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Emerging infectious diseases in wildlife have become a growing concern to human health 

and biological systems with more than 75 percent of known emerging pathogens being 

transmissible from animals to humans. Highly pathogenic avian influenza (HPAI) H5N1 

has caused major global concern over a potential pandemic and since its emergence in 

1996 has become the longest persisting HPAI virus in history.  HPAI viruses are 

generally restricted to domestic poultry populations, however, their origins are found in 

wild bird reservoirs (Anatidae waterfowl) in a low-pathogenic or non-lethal form. 

Understanding the spatial and temporal interface between wild and domestic populations 

is fundamental to taking action against the virus, yet this information is lacking.  My 

dissertation takes two approaches to increase our understanding of wild bird and H5N1 

transmission. The first includes a field component to track the migratory patterns of bar-

headed geese (Anser indicus) and ruddy shelduck (Tadorna ferruginea) from the large 

H5N1 outbreak at Qinghai Lake, China.  The satellite telemetry study revealed a new 

migratory connection between Qinghai Lake and outbreak regions in Mongolia, and 



 

provided ecological data that supplements phylogenetic analyses of virus movement. The 

second component of my dissertation research took a modeling approach to identify areas 

of high transmission risk between domestic poultry and wild waterfowl in China, the 

epicenter of H5N1.  This effort required the development of spatial models for both the 

poultry and wild waterfowl species of China.  Using multivariate regression and AIC to 

determine statistical relationships between poultry census data and remotely-sensed 

environmental predictors, I generated spatially explicit distribution models for China’s 

three main poultry species: chickens, ducks, and geese.  I then developed spatially 

explicit breeding and wintering season models of presence-absence, abundance, and 

H5N1 prevalence for each of China’s 42 Anatidae waterfowl species. The poultry and 

waterfowl datasets were used as the main inputs for the transmission risk models. Distinct 

patterns in both the spatial and temporal distributions of H5N1 risk was observed in the 

model predictions.  All models included estimates of uncertainty, and sensitivity analyses 

were performed for the risk models.  
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Introduction 

The emergence of highly pathogenic avian influenza (HPAI) H5N1 (hereafter 

H5N1) in south-east Asia has caused major global concern over a potential pandemic 

(Russell and Webster 2005, Lu 2006, 2006).  Worldwide, 596 human cases and 350 

deaths due to handling infected poultry have been confirmed since 2003 (World Health 

Organization 2012a).  In addition to zoonotic concerns, the disease has caused serious 

economic loss within the poultry industry.  Over 250 million poultry have been lost to 

infection and culling in south-east Asia alone (FAO 2011b).  As new H5N1 outbreaks in 

poultry were reported across Russia and into Europe during fall 2005, wild birds were 

implicated as the main cause of disease spread (Normile 2006b).  Many have questioned, 

however, the ability of wild migratory birds to transport virus under compromised 

condition due to infection (Liu et al. 2005, Butler 2006, Chen et al. 2006b, Fergus et al. 

2006, Zhou et al. 2006).  April 2005 marked the beginning of the largest known outbreak 

of avian influenza in wild birds in history – over 6,500 birds died at Qinghai Lake, an 

important colonial breeding area on the edge of the Qinghai-Tibetan plateau of China 

(Liu et al. 2005).  More than half the mortalities occurred in bar-headed geese (Anser 

indicus) resulting in a 6% decline in their global population (Delany and Scott 2002, Liu 

et al. 2005, Chen et al. 2006b, Zhou et al. 2006).  Other species affected included ruddy 

shelducks (Tadorna ferruginea), common cormorants (Phalacrocorax carbo), great-

black headed and brown-headed gulls (Larus ichthyaetus and L. brunnicephalus). 

Wild waterbirds are known natural reservoirs for low pathogenic forms of avian 

influenza, carrying and shedding the virus often without clinical signs of infection 

(Stallknecht and Shane 1988, Alexander 2000, Olsen et al. 2006).  H5N1 is unique to 
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previous avian influenza viruses in three main regards: (1) spillback to wild birds had 

been a very rare event, yet H5N1 on multiple occasions has been reported in wild birds, 

presumably from spillback (Webster et al. 2007a); (2) previously it had been rare for an 

individual strain of avian influenza virus to infect more than one species; H5N1 has been 

detected in 178 species of 16 taxonomical Orders (USGS National Wildlife Health Center 

2012); and (3) since its emergence in domestic geese in 1996 (Xu et al. 1999), the 

A/goose/Guangdong/1/96 (Gs/GD) virus lineage has become the longest recorded HPAI 

virus to remain endemic in poultry (Vijaykrishna et al. 2008), approximately 16 years at 

the time of this writing.  In addition, the H5N1 virus has shown signs of mutation through 

decreased virulence and increased viral shedding in domestic ducks which are now 

considered silent reservoirs for the virus (Hulse-Post et al. 2005, Sturm-Ramirez et al. 

2005).  Given the potential for wild birds to contribute to disease spread and the ample 

opportunity for domestic poultry and wild birds to co-mingle in commercial and backyard 

farms within Asia, it is critical to determine the most likely places for H5N1 transmission 

between these 2 populations. 

There are a number of factors related to H5N1 spread and persistence that make 

China a uniquely valuable region to focus this study. The closely interwoven relationship 

among humans, livestock, and the natural environment that occurs in the warmer regions 

of southern and eastern China provide ample conditions for virus development and 

evolution, as can be evidenced by the origin of H5N1 from domestic geese in Guangdong 

province (Xu et al. 1999).  China is the world’s top producer of poultry, accomplished by 

a mix of large and mid-scale farming, yet across China house-hold level back-yard 

farming puts billions of birds on the landscape in a free-range setting. This range in 
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complexity in farming systems is an important factor to consider in transmission risk 

models. Along with many other regions in Asia, H5N1 has become endemic in the 

poultry system causing an unrelenting threat. However, unlike the 63 other countries 

infected with H5N1 over the past 16 years, China has remote regions where domestic 

poultry is relatively non-existent and outbreaks occur among wild bird populations. 

Having an opportunity to examine transmission risk factors under these vastly different 

conditions allows us to answer the broadest questions regarding H5N1 transmission 

between wild and domestic bird populations, which is why we focus our study within 

China.  
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Proposed Research 

In this dissertation, I have proposed study of the potential risk of HPAI 

transmission between wild and domestic waterfowl within China by combining field data, 

remote sensing, and modeling techniques.  In order to do so, I developed geospatial data 

layers of estimated bird populations for wild waterfowl and domestic poultry at multiple 

spatial and temporal scales across China.  The input layers served as the basis for the 

disease transmission risk model.  An important component of this work has been to 

quantify the level of confidence in model output.  The goals and products produced here 

have not changed from those outlined in my dissertation proposal: (1) to create high 

resolution spatial datasets for (a) wild waterfowl and (b) domestic poultry across China to 

serve as base inputs for (2) a disease transmission risk model focusing on potential spread 

of HPAI H5N1 between wild and domestic birds, and (3) to explore migratory behavior 

of wild waterfowl from the large outbreak area at Qinghai Lake in 2005.   
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CHAPTER 1. LITERATURE REVIEW 
 

Avian Influenza 

Type A Influenza 
 

The avian influenza virus (AIV) is an RNA virus of the family Orthomyxoviridae.  

There are five genera in this family, including Thogotovirus, Isavirus and influenza types 

A, B, and C.  The natural hosts of type A influenza are birds (hence the name, avian 

influenza or bird flu), although mammals such as humans, horses, pigs, cats and seals 

have also acquired infection from this virus.  Type A influenza is the most commonly 

distributed of the group and can cause infections ranging from subclinical to lethal in its 

hosts. 

The virus is spherical to filamentous in shape, having a protective outer protein 

layer (M1) with 3 glycoprotiens protruding the surface: Hemagglutinin (HA), 

Neuraminidase (NA), and M2.  The function of the HA protein is to aid the virus in 

attachment and penetration of the host cell.  The NA protein assists with the release of 

newly replicated virus from the host cell. The M2 genes upon exposure to lower pH 

opens the virus shell to expose the virus contents within the cytoplasm of the host cell.  

Inside the shell are 8 RNA gene segments that encode for the production of 10 viral 

proteins that make up the virus.  The replication process includes penetration of the 

surface of a host cell, invasion of the nucleus and replication of RNA, production of viral 

proteins in the host cell’s cytoplasm, and bundling of the replicated material and exiting 

of the host cell (Palese and Shaw 2007). 

 Avian influenza viruses are classified into subtypes based on the type of HA and 

NA proteins found on the surface.  Sixteen types of HA and 9 types of NA have been 
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described thus far, for a total of 144 potential combinations, all of which have been found 

in birds.  Type A influenza viruses are identified by subtype combination, such as H5N1, 

H3N2, etc.   Virus isolates are named using a standard convention: (1) antigenic type (A, 

B, or C), (2) type of animal host (if human, this part may be omitted), (3) geographic 

location of the isolate’s origin (can range from city to country), (4) laboratory reference 

number, (5) year of isolation, (6) and the HA and NA subtypes often presented in 

parentheses.  An example of virus isolated from bar-headed geese infected in during the 

spring 2005 avian influenza outbreak at Qinghai Lake, China is A/bar-headed 

goose/Qinghai/0510/05 (H5N1). 

Classification by Pathogenicity: HPAI verus LPAI 
 
 Avian influenza viruses are classified into two groups based on their overall 

pathogenicity to domestic chickens: low pathogenic avian influenza (LPAI) causes mild 

disease in poultry such as mucosal infection and a decrease in egg production; highly 

pathogenic avian influenza (HPAI) causes severe mortality often with rapid spread 

resulting in 100% flock mortality within 48 hours of exposure.  HPAI is measured as the 

level of pathogenicity caused in chickens (as opposed to other avian species) for 2 main 

reasons: (1) historically it was important to have an indicator of notifiable avian influenza 

viruses (NIA) to protect the economics of the poultry industry, and (2) avian influenza 

causes a variety of clinical signs depending on the species of host and its immune status, 

thereby necessitating a consistent measure of pathogenicity within a single host type 

(World Organization of Animal Health 2005).  NIA cases are reported to the World 

Organization of Animal Health (formerly Office Internationale des Epizooties, OIE) for 

official control and stamping out of the virus.  In brief, the OIE defines NIA’s as: (1) 
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HPAI viruses causing at minimum 75% mortality in 4-8 week old chickens after 

intravenous infection; and (2) LPAI viruses having H5 or H7 subtypes (forms known to 

easily mutate from low pathogenic to highly pathogenic viruses).  These designations, 

however, do not predict pathogenicity in other types of hosts such as wild birds, humans, 

or even other types of poultry such as domestic ducks.  

Antigenic Drift and Shift 
 
 Influenza viruses are continuously changing and evolving.  The majority of 

change occurs through a slow process of genetic mutation called antigenic drift.  Small 

changes to specific gene segments, or point mutations, naturally occur during the virus 

replication process.  Changes that occur to genes that produce the HA surface protein are 

of significance since change in the shape of the HA structure will affect the ability of the 

virus to attach to and penetrate the host cell.  Antibodies that formerly attached to the HA 

protein no longer fit and the host remains unprotected.  This is the reason that flu 

vaccines need to be updated each year.  Antigenic drift results in new strains of a given 

subtype of AI. 

 Antigenic shift, on the other hand, is defined by an abrupt and major change in 

genetic material.  This can occur if multiple virus types infect the same host and genetic 

material is swapped between viruses, producing a new virus.  This process is called 

genetic reassortment and often results in a new subtype of influenza.  Certain species, 

such as pigs, humans, and quail, are known to be viral mixing vessels, meaning that they 

can be infected by multiple virus types at one time, providing an opportunity for genetic 

reassortment (Webster et al. 1992, Makarova et al. 2003, Perez et al. 2003).  The 

currently circulating Asian HPAI H5N1 virus, at this point in time, is not easily passed 
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from birds to humans, and human-to-human transmission is extremely rare (the World 

Health Organization (WHO) defines our current state of pandemic alert as Phase 3: “No 

or very limited human-to-human transmission” (World Health Organization 2012b)).  

Antigenic shift within this virus could result in efficient and sustained human-to-human 

transmission causing a worldwide pandemic. 

 LPAI viruses occur in all HA and NA subtypes, but HPAI viruses have been 

restricted to H5 and H7 subtypes, for reasons yet undetermined.  Conversion from LPAI 

to HPAI is not common, but is believed to occur when LP forms circulate and rapidly 

replicate under dense poultry conditions (Perdue 2008), as was the case in the large 

outbreaks in poultry in Pennsylvania (H5N2) in 1983 (Bean et al. 1985, Brugh and 

Perdue 1991), Mexico (H5N2) in 1994 (Horimoto et al. 1995), and Canada (H7N2) in 

2004 (Bowes et al. 2004, Hirst et al. 2004).  One of the molecular causes for transition 

from LP to HPAI is the addition of amino acids at the HA cleavage site (location on the 

HA protein where, when split by specific proteases, activates the virus).  The addition of 

such amino acids allows cleavage of the HA by multiple types of proteases (found within 

the host’s cells), allowing the virus to attack many different types of cells, causing 

systemic and often lethal infection within the host’s body. 

 

Avian Influenza Virus Hosts for LPAI 
 

Wild waterbirds, particularly those within the orders Anseriformes (waterfowl) 

and Charadriiformes (shorebirds and gulls) are the known natural hosts and reservoirs for 

LPAI (Stallknecht and Shane 1988, Alexander 2000, Clark and Hall 2006, Muzaffar et al. 

2006, Olsen et al. 2006).   These wild birds carry the low pathogenic form of avian 
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influenza often without showing clinical signs of infection.  The LPAI virus is replicated 

in the intestinal tract, shed through feces, and transmitted via the fecal-oral route.  Certain 

groups of species within the dabbling and diving duck subfamily (Anatinae) have higher 

prevalence of LPAI due to their feeding habits.   

Table A.1 (Appendix A) provides a summary of species and prevalence rates 

from the three major review articles representing data from the Americas, Europe, and 

Asia/Africa.  In the northern hemisphere, a number of surveillance efforts have been 

underway to determine prevalence of LPAI in wild birds over the past quarter century.  

LPAI has been isolated from more than 110 species of wild birds from 26 families (Olsen 

et al. 2006, Munster et al. 2007) although prevalence rates have been consistently highest 

within the orders Anseriformes and Charadriiformes.  All HA and NA subtypes, with the 

exception of H13 and H16 (found in gulls), have been isolated from wild ducks, with the 

most common being H3, H4, H6, N2, N4, and N6.  LPAI prevalence has been highest in 

ducks, particularly dabblers (ducks that feed in shallow waters by tipping their heads 

down and rumps up to reach the bottom surface) such as mallards (Anas platyrhynchos), 

northern pintails (Anas acuta), and blue-winged teal (Anas discors).  Surveillance efforts 

show distinct geographic and temporal variations in prevalence between migrating 

waterfowl and shorebirds in the North American studies.  Waterfowl had highest LPAI 

prevalence rates in fall and shorebirds had highest rates in spring (Stallknecht and Shane 

1988, Slemons et al. 2003, Krauss et al. 2004).  For ducks, LPAI prevalence was as high 

as 60% in late fall before the southward migration, with decreasing prevalence on 

wintering grounds (0.4 – 2%) and the northward return spring migration (0.3%).  The 

high prevalence of LPAI in ducks in the fall is attributed to dense congregation of 



  

11 
 

juvenile waterfowl (immunologically naive individuals of the year) at fall staging areas.  

Prevalence in shorebirds was 14% in spring and 0.3% in the fall.  The high prevalence of 

LPAI in shorebirds during spring migration has been suggested as a source of 

perpetuation of LPAI on the northern breeding grounds (Kawaoka et al. 1988, Krauss et 

al. 2004).   

Extensive surveys were conducted in Europe over an eight year period from 1998 

to 2006, including more than 36,000 birds (Munster et al. 2007).  Anseriformes had the 

highest prevalence rates, followed by Charadriiformes.  In contrast to the North American 

surveys, shorebirds did not exhibit high prevalence rates during spring migration.  LPAI 

viruses were also distinct from those isolated in the Americas (Webster et al. 1992, Olsen 

et al. 2006, Munster et al. 2007).  

Minimal surveillance has been conducted outside of North America and Europe 

prior to the recent HPAI H5N1 outbreaks.  In 2006 the United Nations Food and 

Agriculture Organization (UN FAO) launched a surveillance program to sample wild 

birds across Eastern Europe, the Middle East, and Africa.  The overall LPAI prevalence 

rate was 3.5% (>5000 samples) (Gaidet et al. 2007b).   

Avian Influenza Virus Hosts for HPAI 
 

While LPAI is recognized to be widely distributed in wild birds, the first case of 

HPAI (called fowl plague), occurred in domestic poultry in Italy in 1878 (Perroncito 

1878).  It wasn’t until 1955 (Schafer 1955), however, that the cause of the outbreaks was 

determined to be highly pathogenic avian influenza.   Since 1955, there have been 27 

documented outbreaks of HPAI globally, all of subtypes H5 or H7 (Alexander 2000, 

United Nations Food and Agriculture Organization 2004, Swayne 2008).  The majority of 
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reported outbreaks have occurred in Europe and North America (10 and 6, respectively) 

with the remainder in Australia (5), Asia (2), Pakistan (2), Africa (1), and South America 

(1) (Appendix A, Table A.2). Three quarters of the outbreaks have occurred since 1990. 

Until H5N1, HPAI viruses were rarely observed in wild birds. The first case of 

HPAI identified in wild birds occurred in common terns (Sterna hirundo)in South Africa 

in 1961 (Rowan 1962).   Over 1300 terns died on the wintering grounds of coastal South 

Africa in April after failing to migrate north in February.  The virus was later identified 

as A/tern/South Africa/61 H5N3 (Becker 1966).  Prior to the appearance of HPAI H5N1 

in captive and free-living wild birds in Hong Kong in 2002 (Ellis et al. 2004), this has 

been the only outbreak reported in wild birds. 

Our knowledge of pathogenicity and transmissibility of HPAI in wild birds is still 

quite limited, but appears to vary among species.  A few challenge studies have been 

conducted on domestic species and farm-raised wild species.  Perkins and Swayne 

(2002a, 2002b, 2003) challenged a suite of species including passerines, gulls, emus, and 

domestic ducks and geese with the 1997 Hong Kong virus (A/chicken/Hong 

Kong/220/97 H5N1).  Zebra finches (Taeniopygia guttata) were most severely affected, 

exhibiting 100% mortality within 5 days of inoculation.  House finches (Carpodacus 

mexicanus) and budgerigars (Melopsittacus undulatus) exhibited significant morbitity 

(disease) and mortality within 2 days of inoculation.  House sparrows (Passer 

domesticus), emus (Drauzaius novaeholandiae), and domestic geese (Anser anser 

domesticus) showed mild signs of infection but no mortality.   European starlings 

(Sternus vulgaris), pigeons (Columba livia), laughing gulls (Larus atricilla) and domestic 

mallard ducks (Anas platyrhynchos) showed no signs of infection and no mortality.  
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Sturm-Ramirez et al. (2005) inoculated domestic mallards with 23 H5N1 viruses isolated 

in Asia between 2003 and 2004 and found that although pathogenicities varied, nearly all 

the viruses replicated and were transmitted to immunologically naive individuals.  

Finally, Brown et al. (2008) tested 6 species of swans and geese with virus isolated from 

the outbreak in wild swans in Mongolia in 2005 (A/whooper swan/Mongolia/244/2005 

H5N1): whooper swan (Cygnus cygnus), black swan (Cygnus  atratus), trumpeter swan 

(Cygnus buccinator), mute swan (Cygnus olor), bar-headed goose (Anser indicus), and 

cackling goose (Branta hutchinsii).  All of the swans showed 100% mortality, with a 

range of 2 to 8 days until death.  Three-quarters of the cackling geese died, all within 4-8 

days post infection (dpi).  All of the bar-headed geese showed morbidity within 3-7 dpi, 

and 2 of 5 of the birds died (6-7 dpi).  Cloacal shedding was detected in 4 of 5 of the bar-

headed geese. Additional study of prevalence rates and pathogenicity for individual wild 

species would benefit efforts to understand avian influenza in wild bird populations. 

Transmission Pathways for Avian Influenza 

 In wild birds, LPAI viruses replicate in the intestinal tract.  Large amounts of 

virus are shed through the feces of infected birds, and transmission occurs via the fecal – 

oral route (Webster et al. 1978, Shortridge et al. 1998).   HPAI H5N1 differs from many 

other strains in that the virus has evolved to replicate beyond the intestinal tract and into 

the respiratory system (Ellis et al. 2004, Sturm-Ramirez et al. 2004, Hulse-Post et al. 

2005), allowing virus transmission to occur via both the fecal-oral route and bird-to-bird 

via aerosol particles.  A significant change occurred with the second wave of spread in 

late 2003 to early 2004: pathogenicity of the virus decreased in domestic ducks while 

remaining highly virulent to chickens and humans (Hulse-Post et al. 2005).  By allowing 
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its main host to survive, the virus increased its ability to spread. Not only could it 

replicate in ducks without causing major signs of disease (hence no mass culling) but 

ducks that survived shed virus for a longer period of time – an average of 17 days versus 

2 to 5 days allowing increased perpetuation and spread of the disease (Li et al. 2004, 

Hulse-Post et al. 2005, Sturm-Ramirez et al. 2005).  

 Another important pathway for transmission of AIVs is through contaminated 

water or moist environments (Webster et al. 1978, Markwell and Shortridge 1982, Ito et 

al. 1995).  The length of time an influenza virus can survive in wet conditions varies 

depending on the strain of virus and water conditions such as pH, temperature, and 

salinity.  Some strains of avian influenza have been known to survive in water at 17º C 

for up to 207 days, and even longer at 4º C (Stallknecht et al. 1990).  Stallknecht et al. 

(1990a) found that AIVs survived longer in water at lower temperatures (17 versus 28º 

C), and lower salinities (0 ppt versus 20 ppt).  They also found an interaction effect 

between pH and salinity.  Shortridge et al. (1998) found that AIV survived for 4 days in 

wet feces at 25º C.  Brown et al. (2007b) were the first to study persistence of H5 and H7 

AIVs in water (LPAI viruses from wild birds and HPAI H5N1 isolated from whooper 

swans in Mongolia and duck meat in Anyang).  They determined that these viruses can 

persist for extended periods of time in water, that the persistence of these viruses is 

inversely proportional to temperature and salinity of water, and that a significant 

interaction exists between the effects of temperature and salinity on the persistence of 

these viruses (the effect of salinity is more prominent at lower temperatures).  Some 

studies suggest that avian influenza viruses can survive in ice, allowing for persistence of 

the virus over winter (Zhang et al. 2006), although others discredit these findings due to 
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laboratory contamination (Worobey 2008).  Lang (2008) successfully extracted a wide 

diversity of AIVs from sediments of ponds used heavily by waterfowl during spring, fall, 

and winter (under ice), although they did not test whether the viruses were viable and 

able to replicate.  Despite the relatively small number of studies conducted on AIV 

persistence in water and environment, transmission of virus through this medium may be 

an important factor in the spread of AIV. 

 Traditionally, the main source of spread of HPAI has been through the poultry 

industry.  Infected birds transmit the virus rapidly among densely concentrated 

populations, and depending on the quality of bio-security controls, movement can occur 

among farms and between farms and markets via contaminated vehicles and equipment.  

In certain parts of the globe (Asia in particular) virus is spread through the movement of 

feces sold as fertilizer for vegetable crops or as food for local aquaculture (Feare 2006).  

HPAI has also been  transported through the importation of contaminated poultry meat 

(Tumpey et al. 2002) and illegal pet and wild bird trades.  In most parts of Asia as well as 

Europe, the Middle East, and Africa, live bird markets are very common and are 

considered to be a contributor to AIV spread and source of human infection (Webby and 

Webster 2001).  It is common to see domestic and wild birds sold under close conditions 

without bio-security controls, providing ample opportunity for virus spread and 

perpetuation. 

 Agricultural systems in Asia commonly integrate farming practices such as fish 

farming or poultry farming with rice paddy agriculture.  In many areas, domestic ducks 

feed in rice paddies and adjacent wetlands for most of the year, creating opportunity for 

virus spread between wild and domestic birds either directly or through the water and 



  

16 
 

environment (Muzaffar et al. 2010).  Such areas pose a high risk for AIV transfer within 

the poultry system as well as between wild and domestic birds.  Gilbert et al. (2007) 

demonstrated a strong spatial relationship among free-grazing ducks, rice paddy 

agriculture, and HPAI H5N1 outbreaks in Thailand.  China provides a unique situation to 

study AIV transmission risk between domestic poultry and wild waterfowl because it has 

both densely-farmed mixed agriculture systems as well as areas (such as Qinghai Lake in 

high-elevation western China) where large outbreaks have occurred in the absence of 

poultry. 

