors interact with the correlation between 휃𝑖  and 𝜏𝑖 to affect the bias 

of 𝜏𝑖 , the effect size for which is medium at 0.134. Model type has a significant main 

effect on the SE of 𝜏𝑖 with a large effect size of 0.932. An additional significant effect 

on SE of 휃𝑖 is the interaction between model type and correlation between  휃𝑖 and 𝜏𝑖 , 

having a small effect size of 0.030.  

Higher-Order Ability Estimates Table 6 further details the significant main 

and interaction effects on the bias and SE of 휃𝑖 with at least a small effect size at the 

sample size level of 200. Model type has a significant main effect on the SE of 휃𝑖 

with a large effect size of 0.860. Model type also interact with testlet variance to 

significantly affect the SE of 휃𝑖, resulting in an affect size of 0.011.  

Table 6  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Higher-

Order Ability Estimates (N=200) 

Source Bias of 휃  SE of 휃 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects 

(with Greenhouse-

Geisser Adjustment 

       

Model     14702.996 0.000 0.860 

Model*Testlet Variance     12.990 <0.001 0.011 

Note: Effect Size is classified as follows: Small (0.01≤partial휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Table 7 presents the descriptive statistics for the SE of 휃𝑖 at each testlet 

variance level. The proposed model yields better SE of 휃𝑖 compared with the models 

neglecting testlet effects and excluding the modeling of AC patterns when testlet 

variance equals 0.5 and 1. When testlet variance equals 0.25, the proposed model and 

the JRT-DINA-R/RT/AC model yield a smaller SE for 휃𝑖 than the Joint Testlet-DINA 

model excluding the modeling of AC patterns.  
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Table 7  

Means and SD for the SE of the Higher-Order Ability Estimates by Model Type and 

Testlet Variance (N=200) 

 JAD-TT  JAD  JD-TT 
𝜎𝛾

2/𝜎𝜆
2 Mean SD  Mean SD  Mean SD 

0.25 .7215 .0933  .7215 .0932  .7799 .0796 

0.5 .7230 .0989  .7234 .0990  .7764 .0831 

1 .7392 .0998  .7395 .1001  .7771 .0765 

 

Table 8 is a more detailed presentation of the significant effects in the SE of 

휃𝑖 with at least a small effect size for the sample size of 500. As is shown in the table, 

Model has a significant main effect on the SE of 휃𝑖. The effect of the model is large at 

0.462. Additional significant interaction effects on the SE of 휃𝑖 are attributable to the 

interaction between model and correlation between 휃𝑖 and 𝜏𝑖 and between model and 

testlet variance, both having a small effect size of less than 0.060. 

Table 8  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Higher-

Order Ability Estimates (N=500) 

Source Bias of 휃  SE of 휃 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects 

(with Greenhouse-

Geisser Adjustment 

       

Model     5149.775 0.000 0.462 

Model*Correlation     61.570 <0.001 0.030 

Model*Testlet Variance     58.443 <0.001 0.019 

Note: Effect Size is classified as follows: Small (0.01≤partial휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Table 9 presents the descriptive statistics for the SE of 휃𝑖 at each testlet 

variance level. Across the levels, the SE of 휃𝑖 is slightly smaller for the proposed 

model than for the JRT-DINA-R/RT/AC model, which, in turn, is smaller than the 

Joint Testlet-DINA model. These results indicate that the proposed model yields 

slightly better SE of 휃𝑖 than the model neglecting testlet effects and evidently better 

SE than the model excluding the modeling of AC patterns.  
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Table 9  

Means and SD for the SE of the Higher-Order Ability Estimates by Model Type and 

Testlet Variance (N=500) 

 JAD-TT  JAD  JD-TT 
𝜎𝛾

2/𝜎𝜆
2 Mean SD  Mean SD  Mean SD 

0.25 0.7184 0.0910  0.7185 0.0910  0.7833 0.0805 

0.5 0.7230 0.0943  0.7232 0.0943  0.7793 0.0809 

1 0.7352 0.0981  0.7355 0.0981  0.7799 0.0799 

 

Table 10 presents the descriptive statistics for the SE of 휃𝑖 yielded by the three 

models at each correlation level. The SE of 휃𝑖 is slightly better for the proposed 

model than for the JRT-DINA-R/RT/AC model at the correlation levels of 0.3, 0.5, 

and -0.5. Across the levels, the SE of 휃𝑖 as estimated by the Joint Testlet-DINA 

model is the largest compared to the other two models. These results indicate that the 

proposed model and the JRT-DINA-R/RT/AC model yield better SE of 휃𝑖 than the 

model excluding the modeling of AC patterns across all correlation levels. When 

correlation equals 0.3, 0.5, and -0.5, the proposed model yields a slightly smaller 

random error for 휃𝑖 than the JRT-DINA-R/RT/AC model.  

Table 10  

Means and SD for the SE of the Higher-Order Ability Estimates by Model Type and 

Correlation between the Higher-Order Ability and Person Speed (N=500) 

 JAD-TT  JAD  JD-TT 
 Mean SD  Mean SD  Mean SD 

0.3 .7304 .0972  .7306 .0972  .7729 .0778 

0.5 .7236 .0955  .7237 .0955  .7896 .0847 

-0.3 .7260 .0938  .7260 .0938  .7734 .0768 

-0.5 .7222 .0925  .7224 .0924  .7874 .0808 

 

Person Speed Estimates. Table 11 further details the significant effects in the 

bias and SE of 𝜏 with at least a small effect size at the sample size of 200. Testlet 

variance and correlation between 휃𝑖 and 𝜏𝑖 have a significant main effect on the bias 

of 𝜏𝑖. Model has a main effect on the SE of 𝜏𝑖. Also significant in their effects on the 
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bias of 𝜏𝑖 are two-way interaction effects of model and correlation between 휃𝑖 and 𝜏𝑖, 

of model and testlet variance, and of correlation between 휃𝑖 and 𝜏𝑖 and testlet 

variance, all having a medium effect size of less than 0.14. The highest-order 

interaction effect is the interaction of all three factors on the bias of 𝜏𝑖, having a large 

effect size of 0.156.  

Table 11  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Person 

Speed Estimates (N=200) 

Source Bias of 𝜏𝑖    SE of 𝜏𝑖 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects 

(with Greenhouse-

Geisser Adjustment 

       

Model*Correlation 95.765 <0.001 0.107     

Model*Testlet Variance 124.898 <0.001 0.095     

Model*Correlation*Testlet 

Variance 

73.580 <0.001 0.156     

Between-Subject Effects        

Correlation 22.642 <0.001 0.028     

Testlet Variance 31.938 <0.001 0.026     

Correlation*Testlet 

Variance 

56.878 <0.001 0.125     

Note: Effect Size is classified as follows: Small (0.01≤partial휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Figure 5 is a visual presentation of the interaction between model type and 

testlet variance on the bias of 𝜏𝑖 for each ability-speed correlation level and at the 

sample size level of 200. The bias of 𝜏𝑖 yielded by all three models varies by the 

levels of the testlet variance and of the correlation between 휃𝑖 and 𝜏𝑖. At the  
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Figure 5. Significant two-way interaction of testlet variance and model type on the 

bias for 𝜏𝑖  at all correlation levels and for a sample size of 200. 

 

correlation level of 0.3, the absolute value of the bias for 𝜏𝑖  is the highest in 

conditions having a large testlet effect and lowest in conditions having a moderate 

testlet effect. Model effect is not consistent across the variance levels: in conditions 

having a large testlet effect and having an ability-speed correlation of 0.3 and 0.5, the 

proposed model yields a bias smaller than the other two models; in conditions having 

a moderate testlet effect, the JRT-DINA-R/RT/AC model yields reduced systematic 

error compared to the proposed model and the Joint Testlet-DINA model. Similar 
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patterns are observed for conditions having an ability-speed correlation of -0.3 and -

0.5. At the correlation level of -0.3, bias is highest in conditions having a small testlet 

variance and in conditions having a moderate and a large testlet variance the bias is 

comparable. The proposed model yields reduced systematic error compared with the 

Joint Testlet-DINA model and/or the JRT-DINA-R/RT/AC model only in conditions 

having a small testlet variance. 

Table 12 is a detailed presentation of the significant effects in the bias and SE 

of 𝜏𝑖  with at least a small effect size for the sample size of 500. Model has a 

significant main effect on the bias of 𝜏𝑖. Model additionally has a main effect on the 

SE of 𝜏𝑖, the effect size for which is large at 0.932. Three two-way interaction effects 

involving model, testlet variance, and correlation between 휃𝑖 and 𝜏𝑖  on the bias of 𝜏𝑖   

are also significant. The highest-order interaction effect is the interaction effect of all 

three factors on the bias of 𝜏𝑖, having a medium effect size of 0.134. 

Table 12  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Person 

Speed Estimates (N=500) 

Source Bias of 𝜏𝑖  SE of 𝜏𝑖 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects 

(with Greenhouse-

Geisser Adjustment 

       

Model 321.141 <0.001 0.051  81996.888 0.000 0.932 

Model*Correlation 633.417 0.000 0.241     

Model*Testlet Variance 240.427 <0.001 0.074     

Model*Correlation*Testlet 

Variance 

154.152 <0.001 0.134     

Between-Subject Effects        

Correlation*Testlet 

Variance 

20.711 <0.001 0.020     

Note: Effect Size is classified as follows: Small (0.01≤partial휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 
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Figure 6. Significant three-way interaction of testlet variance, correlation between 

휃𝑖  and τ, and model type on the bias for τ at the sample size level of 500. 

 

Figure 6 is a visual presentation of the interaction of testlet variance and 

model on the bias for 𝜏𝑖 for each level of the correlation between 휃𝑖 and 𝜏𝑖. When the 

correlation is negative, the proposed model yields slightly reduced bias for 𝜏𝑖 

compared to the other two models when testlet variance is large. When the correlation 

is positive week at 0.3, biases of 𝜏𝑖 yielded by the proposed model and the Joint 

Testlet-DINA model are identical and are better than by the JRT-DINA-R/RT/AC 

model ignoring the testlet effects. At a positive moderate correlation of 0.5, the 
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proposed model yields slightly reduced systematic error when the testlet variance is 

small at 0.25, compared to the other two models.  

Table 13 presents the descriptive statistics for the SE of 𝜏𝑖  for the three models 

at the sample size of 500. The proposed model and the Joint Testlet-DINA model 

yield identical SEs that are smaller than the SE yielded by the JRT-DINA-R/RT/AC 

model. This indicates that the proposed model and the Joint Testlet-DINA model 

accounting for testlet effects result in reduced random error compared to the JRT-

DINA-R/RT/AC model ignoring testlet effects.  

Table 13  

Means and SD for the SE of the Person Speed Estimates by Model Type (N=500) 

 JAD-TT  JAD  JD-TT 

 Mean SD  Mean SD  Mean SD 

SE of 𝜏 .4698 .0624  .4781 .0635  .4698 .0624 

4.1.3 Recovery of the Person Variance/Covariance Matrix 

  Table A.3 and Table A.4 in Appendix A summarize the bias and SE for the 

variance of the person speed parameter and covariance between person speed and 

higher-order ability under the 24 simulated conditions. Across the conditions, the 

absolute value of the bias for the two parameters is < 0.04 and the SE is < 0.05.  

 Compared with the JRT-DINA-R/RT/AC model, the absolute value of the 

bias of 𝜎𝜏
2 for the proposed model is smaller under all 24 simulated conditions, by a 

very small margin. Only under specific simulated conditions, conditions 1, 8, and 13, 

is the absolute value of the bias for 𝜎𝜃𝜏 slightly reduced for the proposed model. 

Under the rest of the simulated conditions, the absolute value of the bias for 𝜎𝜃𝜏 is 

either slightly higher than or equal to the bias for the JRT-DINA-R/RT/AC model. 

Similarly, SEs for 𝜎𝜏
2 and 𝜎𝜃𝜏 are better for the proposed model, but not across all 
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simulated conditions. Under 16 out of the 24 simulated conditions is the SE for 𝜎𝜏
2 for 

the proposed model slightly smaller and 13 out of 24 for the SEs for 𝜎𝜃𝜏. Compared 

with the Joint Testlet-DINA model, however, the absolute value of the bias of 𝜎𝜏
2 for 

the proposed model is higher across all simulated conditions whereas the bias of 𝜎𝜃𝜏 

is smaller in conditions 3, 6, 9, 12, 18, 21, and 24, all having a testlet effect size of 1. 

Similarly, the SE for both 𝜎𝜏
2 and 𝜎𝜃𝜏 for the proposed model is slightly higher than 

for the Joint Testlet-DINA model.  

Figures 7 through 10 are visual representations of the marginal mean bias and 

SE of the estimates of 𝜎𝜏
2 and 𝜎𝜃𝜏 by levels of the manipulated factors. The proposed 

model yields marginal mean bias of the estimates of 𝜎𝜏
2  that are smaller than for the 

JRT-DINA-R/RT/AC model but are larger than for the Joint Testlet-DINA model. 

The marginal mean bias of the estimates of 𝜎𝜃𝜏 and the SE of both 𝜎𝜏
2 and 𝜎𝜃𝜏 for the 

proposed model and the JRT-DINA-R/RT/AC model are comparable and are larger 

than for the Joint Testlet-DINA model. Variation by the levels of the sample size is 

seen in the marginal mean bias of the estimates of 𝜎𝜃𝜏 and the SE of both 𝜎𝜏
2 and 𝜎𝜃𝜏, 

with a larger sample size of 500 corresponding to reduced values in these estimates. 

An increase in the variance of the testlet effects corresponds to reduced marginal 

mean bias and SE of the estimates of 𝜎𝜏
2 but increased absolute value of the marginal 

mean bias of the estimates of 𝜎𝜃𝜏. The marginal mean SE of the estimates of 𝜎𝜃𝜏, 

however, is the lowest at the testlet variance level of moderate, increases at the level 

of large, and is the largest at the level of small. Variation by levels of 𝜌𝜃𝜏  differs for  

𝜎𝜏
2 and 𝜎𝜃𝜏: whereas the marginal mean bias and SE of the estimates of 𝜎𝜏

2 is larger 

for moderate 𝜌𝜃𝜏  than for weak 𝜌𝜃𝜏 , the marginal mean bias of 𝜎𝜃𝜏 is comparable for 
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the moderate and weak 𝜌𝜃𝜏  levels. The marginal mean SE of 𝜎𝜃𝜏, by contrast, 

increases as 𝜌𝜃𝜏  progresses from negative moderate to positive moderate for the 

proposed model and the JRT-DINA-R/RT/AC model. 

 

Figure 7 Marginal mean bias of the estimates of the variance of person speed τ at all 

levels of the manipulated factors. 
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Figure 8 Marginal mean SE of the estimates of the variance of person speed τ at all 

levels of the manipulated factors. 

 

Thus, based upon the marginal means, the proposed model and the JRT-

DINA-R/RT/AC model both including AC patterns in the joint model of responses 

and RT yield comparable random error for estimating for  𝜎𝜏
2 and 𝜎𝜃𝜏 and comparable 

systematic error for estimating 𝜎𝜃𝜏. Compared with the Joint Testlet-DINA model, 

however, their biases and SEs are both larger. Thus, when testlet effects are 

accounted for, additionally modeling AC patterns does not necessarily lead to 

improved bias for estimating 𝜎𝜏
2 and SE for both 𝜎𝜏

2 and 𝜎𝜃𝜏. 
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Figure 9 Marginal mean bias of the estimates of the covariance of person ability θ and 

person speed τ at all levels of the manipulated factors. 
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Figure 10 Marginal mean SE of the estimates of the covariance of person ability θ and 

person speed τ at all levels of the manipulated factors. 
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4.1.4 Recovery of the Higher-Order Structural Parameters 

 The higher-order structural parameters are the attribute easiness parameters 

(휄𝑘) and the attribute discrimination parameters (휅𝑘) that specify the relationship 

between latent ability and attribute mastery status in the higher-order structure. This 

section summarizes the bias and SE for 휄𝑘  and 휅𝑘  for each of the five attributes 

specified in the proposed model. These are summarized for each of the data-fitting 

models and all 24 simulated conditions and presented in Tables A.5.1-4 and A.6.1-4 

in Appendix A.  

Attribute Easiness. Figures 11-15 are visual representations of the marginal 

mean biases and SEs of 휄𝑘  for the five attributes at all levels of the manipulated 

factors. The impact of model specification on the marginal mean bias of the 휄𝑘  is not 

consistent across the attributes. The marginal mean biases of 휄𝑘  for attributes 1, 2, 4, 

and 5 are comparable as estimated by the proposed model and the JRT-DINA-

R/RT/AC model and are the lowest as estimated by the Joint Testlet-DINA model. 

For attribute 3, however, they are comparable as estimated by the proposed and the 

Joint Testlet-DINA model and are larger as estimated by the JRT-DINA-R/RT/AC 

model. Further, for attribute 3 they vary by the levels of two of the manipulated 

factors: they are larger for larger testlet variance, and for stronger 𝜌𝜃𝜏 . For the other 

attributes, they do not exhibit much variation across the levels.  

 The impact of model specification on the marginal mean SE of 휄𝑘  are similarly 

inconsistent across the attributes. For attributes 1 and 5 and across the levels of the 

manipulated factors, the marginal mean SEs of 휄𝑘  are comparable for the proposed 

model and the JRT-DINA-R/RT/AC model and are the smallest as estimated by the 
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Joint Testlet-DINA model. For attributes 2 and 3 and across the levels of the 

manipulated factors, they are comparable as estimated by the proposed model and the 

Joint Testlet-DINA model and are the smallest as estimated by the JRT-DINA-

R/RT/AC model. For attribute 4, they are similar for the proposed model and the 

JRT-DINA-R/RT/AC model and are smaller than the estimates generated by the Joint 

Tesltlet-DINA model at the levels of 𝜎𝜃𝜏 but are larger at the levels of sample size 

and testlet variance. They additionally increase as testlet variance increases from 

small to large. Variation by levels of 𝜌𝜃𝜏  and testlet variance are not consistent across 

the attributes: attributes 4 and 5 see least variation whereas attributes 1, 2, and 3 see 

attribute-specific variation patterns. The only factor for which consistency across the 

attributes is shown is sample size: as it increases from 200 to 500, the marginal mean 

SEs of the attribute easiness parameters decrease.  
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Figure 11. Marginal mean bias of the high-order attribute easiness estimates for each 

of the five attributes at the four correlation levels. 
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Figure 12. Marginal mean bias of the high-order attribute easiness estimates for each 

of the five attributes at the two sample sizes. 
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Figure 13. Marginal mean bias of the high-order attribute easiness estimates for each 

of the five attributes at the three testlet variance levels. 
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Figure 14  Marginal mean SE of the high-order attribute easiness estimates for each 

of the five attributes at the four correlation levels. 
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Figure 15. Marginal mean SE of the high-order attribute easiness estimates for each 

of the five attributes at two sample size levels. 
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Figure 16 Marginal mean SE of the high-order attribute easiness estimates for each of 

the five attributes at three testlet variance levels. 
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Attribute Discrimination. Figures 17 through 22 display the biases and SEs of 

the high-order discrimination estimates for the five attributes at all levels of the 

manipulated factors. Consistent across the levels of the manipulated factors and the 

five attributes, marginal mean biases of the estimates generated by the proposed 

model and the JRT-DINA-R/RT/AC model are comparable and are larger than those 

generated by the Joint Testlet-DINA model. They additionally show little variation by 

levels of the sample size and 𝜌𝜃𝜏 , suggesting that the two factors have little impact on 

them. Increased testlet variance corresponds to increased marginal mean biases for 

two attributes: attribute 2 and 3. Attributes 1, 4, and 5 show little variation by the 

levels of this factor.  

 The marginal mean SEs of the estimates of the high-order discrimination 

parameters, however, show evident variation across the attributes and by levels of the 

manipulated factors. Similar to patterns observed for the marginal mean bias of the 

discrimination estimates, SEs of the estimates are comparable for the proposed model 

and the JRT-DINA-R/RT/AC model across the levels of the manipulated factors. For 

attribute 5 they are larger than the estimates generated by the Joint Testlet-DINA 

model. For attributes 1 and 4, they are larger than those yielded by the Joint Testlet-

DINA model at specific levels of the testlet variance and 𝜌𝜃𝜏 : at negative 𝜌𝜃𝜏 or small 

testlet variance for attribute 4 and at positive moderate 𝜌𝜃𝜏  or moderate testlet 

variance for attribute 1. At the other levels of 𝜌𝜃𝜏  or of testlet variance, the proposed 

model and the JRT-DINA-R/RT/AC model yield reduced SEs compared with the 

Joint Testlet-DINA model. Marginal mean SEs for attributes 2 and 3 are consistently 
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smaller for estimates generated by the proposed model and the JRT-DINA-R/RT/AC 

model than for those generated by the Joint Testlet-DINA model.  

 The only manipulated factor that sees consistency across attributes is sample 

size: SEs are consistently smaller at the sample size of 500 than at 200. Variation by 

the levels of the other two manipulated factors is attribute- and model-specific. For 

instance, attribute 5 sees least variation in the marginal mean SEs by the levels of 𝜌𝜃𝜏  

or testlet variance whereas for attribute 3 and across the models, its marginal mean 

SEs increase as testlet variance increases.  
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Figure 17. Marginal mean bias of the high-order attribute discrimination estimates for 

each of the five attributes at four correlation levels. 
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Figure 18. Marginal mean bias of the high-order attribute discrimination estimates for 

each of the five attributes at the two sample sizes. 
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Figure 19. Marginal mean bias of the high-order attribute discrimination estimates for 

each of the five attributes at three testlet variance levels. 
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Figure 20. Marginal mean SE of the high-order attribute discrimination estimates for 

each of the five attributes at the four correlation levels. 
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Figure 21 Marginal mean SE of the high-order attribute discrimination estimates for 

each of the five attributes at two sample size levels. 
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Figure 22 Marginal mean SE of the high-order attribute discrimination estimates for 

each of the five attributes at the three testlet variance levels. 
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4.1.5 Recovery of the Item Parameters  

Item parameters evaluated in this study are 𝛽𝑗, the item intercept parameter, 

𝛿𝑗, the item interaction parameter,  휁𝑗  the item time intensity parameter, and 𝑏𝑗, the 

item difficulty parameter. To evaluate the degree to which the proposed model 

successfully recovers these parameters as compared to the other two models, this 

section presents and summarizes the correlation between the true item parameters and 

their estimates generated by each model. Mixed effect ANOVA results on the bias 

and SE of 𝛽𝑗 , 𝛿𝑗, and  휁𝑗  are presented to examine the extent to which the three 

models and the three manipulated factors affect the recovery of these parameters. The 

ANOVA results do not include 𝑏𝑗 as it is not one of the parameters in the Joint 

Testlet-DINA model.  

Correlation between true and estimated item parameters. Table A.7 presents 

the correlation between true and estimated person parameters for each model under 

the 24 simulated conditions. As is shown in in the table, correlation for the proposed 

model is ≥ 0.90 for 𝛽𝑗, ≥ 0.80 for 𝛿𝑗, close to 1 for  휁𝑗, and ≥ 0.70 for  𝑏𝑗, 

suggesting that estimates for these parameters yielded by proposed model correlate 

well with the true parameters. The correlations for 𝑏𝑗 and 𝛿𝑗 are weaker than the 

correlations for 𝛽𝑗 and  휁𝑗.  

