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Range of the k-Dimensional Radon Transform
in Real Hyperbolic Spaces

CARLOS A. BERENSTEIN* anp ENricoO CASADIO TARABUSI!

Abstract. Characterizations of the range of the totally geodesic k-dimensional Radon trans-
form on the n-dimensional hyperbolic space are given both in terms of moment conditions
and as the kernel of a differential operator.

1. INTRODUCTION

The recent interest on the k-dimensional totally geodesic Radon transform R in the real
n-dimensional hyperbolic space H" has arisen in part due to its applications to Electrical
Impedance Tomography (EIT). This transform was introduced by Helgason in [H1], who
found two kinds of inversion formulas, the former valid for k even [H1], [H2], the latter for
any & [H3]. Since the approximate inversion algorithm for EIT proposed by Barber and
Brown [BB1], [BB2], [SV], amounts to using the backprojection R* as an approximate
inverse, the authors searched for a filtered backprojection inversion {BC]. The crucial step
is Helgason's observation that R*R acts on the space S(H™) as a convolution operator
with a radial function, namely, up to a multiplicative constant, sinh* ™" r. Using symbolic
calculus one finds the algorithm proposed in [BC], which has the form

P k(AH)Sax* R* R =1,

where p, i is a polynomial in the Laplace-Beltrami operator Ay and S, is a radial
integrable function. By analogy with the Euclidean Radon transform, one expects that
this algorithm will perform better than [BB1], [BB2], [IC], [AS], in solving the EIT
defining equations.

Another question that arises frequently in applications is the characterization of the
ranges of the Radon transforms. This question, whose answer was long known in the space
D(R™) for the Euclidean Radon transform [H2, Corollary 1.2.28] has only recently been
completely settled in S(R™). We have found intertwining operators between Euclidean
and hyperbolic Radon transforms, hence the characterization of the range of the Radon
transform in D(H") and S(H") can be settled very easily. Another consequence of the
existence of intertwining operators is that one finds other inversion formulas for the hy-
perbolic Radon transform. This was inspired by the works of Quinto [Q] and Kurusa
(Ku2].
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2. PRELIMINARIES

We recall here the definitions and notation for the Radon and Riesz transforms in H™

as given in [H2]. We shall use the ‘conformal disk’ model for H", viz., the open unit ball
B” of R™ with the metric

ds2 = 4d$2 = * Z;::l dIg
A=l=1?? (1= 23)?
where ||-|| denotes the Euclidean norm in R™. Such metric is in fact conformal to the

Euclidean one dz? and has constant curvature —1 (in some chapters of [H2] the curvature
is —4). The induced distance between z,y € H" is

llz =yl

Vi e/ ol

conversely, the Euclidean norm of z can be recovered by

d(m, y) = 2arcsinh

]| = tanh X229
2
The geodesics and the totally geodesic hypersurfaces of H” are arcs of circle, respectively
spherical caps, which intersect S®~! perpendicularly. The spheres which are tangent to
S™~! and are contained in the unit ball are called horocycles.
In geodesic polar coordinates write ¢ € H" as ¢ = (w,r), where r = d(z,0) and w €
Sn~1. The hyperbolic metric is then expressed by

ds? = dr? + sinh® r dw?,

where dw? is the usual metric in S*~!. Correspondingly, the (n — 1)-dimensional area of
a geodesic sphere of radius r is

/2

_ . n-1 .t
(2.1)  An(r) = Qusinh™ ™ ry where ), = T(n/2)

is the Euclidean area of S™ 1,

The Laplace-Beltrami operator on H" is

- CE 2\n "
N ) X (B E DR ]

— Oz; i

which specializes to Ay = (1 — |2|)20%/820% (with z = z; + iz3) in the case of n = 2. In
polar coordinates
2

9 d .y —2
Ay = 37 +(n — 1)cothr5; +sinh™“rAg,

where Ag is the Laplace-Beltrami operator on S™~1.
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The space D(H™) denotes as usual the space of all C* functions with compact support
in H™, i.e., it coincides with the space D(B") of C* functions f on R" whose support
supp f is in B™. The Schwartz space S(H") of fast decreasing functions in H" is the space
of C* functions f on H" such that for any positive integers m, k we have

sup lAﬁlf(x)‘e"’d(”’) < oo
z€H?

(cf. [H2]). This is equivalent to the condition that for every multiindex o € N™ (where N
is the set of nonnegative integers), the function B® 3 z + 8!2lf/92%(z) has a continuous
extension to the closed ball B® which vanishes of infinite order in 8B”. In other words,
the space S(H™) coincides with the space D(B™) of C* functions f in R™ such that
supp f € B™. The two spaces coincide even topologically.

Fix k, with 1 < & < n: thespace ' = T',,  of totally geodesic k-dimensional submanifolds
(k-geodesics for short) of H™ 1s a homogeneous space under an action of the group SO(1,n)
of isometries of H™. Each v € T carries the k-dimensional area element dm g 4 induced
by the volume element dmpy in H™. Hence the totally geodesic k-dimensional Radon
transform Ry = Ry nk is defined on the space S(H™) by

Ruyf(y) = '/f(x)dmy,.,(x) for all y € T.