Highly Pathogenic Avian Influenza H5N1 

The first reported case of HPAI H5N1 of the Asian lineage was isolated from a 

sick goose in Guangdong province, southern China in 1996 

(A/Goose/Guangdong/1/96)(Xu et al. 1999).  Strict control measures were taken and it 

was believed that this form of H5N1 had been eradicated.  In 1997, however, a related 

strain caused outbreaks in humans and poultry in Hong Kong (Claas et al. 1998, 

Shortridge et al. 1998), with 18 human cases, 6 of which were fatal.  It is believed that the 

disease originated in live poultry markets.  Over the next few years, the virus continued 

circulating in geese in southern China, and by 2000, domestic ducks had become infected 

with subsequent evolving genotypes (Guan et al. 2002).  From 2000 through 2002, 

further outbreaks occurred in Hong Kong and other parts of China (Chen et al. 2004), and 

an increasing number of subclinical domestic ducks tested positive for H5N1 (Sims et al. 

2003, Sims et al. 2005).  The first cases of HPAI H5N1 in wild birds (in late 2002) were 

reported within a week of each other at 2 parks in Hong Kong (Ellis et al. 2004).  

Affected species included waterfowl, captive greater flamingo (Phoenicopterus ruber), 
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wild little egrets (Egretta garzetta), grey heron (Ardea cinerea), black-headed gull (Larus 

ridibundus), feral pigeon (Columba livia), and tree sparrow (Passer montanus).  The 

outbreaks were contained using a combination of isolation, limited culling, and 

vaccination. 

 Late 2003 marked the beginning of multiple waves of HPAI H5N1 spread in 

poultry, humans, and wild birds, from China to other areas in Asia (2003-2004): South 

Korea, Vietnam, Japan, Thailand, Cambodia, Lao, Indonesia, Malaysia; then north to 

Mongolia and west to Europe (Aug – November 2005); and eventually south to Africa 

(early 2006).  Li et al. (2004) linked the outbreaks to the 1997 virus isolated in Hong 

Kong based on a combination of genetic reassortments.  The virus was reported to be 

endemic within China by 2004 and domestic ducks were revealed as key factors in the 

evolution and maintenance of the virus (Li et al. 2004).  To date, hundreds of millions of 

poultry have died from infection and culling practices and 596 human cases (350 deaths) 

due to handling infected poultry have been confirmed since 2003 (World Health 

Organization 2012a).   

 The role of wild birds in the spread of HPAI H5N1 has been greatly debated and 

remains unclear (Bonn 2006, Butler 2006, Fergus et al. 2006, Normile 2006a, Fouchier et 

al. 2007).  In April 2005, the largest known outbreak of HPAI in wild birds occurred in 

north-central China at Qinghai Lake - an area lacking domestic poultry.  Over 6000 

colonial nesting waterbirds died within a 2 month period, including 6 percent (3300 

birds) of the world’s population of bar-headed geese (Anser indicus), 1300 great 

cormorants (Phalacrocorax carbo), 930 great black-headed gulls (Larus ichthyaetus), 

570 brown-headed gulls (Larus brunnicephalus), and 150 ruddy shelduck (Tadorna 
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ferruginea) (Chen et al. 2005, Liu et al. 2005, Chen et al. 2006b).  A pattern in the timing 

of outbreaks occurred among the species, leading Chen et al. (2006b) to suggest that bar-

headed geese brought the disease to Qinghai Lake.  Bar-headed geese were the first to 

show clinical signs of infection (May 4) followed by brown-headed gulls and great black-

headed gulls approximately 10 days later and Ruddy shelduck and great cormorant 

another 10 days after that.  Chen et al. (2006b) argues that if the virus already existed at 

the lake, or was brought by a different bird species, that the bar-headed geese, gulls, 

cormorants and shelduck would have exhibited nearly simultaneous clinical infection 

because these species congregate in the same areas during breeding and would therefore 

be infected at the same time.   Although this point is not without merit, two important 

factors are missing from this equation: (1) an understanding of the timing of bird 

migration and behavior, and (2) species specific virus factors such as latency time 

(incubation period), and amount and duration of viral shedding.  Return of breeding 

species to Qinghai Lake is staggered, generally with bar-headed geese and ruddy 

shelduck returning first, followed by the gulls and cormorants (Hou, personal 

communication).  In addition, birds returning to the breeding grounds of Qinghai Lake 

feed in areas outside the breeding colonies for a couple weeks before congregating at 3 

nesting sites (Bird Island, San Kuai Shi, and Hai Xin Shan).  The lake is the largest salt-

water lake in China (6500 sq-km) with multiple large fresh-water streams and wetlands 

feeding into the system.   In the weeks preceding nesting, bar-headed geese and ruddy 

shelduck feed together in the surrounding freshwater wetlands and wheat fields.  Fish-

eating cormorants and great black-headed gulls are usually found near the large river 

mouths draining into the lake.  Brown-headed gulls, a generalist that feeds on grains to 
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invertebrates, returns to the lake a few weeks after the others, and can be found dispersed 

among the two groups of birds.  Upon nesting, the birds separate into three main groups: 

bar-headed geese and gulls nest on the 3 breeding colonies mentioned above, cormorants 

on a separate island called Luci Dao, and ruddy shelduck in rocky crevices of mountains 

surrounding the lake (personal experience and Hou, personal communication).  Based on 

the behavior of the birds and possible differences in reaction to the virus for each species, 

it is not unlikely that outbreaks among species would commence non-simultaneously 

even if infected after their return to the lake.  Finally, the hypothesis that infected bar-

headed geese migrated to Qinghai Lake with the virus can be questioned by the high 

pathogenicity exhibited among those infected in the outbreak: systemic infection with 

lesions in major internal organs such as heart, brain, pancreas, digestive tract, and ovaries 

(Chen et al. 2005, Liu et al. 2005, Chen et al. 2006b, Zhou et al. 2006). 

The reported origin of H5N1 virus at Qinghai Lake differed among 4 research 

groups that isolated virus from the outbreak.  A controversial paper published in Nature 

in July 2005 (Chen et al. 2005) reported close relation of virus isolates to those of 

domestic poultry in southern China in 2005 (A/chicken/Shantou/810/2005) despite a lack 

of reporting of HPAI H5N1 in domestic poultry during that time.  Another study 

published in July 2005 by a separate group determined that 5 of 8 genomic segments 

were closely related to isolates from a dead peregrine falcon found in Hong Kong in 2004 

(Liu et al. 2005).   Zhou et al. (2006) analyzed a greater number of isolates and found 

their isolates to encompass those identified by both Chen et al. (2005) and Liu et al. 

(2005).  Chen et al. (2006) (a different author than H. Chen of the 2005 Nature article) 

reported origin of the HA, NA, and nucleoprotein genes to be similar to those of 
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A/chicken/Jiangxi/25/2004.  The 4 studies agreed that most viruses isolated from the 

Qinghai outbreak were similar in the following regards: (1) this virus was a new 

reassortant that included lysine at position 627 in the PB2 protein (a trait found in the 

human cases during the 1997 Hong Kong outbreak, and one that characterizes human 

virus), (2) that a series of amino acids were present at the HA cleavage site (RRRKKR) 

indicating HPAI, and (3) that a 20-amino-acid deletion on the NA stalk was present (also 

contributes to the virulence of the virus strain). 

Unlike the other studies, however, (Chen et al. 2006) reported 4 distinct 

genotypes (genotypes represent groupings based on the combination of variation among 

all the internal genes) from the viruses isolated during the outbreak (15 viruses were 

sampled from 6 species).  The PB2 genes were phylogenetically grouped into 3 clades 

(clades describe groupings based on a single internal gene of the virus): 2 bar-headed 

goose samples isolated early in the outbreak formed a clade with A/peregrine 

falcon/Hong Kong/2004 and A/chicken/Yamaguchi/7/2004; a single ruddy shelduck 

formed its own clade; and the remaining isolates formed a clade with those reported by 

Chen et al. (2005) and Liu et al. (2005).  Based on the clades identified by the PB2 genes, 

and those based on a number of other internal genes, the 4 genotypes are as follows: A 

and B (isolated from bar-headed geese early in the outbreak), C (isolated from bar-headed 

geese, brown-headed gull, great black-headed gull, and common cormorant), and D 

(isolated from ruddy shelduck).  Genotype C was also isolated from later outbreaks in 

Russia, Mongolia, Inner Mongolia, and Liaoning Province of China (Chen et al. 2006). 

The genotypes reported here outline differences in virus structure which helps to build an 

understanding of the history of H5N1 at this location, however, the addition of ecological 
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information from the host species, as well as species level physical and immunological 

response to exposure would help inform our understanding of the role the different 

species have in the epidemiology of the disease.  

 The autumn of 2005 marked the spread of HPAI H5N1 into geographic areas 

beyond southeast Asia, with first-case reports from Russia and Kazakhstan in July; 

Mongolia in August; Turkey, Romania, and Croatia, in October;  Nigeria, Iraq, India, 

Greece, and Bulgaria in January (2006); Italy, Hungary, Germany, Slovenia, France, 

Austria, Albania, Bosnia Herzegovina, Egypt, Cameroon, Azerbiajan, Iran, Georgia, 

Niger, Pakistan, Sweden, Switzerland, in February; and Afghanistan, Poland, Denmark, 

Israel, Palestine, Jordan, and Scotland in March.  During this time, media reports and 

many government officials implicated wild birds in the spread, without plausible 

evidence, and often contrary to known bird behavior and migration patterns.  A global 

debate ensued, and in May 2006, the FAO and OIE organized a conference including 300 

scientists from 100 nations to discuss the potential involvement of wild birds in the 

spread of HPAI H5N1.  Conclusions from the meeting did not reveal a unidimensional 

answer, rather that the spread of the disease is complicated, including wild birds in some 

situations (Europe), poultry in others (Africa), and a combination in yet others.  A vast 

gap in knowledge was recognized regarding susceptibility and transmissibility of wild 

birds to the virus, as well as general ecological information such as migration routes of 

individual species. 

Following the FAO/OIE conference, a number of papers attempted to address the 

wild bird debate.  Gauthier-Clerc et al.(2007) provided an examination of evidence 

supporting hypotheses of spread for both the poultry industry as well as through wild bird 
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migration.  They concluded that although wild birds likely contribute to local spread of the 

virus, that the majority of the global spread has been due to the poultry industry, in 

particular along railway lines that connect Asia, Russia, Europe, and Africa.  Kilpatrick et 

al. (2006) produced a comprehensive analysis exploring likely pathways of spread of HPAI 

H5N1.  They investigated trade routes for poultry and wild birds, migratory patterns of 

wild birds, and phylogenetic relationships of virus isolates for 52 introduction events of 

HPAI H5N1 since 2003.  They found that the majority of introductions into Asian countries 

were likely caused by poultry (9 of 21), whereas introductions to Europe were likely caused 

by wild birds (20 of 23), and introductions to Africa were caused by a combination (2 and 3 

by poultry and migratory birds, respectively).  Gilbert et al. (2006b) examined the timing of 

HPAI H5N1 spread from Russia and Kazakhstan to the Black Sea during autumn 2005.  

They concluded, based on timing of migration, and the absence of outbreaks in poultry in 

the vicinity of wild bird deaths, that waterfowl species could have spread the virus from 

Asia to Europe that year. 

 
Anatidae – Waterfowl 

 As one of the main reservoirs of low pathogenic avian influenza viruses (Clark 

and Hall 2006), and the fact that the highly pathogenic H5N1 has on multiple occasions 

spilled back to wild birds (Fergus et al. 2006, Webster et al. 2006), it is important to 

increase our understanding of waterfowl ecology and distribution. Below is a general 

introduction to the Anatidae waterfowl.  

   The family Anatidae (ducks, geese, and swans) belongs to the Order 

Anseriformes (waterfowl).  There are 150 living species of waterfowl divided into 3 

families: Anatidae, Anhimidae (screamers – 3 species found in South America only), and 
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Anseranatidae (magpie-goose – 1 species found in Australia/New Guinea).  The Order 

Anseriformes has a global distribution and these birds are highly adapted for aquatic 

habitats.  They have short legs, webbed feet, broad bills, short tails, and wings that are 

generally set well back on their body.  Of the 3 families of Anseriformes, China has 42 

species all within the Anatidae family (Mackinnon and Phillipps 2000).   

Most of the Anatidae species are either long or short distance migrant species, 

meaning that they breed in the north and winter in the south often in order to follow 

critical food sources through the year.  There are 2 major flyways for Anatidae species in 

Asia: the Central-South Asian flyway and the East Asian flyway (Figure 1.1).  Detailed 

migratory patterns of waterfowl in these flyways are not well understood. 

 
 
Wild Bird Distribution Maps 

 If we are to increase our understanding of how H5N1 may be transmitted within 

or between bird populations in a spatial context we must first understand how the 

populations are distributed.  Global or even continental gridded population datasets do 

not exist for wild birds, perhaps because of the large amount of effort involved in 

producing such datasets.  Winter and breeding distribution maps have been created for 

North America based on two ambitious expert volunteer programs, the Christmas Bird 

Count (CBC) and the Breeding Bird Atlas (BBA).  Detailed surveys involving thousands 

of volunteers are conducted within 25 mile radius plots (CBC) or within quarter 

quadrangles (BBA) to produce 7.5 minute output maps for winter and breeding bird 

populations (Root 1988, Robbins and Blom 1996).  Population surveys for North 

American waterfowl are estimated by federal, provincial, and state-run annual aerial 

counts covering more than 2.0 million square miles of breeding habitat (U.S. Fish and 
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Wildlife Service 2007).  Bird surveys that involve the magnitude of effort required by the 

the aforementioned programs are not commonly implemented in areas outside of North 

America and parts of Europe.   

Although the number of novice and expert bird watchers is growing in China, 

large scale programs such as the ones mentioned above have not yet taken hold.  There 

does exist a large scale program across Asia called the Asian Waterfowl Census (AWC) 

administered by Wetlands International, a non-profit organization concerned with the 

conservation of wetlands and wildlife dependent on wetland systems 

(www.wetlands.org).  The AWC is an annual international volunteer census of wintering 

waterbirds conducted in Asia each January since 1987 (Lopez and Mundkur 1997).  

Unfortunately, China is one of the least covered countries within the census; in 1994 to 

1996, only 6, 14, and 4 sites were covered, respectively, by 3, 8, and 3 participants.  

Participation has increased, however, with a total of 300 sites visited over the 24 year 

period, 67 within the last report date of 2007.  

The most common form of distribution information is reported as descriptive 

natural history such as the following example for the bar-headed goose (Anser indicus), a 

species negatively affected in the outbreak in Qinghai Lake in 2005. The bar-headed 

goose is a medium-sized goose (70cm) averaging 2200g with a global population of 

60,000 individuals (Delany and Scott 2006).  The bar-headed goose breeds in high 

elevation areas of central-western Mongolia and the Tibetan and Qinghai Plateaus of 

China and winters in northern India and Pakistan, southern India, Myanmar, and 

Thailand.  Coarse range maps (defining the general areas where a species has been found 

in the past) can be found in field guides such as MacKinnon and Phillipps (2000).  The 

http://www.wetlands.org/�
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largest breeding colony (52,000 birds) was recorded at Qinghai Lake in 1999-2000 (Li 

2001a).  Numbers have decreased over the past 50 years and although the bird is sacred 

to the Tibetan Buddhists, it is reported to be hunted by other groups.  Habitat loss is a 

large problem for this species, particularly due to the loss of riverine wetlands by dams 

built to support hydroelectric plants and channelization of rivers.   

Modeling approaches such as habitat suitability assessments and species 

distribution modeling (Scott et al. 1993, Csuti 2000) utilize alternative methods for 

drawing inferences about species populations by taking advantage of large-scale datasets 

such as remotely sensed land cover and elevation.  As an example, the Gap Analysis 

Program (Scott et al. 1993) incorporates existing information on species range limits, 

known location data, habitat modeling, and expert opinion to predict the presence of a 

species in a particular geographic area.  For each species, the following steps are taken: 

(1) obtain location records and attribute their source in a geodatabase, (2) delineate the 

range extent for each species using the best available information and subdivide the 

extent into known occurrence and extrapolated occurrence areas, (3) conduct expert 

review of the range maps, (4) develop a database of habitat use for each species, which 

can be used to develop a (5) Wildlife Habitat Relationship Model (WHRM) based on 

available GIS data (watersheds, mountain ranges, land cover classes, elevation, slope, soil 

types, min max temperatures, etc.), (6) conduct an expert review of the WHRM, and (7) 

integrate range limits and habitat association into a predicted species distribution map 

using GIS habitat data.  Spatial output is in the GAP hexagon format.  Predicted 

distributions are meant to be treated as testable hypotheses which are aimed to have an 

accuracy of 80% or higher.  Accuracy of the predicted models is tested using multiple 
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levels of validation data including species checklists, species occurrence records, and 

field surveys.  Scott et al. (1993) compared predicted species lists for 3 managed areas in 

the state of Idaho and found GAP modeling efforts to have an overall omission error of 

11% (45 species) and commission error of 21% (88 species) (omission error here 

represents the number of species predicted to be absent that were actually present and 

commission error represents the number of species predicted to be present that actually 

were absent).  Edwards et al. (1996) compared species predictions against known 

checklists for 8 national parks in Utah and reported accuracy rates ranging between 81 

and 95% for 353 bird species. 

 Seonane et al. (2004) examined the question whether existing vegetation maps 

derived from land cover data are adequate to predict bird distributions.  Predictive models 

for 54 bird species were built using generalized additive models (GAMs), using 

landscape and vegetation structure variables as predictors. They compared for each bird 

species the predictive accuracy of the best model derived from each map. They used 

vegetation structure measured at bird sample points as ground-truth data for comparing 

the accuracy of vegetation maps. Although maps differed in their resolution and 

accuracy, results showed that all maps produced similarly accurate bird distribution 

models, and that a mixed map produced using both thematic and satellite information 

performed the best. Their results suggest that land-use/land-cover maps can be accurate 

enough to derive bird distribution models and that there is a certain limit to improve 

vegetation maps above which no effect is observed in power to predict bird distribution. 

 Gottschalk et al.(2005) provides a comprehensive review of published studies that 

used satellite imagery for avian applications over the past 30 years.  Over 120 published 
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papers were found on the topic, most of which aimed to describe relationships between 

bird species records and habitat characteristics.  Modeling approaches to predict species 

distribution or abundance were applied in nearly half of the studies.  Most of the studies 

were conducted in North America and Europe.  Less than one quarter of the papers 

reported any type of accuracy assessment of the classification process, which varied 

between 60 and 99%.  Types of bird species data included presence/absence (20% of 

studies), presence only (15%), relative abundance (65%) and bird densities (only 1 

study).  Satellites used in the studies included (in decreasing order) Landsat Thematic 

Mapper (TM), NOAA Advance Very High Resolution Radiometer (AVHRR), Landsat 

Multi-Spectral Scanner (MSS), Systeme Probatoire pour l’Observation de la Terre 

(SPOT), Indian Remote Sensing (IRS), European Remote Sensing Satellite radar image 

(ERS), and Meteosat High Resolution Radiometer (HRR).  The newer high resolution 

(<4m) satellites such as IKONOS (launched in 1999), Quickbird (in 2001), and Orbview 

(in 2003) were not used in the reviewed studies but were noted as promising options by 

the authors.  Statistical analyses used to create wildlife-environment relationships 

included Bayesian models, expert opinion techniques, traditional statistics such as Chi-

square tests, T-tests, Mann-Whitney tests, and logistic and multiple regression.  

 

Gridded Population Models 

Gridded population models are a concise way to visualize and analyze large 

census datasets in a spatial context.  Within the past 15 years, a handful of projects have 

emerged that model populations in high-resolution global gridded format, the most 

prominent being human population projects such as the Gridded Population of the World 
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(GPW) series (Tobler et al. 1997, Deichmann et al. 2001, Balk and Yetman 2004), and 

LandScan (Dobson et al. 2000) as well as the recently released Gridded Livestock of the 

World (GLW) which models global livestock populations (Robinson et al. 2007, United 

Nations Food and Agriculture Organization 2007).  The GPW series (versions 1 through 

3) offer a “lightly modeled” approach whereby census data are converted into spatial 

gridded format using a direct proportional allocation and the population number within a 

political boundary is apportioned evenly across the entire area.  LandScan and GLW, in 

contrast, employ more complex population reallocations based on other input factors such 

as roads, urban areas, and environmental factors. 

The first version of GPW was created in the mid 1990’s by the National Center 

for Geographic Information and Analysis (NCGIA) at the University of California, Santa 

Barbara.  The model transformed population data from native spatial units (defined by 

administrative boundaries) to a global grid of quadrilateral latitude-longitude cells at a 

resolution of 2.5 arc minutes (approximately 5 km at the earth’s equator).  They 

employed proportional allocation, or areal weighting, which works on the assumption 

that the variable being modeled is distributed evenly over the administrative unit. Grid 

cells were assigned a portion of the total population for the administrative unit dependent 

on the proportion of the area of administrative unit that the grid cell covered. For example 

an administrative unit with a population of 10,000 covering 100 grid cells would contain 

100 persons per cell.  They implemented this gridding routine for each country and 

merged the national grids to produce continental and global raster data sets of population 

counts (i.e., persons residing in each grid cell).  Because the grids were based on a 

latitude-longitude reference system, grids varied in size as a function of latitude – the 
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farther from the equator, the smaller the size of the grid.  Grids are approximately 21, 15, 

and 5 square kilometers (sq km) in area at the equator, 45º and 75 º, respectively.  They 

created a separate area grid containing the total land area within each cell based on the 

latitude.  In addition, cells that contained large uninhabitable areas (such as water or ice) 

were masked using a filter and the area of habitable land was calculated for each cell.  

The population grid was multiplied by the area grid to produce a population density grid.  

In the years 2000 and 2004, Columbia University’s Center for International Earth Science 

Information Network (CIESIN) updated the GPW to versions 2 and 3, respectively, using 

new census data and slight modifications in model processing.  In 2005, CIESIN and 2 

other institutes built upon GPWv3 to create the Global Rural-Urban Mapping Project 

(GRUMP) which modeled rural and urban areas at a 30 arc second resolution 

(approximately 1 km at the equator).  Deichmann et al. (2001) describes the different 

sources of error in their modeling process.  These included error in: (1) population census 

data (such as accuracy of interpolation method which assumes a constant rate of growth 

between intervals, timeliness of census estimates, number of estimates, and accuracy of 

the estimates), (2) boundary accuracy (timeliness of the boundary in relation to the 

population census), and (3) positional accuracy (areal weighting assumes homogeneity in 

population distribution within a political boundary which might not be true particularly 

within boundaries covering large areas).  They note that error analyses are rarely 

performed for existing spatial population databases (including their own).  The areal 

weighting technique they used does not allow for cross-validation methods such as 

kriging (where interpolated point data are evaluated by comparing the point to 

neighboring data points) because cells within an administrative polygon are identical.  
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They suggest one approach that entails modeling population distribution at a higher 

aggregation level than the input values then comparing the resulting totals at the lower 

level with recorded information.  They admit that such error measures are not as reliable 

as cross-validating residuals for point data (eg. kriging) but the sensitivity analysis could 

help identify problem regions. 

 The LandScan Global Population Project was developed by Oak Ridge National 

Laboratory (ORNL) in 2000 (Dobson et al. 2000).  The group produced a 30 arc second 

(approx 1 km at the equator) global spatial population database for 1998.  The unit of 

measure was ambient population, or the estimated population over a 24 hour period, as 

opposed to traditional population estimates that focus on residential or nighttime use 

only.  The authors chose this measure because they felt that an ambient measure of 

population would be more useful for predicting risk analyses for emergency response.  

For example, they argue that it’s more important to classify a cell that contains a multi-

lane highway passing through an uninhabited area (such as a desert) as some level of  

‘populated’ even though no-one lives there because of the risk to lives should an 

emergency occur.  They used a distribution allocation based on probability coefficients 

including road proximity, slope, land cover, and night-time lights.  The coefficients were 

weighted values independent of the population census data.  Examples include (1) road 

proximity (weighted distance from cells to roads), (2) slope (weighted by favorability of 

slope categories), (3) land cover (weighted by type with exclusions for certain land cover 

types), and (4) Nighttime Lights of the World (weighted by frequency).  Probability 

weights were customized for different regions based on economic, physical, and cultural 

factors.  Recognizing that verification of global spatial population databases are difficult 
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to perform based on a lack of suitable reference datasets, they attempted to use indirect 

measures to verify their data and validate their models.  They compared high-resolution 

population estimates with indicators of population such as buildings, settlements, and 

land cover classes (high intensity developed, low-intensity developed, cultivated, etc.).  

They also reported verifying, validating, and conducting sensitivity analyses for input 

data (land cover, elevation, roads, and nighttime lights).   