 The correlations for the three models are identical or comparable under the 24 

simulated conditions. Correlation for  휁𝑗, the item time intensity parameter, is 

identical for the three models under all simulated conditions. Slight differences in the 

correlation for 𝛽𝑗, 𝛿𝑗, and  𝑏𝑗 are observed between the proposed model and JRT-
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DINA-R/RT/AC. In 14 out of the 24 simulated conditions, the correlation for 𝛽𝑗 is 

slightly stronger for the proposed model. All 14 conditions have a testlet variance of 

0.5 or 1. In 15 out of the 24 conditions the correlation for 𝛿𝑗 is slightly stronger for 

the proposed model. Examples are conditions 7, 8, and 9, all having a sample size of 

200 and a value of 0.3 for 𝜌𝜃𝜏 , and conditions 13, 14, and 15 with a sample size of 

500 and a value of -0.5 for 𝜌𝜃𝜏 . Correlations for 𝑏𝑗  for the proposed model and the 

JRT-DINA-R/RT/AC are comparable, although in 7 out of the 24 conditions, its value 

is slightly stronger for the proposed model. Compared with the Joint Testlet-DINA 

model, however, the proposed model yields a weaker correlation for 𝛽𝑗 and 𝛿𝑗 under 

most of the simulated conditions. Only in a couple of simulated conditions are the 

correlations for the proposed model stronger: conditions 7 for 𝛽𝑗 and conditions 12 

and 18 for 𝛿𝑗.  

 Thus, while under specific conditions, accounting for testlet effects in addition 

to modeling the answer change patterns can lead to slight improvement in the 

correlation between true and estimated 𝛽𝑗, 𝛿𝑗, and  휁𝑗, when the testlets effects are 

accounted for, as in the Joint Testlet-DINA model, additionally modeling AC patterns 

in the joint model of response and RT does not result in a stronger correlation for the 

three item parameters. Further, correlation for  휁𝑗 is identical for the three models 

being compared, indicating no impact of the modeling approach on the estimation of 

this parameter.  

Item Intercept Parameter. Table 14 summarizes highest-order significant 

effects on the recovery of item parameters. The four-way highest-order interaction of 

model and the three manipulated factors: sample size, 𝜌𝜃𝜏 , and testlet variance, has a 
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significant effect on the bias of  휁𝑗 with a large effect size of 0.774, and the SE of  휁𝑗 

and 𝛿𝑗 with a medium and small effect size. The interaction of sample size, 𝜌𝜃𝜏 , and 

testlet variance has a significant effect on the bias of 𝛽𝑗 and 𝛿𝑗 , both having a small 

effect size, whereas the interaction of model, 𝜌𝜃𝜏 , and testlet variance and of model, 

sample size, and testlet variance has a significant effect on the SE of 𝛽𝑗 and the bias 

of 𝛿𝑗, similarly having a small effect size.  

Table 14  

Summary of Effect Sizes of the Highest-Order Significant Effects from the Mixed- Effect 

ANOVA on the Recovery of Item Parameters 

Effect 
𝛽𝑗  𝛿𝑗   휁𝑗 

Bias SE  Bias SE  Bias SE 

Model         

Model*Sample Size*Testlet Variance  0.013  0.011     

Model*Correlation*Testlet Variance  0.023  0.031     

Model*Sample Size*Correlation*Testlet 

Variance 

    0.024  0.774 0.222 

Sample Size*Correlation*Testlet 

Variance 

0.042   0.025     

Note: Effect Size is classified as follows: Small (0.01≤partial 휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Table 15 summarizes the significant main and interaction effects on the 

recovery of 𝛽𝑗 identified in the mixed-effect ANOVA. Model, sample size, and testlet 

variance all have a significant main effect on the bias and SE of 𝛽𝑗 . Significant two-

way interaction effects on the bias and SE of 𝛽𝑗 stem from the interaction of model 

and sample size and of model and testlet variance. Two three-way interaction of 

model, sample size, and 𝜌𝜃𝜏 , and of model, 𝜌𝜃𝜏 , and testlet variance significantly 

affect the SE of 𝛽𝑗 . Significant three-way interaction effect on the bias of 𝛽𝑗 is from 

the interaction of sample size, 𝜌𝜃𝜏 , and testlet variance.  
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Table 15  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Item Intercept 

Estimates 

Source Bias of 𝛽𝑗  SE of 𝛽𝑗 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects (with 

Greenhouse-Geisser Adjustment 

       

Model 8900.325 0.000 0.939  3536.772 0.000 0.860 

Model* Sample Size 98.651 <.001 0.146  27.601 <0.001 0.046 

Model*Testlet Variance 52.311 <.001 0.154  32.207 <0.001 0.101 

Model*Sample Size*Correlation     2.537 0.032 0.013 

Model*Correlation*Testlet Variance     2.258 0.018 0.023 

Between-Subject Effects        

Sample Size 6.588 0.011 0.011  8.538 0.004 0.015 

Testlet Variance 172.400 <.001 0.374  33.001 <0.001 0.103 

Sample Size*Correlation*Testlet 

Variance 

4.252 <.001 0.042     

Note: Effect Size is classified as follows: Small (0.01≤partial 휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Figure 23 displays the highest-order interaction effect of 𝜌𝜃𝜏  and testlet 

variance on the marginal mean bias of 𝛽𝑗 as estimated by the proposed model at the 

two sample sizes. Consistent across the two sample sizes, bias is the lowest at the 

level of small testlet variance, increases at the level of moderate testlet variance, and 

is the highest when testlet variance is large. Variation by 𝜌𝜃𝜏 is specific to the testlet 

variance level and the sample sizes. At the sample size of 200, for example, the 

lowest mean bias for the levels of small and moderate testlet variance is at positive 

weak 𝜌𝜃𝜏 . At 500, the lowest mean bias for the same testlet variance levels is at weak 

𝜌𝜃𝜏 . 
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Figure 23 Significant three-way interaction of sample size, correlation, and testlet 

variance on the mean bias of 𝛽𝑗 for the proposed model. 
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Figure 24 Significant three-way interaction of the correlation between 휃𝑖  and 𝜏𝑖 and 

model type on the mean SE for 𝛽𝑗 for the sample size of 200 and 500. 

 Tables 24 and 25 are visual representations of the interaction effects of model 

type and 𝜌𝜃𝜏  at two sample sizes and of the interaction of model type and testlet 

variance at four levels of 𝜌𝜃𝜏 on the marginal mean SE of 𝛽𝑗 . Consistent across the 

levels, marginal mean SE for 𝛽𝑗 as estimated by the proposed model and the Joint 

Testllet-DINA model are larger than by the JRT-DINA-R/RT/AC model. Further, 

compared to the Joint Testlet-DINA model, the proposed model yielded smaller 

marginal mean SEs for 𝛽𝑗. Variation by 𝜌𝜃𝜏  is inconsistent across the two sample 
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sizes. At the sample size level of 500 and across the models, marginal mean SEs for 

𝛽𝑗 are smaller for weak 𝜌𝜃𝜏  than for moderate 𝜌𝜃𝜏 . At the sample size level of 200, 

marginal mean SEs for 𝛽𝑗 are the smallest for positive moderate 𝜌𝜃𝜏  and are 

comparable for positive weak and negative weak 𝜌𝜃𝜏 . Further, as is shown in Figure 

25, as testlet variance increases, across the correlation levels and the models, the 

marginal mean SEs of 𝛽𝑗 decrease and are the lowest at the large testlet variance 

level. 

 
Figure 25 Significant three-way interaction of testlet variance and model type on the 

mean SE for 𝛽𝑗 for four levels in the correlation between 휃𝑖 and 𝜏𝑖. 
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Item Interaction Parameter. Table 16 summarizes the significant main and 

interaction effects on the recovery of 𝛿𝑗 identified in the mixed-effect ANOVA. 

Similar to significant effects on 𝛽𝑗, model, sample size, and testlet variance all have a 

significant main effect on the bias and SE of 𝛿𝑗. Significant two-way interaction 

effects on the bias and SE of 𝛿𝑗 stem from the interaction of model and sample size 

and of model and testlet variance. Additionally, the interaction of sample size and 

testlet variance, and of 𝜌𝜃𝜏  and testlet variance have a significant effect on the SE of 

𝛿𝑗. Three three-way interactions of model, sample size, and testlet variance, of model, 

𝜌𝜃𝜏 , and testlet variance, and of sample size, 𝜌𝜃𝜏, and testlet variance significantly 

affect the bias and SE of 𝛿𝑗. The highest-order interaction of all three manipulated 

factors and model type significantly affects the SE of 𝛿𝑗.  

Table 16  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Item 

Interaction Estimates 

Source Bias of 𝛿𝑗  SE of 𝛿𝑗 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects (with 

Greenhouse-Geisser Adjustment 

       

Model 35602.089 0.000 0.984  4658.176 0.000 0.890 

Model*Sample Size 287.736 <0.001 0.333  57.602 <0.001 0.091 

Model*Testlet Variance 228.442 <0.001 0.442  62.449 <0.001 0.178 

Model*Sample Size*Testlet Variance 3.187 0.027 0.011  3.073 0.027 0.011 

Model*Correlation*Testlet Variance 3.038 0.002 0.031  3.593 <0.001 0.036 

Model*Sample Size*Correlation*Testlet 

Variance 

    2.396 0.011 0.024 

Between-Subject Effects        

Sample Size 32.221 <0.001 0.053  17.386 <0.001 0.029 

Testlet Variance 366.352 <0.001 0.560  85.913 <0.001 0.230 

Sample Size*Testlet Variance     3.653 0.027 0.013 

Correlation*Testlet Variance     2.623 0.016 0.027 

Sample Size*Correlation*Testlet 

Variance 

2.465 0.023 0.025  2.207 0.041 0.022 

Note: Effect Size is classified as follows: Small (0.01≤partial 휂2 <0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 
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Figure 26 Significant three-way interaction of testlet variance and model type on the 

mean bias for 𝛿𝑗 for the sample size of 200 and 500. 

 Figures 26 and 27 display the marginal mean bias of 𝛿𝑗 at the three testlet 

variance levels for the two sample sizes and four 𝜌𝜃𝜏  levels. Across the sample sizes 

and 𝜌𝜃𝜏  levels, at small testlet variance, the absolute value of the marginal mean 

biases of 𝛿𝑗 as estimated by the proposed model are the lowest compared to the other 

two models. Further, across the levels of the manipulated factors, estimation by the 

proposed model and the Joint Testlet-DINA model yields smaller absolute value of 

the marginal mean biases of 𝛿𝑗 than the JRT-DINA-R/RT/AC model. The effect of 
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testlet variance is consistent across the models, sample sizes, and levels of 𝜌𝜃𝜏 : the 

absolute value of the marginal mean biases of 𝛿𝑗 decreases as testlet variance 

increases from small to medium and is the highest when testlet variance is large at 1.  

 
Figure 27 Significant three-way interaction of testlet variance and model type on the 

mean bias for δ for four levels in the correlation between 휃𝑖 and 𝜏𝑖. 

Figure 28 displays the highest-order interaction effect of 𝜌𝜃𝜏  and testlet 

variance on marginal mean bias for 𝛿𝑗 as estimated by the proposed model at the two 

sample sizes. At the sample size of 200, the absolute value of the marginal mean bias 

is the lowest at the moderate testlet variance level, increases at the level of small 
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testlet variance, and is the highest when testlet variance is large. At 500, they are the 

lowest at the small testlet variance level, increases at the level of moderate testlet 

variance, and are the largest at the level of large testlet variance. Variation by 𝜌𝜃𝜏  is 

specific to the testlet variance level and the sample size. At the sample size of 200, as 

an example, the lowest mean bias for the levels of small and large testlet variance is 

at positive weak 𝜌𝜃𝜏 . At 500, the lowest mean bias for the moderate testlet variance 

level is at negative moderate 𝜌𝜃𝜏. 

Figure 29 visualizes the highest-order interaction of model type and the three 

manipulated factors on the marginal mean SE for 𝛿𝑗. Across the sample sizes and 

levels of 𝜌𝜃𝜏 , mean SE for 𝛿𝑗 as estimated by the proposed model is larger than 

estimation by the JRT-DINA-R/RT/AC model, but smaller than estimation by the 

Joint Testlet-DINA model. Variation by levels of the testlet variance is not consistent 

across the levels of 𝜌𝜃𝜏  and sample sizes. At negative moderate 𝜌𝜃𝜏  and across the 

sample sizes, an increase in testlet variance is associated with a decrease in the 

marginal mean SE of 𝛿𝑗. Similar variation is observed for positive 𝜌𝜃𝜏  at the sample 

size of 500 and for negative weak 𝜌𝜃𝜏  at the sample size of 200. At all other levels of 

the interaction of the two manipulated factors, the marginal mean SE of 𝛿𝑗 is the 

smallest at large testlet variance and the largest at moderate testlet variance. 
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Figure 28 Significant three-way interaction of sample size, correlation, and testlet 

variance on the mean bias for 𝛿𝑗  of the proposed model. 
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Figure 29 Significant four-way interaction of model type, sample size, correlation, 

and testlet variance on the mean SE for 𝛿𝑗. 

  Item Time Intensity Parameter. Table 17 presents the significant Effects in 

the mixed-effect ANOVA results of the bias and SE of the item time intensity 

parameter, 휁𝑗. As is seen in the table, main effects of model, sample size, testlet 

variance, and 𝜌𝜃𝜏   are all significant. Further, all two-way, three-way, and four-way 

interaction of model type and the manipulated factors are significant. The effect sizes 

for the bias of  휁𝑗 are mostly large whereas for the SE of  휁𝑗, they are of all three 

magnitudes.   



147 

 

Table 17  

Effect Sizes in the Mixed-Effect ANOVA Results of the Bias and SE of the Item Time 

Intensity 

Source Bias of   휁𝑗  SE of   휁𝑗 

 F p-value Partial 휂2  F p-value Partial 휂2 

Within-Subject Effects (with 

Greenhouse-Geisser Adjustment 

       

Model 251.184 <0.001 0.304  89.292 <0.001 0.134 

Model*Sample Size 121.017 <0.001 0.174  18.376 <0.001 0.031 

Model*Correlation 703.304 0.000 0.786  54.786 <0.001 0.222 

Model*Testlet Variance 272.654 <0.001 0.486  49.652 <0.001 0.147 

Model*Sample Size*Correlation 390.621 <0.001 0.670  15.452 <0.001 0.074 

Model*Sample Size*Testlet Variance 595.868 <0.001 0.674  148.568 <0.001 0.340 

Model*Correlation*Testlet Variance 204.507 <0.001 0.681  23.242 <0.001 0.195 

Model*Sample 

Size*Correlation*Testlet Variance 

329.272 0.000 0.774  27.429 <0.001 0.222 

Between-Subject Effects        

Sample Size 44010.067 0.000 0.987  14.634 <0.001 0.025 

Correlation 12994.185 0.000 0.985  43.141 <0.001 0.183 

Testlet Variance 23132.192 0.000 0.988  1241.174 <0.001 0.812 

Sample Size*Correlation 5190.496 0.000 0.964  13.867 <0.001 0.067 

Sample Size*Testlet Variance 15392.066 0.000 0.982  6.799 0.001 0.023 

Correlation*Testlet Variance 26337.376 0.000 0.996  44.476 <0.001 0.317 

Sample Size*Correlation*Testlet 

Variance 

15525.668 0.000 0.994  5.765 <0.001 0.057 

Note: Effect Size is classified as follows: Small (0.01≤partial 휂2<0.06), Medium 

(0.06≤partial 휂2<0.14), Large (partial 휂2≥0.14) 

 

Figures 30 and 31 visualizes the highest-order interaction of model type, 

sample size, 𝜌𝜃𝜏 , and testlet variance on the marginal mean bias and SE of  휁𝑗 at the 

two sample sizes and for the four levels in 𝜌𝜃𝜏 . Across the levels of the manipulated 

factors, the marginal mean biase and SE of  휁𝑗 estimated by the three models are close 

to identical, suggesting the model specification has little impact on the recovery of 

this parameter. Variation in the marginal mean bias of  휁𝑗 by testlet variance is 

specific to the levels of sample size and 𝜌𝜃𝜏 , whereas variation in the marginal mean 

SE of  휁𝑗 by testlet variance is more consistent, with it being greater for larger testlet 

variance. 
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Figure 30. Four-way interaction of model type, sample size, correlation, and testlet 

variance on the mean bias of  휁𝑗. 
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Figure 31. Significant four-way interaction of model type, sample size, correlation, 

and testlet variance on the mean SE of  휁𝑗. 

4.1.6 Recovery of the Item Mean Vector and Item Variance/Covariance 

Matrix  

 Elements of the item mean vector evaluated in this study are 휇𝛽 , mean of the 

item intercept parameter, 휇𝛿 , mean of the item interaction parameter, and 휇 , mean of 

the item time-intensity parameter. 휇𝑏 , mean of the item difficulty parameter is 

excluded from this study as it is constrained to 0. This section compares the bias and 
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SE for the three parameters for all three models under the 24 simulated conditions to 

examine and compare the extent to which the three models successfully recover the 

item mean vector. Table A.8 presents the bias for the item mean vector for the three 

models under each simulated condition. Table A.9 presents its SE. Across the 

simulated conditions, the absolute value of the bias for the three item mean 

parameters and the SE for 휇𝛽  and 휇𝛿  is < 0.30. The SE for 휇  is< 1.2. 

 Item Mean Vector Figures 32 through 37 display the marginal mean biases 

and SEs of the 휇𝛽 , 휇𝛿 , and 휇  as estimated by the three models and for all levels of 

the manipulated factors. As is shown in the figures, model specification has little or 

no effect on the marginal mean bias and SE of 휇 : they are close to identical for the 

three models. Marginal mean bias and SE of 휇𝛽  and 휇𝛿  are comparable for estimates 

generated by the proposed model and the Joint Testlet-DINA model. Slightly better 

marginal mean bias for 휇𝛽  and 휇𝛿  is observed for the proposed model at the small 

testlet variance level and is observed for 휇𝛿  only for the sample size of 200. At all 

other levels of the three manipulated factors, the marginal mean biases of 휇𝛽  and 휇𝛿  

are slightly larger for the proposed model than for the Joint Testlet-DINA model. 

Across the levels, the marginal mean SEs are slightly smaller for the proposed model. 

Compared with the JRT-DINA-R/RT/AC model, the two testlet-based models yield 

smaller biases of 휇𝛽  and 휇𝛿  and larger SEs.  

 Variation by levels of the manipulated factors in the two indices quanitfying 

the random and systematic error is specific to the factors and the elements being  
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Figure 32 Marginal mean bias of the mean item intercept 휇𝛽  at all levels of the 

manipulated factors. 

evaluated. Variation in the marginal mean bias by levels of 𝜌𝜃𝜏  is consistent for 휇𝛽  

and 휇𝛿: their marginal mean biases show little variation for the levels of negative 

and positive weak 𝜌𝜃𝜏 ; their absolute value is the highest at positive moderate 𝜌𝜃𝜏 . 

The marginal mean SE of 휇𝛽  is the highest at negative weak 𝜌𝜃𝜏  and are comparable 

at the two positive 𝜌𝜃𝜏. For 휇𝛿  they are the lowest at positive moderate 𝜌𝜃𝜏. As 

sample size increases from 200 to 500, across the models the  
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Figure 33 Marginal mean SE of the mean item intercept 휇𝛽  at all levels of the 

manipulated factors. 
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Figure 34. Marginal mean bias of the mean item interaction 휇𝛿  at all levels of the 

manipulated factors. 

marginal mean SEs of 휇𝛽  and 휇𝛿  decrease. Their marginal mean biases show model 

specific variation: they show little variation for the JRT-DINA-R/RT/AC model and 

increases for the other two models. Similar contrasting pattern is shown for the 

variation in the marginal mean biases by testlet variance: as testlet variance increases, 

the marginal mean biases of 휇𝛽  increase whereas for 휇𝛿  they decrease from small to 

moderate testlet variance and are the highest at large testlet variance. The marginal 

SE of 휇𝛽  decreases with increased testlet variance whereas for 휇𝛿 , they are the largest 
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at small testlet variance and the smallest at moderate testlet variance. Variation in the 

marginal mean bias and SE for 휇  is similarly specific to the factors being 

manipulated as is shown in Figures 37 and 38.   

 

Figure 35 Marginal mean SE of the mean item interaction 휇𝛿  at all levels of the 

manipulated factors. 
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Figure 36. Marginal mean bias of mean item time intensity 휇  at all levels of the 

manipulated factors. 
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Figure 37. Marginal mean SE of mean item time intensity 휇  at all levels of the 

manipulated factors. 
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Item Variance and Covariance Matrix. Tables A.10.1-4 and A.11.1-4 present 

the biases and SEs of the elements of the item variance and covariance matrix for the 

24 simulated conditions. Figures 38 through 57 are visual presentations of the 

marginal mean biases and SEs of the estimates of these elements for all three models 

and at all levels of the manipulated factors. As the Joint Testlet-DINA model does not 

have the item difficulty parameter, specific elements of the item variance/covariance 

matrix, 𝜎𝛽𝑏, 𝜎𝛿𝑏, 𝜎 𝑏, and 𝜎𝑏
2 are estimated by the other two models that include the 

item difficulty parameter in their model specification. For these elements, 

comparisons are drawn between the proposed model and the JRT-DINA-R/RT/AC 

model.  

 As is seen in figures 53 through 58, model specification has little or no impact 

on the marginal mean biases and SEs of the elements that relate to item time intensity 

parameter  휁𝑗 and item difficulty parameter  𝑏𝑗: for 𝜎𝑏
2, 𝜎2, and 𝜎 𝑏 they are identical 

or close to identical. A and σδb, with less systematic but higher random error than the 

JRT-DINA-R/RT/AC model as their marginal mean biases are lower and marginal 

mean SEs are higher.  

Of the other elements of the item variance/covariance matrix, the proposed 

model recovers 𝜎𝛽
2 with least systematic error across the two sample sizes, at the level 

of small testlet variance, and at the three levels of 𝜌𝜃𝜏 : negative moderate and positive 

𝜌𝜃𝜏 . At all other levels of the manipulated factors, estimation of 𝜎𝛽
2 by the Joint 
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Testlet-DINA model yields lower marginal mean biases than by the proposed model. 

Similarly, the marginal mean bias for 𝜎𝛿
2 as estimated by the proposed model is the 

 lowest at the small and moderate testlet variance levels. When the testlet variance is 

large, the proposed model yields higher marginal mean bias for 𝜎𝛿
2 than the Joint 

Testlet-DINA model. Compared with the proposed model and the Joint Testlet-DINA 

model, estimation by the JRT-DINA-R/RT/AC model yields highest marginal 

 

Figure 38. Marginal mean bias of the estimates of item intercept variance 𝜎𝛽
2 at all 

levels of the manipulated factors. 
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mean biases for 𝜎𝛽
2 and 𝜎𝛿

2. Consistent across all levels of the manipulated factors, the 

Joint Testlet-DINA model yields the lowest marginal mean biases for marginal mean 

biases for 𝜎𝛽𝛿, 𝜎𝛽  and 𝜎𝛿  and the JRT-DINA-R/RT/AC model yields the highest 

biases.  

 
Figure 39 Marginal mean SE of the estimates of item intercept variance 𝜎𝛽

2 at all 

levels of the manipulated factors. 