The family T', of elements of I' passing through a fixed point = is a homogeneous space
for the isotropy group SO(1,n), of z, which is isomorphic to SO(n). Hence I, carries a
normalized measure dmr ; which is invariant under SO(1,n);, and is ‘independent’ of =

in an obvious sense. For a continuous function ¢ on I' we can define the backprojection
operator R}; by

Ry(z) = /P 6(7) drn o) = [ Glgh-7)dn forallz € H,

O(n

where g is a fixed element of SO(1,n) such that ¢ - 0 = z, while h runs in SO(n) and
dh is the normalized invariant measure in SO(n). One of the uses of the backprojection
operator is to find an inversion formula for the Radon transform. This is based on the

fact that, denoting by df the area element on the geodesic sphere S(x,r) of center z and
radius r, we have

(2.2) RyRuf(z)= /Hn f(Y)R(d(z,y)) dmu(y) = /00072(7')[/ .

f(y)dew)] dr,
S(z,r)

for a function R = Ry on [0, +00) (cf. [H2, Theorem 1.4.5]): interpreting R as a radial

function on H" through R(z) = R(d(z,0)) (the same abuse of notation will be extended
to all radial functions, with no possible confusion), we write this integral as R x f(z)~—note

that the inner integral is not normalized—: in fact both R and f can be pulled back as

functions on the group SO(1,n), convolved there, and the result, pushed to H" again,
coincides with the middle term of (2.2).



The function R turns out to be [H1]

)
[S™]

(n/2)

-5 (k—n)/2
R(r)=m T(/2)

.y k-
sinh" " " r.

In [BC] it is shown that if S is the operator of convolution associated with the radial
function

S(r) = sinh* " r coshr,

then for an explicit polynomial p of degree k one has
p(A)SRyRpy =1

(where I is the identity operator), which is the filtered backprojection formula mentioned in
the introduction. For instance if (n, k) = (2, 1) this formula reduces to —(47)"!SR} Ry =
I: the kernel S can be replaced by cothr—1 to obtain an integrable kernel. Other inversion
formulas, which do not factor through R} Ry, can be found in [H3).

The k-dimensional hyperbolic Radon transform was in fact modeled upon the Euclidean
one, which is similarly defined in the space R™. Namely, if f € S(R") and ¢ € S(G),
where G = G, i 1s the Grassmannian space of all k-planes—viz., of k-dimensional affine
subspaces of R"—, then

Rpf(m) = / f(y)dme «(y) for all m € G,

Eo(x) = /G #(m)dmg y(7) = / #(gh-m)dh for all y € R",

O(n

where dmpg . is the k-dimensional Lebesgue measure on 7, while dmg , is the normalized
SO(n)-invariant measure on Gy = {r € G: y € 7}.

In order to characterize the range of the transform Ry in the hyperbolic space H"
we shall show that it can be intertwined with the Euclidean Radon transform. For that
purpose we need to set up some additional notation. Let Z = Z,, ; be the set of (n — k —
1)-circles, intersections of (n — k)-dimensional subspaces of R™ with the unit sphere S™~!.
Denote by G g the space of k-planes that intersect B™. Naturally the closure G of G g is
the compact subset of G consisting of k-planes intersecting B™.

One can parametrize G and I in a similar way. First take polar coordinates in R™, so that
a point x is given by a pair (w,s) € S®™! x [0,00). Then identify G with the set of triples
(&,w,s) € Zx S™ ! x[0,00) such that w € £: such a triple represents the k-plane which is
orthogonal at the point (w, s) to the (n — k)-plane through o generated by ¢ (observe that
(w,s) is the closest point of the k-plane to o). In particular Gp = {(£,w,s) € G: s < 1}.
In a completely analogous way I' can be parametrized by the same set of triples, and the
(n — k)-plane generated by £ in R" projects to an (n — k)-geodesic through o via the
exponential map at o. Note that in both cases the ¢ coordinate is redundant if k =n — 1
(it must be £ = {xw}).

In next lemma we find the explicit expressions in such coordinates of the measures on
R"™, H", G, T". We use the following notation: if # € G let drw be the k-dimensional
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measure on {w € S™*7!: (w,s) € 7}; let d(¢,w') denote the normalized rotation-invariant
measure on the manifold P = {({,w') € Z x S*"!: w' € £} (notice that dim P = (n —
k)(k 4+ 1) — 1); finally, if y € R™, let d,(,w’) be the [(n — k)k]-dimensional measure on
{(¢,w") € P: (& w',8") € Gy} (recall that dimGy = dimZ = (n — k)k). Similarly define
dyw and d;(é,w') in the hyperbolic case.