Tian et al. (2005) posed the hypothesis that a reliable human population dataset 

could be modeled for China using land cover predictor variables.  They used county-level 

census data, land cover data derived from Landsat TM imagery ((Liu et al. 2002), 

Appendix C), digital elevation models (GTOPO30), temperature (National Weather 

Bureau), and ancillary data such as railways, highways, rivers, and cities.  All of their 

input data were converted to 1 km raster GRID cells in Albers Equal Area map 

projection.   They used separate approaches to modeling human densities within rural and 

urban areas.  For cells in rural areas, they used multivariate regression models to create 

population probability coefficients.  For cells in urban areas they used a power 

exponential decay model based on city size and distance from urban center to calculate 

population probability coefficients.  Analyses were conducted for 12 agro-ecological 

zones of China. They determined that human population densities for China could be 

predicted with reasonable accuracy using land cover predictor variables.  This is one of 

the few studies that completed an accuracy assessment.  The mean relative error was 

3.1% for rural areas and 5.3% urban areas.  They also found their model accuracy to be 

higher than other existing models (LandScan and GPW) at the cell, county, and province 

scales. 
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 The United Nations Food and Agriculture Organization’s Animal Production and 

Health Division (UN FAO APHD) in conjunction with the Environmental Research 

Group of Oxford created the first global, sub-national resolution spatial dataset of major 

agricultural livestock including cattle, buffalo, sheep, goats, pigs, and poultry: Gridded 

Livestock of the World (GLW) (UN FAO 2007).  Output is in ESRI GRID format at 3 

arc minutes (approx 1 km at the equator) as animal densities (number of animals per sq 

km) for each type of livestock.  For each country, sub-national (usually provincial level) 

livestock census data and administrative boundary data were digitized and entered in an 

Oracle database.  Missing values were approximated using data from a higher 

administrative level (usually national) and subtracting the available sub-national values to 

produce an estimate for the remaining area or by filling gaps using predictor data as 

described below. Once the dataset was complete, they identified areas where livestock 

production was known to be zero based on political or environmental factors (for 

example, pigs are banned in Islamic countries, and livestock are absent from ice areas).  

They removed these areas and calculated densities by distributing the number of animals 

over the remaining area of land within the administrative unit (a technique termed 

suitability masking).  Livestock were grouped into 2 categories including (1) rainfed 

agriculture and ruminant livestock (cattle, buffalo, sheep, goats) and (2) monogastric 

livestock (pigs and poultry).  Example environmental datasets used to mask suitable lands 

for the poultry group included protected areas, population density (>1500 people km-2), 

LandScan lights (>90), elevation (>4750m), and LandScan land cover classes (water, 

developed, partly developed, wetlands, wooded wetlands, tundra, snow, and ice).   Output 

at this stage included ‘observed’ densities of livestock type per administrative unit 
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converted into 1 km raster GRID format.  Distributions of these densities were then 

disaggregated based on modeling statistical relationships between livestock numbers and 

environmental predictor variables.  They created training datasets by extracting a series 

of regularly spaced sample points for each ecological zone within a country.  Values for 

observed livestock densities and predictor variable were extracted for each point.  A 

series of stepwise multiple regression analyses was performed to establish statistical 

relationships between the observed densities and predictor variables.  The statistically 

significant predictor variables were applied across all pixels within the ecological zone to 

create the predicted distributions. This process was completed for each ecological zone 

within each country and the outputs combined into a total global predicted livestock 

density map.   

 The descriptions above of large-scale gridded population modeling offer some 

detail on how such models are produced.  For the poultry modeling chapter (Chapter III.), 

I worked with the GLW team to produce new poultry maps on a species basis for China. 

The map sets are included in the updated resources offered through the FAO website.  

 

Disease Risk Models 

 Epidemiology, the study of how disease is distributed in populations and the 

factors that cause these patterns in distribution (Gordis 2004), has come a long way since 

the mid-1800’s when John Snow solved the mystery of London’s cholera outbreaks by 

mapping incidence locations against source of water supply.  Advances in mapping, 

spatial analysis, and remote sensing technology, provide sophisticated tools for using the 

relationship between space, time, and disease factors to understand disease spread. 
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Below is a description of four recently published papers that address spatial risk 

analyses of avian influenza spread, followed by a discussion of how they relate to other 

published H5N1 risk models and the goal of modeling transmission risk between wild 

and domestic birds in China.   

Boender et al. (2007) created geographic risk maps for the spread of HPAI H7N7 

between poultry farms in the Netherlands in 2003.  They based their analyses on the 

spatial location of farms and epidemiologic factors of infected farms such as status of 

infection during the outbreak (uninfected (S), infected but not infectious (E), infected and 

infectious (I), and removed(R)); number of barns; number, type and age of animals; 

number of sick and dead animals per day; timing of mortality increase; and timing of 

culling.  An infection matrix (C) was created (n x t, where n = 5360 farms, and t = 78 

days).   A distance matrix (D) was created containing pair-wise distances between farms.  

The individual unit for the risk model was the farm.  The key function of their model is 

called the transmission kernel and is defined as the infection hazard posed by farm i to 

farm j as a function of inter-farm distance.  The kernel is estimated from D and C using 

maximum likelihood.  They selected the best transmission function by comparing 

alternatives using Akaike’s Information Criterion (AIC), a model selection tool that 

measures goodness of fit of an estimated statistical model (Burnham and Anderson 

2002b).  They used Mathematica 5.2 for all data processing, modeling, and statistical 

analyses.  Their model predicted two high risk areas of endemic spread within the 

country, which was in close agreement with the outbreak data.  The main factor driving 

the model was distance to outbreak.  Sensitivity analyses were conducted to test the effect 

of uncertainty of the moment of infection of infected farms (m) variable.  In the analysis, 
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they increased m by two days and although the transmission kernel increased, the overall 

spatial map of predicted infected farms was remarkably similar to the original output.  

They also examined the potential effectiveness of two control strategies – culling and 

vaccination.  They found that culling within 1 km of infection was not effective; culling 

within the 3km ring was somewhat effective (100 farms were still classified as high risk 

in the output); and culling within a 5km ring was fully effective (although admittedly 

nearly impossible to enforce in a real-world situation).  They determined that vaccination 

would not be effective once an infection reached a farm within a densely populated 

poultry region because of the amount of time it would take to vaccinate the large numbers 

of poultry (1 week to vaccinate, and 7-14d for the vaccine become effective).  They did, 

however, determine that use of vaccine as a preventative measure in the high-density 

poultry areas before an outbreak occurred would be effective in controlling the spread of 

the disease. 

Gilbert et al. (2008) took another approach to risk mapping.  They outlined three 

main objectives for the risk analysis of H5N1 in 2004-2005 in Vietnam and Thailand: (1) 

to compare five potential risk factors associated with H5N1 outbreaks in the two 

countries, (2) to evaluate the value of adding a rice cropping variable to the model, and 

(3) to evaluate the predictive power of an HPAI H5N1 risk map by developing it on data 

from Thailand, testing it on Vietnam, and applying it to the Mekong region.  They 

examined epidemiologic data (incidence) for each country from January 2004 – 

December 2005 and grouped these data into three outbreak waves based on clustering of 

timing of outbreak events: wave I, January 2004 to May 2004; wave II, June 2004 to May 

2005; and wave III, June 2005 to December 2005.  Instead of examining outbreaks based 



  

36 
 

on distance measures, they chose five potential risk factors to correlate with outbreak 

data: elevation, human population, chicken and duck abundance, and rice cropping 

intensity (number of rice crops produced per year with values ranging from 0 to 3).  For 

elevation, they used the publicly available SRTM 90-m elevation data (Farr et al. 2007) 

and obtained human population data at the sub-district level from each country.  Poultry 

data for Vietnam were obtained at the commune level for (a) chickens and (b) ducks and 

geese.  Thailand poultry data were extracted from a detailed survey of farms in October 

to mid-November 2004 during the outbreak which included variables such as numbers of 

free-grazing ducks, farm ducks, native chickens, and industrial production chickens 

(layers and broilers).  They used Xiao et al.’s (2006) algorithm to identify rice paddy 

areas and estimates of the number of rice crops per year from MODIS data 

(http://modis.gsfc.nasa.gov/).  For the response variable, they converted outbreak data 

into a spatial data layer of presence/absence of disease for each of the three outbreak 

waves.  They then performed a logistic regression analysis between the five predictor 

variables and the outbreak response variable.  In order to account for spatial 

autocorrelation in the response variable, they added an autoregressive term as a covariate 

in the regression model.  This was accomplished by averaging the presence/absence 

values among a group of neighbors (defined by the limit of autocorrelation) and 

weighting the value by the inverse of the Euclidean distance  (Augustin et al. 1996).    

Gilbert et al. (2008) found a significant association between human population, 

elevation, rice cropping intensity, and to a lesser extent duck abundance.  Chicken 

abundance was not significantly associated with risk except in wave III in Vietnam (an 

area where chickens are highly abundant).  A positive association existed between both 

http://modis.gsfc.nasa.gov/�
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duck numbers and rice cropping intensity and H5N1 presence.  A negative association 

existed between elevation and H5N1 presence.  In Thailand, data precision allowed for an 

analysis of farm ducks versus free-grazing ducks against H5N1 presence; the farm ducks 

were not significantly associated with virus presence, but the free-grazing ducks were.  

They also found that the model based on presence of H5N1 in Thailand during wave II 

can be applied to other areas in the Mekong region. 

Goutard et al. (2007) examined the risk of introduction of HPAI H5N1 into the 

poultry population surrounding two lakes in Ethiopia during the wild bird migratory 

season (December to March).  They divided the process into three steps by assessing: (1) 

risk release via migratory birds and the legal or illegal poultry-product marketing chains, 

(2) risk exposure between imported and exposed poultry and among wild and domestic 

birds, and (3) risk consequences considering the introduction of disease into the poultry 

industry and the probability of it escaping detection.  Steps 1 and 2 were evaluated using 

multiple data sources including expert opinion (epidemiologists, ornithologists, and 

wildlife specialists), published literature, and preliminary field visits.  They used @Risk 

software (©2006 Palisade Europe) to calculate the risk of exposure of domestic poultry at 

the two lakes based on the (a) density wild birds potentially exposed to disease divided 

by the poultry densities in the two areas, under the assumption that wild birds can act as a 

source of HPAI H5N1.  Density of potentially exposed birds (a) was calculated by 

multiplying the proportion of migratory birds potentially infected with the disease 

multiplied by the probability of resident birds being exposed to the virus through infected 

migratory birds.  Their model did not measure absolute risk, rather it measured the 

relative risk of HPAI H5N1 transmission into the poultry system between the two lake 
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areas.  Their results indicate a relatively low risk of transmission to either lake, although 

one lake had three times the level of risk than the other.  This lake (Awassa) is an 

important area used by migrating wild birds, and also houses a large poultry system 

locally. 

 Ferguson et al. (2006) developed an individual based model (IBM) to predict 

HPAI H5N1 spread patterns and timing in humans in the U.S. and Great Britain, in the 

event that a pandemic should occur.  They incorporated high-resolution population 

densities and travel patterns to make predictions about potential disease spread.  Other 

measures included transportation movements, population densities and geographic 

patterns, transmission rates for households, schools, and communities, influenza 

reproduction number (R0,
 estimated from 1918 and 1957 pandemic influenza mortality 

data), and classification of clinical cases (assumed 50% of those infected are ill enough to 

be classified clinical).  They modeled the geographic spread, and number of cases 

expected should the pandemic reach either the U.S. or Great Britain.  They also examined 

effectiveness of travel restrictions and school closures, and determined the timeliness in 

which vaccines need to be distributed in order to have a significant impact.  The model 

provides a way to determine which factors are important in the disease spread, and to 

determine different outcome scenarios in advance of an actual pandemic. 

 Each of the 4 studies described above take very different approaches to modeling 

avian influenza transmission risk including SIR disease modeling, identifying risk factors 

by drawing statistical relationships between outbreaks and agro-environmental predictors, 

risk assessment of introduction to poultry using uncertainty analysis, and individual based 

modeling to predict potential spread patterns in the human population.  Components of 
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the SIR disease models and the uncertainty models are useful approaches that could 

employed in the wild bird transmission models for China.  For example, we used viral 

uptake and shedding rates taken directly from two SIR models for use in the H5N1 

transmission risk equations.  A major feature of our risk models was to incorporate 

uncertainty measures directly in the modeling process using Monte-Carlo analysis.  

Although we would have preferred to use a data-driven approach to modeling 

transmission risk (such as in the Gilbert paper), a lack of data precluded us from doing so.  

The reason for this is that training data such as locations of virus outbreaks may be 

recorded by general type (human, poultry, wild bird, etc.) but we cannot determine the 

transmission pathway that caused the event; for example, whether an outbreak in poultry 

was caused by exposure from infected poultry, wild birds, or other.  Even if a perfect 

surveillance system was in place, it would be difficult to design it to determine the 

transmitting host.  For this reason, we took an approach that allows us to understand 

where overlap between wild (waterfowl) and domestic (poultry) populations is most 

likely to occur.  

 In a recent review, Gilbert and Pfeiffer (2012. In Press) note a lack of published 

studies that explicitly incorporate wild birds in the modeling process.  Data on wild birds 

- particularly high resolution spatial and temporal data – is difficult to find, which 

explains why so few studies have formally integrated them.  The transmission risk 

models produced in this study will be among the first to specifically focus on risk the 

interface between wild birds and domestic poultry. 
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Application of this work beyond HPAI H5N1 

Our global population continues to grow and countries such as China and India, 

which house over a third of the world’s people, are undergoing rapid economic change.  

With these developments comes an increase in standard of living and demand for more 

dietary protein such as meat products (Delgado 2003).  The issue of disease in 

agricultural populations will only continue to intensify with this increasing demand and 

the highly globalized nature of our society in recent times (van der Zijpp 1999).  We 

should expect to see more threats of potentially devastating diseases evolving as we 

continue to commercialize and produce larger, denser meat-producing farms.  Climate 

change and habitat loss are two other global issues that affect the health of ecosystems 

and emergence of new diseases (Colwell et al. 1998, Zell 2004).  Building a model that 

helps us understand the important factors involved in H5N1 transmission between 

domestic and wild birds is a good exercise in outlining the general steps and thought 

processes involved that can be applied to other disease situations.  Each of these issues 

demands an interdisciplinary approach, calling upon experts from various fields such as 

virology, ecology, epidemiology, climate, remote sensing, agriculture, human health, 

spatial analysis, modeling, etc. to work together to solve these issues (Patz et al. 1996, 

Macdonald and Laurenson 2006, Melville and Shortridge 2006).  This work is a small 

step in that direction which can be learned from, improved upon, adapted, and applied to 

future global studies. 

The building blocks of this work (geospatial poultry and waterfowl population 

estimates and satellite telemetry studies of waterfowl migratory patterns) each have value 

independent of avian influenza risk modeling.  Spatial maps of poultry distributions could 
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be useful to those in the poultry industry as well as epidemiologists studying other types 

of poultry-related disease. Little is known about Anatidae distributions in China and this 

work will be useful to those interested in species conservation, habitat management, and 

human-wildlife interactions.  Virtually no information exists on detailed movements, 

timing, and habitat use of waterbird species such as the bar-headed geese, ruddy 

shelduck, and great black-headed gulls and the results of this work will contribute to the 

base of knowledge for these species. 
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Figure 1.1. Central-South Asian flyway (solid line) and East Asian flyway (dotted line) 
for waterfowl in Asia.  Blue star indicates location of Qinghai Lake, China.      
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Manuscript Title: Satellite-marked Waterfowl Reveal Migratory Connection 
Between H5N1 Outbreak Areas in China and Mongolia 
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areas in China and Mongolia. Ibis 151:568-576. 
 
 
Abstract 
 
The role of wild birds in the spread of highly pathogenic avian influenza H5N1 has been 

greatly debated and remains an unresolved question. However, analyses to determine 

involvement of wild birds have been hindered by the lack of basic information on their 

movements in central Asia. Thus, we initiated a programme to document migrations of 

waterfowl in Asian flyways to inform hypotheses of H5N1 transmission. As part of this 

work, we studied migration of waterfowl from Qinghai Lake, China, site of the 2005 

H5N1 outbreak in wild birds. We examined the null hypothesis that no direct migratory 

connection existed between Qinghai Lake and H5N1 outbreak areas in central Mongolia, 

as suggested by some H5N1 phylogeny studies. We captured individuals in 2007 from 

two of the species that died in the Qinghai Lake outbreaks and marked them with GPS 

satellite transmitters: Bar-headed Geese Anser indicus (n = 14) and Ruddy Shelduck 

Tadorna ferruginea (n = 11). Three of 25 marked birds (one Goose and two Shelducks) 

migrated to breeding grounds near H5N1 outbreak areas in Mongolia. Our results 

describe a previously unknown migratory link between the two regions and offer new 

critical information on migratory movements in the region. 

Keywords: highly pathogenic avian influenza H5N1, satellite telemetry, waterfowl, wild  

birds. 
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Introduction 
 
 Highly pathogenic avian influenza (HPAI) H5N1 virus (hereafter H5N1) 

continues to threaten societies worldwide with the potential for a human pandemic.  The 

precursor variant to the currently circulating H5N1 was first discovered in an outbreak in 

domestic geese in southeastern China in 1996 (Guo et al. 1998, Xu et al. 1999, Zhao et al. 

2008). In 1997, the reassorted virus emerged in Hong Kong causing the first 

documentation of human fatalities from a purely avian influenza virus (Claas et al. 1998).  

H5N1 has since continued to circulate in poultry in Asia under multiple re-emergence 

events (Guan et al. 2002, Li et al. 2004, Sims et al. 2005, Chen et al. 2006a, Sims and 

Brown 2008, Wang et al. 2008).  However, in April 2005 more than 6000 wild birds, 

including 3,300 Bar-headed Geese (Anser indicus) and 145 Ruddy Shelducks (Tadorna 

ferruginea), died of H5N1 infection on nesting grounds at Qinghai Lake, north-central 

China (Chen et al. 2005, Liu et al. 2005, Chen et al. 2006b).  This outbreak marked a 

turning point in the evolution and spread of H5N1.  For the first time since its emergence, 

wild birds were infected with H5N1 in a major epizootic, raising concerns over whether 

they have the ability to spread the disease along migratory corridors (Fergus et al. 2006, 

Normile 2006b, Weber and Stilianakis 2008).   

Radiation of H5N1 out of Asia and into Russia, Europe, and Africa occurred 

subsequent to this event (Chen et al. 2006a, Gilbert et al. 2006b, Sims and Brown 2008).  

In August 2005, H5N1 was reported in north-central Mongolia with deaths of an 

additional 89 waterfowl including Bar-headed Geese and Whooper Swans (Cygnus 

cygnus) at Erkel and Khunt Lakes (OIE 2005, Wildlife Conservation Society 2005) 1200 

km north of Qinghai Lake.  The general lack of poultry in the Qinghai Lake and 
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Mongolia outbreak regions (FAO 2007a;b) raised questions about how the disease spread 

to these areas.  Several reviews have pointed to the domestic poultry system as the 

primary mechanism of H5N1 spread (Muzaffar et al. 2006, Normile 2006a, Feare 2007, 

Gauthier-Clerc et al. 2007), although wild bird involvement could not be ruled out and in 

certain events likely played a significant role (Gilbert et al. 2006b).  Phylogenetic 

analyses have been used to suggest routes of H5N1 movement based on genetic 

relationships of virus isolates (Chen et al. 2006a, Kilpatrick et al. 2006, Janies et al. 2007, 

Wallace et al. 2007), however, these analyses do not specify mechanisms underlying 

disease transmission.  Large gaps in the knowledge of wild bird migratory patterns in 

Asia and the ecology of H5N1 in their populations have limited our understanding of how 

this disease spreads (Muzaffar et al. 2006, Olsen et al. 2006, Yasue et al. 2006, Alexander 

2007).   

The Asian flyways are the least studied in the Palearctic (Mundkur 2006) with 

little known about specific waterfowl migration routes (Miyabayashi and Mundkur 

1999a, Kear 2005, Popovkina 2006).  The goal of our work is to document wild bird 

migration patterns in Asian flyways to inform hypotheses regarding H5N1 transmission.  

In 2007, we initiated satellite telemetry studies at Qinghai Lake on migration pathways of 

two waterfowl species extensively affected in the outbreaks: the Bar-headed Goose and 

Ruddy Shelduck.  Here we tested a null hypothesis that no migratory connection exists 

between Qinghai Lake and Mongolia in these species. 
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Methods 

Study Area 
 
 We conducted research at the Qinghai Lake National Nature Reserve, Qinghai 

Province, in north-central China (36.82ºN, 99.81ºE).  The 495,000 ha reserve was 

established in 1975 as a provincial reserve and listed as a Wetland of International 

Importance in 1992 (Ramsar Convention Secretariat 2007).  Qinghai Lake, located on the 

eastern edge the Qinghai-Tibet Plateau, is China’s largest salt water lake.  Elevation of 

the lake is 3200 m and annual precipitation is 35 cm (majority of rainfall occurring May 

through September) (Xu et al. 2007).  The Qinghai Lake climate is characterized by long, 

cold, dry winters (October through April), strong winds, high solar radiation, and average 

annual temperatures of -0.7º C (Xu et al. 2008).  Qinghai Lake has long been recognized 

for its important position in the intersection of the East Asian and Central Asian flyways 

and has been designated a key breeding site for colonial nesting waterbirds such as the 

Bar-headed Goose (greater than 15% of the global population use this area, (Miyabayashi 

and Mundkur 1999a)), Ruddy Shelducks, Brown-headed Gulls (Larus brunnicephalus), 

Pallas’s Gulls (L. icthyaetus), and Great Cormorants (Phalacrocorax carbo) (Li 2001a).  

Capture and Marking 
 
 We captured Bar-headed Geese and Ruddy Shelducks in March 2007 and 

September 2007 on the western and southern edges of Qinghai Lake, China.  Birds were 

captured outside of the breeding season to reduce disturbance to nesting birds and to 

increase opportunity of marking potential migrants using Qinghai Lake as a migratory 

stopover.  We captured individuals with monofilament leg nooses (made by Indian 

trappers) and a remotely activated net launcher (Coda Enterprises, Mesa, Arizona, USA).  
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Upon capture, birds were immediately removed, placed in individual cloth bags, and 

processed.  We recorded mass, flat wing, diagonal tarsus, sex, and age for each bird.  

Adult birds and equal numbers of males to females were targeted for marking.  Virology 

sampling was conducted for birds marked in September only (due to logistical 

constraints) and included cloacal and tracheal swabs and blood samples for each bird 

following standard sampling and transport procedures (FAO 2007c).  Analyses included: 

(a) type A influenza with an ELISA test (OD630 above 0.23 as positive), (b) H5 subtype 

with RT-PCR (see Fouchier et al. 2000), and (c) H5, H7, H9, and H10 antibodies with HI 

inhibition following OIE standards (OIE 2004a).  Laboratory analyses were conducted by 

the Chinese Academy of Sciences, Wuhan Institute of Virology.  Geese and shelducks 

were marked with 45 or 30g (respectively) GPS solar-powered Platform Terminal 

Transmitters (PTTs: solar-GPS PTT-100, Microwave Telemetry, Inc., Columbia, MD, 

USA) affixed with Teflon harnesses (Bally Ribbon Mills, Bally, PA, USA).  Transmitter 

packages averaged 2.1 and 2.4 percent of the bird’s body weight (geese and ducks, 

respectively).  Birds were released as close to capture locations as possible within 1 hour 

of capture.  Procedures for capture, handling, and marking were reviewed and approved 

by the USGS Patuxent Wildlife Research Center Animal Care and Use Committee and 

University of Maryland Baltimore County Institutional ACUC (Protocol EE070200710). 

Satellite Telemetry Locations 
 
 PTTs were programmed to record GPS locations every 2 hours and data were 

uploaded to the Argos satellite tracking system every 2 days (CLS America Inc., Largo, 

MD, USA).  For this analysis, we used a subset of locations that examined connectivity 

between Qinghai and Mongolia from March through June 2007 for geese and September 
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2007 through July 2008 for shelducks. We used ArcGIS 9.2 (Environmental Systems 

Research Institute, Inc., Redlands, California, USA) and Google Earth 4.3 (Google, 

Mountain View, California, USA) to plot and analyze the telemetry locations.  Migratory 

stopover sites were defined as areas where birds moved less than 20 km within a 24 h or 

greater period of time.  

 

Results 
 
 We marked 25 birds with PTTs at Qinghai Lake in 2007: 14 geese (12 adults: 4 

males, 8 females; 2 first-year: one male, one female) and 11 shelducks (6 adults: 3 males, 

3 females; 5 hatch-year: 2 males, 3 females).  Three of 25 (12%) migrated to breeding 

grounds in central Mongolia, including one goose and two shelducks.  

