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ABSTRACT

Broadcast data delivery is encountered in many ap-
plications where there is a need to disseminate infor-
mation to a large user community in a wireless asym-
metric military communication environment. In this
paper, we consider two types of broadcast data delivery
systems, namely, push-based and pull-based, and pro-
vide a low-complezity near-optimal scheduling algo-
rithms for both systems. By using a numerical study,
we also discuss the performance limit of a pull-based
system. In addition, we identify the optimal mem-
ory management policy for the users in a push-based
broadcast delivery system and propose implementable
alternatives to the optimal policy.

INTRODUCTION

Dissemination of accurate, timely and consistent in-
formation to warfighters in a battlefield plays a crucial
role in winning a battle in a modern warfare [5]. The
information ranges from the weather at the battle-
field to the arsenal, number and position of the enemy.
The communication channel between mobile warfight-
ers and the central control command is wireless and
asymmetric in most cases. Communication asymme-
try can arises in a number of ways. One type is
physical asymmetry when an asymmetric bandwidth
or power limitations exist between downlink and up-
link communication. An example of this type is the
case when the stationary central control command
bave powerful broadcast transmitters while mobile
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warfighters have little or no transmission capability.
Another type of asymmetry arises in information flow
an example of which happens when a massive num-
ber of mobile warriors are simultaneously requesting
information from a few command centers. Broadcast-
ing is a promising candidate to play a leading role in
this asymmetric communication environment since it
reduces the relatively expensive client-to-server com-
munication and it is scalable in such a way that it
is independent of the number of clients the server is

serving.
“page A" Broadcist Schedule
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Server

" User Community

Figure 1: A Broadcast Data Delivery System in a
Wireless Communication Environment

In a broadcast data delivery system, depicted in fig-
ure 1, a server (the central control command) is con-
tinuously and repeatedly broadcasting data to a user
community (geographically scattered mobile warfight-
ers). There are two basic architectures for a broad-
cast delivery system: push-based broadcast delivery in
which users cannot inform the server about what they
actually need due to the lack of, or, limited uplink
communication channel from the users to the server
and pull-based broadcast delivery in which there is
a uplink channel available through which a user can
send a request to the server to tell what it is waiting
for.
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Information broadcast by the server is organized
into units called pages. When a user needs a certain
page, it waits until the desired page appears on the
broadcast and captures it for use. There is some la-
tency from the time the need of a page arises until
the time the page is actually broadcast by the server.
This latency depends on the broadcast schedule of the
server. For a push-based system, due to the limitation
imposed by the asymmetric communication channel,
the server may know only the past access pattern of
the users or an estimate of the user’s access proba-
bility. The server relies on this information in order
to broadcast the pages according to a schedule that
results in low latency for the user’s requests. For the
other system, the server knows the exact number of
pending requests for each page at each slot and can
make use of the page request backlog information to
decide which page to broadcast in each slot so as to
minimize the latency of user’s requests.

Two major issues arise in data delivery systems: a)
the organization of the data in a broadcast schedule
S0 as to minimize the average response time ([3], [9],
[1], [7], 6] and [4]) and b) the user’s memory man-
agement in order to reduce the mismatch between the
broadcast schedule and user’s access pattern ([8] and
[2])-

If the user has local storage, i.e. memory, it can
retrieve pages from the broadcast and store it in its
memory prior to the pages being requested. If the user
makes a request for one of the “prefetched” stored
pages, the response time for this request will be in-
stantaneous. By selectively prefetching information
pages from the broadcast, the user is effectively able
to minimize the mismatch between its access needs
and server’s broadcast schedule and the average la-
tency of its information requests is minimized. The
user’s memory management becomes an important is-
sue to consider in order to minimize the average re-
sponse time of information requests. As pages pass
by on the broadcast, the user has to decide whether a
page will be prefetched and if it will, which page re-
siding in the memory will be replaced with the newly
prefetched page.

We propose a scheduling policy for a push-based
system which, based on the user’s access probabil-
ity, generates periodic broadcast schedules with mean
access latency close to the lower bound. It is an low-
complexity on-line algorithm that can adapt to the
changes in user’s access pattern. Moreover, it has a

unique advantage that it can be readily generalized for
a system with multiple broadcast channels. A subop-
timal scheduling algorithm with good performance is
also provided for a pull-based system. By a numerical
study, we point out the crucial fact that as the request
generation rate increases, the achievable performance
of the pull- and push-based systems becomes almost
identical. For the second problem, an optimal mem-
ory management policy is identified, that minimizes
the expected aggregate latency. We present optimal
memory update strategies with limited look-ahead as
implementable approximations of the optimal policy.