LEMMA 2.1. In the coordinates introduced above, the measures in the spaces in consider-
ation are

dmg(w,s) = sV ds dw (in R"),
dmpy(w,r) = sinh” ! rdr dw (in H™),
dmg(€,w',s") = (s)" 75 ds' d(g, ") (in G),

dmp(€,0', ") = cosh®* r' sinh™ *~1 ' dr' d(€,w") (inT).

Moreover we have

dmp,x(w,s) = (s"*1/s") dpw (onm = (¢, s') €G),
sinh**1 7
dmp (w,r) = ppC dw (onvy=(&w',r'yeT),
dmg y(€,w',s") = dy(€,w") (in Gy fory = (w,s) € R"),
k+1
) o Cosh' ™7 , . _ n
dmrp (€', 1) = — d.(¢,0') (inT, forz = (w,r) € H").

PROOF: The expression of dmg is well-known, while that of dmpy follows from (2.1).

Let y' = (w',s') and 2’ = (w',r'), the closest points of m, respectively v, to o. If 3 is
the angle y'yo between straight line segments, then sin 8 = s'/s; therefore dm E,~ equals
s¥/sinfB = s¥*t1/s'. Analogously, if « is the angle £'z0 between geodesic line segments,
then by hyperbolic trigonometry (cf., e.g., [C]) we have sin @ = sinhr'/sinhr, and obtain
dm H,~

To proceed with the remaining measures in H® we must make a preliminary computa-
tion. Let 8 be the angle between the geodesic segment z’0 and the normal to v at z, and let
Aw = ©'w be the angle between w and w'. Since # is complementary of the angle «, by hy-

perbolic trigonometry we have sin 8/ sin Aw = coshr’ and cos 8/ cos Aw = coshr'/ coshr,
therefore

de cosh? ' :
(2:3) dAw ~ coshr '

this derivative relates the variation of the normal to v at a fixed z—recall that the measure
dmp g is invariant under SO(1,n); = SO(n)—with that of w'. (In the Euclidean case the
angle € simply equals Aw, so that the quotient in (2.3) just evaluates as 1.)

The factor (s')* %=1 in dmg corresponds to the variations in the w' coordinate of 7 =
(£,w',s"): the exponent is the dimension of . The same argument justifies the factor
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sinh” %=1 r' in dmp. To account for the disparity between Aw and 6 we let 7' = r in (2.3)
and obtain coshr’, which raised to the dimension of v gives the other factor in dmrp: this

corresponds to the variations of 4 within the (k + 1)-geodesic containing v and o, keeping
the point = fixed.

The measure dmg,, equals d,(£,w') by translation invariance. The factor in dmp ; is the
product of cosh® 7’ / coshr, given by (2.3), and dim+ — 1 factors cosh ', which correspond
to the variation of the normal to «y at z in the orthogonal space to the 2-geodesic containing
o,z',z. 1

With the above described measures the dual Radon transform R* is (in both the Eu-

clidean and the hyperbolic case) indeed the adjoint of the transform R: if f € D(R™) and
¢ € D(G) we have

(2.4)
werio)= [| [ f(y)dmg,ww)}«sw)dmc(w): [ #)6(m) dmuty, )

- [ ][ o dma,y(r)| dma(y) = (7, Rz,

where dmy(y,7) = ds [s" 71 dw] dy(€,w") = [(s)*7F1 d(€,w")] [s* drw] (s/s') ds' is a mea-
sure on the manifold V = {(y,7) e R* x G:y € 7} = {(w,s;€,w',s") € S*! x [0,00) x
P x [0,00): 8’ = (w',w)s, Span(w’,w) L £} (here Span(w’,w) denotes the linear span of
w', w): by [H2, §1.3.2], the measures in Lemma 2.1 are characterized by (2.4). A similar
computation can be carried out for H".

3. CHARACTERIZATIONS OF THE RANGE

In the previous section we saw that the space S(H™) could be identified to D(B™), and
D(H™) to D(B™). In either case, a function f in S(H") (respectively D(H")) can be
identified to a C* function in R™ with supp f C B™ (respectively supp f € B™), and it
makes sense to consider also the effect on f of the Euclidean Radon transform R, in which

case only the integrals along elements of G can fail vanishing. We then have (see [H2])
the maps

Ry: { D(H") - D(T),

S(H™) - S(I),
- { D(B™) - D(Gs),
' p(B") - D(Gs) € D(G).

Before we describe the intertwining operators between Ry and Rp we develop some

auxiliary geometric results. Let n: H® — H" be the homothety of ratio 2 with respect to
o, that is,

n(w,r) = (w,2r) for all (w,r) € H",

in particular

d(o,n(z)) = 2d(o, z);

(=]



the map n corresponds, via the exponential map, to multiplication by a factor 2 in the
tangent space of H™ at o. If we let «: H® — B" be the identity map (which changes the
metric from hyperbolic to Euclidean), so that

Hw,r) = (w,tanh(r/2))  for all (w,r) € H",
the map 1 can be read in Euclidean polar coordinates as

tonot Hw,s) = (w,tanh(2arctanh s)) = (w,2s/(1 + s%)) for all (w,s) € B™.
The map
T=t0n: H" - B"

is a diffeomorphism that satisfies
7(w,7) = (w, tanhr)  forall (w,r) e H™;

we shall see that 7 induces an isometry between the conformal (the one we are using) and
Beltrami’s model of hyperbolic space. This is shown by the following proposition:

PropPOSITION 3.1. The image through T of a k-geodesic of H” is the intersection with B™
of a k-plane of R".