Discrepancy in the marginal mean SEs of the elements in the item 

variance/covariance matrix attributable to model specification follows the same 
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uniform pattern: across the levels of the manipulated factors, they are the highest as 

estimated by the Joint Testlet-DINA model, and the lowest as estimated by the  

JRT-DINA-R/RT/AC model. This suggests that the proposed model recovers 

elements of the item variance/covariance matrix with less random error than the Joint 

Testlet-DINA model, but more random error than the JRT-DINA-R/RT/AC model. 

 
Figure 40. Marginal mean bias of the estimates of covariance of item intercept and 

item interaction 𝜎𝛽𝛿 at all levels of the manipulated factors. 
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Figure 41 Marginal mean SE of the estimates of covariance of item intercept and item 

interaction 𝜎𝛽𝛿 at all levels of the manipulated factors. 

 Variation in the marginal mean biases and SEs of the elements in the item 

variance and covariance matrix by levels of 𝜌𝜃𝜏  and testlet variance is specific to the 

elements being estimated. As an example, the absolute value of the marginal mean 

biases of 𝜎𝛽
2, 𝜎𝛿

2, 𝜎𝛽 , 𝜎𝛿 , 𝜎𝛽𝛿, and 𝜎𝛽  increase as testlet variance increases. For 𝜎𝛿𝑏 

it decreases as the testlet variance level changes from small to moderate and is the 

highest at large testlet variance.  𝜎𝛿𝑏, 𝜎𝛿 , and 𝜎𝛿
2 see highest bias at negative weak 

𝜌𝜃𝜏  whereas for 𝜎𝛽  its marginal mean bias is the highest at positive weak 𝜌𝜃𝜏 . 
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Variation by levels of the sample size is similarly specific to the elements being 

evaluated: across the models, the absolute marginal mean biases and SEs are higher at 

200 than at 500 for elements such as 𝜎𝛽
2, 𝜎𝛽𝛿, and 𝜎𝛽 ; yet for 𝜎𝛽𝑏 and 𝜎2, their 

marginal mean bias is lower at 200 than at 500.  

 
Figure 42 Marginal mean bias of the estimates of covariance of item intercept and 

item time intensity 𝜎𝛽  at all levels of the manipulated factors. 
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Figure 43. Marginal mean SE of the estimates of covariance of item intercept and 

item time intensity 𝜎𝛽  at all levels of the manipulated factors. 
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Figure 44 Marginal mean bias of the estimates of covariance of item intercept and 

item difficulty 𝜎𝛽𝑏 at all levels of the manipulated factors. 
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Figure 45. Marginal mean SE of the estimates of covariance of item intercept and 

item difficulty 𝜎𝛽𝑏 at all levels of the manipulated factors. 
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Figure 46. Marginal mean bias of the estimates of the variance of item interaction 𝜎𝛿

2 

at all levels of the manipulated factors. 
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Figure 47 Marginal mean SE of the estimates of the variance of item interaction 𝜎𝛿

2 at 

all levels of the manipulated factors. 
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Figure 48. Marginal mean bias of the estimates of covariance of item interaction and 

item time intensity 𝜎𝛿  at all levels of the manipulated factors. 
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Figure 49. Marginal mean SE of the estimates of covariance of item interaction and 

item time intensity 𝜎𝛿  at all levels of the manipulated factors. 
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Figure 50. Marginal mean bias of the estimates of covariance of item interaction and 

item difficulty σδb at all levels of the manipulated factors. 
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Figure 51. Marginal mean SE of the estimates of covariance of item interaction and 

item difficulty 𝜎𝛿𝑏 at all levels of the manipulated factors. 
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Figure 52. Marginal mean bias of the estimates of the variance of item time intensity 

𝜎2 at all levels of the manipulated factors. 
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Figure 53. Marginal mean SE of the estimates of the variance of item time intensity 

𝜎2 at all levels of the manipulated factors. 
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Figure 54. Marginal mean bias of the estimates of covariance of item time intensity 

and item difficulty 𝜎 𝑏 at all levels of the manipulated factors. 
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Figure 55 Marginal mean SE of the estimates of covariance of item time intensity and 

item difficulty 𝜎 𝑏 at all levels of the manipulated factors. 
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Figure 56. Marginal mean bias of the estimates of the variance of item difficulty 𝜎𝑏

2 at 

all levels of the manipulated factors. 
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Figure 57. Marginal mean SE of the estimates of the variance of item difficulty 𝜎𝑏

2 at 

all levels of the manipulated factors. 
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4.1.7 Recovery of the Testlet Variance/Covariance Matrix 

 As is discussed in Chapter 3, the response and RT testlet parameters are 

generated from a uniform bivariate normal distribution with their means fixed as zero 

and their correlation set as -0.5. Testlet variance is a manipulated factor having three 

levels: 0.25 representing small testlet effects, 0.5 indicating moderate testlet effects, 

and 1 representing large testlet effects. Figures 59 through 70 display the marginal 

mean bias and SE for estimates of the variance of the response testlet parameter 𝜎𝛾
2, 

of the variance of the RT testlet parameter 𝜎𝜆
2, and of their covariance 𝜎𝛾𝜆 generated 

by the two models specifying the testlet parameters at all levels of the manipulated 

factors, an examination of which would reveal how they vary by model type and by 

levels of the factors manipulated in this study. Tables A.12.1-3 and A.13.1-3 present 

their descriptive statistics under the 24 simulated conditions. 

 Variance of the Response Testlet Parameter. Figures 58 through 63 are 

visual representations of the marginal mean biases and SEs of the estimates of the 

variance of the response testlet parameter 𝜎𝛾
2. As is shown in the figures, consistent 

across levels of the manipulated factors, the marginal mean biases of the estimates 

generated by the proposed model are placed lower than those generated by the JRT-

DINA-R/RT/AC model. Thus when the marginal mean bias is negative, the absolute 

value of the marginal mean bias of estimation by the proposed model is higher than 

the JRT-DINA-R/RT/AC model. When they are positive, as when the testlet variance 

is small, estimation by the proposed model recovers 𝜎𝛾
2 with less systematic  
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Figure 58 Marginal mean bias of the estimates of the variance of the testlet effects for 

responses for each of the five testlets at two sample size levels. 
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Figure 59. Marginal mean SE of the estimates of the variance of the testlet effects for 

responses for each of the five testlets at two sample size levels. 
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Figure 60 Marginal mean bias of the estimates of the variance of the testlet effects for 

responses for each of the five testlets at three testlet variance levels. 
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Figure 61. Marginal mean SE of the estimates of the variance of the testlet effects for 

responses for each of the five testlets at three testlet variance levels. 
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Figure 62. Marginal mean bias of the estimates of the variance of the testlet effects 

for responses for each of the five testlets at four correlation levels. 
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Figure 63. Marginal mean SE of the estimates of the variance of the testlet effects for 

responses for each of the five testlets at four correlation levels. 
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error than the JRT-DINA-R/RT/AC model. Regardless of the levels of the 

manipulated factors, the marginal mean SE for estimates generated by the proposed 

model is smaller than those generated by the JRT-DINA-R/RT/AC model, suggesting 

that the proposed model recovers 𝜎𝛾
2 with less random error than the JRT-DINA-

R/RT/AC model.  

 Variation by levels of the manipulated factors is consistent across the five 

testlets. As the sample size increases from 200 to 500, the marginal mean biases and 

SEs of the estimates of 𝜎𝛾
2 drop, suggesting increased systematic error for marginal 

mean biases that are negative, and decreased random error. Variation by testlet 

variance shows similarly consistent pattern: as testlet variance increases from small to 

large, marginal mean biases drop, which suggests increased systematic error for 

values that are negative, whereas the marginal mean SEs increase as the testlet 

variance increases, indicating reduced random error associated with a drop in the 

testlet variance level. Variation by levels of 𝜌𝜃𝜏  is specific to the testlet being 

evaluated yet consistent across the models. For instance, for testlet 1, the marginal 

mean biases at the levels of negative moderate 𝜌𝜃𝜏  and positive weak 𝜌𝜃𝜏  are similar 

and lower than those at the other two levels. Yet for testlet 2, they are similar for the 

two levels of negative 𝜌𝜃𝜏  and for the two positive 𝜌𝜃𝜏  levels, with the negative levels 

showing less systematic error than the positive levels. Marginal SEs show similar 

testlet-specific variation that is consistent across the two models.  

 Variance of the RT Testlet Parameters. Figures 65 through 70 are visual 

representations of marginal mean biases and SEs for estimates of 𝜎𝜆
2 by the two 

models for the five testlets and at all levels of the manipulated factors. As is shown in 



186 

 

the figures, model specification has little or no impact on the systematic and random 

error for estimating 𝜎𝜆
2  quantified by the marginal mean biases and SEs: consistent 

across the levels of the manipulated factors they are identical or close to identical for 

the two models. Variation the marginal mean biases by levels of the sample size and 

testlet variance shows patterns that are similar to those for the estimates of 𝜎𝛾
2: they 

drop as the sample size increases from 200 to 500 and as testlet variance increases 

from small to large, suggesting increased systematic error associated with a larger 

sample size and larger testlet variance. The marginal mean SEs similarly drop as 

sample size increases from 200 to 500, suggesting a reduction in random error 

associated with a larger sample size. However, they show little or no variation by 

levels testlet variance: across the two model, the marginal mean SEs of the estimates 

are identical or close across the levels of the testlet variance. Variation in the 

marginal mean bias and SE of the estimates generated by the two models by levels of 

𝜌𝜃𝜏  is minimal as they are identical or close to identical across the levels of 𝜌𝜃𝜏 . 

Covariance of the Response and RT Testlet Parameters. Figures 71 through 

76 display the marginal mean biases and SEs of the estimates of 𝜎𝜆𝛾 generated by the 

two models for the five testlets and at all levels of the manipulated factors. As is 

shown in the figures, model specification has little or no impact on the marginal mean 

biases and SEs of the estimates for this parameter: across the two sample sizes and 

levels of the testlet variane, they are identical or close to identical for the two models 

being compared, suggesting little or no impact.  

Figure 74 shows that at specific levels of 𝜌𝜃𝜏  the proposed model recovers 𝜎𝜆𝛾 

with less systematic error than the JRT-DINA-R/RT/AC model:  the marginal mean 
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bias for estimates of 𝜎𝜆𝛾 generated by the proposed model is lower at positive 

moderate 𝜌𝜃𝜏  across the five testlets and at positive weak 𝜌𝜃𝜏  for testlets 1 through 4. 

At other levels of 𝜌𝜃𝜏  marginal mean biases for the JRT-DINA-R/RT/AC model are 

less than or equal to those for the proposed model. Discrepancy in the marginal mean 

SEs of the 𝜎𝜆𝛾 estimates generated by the two models is also evident if examined by 

testlet variance: across the five testlets and levels of the testlet variance, they are 

either lower for the proposed model or identical for the two models. The discrepancy, 

however, is negligible.   

Of the three manipulated fators, variation by sample size is evident in the 

marginal mean SEs of the estimates: consistent across the five testlets and the two 

models, as sample size increases from 200 to 500, their marginal mean SE drops, 

suggesting an increase in the sample size results in reduced random error for 

estimating this parameter. Variation by levels of the testlet variance shows similarly 

uniform pattern: as testlet variance increases from small to large, marginal mean SE 

also increases, suggesting that increasing testlet variance leads to increased random 

error in estimating 𝜎𝜆𝛾.Variation by levels of 𝜌𝜃𝜏  is specific to the model and the 

testlet and does not form a uniform pattern, as is shown in Figures 75 and 76. 
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Figure 64 Marginal mean bias of the estimates of the variance of the testlet effects for 

response time for each of the five testlets at two sample size levels. 
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Figure 65. Marginal mean SE of the estimates of the variance of the testlet effects for 

response time for each of the five testlets at two sample size levels. 
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Figure 66 Marginal mean bias of the estimates of the variance of the testlet effects for 

response time for each of the five testlets at three testlet variance levels. 
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Figure 67. Marginal mean SE of the estimates of the variance of the testlet effects for 

response time for the five testlets at three testlet variance levels. 
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Figure 68 Marginal mean bias of the estimates of the variance of the testlet effects for 

response time for the five testlets at four correlation levels. 
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Figure 69 Marginal mean SE of the estimates of the variance of the testlet effects for 

response time for the five testlets at four correlation levels. 
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Figure 70 Marginal mean bias of the estimates of the covariance of the testlet 

response and response time effects for the five testlets at two sample size levels. 
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Figure 71 Marginal mean SE of the estimates of the covariance of the testlet response 

and response time effects for the five testlets at two sample size levels. 
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Figure 72 Marginal mean bias of the estimates of the covariance of the testlet 

response and response time effects for the five testlets at three testlet variance levels. 
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Figure 73 Marginal mean SE of the estimates of the covariance of the testlet response 

and response time effects for the five testlets at three testlet variance levels. 
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Figure 74 Marginal mean bias of the estimates of the covariance of the testlet 

response and response time effects for the five testlets at four correlation levels. 
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Figure 75 Marginal mean SE of the estimates of the covariance of the testlet response 

and response time effects for the five testlets at four correlation levels. 
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4.1.8 Summary of the Simulation Study Results 

 Through examining the performance of model fit indices, the simulation study 

identifies the proposed model as having a better model fit than the JRT-DINA-

R/RT/AC model. ACCRs and PCCRs for the proposed model are comparable for the 

proposed model and the two alternative models. Mixed-effects ANOVA results 

suggest that the proposed mode significantly improves the marginal mean SEs of the 

person and item parameters and at specific levels of the manipulated factors, their 

marginal mean biases. Marginal mean plots indicate that the proposed model yields 

less biased and/or more accurate estimates of elements in the item mean vector, item 

and person variance and covariance matrix, and testlet variance and covariance 

matrix. The impact of the manipulated factor on parameter estimation is also explored 

in the simulation study. Section 4.2 presents results of the empirical data analysis.  

4.2 Empirical Data Analysis 

 To demonstrate its application, the proposed model was fit to an empirical 

dataset consisted of 71 examinee’s responses, RT, and AC patterns for 58 items from 

a computer-based mathematics assessment. The 55 items assess four attributes. 

Qmatrix identifying the items that assess each attribute is presented in Table 19. Four 

testlets are embedded in the assessment, each comprising two items. In addition, the 

JRT-DINA-R/RT/AC model ignoring the testlet effects was fit to the dateset to 

evaluate its fit relative to the proposed model. One limitation of the study is that the 

sample size of the empirical dataset is very small and is less than the number of 

model parameters. As such, model identification can be an issue. It was nevertheless 

employed in the empirical study to demonstrate the application of the proposed 
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model, as testing companies do not routinely extract answer changes data and efforts 

at acquiring a large-scale dataset consisting of responses, response time, and answer 

change patterns from a large testing company proved futile. Notwithstanding such 

limitation, the empirical data example using informative priors reported in Zhan et al, 

(2018a) and Zhan et al., (2018b) for Bayesian parameter estimation can demonstrate 

the estimation of model parameters and illustrate how they relate to each other. 

 This section presents the results of the empirical data analysis. �̂� for the model 

parameters was ≤ 1.1. The effective sample size (ESS) ranges from 1, for instance, 

for the variance of 휃𝑖 which is constrained to 1, to 10,000. Section 4.2.1 presents the 

performance of the model fit indices. Estimation of the model parameters is presented 

in Section 4.2.2. 

 

Figure 76. Sample traceplot for the covariance of item intercept and item time 

intensity parameter 
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Figure 77 Sample traceplot for the covariance of item time intensity and item 

interaction parameter 

 

 

Figure 78 Sample traceplot for the covariance of item difficulty and item time 

intensity parameter 

4.2.1 Performance of the Model Fit Indices 

Table 18 presents the fit indices, -2 log-likelihood, AIC, BIC and DIC for the 

two models. AIC and BIC are smaller for the proposed model than for the JRT-
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DINA-R/RT/AC model, indicating a better model fit. Section 4.2.2 presents the 

recovery of the model parameters by the proposed model.  

Table 18  

Model fit Indices for the Proposed Model and the JRT-DINA-R/RT/AC model 

Model -2 log-likelihood AIC BIC DIC 

JAD-TT 19207.377 20317.377 20234.825 20668.753 

JAD 19551.364 20645.364 20564.002 20308.521 

 

Table 19  

Q-matrix for the 58 Computer-Based Mathematics Items 

Items Q-matrix 

 𝛼1 𝛼2 𝛼3 𝛼4 

1 0 1 0 0 

2 0 1 0 0 

3 0 1 0 0 

4 0 1 0 0 

5 0 1 0 0 

6 0 1 0 0 

7 0 1 0 0 

8 0 1 0 0 

9 0 1 0 0 

10 0 1 0 0 

11 0 1 0 0 

12 0 1 0 0 

13 0 1 0 0 

14 0 1 0 0 

15 1 1 0 0 

16 0 1 0 0 

17 0 0 1 0 

18 0 1 0 0 

19 0 0 1 0 

20 1 0 0 0 

21 0 0 0 1 

22 0 1 0 0 

23 0 0 1 0 

24 0 1 0 0 

25 0 0 0 1 

26 1 0 0 0 

27 0 0 0 1 

28 0 1 0 0 

29 0 1 0 0 

30 0 1 0 0 

31 0 1 0 0 

32 0 0 0 1 
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33 0 0 0 1 

34 0 0 0 1 

35 0 0 0 1 

36 0 1 0 0 

37 0 0 0 1 

38 0 1 0 0 

39 0 1 0 0 

40 1 0 0 0 

41 0 0 0 1 

42 0 0 0 1 

43 1 0 0 1 

44 0 0 1 0 

45 0 1 0 0 

46 1 0 0 0 

47 0 0 0 1 

48 0 1 0 0 

49 0 1 0 0 

50 0 1 0 0 

51 0 1 0 0 

52 0 1 0 0 

53 1 0 0 1 

54 1 0 0 0 

55 0 0 1 0 

56 0 1 0 0 

57 1 1 0 0 

58 1 1 0 0 

 

4.2.2 Estimation of the Model Parameters 

 Table 20 presents the estimated person variance and covariance matrix. 𝜌𝜃𝜏  is 

estimated to be -0.75, suggesting that the late ability parameter and the latent speed 

parameter. Zhan et al. (2018a) and Zhan et al. (2018b) similarly reported negative 

correlations between latent ability and latent speed, interpreting it as meaning low-

performing students completing an assessment within a short timeframe and 

generating a great number of incorrect responses. The variance of the latent speed 

parameter is 1.300.  
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Table 20  

Person Variance/Covariance Matrix Estimates for the Computer-Based Mathematics 

Items 

Σperson  θ τ 

휃 1 -0.750 

𝜏 -0.855 (0.240) 1.300 (0.426) 

Note: Covariance is in the lower triangular matrix; correlation coefficient is in the 

upper triangular matrix; standard errors are in the parentheses.  

 

Table 21 presents the estimated item mean vector and item variance and 

covariance matrix. 𝜌𝛽𝛿  is estimated to be -0.682, indicating an inverse relationship 

between the item intercept parameters and item interaction parameters. This result is 

consistent with Zhan et al (2018b) similarly reporting a negative 𝜌𝛽𝛿 . 𝜌𝛽  is estimated 

to be 0.089, indicating a positive weak relationship between the item intercept 

parameter and the item time-intensity parameter. 𝜌𝛿  is estimated to be -0.170, 

suggesting that items with higher interaction parameters tend to have lower time-

intensity parameters. 𝜌𝛽𝑏  and 𝜌 𝑏 are estimated to be -0.755 and -0.053, which 

indicates an inverse relationship between the item intercept parameter and the item 

difficulty parameter, and between the item time-intensity parameters and the item 

difficulty parameter. 𝜌𝛿𝑏  is estimated to be 0.3558, which means higher item 

interaction parameters are associated with higher item difficulty parameters.  

Table 21  

Item Mean Vector and Variance/Covariance Matrix Estimates for the Computer-

Based Mathematics Items  
μItem Σitem β δ ζ b 

μβ -0.127 (0.164) β 1.253 (0.322) -0.682 0.089 -0.755 

μδ 2.469 (0.151) δ -0.705 (0.272) 0.854 (0.300) -0.170 0.3558 

μζ 2.906 (0.080) ζ 0.033 (0.056) -0.052 (0.055) 0.110 (0.023) -0.053 

μb -0.324 (0.061) b -0.239 (0.061) 0.093 (0.050) -0.005 (0.014) 0.080 (0.017) 

Note: Covariance is in the lower triangular matrix; correlation coefficients are in the 

upper triangular matrix; standard errors are in the parentheses.  
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 Table 22 presents the four estimated testlet effect variance and covariance 

matrix. The variances of the four response testlet effect parameters are estimated to be 

1.322, 1.000, 0.526, and 0.775, ranging from moderate to large. The variances of the 

RT testlet effects are estimated to be 0.250, 0.173, 0.481, and 0.381, ranging from 

small to moderate. The correlations between each pair of response and RT testlet 

effect parameters are estimated to be -0.325, -0.036, -0.278, and -0.031, suggesting an 

inverse relationship between each pair of response and RT testlet effect parameters.  

Table 22  

Testlet Effect Variance/Covariance Matrix Estimates for the Computer-Based 

Mathematics Items 

Σtestlet Testlet 1 Testlet 2 Testlet 3 Testlet 4 

γ λ γ λ γ λ γ λ 

γ 1.322 

(1.017) 

-0.325 1.000 

(0.835) 

-0.036 0.526(0.372) -0.278 0.775 

(0.840) 

-0.031 

λ -0.187 

(0.159) 

0.250 

(0.071) 

-0.015 

(0.115) 

0.173 

(0.057) 

-0.140 

(0.188) 

0.481 

(0.144) 

-0.017 

(0.188) 

0.381 

(0.105) 

Note: Standard error is in the parentheses.  

 

 Table 23 presents the estimates for the higher-order structural parameters. All 

attribute intercept parameters are estimated to be negative, and all attribute interaction 

parameters are estimated to be high. As is explained by Zhan et al. (2018a), studies 

have indicated that accurate estimation of the second-order parameters tends to be 

harder to obtain than estimation of the first-order parameters. Additionally, the degree 

to which they are accurately estimated is dependent upon attribute estimation, which 

may further affect estimation accuracy. 
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Table 23  

Higher-Order Structural Parameter Estimates for the Computer-Based Mathematics 

Items 

Attribute Intercept Interaction 

1 -0.947 (0.500)  6.042 (1.190) 

2 -0.853 (0.489)  6.580 (1.189) 

3 -0.827 (0.540) 6.089 (1.200) 

4 -0.304 (0.500) 6.609 (1.211)  

Note: Standard error is in the parentheses.  

 

 Table 24 presents the percentage by which each attribute is mastered by the 71 

examinees. They range from 35.2% to 42.3%. Table 25 presents the estimated 

attribute profiles for the examinees. 11 out of the 16 possible attribute profiles are 

observed, with 36 examinees mastering all four attributes and 21 examinees 

mastering none.  

Table 24  

Percentage of Attribute Mastery for the Examinees 

Attribute Mastery (Count) Mastery 

(Percentage) 

1 25 0.352 

2 27 0.380 

3 26 0.366 

4 30 0.423 

 

Table 25 

Estimated Attribute Profiles for the Examinees 

Profile Count 

0000 21 

0010 1 

0100 2 

0111 1 

1001 1 

1010 2 

1011 2 

1100 1 

1101 1 

1110 3 

1111 36 
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Chapter 5: Discussion 

 Testlet-based assessments are a widely used format for assessing knowledge, 

skills, and abilities at various educational levels and across content domains. 