BROADCAST SCHEDULING

Time on the broadcast channel is divided into slots
of same size that is equal to the time to broadcast a
page. Slot n is the interval [n,n + 1). At each slot n,
one page is broadcast in the channel and it is denoted
by tn, un € {1,..., M} where M is the total number
of possible pages.

Consider the aggregate stream of page requests gen-
erated by the whole user population. For a sufficiently
large user population, we may assume that the pro-
cess of request generation is Poisson with rate A page
per time slot.

A request is for page ¢ with probability b;, : =
1,..., M, where Ef‘_ﬁ_l b; = 1. Hence, requests for page
i are generated according to a Poisson process with
rate A\; = b; A. Let A;(n) be the total number of re-
quests for page i generated during slot n which is a
Poisson random variable with rate A;. Let X;(n) be
the total number of pending requests for page ¢ at the
beginning of slot n.

The request backlog for page i evolves as follows:

_ _J 0 ifu, =1
Xi(n+1) = { Xi(n) + Ai(n) otherwise (1)

A PUSH-BASED SYSTEM

When the server is not aware about the user’s
requests, the broadcast schedule is designed based
only on the distribution of page requests, that is, b;,
i=1,...,M.

There are two quantities related to each page ¢ that
affect the scheduling decision at each slot n, namely,
page i request generation rate A; and the parameter
w;(n) which is the amount of time from the end of
the last slot before ¢t at which page ¢ was transmitted
until the end of slot t, as shown in figure 2.
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Figure 2: Illustration of the parameter w;(n)

The evolution of w;(n) can be given as follows:

1 fu, =1
w;(n) +1 otherwise

wi(n+1) = { (2)

Assume that w;(0) = 1 for ¢ = 1, ..., M without loss
of generality.

The likelihood of page i being transmitted at n in-
creases with \; and w;(n). We consider the policies
where the broadcast scheduling is determined based
on priority indices of the pages. The index of page ¢
is the product A} w;(n) where <y is an exponent that
determines the relative importance of A; versus wi(n)
in determining the priority.

The page scheduled to be broadcast at slot n is
A wi(n)

(3)

Un =079 o
The above class of policies is called priority indez poli-
cies in the following. Note that when all the pages
have the identical request generation rates, the prior-
ity index policies for all 7’s generate uniform periodic
schedules which are the optimal in this case.

We performed an extensive numerical study of the
performance of the system under the priority index
policies for various values of v and their mean re-
sponse time is compared to the lower bound for a
periodic broadcast schedule which is obtained in (3.
Numerical experiments are made for M = 100 to
M = 1000 and v = 0 to 1.0 for the case in which
user access probabilities are assumed to follow zipf
distribution [10]. According to the results from Ta-
ble 1, the policy with v = 0.5 yields the best perfor-
mance which is also close to the lower bound. The
policy with v = 0.5 can be interpreted as follows. For
~ = 0.5, the index of page 1 is A0S0 (n) = 4/ Aw?(n).
12w?(n) is the aggregate expected delay experienced
by page 4 requests since the last time before slot n at
which page ¢ was broadcast. Hence, for v = 0.5, the
page with the largest Mean Aggregate Delay (MAD)
is selected for transmission.

Although the algorithm proposed in [3] also yields
the mean response time close to the lower bound,
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Table 1: Mean Response Time in slots for differ-
ent values of y using zipf distribution (L. B. denotes
Lower Bound)

0.6
33.82
62.52
89.58
115.67
141.07
165.93
190.37
214.45
238.23
261.74

0.75
36.61
68.92
99.75
129.72
159.06
187.86
216.37
244.60
272.26
299.88

0.5
33.36
61.41
87.81
113.22
137.93
162.11
185.86
209.25
232.34
255.15

0.25 0
37.60 50.0
70.42 100.0
101.72 150.0
131.65 200.0
161.15 250.0
190.65 300.0
218.91 350.0
246.71 400.0
274.10 450.0
301.38 500.0

L. B.
33.31
61.36
87.77
113.18
137.90
162.08
185.83
209.21
232.29
255.13

M 1
48.49
97.56
145.21

- 193.69
244.29
295.68
343.00
389.06
437.05
486.86

800
900
1000

MAD policy has a number of advantages over other
existing methods for designing broadcast schedules. It
is an on-line algorithm that can adapt to the changes
in user’s access pattern. Moreover, it can be easily
generalized for multi-channel systems. It is also easy
to implement and both the computational complexity
and the storage requirement of the MAD policy is just
O(M). Furthermore, MAD policy has the important
feature that the schedules it generates are periodic.
A PULL-BASED SYSTEM

When there is an uplink channel available for the
users to submit page requests, the server knows the
exact number of pending requests for each page at
each slot and it can make the scheduling decision
based on that information.