PROOF: Since T preserves the tangential component w € S™™! we can assume n = 2,
k = 1. Fixed a geodesic v = (¢/,w’,r") (the £’ component is useless here, as mentioned
earlier), its closest point to o is ' = (w',r"); let z = (w,r) be another point of v. Let a

be the angle 2'0z = w'w, and observe that the angle zz'0 between geodesic segments is a
right angle.

In a right hyperbolic triangle, the cosine of a non-right angle equals the ratio of hyper-
bolic tangents of the lengths of the adjacent sides (cf. [C, 12.99]). So

tanhr' = tanhr cosa.

Let y' = 7(z') = (w',tanhr'): then ||y'|| = tanh+’. Similarly y = 7(z) = (w,tanhr) and
llyll = tanhr. Moreover the angle 37’0\y equals w'w = a. Therefore

ly'll = llyll cos

by the previous formula, and from Euclidean geometry one gathers that the angle 3};;\’0,
between straight line segments, must be a right angle. Hence y varies on the intersection
with B™ of the straight line orthogonal at y' to the segment y'o. §

REMARK 3.2. (The following description of models for H? can be found in [Y]; see also
[K1].) Consider in R™*! the signature (1,n) Lorentz metric

g(m,ay’) = ZTolYo — <m,y)a for T,y € R" and wl = (3:013:)’ y, - (yOw y),
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where (-, ;) is the standard scalar product in R™. The hyperboloid model for H" is given
by the ‘upper’ sheet

Q = {g(z',2") = 1 and z, > 0}
of the two-sheeted hyperboloid {g(z',z') = 1}, endowed with the distance

(3.1) d(z',y") = arccosh g(z',y").

The group of automorphisms of H" is thus SO(1,n), which leaves @ invariant, and the
k-geodesics are the intersections with @ of (k + 1)-planes of R™**!.

Beltrami’s model for H" is obtained by identifying B™ with D; = {zo = 1 and ||z]| < 1}
in R™*!, and projecting @ from the origin of R™*!: a point z' € Q gets mapped to
z'[zg € Dy, ie., to z/zo € B It is immediate that the k-geodesics are now intersections
with B™ of k-planes of R™. The distance in D, 1s obtained by first making the argument
of the right-hand side of (3.1) homogeneous, then restricting it to D;: so

g(z',y")
Vo(z' 29y y')
1- (xvy)

VI=TelPVI=Ti®

As explained, e.g., in [C], or [M], identifying B™ with Dy = {zo =0 and |jz|| < 1},
the composition x of the inverse stereographic projection of Dy from one pole of the unit
sphere {||z'|| = 1} in R™*! onto the opposite hemisphere, with the orthogonal (‘vertical’)
projection onto Dy, provides an isometry of the conformal model onto Beltrami’s. The map
k is such that the image of each point lies on the same radius starting from o: therefore
k coincides with 7, that is, the composition of projections described above can also be
obtained as a homothety in the conformal model (followed by a change of metric). §

d(z,y) = arc cosh

(where z' = (1,2), ¥’ = (1,y))

= arc cosh

As a consequence of Proposition 3.1, the map 7: H® — B™ naturally induces a diffeo-
morphism
Tk: I — GB.
Explicitly
(€, w,r) = ({,w,tanhr) for all ({,w,r) €T.

LEMMA 3.3. The jacobian of r along the k-geodesic vy = ({,w’,r") at the point = w,T) €
g &
v is coshr'/ coshF*1r.

PROOF: From Lemma 2.1, setting s = tanhr and # = 74(¥), the desired jacobian is
obtained as the ratio of dmg «(w,tanhr) and dmy(w,r).

We are now ready to define the intertwining operators between Ry and Rg.

PROPOSITION 3.4. Forl1 <k <nlet p: H* - R and 0: I' — R be defined by:

h**1r. hence por Hw,s)=(1- 52)_(k+1)/2;

o(&,w,r) = coshr, hence ooty (€ w,s) = (1~ 32)‘1/2.

plw,r) = cos
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Then the t.rzmsformations ¢: D(H™) — D(B™) and ¥: D(I") — D(Gp) given by
®(f) = (pf)or™t,
U(¢p) = (c¢) or{l

are topological isomorphisms, and the diagram

D(H™) Ru ()

i ¥
Rg
D(B") —— D(GB)
commutes, 1.e., VRy = Rg®.