 Of the geese, female (#67693) migrated from Qinghai Lake to central Mongolia 

while the other 13 marked geese remained at Qinghai Lake through the 2007 breeding 

season (April-June).  Goose #67693 was captured and marked at a creek on the western 

edge of the lake on March 26.  It remained at Qinghai Lake for 25 d using freshwater 

wetlands and wheat fields before migrating north on April 20.  Between April 20 and 

May 7, the bird flew 1200 km to a complex of small lakes 200 km south of Erhel Lake 

(47.99ºN, 99.88ºE), Arhangay Province, Mongolia (Figure 2.1).  The 17 d migration 

included three stopovers ranging from 1 to 7 d each (Table 2.1) and distances flown 

between stopovers ranged from 108 to 755 km.  Goose #67693 remained on the 

Mongolia breeding grounds within an area of 200 km2 until the PTT ceased transmitting 

on June 5, 2007. 
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 Of the 11 shelducks, two migrated to breeding grounds in central Mongolia 

(Figure 2.1).  Female #74808 and male #74810 were caught and marked on  September 

13 and remained within 5 km of the capture site until commencing separate fall 

migrations.  On November 11, the female migrated 59 km southwest for a 12 d stopover, 

then flew 1300 km to wintering grounds (25.15ºN, 97.22ºE) in Kachin State, Myanmar 

arriving on November 23 (Table 2.2).  On November 18, the male shelduck flew 763 km 

southwest to a riverine floodplain where it remained for 16 d before migrating an 

additional 576 km south to wintering grounds in the same vicinity as the female.  From 

December to March, both birds used riverine wetlands and agricultural fields within a 

370 km2 area on the northern tip of Myanmar (22.19ºN, 97.06ºE).  On March 12, 2008 

they began the northward spring migration together, flying 1378 km to an area of 

wetlands 100 km west of Qinghai Lake.  They remained here for 47 d before flying 1423 

km north to breeding grounds in Mongolia, 70 km southwest of Erhel Lake (49.30ºN, 

99.57ºE).   

 Virology results for the 11 shelducks sampled revealed no positives for type A 

influenza and two positives for H5 antibodies (inhibition at serum dilution of 1:32 and 

1:64, respectively).  All birds handled appeared healthy, showing no symptoms of 

influenza infection and virology tests of the two shelducks that migrated to Mongolia 

(#74808, and #74810) were negative for avian influenza (results were unavailable for 

goose #67693). 

 
Discussion  
 
 Disease models have offered competing hypotheses to explain H5N1 movements 

from China to Mongolia, Russia, and Kazakhstan in late 2005 (Chen et al. 2006a, 
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Kilpatrick et al. 2006, Webster and Govorkova 2006, Janies et al. 2007, Wallace et al. 

2007).  Wallace et al. (2007) were among the first to use phylogenetic analyses to map 

patterns of hypothesized H5N1 dispersal within and beyond Asia from available genetic 

sequences of viral isolates.  They reported on two significant H5N1 movement patterns 

from Asia including Qinghai Lake to Novosibirsk, Russia, and Qinghai Lake to 

Astrakhan, Russia.  However, none of the 25 geese and shelducks tracked in our study 

migrated along these pathways to indicate that wild birds traveled those routes.   Instead, 

three of our 25 birds (12%) documented a migration route from Qinghai Lake to 

Mongolia, a pathway that Wallace et al. (2007) reported as a possible route for movement 

of H5N1, but one which they found statistically insignificant. 

 The timing of migration from our study also provides supporting information for 

hypotheses put forth by Kilpatrick et al. (2006).  Their integrated analyses combined 

molecular phylogenies, poultry routes, and wild bird patterns to suggest that H5N1 

infection in Mongolia occurred through wild bird movements from China a few months 

before the outbreaks.  The geese and shelducks in our study moved from Qinghai Lake to 

central Mongolia in early May, approximately 3 months before outbreaks in wild geese 

and swans were reported.   

 Establishment of the migratory connection between these two regions, however, 

does not prove that an infected bird could survive and shed virus along the 1200 km 

migration (Weber and Stilianakis 2007).  Laboratory trials have shown varying rates of 

mortality and viral shedding among species, including geese shedding virus for several 

days before dying and some migrant ducks and previously-exposed swans shedding virus 

without any clinical signs of infection (Sturm-Ramirez et al. 2005, Brown et al. 2008, 
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Keawcharoen et al. 2008).  Despite extensive global surveillance efforts over the past 5 

years (Alexander 2003, Ellis et al. 2004, Chen et al. 2006a, Globig et al. 2006, Buranathai 

et al. 2007, Gaidet et al. 2007a, Gaidet et al. 2007b, Munster et al. 2007, Nagy et al. 2007, 

Wallensten et al. 2007, Wildlife Conservation Society 2007), detection of H5N1 in 

healthy wild birds is rare (Chen et al. 2006a, L'Vov D et al. 2006, Saad et al. 2007).  

However, successful migration of an HPAI (H5N2) infected White-faced Whistling duck 

(Dendrocygna viduata) recently documented in Nigeria demonstrates the possibility for 

wild bird movement of HPAI (Gaidet et al. 2008).   

Two of the 11 shelduck exhibited H5 antibodies, suggesting that these individuals 

survived prior infection of a type A influenza with H5 hemagglutinin (although this does 

not indicate that the subtype was H5N1 nor that the birds migrated while infected).  

Challenge studies by Brown et al. (2008) suggest relatively low susceptibility of Bar-

headed Geese to A/whooper swan/Mongolia/244/2005 (H5N1) with exposed birds 

shedding virus for 5-8 d and three out of five inoculated geese making full recoveries.  If 

these results from captive-reared geese relate to wild birds, geese that survived the 2005 

outbreaks could have moved the virus to other places.  The marked birds in our study 

migrated in multiple segments among stopover areas within a few days; conditions that 

could permit viral transmission among individuals sharing these stopover habitats. 

 Our work documents existence of a migratory connection between Qinghai Lake 

and Mongolia and provides new insights into the ecology of these species as well as 

informing hypotheses of H5N1 spread.  Only when we have a greater understanding of 

the ecology of migratory populations in these Asian flyways will the possible role of wild 

birds as vectors for H5N1 be revealed. 
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Tables  
 
Table 2.1. Location, duration of stopover, duration of flight, and habitat used by Bar-headed Goose (#67693) during 2007 spring 
migration between HPAI H5N1 outbreak areas of Qinghai Lake (QL), China and central Mongolia. 
   

Date Location No. Days 
at 

Location 

No. 
Flight 
Days  

Province, 
Country 

Km 
Flown 

Coordinates 
(Decimal 
Degrees) 

Habitat 

3/26 Capture site, 
sw edge of 

QL 

<1  Qinghai 

China 

0 36.76ºN 

99.77ºE 

Small stream, 
oxbow lake 

3/26 - 
4/20 

Western 
edge of QL 

25  Qinghai 

China 

0 37.22ºN 

100.02ºE 

Freshwater 
wetlands and 
wheat fields 

4/20 Stopover A 1 1 Qinghai 

China 

108 38.13ºN 

99.53ºE 

100m lakes 

4/22 Stopover B 1 1 Qinghai 

China 

196 39.71ºN 

99.32ºE 

Riverine 
wetlands 

4/27 -   
5/4 

Stopover C 7 4 Bayanhongor 
Mongolia 

755 46.45ºN 

100.21ºE 

150m lakes 

5/7 -    
6/5* 

Breeding 
grounds 

28 3 Arhangay 
Mongolia 

172 47.99ºN 

99.88ºE 

150-700m 
lakes 

*Last signal received from PTT on 5 June 2007. 



  

      

Table 2.2. Location, duration of stopover, duration of flight, and habitat used by Ruddy Shelduck (#74808 and #74810) during fall 
2007 and spring 2008 migrations between HPAI H5N1 outbreak areas of Qinghai Lake (QL), China and central Mongolia.  Southward 
fall migrations were flown separately.  Birds were paired on wintering grounds, during the northward spring migration, and on the 
breeding grounds. 
 

Date 
2007-2008 

Location No. 
Days at 

Location

No. 
Flight 
Days  

Province, 
Country 

Km 
Flown 

Coordinates 
(Decimal 
Degrees) 

Habitat 

Ruddy Shelduck #74808, female – 2007 fall migration 
9/13- 

11/11/07 
Capture site, 
Hei Ma He 

28  Qinghai 
China 

0 36.74ºN 
99.80ºE 

Lake edge 

11/11- 
11/23/07 

Stopover A 12 <1 Qinghai 
China 

59 36.64ºN 
99.18ºE 

Freshwater 
wetlands  

11/24/07- 
3/12/08 

Wintering 
Site 

109 1 Kachin 
Myanmar 

1300 25.15ºN 
97.22ºE 

Riverine wetlands, 
agricultural fields 

Ruddy Shelduck #74810, male – 2007 fall migration 
9/13- 

11/18/07 
Capture site, 
Hei Ma He 

35  Qinghai 
China 

0 36.74ºN 
99.80ºE 

Lake edge 

11/18-
12/5/07 

Stopover A 16 <1 Tibet  
China 

763 30.19ºN 
97.44ºE 

Riverine wetlands 

12/5/07 
3/12/08 

Wintering 
Site 

98 <1 Kachin 
Myanmar 

576 25.15ºN 
97.22ºE 

Riverine wetlands, 
agricultural fields 

Ruddy Shelduck #74808 and #74810 –2008 paired spring migration 
3/14- 

4/30/08 
Stopover A 47 2 Qinghai 

China 
1378 36.86ºN 

98.50ºE 
Wetlands and small 

lake  
5/2- 

7/15/08 
Breeding 
Grounds 

74 2 Hovsgol 
Mongolia 

  1423 49.30ºN 
99.57ºE 

Riverine wetlands, 
mountain cliffs 
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Figures 
 
Figure 2.1. Migration routes of 1 Bar-headed Goose (yellow) and 2 Ruddy Shelducks 
(red) from Qinghai Lake to central Mongolia. Qinghai, Erhel, and Khunt Lakes are 
locations of large wild bird HPAI H5N1 outbreaks in 2005, marking the spread of the 
disease beyond Asia. Insets provide enlarged view of local habitats for the following 
areas: (a) Ruddy Shelducks breeding grounds, (b) Bar-headed Goose breeding grounds, 
(c) Qinghai Lake local bird movements. Circles and lines demarcate breeding, wintering, 
and migration locations. Poyang Lake, location of suspected progenitors to Qinghai 
HPAI H5N1 isolates is indicated in the lower right of the map. 
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Figure 2.1. 
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Manuscript Title: Modelling the distribution of chickens, ducks, and geese in China 
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T. Robinson, X. Xiao, and M. Gilbert. 2011. Modelling the distribution of 
chickens, ducks, and geese in China. Agriculture Ecosystems & Environment 
141:381-389. 

 
 
Abstract 
 

Global concerns over the emergence of zoonotic pandemics emphasize the need 

for high-resolution population distribution mapping and spatial modelling. Ongoing 

efforts to model disease risk in China have been hindered by a lack of available species 

level distribution maps for poultry. The goal of this study was to develop 1 km resolution 

population density models for China’s chickens, ducks, and geese. We used an 

information theoretic approach to predict poultry densities based on statistical 

relationships between poultry census data and high-resolution agro-ecological predictor 

variables.  Model predictions were validated by comparing goodness of fit measures (root 

mean square error and correlation coefficient) for observed and predicted values for ¼ of 

the sample data which was not used for model training. Final output included mean and 

coefficient of variation maps for each species. We tested the quality of models produced 

using three predictor datasets and 4 regional stratification methods.  For predictor 

variables, a combination of traditional predictors for livestock mapping and land use 

predictors produced the best goodness of fit scores. Comparison of regional stratifications 

indicated that for chickens and ducks, a stratification based on livestock production 

systems produced the best results; for geese, an agro-ecological stratification produced 

best results. However, for all species, each method of regional stratification produced 
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significantly better goodness of fit scores than the global model. Here we provide 

descriptive methods, analytical comparisons, and model output for China’s first high 

resolution, species level poultry distribution maps. Output will be made available to the 

scientific and public community for use in a wide range of applications from 

epidemiological studies to livestock policy and management initiatives.  

 

Keywords: poultry; China; distribution modelling; population estimates; GIS; 

epidemiology 

 
 
Introduction 
 
 Globalization and a growing demand for meat products in developing regions in 

recent years have led to rapid expansion of the livestock sector, particularly pork and 

poultry meat in Asia. With these changes come an increased threat of emerging zoonotic 

diseases and a need for improved food safety and the implementation of appropriate 

biosecurity measures. Epidemiological efforts, livestock sector planning, and policy 

development all require knowledge of livestock distributions and abundance, information 

that is often difficult to obtain in a consistent spatial format.  For example, 

epidemiological modelling of highly pathogenic avian influenza (HPAI) type H5N1 

(hereafter HPAI H5N1) in hot zones of re-emergence such as China is hampered by a 

lack of available data on spatial distributions of its main host, domestic poultry. HPAI 

H5N1 first emerged in 1996 in domestic geese of southeastern China (Xu et al. 1999). 

From 1997 to 2003, the virus continued to evolve and in early 2004, an extensive wave of 

outbreaks erupted across China and seven additional Asian countries (OIE 2004b). The 
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virus showed varying degrees of pathogenicity and transmissibility among chickens, 

ducks, and geese, with ducks potentially serving as silent propagators of the virus (Li et 

al. 2004, Sturm-Ramirez et al. 2005). Fourteen years later, HPAI H5N1 has spread from 

Asia to parts of Europe and Africa, and remains active in many regions, including China.  

 Since HPAI H5N1’s first emergence in 1996, China has reported nearly 200 

outbreaks in poultry and wild birds (primarily the former), and 39 cases in humans (OIE 

2010, World Health Organization 2010). Strong government control efforts, including 

mass vaccination programs, a national active surveillance program, and culling of more 

than 35 million poultry, have led to a decrease in the number of outbreaks reported over 

the past year. The disease persists, however, with some human outbreaks occurring in 

regions without concurrent outbreak reports in poultry, raising questions as to whether 

underreporting of outbreaks or asymptomatic viral replication is occurring within the 

poultry population. High resolution distribution maps of individual poultry species would 

provide important input factors for disease risk modelling and vaccination strategies. To 

date, however, no such data have been available.  

In 2007, the Food and Agriculture Organization of the United Nations (FAO) 

released the Gridded Livestock of the World (GLW): the first standardized, global, sub-

national resolution population maps of livestock species, including poultry (FAO 2007a). 

An unprecedented accomplishment, these raster maps provide 3 arc-minute resolution 

livestock density estimates (approximately 5 km at the equator) based on disaggregation 

of agricultural census data (Robinson et al. 2007, Neumann et al. 2009). Until now, these 

were the only poultry distribution maps available that encompassed the whole of China. 

However, the temporal, spatial, and species resolutions available through GLW are not 
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ideal for epidemiological modelling of HPAI H5N1 in China. The current version of the 

GLW uses poultry data from China in 1990s. Given that poultry production increased 

substantially from the 1990s to 2000s in China (http://kids.fao.org/glipha/), and HPAI 

H5N1 modelling efforts target this same timeframe, it is important to have distribution 

models based on updated poultry figures. In addition, the GLW dataset groups all poultry 

into one category.  As chicken, duck and geese respond differently to HPAI H5N1 virus 

infection (Sturm-Ramirez et al. 2005), and their production systems have different spatial 

distributions, mapping poultry distributions at the species level is important for 

epidemiological modelling efforts.  

 In this study, we aimed to produce 1 km resolution population distribution maps 

for chickens, ducks, and geese across the extent of China. We hypothesized that strong 

statistical relationships exist between poultry populations and agro-ecological variables, 

which in turn could be used to spatially disaggregate census data. Building from previous 

work (FAO 2007a), we investigated quality of model output using remotely sensed 

predictors of meteorological data (Hay et al. 2006, Scharlemann et al. 2008) compared to 

ones that might offer more intuitive interpretation such as land cover variables. We also 

explored the effects of building predictive models within varying regional stratifications, 

and validated our data using a subset of the observed poultry data. Finally, in concert 

with related distribution modelling efforts for ducks across much of Monsoon Asia (Van 

Boeckel et al. 2011), we compared the efficacy of using data solely from within China 

versus that from China and surrounding countries to determine whether the inclusion of 

outside data would improve model results. 
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 The poultry distribution maps produced in this study are valuable for a variety of 

uses including epidemiological modelling, guiding policy decisions, livestock 

management, biosecurity and food safety, conflict resolution, and environmental impacts. 

We have made these data freely available through the USGS Patuxent Wildlife Research 

Center and FAO Geonetwork websites.  

 

Materials and Methods 
 

Poultry Data 
 

We aimed to obtain nationwide county level (administrative level 3) statistics for 

the 3 major types of poultry produced in China: chickens, ducks, and geese. Poultry 

statistics for China are published annually by the National Statistics Bureau (NSB) and 

the Ministry of Agriculture’s Animal Husbandry Bureau (AHB). Both agencies report 

standard poultry statistics including: number of individuals sold per year (SOLD), 

number of individuals existing at the end of the calendar year (residual poultry; RESID), 

and meat and egg production by weight. Annual counts of each poultry type are collected 

from farms and households at the township level and are reported up through county, 

prefecture, and provincial administrative units with final submission to the national level. 

These data are publicly released as aggregated total poultry figures in provincial rural and 

statistical yearbooks (China National Bureau of Statistics 2007). Differences between 

NSB and AHB statistics are attributed to the level of administrative unit for reporting and 

the type of poultry reported: NSB publishes aggregated estimates of total poultry (all 

species combined) at the county or prefecture level (levels 3 or 2, respectively) in 
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provincial yearbooks; AHB publishes both aggregated (total poultry) and species level 

statistics (chickens, ducks, geese) at the coarser, provincial scale (level 1).  

We extracted poultry census data from 96 rural and statistical yearbooks (printed 

in Chinese) for years 2003 through 2005 (reference list provided in Supplementary Table 

S3.1).  Data were gathered for each of China’s 22 provinces, 5 autonomous regions, and 

4 municipalities (hereafter referred to as 31 provinces). We accessed yearbooks from the 

National Library of China in Beijing, the National Agricultural Information System of the 

Chinese Academy of Agricultural Sciences Agricultural Institute, the China National 

Knowledge Infrastructure (http://www.global.cnki.net/grid20/index.htm), and the United 

States Library of Congress in Washington, D.C.  

Of the standard metrics reported, we used RESID poultry for the modelling 

process for 2 reasons: (a) RESID counts are conducted at the end of the calendar year at 

peak production prior to national Spring Festival holidays, and (b) RESID was the most 

comprehensive metric reported. In contrast to SOLD poultry, which comprised mainly 

poultry raised for meat consumption (broilers), RESID poultry provides a more complete 

representation of the poultry populations by including egg layers, meat poultry, and 

backyard poultry (poultry raised by households for personal consumption). As defined by 

the National Statistics Bureau, residual poultry is the number of poultry held in rural and 

urban areas at the end of the calendar year and includes “all size and breeds of poultry… 

from rural cooperative economic organizations, State-operated farms, rural individuals, 

organizations, groups, schools, industrial/mining companies, government departments 

and units and raised by urban citizens” (China National Bureau of Statistics 2007).  

http://www.global.cnki.net/grid20/index.htm�
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We employed a standardized protocol for filling gaps in available poultry 

statistics (See Figure 3.1a and Results).  In order of priority, 6 methods were used to 

create a complete set of poultry data for China: (1) county level RESID poultry; (2) 

prefecture level RESID poultry; (3) conversion of county level SOLD poultry to RESID 

poultry estimates; (4) conversion of prefecture level SOLD poultry to RESID poultry 

estimates; (5) provincial level RESID poultry; and (6) conversion of provincial level 

AHB RESID poultry to NSB RESID estimates (see Supplementary Fig. S3.1 for 

correlations between NSB and AHB provincial RESID poultry census data). We then 

divided total poultry figures into species estimates (chickens, ducks, and geese) using 

provincial species ratios from the 2006 Agricultural Census (China National Bureau of 

Statistics 2008) which have not yet been released to the public. Poultry census estimates 

were converted to geospatial format using ArcGIS 9.3 (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA). 

The Modelling Process 
 

We modeled distributions of domestic chickens, ducks, and geese in China using 

the following steps modified from the GLW processing chain (FAO 2007a) (Figure 

3.1b): (1) obtain poultry census data; (2) fill data gaps, develop species level estimates, 

and convert to geospatial format (3) mask unsuitable areas and calculate adjusted 

observed densities for each poultry species; (4) extract dependent (poultry) and 

independent (predictor) training and validation data using a stratified random sampling 

scheme; (5) establish statistical relationships between dependent poultry estimates and 

predictor covariates; (6) create predicted poultry distribution maps using equations from 
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statistical relationships; and (7) assess model goodness of fit using sample points omitted 

from the training set.  

After preparing the poultry census data for input into the modelling process, we 

calculated observed poultry densities for each administrative unit by correcting for the 

area of land unsuitable for poultry production. Suitability masks for chickens, ducks, and 

geese were modified from original GLW monogastric livestock (pigs and poultry) masks 

(FAO 2007a). Our suitability masks were restricted to exclude only the most 

environmentally unsuitable areas for production (e.g., extreme high elevations, tundra, 

ice, etc; Table S3.2) but did not exclude heavily populated locations as certain phases of 

poultry production may occur in urban areas, such as chick hatcheries located within city 

limits. 

We created a stratified random sampling frame that included one point per 

polygon (reporting administrative unit) and an average of 20 points per decimal degree 

across the extent of China. Sample points were bootstrapped to create 25 data sets to be 

used in assessing model variation. At each sample point, poultry estimates and predictor 

covariates were extracted. Seventy five percent of the points were used for training 

models and 25 percent were reserved for model validation.  

We used an information theoretic approach to choose best models at iterative 

steps in a multivariate regression procedure (Burnham and Anderson 2002a, 

Whittingham et al. 2006). Dependent variables were log transformed for normality, and 

each independent variable was paired with its quadratic term to accommodate curvilinear 

relationships (Rawlings et al. 1998). The stepwise procedure began with a null model 

followed by inclusion of the predictor pair defined by the best Akaike Information 
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Criterion (AIC). The process was successively repeated for each remaining pair of 

predictors until one of 2 conditions was met: i) improvement in AIC score for 2 

successive models was less than 1%, or ii) a threshold minimum number of unique data 

values was not available for each predictor pair entered in the model (i.e., 15 data points 

per variable pair).  Coefficients from the top regression models were then applied to the 

predictor imagery to create predicted maps of distributions for each species. Means and 

coefficients of variation (standard deviation divided by mean) were estimated from the 25 

bootstrapped predictions. Two goodness of fit indicators were used to assess quality of 

model output: root mean square error (RMSE) and correlations (COR) between predicted 

and observed values.  Lower RMSE and higher COR indicated better fits. Correction by 

country totals were applied to the final maps. 

Environmental and demographic conditions relevant to poultry production vary 

widely across the extent of China.  We therefore performed regression models within 

stratification zones chosen to reflect regional differences in association with poultry 

production. Model predictions for four stratification schemes were compared: i) global 

livestock production systems (LPS), ii) data driven ecozones (EZ) using unsupervised 

classification of Moderate Resolution Imaging Spectroradiometer (MODIS) remote 

sensing variables and Shuttle Radar Topography Mission (SRTM) digital elevation 

models, iii) China Agro-ecological Regions (CAR), and iv) a combination of the first 

three (All.BestRSE). The LPS regions, updated from those initially developed by Sere 

and Steinfeld (1996) and mapped by Thorton et al. (Thornton et al. 2002), represent 14 

classes of livestock production based on grassland, mixed farming, and landless systems. 

The EZ regions consist of 4 hierarchical levels of clustering for Asia: EZ5, EZ12, EZ25, 
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and EZ50 which represent 5, 12, 25, and 50 cluster classes using MODIS channels 3, 7, 

8, 14, and 15, and SRTM data (Van Boeckel et al. 2011). For the EZ stratifications, we 

built prediction maps at the pixel level, using regression coefficients of the EZ with the 

lowest residual squared error (hereafter referred to as EZ.BestRSE stratification). The 

CAR stratification, adapted from Verburg and Chen (2000), is a modification of the 

commonly used China agricultural regionalization by Crook (1993). CAR divides China 

into 8 regions based on agriculture, economics, environment, and provincial level 

administrative boundaries. Modifications from Crook (1993) consisted of removing the 

densely populated Sichuan province from sparsely populated Tibetan Plateau and 

including it with Yunnan and Guizhou provinces. The final stratification, All.BestRSE, 

chooses, pixel by pixel, the stratification with the lowest residual squared error from the 

stratifications described above. Examples of All.BestRSE, EZ.BestRSE, CAR, and LPS 

stratifications are displayed in Supplementary Fig. S3.3. We set model conditions to 

perform regressions within each stratification zone, however, if criteria of a minimum of 

15 unique dependent estimates per variable pair were not met, coefficients from a single 

country level model were then used to create predictions within that zone. 