Advances in educational technology have made available a variety of rich process 

data the use of which can help improve diagnostic inferences and parameter 

estimation. This research extends the current joint model of responses, RT, and ACs 

to specifically address the scenario of testlet-based CDMs. It proposes a model that 

integrates ACs data in addition to modeling responses and RT and incorporates both 

testlet response and RT parameters to specifically address dual responses and RT 

dependency in CDM.  

 The simulation study in this research was conducted to investigate the 

performance of the proposed model in the context of model comparison involving 

two alternative models. Throughout the study, the proposed model and the two 

alternative models were compared in terms of model fit, ACCRs, PCCRs, and their 

accuracy and precision for estimating the model parameters quantified by biases and 

SEs. Application of this model was demonstrated with the analysis of an empirical 

dataset. Sections 5.1 and 5.2 are responses to the four research questions guiding this 

research and summarize key findings from the simulation study and the empirical 

data analysis. Section 5.3 discusses the limitations and directions for future research.  

5.1 Findings from the Simulation Study 

 The simulation study was conducted to examine the extent to which 

accounting for dual dependency in responses and RT and including ACs as an 
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additional data source potentially affect model performance as evaluated by model fit, 

classification accuracy, and parameter recovery. It further manipulated three factors, 

sample size, 𝜌𝜃𝜏 , and the magnitude of the testlet variance, to investigate how they 

potentially affect the impact of the modeling approaches on the performance of the 

evaluation criteria.    

5.1.1 Impact of Including of ACs as an Additional Data Source 

The first two research question guiding the simulation study were: 1) how 

does the proposed joint model of responses, RTs, and ACs for testlet-based cognitive 

diagnostic assessment perform compared to testlet-based joint model of responses and 

RT in terms of attribute and attribute profile classification accuracy, and parameter 

estimates? and 2) how do the factors manipulated in this study, i.e., 𝜌𝜃𝜏 , testlet effects 

size, and sample size, affect comparisons of the joint model of response, RTs, and 

ACs for testlet-based cognitive diagnostic assessment and testlet-based joint model of 

responses and RT? 

 Attribute and Attribute Profile Classification Accuracy Rates Results of the 

simulation study indicates that the ACCRs and PCCRs are comparable for the 

proposed model, the JRT-AC-DINA for Testlets, and its comparison model excluding 

ACs in model specification, the Joint Testlet-DINA model, with the Joint Testlet-

DINA model having slightly better marginal mean attribute and attribute profile 

classification rates. Further, as is shown in Figures 1 through 4, of the three 

manipulated factors, the only factor having a consistent impact is the magnitude of 

the testlet variance: as it increases from small to large, both ACCRs and PCCRs 

decrease across the attributes and the models.  
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 These results suggest that the two models perform similarly as evaluated by 

their marginal mean classification rates at the attribute and attribute profile level. As 

their marginal mean ACCRs are above 93% across the attributes, and their marginal 

mean PCCRs are above 75%, at this level, the two models perform comparably well 

in recovering the attributes and attribute profiles. The recovery rates are consistent 

with the ACCRs and PCCRs reported in (Zhan et al., 2018b). Thus, the inclusion of 

ACs as an additional data source does not necessarily result in improved classification 

accuracy rates if the baseline comparison model is already well-performing in this 

respect.  

 Person Parameters Although the proposed modeling approach does not result 

in marked improvement in the classification accuracy rates at the attribute and 

attribute profile level, significant improvement in the mean SE of 휃𝑖 is shown for the 

proposed model incorporating ACs in addition to specifying testlet effects. Compared 

with the Joint Testlet-DINA model, at the sample size level of 200, consistent across 

the levels of the testlet variance, mean SEs of 휃𝑖 is markedly lower for estimation by 

the proposed model than by the Joint Testlet-DINA model. At the sample size of 500, 

consistent across the levels of testlet variance and correlation between person ability 

and person speed, the mean SEs of 휃𝑖 is evidently lower for the proposed model than 

for the Joint Testlet-DINA model. These findings suggest that incorporating ACs in 

the testlet-based joint model of responses and RT reduces random error in recovering 

휃𝑖 at all levels of the testlet variance at both sample sizes, and at the sample size of 

500, reduces random error in recovering 휃𝑖 at all levels of the correlation between 

speed and ability. The effect of model specification on the marginal mean biases of 
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the other person parameter, 𝜏𝑖, is dependent on the interaction of the testlet variance 

and person-speed correlation: across the two sample sizes, the proposed model shows 

reduced systematic error in recovering this parameter at the interaction of specific 

levels of the two other manipulated factors. The marginal mean SEs of 𝜏𝑖 for the two 

models are identical at the sample size of 500.  

 Person variance/covariance matrix As is presented in Chapter 4, the 

marginal mean biases and SEs for estimates of the two elements in the person 

variance/covariance matrix: 𝜎𝜏
2 and 𝜎𝜃𝜏, are higher for the proposed model than the 

for the Joint Testlet-DINA model, suggesting that modeling ACs does not necessarily 

improve systematic error and random error for estimating these two elements. 

Further, the marginal mean bias of the estimates of 𝜎𝜃𝜏 and the SE of both 𝜎𝜏
2 and 𝜎𝜃𝜏 

are lower at the sample size of 500 than at the sample size of 200, suggesting that 

increased sample size results in reduced random error in recovering these two 

elements, and reduced systematic error in recovering 𝜎𝜃𝜏.  

 Higher-Order Structural Parameters As is descried in Section 4.1.4, impact 

of model specification and the manipulated factors on the recovery of the attribute 

easiness parameters and the attribute discrimination parameters is dependent on the 

attribute being specified and on the intersection of the levels of the manipulated 

factors. Reduced systematic error attributable to the inclusion of ACs data is only 

shown for specific attributes and for specific levels of the manipulated factors. The 

marginal mean biases of the estimates for the attribute discrimination parameters are 

invariant across the levels of the manipulated factors, whereas the marginal mean SEs 

of the estimates of both attribute easiness and attribute discrimination parameters are 
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shown as reduced for the proposed model only for specific attributes and at specific 

levels of the manipulated factors. The only factor that consistently affects the 

recovery of these parameters is the sample size: as it increases from 200 to 500, the 

marginal mean SEs of the attribute easiness and discrimination parameters decrease, 

suggesting reduced random error associated with a larger sample.  

 Item Parameters As is described in Section 4.1.5, improvement in the 

marginal mean biases and SEs for the item parameters is shown for the proposed 

model that incorporate ACs data in addition to specifying responses and RT testlet 

effects. Compared with the Joint Testlet-DINA model, the proposed model generated 

smaller marginal mean SEs for estimates of the item intercept parameter across the 

levels of testlet variance at all four 𝜌𝜃𝜏  levels and levels of 𝜌𝜃𝜏  at both sample sizes. It 

additionally generates smaller marginal mean SEs for estimates of the item 

interaction parameter across the levels of the testlet variance at both sample sizes and 

all four levels of 𝜌𝜃𝜏 . Further, at both sample sizes and across the 𝜌𝜃𝜏  levels, 

improvement in the marginal mean biases of the item interaction parameter is also 

shown for the proposed model in comparison with the Joint Testlet-DINA model, but 

only for small and moderate testlet variance where they are nonnegative. The 

inclusion of the ACs data, however, has little effect on the marginal mean biases and 

SEs for the item time intensity parameter: they are identical for the proposed model 

and the Joint Testlet-DINA model.   

 The impact of testlet variance on estimation of the item parameters is evident: 

as testlet variance increases from small to large, the marginal mean SEs of the item 

intercept parameter decrease across the levels of 𝜌𝜃𝜏 . The marginal mean SEs of the 
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item interaction parameter similarly decrease but only under the following conditions: 

at the negative moderate 𝜌𝜃𝜏 , and at the intersection of the sample size of 500 and 

positive 𝜌𝜃𝜏  and of the sample size of 200 and negative weak correlation. The 

marginal mean SEs of the estimates of the item time intensity parameter, however, 

increase as testelt variance increases from small to large. The absolute value of the 

marginal mean biases of the item interaction parameter decreases as testlet variance 

increases from small to moderate but rises to the highest level as testlet variance 

reaches large.  

Item Mean Vector and Item Variance/Covariance Matrix As is described in 

Section 4.1.6, overall, the inclusion of ACs as an additional data source by the 

proposed model improves the marginal mean SEs of the estimates for the item mean 

intercept and interaction parameters, but not necessarily their marginal mean biases. 

Only at specific levels of the manipulated factors, small testlet variance, as an 

example, are the marginal mean biases of the estimates for the two elements smaller 

as generated by the proposed model compared to the Joint Testlet-DINA model. No 

difference attributable to model specification is observed for in the marginal mean 

biases and SEs of the mean item intensity parameter. Evidently smaller marginal 

mean SEs in both parameters but slightly larger marginal mean biases are observed 

for a larger sample size of 500 than for 200.  

Similar effect of model specification is observed for the marginal SEs of the 

elements of the item variance and covariance matrix: they are smaller for the 

proposed model than for the Joint Testlet-DINA model. Improvement in the marginal 

mean biases by the proposed model is only shown for specific elements of the item 
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variance and covariance matrix, and for specific levels of the manipulated factors, for 

instance, at the small and moderate testlet variance level. Recovery of the elements 

that relate to item time intensity is not affected by the inclusion of ACs. The impact 

of sample size on the marginal mean SEs of the estimates is similar to its impact on 

elements of the item mean vector: they are generally smaller for the larger sample 

size of 500.  

Testlet Variance/Covariance Matrix Impact of including ACs as an 

additional data source in testlet-based joint model of responses and RT on the 

recovery of testlet variance/covariance matrix resembles the impact on the item 

variance and covariance matrix. The proposed model sees improved marginal mean 

SEs but higher marginal mean biases for estimates of the variance of the response 

testlet effect parameters. However, it has little impact on the recovery of the variance 

of the RT testlet effect parameter and the covariance of the response and RT testlet 

effect parameters as they are close identical for the two models. Impact of the 

manipulated factors is consistent across the five testlets: larger sample size is 

associated with larger marginal mean biases but smaller marginal mean SEs for 

estimates of the variance of the response and RT testlet effect parameters. Testlet 

variance has a similar impact: as it increases from small to large, larger marginal 

mean biases are shown for the estimates of the response and RT testlet effects 

parameters and larger marginal mean SEs are shown only for the estimates of the 

response testlet effects parameters.  
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5.1.2 Impact of Addressing Dual Response and RT Dependency 

The third and fourth research questions guiding the simulation study were: 1) 

how does the proposed joint model of responses, RTs, and ACs accounting for testlet 

effects perform compared to the alternative model ignoring these effects in terms of 

model fit, attribute and attribute profile classification accuracy, and parameter 

estimation? and 2) how do the factors manipulated in this study, i.e., correlation 

between speed and ability, testlet effects size, and sample size, affect comparisons of 

the joint model of response, RT, and ACs accounting for testlet effects and the joint 

model of responses, RT, and ACs ignoring testlet effects? 

Performance of Model Fit Indices Across the simulated conditions, AIC and 

BIC for the proposed model are consistently smaller than for the alternative model, 

the JRT-DINA-R/RT/AC model which does not explicitly account for local item 

dependency and item time dependency. The DICs, however, are larger for the 

proposed model than for the JRT-DINA-R/RT/AC model.  As is discussed by 

Gelman et al (2013), results given by DIC can be nonsensical when the posterior 

mean is not well summarized by its mean. Levy and Mislevy (2016) similarly note 

that DIC may not be appropriate if the posterior mean is not a reasonable summary of 

the posterior, as in the case when the latent variables in latent class are discrete and 

nominal in nature. Judging by the AIC and BIC, the proposed model accounting for 

dual item and item time dependency has a better fit than the JRT-DINA-R/RT/AC 

model.  

Statistical literature on predicative accuracy summarizes inference for 휃 not 

by a posterior distribution but by a point estimate 휃̂, the maximum likelihood estimate 
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(Gelman et al., 2014). AIC and BIC both use the log posterior density of the observed 

data 𝑦 given the point estimate 휃̂ and correct for bias due to overfitting. DIC is a 

Bayesian version of AIC that replaces the maximum likelihood estimate of 휃̂ with the 

posterior mean 휃̇̂𝐵𝑎𝑦𝑒𝑠 = 𝐸(휃|𝑦) and 𝑘 with the effective number of parameters. 

Since for continuous variables in simple models with true values not on a boundary, 

posterior means approach MLEs as sample size increases, but not necessarily so for 

hierarchical models or models with discrete variables. Spiegelhalter, Best, Carlin and 

van der Linde (2002) further note the distinction between conditional and marginal 

DICs when performing model comparisons, stating the appropriacy of the use of 

conditional likelihood if the parameters include the latent variables to justify 

inferences confined to existing clusters. If otherwise, marginal likelihood should be 

used. Merke, Furr, and Rabe-Hesketh (2018) along the same line recommend the use 

of marginal DIC if models being compared differ in the specification of the 

distribution for the latent variables. This dissertation study uses AIC and BIC to 

compare and evaluate the fit of the proposed model and the the JRT-DINA-R/RT/AC 

model, while at the same time noting the departure from the assumptions underlying 

the two fit indices and the caution that needs to be taken when using and interpreting 

them. 

Attribute and Attribute Profile Classification Accuracy Rates As is presented 

in Section 4.1.2, marginal mean ACCRs and PCCRs for the proposed model and the 

JRT-DINA-R/RT/AC model are comparable, with the proposed model having higher 

classification accuracy rates. This result is similar to the impact of including ACs as 

an additional data source: when the baseline comparison model is well-performing in 
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recovering attributes and attribute profiles, explicitly modeling testlet effects may not 

necessarily improve model performance in this regard.  

Person Parameters Significant improvement in the mean SE of 𝜏𝑖 is shown at 

both sample size levels for the proposed model explicitly accounting for testlet effects 

in responses and RT, compared with the JRT-DINA-R/RT/AC model. At the sample 

size of 200, mean SEs of 휃𝑖 is lower as estimated by the proposed model at the 

moderate and large testlet variance levels. At the sample size of 500, consistent across 

the levels of the testlet variance, and at the positive and negative moderate 𝜌𝜃𝜏 , the 

mean SEs of 휃𝑖 is lower as estimated by the proposed model. These findings suggest 

that accounting for dual item and item time dependency reduces random error in 

recovering 휃𝑖 at moderate and large testlet variance levels at the sample size of 200, 

and at the sample size of 500, reduces random error in recovering 휃𝑖 at all levels of 

the testlet variance and at the positive and negative moderate 𝜌𝜃𝜏 . The impact of 

model specification on the marginal mean biases of the other person parameter, 𝜏𝑖, is 

dependent on the interaction of the testlet variance and person-speed correlation: 

across the two sample sizes, the proposed model is shown as reducing systematic 

error in recovering this parameter at the interaction of specific levels of the two other 

manipulated factors. Of the three manipulated factors, testlet variance covaries with 

the marginal mean SEs of the estimates of 휃𝑖: larger marginal mean SEs are observed 

for larger testlet variance, suggesting that increased testlet variance results in larger 

random error for estimating this parameter.  

Person variance/covariance matrix Of the two elements of the person 

variance and covariance matrix, the marginal mean biases for estimates of 𝜎𝜏
2 are 
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lower as estimated by the proposed model, suggesting reduced systematic error in 

recovering this parameter. As is stated in the discussions regarding the first two 

research questions, the marginal mean bias of the estimates of 𝜎𝜃𝜏 and the SE of both 

𝜎𝜏
2 and 𝜎𝜃𝜏 are lower at the sample size of 500 than at the sample size of 200, 

suggesting that increased sample size results in reduced random error in recovering 

these two elements, and reduced systematic error in recovering 𝜎𝜃𝜏. Additionally, as 

the correlation between person ability and speed progresses from negative moderate 

to positive moderate, the marginal mean SEs of the estimates of 𝜎𝜃𝜏 also increases, 

suggesting increased random error associated with positive correlations between 

person ability and person speed.  

Higher-Order Structural Parameters Overall the marginal mean biases and 

SEs for estimates of the higher-order structural parameters are comparable for the 

proposed model and the JRT-DINA-R/RT/AC model. Reduced systematic and 

random error attributable to the modeling of the testlet effects is only shown for 

specific attributes and specific levels of the manipulated factors. As is stated above, 

sample size consistently affects the recovery of their marginal mean SEs: as it 

increases from 200 to 500, the marginal mean SEs of the attribute easiness and 

discrimination parameters decrease, suggesting reduced random error associated with 

a larger sample.  

Item Parameters As is described in Section 4.1.5, improvement in the 

marginal mean SEs and biases for the item parameters is shown for the proposed 

model that explicitly account for dual item and item time dependency. Compared 

with the JRT-DINA-R/RT/AC model, the proposed model generated smaller marginal 
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mean SEs for estimates of the item intercept parameter across the levels of testlet 

variance at all four 𝜌𝜃𝜏  levels and across the 𝜌𝜃𝜏  levels at both sample sizes. It 

additionally generates smaller marginal mean SEs for estimates of the item 

interaction parameter across the levels of the testlet variance at both sample sizes and 

at all four levels of 𝜌𝜃𝜏 . Further, across the levels of the testlet variance and at both 

sample sizes and all four 𝜌𝜃𝜏  levels, improvement in the marginal mean biases of the 

item interaction parameter is also shown for the proposed model in comparison with 

the JRT-DINA-R/RT/AC model. Explicit modeling of the testlet response and RT 

effects, however, has little effect on the marginal mean biases and SEs for the item 

time intensity parameter: they are identical for the proposed model and the Joint 

Testlet-DINA model. Impact of the manipulated factors is discussed above under 

5.1.1. 

Item Mean Vector and Item Variance/Covariance Matrix Overall, explicit 

modeling of the response and RT testlet effects by the proposed model improves the 

marginal mean biases of the estimates for the item mean intercept and interaction 

parameters, but not necessarily their marginal mean SEs. Compared with the JRT-

DINA-R/RT/AC model, mean marginal biases of the estimates for the two elements 

of the item mean vector are lower for estimates generated by the proposed model than 

the JRT-DINA-R/RT/AC model. The mean marginal SEs of these estimates, 

however, are higher as estimated by the proposed model, suggesting that explicitly 

accounting for response and RT testlet effects reduces systematic error in recovering 

the elements, but increases random error. Similar impact is observed for elements of 

the item variance and covariance matrix that do not relate to the item time intensity 
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parameter. No difference attributable to model specification is observed for in the 

marginal mean and biases of the mean item intensity parameter. The impact of the 

sample size is discussed above under Section 5.1.1. 

5.2 Findings from the Empirical Data Analysis 

The proposed model was fitted to an empirical dataset consisting of responses, 

RT, and ACs of 71 examinees to the 58 items on a mathematics assessment. 

Comparison was drawn between the proposed model accounting for dual item and 

item time dependency and the JRT-DINA-R/RT/AC model ignoring testlet effects. 

Model fit indices suggest that the proposed model has a better model fit than the JRT-

DINA-R/RT/AC model. Based upon this, recovery of the model parameters by the 

proposed model was presented and discussed.  

Recovery of the person variance and covariance matrix suggests that the 

correlation between the latent ability and latent speed is estimated to be -0.75, 

suggesting that low ability students may be completing the assessment with a high 

speed, possibly due to the inability to correctly respond to the assessment items. The 

variance of 𝜏 is estimated to be 1.300. Recovery of the item mean vector and item 

variance presents in detail estimates of the inverse or positive relationship between 

the item intercept, item interaction, item time intensity parameter, and the item 

difficulty parameter. An example of this is the estimated inverse relationship between 

the item intercept and item difficulty parameters and the estimated positive 

relationship between the item interaction parameter and the item difficulty parameter.  

Recovery of the testlet variance and covariance matrix indicates the 

magnitude of the response testlet effect and of the RT testlet effect. They range from 
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moderate to large for the response testlet effect and from small to moderate for the 

RT testlet effects. The correlation between the pair of testlet effect parameters is 

estimated to be negative, suggesting an inverse relationship between the pair of testlet 

parameters. These results are consistent with those reported in Zhan et al. (2018b), 

similarly reporting negative correlation between pairs of response testlet effect 

parameters and RT testlet effect parameters.  

Recovery of the attribute mastery status provide diagnostic information 

regarding the percentage of students mastering each attribute. With the empirical 

dataset, the percentages range from 35% to 42%. Finally, recovery of the attribute 

profiles is indicative of where students belong in terms of mastery or nonmastery of 

the skills assessed by the mathematics test. Results of the empirical data analysis 

demonstrate the percentage of students who have mastered all four skills, and 

percentage of students who have not mastered a particular skill or sets of skills. This 

information is especially useful in allowing for finetuning classroom or web-based 

instruction to specifically target the skills or skill sets not yet mastered by the students 

having a specific attribute profile.  

5.3 Limitations and Future Directions 

 To address the scenario of testlet-based assessment, this research proposes a 

joint model of responses, RT, and ACs for testlet-based cognitive diagnostic 

assessments. A simulation study was conducted to assess the impact of accounting for 

dual item and item dependency and of incorporating ACs as an additional data source 

on model fit, classification accuracy at the attribute and attribute profile level, and 

parameter estimation. Through manipulating three factors, the simulation study 
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examined the extent to which the manipulated factors impact the performance of the 

proposed model and two comparison models in recovering model parameters. 

Application of the proposed model was demonstrated with an empirical dataset.  

 Limitations and extensions of this study are addressed as follows. The first 

stems from the use of the DINA model as the measurement model in this research 

study, which assumes that all attributes are required to produce a correct response. As 

is discussed in Chapter 1, other examples of CDMs are DINO, LLM, RUM, and 

GDM (Rupp et al., 2010), each assuming a specific theory of cognitive processes for 

responses to the items. The modeling approach proposed in this research can readily 

be extended to use other CDMs as measurement models for responses. Further, the 

measurement model for RT used in this research is the lognormal RT model. As is 

reviewed Chapter 2, alternative distribution models for RT exist that can be used for 

modeling RT. Future studies can explore the use of alternative models for RT for 

joint modeling of responses, RT, and an additional data source. Another possible 

extension is the use of alternative models for ACs. The nature of ACs is such that it 

can be modeled using different approaches, such as the Poisson distribution for count 

data, or the generalized IRT tree model (Jeon et al., 2017). Other extensions include 

the modeling of person clustering effects (Jiao & Zhang, 2015) and of polytomous 

attributes, polytomous response items (e.g., Ma & de la Torre, 2016), and mixed-

format tests.   