(Note that p is independent of n, and o is independent of n, k.)
PrOOF: If v € T and 7w = 7(7), and if f € D(H™), applying Lemma 3.3 we have

YRy f(r) = o(7v) / fdmy = /(Pf) or 'dmg .= Rg®f(r). 1

Clearly the same proof furnishes the following result:

PROPOSITION 3.5. The transformations ® and ¥ defined in Proposition 3.4 also render
commutative the following diagram:

S(H™) Au S(T)

(3:2) 3| ¥
— Rg —
D(B™) —— D(Gp)
(and are topological isomorphisms also between these spaces).

PRrOOF: The only observation that needs to be made is that ® maps S(H™) into D(B™).
In fact it is clear that since

SH™) = {f e C*(H"): su}g |D® f(z)| cosh™ d(z, 0) < oo for every & € N", m € N}
reH"?
we have
®(S(H™)) = {g € C=(B"): sué) DI = lyll)™™ < oo for every @ € N, m € N}
yEB"
=D(B"). 1

(The term ‘intertwining’ used here is a slight abuse of language, since the operators &
and ¥ do not preserve the group actions.)



REMARK 3.6. As an immediate consequence of Proposition 3.4 and Proposition 3.5 we
obtain that any inversion of the Euclidean Radon transform Rp automatically yields a
corresponding one for Ry, by the relation R;}l = <I>“1REI\I/. §

In a very similar fashion one verifies that the map &,: LP(H") — L?(B") given by

@, (f) = (ppflor™,

where p,: H" — R is the function

pplw,r) = cosh"TV/P

is an isometry for every p > 1: in particular, the map ® itself is an isometry of LP-spaces

for
_n+1
P=rrT

Dualizing the diagram (3.2) we obtain
tRH
() —— S'(H")
(3.3) ‘v ‘3]
. . Rg -
&(Gp) — &'(B7)
The space S(T') can be embedded into S'(T), and ‘Ry|s(ry = R}, whereas if restrp is the

restriction operator from R™ to B™ then ‘R El'D(EB) = restrgp oR%: however, by abuse of

notation the indication of the map restrp will be henceforth suppressed. We thus obtain
the diagram

*

S(T) Fa S'NE(HM)

v] ‘o]

R*
D@p) —  E(BM)

In (3.3) the maps !®, '¥ are isomorphisms. We shall now proceed to make their inverses
explicit when acting on smooth functions.

LEMMA 3.7. The jacobian of 7 at & = (w,r) € H™ is cosh™ ' r, and that of jacobian of
7 at v = (€,w’,r') € T is cosh™™ 1 ¢,

PROOF: Same as for Lemma 3.3, using Lemma 2.1. i

PROPOSITION 3.8. For1 <k <nlet p': H* - R and ¢': ' — R be defined by:

p'(w,r) = coshr, hence plor N w,s) =(1- 32)—1/2;

o'(€,w,r) = cosh**'r, hence o'o 6w, 8) = (1~ s2)~(k+1)/2,

10



Then the transformations ®': S' N E(H™) — £(B™) and ¥': S(T') — D(Gp) given by

'(f)=(p'f)or™,
V() =(a'¢)ory

are topological isomorphisms, and the diagram

*

SNy —1, s'ngHE)

v | @

-
D@p) ——  &BY)

commutes, i.e., ®' R}, = Ry¥'. In other words, ®' = (*®)! and ¥' = (*T)~!,

Proor: Recalling the value of the jacobian of 7 from Lemma 3.7 one has -
@1,90) = [ (oiryor= [ fr=1n5),
B" H~

and since @ is an isomorphism we have (®*)™! = &' in the dense subspace S’ N E(H™).
With ¥, ¥' we proceed analogously, and conclude that ¥' = (¥*)~!  which proves the
desired commutativity. §

Observe that ®, U are never unitary: in fact they do not coincide with &', ¥', respec-
tively, for any n, k.

For functions ¢ € D(R") Helgason proved a support theorem [H2, Corollary 1.2.25],
which characterizes the radius s, of the smallest ball in R™ centered at o that contains the
support of g: all is needed is that Rgg vanish at every k-plane 7 = (£,w, s) with distance
s to the origin greater than s,. Therefore one can see that among the functions ¥ € S(G)
that are in the range of Rg one can easily distinguish those that are in Rg(D(B")) or in
Rp(D(B™)), by the conditions (respectively)

suppy C {({,w,s) € G: s < 1},
supp¥ C {({,w,s) € G: s < 1}.

Simply notice that, under either of these support conditions, automatically ¢ € D(G). As
to functions on H", the support theorem is also valid for functions in S(H"™) (cf. [H2,
Theorem 1.4.2]).