GLW distribution models have traditionally been created using anthropogenic 

variables such as human density, distance to roads, etc., in combination with remotely 

sensed surrogates of meteorological data (e.g., middle infrared, land surface temperature, 

etc.) as predictors. We were interested in comparing capabilities of a predictor set using 

the GLW approach versus one that includes interpreted remote sensing variables such as 

land use (e.g., cropland, wetland, grassland, etc.). The incentive for using the latter group 

is the potential to draw more intuitive conclusions between significant predictor variables 
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and poultry predictions.  Thus, we ran models using 3 predictor datasets: GLW, LU, and 

the combined set GLW+LU (Table 3.2). The main difference between the GLW and LU 

sets was the inclusion of Fourier transformed MODIS data for GLW (Scharlemann et al. 

2008) (Van Boeckel et al. 2011) and land use variables for LU (Liu et al. 2002).  

 Goodness of fit indicators, RMSE and COR, were compared in an analysis of 

variance (ANOVA) to determine optimal predictor sets and regional stratification 

schemes.  Data was reviewed for conformity to the assumptions of normality and 

homogeneity of variance. Histograms of RMSE and COR appeared normal for each of 

the predictor datasets and stratifications. Since sample sizes between levels were identical 

in the one-way ANOVA, we assumed the overall F test and multiple comparison tests 

were robust to departures from the unequal variance assumption (Neter et al. 1996). 

 Finally, to assess the value of including poultry and agro-ecological relationships 

from countries surrounding China, we compared goodness of fit scores for China versus 

those from a related study that models duck distributions across Monsoon Asia (Van 

Boeckel et al. 2011). The modelling methodology in Van Boeckel et al.2011 is similar to 

that used in this study (although overall proposed hypotheses differ) and includes data 

from 14 countries: China, Cambodia, Bhutan, Thailand, Lao, Vietnam, Myanmar, 

Bangladesh, India, Nepal, Korea, Malaysia, Philippines, and Indonesia. 

 

Results 
 

We targeted NSB data for model development because of the finer scale at which 

they are reported (mainly county and prefecture versus provincial level for AHB).  Of 3 

years of data investigated, year 2004 was most complete (86 percent complete versus 82 
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and 78 percent for years 2003 and 2005, respectively), and thus was used for model input. 

We implemented a multi-level methodology for creating complete RESID estimates from 

the data available (Figure 3.1a). We applied Methods 1 to 4 to approximately ¾ of the 

provinces (22 of 31) that had county and prefecture level data (Table 3.1). The remaining 

nine provinces had provincial level data; here we applied Methods 5 and 6. Method 6 

uses AHB data for those provinces lacking NSB data (based on high correlation between 

the 2 data sets: r-square value of 99.4%, see Supplemental Fig. S3.1.).  

Observed densities (census data), model predictions, and coefficient of variation 

are shown in Figure 3.2a, 3.2b, and 3.2c, respectively.  Observed densities were highest 

for chickens, and considerably lower for ducks and geese (111.2, 27.4, and 6.7 thousand 

per km2 maximum, respectively).  Geographically, maximum densities were higher in 

southern and eastern China than the remote northern and western regions (northern and 

western regions defined as CAR zones 5 and 6, see Supplemental Fig. S3.3c.) Duck 

densities in particular were highest in southeastern China where lowland tropics and rice 

agriculture is prevalent. Chickens were most ubiquitous, with high densities across most 

of southern and eastern China, and moderate to low densities across remote regions of the 

north and west. Model uncertainty (COV) tended to be highest in the remote western 

regions of China where poultry numbers are lower. 

Goodness of fit measures indicate that of the 3 predictor data sets, GLW+LU 

performed best (Figure 3.3): one-way ANOVAs for RMSE and COR between predicted 

and observed values were both P<0.001, and Tukey’s pairwise comparisons were all 

P<0.005. Goodness of fit measures for stratification methods were less distinct. We 

compared RMSE and correlation coefficients for each species, using the best predictor 
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dataset only (GLW+LU). Of the 6 ANOVAs (RMSE and COR each for chickens, ducks, 

and geese) all but one (COR for ducks) were significant at P<0.05, however, Tukey’s 

pairwise comparisons did not indicate a single best stratification method for any of the 

species (Figure 3.4). LPS and All.BestRSE tended to score better for chickens; LPS, 

All.BestRSE, and CAR for ducks; CAR and All.BestRSE for geese, however, we found 

that all stratifications chosen for analysis performed significantly better than the country 

model (Fig. S3.4): one-way ANOVA and Tukey’s pairwise comparisons were all 

P<0.001. Since each stratification method performed significantly better than the global 

model and without clear statistical difference among stratifications, we chose the 

stratification with the best mean goodness of fit scores for each species (see Figure 3.4) to 

present our final output (Figure 3.2b), which was LPS for chickens and ducks, and CAR 

for geese.  

Predictor variables Elevation, Precipitation, and Evapotranspiration were 

consistently ranked among the top 5 predictors for each species (Table 3.3) based on 

mean Delta AIC score (the amount by which the AIC score of the best model was 

increased after removing the predictor). Other top predictors included Area Suitable for 

Monogastrics, Nighttime Land Surface Temperature, Enhanced Vegetation Index, 

Daytime Land Surface Temperature, and Middle Infra-red readings.  The predicted 

poultry densities were generally positively associated with Precipitation, 

Evapotranspiration, Daytime Land Surface Temperature, Middle Infra-red, and Area 

Suitable for Monogastrics; they were generally negatively associated with Elevation, 

Nighttime Land Surface Temperature, and Enhanced Vegetation Index. The majority of 

predictors included in top ranked models by AIC were from the GLW set, however, 
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important LU predictors included Rice Paddy for ducks and geese; and Elevation, Open 

Water, Developed Land, and Cropland area for all three species. 

We compared the effects of including training data from countries surrounding 

China (Cambodia, Bhutan, Thailand, Lao, Vietnam, Myanmar, Bangladesh, India, Nepal, 

Korea, Malaysia, Philippines, and Indonesia) versus restricting the analysis to using 

training data from within China. Goodness of fit indicators (RMSE and COR) were better 

for analyses restricted to China (Figure 3.5) suggesting that the relationship between 

predictor variables and observed poultry densities within China are different from those 

of surrounding countries.  

 

Discussion 
 
 The results of this work indicate that agro-environmental variables can be used to 

predict spatial poultry distributions in China. The process predicted density patterns that 

are consistent with known distribution patterns, for example high chicken densities across 

much of eastern China, particularly the Yellow River Basin and high duck densities in 

southeastern China and the Sichuan Basin. Geese were least abundant, but exhibited 

consistent patterns, with highest densities in Sichuan and parts of Guangdong. Validation 

measures between observed and predicted values indicated good fits based on RMSE and 

correlations. In comparison to goodness of fit values reported in the related Van Boeckel 

et al. 2011 paper on duck distribution modelling in Monsoon Asia, goodness of fit scores 

for ducks within China ranked better than those produced for most other countries.  

We observed statistically significant differences in goodness of fit scores among 

predictor data sets but not among regional stratifications.  Each of the regional 
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stratification methods we compared provided better goodness of fit scores than the 

country-wide model.  However, because a clear best stratification scheme was not 

statistically evident, we chose the one with the best mean score for each species. This was 

the Livestock Production Systems approach (LPS) for chickens and ducks, and China 

agro-ecological approach (CAR) for geese. The combined approach (All.BestRSE) 

produced the second best mean scores across all species.  Van Boeckel et al. (2011) 

found similar results for their Monsoon Asia duck models with LPS and All.BestRSE 

showing highest fitness scores. The predicted density maps produced by models in this 

study and the Monsoon Asia study (Figure 3.2b here and Fig. 4 in Van Boeckel et al. 

2011) revealed similar output patterns. Here we conclude that for the China models, 

either stratification would be appropriate for use, however an advantage of LPS (and 

CAR, for geese) over the combined approach (All.BestRSE) is the more intuitive 

interpretation of a single stratification versus the combination of many.  

Overall, uncertainty measures were low for each species (COV values ranged 

from <0.01 to 5). Areas with the highest uncertainties were located in northwestern China 

where poultry populations are scarce and environmental predictors are variable. In 

eastern and southern China, where poultry populations are high, uncertainty estimates 

were low (ranging from <0.01 to 0.08), indicating small standard deviations in relation to 

mean predicted densities. In general, uncertainty patterns across China were similar 

among species, and on average, COVs were lowest for chickens, then ducks, and geese.  

The use of data external to China for training models produced inferior goodness 

of fit scores compared to those from models using training data entirely from within 

China. This exemplifies the fact that relationships between the predictor variables and 
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poultry distributions differ for China in comparison to neighboring countries. The 13 

countries included in this analysis were predominantly located to the south of China. 

These countries show greater similarity to China’s tropical southeastern provinces than to 

the high-elevation drier provinces in western China and mixed grasslands of north central 

China, which could account for part of the differences in goodness of fit scores. In 

addition, China’s poultry production system far exceeds those of its neighboring 

countries, ranking first in egg production and second in meat production (Qing 2002, 

Wang 2006) on a global scale. For example, in 2004, China’s poultry production was 

more than an order of magnitude higher than those reported by its surrounding countries 

except Indonesia (5.1 billion versus 1.2 billion for China and Indonesia, respectively). 

Remaining countries ranged from 500 million (India) to 230 thousand (Bhutan); from 

UNFAO’s Global Livestock Production and Health Atlas (http://kids.fao.org/glipha/). 

Given the observed differences in goodness of fit scores, we do not recommend using 

external training data to create model predictions for China, nor should results from 

China be directly extrapolated to other regions in Asia.  

The data fill methodology employed in this study (Figure 3.1a) provides a 

consistent and repeatable method for assembling poultry statistics from multiple sources 

representing the diverse and expansive regions across China. Despite national efforts to 

report agricultural statistics in annual yearbooks for each province, the administrative 

level of reporting varies across regions, ranging from provincial to county level 

(administrative levels 1 to 3). Figure S3.2 shows the spatial heterogeneity of input data 

used for our China models, the finest scale data being located in the poultry-rich regions 

of southeastern China. These differences are reflected in the uncertainty values (Figure 
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3.2c) with higher COVs in regions in the western and northern regions of China. To 

accommodate the spatial heterogeneity of input data, we chose to use a mixed random 

and stratified sampling design that includes a minimum of one point per administrative 

unit as well as an average density across the country (20 points per decimal degree). 

Model predictions would likely be improved with finer scale input data for the remote 

regions of China, however, for the target time frame of our models, we have assembled 

the best data available to produce distribution predictions which have been qualified with 

estimates of uncertainty.  

 

Conclusions 
 

Our goal was to produce 1 km resolution population distribution maps each for 

chickens, ducks, and geese in China for use in HPAI H5N1 epidemiologic modelling. 

This research indicates that spatial distributions for these species can be modeled using 

agro-ecological predictors in a regression and disaggregation approach. 

We found that a combination of traditional predictors (FAO Gridded Livestock of 

the World) and land use predictors produced output with the best goodness of fit scores 

between observed and predicted values. We also learned that of four stratification 

schemes used to build regression models within different regions of China, the livestock 

production systems (LPS), China Agro-ecological Regions (CAR), and combined 

approach (All.BestRSE) produced the best goodness of fit scores.   

Obtaining observed population data across China for model training was 

challenging due to availability of data, however, using a multi-step approach to 

systematically incorporate the best data available for each region, we produced a 



  

     74

complete and repeatable training set for model development. Should other datasets 

eventually be released to the public, the modelling process developed above can be used 

to create updated predictive spatial distribution maps for China. 

Our poultry distribution models have been made available to the scientific and 

public community through the FAO Geonetwork for use in a multitude of applications 

from disease risk modelling to livestock and environmental management.  
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Tables 
 
Table 3.1. Data availability and method description for deriving 2004 residual poultry statistics for each of 31 provinces of China. 
Provinces denoted with asterisk indicates use of Ministry of Agriculture Animal Husbandry data (AHB); all others derived from 
National Statistics Bureau data (NSB). 
 

Method 
 

Data Availability 
 

Method Description 
 

Applicable Provinces 
 

1 RESID County Level Data Use county RESID Beijing, Jiangsu, Zhejiang, Anhui, Fujian, 
Henan, Hunan, Guangdong, Ningxia 

2 RESID Prefecture Level Data Use prefecture RESID Hebei, Heilongjiang, Jiangxi, Shandong, 
Shaanxi 

3 SOLD County Level Data Multiply by conversion for County 
RESID estimate 

Tianjin, Hubei, Chongqing* 

4 SOLD Prefecture Level Data Multiply by conversion for prefecture 
RESID estimate 

Inner Mongolia, Shanghai*, Hainan*, Sichuan*, 
Qinghai* 

5 RESID Provincial Level Data Use provincial RESID Shanxi, Gansu 

6 No NSB Data at any Level Use AHB RESID data 
(provincial scale) 

Liaoning, Jilin, Guangxi, Guizhou, Yunnan, 
Xizang,  Xinjiang 

 



  

 

Table 3.2. Predictor variables used in China poultry distribution modeling. Three groups were compared: (1) Gridded Livestock of the 
World predictors (GLW; FAO 2007), (2) a set of land use and anthropogenic predictors (LU), and (3) the GLW and LU predictors 
combined (GLW+LU).  

GLW predictors
MODIS Channels TFA Processed  Channels 03,07,08,14,15,35: mx,mn,d1,d2,d3,da,a1,a2,a3,p1,p2,p3, produced by SEEG, University of Oxford 
1kgrumpdens Alpha version kilometer resolution human population density for 2000 from GPW GRUMP, at Columbia University 
1kgrumpdensb Beta version kilometer resolution human population density for 2000 from GPW GRUMP at Columbia University 
green0301c1rc MODIS Phenology datasets, Greenup band 1, January 2003, Boston University, Dept Geography (see text) 
green0301c2rc MODIS Phenology datasets, Greenup band 2, January 2003, Boston University, Dept Geography (see text) 
senes0301c1rc MODIS Phenology datasets, Senescence band 1, January 2003, Boston University, Dept Geography (see text) 
wd1kslp Slope, GTOPO30 dataset 
1kaglgprc Length of Growing Period, Derived  from FAO LGP layers using statistical modeling by ERGO 
1kthlgprc Length of Growing Period, Derived  from  LGP layers produced by Thornton, using statistical modeling by ERGO 
Rmsuitdeg Distance in Decimal Degrees to land suitable for Ruminants, derived by ERGO 
Mgsuitdeg Distance in Decimal Degrees to land suitable for Monogastrics, derived by ERGO 
1krdsdeg Distance in Decimal Degrees to Major Roads - using Landscan Roads layer, derived by ERGO 
1kwatdeg Distance in Decimal Degrees to Sea, Major Lakes and Rivers, Derived by ERGO 
Glurdeg Distance  in Decimal Degrees to GRUMP alpha urban areas, Derived by ERGO 
2kprecyr1k Annual Precipitation, synoptic period to 2000, produced by Worldclim 
acc50k Travel time to major cities (>50.000) European Commission GEM 
V590ELC MODIS SRTM Elevation product, sea level corrected 
V590EL MODIS SRTM Elevation product 

 LU predictors 
Land cover Forest, Grassland, Open Water, Vegetated Wetland, Rice Paddy, Cropland, Developed, Urban 
Cropping Intensity  Hua et al. 2009  
Human Population Tian 2005 
Elevation Shuttle Radar Topography Mission 
Slope  GTOPO30 
*GPW GRUMP = Gridded Population of the World Global Rural Urban Mapping Project 
*ERGO = Environmental Research Group Oxford 
*SEEG = Spatial Epidemiology and Ecology Group 



  

 

 
Table 3.3. Top 5 predictor variables for chicken, duck, and goose distribution modeling regressions. Predictors are listed in decreasing 
order of mean Delta AIC (amount AIC score was increased after removing variable from the best model). A1=amplitude of annual 
cycle, DA=combined variance in annual, bi-annual, and tri-annual cycles, D1=variance in annual cycle (see Scharlemann et al. 2008). 
 

Chicken Ducks Geese 

Annual Precipitation Elevation Elevation 

Area Suitable for Monogastrics Annual Precipitation Annual Precipitation 

Elevation Evapotranspiration (DA) Daytime Land Surface Temp (D1) 

Evapotranspiration (A1) EVI (mean) Middle Infra-red (mean) 

Nighttime Land Surface Temp (max) EVI (max) Evapotranspiration (D1) 
 
 

 

 

 

 

 

 



  

 

 
Figures 
 
Figure 3.1. (a) Methods used for filling data gaps in total poultry across China, (b) methodology for modeling chicken, duck, and 
goose distributions for China. RESID = residual poultry at end of year, SOLD = number poultry sold, NSB = National Statistics 
Bureau, AHB = Animal Husbandry Bureau (see Supplemental Fig. S3.1 for NSB and AHB relationships). 

 

 



  

 

Figure 3.2. (a) Observed densities, (b) model predictions, and (c) coefficient of variation, for chickens, ducks, and geese across 
China. Mean densities and coefficient of variation represent 25 bootstrapped models. Model output shown for the GLW+LU 
predictors and LPS (chickens, ducks) or CAR stratification (geese) method (defined by goodness of fit scores). 



  

 

Figure 3.3. Violin plots of (a) Root Mean Square Error (RMSE) and (b) correlation coefficient between predicted and observed 
chicken, duck, and goose densities (log transformed) for 3 predictor datasets: GLW (traditional Gridded Livestock of the 
World predictors), LU (landuse and anthropogenic predictors), and GLW+LU (combination of GLW and LU predictors). 
ANOVA main effects (P<0.001) and Tukey’s Pairwise Comparisons (all P<0.005) indicate significant differences among all 3 
predictor sets with GLW+LU having lowest mean RMSE and highest mean Correlation between observed and predicted 
values.  

 



  

 

Figure 3.4. Boxplots of Root Mean Square Error (RMSE) and correlation coefficient between predicted and observed chicken, 
duck, and goose densities (log transformed) for 4 stratification schemes: All.BestRSE (uses prediction from stratification 
(BestEZ, CAR, or LPS) with the best goodness of fit score on a pixel by pixel basis), EZ.BestRSE (uses prediction from data 
driven classifications (EZ5, EZ12, EZ25, EZ50) with best goodness of fit score on a pixel by pixel basis), CAR (China Agro-
Ecological Regions), and LPS (global livestock production systems). Main effects ANOVA significance values in lower left of 
each panel; means represented by black circles; Tukey’s pairwise comparisons (p<0.05) denoted by letters; grey boxplots 
represent statification with best mean GOF, LPS for chickens and ducks and CAR for geese. Although strong differences 
among stratifications were not evident, all stratifications examined performed better than the global model (i.e., no 
stratification; P<0.001 see Fig. S3.4). 
 



  

 

 



  

 

 

 
Figure 3.5. (a) Root Mean Square Error (RMSE) and (b) correlation coefficients for ducks (log densities) comparing 
predictions with and without data from surrounding countries. Data are presented as violin plots, a combination of box and 
kernel density plots (see Hintze 1998). Higher RMSE and lower correlation coefficients for analyses using data from 
surrounding countries suggest relationships between poultry densities and predictor variables within China are different from 
surrounding countries and such additional analyses do not improve predictions within China. 
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Table S3.1. Publication references for year 2004 sub-provincial level poultry statistics used in poultry population models for this 
study.  
 

Province 
(in Chinese) 

Province  Sub-provincial Level Poultry Data Source Sub-provincial Level Poultry Data Source (in 
Chinese) 

 北    京 Beijing Liu Yali. 2005. Beijing Rural statistical  Yearbook. Edited 
by National  Bureau of Statistics and Survey Office of 
Beijing Rural Society and Economy. Beijing. pp.72-75 

刘亚力. 2005. 北京农村统计年鉴. 
国家统计局和北京市农村社会经济调查队编. 
北京. pp.72-75. 

 天    津 Tianjin  Han Qixiang. 2005. Tianjin statistical Yearbook. Edited by 
Statistics Bureau of Tianjian Municipality. Beijing. China 
Statistics Press. 

韩启祥. 2005. 天津统计年鉴. 
天津市统计局编. 北京. 中国统计出版社. 

 河    北 Hebei Cao Zhenguo, Liu Ganghai, Zuo Shaowei. 2005. Hebei 
Rural statistical  Yearbook. Edited by General Office of 
Hebei Provincial  People;s  Government and Hebei 
Provincial Statistics Bureau. Beijing. China Statistics Press. 
pp.285-569 

曹振国，刘刚海，左绍伟. 2005. 
河北农村统计年鉴.  
河北省人民政府办公厅，河北省统计局编. 
北京 : 中国统计出版社, pp 285-569 

 山    西 Shanxi Zhang Xiaodong. 2005. Shanxi  Statistical  Yearbook. 
Edited by  Statistics Bureau of Shanxi Province. Beijing. 
China Statistics Press.   

张晓东. 2005. 山西统计年鉴. 
山西省统计局编. 北京. 中国统计出版社. 

 内蒙古 Inner 
Mongolia 

Zheng Shicheng. 2005. Inner Mongolia Rural and Pastoral 
Society and Economy Statistical  Yearbook. Edited by 
Survey Office  of Inner Mongolia Rural and Pastoral 
Society and Economy Statistical Yearbook. Huhehaote. 
pp.288-310 

郑世成. 2005. 
内蒙古自治区农村牧区社会经济统计年鉴. 
内蒙古自治区农村牧区社会经济调查队编. 
呼和浩特. pp.288-310 

 辽    宁 Liaoning Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

 吉    林 Jilin Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 



  

 

Province 
(in Chinese) 

Province  Sub-provincial Level Poultry Data Source Sub-provincial Level Poultry Data Source (in 
Chinese) 

 黑龙江 Heilongjiang Li Zhifan. 2005. Heilongjiang statistical Yearbook. Edited 
by Heilongjiang Provincial Statistics Bureau. Beijing. 
China Statistics Press. 

李志范. 2005. 黑龙江统计年鉴. 
黑龙江省统计局编. 北京. 中国统计出版社. 

      

 上    海 Shanghai Pan Jiangxin.2005. Shanghai Statistical Yearbook. Edited 
by Statistics Bureau of Shanghai Municipality. Beijing. 
China Statistics Press. 

潘建新. 2005. 上海统计年鉴. 
上海市统计局编. 北京. 中国统计出版社. 

 江    苏 Jiangsu  Kuang Changjin. 2005. Jiangsu Rural Statistical Yearbook. 
Edited by Jiangsu Provincial Statistics Bureau, Jiangsu 
Provincial Department of Agriculture and Forest, Jiangsu 
Provincial Department of Ocean and Fishery and  Survey 
Bureau of Rural Economy of Jiangsu Province. Jiangsu. 
Jiangsu Provincial Statistics Bureau. pp.314-321 

康长进.2005.江苏省农村统计年鉴. 
江苏省统计局等[编]. 江苏:  江苏省统计局, pp 
314-321 

 浙    江 Zhejiang Hong Yu. Zhang Xinhua etc. 2005. Zhejiang Rural 
statistical Yearbook. Edited by  Zhejiang Provincial 
Statistics Bureau and Survey Office of Rural Society and 
Economy of Zhejiang Province. Zhejiang. pp.145-159 

洪玉. 张兴华等. 2005. 浙江农村统计年鉴. 
浙江省统计局. 
浙江省农村社会经济调查队编. 浙江: pp145-
159 

安    徽 Anhui Wang Weixiang. 2005. Anhui Rural Economy Statistical 
Yearbook. Edited by Agriculture Commission of Anhui 
Province and Anhui Provincial Statistics Bureau. Beijing.  
China Statistics Press. pp.48-49, 155-158 

王维祥.2005. 安徽农村经济统计年鉴.  
安徽省农业委员会，安徽省统计局编. 北京 : 
中国统计出版社, pp48-49, 155-158 
 
 

 福    建 Fujian Chen Jian. 2005. Fujian Economy and Society  statistical  
Yearbook (Rural Fascicule). Edited by  Fujian Provincial 
Statistics Bureau. Fuzhou. Fujian People's Publishing Press  
pp.220-233. 

陈建. 2005. 福建经济与社会统计年鉴-农村篇. 
福建省统计局编. 福州.福建人民出版社. Pp: 
220-233. 

  Chen Jian. 2004. Fujian Economy and Society  statistical  
Yearbook (Rural Fascicule). Edited by  Fujian Provincial 
Statistics Bureau. Fuzhou. Fujian People's Publishing Press  
pp.224-237. 

陈建. 2004. 福建经济与社会统计年鉴-农村篇. 
福建省统计局编. 福州.福建人民出版社. Pp: 
224-237. 