The proposed model incorporating ACs and addressing dual item and item 

time dependency yields less biased and more precise estimates of the model 

parameters. Further, through plotting marginal means of the biases and SEs of the 
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parameter estimates, the simulation study identifies the specific set of parameters for 

which the proposed modeling approach improves their estimation and the conditions 

under which the improvement is shown. Results of the empirical data analysis 

illustrates its use for identifying the magnitude and direction of the relationship 

among the model parameters and providing the diagnostic information for improving 

instruction. As such, this proposed model will likely serve as a modeling approach for 

integrating multiple response process data with the modeling of responses for 

cognitive diagnosis, and as a useful tool for deriving informative diagnostic 

inferences regarding students’ learning and skill acquisition.  
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Appendix A: Classification Accuracy, Bias, and SE Results by Simulated Conditions 
Table A.1. 1  

Attribute Correct Classification Rate (ACCR) and Pattern Correct Classification Rate (PCCR) Under 24 Simulated 

Conditions(N=200) 

Condition 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 ACCR 
PCCR 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

1  0.25 JRT-AC-DINA for Testlet 0.9778 0.9552 0.9568 0.9722 0.9948 0.8668 

   JRT-DINA-R/RT/AC 0.9765 0.9538 0.9560 0.9720 0.9943 0.8645 

   Joint Testlet-DINA 0.9770 0.9557 0.9552 0.9722 0.9952 0.8660 

2 -0.5 0.5 JRT-AC-DINA for Testlet 0.9647 0.9355 0.9428 0.9623 0.9888 0.8205 

   JRT-DINA-R/RT/AC 0.9623 0.9347 0.9417 0.9595 0.9873 0.8132 

   Joint Testlet-DINA 0.9667 0.9347 0.9475 0.9640 0.9887 0.8275 

3  1 JRT-AC-DINA for Testlet 0.9387 0.9127 0.9213 0.9288 0.9665 0.7532 

   JRT-DINA-R/RT/AC 0.9367 0.9132 0.9158 0.9235 0.9642 0.7402 

   Joint Testlet-DINA 0.9415 0.9177 0.9250 0.9327 0.9687 0.7683 

4  0.25 JRT-AC-DINA for Testlet 0.9797 0.9492 0.9635 0.9745 0.9943 0.8727 

   JRT-DINA-R/RT/AC 0.9797 0.9508 0.9627 0.9735 0.9942 0.8728 

   Joint Testlet-DINA 0.9803 0.9488 0.9620 0.9742 0.9955 0.8727 

5 -0.3 0.5 JRT-AC-DINA for Testlet 0.9738 0.9335 0.9508 0.9610 0.9867 0.8300 

   JRT-DINA-R/RT/AC 0.9725 0.9335 0.9487 0.9597 0.9857 0.8257 

   Joint Testlet-DINA 0.9742 0.9340 0.9515 0.9635 0.9872 0.8347 

6  1 JRT-AC-DINA for Testlet 0.9410 0.9237 0.9280 0.9425 0.9708 0.7770 

   JRT-DINA-R/RT/AC 0.9375 0.9237 0.9248 0.9382 0.9670 0.7652 

   Joint Testlet-DINA 0.9423 0.9242 0.9318 0.9427 0.9717 0.7842 
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Table A.1. 2  

Attribute Correct Classification Rate (ACCR) and Pattern Correct Classification Rate (PCCR) Under 24 Simulated Conditions 

(N=200) 

Condition 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 
Model 

ACCR 
PCCR 

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

7  0.25 JRT-AC-DINA for Testlet 0.9795 0.9543 0.9652 0.9762 0.9952 0.8798 

   JRT-DINA-R/RT/AC 0.9798 0.9543 0.9633 0.9750 0.9947 0.8773 

   Joint Testlet-DINA 0.9793 0.9560 0.9650 0.9752 0.9955 0.8808 

8 0.3 0.5 JRT-AC-DINA for Testlet 0.9653 0.9393 0.9570 0.9635 0.9875 0.8368 

   JRT-DINA-R/RT/AC 0.9633 0.9378 0.9543 0.9608 0.9867 0.8283 

   Joint Testlet-DINA 0.9660 0.9398 0.9575 0.9652 0.9882 0.8423 

9  1 JRT-AC-DINA for Testlet 0.9398 0.9062 0.9272 0.9405 0.9663 0.7592 

   JRT-DINA-R/RT/AC 0.9372 0.9048 0.9228 0.9360 0.9622 0.7468 

   Joint Testlet-DINA 0.9408 0.9075 0.9267 0.9418 0.9680 0.7688 

10  0.25 JRT-AC-DINA for Testlet 0.9787 0.9555 0.9607 0.9673 0.9935 0.8672 

   JRT-DINA-R/RT/AC 0.9790 0.9560 0.9613 0.9650 0.9933 0.8663 

   Joint Testlet-DINA 0.9802 0.9577 0.9602 0.9683 0.9938 0.8708 

11 0.5 0.5 JRT-AC-DINA for Testlet 0.9702 0.9375 0.9550 0.9613 0.9842 0.8358 

   JRT-DINA-R/RT/AC 0.9697 0.9395 0.9535 0.9605 0.9823 0.8332 

   Joint Testlet-DINA 0.9730 0.9427 0.9558 0.9615 0.9862 0.8452 

12  1 JRT-AC-DINA for Testlet 0.9420 0.9082 0.9382 0.9248 0.9667 0.7580 

   JRT-DINA-R/RT/AC 0.9403 0.9055 0.9338 0.9222 0.9645 0.7473 

   Joint Testlet-DINA 0.9457 0.9133 0.9407 0.9282 0.9680 0.7725 
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Table A.1. 3  

Attribute Correct Classification Rate (ACCR) and Pattern Correct Classification Rate (PCCR) Under 24 Simulated Conditions 

(N=500) 

Condition 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 
Model 

ACCR 
PCCR 

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

13  0.25 JRT-AC-DINA for Testlet 0.9820 0.9509 0.9643 0.9705 0.9937 0.8713 

   JRT-DINA-R/RT/AC 0.9813 0.9515 0.9635 0.9701 0.9931 0.8697 

   Joint Testlet-DINA 0.9829 0.9507 0.9649 0.9721 0.9941 0.8746 

14 -0.5 0.5 JRT-AC-DINA for Testlet 0.9712 0.9392 0.9528 0.9573 0.9865 0.8317 

   JRT-DINA-R/RT/AC 0.9712 0.9389 0.9507 0.9549 0.9859 0.8264 

   Joint Testlet-DINA 0.9731 0.9421 0.9567 0.9605 0.9869 0.8421 

15  1 JRT-AC-DINA for Testlet 0.9422 0.9139 0.9315 0.9411 0.9661 0.7687 

   JRT-DINA-R/RT/AC 0.9396 0.9130 0.9261 0.9381 0.9646 0.7581 

   Joint Testlet-DINA 0.9460 0.9171 0.9341 0.9444 0.9685 0.7812 

16  0.25 JRT-AC-DINA for Testlet 0.9789 0.9523 0.9637 0.9730 0.9927 0.8710 

   JRT-DINA-R/RT/AC 0.9787 0.9528 0.9631 0.9717 0.9925 0.8694 

   Joint Testlet-DINA 0.9803 0.9543 0.9626 0.9729 0.9929 0.8740 

17 -0.3 0.5 JRT-AC-DINA for Testlet 0.9678 0.9414 0.9529 0.9649 0.9861 0.8373 

   JRT-DINA-R/RT/AC 0.9666 0.9421 0.9512 0.9633 0.9858 0.8345 

   Joint Testlet-DINA 0.9687 0.9423 0.9537 0.9665 0.9867 0.8434 

18  1 JRT-AC-DINA for Testlet 0.9449 0.9109 0.9248 0.9349 0.9664 0.7595 

   JRT-DINA-R/RT/AC 0.9416 0.9109 0.9217 0.9315 0.9643 0.7507 

   Joint Testlet-DINA 0.9454 0.9134 0.9277 0.9371 0.9675 0.7702 
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Table A.1. 4  

Attribute Correct Classification Rate (ACCR) and Pattern Correct Classification Rate (PCCR) Under 24 Simulated Conditions 

(N=500) 

Condition 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 
Model 

ACCR 
PCCR 

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

19  0.25 JRT-AC-DINA for Testlet 0.9802 0.9454 0.9617 0.9682 0.9947 0.8613 

   JRT-DINA-R/RT/AC 0.9791 0.9455 0.9605 0.9681 0.9947 0.8597 

   Joint Testlet-DINA 0.9818 0.9473 0.9616 0.9697 0.9951 0.8671 

20 0.3 0.5 JRT-AC-DINA for Testlet 0.9688 0.9415 0.9527 0.9597 0.9877 0.8336 

   JRT-DINA-R/RT/AC 0.9683 0.9411 0.9498 0.9575 0.9871 0.8296 

   Joint Testlet-DINA 0.9704 0.9447 0.9525 0.9617 0.9889 0.8419 

21  1 JRT-AC-DINA for Testlet 0.9461 0.9190 0.9366 0.9412 0.9719 0.7743 

   JRT-DINA-R/RT/AC 0.9450 0.9162 0.9325 0.9372 0.9695 0.7635 

   Joint Testlet-DINA 0.9489 0.9225 0.9416 0.9445 0.9736 0.7903 

22  0.25 JRT-AC-DINA for Testlet 0.9809 0.9439 0.9677 0.9677 0.9955 0.8661 

   JRT-DINA-R/RT/AC 0.9807 0.9440 0.9667 0.9667 0.9950 0.8637 

   Joint Testlet-DINA 0.9811 0.9453 0.9703 0.9679 0.9958 0.8709 

23 0.5 0.5 JRT-AC-DINA for Testlet 0.9689 0.9384 0.9543 0.9650 0.9861 0.8373 

   JRT-DINA-R/RT/AC 0.9674 0.9391 0.9527 0.9633 0.9853 0.8322 

   Joint Testlet-DINA 0.9691 0.9420 0.9554 0.9665 0.9875 0.8429 

24  1 JRT-AC-DINA for Testlet 0.9469 0.9058 0.9330 0.9401 0.9670 0.7647 

   JRT-DINA-R/RT/AC 0.9457 0.9041 0.9301 0.9365 0.9647 0.7552 

   Joint Testlet-DINA 0.9491 0.9101 0.9383 0.9428 0.9691 0.7787 
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Table A. 2  

Correlation between Generated and Estimated Higher-Order Ability and Person Parameters in the Simulation Study 

Condition 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 

휃  𝜏 

JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

 JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

1 200 -0.5 0.25 0.8343 0.8339 0.7991  0.9805 0.9806 0.9805 

2   0.5 0.8237 0.8230 0.7907  0.9808 0.9809 0.9808 

3   1 0.7918 0.7908 0.7641  0.9801 0.9802 0.9801 

4  -0.3 0.25 0.8270 0.8268 0.7789  0.9809 0.9810 0.9809 

5   0.5 0.8217 0.8212 0.7709  0.9817 0.9818 0.9817 

6   1 0.7947 0.7937 0.7387  0.9806 0.9807 0.9806 

7  0.3 0.25 0.8328 0.8325 0.7853  0.9810 0.9812 0.9810 

8   0.5 0.8133 0.8127 0.7640  0.9801 0.9802 0.9801 

9   1 0.7927 0.7916 0.7383  0.9809 0.9810 0.9809 

10  0.5 0.25 0.8267 0.8263 0.7918  0.9799 0.9801 0.9799 

11   0.5 0.8207 0.8200 0.7910  0.9817 0.9818 0.9817 

12   1 0.7910 0.7900 0.7548  0.9795 0.9797 0.9796 

13 500 -0.5 0.25 0.8356 0.8353 0.8068  0.9808 0.9809 0.9809 

14   0.5 0.8223 0.8217 0.7942  0.9805 0.9806 0.9805 

15   1 0.7937 0.7926 0.7641  0.9805 0.9806 0.9805 

16  -0.3 0.25 0.8302 0.8298 0.7852  0.9805 0.9805 0.9805 

17   0.5 0.8155 0.8150 0.7729  0.9807 0.9807 0.9807 

18   1 0.7908 0.7898 0.7385  0.9809 0.9809 0.9809 

19  0.3 0.25 0.8327 0.8324 0.7898  0.9806 0.9807 0.9807 

20   0.5 0.8185 0.8180 0.7724  0.9809 0.9809 0.9809 

21   1 0.7975 0.7965 0.7526  0.9811 0.9812 0.9811 

22  0.5 0.25 0.8365 0.8362 0.8090  0.9809 0.9809 0.9809 

23   0.5 0.8220 0.8214 0.7952  0.9806 0.9807 0.9806 

24   1 0.7940 0.7929 0.7638  0.9806 0.9807 0.9806 
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Table A. 3  

Bias of the Person Variance and Covariance Matrix in the Simulation Study 

Condition 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 

𝜎𝜏
2  𝜎𝜃𝜏 

JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

 JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

1 200 -0.5 0.25 0.0317 0.0386 -0.0029  -0.0381 -0.0383 -0.0079 

2   0.5 0.0255 0.0322 -0.0069  -0.0312 -0.0307 -0.0058 

3   1 0.0179 0.0244 -0.0085  -0.0089 -0.0076 0.0198 

4  -0.3 0.25 0.0166 0.0230 0.0045  -0.0067 -0.0061 0.0126 

5   0.5 0.0166 0.0230 0.0035  -0.0220 -0.0214 -0.0025 

6   1 0.0065 0.0134 -0.0027  0.0050 0.0057 0.0221 

7  0.3 0.25 0.0154 0.0221 0.0030  0.0168 0.0166 -0.0036 

8   0.5 0.0097 0.0166 -0.0038  0.0254 0.0258 0.0040 

9   1 0.0115 0.0184 0.0013  0.0038 0.0033 -0.0163 

10  0.5 0.25 0.0337 0.0401 -0.0012  0.0317 0.0310 -0.0105 

11   0.5 0.0457 0.0517 0.0104  0.0407 0.0395 0.0090 

12   1 0.0102 0.0167 -0.0132  -0.0097 -0.0097 -0.0371 

13 500 -0.5 0.25 0.0313 0.0357 -0.0030  -0.0345 -0.0347 5.00E-04 

14   0.5 0.0302 0.0343 -6.00E-04  -0.0224 -0.0218 0.0067 

15   1 0.0262 0.0303 -0.0018  -0.0142 -0.0135 0.0132 

16  -0.3 0.25 0.0084 0.0127 -0.0045  -0.0223 -0.0221 -0.0015 

17   0.5 0.0073 0.0117 -0.0038  -0.0119 -0.0116 0.0071 

18   1 0.0132 0.0175 0.0029  -0.0075 -0.0071 0.0103 

19  0.3 0.25 0.0135 0.0178 -5.00E-04  0.0301 0.0300 0.0105 

20   0.5 0.0102 0.0145 -0.0011  0.0134 0.0131 -0.0020 

21   1 0.0088 0.0131 -5.00E-04  0.0027 0.0024 -0.0134 

22  0.5 0.25 0.0366 0.0409 0.0014  0.0359 0.0357 0.0010 

23   0.5 0.0291 0.0335 -0.0027  0.0285 0.0283 -0.0042 

24   1 0.0245 0.0287 -0.0015  0.0070 0.0063 -0.0246 
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Table A. 4  

SE of the Person Variance and Covariance Matrix in the Simulation Study 

Condition 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 

𝜎𝜏
2  𝜎𝜃𝜏 

JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

 JRT-AC-DINA 

for Testlet 

JRT-DINA-

R/RT/AC 

Joint Testlet-

DINA 

1 200 -0.5 0.25 0.0367 0.0369 0.0268  0.0478 0.0482 0.0433 

2   0.5 0.0251 0.0253 0.0232  0.0342 0.0341 0.0321 

3   1 0.0289 0.0288 0.0225  0.0379 0.0376 0.0361 

4  -0.3 0.25 0.0272 0.0271 0.0241  0.0505 0.0498 0.0480 

5   0.5 0.0291 0.0293 0.0258  0.0407 0.0403 0.0404 

6   1 0.0233 0.0237 0.0209  0.0384 0.0396 0.0363 

7  0.3 0.25 0.0238 0.0239 0.0225  0.0416 0.0416 0.0386 

8   0.5 0.0327 0.0327 0.0301  0.0446 0.0447 0.0452 

9   1 0.0345 0.0342 0.0301  0.0543 0.0542 0.0591 

10  0.5 0.25 0.0380 0.0381 0.0318  0.0456 0.0449 0.0418 

11   0.5 0.0366 0.0362 0.0272  0.0462 0.0458 0.0463 

12   1 0.0297 0.0296 0.0227  0.0503 0.0497 0.0402 

13 500 -0.5 0.25 0.0193 0.0192 0.0160  0.0294 0.0294 0.0279 

14   0.5 0.0219 0.0216 0.0178  0.0328 0.0324 0.0286 

15   1 0.0231 0.0229 0.0174  0.0303 0.0300 0.0281 

16  -0.3 0.25 0.0168 0.0168 0.0147  0.0297 0.0298 0.0304 

17   0.5 0.0141 0.0142 0.0121  0.0263 0.0260 0.0251 

18   1 0.0180 0.0181 0.0163  0.0340 0.0340 0.0338 

19  0.3 0.25 0.0194 0.0194 0.0159  0.0320 0.0320 0.0303 

20   0.5 0.0206 0.0204 0.0190  0.0277 0.0277 0.0260 

21   1 0.0183 0.0183 0.0167  0.0274 0.0275 0.0255 

22  0.5 0.25 0.0278 0.0276 0.0191  0.0415 0.0416 0.0347 

23   0.5 0.0211 0.0212 0.0151  0.0318 0.0320 0.0309 

24   1 0.0180 0.0180 0.0162  0.0270 0.0267 0.0279 
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Table A.5. 1  

Bias of the High-Order Structural Parameters (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

1  0.25 JAD-TT -0.1289 -0.0037 0.0222 -0.1800 0.3810  1.2821 0.7866 0.7642 1.2339 2.6157 

   JAD -0.1379 -0.0196 0.0082 -0.1911 0.3598  1.2764 0.7448 0.7668 1.2314 2.6073 

   JD-TT -0.0131 0.0572 -0.0034 -0.0847 0.0345  0.1850 0.1430 0.0232 0.3127 0.1346 

2 -0.5 0.5 JAD-TT -0.0387 -0.0606 -0.0018 -0.0366 0.3769  1.2464 0.8340 0.7651 1.1207 2.4817 

   JAD -0.0338 -0.0756 -0.0189 -0.0442 0.3543  1.2288 0.7821 0.7660 1.1235 2.4633 

   JD-TT 0.0766 -0.0575 -0.0235 0.0181 0.0202  0.0608 0.2685 0.0337 0.2283 0.0549 

3  1 JAD-TT -0.1524 -0.0378 -0.0727 -0.0457 0.2974  1.3407 0.9983 0.9418 1.0237 2.4126 

   JAD -0.1310 -0.0014 -0.0711 -0.0382 0.3096  1.3234 0.9166 0.9527 1.0366 2.4261 

   JD-TT -0.0386 -0.0072 0.0055 0.0532 -0.0033  0.2280 0.4259 0.3419 0.0973 0.1006 

4  0.25 JAD-TT -0.1662 -0.0579 -0.0053 -0.1214 0.4810  1.2453 0.8818 0.8015 1.0850 2.6039 

   JAD -0.1500 -0.0578 -0.0076 -0.1201 0.4861  1.2254 0.8261 0.7983 1.0950 2.5994 

   JD-TT -0.0141 -0.0142 0.0121 -0.008 0.0849  0.0760 0.3947 0.1085 0.1416 0.0285 

5 -0.3 0.5 JAD-TT -0.1384 -0.0528 0.0075 -0.0152 0.2784  1.3339 0.8212 0.7164 1.0257 2.4650 

   JAD -0.1059 -0.0376 0.0067 0.0051 0.2999  1.3128 0.7535 0.7130 1.0393 2.4454 

   JD-TT -0.0161 0.0028 0.0230 0.0716 -0.0187  0.2372 0.1928 -0.0079 0.0798 0.0722 

6  1 JAD-TT -0.0990 -0.0188 0.0278 -0.012 0.2505  1.2204 0.8941 1.0075 1.1785 2.3369 

   JAD -0.0741 -0.0032 0.0301 -0.0017 0.2419  1.1815 0.824 1.0096 1.1848 2.3358 

   JD-TT 0.0181 0.0085 0.0431 0.0532 -0.0093  0.1179 0.246 0.2941 0.3089 0.1512 
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Table A.5. 2  

Bias of the High-Order Structural Parameters (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

7  0.25 JAD-TT -0.1839 0.0188 0.0323 -0.1122 0.4654  1.2976 0.7501 0.8468 1.1826 2.6927 

   JAD -0.1866 0.0121 0.0163 -0.1171 0.4499  1.2904 0.7052 0.8439 1.1795 2.6771 

   JD-TT -0.0428 0.0552 0.0505 -0.0068 0.0986  0.1885 0.1861 0.1519 0.1804 0.1830 

8 0.3 0.5 JAD-TT -0.1395 -0.0145 0.0074 -0.0985 0.4129  1.3352 0.9495 0.8737 1.0686 2.7881 

   JAD -0.1306 -0.0363 -0.0040 -0.0998 0.4060  1.3161 0.8984 0.8601 1.0755 2.7788 

   JD-TT -0.0171 0.0307 0.0234 -0.0349 0.0595  0.1871 0.3014 0.1743 0.1648 0.2622 

9  1 JAD-TT -0.1391 -0.0882 -0.0962 -0.1858 0.2150  1.2786 1.0047 0.9481 1.156 2.6721 

   JAD -0.1449 -0.0770 -0.1210 -0.1664 0.2107  1.2678 0.9336 0.949 1.1729 2.6407 

   JD-TT -0.0235 -0.0153 -0.0234 -0.0901 -0.0440  0.3035 0.4731 0.3374 0.2735 0.2999 

10  0.25 JAD-TT -0.0988 -0.0486 0.0078 -0.0440 0.4051  1.2633 0.8521 0.6453 1.0369 2.9256 

   JAD -0.0913 -0.0404 0.0098 -0.0390 0.4068  1.2455 0.804 0.6405 1.0335 2.9216 

   JD-TT 0.0222 0.0042 3.00E-04 0.0459 0.0350  0.1505 0.2353 -0.0685 0.0989 0.2369 

11 0.5 0.5 JAD-TT -0.1892 -0.0502 0.0395 -0.1669 0.3058  1.3662 0.8042 0.8626 1.0654 2.5309 

   JAD -0.1616 -0.0486 0.0430 -0.1571 0.3173  1.3353 0.7439 0.8633 1.0638 2.5325 

   JD-TT -0.0297 -0.0319 0.0563 -0.0900 0.0103  0.1590 0.2639 0.1508 0.1549 0.1073 

12  1 JAD-TT -0.1512 0.0050 -0.0411 0.0489 0.2787  1.4266 0.9561 0.8649 1.0123 2.3068 

   JAD -0.1368 -0.0113 -0.0562 0.0482 0.2592  1.4060 0.8869 0.8731 1.0277 2.2813 

   JD-TT -0.0262 0.0883 -0.0249 0.1263 -0.0110  0.3357 0.4446 0.1847 0.1186 0.0420 
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Table A.5. 3  

Bias of the High-Order Structural Parameters (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/

𝜎𝜆
2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

13  0.25 JAD-TT -0.1149 -0.0351 0.0385 -0.1240 0.5070  1.2495 0.6987 0.8504 1.1263 2.9639 

   JAD -0.1102 -0.0452 0.0313 -0.1282 0.5007  1.2451 0.6564 0.8524 1.1331 2.9560 

   JD-TT 0.0335 -0.0033 0.0191 -0.0089 0.0376  0.0499 0.0627 0.1056 0.0521 0.0796 

14 -0.5 0.5 JAD-TT -0.1569 -0.0403 -0.0257 -0.0834 0.4298  1.2623 0.8512 0.8283 1.0457 2.6709 

   JAD -0.1521 -0.0466 -0.0351 -0.0790 0.4271  1.2454 0.7892 0.8231 1.0453 2.6700 

   JD-TT -0.0047 0.0018 -0.0343 0.0289 0.0192  0.0588 0.1916 0.0659 0.0161 -0.0283 

15  1 JAD-TT -0.1143 -0.0262 -0.0495 -0.0848 0.2965  1.2714 0.8922 0.8563 1.1207 2.6221 

   JAD -0.1153 -0.0534 -0.0744 -0.0926 0.2739  1.2627 0.8362 0.8625 1.1293 2.6209 

   JD-TT 0.0030 -0.0099 -0.0439 0.0138 -0.0616  0.1250 0.2240 0.1127 0.1012 0.0503 

16  0.25 JAD-TT -0.245 -0.0229 0.0029 -0.1272 0.4157  1.2704 0.7929 0.7574 1.1301 2.9854 

   JAD -0.2333 -0.0197 -0.0044 -0.1222 0.4161  1.2592 0.7544 0.7485 1.1316 2.9795 

   JD-TT -0.0704 -0.0030 -0.0303 -0.0064 -0.0034  0.0679 0.1170 -0.0166 0.1201 0.1519 

17 -0.3 0.5 JAD-TT -0.1399 -0.0216 0.0565 -0.1036 0.4404  1.2746 0.8481 0.8191 1.0677 2.7101 

   JAD -0.1368 -0.0307 0.0353 -0.1062 0.4201  1.2564 0.7975 0.8150 1.0648 2.7048 

   JD-TT 0.0178 0.0208 0.0435 0.0065 0.0333  0.0748 0.2083 0.0637 0.0614 0.0329 

18  1 JAD-TT 

-0.1778 

-1.00E-

04 -0.0478 -0.0549 0.3141  1.2846 0.9772 0.9369 1.1269 2.5974 

   JAD -0.1479 0.0271 -0.0444 -0.0422 0.3278  1.2683 0.9096 0.9525 1.1326 2.5904 

   JD-TT -0.0071 0.0459 -0.0344 0.0428 -0.0229  0.0652 0.3599 0.1873 0.1746 0.0399 
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Table A.5. 4  