Omne way to characterize the range of the Euclidean Radon transform for S(R"”) or
D(R™), in case 1 < k < n—1, has been to do it in terms of the solutions of a homogeneous
system of linear differential equations. The idea of using differential equations originates
with John [J}, who found that the ultrahyperbolic operator in R* could be used to charac-
terize the range of the X-ray transform (i.e., k = 1) in R®. In general, Richter [R] exhibited
a system of translation invariant, globally defined second-order differential operators which
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characterize Ry(S(R")) for each k < n — 1. Recently, other characterizations were pro-
vided by Kurusa [KKul] with a system of ultrahyperbolic equations, and by Gonzalez {Go1]
with a single fourth-order differential operator, invariant by all isometries of R”. We now
derive the corresponding results in S(H™) (and D(H")). We will concentrate on Richter’s
and Gonzalez’ operators and explain how they give rise to (second-, respectively) fourth-
order equations characterizing the ranges of the hyperbolic Radon transforms, although
the same procedure can be applied to other differential equations, such as Kurusa’s.

Let EE = E, be the Lie group of isometries of R", let e be its Lie algebra, and let A
be the universal enveloping algebra of e. Denote by § the left action of E on G. We say
that there is a germ (at the identity) of left action S of E on the open set Gp of G, by
restriction: for every m € G g, only those b € E are allowed such that §(b)r € G g—these
form an open set of E that depends on 7 and contains the identity. Denote by v the left
regular representation of E on S(G), so that v(b)y) = 1) o B(b)~! for every ¢ € S(G), and
extend to A the infinitesimal left regular representation dv on S{(G) in the usual way: thus

. o™
dv(Vy -+ Vin)ib(m) = ETI T

arn
- 3t1 te atm {d)(ﬂ(exp(_tmvm) T exp(*tlvl))W)]h:'--:‘—tm:()

for each V4,...,Vn €¢, ¥ € S(G), 7 € G.

The expression after the last equality sign can be used to define the ‘infinitesimal left
regular representation’ dv on D(Gp) (even though the ‘finite’ left regular representation
v on D(Gpg) does not itself make sense). In fact, on each fixed 7 € Gp the element
exp(—tmVm) - -exp(—t1 V1) of E can act whenever —a < t;,...,tm < a, for some positive
a depending on 7, V1, ..., V.

Conjugating by 7, we get a germ of left action @ of E on I': that is, a(b) = 7' 0
B(b) o Tx. Notice that a(b) is an automorphism of H™ if and only if it keeps o fixed. (The
other elements of E cannot act, through «a, as hyperbolic isometries, since they are only
defined on part of T', and push the remaining k-geodesics ‘off” H™.) By analogy to the
above situation, define the infinitesimal left regular representation dy on S(H™) by

m
dp(Vy - Vim)o(v) = ézj“gt—“[ﬁi’(a(exp(*tmvm) s exp(—t1Vi)7)l ==t =0
Lo Ot

for each Vq,..., Vi, €e, 6 € S(T), vy € T.
Of course du(Vi -+ Viu)é = [dv(Vi -+ Vi) o 70 1)] o 4.

Let T; € ¢ be the ‘infinitesimal translation in the j-th coordinate’ of R™, forj = 1,...,n:

[v(expti Vi exptm Vi ) (m)]t, = om=t,, =0

identifying e with the Lie algebra of matrices (g g), where L € so(n) and v € R", then

T} corresponds to the matrix all of whose entries all vanish except the (7,n + 1), which
equals 1. Also, let X;; be the ‘infinitesimal rotation around the origin in the plane of
the t-th and j-th coordinates’, for 7,57 = 1,...,n with i # j: the only nonzero entries
of its matrix are the (i,7), which equals 1, and the (7,7), which equals —1. Richter’s
‘pre-operators’ Viji € A, for distinct ¢, 5,k = 1,...,n, are given by [R]

Viji=TiXu + T; X + TiXj,
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whereas Gonzalez’ is [Gol]

V= Z K]I
1<ij<iln
Richter’s differential operators dv(V;;) on S(G) are invariant by translations, but not
by rotations, while Gonzalez’ operator dv(V') enjoys both invariances. Notice that V;j;
and V are independent of k, whereas the differential operators proper are not, as they act
on functions defined on dxﬁ'erent Grassmannian manifolds. Stipulating that a differential

operator D on S(G g) is said to be invariant by a motion b € E, such that B(b)G p intersects
Gpg, if

D[ o B(b)} = (D)o B(b) on {r € Gp: B(b)r € Gp} for every ¥ € S(Gp)

(the equality would mean that D commutes with v(b), if the latter made sense), the second-

order operators Dy;; = dv(Vi;) on S(Gp) are, as well, invariant by translations but not
by rotations, while the fourth-order D = dz/(V) is fully invariant under E.

Pulling back with ¥, it is easy to see that the differential operators Ciji = ‘I!”ngjl\If on
S(T') are given by

(3.4) Cijtp = o~ du(Vi;1)(od) for every ¢ € S(T). °

It is easy to realize that Cj; are neither invariant by rotations around o (because D;;; are
not), nor by other automorphisms of H”; yet, they are invariant under the germ of action
« of the subgroup of E of Euclidean translations in R"™.