 江    西 Jiangxi Cao Qingyun. 2005. Jiangxi statistical  Yearbook. Edited by  
Jiangxi Provincial Statistics Bureau. Beijing. China 
Statistics Press. 

曹青云. 2005. 江西统计年鉴. 
江西省统计局编. 北京: 中国统计出版社. 



  

 

Province 
(in Chinese) 

Province  Sub-provincial Level Poultry Data Source Sub-provincial Level Poultry Data Source (in 
Chinese) 

 山    东 Shandong Liu Xinhui. 2005. Shandong Statistical Yearbook. Edited 
by Shandong Provincial Statistics Bureau. Beijing. China 
Statistics Press. 

刘兴慧. 2005. 山东统计年鉴. 
山东省统计局编. 北京.  中国统计出版社. 

      
 河    南 Henan Lu Jie. 2005. Henan Rural statistical  Yearbook. Edited by 

Survey Office of Rural Society and Economy of Henan 
Province. Beijing. China Statistics Press. pp 106-110; 325-
349 

陆洁. 2005. 河南农村统计年鉴.  
河南省农村社会经济调查队主编. 北京 : 
中国统计出版社, pp 106-110; 325-349 

 湖    北 Hubei Hubei Rural Statistical Yearbook 2005. Edited by Statistics 
Bureau of Hubei Province and Editor Committee of Hubei 
Rural Statistical Yearbook. Beijing. China Statistics Press.  
pp.74-79, 90-91. 

湖北农村统计年鉴 2005. 
湖北省统计局和《湖北农村统计年鉴》编辑

委员会编. 北京. 中国统计出版社.pp.74-79, 
90-91 

 湖    南 Hunan Survey Office of Rural Economy of Hunan Province. 2005. 
Hunan Rural Statistical Yearbook. Changsha. Hunan 
Xiangcai Printing LTD.  Pp: 102-110. 

湖南省农村经济调查队. 2005. 
湖南农村统计年鉴.长沙.湖南湘财印务有限公

司. pp:102-110. 
 广    东 Guangdong Bu Xinming, Xie Yuexin. 2005. Guangdong Rural 

Statistical  Yearbook. Edited by Edit Committee of 
Guangdong Rural Statistical Yearbook. Beijing. China 
Statistics Press. pp.263-280 

卜新民, 谢悦新. 2005. 广东农村统计年鉴.  
广东农村统计年鉴编纂委员会编. 北京. 
中国统计出版社.pp.263-280 

 广    西 Guangxi Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

 海    南 Hainan Zhang Heng. 2005. Hainan statistical Yearbook. Edited by  
Hainan Provincial Statistics Bureau . Beijing. China 
Statistics Press.  pp.265-267 

张恒. 2005. 海南统计年鉴. 海南省统计局编. 
北京. 中国统计出版社. pp:265-267 

      

 重    庆 Chongqing Zhen Zibin. 2005. Chongqing statistical Yearbook. Edited 
by Statistics Bureau of Chongqing Municipality. Beijing. 
China Statistics Press. pp: 231 

郑子彬. 2005. 重庆统计年鉴. 
重庆市统计局编. 北京. 中国统计出版社.pp: 
231 

 四    川 Sichuan Hu Pinsheng. etc. 2005. Sichuan Statistical Yearbook. 
Edited by Statistics Bureau of Sichuan Province. Beijing. 
China Statistics Press. 

胡品生.等. 2005. 四川统计年鉴. 2005. 
四川省统计局编. 北京. 中国统计出版社. 



  

 

Province 
(in Chinese) 

Province  Sub-provincial Level Poultry Data Source Sub-provincial Level Poultry Data Source (in 
Chinese) 

 贵    州 Guizhou Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

 云    南 Yunnan Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

 西    藏 Xizang Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

      

 陕    西 Shaanxi Hu Shouxian. 2005. Shaanxi  Statistical  Yearbook. Edited 
by Statistics Bureau of Shaanxi Province. Beijing. China 
Statistics Press.  pp.243-244, 266-268. 

胡守贤.2005.陕西统计年鉴. 陕西省统计局编. 
北京. 中国统计出版社. pp.243-244, 266-268. 

 甘    肃 Gansu Fan Huaiyu.  2005. Gansu Rural  Yearbook. Edited by 
Editorial Committee of Gansu Rural Yearbook. Beijing. 
China Statistics Press.  pp.319-321. 

樊怀玉. 2005. 甘肃农村年鉴. 
甘肃农村年鉴编委会编. 北京. 
中国统计出版社. pp: 319-321. 

 青    海 Qinghai Kang Ling . 2005. Qinghai statistical Yearbook. Edited by 
Statistics Bureau of Qinghai Province. Beijing. China 
Statistics Press. 

康玲. 2005. 青海统计年鉴. 青海省统计局编. 
北京. 中国统计出版社. 

 宁    夏 Ningxia Jia Hongbang. 2005. Ningxia  Statistical  Yearbook. Edited 
by Statistics Bureau of Ningxia Autonomous Region. 
Beijing. China Statistics Press  pp.252-253. 

贾红邦. 2005. 宁夏统计年鉴. 
宁夏回族自治区统计局编. 北京. 
中国统计出版社. pp.252-253. 

 新  疆 Xinjiang Fu Yuxiang, Zhang zhongqiu, Yu kuangzhen. 2005. China 
Animal Husbandry Yearbook. Edited by Editorial 
Department of China Animal Husbandary Yearbook 
Beijing. China Agriculture Press.154-169, 200-203. 

傅玉祥, 张仲秋, 于康震. 2005. 
中国畜牧业年鉴. 国畜牧业年鉴编辑部主编. 
北京. 中国农业出版社. 154-169, 200-203. 

 



  

 

 

 
Table S3.2. Criteria used for creating unsuitable habitat masks for chicken, duck, and goose distribution models. Second column 
shows thresholds used for Gridded Livestock of the World (GLW) monogastric livestock (pigs and poultry) models (FAO 2007); 
colums 3 and 4 show conservative masking thresholds used in this study. 
 

Criteria Monogastric Livestock 
(GLW, FAO 2007) 

Chickens Ducks and 
Geese 

Protected areas Y no mask no mask 
Population density (Landscan) (km') 1,500 > no mask no mask 
Lights (Landscan) (%)  > 90  no mask no mask 
Slope (Landscan) (%)   no mask no mask 
Elevation (m)  > 4,750  > 4,750  > 4,750  
NDVI max   no mask < 0.07  
Land cover (Landscan) -water  Y Y no mask 
Land cover (Landscan) -developed  Y no mask no mask 
Land cover (Landscan) -partly developed  Y no mask no mask 
Land cover (Landscan) –herbaceous wetlands  Y no mask no mask 
Land cover (Landscan) -wooded wetlands  Y no mask no mask 
Land cover (Landscan) -tundra  Y Y Y 
Land cover (Landscan) -snow and ice  Y Y Y 

 
 
 

 
 
 
 
 
 



  

 

 
 
Figure S3.1. Relationship between NSB and AHB poultry data, 2004 for 31 provinces of China. R-square  correlation between NSB 
and AHB reported RESID statistics was 99.4%; 14 of 31 provinces had identical values for the 2 datasets. 
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Figure S3.2.  Map of China depicting scale of available poultry data for each province and the method for filling in missing data. Red 
lines show provincial boundaries. Blue lines show sub-provincial boundaries for provinces having sub-provincial data. Method 1:  
Beijing, Jiangsu, Zhejiang, Anhui, Fujian, Henan, Hunan, Guangdong, Ningxia; Method 2: Hebei, Heilongjiang, Jiangxi, Shandong, 
Shaanxi; Method 3: Tianjin, Hubei, Chongqing; Method 4: Inner Mongolia, Shanghai, Hainan, Sichuan, Qinghai; Method 5: Shanxi, 
Gansu; Method 6: Liaoning, Jilin, Guangxi, Guizhou, Yunnan, Xizang, Xinjiang.  
 



  

 

 
 
Figure S3.3. Four regional stratification schemes used in the analyses, (a) Sere & Steinfeld (1996) Livestock production systems 
(LPS), (b) Ecozone 12 isodata clusters (EZ.BestRSE), and (c) China Agro-Ecological Regions (CAR), (d) All.BestRSE.  
 



  

 

 
 
Figure S3.4. Analysis of Variance and Tukey’s comparisons (p<0.05) showing that although differences among chosen stratifications 
were not significant, all performed better than the global model (no stratification). 
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Abstract 
 
Understanding the spatial and temporal distribution of species is necessary to manage 

issues in the fields of conservation science and medicine, yet population data are rarely 

available at the extent or resolution desired to address targeted research needs.  Some 

regions, such as Asia, are important ecologically but lack long-term or broad scale 

monitoring programs that more developed regions have been afforded.  Species 

distribution modeling is a rapidly growing field that can provide estimations of species 

distributions and, depending on the approach taken, can address a multitude of data needs 

and levels of input data.  In this study, we developed species distribution models for 

China’s Anatidae waterfowl as part of a greater effort to identify hotspot regions of 

disease transfer between wild and domestic bird populations.  Although large scale field 

survey data for China’s waterfowl were lacking, the urgency of the disease models 
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spurred us to move forward using a habitat analysis approach to build baseline presence-

absence distribution models.  These high-resolution 1 km maps represent the first 

distribution models for China’s waterfowl: 30 breeding and 37 wintering species.  

Resulting maps varied per species and season.  Species diversity maps for the breeding 

and wintering seasons differed in pattern and richness, with the breeding season showing 

highest diversity (max=20) in patchy areas across the northeast and high-elevation west, 

and wintering season showing high densities (max=30) across broad regions of the low-

elevation southeastern parts of China.  Low omission error rates for individual species 

indicated strong model performance in predicting species presence.  While these models 

represent an early stage in developing robust spatially explicit Anatidae distributions 

across China, the modeling process was designed to incorporate new data as it becomes 

available, enabling it to serve as a framework for long-term efforts to improve our 

understanding of Anatidae distributions in this region.    

 
Keywords: Anatidae, waterfowl, species distribution modeling, spatial analysis, habitat, 
disease 
 

Introduction  
 

There has been an increasing demand for species distribution information for the 

purposes of management and conservation of wild species especially throughout Asia.  

Knowledge of how species are distributed across the landscape spatially and temporally 

is critical for a wide range of priority needs including protection of critical habitat, 

predicting effects of environmental stressors on wildlife, and informing surveillance and 

prevention measures against zoonotic disease threats.  Fine-grained distribution data may 

be available for some species locally, however, data are rarely available at larger extents 
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due to the enormous costs of production.  Some regions such as North America and parts 

of Europe have long-term monitoring efforts from which consistent quality data can be 

drawn upon (Root 1988, Sauer et al. 2003); others including developing regions rarely 

have similar types of broad-scale programs despite having rich biological resources 

(Grenyer et al. 2006, Martin et al. 2012).  The growing field of species distribution 

modeling (SDM) offers a wide array of approaches that can support model development 

for a breadth of applications and data inputs (Morrison et al. 2006, Franklin and Miller 

2010).  Relevant approaches range from deductive expert knowledge models such as  

habitat suitability indices (Fish and Wildlife Service 1981) and wildlife-habitat 

relationship matrices (Verner et al. 1986, Csuti 2000) to inductive models that 

incorporate regression, Bayesian statistics, maximum entropy, artificial neural networks, 

genetic algorithms, and other machine learning techniques  (Segurado and Araujo 2004, 

Guisan and Thuiller 2005, Elith et al. 2006, Austin 2007, Elith and Leathwick 2009).  

The increasing availability of remote sensing data since the 1980’s and 

development of geographic information systems has provided additional opportunity to 

model distributions across broad extents (Leyequien et al. 2007). Land cover data, 

particularly Landsat TM, has been widely used as predictive inputs for SDMs (Venier et 

al. 2004, Gottschalk et al. 2005) due to its large spatial and temporal extent and easy 

accessibility (Defries and Belward 2000). This approach, which includes linking species 

observations or habitat requirements to land characteristics in statistical or spatial format 

has been applied successfully for a wide array of terrestrial taxa including many avian 

species (Boyle et al. 2004, Venier et al. 2004, Gottschalk et al. 2005, Prins et al. 2005, 

Morrison et al. 2006, Franklin and Miller 2010, Toral et al. 2011)).   
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We turned to SDM as a means to develop input data for disease risk models for 

the deadly H5N1 avian influenza virus (hereafter H5N1) which has caused considerable 

damage to the health and economy of more than 60 countries from Asia to Africa since 

its emergence in 1996 (OIE 2012, World Health Organization 2012a).  In particular, the 

role that wild birds play in the spread of H5N1 has been heavily debated following a rare 

outbreak in wild populations (Liu et al. 2005) and the subsequent rapid expansion of 

outbreaks beyond Asia and into Europe and Africa in 2005 and 2006 (Gilbert et al. 

2006b, Kilpatrick et al. 2006, Gauthier-Clerc et al. 2007, Feare 2010). Waterbirds of the 

orders Anseriformes (waterfowl) and Charadriiformes (shorebirds, gulls, and terns) are 

known reservoirs for low-pathogenic  forms of avian influenza (LPAI) which have the 

potential to mutate into lethal forms following entry into domestic poultry populations 

(Clark and Hall 2006, Muzaffar et al. 2006, Alexander 2007, Alexander and Capua 

2008). Anatidae waterfowl (ducks, geese, and swans) are of particular importance  due to 

their migratory behavior, high abundances, and increased exposure to farmed ducks 

(Fouchier et al. 2007, Muzaffar et al. 2010, Takekawa et al. 2010b) which can act as 

silent reservoirs of H5N1 virus (Hulse-Post et al. 2005, Sturm-Ramirez et al. 2005, Chen 

et al. 2006a). Despite the importance and continuing debate revolving wild birds and 

H5N1 spread, few studies have explicitly incorporated wild birds in their models (Gilbert 

and Pfeiffer 2012. In Press), in part because obtaining adequate inputs for these 

populations is difficult, particularly in regions of Asia where the virus continues to persist 

and reemerge (OIE 2012). 

Our focal region of interest is China, the epicenter of H5N1 (Mukhtar et al. 2007), 

and one of the few locations within H5N1’s range that exhibits a diverse combination of 
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environmental conditions and varying human and wildlife populations.  China supports 

both heavily populated regions where wild birds, poultry,  and humans are closely 

integrated on the landscape such as Poyang Lake in southeastern China (8.8 million 

people reside among livestock and wintering migratory waterbirds), as well as regions 

where H5N1 has repeatedly emerged despite a lack of domestic poultry such as along the 

Qinghai-Tibet Plateau of northwestern China.   In addition, China is an important 

resource for Anatidae populations, as it supports 10 percent of the globe’s wetlands (Lu 

and Jiang 2004) and is positioned at the intersection of multiple migratory flyways 

(Boere et al. 2006); however, waterfowl in this region are the least studied in the 

Palaearctic and systematic monitoring programs have not yet been developed 

(Miyabayashi and Mundkur 1999b, Miyabayashi 2003, Kear 2005, Mundkur 2006).  

Thus, while a strong set of survey data was not available to take advantage of some of the 

newer advances in SDM (Guisan and Thuiller 2005, Elith et al. 2008, Franklin and Miller 

2010, Miller 2010, Elith et al. 2011, Royle et al. In Review), the need to move forward 

with the disease models drove us to develop entry-level distribution models based on 

habitat mapping, which could be conducted after a thorough review of the literature.  

Here we present the first set of spatially explicit distribution models for China’s 42 

species of Anatidae waterfowl during the breeding and wintering seasons at 1 km spatial 

resolution.  We hypothesized that using a habitat relationship approach (Csuti 2000, 

Morrison et al. 2006) in combination with local field knowledge would provide useful 

maps at this resolution and across the extent of China. Validated maps will be made 

available to the public and scientific community for use in conservation, research, and 

educational purposes.  
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Materials and Methods 

Model development and validation 
 

 Using a habitat suitability approach (Figure 4.1), we created presence-absence 

predictions for each of China’s 30 breeding and 37 wintering Anatidae species.  We first 

developed a database outlining habitat requirements for each species and season 

supported by a detailed review of the literature (Chinese and English) and communication 

with local experts.   We then derived equations between habitat preferences and predictor 

variables (Table S4.1) and implemented the equations in a geographic information system 

(Python (www.python.org) and ArcGIS 10.1, ESRI, Redlands, California) at 1 km 

resolution.  The suitability maps for each species were masked using range boundaries 

produced by Mackinnon and Phillipps (2000, see Fig. S4.1 for examples), the most 

comprehensive reference available for China (Meyer De Schauensee 1984, Yan 1996, 

Mackinnon and Phillipps 2000, Robson 2000, Strange 2000, Kear 2005, Delany and Scott 

2006).  The range maps are coarse definitions of the extent of a species’ range (Hurlbert 

and Jetz 2007) which we used to restrict the extent of predicted habitat for a given 

species.  We validated the models using presence data available from the literature and 

local surveys by conducting tests for errors of omission – grid cells were models predict 

absence of a species but validation data shows presence (Pearce and Boyce 2006, Tsoar 

et al. 2007). Because precision and accuracy of coordinates reported for waterfowl 

observations varied widely among reference sources (from units of degrees, minutes, 

seconds recorded for the point where a bird was observed, to a generic centroid within the 

boundaries of a nature reserve), we validated the models at three scales:  immediate 

(within 1 km pixel), within 5 km and within 10 km of a known observation location.  

http://www.python.org/�
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These designations were based on the average size of China’s nature reserves which 

range between 4 and 10 km2 (min and max:  1 km2 and 900 km2) (Xie et al. 2004). We 

then created Anatidae species diversity maps by summing the number of predicted 

species within each cell for a given season. 

Waterfowl Data 
 

The family Anatidae includes all duck, goose, and swan species which can be 

found across most regions of the globe.  These birds are highly adapted to aquatic 

habitats and exhibit short legs, webbed feet, and wings that are set back on their body.  

Their bills are generally wide for filtering water.  China has 42 species of Anatidae that 

breed or winter within its borders (Mackinnon and Phillipps 2000), the majority of which 

are short or long distance migrants.  Geese and swans are generally herbivorous and use 

agricultural settings in winter; ducks vary in their feeding preference ranging from herb-

ivory to piscivory and are more tied to natural habitats in winter than geese and swans.   

We conducted a review of the English and Chinese literature for China’s 

waterfowl species. References included peer reviewed journal articles, technical reports, 

and unpublished surveys from nature reserves. Data collected were used for 2 purposes: 

to build the waterfowl habitat relationship database and to collate reputable location data 

for use in validating the models.  Habitat information, references, location data, 

population estimates, and habitat relationship equations were managed in the database.  

Environmental Variables 
 

Remotely-sensed land cover data are readily available across large geographic 

extents (Defries and Belward 2000) and have been used successfully in modeling species 
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distributions (Seoane et al. 2004, Gottschalk et al. 2005). We used Landsat TM land 

cover data produced and validated by the Chinese Academy of Sciences (CAS) (Liu et al. 

2002)and Shuttle Radar Topography Mission (SRTM) elevation data (Farr et al. 2007) as 

model predictors.  The land cover variables were derived from 30 m Landsat imagery and 

distributed by CAS at 1 km resolution. Slope and elevation variables were resampled 

from 90 m SRTM data to 1 km resolution using ArcGIS 10.1 Spatial Analyst. We tested 

all environmental variables for correlation to avoid issues of multicollinearity (Graham 

2003).  Significant correlations were not observed (all were below 0.67), however we 

reduced the data set from 25 variables to 18 (Table S4.2) based on an a priori list of 

relevant cover classes (Burnham and Anderson 2002c).  

 

Results 
 

The Anatidae habitat relationship database was structured in three parts: (a) 

records outlining seasonal habitat requirements for individual species, (b) population and 

survey counts, (c) and habitat relationship matrices describing land cover characteristics 

in relation to habitat requirements.  The database holds 9250 records drawn from more 

than 1000 references.  Of the 42 Anatidae species found in China  (Mackinnon and 

Phillipps 2000), 39 are listed as winter residents and 30 as breeders in China. Population 

data from the literature (Delany and Scott 2006, Cao et al. 2008) indicate that not all of 

the 42 species in MacKinnon and Phillipps (2000) have been reported in China during 

surveys conducted within the past decade. Based on this information, we produced 

distribution maps for 30 breeding and 37 wintering species (Table 4.1).  Here we 

illustrate prediction results and validation points for the bar-headed goose (Anser indicus) 
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(Figure 4.2) a species of cultural value and important to H5N1 transmission (Zhou et al. 

2006, Zhang et al. 2008, Prosser et al. 2011a).  Resulting presence-absence distribution 

maps for all species and seasons are included in Figure 4.3. 

  Omission rates indicated a strong ability for the models to predict areas where a 

species might be found (omission rate ranged from 0 to 9.5 percent, Table 4.2). The 

overall number of validation points was low, ranging from 1 to 21 per season for a given 

species, and we would expect the statistics to broaden as more validation points are 

added. 

Species diversity maps (Figure 4.4) for the breeding season showed highest 

diversity in the northeast and the high-elevation western regions of China.  Hotspots of 

Anatidae diversity during the wintering season occurred across much of the low-elevation 

southeastern part of China, and particularly along the Yangtze River basin.  Diversity 

ranged from 0 to 20 for the breeding season and 0 to 31 for the wintering season. 

  

Discussion 
 

The goal of this work was to develop high resolution spatial distribution maps for 

the suite of waterfowl species that use China’s habitats. Because of limitations in 

availability of survey data for the majority of species, we chose to take a traditional 

approach of habitat modeling and combine it with control measures to develop and 

validate our maps.  We hypothesized that this approach could produce useful and 

accurate spatial data layers of predicted presence for China’s waterfowl.  Visual 

inspection of the distribution maps shows strong associations with wetland habitats 
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within the range of a species and validation measures resulted in low model omission 

rates, indicating a strong capability of the models to predict presence locations.   

General distribution patterns across the suite of species differed between the 

breeding and wintering seasons, as can be seen in the cumulative diversity models 

(Figure 4.4). Geographically, winter distributions are concentrated in the warmer and 

lower elevation regions of the southeast while the breeding distributions are more evenly 

spaced across the landscape and include the northern latitudes and higher elevation 

regions of western China. These patterns are indicative of differences in waterfowl 

behavior between these two seasons, in that during winter waterfowl tend to be 

gregarious, congregating in large flocks of mixed or individual species, and during the 

breeding season territories are held and females spend much of their time on nest.  

Because of the concentrated nature of waterfowl populations in winter and the 

implications for habitat conservation, survey data are more commonly available for this 

season.  Large scale, long term counts such as the Asian Waterbird Census (Li et al. 

2009) require a large expert volunteer base and are implemented only for winter counts.  

Survey data for breeding populations are usually conducted at smaller scales and without 

cross-study coordination as they are typically employed for individual research projects 

or by individual nature reserves.  These differences in data availability are reflected in the 

contents of the waterfowl database.  

One artifact of our modeling approach is the appearance of a hard transition 

between predicted presence and absence cells along the outer boundary of each species 

range (e.g., the artificial circular boundaries evident in the bar-headed goose wintering 

distribution (Figure 4.2) or spot-billed duck distribution (Figure 4.3)).  This is a result of 
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the masking step (third text box in Figure 4.1) which restricts the predicted presence layer 

to only include cells that fall within a species range boundary.  Range maps are general 

approximations of regions where a species has been reported in the past.  Observations of 

individuals outside of these boundaries is possible but rare and although a soft transition 

could have been modeled, we chose to retain the hard boundaries so that results are 

explicit and easy to interpret, particularly when individual species models are summed to 

create the cumulative diversity maps.  One step for future work as more survey data 

becomes available is to update the current species boundaries to reflect expansions or 

reductions in range extents for individual species. 

The validation process indicated a strong ability to predict presence locations for 

individual species, however, because our validation data were presence-only records, we 

were not able to assess how well the models predicted absence locations.  In general, 

distribution models tend to be better at predicting presence locations than absence 

locations except for species with very narrow niches (Brotons et al. 2004, Hernandez et 

al. 2006). Here we expect that our models may be better at predicting presence than 

absence locations, although until a solid presence-absence data set becomes available, we 

are not able to confirm this hypothesis.   However, the fundamental habitat requirements 

of a given waterfowl species is not likely to change significantly over the short term, and 

we designed the modeling process to have multiple levels so that the base maps can be 

updated as new information becomes available.  

  Additional challenges exist when using data from outside sources to refine or 

validate the distribution models.  Geographic coordinates associated with public bird 

survey databases are commonly reported in decimal degrees with two units of precision 
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which corresponds to a hundredth of a degree, or just over 1 km, depending on the 

position in relation to the equator (as latitudes reach the poles, they cover more area on 

the ground). This may pose a problem if the scale of the data being assessed for accuracy 

is finer than the precision of the truncated location coordinates.  In addition, it is not 

always clear what the reported coordinates represent; e.g., whether a point represents the 

location from which the bird was observed (such as a bird observation platform), the 

location of the bird itself (this is unlikely), or the midpoint of the area of a nature reserve 

within which bird observations were reported.  We paid careful attention to these details 

to resolve these questions where possible and conducted our accuracy assessments at 3 

scales (within 1 km, 5 km, and 10 km) to account for such issues.   