Bias of the High-Order Structural Parameters (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

19  0.25 JAD-TT -0.1345 -0.0247 0.0291 -0.0836 0.4497  1.3443 0.6835 0.8387 1.0993 2.7527 

   JAD -0.1355 -0.0293 0.015 -0.0900 0.4393  1.3302 0.6453 0.8368 1.1013 2.7527 

   JD-TT 0.0165 0.0016 -0.0029 0.0250 0.0202  0.1156 0.0273 0.0718 0.0837 0.0303 

20 0.3 0.5 JAD-TT -0.1363 -0.0792 0.0345 -0.0804 0.4322  1.2904 0.8482 0.863 0.9966 2.7393 

   JAD -0.1380 -0.0841 0.0079 -0.0881 0.4080  1.2686 0.7974 0.8563 1.0016 2.7398 

   JD-TT 3.00E-04 -0.0399 0.0197 0.0169 0.0054  0.1169 0.1843 0.1116 0.0021 0.0157 

21  1 JAD-TT -0.0858 -0.0295 0.0258 -0.0586 0.4282  1.2594 0.8615 0.8401 1.1885 2.7179 

   JAD -0.0672 -0.0387 0.0131 -0.0577 0.4234  1.2413 0.8082 0.8564 1.1868 2.7153 

   JD-TT 0.0709 0.0259 0.0241 0.0276 0.0303  0.0551 0.2302 0.1280 0.2356 0.0946 

22  0.25 JAD-TT -0.1871 -0.0828 0.0909 -0.1044 0.4427  1.3317 0.7881 0.9476 1.0322 2.8382 

   JAD -0.1951 -0.0912 0.0713 -0.1160 0.4222  1.3248 0.7525 0.9412 1.0301 2.8416 

   JD-TT -0.0139 -0.0540 0.0705 0.0089 0.0234  0.0512 0.1208 0.1523 0.0188 0.0587 

23 0.5 0.5 JAD-TT -0.1510 -0.0279 0.0285 -0.0950 0.3985  1.2776 0.8774 0.8280 1.0717 2.7672 

   JAD -0.1525 -0.0294 0.0161 -0.0990 0.3835  1.2599 0.8261 0.8229 1.0751 2.7605 

   JD-TT 0.0058 0.0111 0.0099 0.0176 0.0125  0.0913 0.1939 0.0506 0.0763 0.0990 

24  1 JAD-TT -0.1348 -0.0349 0.0178 -0.0618 0.3871  1.3231 1.0559 0.9542 1.1282 2.5075 

   JAD -0.1347 -0.0472 0.0036 -0.0574 0.3699  1.3069 0.9606 0.9618 1.1309 2.5175 

   JD-TT 0.0123 0.0180 0.0250 0.0193 0.0117  0.1135 0.4535 0.2247 0.1554 0.0159 
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Table A.6. 1  

SE of the Higher-Order Structural Parameters (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

1  0.25 JAD-TT 0.2855 0.3028 0.2333 0.2639 0.3644  0.3998 0.3226 0.4544 0.4994 0.5727 

   JAD 0.2851 0.2987 0.2423 0.2682 0.3607  0.4009 0.3308 0.4693 0.5002 0.5767 

   JD-TT 0.3166 0.3254 0.236 0.2763 0.2763  0.4840 0.2600 0.4373 0.4273 0.4503 

2 -0.5 0.5 JAD-TT 0.3031 0.2798 0.2636 0.2339 0.3177  0.3679 0.4025 0.3425 0.3613 0.5579 

   JAD 0.2955 0.2446 0.2627 0.2414 0.2916  0.3527 0.3830 0.3459 0.3541 0.5584 

   JD-TT 0.2808 0.2756 0.2934 0.2098 0.2362  0.3364 0.4947 0.4062 0.4503 0.4733 

3  1 JAD-TT 0.3220 0.3177 0.3158 0.3073 0.3568  0.4737 0.4476 0.3677 0.4250 0.4179 

   JAD 0.3210 0.2890 0.3312 0.3151 0.3540  0.4710 0.4193 0.3696 0.4101 0.4233 

   JD-TT 0.2967 0.3563 0.3256 0.3019 0.2700  0.4225 0.5083 0.4435 0.3810 0.3639 

4  0.25 JAD-TT 0.2608 0.2503 0.2784 0.2112 0.3030  0.3493 0.4005 0.3615 0.4479 0.5028 

   JAD 0.2506 0.2338 0.2776 0.2247 0.3288  0.3454 0.3977 0.3618 0.4598 0.5033 

   JD-TT 0.2298 0.3118 0.2860 0.2053 0.2397  0.3587 0.5035 0.4578 0.4573 0.3530 

5 -0.3 0.5 JAD-TT 0.3617 0.2572 0.2077 0.2441 0.3160  0.4034 0.4699 0.3801 0.3682 0.5256 

   JAD 0.3399 0.2705 0.1881 0.2460 0.3393  0.3907 0.4398 0.3844 0.3693 0.5323 

   JD-TT 0.3363 0.2699 0.2112 0.2255 0.2244  0.4367 0.5383 0.5106 0.3001 0.3978 

6  1 JAD-TT 0.2887 0.3212 0.2337 0.3005 0.3486  0.4418 0.4105 0.4856 0.4390 0.5999 

   JAD 0.2909 0.2865 0.2378 0.2764 0.3423  0.4173 0.3949 0.4753 0.4476 0.5913 

   JD-TT 0.2824 0.3043 0.2402 0.2778 0.2284  0.4922 0.4864 0.5101 0.5157 0.4202 
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Table A.6. 2  

SE of the Higher-Order Structural Parameters (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

7  0.25 JAD-TT 0.2663 0.2548 0.2878 0.2252 0.3155  0.4265 0.4046 0.3167 0.4180 0.4709 

   JAD 0.2570 0.2453 0.2832 0.2207 0.3090  0.4244 0.3805 0.3103 0.4161 0.4577 

   JD-TT 0.2197 0.2657 0.2900 0.1985 0.2266  0.4497 0.5281 0.4008 0.4739 0.3989 

8 0.3 0.5 JAD-TT 0.2306 0.2585 0.2569 0.2294 0.3642  0.4931 0.4366 0.4720 0.4070 0.5481 

   JAD 0.2212 0.2480 0.2419 0.2404 0.3509  0.4759 0.4137 0.4679 0.4073 0.5436 

   JD-TT 0.1985 0.2482 0.2504 0.2253 0.2303  0.5080 0.5443 0.5288 0.4588 0.4273 

9  1 JAD-TT 0.3481 0.2831 0.3092 0.2948 0.3166  0.4691 0.4285 0.4304 0.4913 0.5409 

   JAD 0.3779 0.2717 0.3113 0.3057 0.3348  0.4791 0.4078 0.4164 0.4925 0.5353 

   JD-TT 0.3217 0.2485 0.3126 0.2706 0.2488  0.5225 0.4793 0.5333 0.5769 0.4904 

10  0.25 JAD-TT 0.3150 0.2855 0.2856 0.2786 0.3440  0.4843 0.3771 0.3605 0.4217 0.6266 

   JAD 0.3078 0.2478 0.2788 0.2687 0.3454  0.4693 0.3689 0.3565 0.4199 0.6362 

   JD-TT 0.2952 0.2640 0.2829 0.2610 0.2394  0.4374 0.4421 0.3569 0.4433 0.4757 

11 0.5 0.5 JAD-TT 0.3237 0.2793 0.2111 0.3120 0.3795  0.4389 0.3534 0.3827 0.4358 0.4256 

   JAD 0.3050 0.2516 0.2113 0.3185 0.3991  0.4337 0.3511 0.3767 0.4382 0.4419 

   JD-TT 0.2875 0.2786 0.2310 0.3053 0.2807  0.4035 0.5603 0.4194 0.4695 0.3276 

12  1 JAD-TT 0.3328 0.2732 0.3409 0.2257 0.3443  0.4654 0.4386 0.4452 0.3241 0.4460 

   JAD 0.3455 0.2566 0.3553 0.2353 0.3541  0.4556 0.4404 0.4332 0.3262 0.4611 

   JD-TT 0.3084 0.2983 0.3279 0.2201 0.2635  0.5046 0.5839 0.4409 0.3747 0.4041 
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Table A.6. 3  

SE of the Higher-Order Structural Parameters (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

13  0.25 JAD-TT 0.1423 0.1843 0.1762 0.1830 0.2879  0.2627 0.2365 0.2044 0.2669 0.3660 

   JAD 0.1483 0.1672 0.1643 0.1791 0.2827  0.2629 0.2410 0.2031 0.2715 0.3732 

   JD-TT 0.1361 0.1939 0.1811 0.1617 0.1823  0.2746 0.3120 0.2365 0.2401 0.2308 

14 -0.5 0.5 JAD-TT 0.1535 0.1600 0.1723 0.1436 0.2933  0.2897 0.2957 0.3171 0.2533 0.5773 

   JAD 0.1419 0.1491 0.1678 0.1445 0.3080  0.2787 0.2704 0.3133 0.2450 0.5789 

   JD-TT 0.1428 0.1849 0.1668 0.1270 0.1799  0.2613 0.3449 0.3237 0.2280 0.2992 

15  1 JAD-TT 0.2492 0.2362 0.1804 0.2189 0.2803  0.3091 0.2311 0.2777 0.2735 0.4073 

   JAD 0.2441 0.2311 0.1661 0.2203 0.2872  0.3078 0.2211 0.2774 0.2813 0.4012 

   JD-TT 0.2154 0.2229 0.1741 0.2074 0.1768  0.2906 0.2692 0.3360 0.2465 0.2737 

16  0.25 JAD-TT 0.1812 0.1453 0.1424 0.1912 0.2496  0.2205 0.3254 0.1927 0.2654 0.4614 

   JAD 0.1868 0.1477 0.1330 0.1849 0.2302  0.2176 0.2970 0.1942 0.2645 0.4517 

   JD-TT 0.1632 0.1404 0.1456 0.1537 0.1338  0.2502 0.2978 0.2721 0.2321 0.2298 

17 -0.3 0.5 JAD-TT 0.2054 0.1840 0.2296 0.2173 0.2165  0.2703 0.2374 0.2284 0.3594 0.3678 

   JAD 0.1852 0.1710 0.2263 0.2227 0.2043  0.2655 0.2365 0.2291 0.3646 0.3578 

   JD-TT 0.1825 0.1832 0.2391 0.1968 0.1396  0.2274 0.3015 0.2528 0.3205 0.2549 

18  1 JAD-TT 0.2169 0.2226 0.2036 0.1694 0.2229  0.3118 0.2820 0.3391 0.3083 0.3905 

   JAD 0.2222 0.2160 0.2079 0.1706 0.2236  0.3017 0.2625 0.3320 0.2993 0.4004 

   JD-TT 0.2039 0.2105 0.1977 0.1607 0.1401  0.2774 0.3429 0.3588 0.3137 0.2214 
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Table A.6. 4  

SE of the Higher-Order Structural Parameters (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 휄  휅 

Model 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

19  0.25 JAD-TT 0.157 0.1967 0.1658 0.1576 0.2556  0.2844 0.2808 0.1905 0.2444 0.3783 

   JAD 0.1618 0.2042 0.1691 0.1614 0.2417  0.2817 0.2685 0.1854 0.2453 0.3725 

   JD-TT 0.1494 0.1968 0.1591 0.1416 0.1527  0.2782 0.3342 0.2380 0.2021 0.2974 

20 0.3 0.5 JAD-TT 0.1924 0.1632 0.1736 0.1659 0.2476  0.2966 0.299 0.2528 0.3119 0.425 

   JAD 0.1819 0.1633 0.1852 0.1820 0.2395  0.2862 0.2769 0.2496 0.3098 0.4271 

   JD-TT 0.1781 0.1734 0.1707 0.1408 0.1564  0.2664 0.3428 0.3451 0.2844 0.2652 

21  1 JAD-TT 0.2122 0.2012 0.1854 0.2201 0.2822  0.2981 0.2289 0.2500 0.3186 0.3990 

   JAD 0.2225 0.2214 0.1913 0.2308 0.2776  0.2917 0.2106 0.2499 0.3113 0.4041 

   JD-TT 0.1902 0.1864 0.1940 0.2161 0.1558  0.2660 0.2617 0.2767 0.3344 0.2269 

22  0.25 JAD-TT 0.2500 0.1624 0.1432 0.1645 0.2543  0.3046 0.2534 0.2742 0.2457 0.4093 

   JAD 0.2459 0.1707 0.1375 0.1602 0.2589  0.2985 0.2427 0.2715 0.2468 0.4127 

   JD-TT 0.2080 0.1473 0.1453 0.1471 0.1600  0.2027 0.2939 0.2756 0.2033 0.2264 

23 0.5 0.5 JAD-TT 0.2148 0.2030 0.1486 0.1775 0.2334  0.3544 0.2785 0.2193 0.2823 0.4038 

   JAD 0.2005 0.2009 0.1667 0.1795 0.2227  0.3515 0.2733 0.2207 0.2777 0.4242 

   JD-TT 0.1555 0.1900 0.1493 0.1531 0.1457  0.2813 0.3250 0.2717 0.2888 0.2773 

24  1 JAD-TT 0.2021 0.2016 0.2022 0.2245 0.1685  0.2612 0.2939 0.3366 0.3007 0.3933 

   JAD 0.2130 0.2021 0.2005 0.2306 0.1962  0.2662 0.2615 0.3359 0.3046 0.4023 

   JD-TT 0.1678 0.1947 0.1731 0.2051 0.1041  0.2482 0.4369 0.3577 0.2573 0.1978 

 

 

 



239 

 

Table A. 7 

Correlation between Generated and Estimated Item Parameters in the Simulation Study 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/
𝜎𝜆

2 

 𝛽    𝛿    휁    𝑏  
JAD-

TT 
JAD JD-TT  JADTT JAD JD-TT  JAD-

TT 
JAD JD-TT  JAD-

TT 
JAD JD-

TT 

1 200 -0.5 0.25 0.9218 0.9230 0.9256  0.8404 0.8419 0.8480  0.9970 0.9970 0.9970  0.7058 0.7058  

2   0.5 0.9114 0.9094 0.9158  0.8508 0.8489 0.8598  0.9968 0.9968 0.9968  0.6947 0.6951  

3   1 0.9097 0.9092 0.9134  0.8221 0.8192 0.8288  0.9971 0.9971 0.9971  0.7429 0.7427  

4  -0.3 0.25 0.9193 0.9204 0.9201  0.8427 0.8434 0.8452  0.9971 0.9971 0.9971  0.7181 0.7181  

5   0.5 0.9202 0.9187 0.9245  0.8345 0.8341 0.8385  0.9973 0.9973 0.9973  0.7311 0.7314  

6   1 0.8995 0.8978 0.9058  0.8141 0.8144 0.8186  0.9973 0.9973 0.9973  0.7079 0.7082  

7  0.3 0.25 0.9225 0.9200 0.9197  0.8554 0.8542 0.8556  0.9972 0.9972 0.9972  0.6883 0.6879  

8   0.5 0.9209 0.9196 0.9224  0.8604 0.8588 0.8608  0.9975 0.9975 0.9975  0.6991 0.6993  

9   1 0.8967 0.8933 0.9007  0.8130 0.8077 0.8191  0.9972 0.9972 0.9972  0.7168 0.7170  

10  0.5 0.25 0.9151 0.9160 0.9177  0.8542 0.8566 0.8555  0.9972 0.9972 0.9972  0.7282 0.7283  

11   0.5 0.9126 0.9129 0.9143  0.8555 0.8556 0.8601  0.9974 0.9974 0.9974  0.7139 0.7141  

12   1 0.9080 0.9055 0.9169  0.8301 0.8232 0.8430  0.9971 0.9971 0.9971  0.6978 0.6975  

13 500 -0.5 0.25 0.9665 0.9662 0.9668  0.9293 0.9284 0.9313  0.9989 0.9989 0.9989  0.7167 0.7170  

14   0.5 0.9598 0.9592 0.9619  0.9282 0.9279 0.9299  0.9986 0.9986 0.9986  0.7240 0.7240  

15   1 0.9477 0.9461 0.9528  0.9115 0.9088 0.9155  0.9989 0.9989 0.9989  0.7356 0.7357  

16  -0.3 0.25 0.9646 0.9649 0.9646  0.9190 0.9211 0.9213  0.9989 0.9989 0.9989  0.7164 0.7168  

17   0.5 0.9573 0.9580 0.9583  0.9217 0.9236 0.9237  0.9989 0.9989 0.9989  0.7154 0.7153  

18   1 0.9496 0.9470 0.9519  0.9037 0.9018 0.9030  0.9990 0.9990 0.9990  0.7302 0.7303  

19  0.3 0.25 0.9562 0.9567 0.9572  0.9267 0.9292 0.9270  0.9989 0.9989 0.9989  0.6971 0.6971  

20   0.5 0.9587 0.9583 0.9609  0.9123 0.9115 0.9158  0.9988 0.9988 0.9988  0.7128 0.7130  

21   1 0.9524 0.9487 0.9551  0.8997 0.8939 0.9042  0.9989 0.9989 0.9989  0.7270 0.7267  

22  0.5 0.25 0.9696 0.9693 0.9704  0.9352 0.9351 0.9366  0.9989 0.9989 0.9989  0.7249 0.7250  

23   0.5 0.9622 0.9624 0.9636  0.9197 0.9201 0.9219  0.9990 0.9990 0.9990  0.7389 0.7385  

24   1 0.9492 0.9457 0.9541  0.9134 0.9087 0.9164  0.9990 0.9990 0.9990  0.7098 0.7096  

 



240 

 

Table A. 8 

Bias of the Item Mean Vector 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 휇𝛽     휇𝛿     휇   

JAD-TT JAD JD-TT  JAD-TT JAD JD-TT  JAD-TT JAD JD-TT 

1 200 -0.5 0.25 -0.0177 0.0999 -0.0310  0.1344 -0.114 0.1643  0.0805 0.0815 0.0771 

2   0.5 -0.0090 0.1311 -0.0398  0.0135 -0.2701 0.0516  -0.0969 -0.0939 -0.0956 

3   1 0.1033 0.2576 0.0738  -0.1584 -0.4660 -0.1055  0.3801 0.3802 0.3781 

4  -0.3 0.25 -0.0354 0.0838 -0.0591  0.1355 -0.1128 0.1658  -0.0204 -0.0202 -0.0207 

5   0.5 0.0086 0.1373 -0.0182  6.00E-04 -0.2644 0.0419  0.0973 0.0982 0.0965 

6   1 0.0747 0.2178 0.0466  -0.1326 -0.4150 -0.0896  -0.077 -0.0773 -0.0785 

7  0.3 0.25 -0.0285 0.0891 -0.0435  0.1128 -0.1326 0.1425  0.1278 0.1282 0.1274 

8   0.5 0.0101 0.1383 -0.0127  -0.0421 -0.3038 -0.0087  0.2466 0.2503 0.2472 

9   1 0.1277 0.2759 0.1094  -0.1539 -0.4638 -0.1067  0.0346 0.0335 0.0332 

10  0.5 0.25 -0.0320 0.0868 -0.0436  0.0498 -0.1898 0.0737  -0.1531 -0.1535 -0.1518 

11   0.5 0.0175 0.1466 -0.0059  0.0073 -0.2605 0.0485  0.2717 0.2744 0.2713 

12   1 0.1388 0.2859 0.1160  -0.1413 -0.4523 -0.0974  0.2149 0.2168 0.2178 

13 500 -0.5 0.25 -0.0121 0.0744 -0.0275  0.0269 -0.1570 0.0521  -0.1573 -0.1562 -0.1571 

14   0.5 0.0579 0.1698 0.0464  -0.0335 -0.2668 3.00E-04  0.1975 0.1987 0.1963 

15   1 0.1167 0.2380 0.0893  -0.2218 -0.4804 -0.1681  0.1707 0.1749 0.1709 

16  -0.3 0.25 0.0074 0.1018 -0.0076  0.0324 -0.1652 0.0570  0.0898 0.0913 0.0894 

17   0.5 0.0467 0.1566 0.0350  -0.0484 -0.2786 -0.0184  0.0620 0.0638 0.0622 

18   1 0.1141 0.2443 0.0931  -0.2190 -0.4821 -0.1741  -0.2807 -0.2812 -0.283 

19  0.3 0.25 -0.0205 0.0714 -0.0358  0.0480 -0.1459 0.0723  -0.1224 -0.1229 -0.1227 

20   0.5 0.0139 0.1185 -0.0028  -0.0453 -0.2598 -0.0105  0.1572 0.1558 0.157 

21   1 0.0794 0.2026 0.0636  -0.1361 -0.3992 -0.0934  -0.1198 -0.1185 -0.1192 

22  0.5 0.25 0.0284 0.1189 0.0203  -0.0304 -0.2198 -0.0150  -0.0493 -0.0523 -0.051 

23   0.5 0.1019 0.2075 0.0867  -0.0814 -0.3014 -0.0490  -0.0411 -0.0426 -0.0415 

24   1 0.1151 0.2453 0.0964  -0.2087 -0.4741 -0.1602  -0.0454 -0.0458 -0.0461 
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Table A. 9  

SE of the Item Mean Vector 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

 휇𝛽     휇𝛿     휇   

JAD-TT JAD JD-TT  JADTT JAD JD-TT  JAD-TT JAD JD-TT 

1 200 -0.5 0.25 0.2604 0.2467 0.2639  0.2806 0.2578 0.2739  0.4571 0.4601 0.4582 

2   0.5 0.1773 0.1623 0.1753  0.1867 0.1737 0.1854  0.5314 0.5309 0.5309 

3   1 0.1603 0.1492 0.1746  0.2158 0.1938 0.2198  1.0541 1.0509 1.0535 

4  -0.3 0.25 0.2373 0.2296 0.2470  0.3127 0.2983 0.3158  0.4047 0.4057 0.4073 

5   0.5 0.1983 0.1864 0.2109  0.2120 0.1973 0.2225  0.7444 0.7460 0.7440 

6   1 0.2581 0.2427 0.2552  0.2217 0.2155 0.2252  1.0324 1.0308 1.0333 

7  0.3 0.25 0.2187 0.2093 0.2240  0.1760 0.1672 0.1677  0.4965 0.4976 0.4983 

8   0.5 0.2203 0.2064 0.2294  0.2456 0.2286 0.2458  0.6607 0.6637 0.6610 

9   1 0.2175 0.1999 0.2237  0.2171 0.1927 0.2217  0.9810 0.9808 0.9808 

10  0.5 0.25 0.2120 0.2032 0.2139  0.2082 0.204 0.2128  0.5203 0.5223 0.5210 

11   0.5 0.2050 0.1893 0.2131  0.2344 0.2044 0.2346  0.6219 0.6266 0.6250 

12   1 0.2092 0.1859 0.2164  0.1925 0.1612 0.1942  0.9132 0.9118 0.9114 

13 500 -0.5 0.25 0.1668 0.1545 0.1712  0.2161 0.1982 0.2162  0.4234 0.4221 0.4210 