Analogously ¥ pulls back D to the fourth-order operator C = ¥~ D¥ on S(T'), given
by an expression similar to (3.4). Now, C is fully invariant under the germ of action « of
E, whereas the only hyperbolic isometries which leave it invariant are those obtainable as
o of some element of E, i.e., the rotations around the origin.

The explicit computation of C;j; and C is relegated to the appendix to this paper. We
summarize the above remarks in the following statement.

PRrROPOSITION 3.9. If 1 £ k < n — 1, a function ¢ in S(T') (or D(T')) is in the range
RuyS(H™) (respectively RyD(H™)) of the k-dimensional hyperbolic Radon transform if
and only if it is annihilated by the second-order differential operator Cijiforalll1 <1<

J < 1 £ n; equivalently, if and only if it is annihilated by the fourth order differential
operator C'. §

The remaining case, namely k = n — 1, is covered by another kind of characterization.
Namely, for all 1 < k < n ~1, the following Euclidean moment conditions characterize the

functions ¢ € D(G) which are in the range of the Radon transform Rg acting on D(R")
[H2, Corollary 1.2.28]:

For every m € N there exists a homogeneous polynomial Pp, on R" of degree m such that

1
/ (w, )™ {/ gmtn-k-1 z/)(ﬁ,w,s)ds} dw = Pp(w') foreach £ € Z and w' € £.
wel ]
(Such conditions also characterize the range for functions of S(R™), but only in the case

k=n-1.)
The corresponding result in the hyperbolic space is the following:
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THEOREM 3.10. Let ¢ € D(T'), respectively S(I"). Then necessary and sufficient condition
for ¢ to belong to Ry(D(H™)), respectively Ry(S(H™)), is that for every m € N there
exists a homogeneous polynomial P,, on R" of degree m such that

o0 mtn—-k—1
/ <w,w'>"‘[ [ " (6, w,r) dr | duo = Prn(")
wEeg 0

coshr

for each £ € = and ' € &.

These are called the hyperbolic moment conditions.
PrROOF: Recall that () belongs to D(B™), respectively D(B™). Hence a necessary and
sufficient condition for ¥(¢) to be in the range of the Euclidean Radon transform Rpg is
that ¥(¢) satisfy the Euclidean moment conditions. Substituting (£,w,s) by 74¢(&,w,r) in
them one obtains a g in D(B™), respectively D(B™), such that ¥(¢) = Rg(g) if and only
if ¢ satisfies the hyperbolic moment conditions. Let f = ®71(g): then f is in D(H"),
respectively S(H™"), and

Ru(f)=¥"'Rp2(f)=¥"'Rp(g)=4¢. N

APPENDIX: COMPUTATION OF THE RANGE-CHARACTERIZING
DIFFERENTIAL OPERATORS

_ Euclidean case. For distinct indices a, b, c and distinct ¢,7,! let { = (o pcijn: R* = E
be the map given by

((t1,t2,13,t4) = exp(—t4Xap) exp(—t3Tc) exp(—t2 X;;) exp(—~t1T7)
for t;,t2,t3,t4 € R. Let {ey,...,e,} be the standard basis of R™. Let t — 7;;(t) be the
one-parameter subgroup in E generated by —X;;: so 7;j(t) = exp(—tX;;) = rji(t)™! is
the rotation of angle ¢ in the (,7) plane. Such subgroup has natural actions on = and on

S™~1, which will merely be denoted by juxtaposition. Let P¢ be the orthogonal projection

of R" onto £ € =. For every k-plane 7 = (§,w, s) € G and for t3,t2,13,t4 small in absolute
value we have '

C(tl')t?at:la ti)(ﬂ-) = (Tab(t4)7'ij(t2)€,
Tab(t4)7‘,'j(t2) dlr(sw - t1P§61 — tgPe'I‘j,'(tg)ec),
st - thgcl — tng'r'j,'(t?_)ec”),

where dir(v) = v/ |jv]] for 0 # v € R"™. Set

G1(7) = 516(21,0,0,0)(mle =

‘ a3
(234(7) = m(((ovfz»ta»h)(ﬁ)]u:ta:tpo’

ot »
Crzza(m) = 5%, 01, Ot 01, [C(tlat%ti},t4)(”)]t1%t2=t3=t4=07
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for all possible combinations of order one through four.

Therefore

ot
5, 01, Ot Ot [ o ((t1,ta,t3,ta)] ey =t; =tg =ty =0
= d4’¢(§1§§2;43;44)
+ d®P[(C15 €25 Caa) + (Cr; G35 Caa) + (€15 i C2a)
s (CHEHENE X (CHEHSTIE X (CHEHETY]
+ d*[(C12; C34) + (G135 Cas) + (Ca45 C23)
+ (C1; Caaa) + (€23 Ca3a) + (€35 Cr24) + (G5 Cr23)]
+ dip(Ci234), , ‘

dv(Ti X TeX o) =

where, denoting by P = P¢n,+ the orthogonal projection of R™ onto { N w*, and by v w
the ordinary scalar product of v,w € R"™,