 In this paper we present the first distribution models and species diversity maps 

for China’s Anatidae waterfowl.  While we recognize that these models have multiple 

shortcomings, we hope this example will encourage similar efforts in other regions with 

limited data but a great need for understanding the distribution of species on the 

landscape.   We also hope this work will stimulate further quality and coordinated efforts 

to increase the level of input data for these models.   At this current stage in a hopefully 

long and successful process, these high resolution spatial data sets provide a unique and 

valuable resource to the research and planning communities across many disciplines from 

wildlife management to conservation medicine and beyond. 

 



  

 

 
Tables 
 
Table 4.1. List of Anatidae waterfowl species for which breeding and/or wintering distribution maps were created for China at 1 km 
resolution.  B=breeding, W=winter, BW=both models produced. 
 

Common Name Scientific Name Models Common Name Scientific Name Models 
Lesser Whistling Duck Dendrocygna javanica B Northern Pintail Anas acuta BW 

Mute Swan Cygnus olor B Garganey Anas querquedula BW 
Whooper Swan Cygnus cygnus BW Baikal Teal Anas formosa W 
Tundra Swan Cygnus columbianus W Common Teal Anas crecca BW 

Swan Goose Anser cygnoides BW Marbled Duck Marmaronetta 
angustirostris B 

Bean Goose Anser fabalis W Red-crested Pochard Rhodonessa rufina B 
Greater White-fronted 
Goose Anser albifrons W Common Pochard Aythya ferina BW 

Lesser White-fronted 
Goose Anser erythropus W Ferruginous Pochard Aythya nyroca BW 

Greylag Goose Anser anser BW Baer's Pochard Aythya baeri BW 
Bar-headed Goose Anser indicus BW Tufted Duck Aythya fuligula BW 
Snow Goose Anser caerulescens W Greater Scaup Aythya marila W 
Brent Goose Branta bernicla W Steller's Eider Polysticta stelleri W 
Ruddy Shelduck Tadorna ferruginea BW Long-tailed Duck Clangula hyemalis W 
Common Shelduck Tadorna tadorna BW Black Scoter Melanitta nigra W 

Cotton Pygmy Goose Nettapus 
coromandelianus B White-winged Scoter Melanitta fusca W 

Mandarin Duck Aix galericulata BW Common Goldeneye Bucephala clangula BW 
Gadwall Anas strepera  BW Smew Mergellus albellus BW 



  

 

Common Name Scientific Name Models Common Name Scientific Name Models 

Falcated Duck Anas falcata BW Red-breasted 
Merganser Mergus serrator BW 

Eurasian Wigeon Anas penelope BW Scaly-sided 
Merganser Mergus squamatus BW 

Mallard Anas platyrhynchos BW Common Merganser Mergus merganser BW 

Spot-billed Duck Anas poecilorhyncha BW  
Northern Shoveler Anas clypeata BW  
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Table 4.2. Validation measures for example bar-headed goose and mallard at three scales 
(1 km, 5 km, and 10 km). Omission rate is calculated by dividing the number of correctly 
predicted presence locations by the total number of validation (presence) points. For 
example, of the 21 locations where bar-headed geese were observed during the wintering 
season (using validation data), two (or 9.5%) of them were incorrectly predicted as 
“absent” within the grid cell (within 1 km).  In this example, increasing the number of 
neighboring cells for analysis did not improve the error rate (ie. error rates are the same 
whether we examined the 1 km cell which encompassed the validation point, or within 5 
km or 10 km cells in each direction). 
 
Species Season Omission 

Error Rate 
1 km 

Omission 
Error Rate 

5 km 

Omission Error 
Rate 

10 km 

Number of 
Validation 

Points 
Bar-headed 
goose 

Breeding 0 0 0 13 

 Winter 0.095 0.095 0.095 21 
      
Mallard Breeding 0.17 0.17 0.17 6 
 Winter 0 0 0 2 
 Resident 0 0 0 1 
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Figures 
 
Figure 4.1. Key steps (top panel) for species distribution modeling of China’s 42 species 
of Anatidae waterfowl. Breeding and wintering season maps were produced for each 
product. Spatial resolution of grid maps is 1 km.  
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Figure 4.2. Predicted bar-headed goose distributions for breeding (orange) and wintering 
(purple) seasons across China (A). Locations of survey observations in red circles 
(validation points).  Red frames delimit magnified insets (B) for breeding (left) and 
wintering (right) areas.   
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Figure 4.3. Species distribution models for 30 breeding and 37 wintering species of 
China.  Models were developed using a habitat analysis approach at 1 km spatial 
resolution. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
 

 
 
 
 
 
 
 



  

119 
 

 
Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Fig. 4.3 continued. 
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Figure 4.4. Species diversity for Anatidae (A) breeding and (B) wintering seasons. 
Coarse transitions in map predictions are a result of species range boundaries (e.g., 
horizontal pattern in southeastern China in panel (B). 
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Supplemental Materials 
 
Table S4.1. Habitat relationship equations for example species Bar-headed goose (Anser 
indicus)  
 
Bar-headed Goose (Anser indicus) 
Habitat Descriptions: 
Breeding: Shallow lakes, marshes, lake shores, highland moors, salt lakes  
Winter: Natural wetlands, agricultural fields, riverine and lacustrine wetlands, freshwater 
lakes 
Migration:  no info 
Elevation: Breeds at elevations from 3570 to 5300m; wintering elevations range from 
lower elevations (Keoladeo Park, India 174m, Yunnan and Sichuan provinces) to higher 
(Tibetan Plateau). 
Regions in China: Winter=Tibet, Sichuan, Yunnan, (India, Pakistan, northern Myanmar) 
Descriptive Equations:  
Breeding season includes cover types:  marsh (64), rivers and irrigation channels (41), 
lakes (42), reservoir or pond (43) and river or lakeshore (46) in combination >0.  
Wintering and resident seasons includes cover types:  marsh (64), paddy (11), rainfed 
(12), rivers and irrigation channels (41), lakes (42), reservoir or pond (43) and river or 
lakeshore (46) in combination >0.   
 
GIS Breeding and Wintering Equations:  

a. d074_bhgo_br = ([ild64p] + [ild41p] + [ild42p] + [ild43p] + [ild46p]) > 0 
(include any of the above layers that have values greater than zero). 

b. d074_bhgo_br = ([ild64p] + [ild11p] + [ild12p] + [ild41p] + [ild42p] + 
[ild43p] + [ild46p]) > 0 (include any of the above layers that have values 
greater than zero). 

 
 



  

126 
 

 
Table S4.2.  China Land Cover dataset created by the Chinese Academy of Sciences 
(CAS) Institute of Geographical Science and Natural Resources Research (IGSNRR) 
from 30m Landsat TM satellite imagery (Liu et al. 2002, Liu et al. 2005).  Collapsed 
fields used for waterfowl distribution modeling.                                                                 
 
 
Arable Land 

Waterfowl Models 
Land Cover Variables 

Collapsed 
Fields 

Original 
Fields 

Land Cover Class 
Description 

 Paddy 11 11 Paddy  
 Rainfed 12 12 Rainfed 
Forest     
 Forest 21+24 21 Forest 
 Scrub-Shrub 22+23 22 Scrub 
   23 Shrub 
   24 Other Forest 
Grassland     
 Grassland>50% 31 31 Grassland (>50%) 
 Grassland20-50% 32 32 Grassland (20-50%) 
 Grassland5-20% 33 33 Grassland (5-20%) 
Water     
 River and Irrigation 41 41 River and Irrigation 
 Lake 42 42 Lake 
 Reservoir, Pool 43 43 Reservoir and Pool 
 Snow-capped 44 44 Snow Capped 
 Coastal Shores 45 45 Shores (Sea) 
 Bank of River/Lake 46 46 Bank/Shoal 

(River/Lake) 
Developed     
 Urban 51 51 Urban 
 Rural/Other 52+53 52 Rural Residence 
   53 Other Constructed 
Pristine     
 Sand,Gobi,Salt,Bare,Rock 61-63, 

65-67 
61 Sand 

   62 Gobi 
   63 Salt Lick 
 Marsh 64 64 Marsh 
   65 Bare Ground 
   66 Gravel and Rocky 

Ground 
   67 Other 
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Figure S4.1. Example bar-headed goose range map from MacKinnon and Phillipps 
(2000) showing breeding (orange), wintering (purple), resident (green), and migration 
(yellow) range extents. Migration was not included in distribution models because of lack 
of information. Resident regions were included in both wintering and breeding extents.  
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Abstract 
 
Highly pathogenic avian influenza (HPAI) H5N1 emerged in southern China in 1996 and 

has since become the longest persisting influenza virus in history, continuing to evolve 

and posing threat of a global pandemic. HPAI viruses historically were restricted to 

domestic poultry populations, however, H5N1 has spilled back to wild birds on multiple 

occasions, fueling the debate on wild birds and H5N1 transmission. Understanding the 

spatial and temporal interface between wild and domestic populations is fundamental to 

taking action against the virus, yet this information is hard to come by and has rarely 

been included in H5N1 risk models.  In this study we aimed to identify areas of high 

transmission risk between domestic poultry and wild waterfowl in China. We developed 

unidirectional equations of H5N1 risk between wild and domestic birds across two 
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seasons in a Monte-Carlo framework which incorporates uncertainty in the modeling 

process.  Patterns differed across seasons with hotspot regions in the northeast, central-

east, and western regions of China during the breeding season (spring and summer) and 

in the central and southeastern regions during the wintering season.  Transmission risk 

from poultry to wild birds was two orders of magnitude greater than risk from wild birds 

to poultry indicating the importance of parsing the equations in two directions.  An 

intermediary set of models were developed to highlight regions where wild waterfowl 

and poultry co-occur on the landscape, which have broad utility to public health officials 

and conservationists alike. Here we present the first set of models to explicitly focus on 

H5N1 transmission between domestic and wild populations, modeling risk in both a 

spatial and temporal context, contributing an important piece that had previously been 

missing from our knowledge base on HPAI.   

 

Keywords: H5N1, avian influenza, spatial modeling, Monte-Carlo, uncertainty, 

waterfowl, poultry 

 

Introduction  
 

Emerging infectious diseases in wildlife have become a growing concern to 

human health and biological systems. More than 75 percent of known emerging 

pathogens are zoonotic, being transmissible from animal to humans (Taylor et al. 2001, 

Alexander 2007), with the majority (77%) being capable of infecting multiple species 

(Cleaveland et al. 2001). It has been recognized that the increase in emerging zoonotic 

diseases is a result of human population expansion and globalization (Morse 1995, 
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Daszak et al. 2000, Brown 2004). Increasing demand for meat products due to population 

growth and development has led to rapid intensification of the domestic livestock 

industry (Delgado 2003), and improvement of transportation and market chains has 

brought humans and their agricultural systems closer together on a global scale. Coupled 

with increased threats of climate change and landscape fragmentation(Kovats et al. 2001, 

McMichael 2003, McMichael et al. 2006), incidence of emerging zoonoses is only likely 

to continue to rise (Kovats et al. 2001, McMichael 2003, McMichael et al. 2006, Jones et 

al. 2008).   

Highly pathogenic avian influenza virus (HPAIV) H5N1 (hereafter H5N1) is a 

zoonotic pathogen that first emerged in domestic geese in southern China in 1996 (Xu et 

al. 1999), and since has become the longest persisting HPAIV in poultry (Smith 2006). 

While most low pathogenic avian influenza viruses (LPAIV) are found naturally 

circulating within their wild waterfowl reservoirs (Orders Anseriformes and 

Charadriiformes) without invoking symptoms (Alexander 2000), deadly HPAIVs result 

when an LPAIV enters a high density host population, such as a poultry farm, where it 

can rapidly mutate into a lethal form (Webby and Webster 2001).  In late 2003, H5N1 

erupted in outbreaks in poultry across 8 Asian countries (xx ref). Less than two years 

later, the first occurrence of HPAIV “spill-back” occurred in the wild bird community 

where more than 6,000 wild birds died of H5N1 at Qinghai Lake in the remote plateau 

region of western China (Liu et al. 2005). The unique characteristics of H5N1, including 

its ability to (1) spill back from poultry into the wild bird community (Webster et al. 

2007b), (2) affect a wide diversity of host species (Cardona et al. 2009), and (3) replicate 

silently in domestic ducks (Sturm-Ramirez et al. 2005), have allowed this virus to 
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uniquely persist and reemerge, affecting more than 60 countries across Asia, Europe, and 

Africa over the past 16 years.   

The novelty of this virus has also sparked confusion and debate among the global 

scientific community regarding the role wild birds play in spread of HPAIV (Yasue et al. 

2006, Gauthier-Clerc et al. 2007, Feare 2010). After the spill-back event at Qinghai Lake, 

subsequent outbreaks were recorded in wild birds in Mongolia, Russia, and eventually 

Europe (OIE 2012). From this point on, wild birds were commonly implicated with the 

rapid spread of the virus over long distances; however, little to no data existed regarding 

movement patterns and disease susceptibility of wild birds to support this argument. 

Since then, our understanding of H5N1 and wild birds has improved. Multiple studies 

indicate a range of susceptibility and transmissibility response to H5N1 exposure among 

wild species (Brown et al. 2007a, Brown et al. 2008, Kalthoff et al. 2008, Keawcharoen 

et al. 2008), and the advent of a large-scale tracking program has increased our 

understanding of waterfowl ecology and movement patterns within zones of H5N1 

infection.  

A recent review of H5N1 risk models (Gilbert and Pfeiffer 2012. In Press) notes 

that few studies explicitly incorporate wild birds in transmission risk models, in part 

because obtaining adequate inputs for these populations is difficult.  In an effort to 

increase our understanding of how wild birds are involved in the spread of H5N1, we 

proposed to study H5N1 transmission risk between domestic and wild birds in China, the 

epicenter of H5N1 (Mukhtar et al. 2007). Centering the study in China has value for 

multiple reasons. First, the disease originated in southeastern China and continues to 

persist and emerge in new locations indicating a continued need for research, 
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surveillance, and control.  Secondly, the anthropogenic, wild, and environmental 

landscapes are each diverse across the country, allowing for varying levels of disease 

risk, both spatially and temporally.  Two focal areas of interest provide contrasting but 

important situations for H5N1 transmission risk, particularly in regard to wild and 

domestic interaction.  The Poyang Lake region (PYL), located in southeastern China 

along a feeder river to the Yangtze River basin, is a complex wetland system that 

supports an integrated mix of 8.8 million people, 14 million ducks, and 100,000 

wintering migratory waterbirds including 90 percent of the global population of 

endangered Siberian Cranes (Grus leucogeranus)  (Takekawa et al. 2010b). The majority 

of the human population lives in village settings, well-integrated within the agricultural 

landscape.  Rice-cropping and free range duck farming are prevalent, and the demand for 

‘healthy’ wild meat has led to the rise of farmed wild waterfowl, all increasing the 

potential for wild and domestic populations to exchange virus.  In contrast, Qinghai Lake 

(QHL), where the global debate on wild birds and H5N1 transmission began, is located in 

a remote arid region on the high-elevation Qinghai-Tibet Plateau.  Few poultry are 

present, and free-ranging duck farming common to the lowlands does not occur. H5N1 

outbreaks are common to both regions, and investigating the response of our transmission 

risk models to these regions is of particular interest. 

In this paper, we employ a systematic approach to modeling disease transmission 

risk between domestic poultry and wild waterfowl populations. We begin by building 

high resolution (1 km) deterministic models that define areas of wild and domestic bird 

co-occurrence and H5N1 risk factors from existing SIR disease models.  We then follow 

with coarser resolution models that incorporate uncertainty and produce a measure of 
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error for each cell of the risk output.  These 30 km resolution models match the average 

county area for China, a more appropriate scale for assessing transmission risk. 

 

Materials and Methods 

Poultry Model Inputs 
 

Spatial maps of poultry densities were created by disaggregating census data 

using regression modeling (Prosser et al. 2011b). Poultry census data was compiled from 

statistical yearbooks published by China’s Ministry of Agriculture and National Bureau 

of Statistics at provincial or sub-provincial scale. Using land cover and meteorological 

remote sensing data (Liu et al. 2002, Hay et al. 2006), we identified statistical 

relationships between the poultry data and environmental variables to predict densities at 

a 1 km resolution across the extent of China. We applied species level information to 

produce output maps for chickens, ducks, and geese, and validated models using 

goodness of fit measures (Prosser et al. 2011b). Since both the farming structure and 

H5N1 pathogenicity varies between terrestrial (chickens) and aquatic poultry (ducks, 

geese) (Alexander 2000, Hulse-Post et al. 2005, Sturm-Ramirez et al. 2005, Alexander 

2007, Pantin-Jackwood et al. 2007, Kim et al. 2008, Li et al. 2010, Phuong et al. 2011), 

we then created final inputs for these two categories, (Pte, and Paq, respectively).   

Wild Anatidae Waterfowl Model Inputs 
 

We developed two indices to characterize densities of wild Anatidae waterfowl on 

the landscape: waterfowl abundance (Wab), and index of H5N1 prevalence (Wpr).  Using 

a habitat analysis approach, we first developed models to predict occurrence 

(presence/absence) at 1 km resolution for China’s 42 waterfowl species (Prosser et al. 
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2012 In Prep.) based on relationships between habitat requirements and environmental 

predictor variables (Verner et al. 1986, Morrison et al. 2006). Models were built 

separately for each species and season for a total of 30 breeding and 37 wintering 

species maps (Prosser et al. 2012 In Prep.).  Here we expand upon the presence-absence 

distribution models to create abundance and H5N1 prevalence models (Supplemental 

Fig. S5.1).  Abundance models were created by dividing the seasonal population 

estimate for China for a given species by the number of presence grid cells and 

assigning that number to each cell in the distribution.  Populations numbers for China 

were either taken directly or estimated from two leading references: Cao et al. (2008) 

and Delany and Scott (2006).  The resulting 1 km density distributions were summed 

across all species within a season to develop cumulative abundance indices: Wabwi and 

Wabbr for winter and breeding seasons. In a similar fashion, we applied H5N1 prevalence 

rates for each species (Table 5.1) to the abundance distributions to create an index of 

prevalence.  The prevalence index is the product of a species’ abundance and its 

prevalence rate.  Cumulative prevalence indices were developed for the breeding and 

wintering seasons, Wprbr and Wprwi, by summing values across species layers for a given 

season. 

We incorporated estimates of uncertainty for the abundance distributions due to 

the wide range in confidence we had for estimates of given species.  We had higher levels 

of confidence for the population estimates published specifically for China, which were 

all wintering populations estimates from Cao et al. 2008 (21 of 37 species); for these, we 

drew a 15% confidence band around the estimates.  The remaining wintering estimates 

(16 species) and all of the breeding population estimates (30 species) were derived from 
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global population estimates published in Delaney and Scott (2006). Delaney and Scott 

(2006) list population figures by region for the breeding and wintering seasons and 

provide country level estimates where sufficient data were available.  We derived 

estimates from the eastern Asia region which included China, Korea, Japan, Mongolia, 

and northeastern Russia.  We drew wider confidence bands around our derived estimates, 

ranging from 15 percent to 90 percent (the majority ranging between 30 and 60 percent) 

depending on the size of the population and supporting data.  We developed estimates of 

coefficient of variation (CV) for each species and season using triangular distributions in 

a Monte Carlo simulation with 10,000 runs.  The population estimate was used as the best 

estimate, and high / low estimates used for the maximum and minimum limits of the 

triangular distribution (Table 5.1). The coefficient of variation for the cumulative 

abundance distributions was expressed as the mean CV across all species.   

Transmission Risk Equations 
 

We developed three levels of models to predict disease transmission risk between 

domestic and wild birds in China (Figure 5.1).  We first used a deterministic approach to 

develop and refine the model equations (Level 1 and 2 models) and then we applied 

Monte-Carlo simulations to the Level 2 equations to incorporate estimates of uncertainty 

around the parameter inputs. We used two very different approaches between the Level 1 

and 2 models – the first predicts where wild and domestic birds may be found together on 

the landscape; the second incorporates specific H5N1 risk factors for the wild and 

domestic populations.  We chose to take these iterative steps so we can clearly identify 

the spatial and temporal relationships between the wild and domestic bird populations 
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before incorporating the H5N1 parameters.  The following outlines each of the equations 

and their associated assumptions. 

Equation 1 is the first equation in the Level 1 overlay models.  It produces a 

binary transmission map (risk / no risk) working under the hypothesis that (a) 

transmission is bi-directional (equal probability) between poultry and wild birds, such 

that within a cell, wild birds can spread virus to domestic birds and vice versa, and (b) 

both domestic and wild birds must be “present” for transmission to occur: 

 

1. [P01] * [W01] = Trisk,  

 

where P01 is the presence of poultry (either terrestrial or aquatic) and W01 is presence of 

wild Anatidae waterfowl (subscripts 01 stand for absence/presence). Trisk1 value of 0 

indicates no transmission risk and value of 1 indicates risk. 

Equation 2 is the second equation of the Level 1 models.  It differentiates between the 

presence of one or both types of domestic poultry, where Pt01 is presence of terrestrial 

poultry, and Pa01 is presence of aquatic poultry:  

 

2. [Pt01 + Pa01] * [W01] = Trisk2,  

 

Equations 1 and 2 define the spatial and seasonal distribution of where potential disease 

transfer may occur between domestic and wild (Anatidae) populations in China. 

The third equation incorporates risk factors for H5N1 transmission between 

domestic and wild populations based on our current state of knowledge on H5N1 in these 
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populations.  Here we do not assume that virus transfer is equal in both directions and 

instead develop unique equations for the risk of H5N1 transmission from poultry to 

waterfowl (TPtoW, equation 3a), and waterfowl to poultry (TWtoP, equation 3b). The model 

is a hybrid between a density dependent (McCallum et al. 2001) and environmental 

transmission model where direct transmission is defined by the fecal to oral route 

facilitated by transmission through the water environment (Alexander 2007):  

 

3a. ([Pte * Cte* Vte] + [Paq * Vaq]) * ([Wpr* U]) = TPtoW 

 

3b. ([Wpr * Vwf]) * ([Pte * Bte] + [Paq]) * U) = TWtoP, 

 

where Pte and Paq represent the density (birds/km2) of terrestrial and aquatic poultry; Cte is 

the contaminant containment rate for terrestrial poultry (the rate at which virus enters the 

system from terrestrial poultry farms); Vte, Vaq, and Vwf  are viral shedding rates for 

terrestrial poultry, aquatic poultry, and Anatidae waterfowl, respectively; Wpr is the wild 

Anatidae waterfowl cumulative prevalence rate (summed prevalences across all species 

distributions within a season, Wprbr and Wprwi for breeding and wintering seasons); U is 

the virus uptake rate through water (drinking rate / minimum load for infection); and Bte 

is a biosecurity scalar that removes terrestrial poultry within biosecure farms from the at-

risk population. The equation is run separately for each of the Wpr indices.  

Equation 3a works under the hypothesis that (a) transmission risk from poultry to 

wild waterfowl occurs through the environment (fecal to oral route) where (b) the amount 

of virus shed is proportional to the density of terrestrial and aquatic poultry, (c) that the 
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shedding rates may differ between terrestrial and aquatic poultry, (d) and the risk to wild 

waterfowl is dependent upon the density of wild waterfowl which (e) uptake virus at a 

constant rate.  Equation 3b works under the hypothesis that (a) transmission risk from 

wild waterfowl to poultry occurs through the environment (fecal to oral route), (b) is 

dependent on the density of wild waterfowl present on the landscape, (c) their viral 

shedding rate, (d) the density of aquatic poultry available to come in contact with infected 

waters, and (e) the uptake rate of virus from water.  