14   0.5 0.1758 0.1587 0.1760  0.1608 0.1421 0.1641  0.5330 0.5319 0.5323 

15   1 0.1761 0.1611 0.1841  0.2221 0.1925 0.2258  0.9897 0.9915 0.9888 

16  -0.3 0.25 0.2174 0.2040 0.2216  0.2078 0.1884 0.2087  0.5440 0.5431 0.5448 

17   0.5 0.2281 0.2089 0.2371  0.1942 0.1739 0.1958  0.7726 0.7710 0.7723 

18   1 0.1873 0.1668 0.1933  0.1850 0.1609 0.1837  1.1501 1.1507 1.1501 

19  0.3 0.25 0.1823 0.1702 0.1823  0.2344 0.2107 0.2338  0.6022 0.6016 0.6010 

20   0.5 0.1923 0.1916 0.1975  0.1954 0.1886 0.1947  0.7396 0.7402 0.7407 

21   1 0.1602 0.1417 0.1601  0.2035 0.1762 0.2010  1.0160 1.0165 1.0171 

22  0.5 0.25 0.1660 0.1572 0.1653  0.1880 0.1751 0.1900  0.5913 0.5928 0.5921 

23   0.5 0.2171 0.2012 0.2200  0.1941 0.1741 0.1968  0.6858 0.6878 0.6862 

24   1 0.1890 0.1780 0.1943  0.2044 0.1784 0.2055  0.7560 0.7567 0.7581 
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Table A.10. 1  

Bias of the Item Variance and Covariance Matrix (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

1  0.25 JAD-TT 0.1717 -0.0479 0.0043 0.1683 0.0992 -0.0016 -0.0351 0.0412 -0.2048 -0.6255 

   JAD 0.0749 0.0323 0.0142 0.1833 -0.0040 -0.0079 -0.0419 0.0415 -0.2048 -0.6258 

   JD-TT 0.2269 -0.1150 -1.00E-04 NA 0.1869 0.0041 NA 0.0413 NA NA 

2 -0.5 0.5 JAD-TT -0.0531 0.1064 0.0117 0.2026 0.0078 0.0142 -0.0208 0.0431 -0.2112 -0.6267 

   JAD -0.1651 0.2087 0.0277 0.2198 -0.1325 -9.00E-04 -0.034 0.0428 -0.2117 -0.6269 

   JD-TT 0.0027 0.0399 0.0058 NA 0.0971 0.0214 NA 0.0428 NA NA 

3  1 JAD-TT -0.0197 0.1770 0.0136 0.1521 -0.1598 -0.0308 -0.0285 0.0466 -0.1966 -0.6110 

   JAD -0.1651 0.2998 0.0325 0.1811 -0.3049 -0.0470 -0.0507 0.0468 -0.1966 -0.6110 

   JD-TT 0.0304 0.1088 0.0102 NA -0.0680 -0.0239 NA 0.0466 NA NA 

4  0.25 JAD-TT -0.0064 0.1328 0.0102 0.1827 -0.0780 -0.0124 -0.0508 0.0365 -0.2062 -0.6202 

   JAD -0.0910 0.2034 0.0203 0.1965 -0.1740 -0.0185 -0.061 0.0367 -0.2055 -0.6194 

   JD-TT 0.0453 0.0652 0.0057 NA 0.0036 -0.0048 NA 0.0363 NA NA 

5 -0.3 0.5 JAD-TT 0.0312 0.1105 0.0215 0.1913 -0.0615 -0.0374 -0.0676 0.0566 -0.2088 -0.6445 

   JAD -0.0777 0.1967 0.0346 0.2103 -0.1707 -0.0458 -0.0791 0.0566 -0.2088 -0.6452 

   JD-TT 0.0929 0.0295 0.0178 NA 0.0483 -0.0298 NA 0.0567 NA NA 

6  1 JAD-TT -0.1295 0.2722 0.0336 0.2125 -0.2924 -0.0390 -0.0658 0.0479 -0.2105 -0.6493 

   JAD -0.2229 0.3420 0.0467 0.2279 -0.3835 -0.0473 -0.0737 0.0480 -0.2098 -0.6482 

   JD-TT -0.0899 0.2180 0.0282 NA -0.2178 -0.0310 NA 0.0479 NA NA 
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Table A.10. 2  

Bias of the Item Variance and Covariance Matrix (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

7  0.25 JAD-TT 0.0681 0.0425 0.0087 0.1753 0.0044 -0.0152 -0.0320 0.0513 -0.2085 -0.6138 

   JAD -0.0319 0.1275 0.0203 0.1921 -0.0985 -0.0236 -0.0433 0.0512 -0.2089 -0.6147 

   JD-TT 0.0990 -0.0067 0.0072 NA 0.0766 -0.0092 NA 0.0511 NA NA 

8 0.3 0.5 JAD-TT 0.0431 0.0241 0.0303 0.1711 0.0728 -0.0058 -0.0019 0.0336 -0.2183 -0.6265 

   JAD -0.0724 0.1304 0.0449 0.1887 -0.0642 -0.0205 -0.0157 0.0336 -0.2184 -0.6265 

   JD-TT 0.0918 -0.0401 0.0282 NA 0.1657 -0.0016 NA 0.0336 NA NA 

9  1 JAD-TT -0.0831 0.2238 0.0196 0.1928 -0.1935 -0.0469 -0.0850 0.0736 -0.1919 -0.6157 

   JAD -0.2027 0.3259 0.0348 0.2115 -0.3253 -0.0550 -0.0937 0.0737 -0.1916 -0.6156 

   JD-TT -0.0382 0.1659 0.0150 NA -0.1172 -0.0392 NA 0.0737 NA NA 

10  0.25 JAD-TT -0.0353 0.1520 -9.00E-04 0.2156 -0.1374 -0.0101 -0.0461 0.0645 -0.1988 -0.6538 

   JAD -0.1177 0.2185 0.0110 0.2277 -0.2241 -0.0172 -0.0516 0.0647 -0.1988 -0.6534 

   JD-TT -7.00E-04 0.1085 -0.0037 NA -0.0799 -0.0030 NA 0.0646 NA NA 

11 0.5 0.5 JAD-TT 0.0612 0.0361 -0.0103 0.1756 0.0288 0.0044 -0.0298 0.0563 -0.1992 -0.6065 

   JAD -0.0428 0.1282 0.0045 0.1938 -0.0879 -0.0076 -0.0445 0.0567 -0.1990 -0.6063 

   JD-TT 0.1139 -0.0289 -0.0145 NA 0.1214 0.0115 NA 0.0567 NA NA 

12  1 JAD-TT -0.1340 0.2241 0.0409 0.1953 -0.1675 -0.0455 -0.0410 0.0339 -0.1972 -0.6177 

   JAD -0.2508 0.3264 0.0567 0.2177 -0.3026 -0.0575 -0.0580 0.0340 -0.1973 -0.6181 

   JD-TT -0.0799 0.1527 0.0380 NA -0.0646 -0.0390 NA 0.0341 NA NA 
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Table A.10. 3  

Bias of the Item Variance and Covariance Matrix (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

13  0.25 JAD-TT 0.0905 0.0049 0.0106 0.2059 0.0362 -0.0058 -0.0465 0.0457 -0.2114 -0.6313 

   JAD 0.0256 0.0592 0.0173 0.2161 -0.0297 -0.0111 -0.0544 0.0459 -0.2113 -0.6312 

   JD-TT 0.1149 -0.0233 0.0090 NA 0.0749 -0.0053 NA 0.0460 NA NA 

14 -0.5 0.5 JAD-TT 0.0169 0.0837 -0.011 0.2027 -0.0619 0.0092 -0.0593 0.0372 -0.1996 -0.6219 

   JAD -0.0697 0.1589 0.0012 0.2155 -0.1559 -3.00E-04 -0.0664 0.0368 -0.2000 -0.6220 

   JD-TT 0.0525 0.0454 -0.0135 NA -0.0066 0.0135 NA 0.0369 NA NA 

15  1 JAD-TT -0.1392 0.2534 0.0125 0.2009 -0.2666 -0.0216 -0.0334 0.0757 -0.194 -0.6231 

   JAD -0.2366 0.3340 0.0264 0.2205 -0.3681 -0.0332 -0.0496 0.0761 -0.1942 -0.6239 

   JD-TT -0.0918 0.2000 0.0070 NA -0.1901 -0.0137 NA 0.0758 NA NA 

16  0.25 JAD-TT 0.0459 0.0575 9.00E-04 0.2128 -0.0310 -0.0098 -0.0611 0.0451 -0.2122 -0.6440 

   JAD -0.0314 0.1245 0.0104 0.2234 -0.1105 -0.0178 -0.0678 0.0454 -0.2124 -0.6449 

   JD-TT 0.0802 0.0226 -0.0022 NA 0.0141 -0.0057 NA 0.0454 NA NA 

17 -0.3 0.5 JAD-TT 0.0037 0.0679 0.0144 0.1678 -0.0178 -0.0182 -0.0071 0.0560 -0.1992 -0.6102 

   JAD -0.0820 0.1433 0.0251 0.1821 -0.1131 -0.0249 -0.0180 0.0564 -0.1989 -0.6107 

   JD-TT 0.0375 0.0294 0.0114 NA 0.0411 -0.0153 NA 0.0560 NA NA 

18  1 JAD-TT -0.1505 0.2964 0.0042 0.1902 -0.3380 -0.0430 -0.0688 0.0627 -0.1948 -0.5968 

   JAD -0.2440 0.3677 0.0199 0.2089 -0.4275 -0.0526 -0.0803 0.0627 -0.1946 -0.5965 

   JD-TT -0.1067 0.2470 -0.0012 NA -0.2725 -0.0369 NA 0.0630 NA NA 

 



245 

 

Table A.10. 4  

Bias of the Item Variance and Covariance Matrix (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

19  0.25 JAD-TT 0.0225 0.0562 0.0261 0.2074 0.0065 -0.0324 -0.0508 0.0399 -0.2098 -0.6479 

   JAD -0.0466 0.1120 0.0336 0.2195 -0.0658 -0.0359 -0.0577 0.0397 -0.2097 -0.6474 

   JD-TT 0.0700 0.0042 0.0238 NA 0.0713 -0.0295 NA 0.0397 NA NA 

20 0.3 0.5 JAD-TT 0.0372 0.0794 -0.0058 0.1768 -0.1158 -0.0047 -0.0139 0.0588 -0.1995 -0.6449 

   JAD -0.0461 0.1498 0.0055 0.1903 -0.1985 -0.0140 -0.0252 0.0586 -0.1995 -0.6452 

   JD-TT 0.0805 0.0372 -0.0096 NA -0.0617 -0.0021 NA 0.0587 NA NA 

21  1 JAD-TT -0.1077 0.2349 0.0226 0.1985 -0.2588 -0.0540 -0.0569 0.0565 -0.1941 -0.617 

   JAD -0.1906 0.3028 0.0339 0.2134 -0.3550 -0.0590 -0.0622 0.0560 -0.1943 -0.6173 

   JD-TT -0.0788 0.2006 0.0201 NA -0.2012 -0.0528 NA 0.0562 NA NA 

22  0.25 JAD-TT 0.1440 -0.0513 -0.0389 0.1603 0.0481 0.0392 0.0075 0.0536 -0.1994 -0.6279 

   JAD 0.0628 0.0202 -0.0289 0.1731 -0.0376 0.0311 -0.0024 0.0536 -0.1993 -0.6279 

   JD-TT 0.1718 -0.0853 -0.0412 NA 0.0948 0.0436 NA 0.0536 NA NA 

23 0.5 0.5 JAD-TT 0.0068 0.1011 0.0133 0.1937 -0.0952 -0.0213 -0.0405 0.0517 -0.2068 -0.6308 

   JAD -0.0770 0.1698 0.0234 0.207 -0.1746 -0.0289 -0.0507 0.0517 -0.2071 -0.6306 

   JD-TT 0.0522 0.0454 0.0090 NA -0.0212 -0.0147 NA 0.0517 NA NA 

24  1 JAD-TT -0.0901 0.1855 0.0024 0.1612 -0.1918 -0.0065 -0.0134 0.0555 -0.1937 -0.5970 

   JAD -0.1942 0.2733 0.0186 0.1855 -0.2988 -0.0204 -0.0337 0.0552 -0.1939 -0.5970 

   JD-TT -0.0554 0.1407 -0.0013 NA -0.1241 -0.0019 NA 0.0555 NA NA 
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Table A.11. 1  

SE of the Item Variance and Covariance Matrix (N-200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

1  0.25 JAD-TT 0.3794 0.3203 0.1345 0.1589 0.3363 0.1329 0.1305 0.0761 0.0719 0.0986 

   JAD 0.3494 0.2915 0.1270 0.1498 0.3058 0.1216 0.1189 0.0761 0.0724 0.0996 

   JD-TT 0.3970 0.3355 0.1386 NA 0.3560 0.1370 NA 0.0755 NA NA 

2 -0.5 0.5 JAD-TT 0.3495 0.4004 0.0968 0.1105 0.5103 0.1072 0.1162 0.0820 0.0697 0.1030 

   JAD 0.2989 0.3378 0.0891 0.1051 0.4252 0.1009 0.1070 0.0816 0.0693 0.1031 

   JD-TT 0.3678 0.4287 0.1006 NA 0.5511 0.1127 NA 0.0817 NA NA 

3  1 JAD-TT 0.3316 0.3064 0.1165 0.1461 0.3328 0.1182 0.1457 0.0803 0.0626 0.0917 

   JAD 0.2663 0.2395 0.1050 0.1258 0.2664 0.1032 0.1234 0.0803 0.0624 0.0907 

   JD-TT 0.3669 0.329 0.1227 NA 0.3463 0.1255 NA 0.0804 NA NA 

4  0.25 JAD-TT 0.3229 0.2878 0.0975 0.1278 0.3093 0.0950 0.1028 0.0659 0.0662 0.1062 

   JAD 0.3100 0.2805 0.0919 0.1224 0.2925 0.0889 0.1002 0.0666 0.0667 0.1068 

   JD-TT 0.3523 0.3250 0.1002 NA 0.3484 0.0978 NA 0.0663 NA NA 

5 -0.3 0.5 JAD-TT 0.3998 0.3980 0.1145 0.1450 0.4157 0.1276 0.1625 0.0649 0.061 0.0860 

   JAD 0.3447 0.3374 0.1097 0.1380 0.3494 0.1199 0.1498 0.0646 0.0611 0.0860 

   JD-TT 0.4295 0.4435 0.1171 NA 0.4689 0.1330 NA 0.0649 NA NA 

6  1 JAD-TT 0.2402 0.2117 0.1100 0.0966 0.2363 0.0953 0.0782 0.0763 0.0585 0.0814 

   JAD 0.2082 0.1795 0.1033 0.0909 0.2008 0.0885 0.0705 0.0767 0.0594 0.0821 

   JD-TT 0.2601 0.2342 0.1133 NA 0.2502 0.1006 NA 0.0765 NA NA 
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Table A.11. 2  

SE of the Item Variance and Covariance Matrix (N=200) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

7  0.25 JAD-TT 0.3583 0.3186 0.1401 0.1537 0.3535 0.1230 0.1522 0.0711 0.0628 0.0828 

   JAD 0.3149 0.2833 0.1325 0.1462 0.3222 0.1159 0.1440 0.0714 0.0627 0.0815 

   JD-TT 0.3633 0.3381 0.1435 NA 0.3814 0.1281 NA 0.0708 NA NA 

8 0.3 0.5 JAD-TT 0.3342 0.3027 0.0946 0.1418 0.3233 0.1180 0.1432 0.0445 0.0578 0.1010 

   JAD 0.2834 0.2508 0.0896 0.1353 0.2659 0.1113 0.1341 0.0445 0.0581 0.1016 

   JD-TT 0.3848 0.3533 0.0962 NA 0.3686 0.1227 NA 0.0448 NA NA 

9  1 JAD-TT 0.2964 0.2780 0.0946 0.1389 0.2842 0.0921 0.1288 0.0921 0.0767 0.0902 

   JAD 0.2558 0.2322 0.0912 0.1289 0.2305 0.0894 0.1190 0.0916 0.0763 0.0905 

   JD-TT 0.3155 0.2952 0.0964 NA 0.3005 0.0963 NA 0.0923 NA NA 

10  0.25 JAD-TT 0.3215 0.3423 0.1105 0.1105 0.4081 0.1143 0.1104 0.0765 0.0613 0.0788 

   JAD 0.2882 0.2988 0.1047 0.1048 0.3551 0.1096 0.1049 0.0766 0.0615 0.0791 

   JD-TT 0.3432 0.3606 0.1111 NA 0.4296 0.1158 NA 0.0764 NA NA 

11 0.5 0.5 JAD-TT 0.4476 0.4406 0.1367 0.1573 0.5063 0.1291 0.1430 0.0725 0.0848 0.1017 

   JAD 0.3915 0.3798 0.1273 0.1485 0.4359 0.119 0.1386 0.0731 0.0849 0.1011 

   JD-TT 0.4733 0.4772 0.1387 NA 0.5531 0.1353 NA 0.0726 NA NA 

12  1 JAD-TT 0.2869 0.3009 0.1164 0.1505 0.3440 0.1080 0.1313 0.0569 0.0638 0.0911 

   JAD 0.2515 0.2510 0.1089 0.1398 0.2758 0.1017 0.1192 0.0567 0.0639 0.0917 

   JD-TT 0.2978 0.3168 0.1169 NA 0.3685 0.1111 NA 0.0572 NA NA 
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Table A.11. 3  

SE of the Item Variance and Covariance Matrix (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

13  0.25 JAD-TT 0.3154 0.3052 0.1129 0.1306 0.3283 0.1094 0.1280 0.0741 0.0659 0.0898 

   JAD 0.2883 0.2814 0.1074 0.1259 0.3045 0.1037 0.1245 0.0738 0.0658 0.0895 

   JD-TT 0.3146 0.3122 0.1102 NA 0.3403 0.1095 NA 0.0742 NA NA 

14 -0.5 0.5 JAD-TT 0.3051 0.2598 0.1267 0.1429 0.2964 0.1086 0.1221 0.0737 0.0609 0.0921 

   JAD 0.2679 0.2227 0.1182 0.1342 0.2602 0.0999 0.1110 0.0736 0.0607 0.0924 

   JD-TT 0.3151 0.2625 0.1275 NA 0.2930 0.1086 NA 0.0735 NA NA 

15  1 JAD-TT 0.2398 0.1613 0.0909 0.112 0.1694 0.0858 0.0816 0.0845 0.0475 0.0751 

   JAD 0.2184 0.1468 0.0868 0.1069 0.1447 0.0781 0.0785 0.0846 0.0473 0.0743 

   JD-TT 0.2588 0.1791 0.0942 NA 0.1884 0.0904 NA 0.0846 NA NA 

16  0.25 JAD-TT 0.2951 0.2785 0.0959 0.0926 0.3011 0.0989 0.1009 0.0747 0.0598 0.0879 

   JAD 0.2715 0.2568 0.0938 0.0897 0.2800 0.0970 0.0964 0.0753 0.0599 0.0876 

   JD-TT 0.3050 0.2891 0.1004 NA 0.3137 0.1048 NA 0.0753 NA NA 

17 -0.3 0.5 JAD-TT 0.3381 0.2973 0.1100 0.1599 0.3229 0.1270 0.1511 0.0779 0.0670 0.0889 

   JAD 0.3044 0.2756 0.1026 0.1512 0.3078 0.1179 0.1415 0.0784 0.0672 0.0887 

   JD-TT 0.3515 0.3162 0.1138 NA 0.3408 0.1306 NA 0.0781 NA NA 

18  1 JAD-TT 0.2788 0.2015 0.1107 0.1395 0.2124 0.0849 0.1004 0.0686 0.0850 0.0899 

   JAD 0.2412 0.1737 0.1051 0.1300 0.1741 0.0785 0.0913 0.0691 0.0851 0.0901 

   JD-TT 0.2991 0.2277 0.1174 NA 0.2448 0.0896 NA 0.0689 NA NA 
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Table A.11. 4  

SE of the Item Variance and Covariance Matrix (N=500) 

Cond. 

No. 