Cl('fr) = (0, —Pez/S, - el),
Ca(m) = (= X6, —Xijw, 0),
(3(m) = (0, —Pe./s, —w - ec),
Ca(m) = (= Xapé, =X 0w, 0),
Ci2{m) = (0, X Pet/s,0),
Ci3(m) = (0, —[(w - e1)Pec + (w - ec)Per + (e - Pec)w]/s%,e1 - Pec/s),
Cra(m) = (0, XapPey/s,0),
ng(?f) = (0, [X,'jP - PX,‘J']CC/S, - - X;]-ec),
C2a(7) = (Xap X6, Xap Xijw, 0),
C34(m) = (0, XapPec/s,0),
Cr23(m) = (0, [(w - ec)XijPer + (w - e))[X;; P — PXj;le. — (w - Xijec)Pey
— (er- PXjjec)w + (e Pe)Xijwl/s?, e1- PXijec/s),
Cr24(7) = (0, -—XabX,'J'Pez/S,O),
C134(m) = (0, Xop{(w - €1)Pec + (w - €c)Per + (er - Pe)w)/s?,0),
Cass(m) = (0, =X o[ Xi; P — PXjjlec/s,0),
Cr234(m) = (0, = Xgp[(w - €c)XijPe; + (w - e)[X;j P — PX;5le. — (w - Xjjec)Pe
— (e1- PXyjec)w + (er - Pe)Xjw)/s2,0),

where we stipulated that
d
~Xii§ = 5 [rii ()l e=o,
2

) 9
Xab‘x ‘]§ = m{rab(tQ)r,‘j(tl)é]tl =ty=0"
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We obtain the operator D as

D= dl/(V) = Z [dl/(TiX'le,'Xﬂ) + dV(T,‘leT]"Y“) + dl/(TinlTiX,‘j)
1iy<isn 4 dU(Tj‘Xr“T{Xﬂ) + dl/(Tle,'Tj)(“) + dV(TquT(XV,‘j)
-+ dl/(T[}(,’jT,‘.le) + dl/(TIX,'J'Tj‘X“) + dV(TIX,'J‘TI‘X‘,'J‘)].

As to D;;; we simply have

D,‘j( = dl/(V,'jl) = dl/(T,‘}i—jl) + dU(Tj}(“) -+ dU(T[.X,’j)
for,7,l=1,...,n, where

62
dU(Tz‘\—,'j)zb == m[l/) 0 C(tl,t% 0, 0)]t‘:t2=0 - d2¢’(€1; C2> + diﬁ(Clz),

and (1, (g, (32 are given above.

Pullback to the hyperbolic case. As described in Section 3, the pullback of the oper-
ator D is C = ¥ 1DV, so its effect on ¢ € S(T') will be

Co=o0"'D(lod] o T,;"l) o Tk.
The summands are

U (T X5 Te X ap) Vb = d* ¢(01; 625 033 64)
+ d*[(61; 02 034) + (815 03; 624) + (615 045 623)
+ (02;63;014) + (02; 043 613) + (035045 612)]
+ d?[(012; 034) + (613 024) + (614; 623)
+ (613 0234) + (025 6134) + (03; 0124) + (64; 6123))
+ dé(61234)
+ tanhr [d®@[(62; 65; 64)87 + (8};82;64)65)
+ d?¢[(62; 034)07 + (85; 624)87 + (67; 624)85
+ (64;623)07 + (61;64)835 + (62; 614)65
+ (825 04)815 + (64; 612)65]
+ d[(624)015 + (614623
+ (6234)07 + (012465 + (64)0733] ]
+ (14 2tanh®r) [d?¢(6y; 6,)6765
+ do[(024)010;3 + (64)61635] ],

where 6, for each multiindex J C {1,2,3,4}, is obtained from (; by substituting in its
expression the variable s with tanhr and multiplying by cosh® r its third component, which
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is then denoted as 67; and 6, is obtained from 8, by doubling its third component. Thus
for instance

8; = (0,—Pe;/ tanhr, —w - e; cosh® r),
6! = (0, —Pe¢;/ tanhr, —2w - ¢; cosh® 1),

0] = —w- e cosh? r.

Observe that 87 vanishes (and consequently 8, = ) unless

J = {1}, {3}a {la'?’}: {2’3}’ {172’3}!

the above sum does not appear symmetric in the indices 1,2,3,4 because the terms that
vanish were omitted. and because §; has been replaced by §’; only in case they were
different. Furthermore the factor 87, when appearing in a summand, is meant to multiply
the entire corresponding differential, not its argument: thus

d*p[(62; 65; 64 )07 + (61; 82; 64)63]

stands for
67d> §(62; 03; 64) + 63d°$(81; 62; 64).

The whole operator C is now obtained in the same way as D in the preceding section.
Analogously we obtain the pullback Cjj; of the operator D;;; from

Uy (T X))V ¢ = d2(01;62) + dyp(612) + tanhr 6]dp(62).
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