Here, we consider a class of heuristic scheduling
policies which are in the same flavor as the priority
index scheduling policies for the push-based system
and it is as follows:

Un arg max _ ] Xi(n)

ie{l,....M}
As in the push-based system, when all the request
generation rates are equal, the priority index schedul-
ing policies also produce the optimal schedule for a
pull-based system.

Since, according to the simulation results in [4], the
(LWF) policy, which elects the page for which the to-
tal waiting time of pending requests is the largest,
yields significantly better response time characteris-
tics than other heuristic policies, we compare the pri-
ority index policies to LWF policy by simulation. The
results for 1000 pages is shown in figure 3.

For light load, the mean response time 1s insensitive
to the particular scheduling algorithm employed. As
the request generation rates increases, the policy with
~ = 0.5 exhibits the best mean response time (even
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Figure 3: Mean Response Time (in slots) vs. Aggre-

gate Request Generation Rate (requests per slot) for
different values of vy using zipf distribution for 1000

pages

slightly better than the LWF policy) for all aggregate
request generation rates. The policy with v = 0.4
performs close to the LWF policy and the policy with
~ = 1.0 gives the worst performance. In addition to
its superior performance, the policy with v = 0.5 1s
easier to implement than the LWF policy.

PERFORMANCE LIMITS OF A
PULL-BASED BROADCAST SYSTEM

A pull-based system requires the availability of a up-
link channel and has the undesirable property that the
uplink channel may become overloaded under heavy
aggregate request generation rate. Our simulation re-
sults show that the mean response time of a pull-based
system approaches that of a push-based system as the
aggregate request generation rate increases.

Figures 4 shows the simulation results for equal
request generation rate case (); is the same for all
pages). As the aggregate request generation rate in-
creases beyond 20, the mean response time of the pull-
based system approaches half of the total number of
pages which happens to be the mean response time of
the optimal schedule for the push-based system. It is
also true for the case with unequal request generation
rates (please refer to table 1 and figure 3).

USER’S MEMORY MANAGEMENT IN
- A PUSH-BASED SYSTEM

Consider a push-based system where each user has

a cache that can hold K pages locally. The server is

broadcasting the pages according to a fixed predeter-

2 —
200 :

Mean Response Time in Slot
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Generation Rate (Requests per Siot)

Figure 4: Mean Response Time (in slots) vs. Aggre-
gate Request Generation Rate (in request per slot) for
500 pages with equal generation rates

mined schedule {u,}52,. At the end of each slot n,
the user may replace one of the pages in the cache with
the page transmitted at slot n. We assume that all the
users have the prior knowledge of the broadcast sched-
ule of the server and follow an identical cache update
strategy. Since, in addition, all of them monitor the
same broadcasting server, the contents of the cache of
all users are identical. The set of the K pages resid-
ing in the cache during slot n is represented by C(n).
The cache update strategy determines the cache con-
tents at each slot and is represented by the sequence
{C(n)}g.ozl

A request for page ¢ at time t will be satisfied im-
mediately if i € C(|t]). If ¢ € C([t]), then it will be
satisfied at the end of the first page ¢ broadcast that
will be initiated after ¢. Let Tif (t) be the amount of
time from t until the beginning of the first slot after
t at which page ¢ is transmitted, which is illustrated
in figure 5.

10

Figure 5: lllustration of parameters, 'rif(t) and 1;(t)
for a sequence of page i broadcasts.

The latency l;(t) of a page ¢ request generated at
time ¢ will be

o if i € C([t])
Li(t) = { @) +1 ifigC(t)

The objective of the cache update strategy is to
alleviate the impact of the latency on the user by
maintaining in the cache the pages which are either
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very likely to be requested by the user or will not ap-
pear in the broadcast for a long time. The sequence
of times at which page i requests are generated is
4, n=1,2,.. for each pagei = 1,..., M. Let L;(t) be
the aggregate latency of all page ¢ requests generated
from time 0 to time ¢, that is, Li(t) = 34 < L(t).
Let L;(t), be the expected value of L;(t). Therefore,
our objective is to design a cache management strat-
egy which minimize the expected aggregate latency
over all pages, L(t) = i"il Li(t).

The key in obtaining the optimal cache update
strategy is a transformation of the cost such that the
impact of the cache update on the total latency be-
comes disjoint form slot to slot.