 

𝜌𝜃𝜏  

 

𝜎𝛾
2/𝜎𝜆

2 

 Item Variance/Covariance Matrix 

Model 𝜎𝛽
2 𝜎𝛽𝛿 𝜎𝛽  𝜎𝛽𝑏 𝜎𝛿

2 𝜎𝛿  𝜎𝛿𝑏 𝜎2 𝜎 𝑏 𝜎𝑏
2 

19  0.25 JAD-TT 0.2884 0.2856 0.1066 0.1112 0.3148 0.1122 0.1190 0.0577 0.0574 0.0943 

   JAD 0.2619 0.2574 0.1023 0.1027 0.2826 0.1070 0.1103 0.0576 0.0577 0.0943 

   JD-TT 0.3131 0.3123 0.1082 NA 0.3463 0.1147 NA 0.0572 NA NA 

20 0.3 0.5 JAD-TT 0.3734 0.3294 0.1097 0.1458 0.3332 0.1168 0.1371 0.0727 0.0550 0.0768 

   JAD 0.3436 0.3014 0.1057 0.1416 0.2984 0.1117 0.1339 0.0724 0.0551 0.0766 

   JD-TT 0.3814 0.3438 0.1112 NA 0.3516 0.1188 NA 0.0726 NA NA 

21  1 JAD-TT 0.2504 0.2114 0.1026 0.1289 0.2672 0.096 0.1022 0.0797 0.0626 0.0841 

   JAD 0.2249 0.1753 0.0985 0.1243 0.2111 0.0906 0.0951 0.0795 0.0625 0.0839 

   JD-TT 0.2573 0.2256 0.1036 NA 0.2943 0.0975 NA 0.0795 NA NA 

22  0.25 JAD-TT 0.3255 0.3225 0.1344 0.1340 0.3909 0.1280 0.1186 0.0648 0.0684 0.0985 

   JAD 0.3043 0.3024 0.1295 0.1288 0.3611 0.1240 0.1129 0.0649 0.0681 0.0981 

   JD-TT 0.3424 0.3398 0.1377 NA 0.4094 0.1339 NA 0.0649 NA NA 

23 0.5 0.5 JAD-TT 0.2503 0.2049 0.0985 0.0917 0.2676 0.1039 0.0901 0.0626 0.0518 0.0816 

   JAD 0.2217 0.1834 0.0947 0.0865 0.2429 0.0995 0.0847 0.0626 0.0517 0.0818 

   JD-TT 0.2659 0.2211 0.1007 NA 0.2953 0.1078 NA 0.0627 NA NA 

24  1 JAD-TT 0.2891 0.2846 0.1129 0.1273 0.2847 0.1105 0.1219 0.0856 0.0667 0.0841 

   JAD 0.2533 0.2481 0.1089 0.1183 0.2420 0.1089 0.1127 0.0854 0.0664 0.0846 

   JD-TT 0.3009 0.3013 0.1143 NA 0.3092 0.1129 NA 0.0855 NA NA 
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Table A.12. 1  

Bias of the Testlet Variance and Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

𝜎𝛾1
2   𝜎𝜆1

2   𝜎𝛾1𝜆1
  𝜎𝛾2

2   𝜎𝜆2

2  

JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT 

1 200 -0.5 0.25 0.1225 0.1458  -0.2143 -0.2143  0.2506 0.2499  0.1360 0.1519  -0.2129 -0.2129 

2   0.5 0.0199 0.0787  -0.4638 -0.4637  0.2502 0.2487  -0.1056 -0.0666  -0.4648 -0.4647 

3   1 -0.4973 -0.4138  -0.9635 -0.9636  0.2489 0.2471  -0.5207 -0.4693  -0.9635 -0.9636 

4  -0.3 0.25 0.1459 0.1636  -0.2138 -0.2138  0.2501 0.2497  0.1178 0.1343  -0.2143 -0.2143 

5   0.5 -0.0727 -0.0470  -0.4638 -0.4639  0.2520 0.2512  -0.0999 -0.0658  -0.4629 -0.4629 

6   1 -0.5466 -0.4882  -0.9630 -0.9630  0.2502 0.2492  -0.5265 -0.4562  -0.9640 -0.9640 

7  0.3 0.25 0.1257 0.1639  -0.2125 -0.2126  0.2485 0.2489  0.1015 0.1206  -0.2136 -0.2136 

8   0.5 -0.0489 -0.0004  -0.4649 -0.4649  0.2501 0.2506  -0.1068 -0.0877  -0.4650 -0.4651 

9   1 -0.4541 -0.3783  -0.9630 -0.9631  0.2508 0.2508  -0.5857 -0.5291  -0.9630 -0.9631 

10  0.5 0.25 0.1355 0.1620  -0.2134 -0.2134  0.2472 0.2474  0.1097 0.1394  -0.2137 -0.2138 

11   0.5 -0.0659 -0.0231  -0.4636 -0.4635  0.2479 0.249  -0.0994 -0.0752  -0.4638 -0.4638 

12   1 -0.5049 -0.4348  -0.9641 -0.9641  0.2498 0.2511  -0.5710 -0.5322  -0.9643 -0.9642 

13 500 -0.5 0.25 0.0069 0.0231  -0.2263 -0.2264  0.2514 0.2512  0.0207 0.0316  -0.2255 -0.2255 

14   0.5 -0.1321 -0.1101  -0.4755 -0.4755  0.2507 0.2493  -0.1534 -0.1116  -0.4757 -0.4757 

15   1 -0.5784 -0.4995  -0.9763 -0.9763  0.2523 0.2521  -0.6448 -0.5826  -0.9761 -0.9761 

16  -0.3 0.25 0.0561 0.0812  -0.2261 -0.2262  0.2509 0.2507  0.0415 0.0633  -0.2252 -0.2252 

17   0.5 -0.1606 -0.1327  -0.4757 -0.4757  0.2500 0.2496  -0.1532 -0.1310  -0.4760 -0.4760 

18   1 -0.5659 -0.4735  -0.9759 -0.9759  0.2499 0.2491  -0.6302 -0.5754  -0.9760 -0.9760 

19  0.3 0.25 0.0425 0.0627  -0.2256 -0.2256  0.2479 0.2481  0.0214 0.0373  -0.2253 -0.2253 

20   0.5 -0.1501 -0.1204  -0.4757 -0.4756  0.2482 0.2484  -0.2075 -0.1803  -0.4767 -0.4767 

21   1 -0.5498 -0.4924  -0.9760 -0.9760  0.2504 0.2515  -0.6269 -0.5631  -0.9763 -0.9764 

22  0.5 0.25 0.0361 0.0517  -0.2253 -0.2253  0.2503 0.2509  0.0184 0.0353  -0.2261 -0.2261 

23   0.5 -0.1542 -0.1081  -0.4756 -0.4755  0.2499 0.2506  -0.2100 -0.1824  -0.4756 -0.4756 

24   1 -0.5739 -0.4928  -0.9761 -0.9761  0.2494 0.2507  -0.6445 -0.5893  -0.9758 -0.9758 
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Table A.12. 2  

Bias of the Testlet Variance and Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/
𝜎𝜆

2 

𝜎𝛾2𝜆2
  𝜎𝛾3

2   𝜎𝜆3

2   𝜎𝛾3𝜆3
  𝜎𝛾4

2  

JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT 

1 200 -0.5 0.25 0.2515 0.2510  0.2150 0.2766  -0.2137 -0.2137  0.2515 0.2504  0.1091 0.1196 

2   0.5 0.2495 0.2484  -0.0475 0.0373  -0.4647 -0.4647  0.2494 0.2488  -0.0503 -0.0276 

3   1 0.2523 0.2513  -0.4018 -0.2371  -0.9636 -0.9636  0.2525 0.2523  -0.4214 -0.3557 

4  -0.3 0.25 0.2505 0.2504  0.1884 0.2448  -0.2139 -0.2139  0.2504 0.2498  0.0852 0.0891 

5   0.5 0.2526 0.2526  -0.0343 0.0460  -0.4637 -0.4636  0.2538 0.2537  -0.1051 -0.079 

6   1 0.2509 0.2505  -0.4978 -0.3785  -0.9641 -0.9641  0.2506 0.2502  -0.4743 -0.4337 

7  0.3 0.25 0.2476 0.2475  0.1766 0.2154  -0.2146 -0.2146  0.2482 0.2488  0.0871 0.0953 

8   0.5 0.2488 0.2489  -0.0549 0.0260  -0.4638 -0.4639  0.2501 0.2508  -0.1056 -0.0831 

9   1 0.2460 0.2467  -0.4346 -0.2896  -0.9642 -0.9641  0.2506 0.2516  -0.4156 -0.3504 

10  0.5 0.25 0.2505 0.2512  0.1395 0.1954  -0.2134 -0.2134  0.2494 0.2501  0.1209 0.1346 

11   0.5 0.2483 0.2490  -0.0603 0.0134  -0.4645 -0.4645  0.2481 0.2494  -0.0226 0.0041 

12   1 0.2491 0.2500  -0.4156 -0.2634  -0.9648 -0.9648  0.2484 0.2491  -0.4135 -0.3634 

13 500 -0.5 0.25 0.2511 0.2505  0.1071 0.1706  -0.2258 -0.2258  0.2511 0.2508  0.0312 0.0413 

14   0.5 0.2504 0.2496  -0.0968 0.0137  -0.4756 -0.4756  0.2507 0.2494  -0.1214 -0.0938 

15   1 0.2518 0.2512  -0.5464 -0.4004  -0.9755 -0.9754  0.2521 0.2507  -0.5607 -0.4958 

16  -0.3 0.25 0.2516 0.2512  0.0783 0.1173  -0.2255 -0.2255  0.2497 0.2496  0.0598 0.0772 

17   0.5 0.2508 0.2500  -0.0778 0.0206  -0.4763 -0.4762  0.2509 0.2505  -0.1355 -0.114 

18   1 0.2525 0.2523  -0.5464 -0.4006  -0.9761 -0.9761  0.2522 0.2524  -0.5219 -0.4694 

19  0.3 0.25 0.2491 0.2495  0.0617 0.1111  -0.2257 -0.2257  0.2485 0.2488  0.0514 0.0655 

20   0.5 0.2489 0.2493  -0.1283 -0.0605  -0.4756 -0.4755  0.2479 0.2482  -0.1503 -0.1187 

21   1 0.2506 0.2510  -0.5565 -0.4236  -0.9761 -0.9761  0.2507 0.2511  -0.5445 -0.4866 

22  0.5 0.25 0.2492 0.2501  0.0637 0.1167  -0.2256 -0.2256  0.2501 0.2508  0.0193 0.0360 

23   0.5 0.2498 0.2510  -0.1005 -0.0114  -0.4756 -0.4756  0.2502 0.2515  -0.1171 -0.0783 

24   1 0.248 0.2488  -0.4737 -0.2981  -0.9756 -0.9756  0.2481 0.2491  -0.5377 -0.4998 
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Table A.12. 3  

Bias of the Testlet Variance and Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

𝜎𝜆4

2   𝜎𝛾4𝜆4
  𝜎𝛾5

2   𝜎𝜆5

2   𝜎𝛾5𝜆5
 

JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT 

1 200 -0.5 0.25 -0.2141 -0.2142  0.2501 0.2494  0.1053 0.1274  -0.2141 -0.2141  0.2512 0.2503 

2   0.5 -0.4649 -0.4649  0.2522 0.2512  -0.0466 -0.0218  -0.4645 -0.4645  0.2533 0.2525 

3   1 -0.9633 -0.9632  0.2520 0.2504  -0.5182 -0.4635  -0.9637 -0.9637  0.2534 0.2520 

4  -0.3 0.25 -0.2146 -0.2145  0.2512 0.2509  0.1398 0.1503  -0.2144 -0.2144  0.2481 0.2477 

5   0.5 -0.4650 -0.4650  0.2504 0.2499  -0.0562 -0.0282  -0.4638 -0.4638  0.2520 0.2518 

6   1 -0.9635 -0.9635  0.2525 0.2522  -0.5370 -0.4996  -0.9633 -0.9633  0.2504 0.2499 

7  0.3 0.25 -0.2137 -0.2137  0.2493 0.2498  0.1402 0.1567  -0.2133 -0.2131  0.2485 0.2489 

8   0.5 -0.4631 -0.4630  0.2502 0.2507  -0.0984 -0.0889  -0.4641 -0.4640  0.2514 0.2521 

9   1 -0.9640 -0.9640  0.2464 0.2482  -0.4535 -0.3964  -0.9633 -0.9633  0.2492 0.2498 

10  0.5 0.25 -0.2151 -0.2151  0.2484 0.2491  0.1204 0.1280  -0.2143 -0.2143  0.2511 0.2518 

11   0.5 -0.4646 -0.4645  0.2460 0.2473  -0.0439 -0.0052  -0.4639 -0.4640  0.2458 0.2464 

12   1 -0.9639 -0.9639  0.2516 0.2536  -0.4244 -0.4027  -0.9634 -0.9634  0.2492 0.2511 

13 500 -0.5 0.25 -0.2253 -0.2252  0.2501 0.2493  0.0175 0.0372  -0.2252 -0.2252  0.2516 0.2510 

14   0.5 -0.4763 -0.4762  0.2512 0.2502  -0.1478 -0.1156  -0.4760 -0.4760  0.2504 0.2497 

15   1 -0.9760 -0.9760  0.2531 0.2521  -0.5254 -0.4637  -0.9753 -0.9753  0.2494 0.2483 

16  -0.3 0.25 -0.2258 -0.2258  0.2526 0.2524  0.0354 0.0483  -0.2262 -0.2262  0.2514 0.2510 

17   0.5 -0.4759 -0.4758  0.2509 0.2505  -0.1692 -0.1467  -0.4756 -0.4755  0.2493 0.2489 

18   1 -0.9757 -0.9757  0.2521 0.2513  -0.5523 -0.5092  -0.9752 -0.9753  0.2535 0.2530 

19  0.3 0.25 -0.2261 -0.2261  0.2494 0.2500  0.0574 0.0681  -0.2259 -0.2259  0.2505 0.2506 

20   0.5 -0.4757 -0.4758  0.2514 0.2519  -0.1476 -0.1225  -0.4763 -0.4762  0.2498 0.2501 

21   1 -0.9766 -0.9766  0.2491 0.2498  -0.5713 -0.5262  -0.9763 -0.9762  0.2496 0.2497 

22  0.5 0.25 -0.2257 -0.2257  0.2488 0.2494  0.0371 0.0473  -0.2254 -0.2254  0.2495 0.2500 

23   0.5 -0.4759 -0.4759  0.2503 0.2515  -0.1767 -0.1562  -0.4757 -0.4757  0.2489 0.2496 

24   1 -0.9758 -0.9758  0.2487 0.2499  -0.5319 -0.4831  -0.9760 -0.9761  0.2486 0.2496 
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Table A.13. 1  

SE of the Testlet Variance/Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

𝜎𝛾1
2   𝜎𝜆1

2   𝜎𝛾1𝜆1
  𝜎𝛾2

2   𝜎𝜆2

2  

JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT 

1 200 -0.5 0.25 0.1036 0.1149  0.0028 0.0027  0.0063 0.006  0.1377 0.1486  0.0032 0.0033 

2   0.5 0.1562 0.1889  0.0030 0.0031  0.0101 0.0108  0.1010 0.1211  0.0028 0.0028 

3   1 0.1910 0.2614  0.0035 0.0035  0.0133 0.0144  0.2284 0.2741  0.0037 0.0036 

4  -0.3 0.25 0.1041 0.1150  0.0031 0.0031  0.0071 0.0076  0.1081 0.1107  0.0034 0.0034 

5   0.5 0.1351 0.1301  0.0029 0.0028  0.0090 0.0093  0.1019 0.1322  0.0028 0.0028 

6   1 0.1670 0.2241  0.0030 0.0030  0.0084 0.0096  0.2127 0.2447  0.0027 0.0027 

7  0.3 0.25 0.1136 0.1456  0.0032 0.0032  0.0077 0.0088  0.1011 0.1081  0.0034 0.0034 

8   0.5 0.1427 0.1735  0.0022 0.0022  0.0073 0.0074  0.1187 0.1322  0.0023 0.0023 

9   1 0.2199 0.2595  0.0042 0.0042  0.0127 0.0141  0.1278 0.1690  0.0027 0.0028 

10  0.5 0.25 0.1477 0.1857  0.0024 0.0024  0.0068 0.0073  0.0934 0.1130  0.0040 0.0040 

11   0.5 0.1233 0.1425  0.0031 0.0031  0.0086 0.0086  0.1384 0.1467  0.0027 0.0027 

12   1 0.1927 0.2120  0.0018 0.0018  0.0086 0.0099  0.1467 0.1631  0.0027 0.0026 

13 500 -0.5 0.25 0.0560 0.0639  0.0021 0.0021  0.0054 0.0058  0.0651 0.0716  0.0026 0.0027 

14   0.5 0.1348 0.1337  0.0018 0.0017  0.0071 0.0075  0.1109 0.1292  0.0016 0.0016 

15   1 0.1501 0.1781  0.0020 0.0020  0.0057 0.0069  0.1089 0.1355  0.0017 0.0017 

16  -0.3 0.25 0.1082 0.1249  0.0017 0.0017  0.0034 0.0037  0.0827 0.0950  0.0021 0.0021 

17   0.5 0.1114 0.1197  0.0025 0.0025  0.0064 0.0070  0.1302 0.1310  0.0022 0.0022 

18   1 0.1616 0.2090  0.0020 0.0019  0.0060 0.0070  0.1242 0.1354  0.0021 0.0021 

19  0.3 0.25 0.0768 0.0807  0.0016 0.0016  0.0043 0.0046  0.0742 0.0843  0.0022 0.0021 

20   0.5 0.1126 0.1212  0.0019 0.0019  0.0056 0.0061  0.0644 0.0699  0.0018 0.0018 

21   1 0.1247 0.1469  0.0022 0.0022  0.0060 0.0070  0.1171 0.1426  0.0020 0.0020 

22  0.5 0.25 0.0576 0.0676  0.0027 0.0028  0.0044 0.0046  0.0627 0.0632  0.0023 0.0022 

23   0.5 0.0914 0.1179  0.0019 0.0018  0.0060 0.0068  0.0808 0.0923  0.0018 0.0018 

24   1 0.1405 0.1699  0.0022 0.0022  0.0066 0.0076  0.0803 0.1143  0.0023 0.0023 
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Table A.13. 2  

SE of the Testlet Variance and Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

𝜎𝛾2𝜆2
  𝜎𝛾3

2   𝜎𝜆3

2   𝜎𝛾3𝜆3
  𝜎𝛾4

2  

JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT  JAD-TT JD-TT 

1 200 -0.5 0.25 0.0076 0.0075  0.172 0.1911  0.0028 0.0028  0.0088 0.0100  0.0982 0.0955 

2   0.5 0.0059 0.0064  0.2183 0.288  0.0019 0.0020  0.008 0.0099  0.1295 0.1313 

3   1 0.0092 0.0098  0.2107 0.3023  0.0039 0.0038  0.0088 0.0105  0.1989 0.2093 

4  -0.3 0.25 0.0085 0.0088  0.1459 0.2154  0.0029 0.0029  0.0055 0.0059  0.0922 0.0927 

5   0.5 0.0064 0.0072  0.1383 0.1686  0.0036 0.0035  0.0102 0.0111  0.1145 0.1445 

6   1 0.0121 0.0126  0.1835 0.2767  0.0023 0.0023  0.0068 0.0093  0.1655 0.1817 

7  0.3 0.25 0.0073 0.0072  0.1385 0.1441  0.0029 0.0030  0.0097 0.0101  0.0807 0.0850 

8   0.5 0.0065 0.0072  0.1203 0.1804  0.0028 0.0027  0.0071 0.0079  0.1052 0.1131 

9   1 0.0105 0.0109  0.1598 0.2221  0.0027 0.0027  0.0096 0.0115  0.2900 0.3242 

10  0.5 0.25 0.0077 0.0079  0.1183 0.1575  0.0028 0.0028  0.0072 0.0085  0.1295 0.1444 

11   0.5 0.0060 0.0063  0.1459 0.1836  0.0024 0.0025  0.0055 0.0063  0.1712 0.1872 

12   1 0.0084 0.0094  0.3041 0.3940  0.0028 0.0028  0.0104 0.0119  0.2156 0.2298 

13 500 -0.5 0.25 0.0045 0.0045  0.1165 0.1477  0.0021 0.0022  0.0057 0.0063  0.0703 0.0734 

14   0.5 0.0050 0.0051  0.1512 0.2067  0.0024 0.0023  0.0069 0.0083  0.1214 0.1268 

15   1 0.0056 0.0061  0.1072 0.1562  0.0017 0.0016  0.0068 0.0085  0.1301 0.1599 

16  -0.3 0.25 0.0062 0.0064  0.0809 0.0951  0.0018 0.0019  0.0047 0.0048  0.0955 0.0974 

17   0.5 0.0050 0.0056  0.1595 0.2252  0.0020 0.0020  0.0050 0.0058  0.1011 0.1132 

18   1 0.0081 0.0085  0.1465 0.2023  0.0022 0.0022  0.0083 0.0099  0.1445 0.1540 

19  0.3 0.25 0.0045 0.0048  0.0924 0.1205  0.0024 0.0024  0.0048 0.0054  0.0799 0.0868 

20   0.5 0.0038 0.0040  0.1153 0.1603  0.0022 0.0023  0.0068 0.0080  0.1206 0.1360 

21   1 0.0068 0.0075  0.1190 0.1721  0.0018 0.0018  0.0062 0.0074  0.1423 0.1595 

22  0.5 0.25 0.0045 0.0047  0.0807 0.1016  0.0020 0.0019  0.0036 0.0039  0.0601 0.0651 

23   0.5 0.0041 0.0047  0.1463 0.2019  0.0016 0.0017  0.0067 0.0078  0.1289 0.1490 

24   1 0.0054 0.0060  0.1550 0.2401  0.0017 0.0017  0.0087 0.0104  0.1553 0.1580 
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Table A.13. 3  

SE of the Testlet Variance and Covariance Matrix 

Cond. 

No. 

 

N 

 

𝜌𝜃𝜏  

 
𝜎𝛾

2/𝜎𝜆
2 

𝜎𝜆4

2   𝜎𝛾4𝜆4
  𝜎𝛾5

2   𝜎𝜆5

2   𝜎𝛾5𝜆5
 

JAD-

TT 

JD-TT  JAD-

TT 

JD-TT  JAD-

TT 

JD-TT  JAD-

TT 

JD-TT  JAD-

TT 

JD-TT 

1 200 -0.5 0.25 0.0028 0.0028  0.0077 0.0074  0.0885 0.1035  0.0031 0.0032  0.0075 0.0078 

2   0.5 0.0021 0.0021  0.0082 0.0089  0.1459 0.158  0.0037 0.0039  0.009 0.0094 

3   1 0.0035 0.0036  0.0129 0.0137  0.1758 0.2074  0.0029 0.0030  0.0104 0.0111 

4  -0.3 0.25 0.0023 0.0023  0.0047 0.0047  0.1317 0.1346  0.0032 0.0032  0.0069 0.0072 

5   0.5 0.0027 0.0028  0.0065 0.0065  0.1419 0.1471  0.0026 0.0025  0.0079 0.0086 

6   1 0.0028 0.0028  0.0101 0.0106  0.1194 0.1583  0.0032 0.0032  0.0081 0.0082 

7  0.3 0.25 0.0024 0.0024  0.008 0.0079  0.1405 0.1502  0.0029 0.0030  0.0074 0.0076 

8   0.5 0.0037 0.0037  0.0072 0.0076  0.1239 0.1246  0.0046 0.0045  0.0082 0.0088 

9   1 0.0033 0.0033  0.0121 0.0128  0.2200 0.2641  0.0029 0.0029  0.0099 0.0105 

10  0.5 0.25 0.0027 0.0027  0.0057 0.0057  0.0990 0.1050  0.0034 0.0035  0.0071 0.0069 

11   0.5 0.0027 0.0027  0.0098 0.0101  0.1571 0.1819  0.003 0.0030  0.0076 0.0082 

12   1 0.0028 0.0028  0.0107 0.0114  0.2795 0.2678  0.0035 0.0034  0.0104 0.0100 

13 500 -0.5 0.25 0.0018 0.0018  0.0045 0.0049  0.0780 0.0997  0.0018 0.0018  0.0044 0.0044 

14   0.5 0.0019 0.0020  0.0059 0.0062  0.0818 0.0948  0.0024 0.0024  0.0063 0.0065 

15   1 0.0018 0.0018  0.0072 0.0077  0.1567 0.1755  0.0015 0.0016  0.0061 0.0065 

16  -0.3 0.25 0.0022 0.0022  0.0053 0.0055  0.0755 0.0807  0.0020 0.0020  0.0045 0.0046 

17   0.5 0.0021 0.0021  0.0057 0.0062  0.0950 0.1027  0.0020 0.0019  0.0056 0.0054 

18   1 0.0022 0.0022  0.0072 0.0072  0.1491 0.1654  0.0022 0.0022  0.0083 0.0086 

19  0.3 0.25 0.0019 0.0020  0.0033 0.0038  0.1288 0.1322  0.0018 0.0018  0.0046 0.0046 

20   0.5 0.0016 0.0015  0.005 0.0056  0.0803 0.0891  0.0021 0.0021  0.0058 0.0062 

21   1 0.0017 0.0018  0.0057 0.0065  0.1354 0.1490  0.0018 0.0018  0.0055 0.0056 

22  0.5 0.25 0.0019 0.0018  0.0044 0.0046  0.0791 0.0821  0.0026 0.0025  0.0050 0.0051 

23   0.5 0.0018 0.0018  0.0057 0.0064  0.0752 0.0716  0.0022 0.0022  0.0055 0.0057 

24   1 0.0016 0.0017  0.0074 0.0080  0.1457 0.1467  0.0022 0.0022  0.0091 0.0094 
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