X
Ata-ty)

At ] —E
- ! 4 m ; >

_____

Figure 6: The ezpected backlog of page 1 requests as a
function of time when there is caching (solid line) is
depicted. The ezpected backlog without caching (dotted
line) is superimposed. The reduction in latency due to
caching is equal to the area between the solid and the
dotted lines.

Figure 6 shows the evolution of the expected back-
log of page 7 with caching (solid line) superimposed
by the expected backlog without caching (dotted line)
for a given sequence of page ¢ broadcast. The shaded
small rectangle corresponds to the slots at which page
¢ is broadcast and the slots at which page 7 is cached
are represented by the small dashed rectangles be-
low the time axis. The aggregate expected latency
for page i requests with caching (without caching) is
equal to the total area under the solid (dotted) curve.

Let’s denote by LZ(t) the expected latency of page
i requests when there is no caching. The expected
aggregate latency of page i requests under a caching
strategy {C(n)}22; can be related to the expected
aggregate latency without caching as follows:

>

n:n<t,ieC(n)

Ourf () + 3

The above relation can be verified by using figure 6.
The aggregate latency over all pages up to time t
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t) = I5(t) Z ST (i (n 2)

n=04¢C(n)

The caching strategy that minimizes the aggregate
latency is clearly the one that maximizes the following
sum

t—1 _
> 3 e+

n=0:eC(n)

(4)

The maximization of the sum in equation (4) is equiv-
alent to a maximum reward path computation in an
appropriately defined trellis diagram that captures
the evolution of the cache states.

The cache state C(n) at time n depends on the
cache state C{n — 1) at time n — 1, the page u,_;
broadcast during slot n — 1, and the action taken by
the update strategy. Hence, the set, C,(C), of possi-
ble cache states at slot n, given that the cache state
at slot n—11is C, is

Ca(C)={C": C" C(CU{us_1}),|C'| = K}

A feasible cache state evolution sequence is any
sequence {C(n)},_; with the property C(n + 1) €
Cr+1(C(n)). The corresponding cache update strat-
egy is uniquely defined. Associated with each state

¢’, there is a time-dependent “reward”,

=3 (Nr( (n) + 22 )

1€¢d

(5)

Time 1 2 3
Memory%re
¢! - . . - .

A—Cl(c,') :
LY

J
¢ 1 *
. S .
-
cCtot . \ . .

-

Figure 7: Cache State Trellis Diagram

Counsider a trellis diagram one dimension of which
is the cache state and the other is the time as shown
in Figure 7. Each stage of the trellis corresponds to a
certain time instance. All possible cache states appear
in every stage. Since the total number of pages which
are of interest to the user is M and its cache can hold
K pages (K < M), the total number of possible cache
states, Ciot, is ( M ) There are directed links from



certain states in stage n to certain states in stage n+1,
that represent possible cache state transitions. Hence,
a link is directed from state ¢ at stage n to state ¢/
in stage n + 1 if ¢ € Crnyi(c).

Each cache update strategy from slot 0 to slot ¢ cor-
responds to a path from stage 0 to stage t in the trellis.
The total reward, or latency reduction incurred by the
strategy is equal to the sum of the rewards of each
state in the path. The computation of the optimal
cache update strategy is equivalent to the computa-
tion of a maximum reward path in the trellis.

Since the complexity of the optimal policy is pro-
hibitive for employing the policy in a real time oper-
ation of the system, the value of the policy is mostly
theoretical and it can be used as a benchmark for
performance comparison with other policies. A class
of policies with manageable complexity for real time
operation is readily suggested by the optimal policy.
The optimal policy makes the cache update decision
at each slot n such that the total reward until time ¢
is maximized. Instead of that, a look-ahead window
W may be considered and the cache update decision
at slot n can be made such that the cumulative av-
erage reward up to slot n+ W is maximized. As the
window W increases, the complexity increases and the
performance should be improved.

The simplest policy of the W-step look-ahead class
is the one with W = 1. Let’s call it one-step look-
ahead (OSLA) policy. This policy updates the cache
in each slot n such that the reward r(C(n+1),n+1)
is maximized for C(n + 1) € Cn41(C(n)). This pol-
icy turns out to be optimal in some special cases of
interest. The first case is when all the pages have the
same access probabilities. The other case is when the
broadcast includes only two pages, the user has cache
space for one page and the request generation rates
are arbitrary. However, OSLA policy may perform
poorly compared to the optimal policy in some cases.

The same formulation can be used to find the opti-
mal memory management policy which minimizes the
number of deadline misses when users generate in-
formation requests which have to be satisfied within
some given deadlines.

Remark

The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.s.
Government.
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