Estimating Contaminant Containment and Backyard Poultry from Poultry Densities 
 

Analysis of poultry systems in Asia has shown a pattern of increased biosecurity 

in relation to the scale of farming (e.g., higher biosecurity for industrial and integrated 

systems in comparison to smaller commercial farms or back-yard production) (FAO and 

OIE 2005).  The contaminant containment (Cte) and biosecurity (Bte) parameters were 

developed as scalars to reduce the effective terrestrial poultry populations within the 

equations. The parameters are based on the assumption that more biosecure farms (a) 

control the flow of potential pathogens that leave the farm and enter the environment, and 

(b) protect themselves from incoming pathogens from the environment and other farms 

(cleansing vehicles before entering the farm, housing animals in structures secure from 

wild species, etc.).  The Cte scalar is included in equation 3a that encompasses risk in the 

direction of poultry to wild birds. We first draw a relationship with poultry density under 

the assumption that cells having the highest poultry densities also contain the largest-

scale and presumably most biosecure farms.  Based on a frequency analysis of 1 km cells 

of poultry densities across China (Prosser et al. 2011b), we developed a threshold of 5000 

head/km2 of terrestrial poultry (and two others for the sensitivity analysis) above which 



  

139 
 

were considered as biosecure (Supplemental Fig. S5.2).  Cells with this designation were 

applied the Cte scalar in the risk equation (3a).  For equation 3b, where virus flow is in the 

direction of wild to domestic birds, we used the Bte scalar to predict the portion of total 

terrestrial poultry that may be backyard animals (i.e. ones with exposure to virus thru the 

environment). This was accomplished by sectioning total terrestrial poultry into three 

groups and applying functions to each to estimate the number of backyard birds. Here we 

considered terrestrial poultry densities of less than 50 to be all backyard birds; densities 

between 50 and 1000 to be a mix of backyard poultry and small to mid-scale commercial 

farms, and densities of greater 1000 to be a mix of backyard poultry and commercial 

farms of any size. The Bte scalar for the first group is 1, for the second group is 0.5, and 

the third is replaced by a constant of 1000. For example, the number of terrestrial poultry 

contributing virus to the environment is [Pte * Bte]; if Pte = 25, [Pte * Bte] = 25; if Pte = 

100, [Pte * Bte] = 50; and if Pte = 2000, [Pte * Bte] = 1000 (Supplemental Fig. S5.3). We 

did not include biosecurity factors (Cte or Bte) for aquatic poultry due to the overall 

smaller scale of farming in relation to chickens (83 versus 15 and 2 percent for chickens, 

ducks, and geese, respectively (China National Bureau of Statistics 2008)), and more 

importantly, the general nature for ducks to be farmed in a setting that is open to the 

environment providing a pathway for transmission to wild birds (Gilbert et al. 2006a, 

Muzaffar et al. 2010).   Due to the uncertain nature of the biosecurity parameters, 

assessment in the sensitivity analyses (see below) is important. 

Sensitivity Analysis 
 
 We conducted a sensitivity analysis to determine the response in model output 

given a range of values for a particular input parameter (Morgan and Henrion 1990, 
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Kroese et al. 2010).  Sensitivity analyses were run for the 1 km deterministic equations 

using high and low estimates for a given parameter while keeping all other model 

parameters constant.  The effect was assessed by examining the raw differences as well 

as calculating the percent difference between the high and low estimates.  Parameter 

ranges and descriptions of the model inputs are outlined in Table 5.2.  For the biosecurity 

terms Cte and Bte we tested both effects of high and low inputs as well as the complete 

effect of the term on the model output.  Results from these analyses were used to 

determine which parameters should be modeled with uncertainty in the Level 3 Monte-

Carlo simulations (Figure 5.1). 

Spatial and Temporal Scale of Analysis 
 
 Our first approach was to model the deterministic equations at 1 km resolution in 

a geographic framework using ArcGIS 10.0 (ESRI, Redlands California) and Python 

(www.python.org). We then ran the Monte-Carlo uncertainty analyses (Morgan and 

Henrion 1990, Kroese et al. 2010) at a coarser resolution of 30 km, approximately the 

average county size for China, and a resolution more realistic to our ability to model 

transmission risk. Both the deterministic models and Monte-Carlo analyses were run for 

two temporal seasons that relate the annual chronology of wild waterfowl to transmission 

risk.  The breeding season occurs during the spring and summer months, generally from 

April to July, and the wintering season from November to March.  

Assessing Uncertainty using Monte Carlo Simulation 
 

In each step of the data production phase of this research, we included estimates 

of uncertainty with our model predictions in the form of coefficient of variation (standard 

http://www.python.org/�
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deviation divided by the mean).  For the poultry models, these were conducted using a 

bootstrap procedure (Prosser et al. 2011b) and for the waterfowl indices we used a 

Monte-Carlo approach.  We also examined the effects of resampling the waterfowl 

abundance inputs from 1 km to 30 km using a standard bilinear technique (de Smith et al. 

2007).  We mapped the differences by subtracting the 30 km grid cell values from the 1 

km values and symbolizing in units of: no change, change within 1 standard deviation of 

the mean, and change greater than 1 standard deviation of the mean.  

After the deterministic equations were set, we applied to these equations a 

quantitative risk analysis using Monte Carlo simulations to (1) incorporate uncertainty in 

the model predictions and (2) to develop a complimentary map of estimates of error on a 

spatial basis (Morgan and Henrion 1990, Kroese et al. 2010).  Uncertainty for the poultry 

variables, Pte and Paq , were described using a normal distribution (Table 5.3).  This was 

determined by fitting a random sample of poultry estimates across 25 bootstrapped layers 

for 100 spatial locations using the “fitdistrplus” package for R (R Core Development 

Team 2012). We used best estimates and minimum – maximum limits within triangular 

distributions for the remaining variables for which we had neither variability nor 

uncertainty measures (Table 5.3). We used the “mc2d” package written for R to perform 

the triangular and truncated normal distributions.  Each simulation was run for 10,000 

iterations to ensure model convergence (Supplemental Fig. S5.4) and we plotted tornado 

charts based on Spearman’s rank correlations between the model risk and input 

parameters to determine which variables were most influential to the model output.  
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Results 

Input Parameters 
 
 A total of ten input variables were created for the transmission risk models, six of 

which varied across the nearly ten million cell extent of China (Figure 5.2, Table 5.2) and 

four of which were model level coefficients (Table 5.2). General patterns for terrestrial 

and aquatic poultry were similar with highest densities in the east and south of China 

(Figure 5.2). Overall, terrestrial poultry (chickens) densities were higher than the aquatic 

species densities (379 versus 86 mean birds per km2), and although the two groups 

overlap in most places, terrestrial poultry were located in some regions such as the 

extreme west where aquatic poultry were not. The Cte and Bte variables were composite 

indicators of the potential of virus to flow in or out of terrestrial poultry farms. The Cte 

distribution was limited to discrete regions in northeastern China, as a function of the grid 

cells with highest chicken densities (Figure 5.2). The Bte distribution attempted to 

differentiate backyard from commercial poultry by splitting poultry densities into three 

sectors and applying individual equations to each. The resulting distribution showed 

highest levels in eastern-central China, mid-levels across the east, and low levels across 

the west (Figure 5.2). 

Waterfowl abundance maps were created as an interim step towards development 

of H5N1 prevalence indices.  Supplemental Fig. S5.5 illustrates differences in abundance, 

prevalence, coefficient of variation, and spatial distribution for two example species 

important in H5N1 transmission: the bar-headed goose (Anser indicus) and mallard (Anas 

platyrhynchos).  The cumulative waterfowl abundance model values ranged from zero to 

5.0 birds per cell for the breeding season and zero to 7.9 for the wintering season with 
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mean values of 0.07 and 0.08 across China (Supplemental Fig. S5.6).  Mean cumulative 

H5N1 prevalence rates were higher for the breeding versus wintering season (average of 

0.01 versus 0.006 EID50 across all grid cells of China), and maximum values were 0.32 

and 0.39, respectively.  Mean coefficient of variation was 0.19 and 0.11 for the breeding 

and wintering seasons.  Investigation of the effect of resampling the abundance and 

prevalence distributions from 1 to 30 km indicated greatest differences in the northeast 

for the breeding season and in the southeast for the wintering season (Supplemental Fig. 

S5.7).  The average difference across all grid cells was 0.155 and 0.152 for the breeding 

and wintering abundance indices, and 0.01 and 0.006, respectively for the prevalence 

indices. 

Risk Models 
 
 The first group of models (Level 1 and 2) was based on implementation of the 

deterministic equations at 1 km resolution across China.  Overlay models (Level 1) 

between poultry and wild waterfowl presence showed distinct patterns of transmission 

risk across China (Figure 5.3). In both the breeding and wintering seasons, dense 

concentrations of positive risk grid cells were found across much of southeastern China.  

The regions of the northeast and west of China showed more localized patterns of 

transmission risk, with wider extent for the breeding season than the wintering season.   

The spatial pattern was similar between equation 1 models (total poultry and wild birds) 

and equation 2 models (presence of one or both poultry groups in combination with wild 

waterfowl).  The equation 2 models also showed localized regions mainly in the west 

where only one poultry type (usually chickens) was present in combination with wild 

waterfowl (Figure 5.3, lower panel).    
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 Level 2 models incorporated H5N1 transmission factors into the equations, with 

one equation representing risk of disease spread from domestic to wild birds (Figure 

5.4a), and a second representing risk from wild to domestic birds (Figure 5.4b).  The 

distribution of grid cells of the Level 2 models having risk values greater than zero 

matched the distribution of transmission risk in the Level 1 models, however, the Level 2 

models also predicted the quantity of transmission risk within each cell.  We symbolized 

the Level 2 results (as well as Level 3) using quantiles, which has been shown to be a 

straight-forward and effective method for visualizing disease risk (Brewer and Pickle 

2002, Brewer 2006). Spatial patterns in the levels of disease risk between the two uni-

directional equations (3a and 3b) were similar across the broad scale of China, however, 

the level of risk was greater for the poultry to waterfowl models (equation 3a) by 

approximately two orders of magnitude (Table 5.4).  The output maps showed distinct 

spatial patterns between seasons.  Within the breeding season, highest levels of risk (in 

both directions) were found in localized patches in northeastern China as well as along 

the Yangtze River plain of south-central China.  For the wintering season, the higher 

levels of risk were confined to the south and east of China particularly along the major 

river basins. Within each set of equations, the winter models had higher means than the 

breeding season models by 46 and 53 percent, for equation 3aq and 3b, respectively.  

Predictions from the deterministic equations were summarized in Figures 5.3 and 5.4. 

 The Level 3 models incorporated estimates of uncertainty in the model equations 

and applied a spatial resolution of 30 km (Figure 5.5) using the same unidirectional 

equations (3a and 3b) as the deterministic equations in Levels 1 and 2 described above.  

A comparison of the means indicated higher risk for these versus the deterministic 
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models, and for the wintering season versus the breeding season.  The spatial patterns of 

risk in the Monte-Carlo models generally followed those of the deterministic equation 

models (Figure 5.4 and 5.5) although some difference was observed for the wintering 

models where higher risk predictions occurred in a portion of the northeast. In both 

seasons, the central region along the east coast also showed higher risk in the Monte-

Carlo versus deterministic models.   

 Patterns in uncertainty associated with the Monte-Carlo model predictions were 

similar across seasons and unidirectional equations on a broad scale.  The most uncertain 

areas of prediction were located in the western part of the country and the least uncertain 

areas were located in the south and east (Figure 5.5).  There was a 40 percent difference 

in the overall uncertainty measures between equations 3a and 3b, with the latter having 

higher coefficient of variation.  

 Investigation of model predictions for two important subregions of China for 

H5N1 transmission showed very different results between regions depending on the 

season.  Figure 5.6 illustrates low transmission risk for the Qinghai Lake (QHL) region 

during the winter season and high transmission potential for the Poyang Lake (PYL) 

region.  In contrast, inset (C) illustrates an increased pattern of risk in the QHL region 

during the breeding season.  

Sensitivity and Uncertainty 
 
 Our level of confidence varied widely among input parameters which we 

addressed in three ways: (1) by conducting a sensitivity analysis of high and low 

estimates to determine the effect the range of uncertainty had on model outputs, (2) by 

including matching estimates of coefficient of variation for each cell in our model results 
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(described above and in Figure 5.5), and (3) by determining which parameters had the 

most influence on the model results (using tornado graphs). The sensitivity analysis 

showed a wide range in parameter effect on the model results (Figure 5.7) with viral 

shedding and uptake rates having the highest effect followed by terrestrial biosecurity, 

waterfowl H5N1 prevalence, and contamination containment, in decreasing order. The 

effect of virus shedding rate and viral uptake rate on the model output resulted in a large 

percent difference (200 percent) between high and low estimates.  Sensitivity analysis for 

the cumulative waterfowl prevalence rates was based on high and low estimates of 

waterfowl populations during the breeding and wintering seasons, while prevalence rates 

for each species was fixed at a single value from the literature (most species had only one 

estimate, if any). Analysis showed a much higher percent difference in mean values for 

the breeding season in comparison to the wintering season (72 percent versus 22 percent). 

For the contamination containment parameter, we investigated two aspects: the threshold 

for determining cells considered to have a “secure” containment designation (3000, 5000, 

or 7000 Pte), and the scalar for the percent of the population contributing virus to the 

environment (0.25, 0.5, and 0.75). The threshold showed no difference in mean model 

output and the scalar showed a minor difference of four percent.  

 Using tornado graphs to plot the correlation of input variables with the model 

output, we were able to determine which variables contributed most to each model output 

(Figure 5.8).  For the poultry to wild transmission risk models (equation 3a), the 

contribution of input parameters in decreasing order were: terrestrial poultry, aquatic 

poultry, wild Anatidae waterfowl, and contamination containment.  For the wild to 

poultry transmission risk models (equation 3b), contributions of the input parameters 
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were similar: (in decreasing order) wild Anatidae waterfowl, terrestrial backyard poultry, 

and aquatic poultry.  The remaining variables (virus shedding rates per group and virus 

uptake rate) were not modeled for uncertainty and therefore were not included in the 

tornado plots. 

  

Discussion 

Model Summary and Interpretation 
 

The main objective of this study was to provide a systematic approach to 

modeling spatial and temporal patterns of disease transmission risk between poultry and 

wild waterfowl populations in China and to quantify the amount of uncertainty associated 

with our predictions. We employed an iterative approach to first model where wild and 

domestic birds are likely to co-occur (Level 1) and subsequently to incorporate H5N1 

specific parameters into the model (Level 2 and 3) so that the key relationships between 

the wild and domestic bird populations could be clearly observed. The models showed 

consistency in spatial and temporal patterns across the deterministic equations and 

between the deterministic and Monte-Carlo approaches. High risk hotspots during the 

wintering season were observed in the southern and eastern lowland regions of China. 

These areas have high poultry populations, particularly free-grazing ducks in association 

with rice farming, and are important wintering areas for many migratory waterfowl 

species. Hotspot regions of risk during the breeding season were observed in the 

northeast and mid-eastern regions of China. High risk hotspots during the breeding 

season were observed across a greater extent but in a more localized pattern in 

comparison to the winter risk models (Figure 5.3 and 5.4).  This difference in pattern can 
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be explained by examining the breeding waterfowl distributions (Figure 5.2).  The 

majority of waterfowl species in China tend to breed in the north and high-elevation 

western regions where wetland habitat is distributed in a patchier, more localized pattern 

than the extensive lowland wetlands and rice paddies of the southeast. Uncertainty 

measures from the Monte-Carlo simulations showed consistent and interesting patterns 

between seasons and uni-directional equations (Figure 5.5).  The highest predicted errors 

were located in the western regions and lowest in the southeast.  This pattern can be 

explained in part by the lower error variation for poultry densities in the southeast where 

the highest poultry densities occur (Prosser et al. 2011b), but also by the more localized 

and sparse distributions of waterfowl as described above. The results tell us that we can 

have higher confidence in our predictions of transmission risk in the eastern part of China 

compared to predictions made for the west.  It is important to note the difference in scale 

of risk between the two unidirectional equations (3a and 3b, Table 5.4).  Results from 

models describing transmission risk from poultry to waterfowl (3a) were three orders of 

magnitude higher than those from waterfowl to poultry (3b).  Concurrently, the 

coefficient of variation estimates were 40 percent higher for the 3b equations. The 

difference in magnitude of the risk predictions is expected as we hypothesize that the 

amount of virus flow from wild to domestic birds is less than the amount of flow from 

domestic to wild, and subsequently our confidence in predicting these values is lower. 

Returning to the effects of model inputs on the spatial distribution of risk output, 

we observe an interesting pattern in northeastern China during the wintering season, 

which is most observable in the Level 1 maps (Figure 5.3, top and bottom right panels).  

An artifact can be seen where a portion of the northeastern tip of China shows a densely 
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concentrated section of risk amongst an otherwise sparse region. This concentrated 

section is due to the presence of a single species, the greater white-fronted goose (Anser 

albifrons), that winters in parts of southern China but also winters in a subsection of the 

northeast (Supplemental Fig. S5.8). The portion of the wintering distribution in 

northeastern China is rare among waterfowl species, and appears especially concentrated 

due to use of agricultural fields which tend to have denser distribution than natural 

wetlands.  The artifact remains to a lesser degree in the Level 2 models that use the 

cumulative H5N1 prevalence estimates for the waterfowl parameter (Figure 5.4, top and 

bottom right panels). Prevalence of the greater white-fronted goose was reported at a rate 

of 2.2 percent (low in comparison to some other species) and the model output shows a 

low but measurable risk in this region.  In the Monte-Carlo model, the same region shows 

transmission risk, but without a discernable edge between risk and non-risk areas, due to 

averaging across the simulation runs.  The artifact is most observable in the Level 1 risk 

models because input values from the poultry and wild bird populations are given equal 

weight (as presence or absence) and not a quantitative value.  We illustrated the above 

example to explain the response of the varying levels of models to different parameter 

factors within.   

An interesting pattern was also observed in the uncertainty maps developed for 

the waterfowl abundance models.  Regions with high mean CV’s tended to be 

concentrated in the southeastern part of China, for both the breeding and wintering 

models (Supplemental Fig. S5.6, lower panel). This pattern was expected for the 

wintering species, since the majority of China’s wintering Anatidae population isfound in 

this region; however, it was a surprising result for the breeding species which are 
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generally located in the north and high elevation western parts of China.  In the case of 

the breeding models, CV’s were high (> 0.5) for two groups of waterfowl: (1) uncommon 

breeders within China including two swan species (mute and whooper swans: Cygnus 

olor and C. cygnus), and diving ducks (pochards, goldeneyes, and mergansers: 

Rhodonessa, Aythya, Bucephala, and Mergus spp.), and (2) two tropical breeding duck 

species (lesser whistling duck and cotton-pygmy goose: Dendrocygna javanica and 

Nettapus coromandelianus). The concentration of high CV values in southeastern China 

(Figure 5.4, bottom left panel) was driven by the tropical species which tend to have wide 

distributions and large confidence intervals surrounding the population estimates.  As 

expected, the mean CV (across all grid cells of China) was higher for the breeding season 

than the wintering season because of the associated less-certain population estimates 

(Table 5.1).   Including a measure of uncertainty in the abundance models gives us a 

mechanism to address the species-level differences in confidence in population estimates.  

Sensitivity Analysies 
 

The sensitivity analysis (Figure 5.7) was conducted on the deterministic equations 

to illustrate how the model results would change when varying input values for a given 

parameter.  We observed a wide range in effect across the ten input parameters with virus 

shedding rate and virus uptake rate having the largest (200%) difference in model results. 

The virus shedding and uptake parameters were obtained from the literature (Table 5.2) 

and the rates we compiled were either similar (in the case of viral shedding rates) or taken 

directly (in the case of the viral uptake rate: (Roche et al. 2009)) from those used in 

existing SIR (susceptible, infected, recovered) disease transmission models (Liu et al. 

2008, Roche et al. 2009, Rohani et al. 2009). The range between high and low inputs 
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spanned from four to ten orders of magnitude (Table 5.2), which explains the large effect 

on sensitivity.  Since the range in inputs had such an overwhelming effect on model 

outputs, and they were directly taken from the literature, we chose to keep these rates 

fixed in the Monte-Carlo models so we could more clearly assess the effects of our 

modeled input parameters (wild bird and poultry distributions, and biosecurity and 

contaminant containment parameters).  

Sensitivity results for the remaining variables ranged from 104 to zero percent.  

The biosecurity term was designed to reduce the total terrestrial population to an estimate 

of the density of backyard poultry for use in equation 3b.  The equation was complex and 

one we had the least confidence in.  We therefore tested the overall effect of removing 

the term (Pte * Bte) completely from the equation, which resulted in a 104 and 100 percent 

difference for the breeding and wintering seasons, respectively.  We conclude that the 

term has a significant effect on the model results, and until a better estimate can be 

derived, we allow the reader to decide which set of models to use (a set of models with 

the (Pte * Bte) term removed is illustrated in Supplemental Fig. S5.9). Sensitivity 

estimates for the waterfowl H5N1 prevalence parameter had a high effect on model 

output for the breeding season (72%) and moderate for the wintering season models 

(22%).  This difference can be attributed to the lower confidence (high-low estimates) 

surrounding the Anatidae breeding population figures versus wintering figures (Table 

5.1).  The final variable, Cte (contaminant containment), showed very low differences in 

the sensitivity analysis, ranging from zero to four percent.  This was due to the low 

number of grid cells that the scalar was applied to (0.01 to 2 percent of the 10 million 

grid cells of China).  Finally, we also tested the effect of removing the Cte term entirely, 
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under the hypothesis that even the most biosecure farms might not prohibit virus from 

leaving their farms (during field interviews we learned that even large scale farms sell 

chicken feces to other farmers for fertilizer or fish food). The analysis showed little effect 

on the mean output (0.2 percent for breeding and wintering seasons). 

Tornado Plots 
 

We also assessed the relative contribution of each parameter to the model output 

for the Monte-Carlo simulations (Figure 5.8). The tornado plots show us that for the 

poultry to wild transmission models (equation 3a), the domestic birds dominate the 

equation.  This is an interesting observation that fits with the directionality of the 

equation whereby virus flows from domestic bird to wild bird; also that the effect of the 

waterfowl densities is tempered by applying prevalence rates for each species.  In 

equation 3b (wild to domestic transmission), of the three populations, waterfowl 

contributes the most to the model output, but terrestrial and aquatic poultry have only 

slightly lower correlations.  With similar reasoning, we expect wild birds to drive the 

equation in this direction, and we observe that the contribution is tempered by the 

prevalence rates that were applied to each waterfowl species. 

Qinghai and Poyang Lake Focal Regions 
 

Examination of our two focal areas, Qinghai Lake (QHL) and Poyang Lake 

(PYL) indicated contrasting seasonal patterns between the two regions (Figure 5.5). 

During the wintering season, risk was high in the PYL region and almost non-existent in 

the QHL region. The differences were driven by the addition of hundreds of thousands of 

migratory waterfowl that return to the PYL region in the winter and reside amongst some 
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of the highest poultry densities in the country.  In the QHL region, waterfowl migrate 

away from the cold and arid plateau for the winter months, plus risk is lower there year-

round due to the low poultry densities in the area to begin with.  The risk for QHL 

changes during the breeding season (Figure 5.6c) with the return of tens of thousands of 

waterfowl that nest in the region.  The differences in risk could not be predicted without 

explicitly incorporating the ecology of the wild bird populations, which is one of the 

main strengths of our approach. 

Utility and Limits of the Models 
 

We explicitly took a multi-level approach towards modeling transmission risk 

between wild and domestic waterfowl in China.  The Level 1 and 2 deterministic models 

allow us to observe, at a fine resolution, the patterns of wild and domestic waterfowl 

distributions independent of the effects of incorporating H5N1 risk factors.  While the 

Level 1 models are simplistic and not designed to quantify different levels of H5N1 

transmission risk, they provide value as a coarse filter to targeting areas where wild and 

domestic waterfowl are most likely to co-occur.  This type of information alone has broad 

application towards disease and conservation questions that go well beyond H5N1, and 

we suspect that they would be useful to a wide range of practitioners including wildlife 

managers, researchers, and disease specialists alike.  

The Level 2 models were used to define the H5N1 transmission risk equations for 

use in the Monte-Carlo simulations, as well as for observing patterns at a high spatial 

resolution (1 km).  As the number of simulations increase in a Monte-Carlo analysis, the 

mean values should converge towards results of the deterministic models (Kroese et al. 

2010).  We carefully investigated mean output for the models as well as for each input 
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variable between the deterministic and Monte-Carlo simulations (Burmaster and 

Anderson 1994).   First, the mean values were nearly identical for the 1 km and 30 km 

deterministic models, indicating a lack of bias in the resampling process (Supplemental 

Table S5.1).  Second, we noted higher means for the input parameters that were modeled 

using the triangular distribution of the Monte-Carlo models (Supplemental Table S5.1, 

Section B). These models initially used a global (fixed) minimum and maximum value 

for all cells within the China grid which is less computationally intensive but has the 

effect of increasing the mean values.  We then reran the models using individual 

minimum and maximum values for each cell (Supplemental Fig. S5.10) which reduced 

the mean values to match the 30 km deterministic models; however, because we could 

not have negative values for input parameters such as waterfowl abundance and 

prevalence, we truncated the triangular distributions to fit within each parameter’s input 

range (Table 5.2).  Truncating the distributions increased the mean values for each 

parameter (Supplemental Table S5.1, Section B), however, the values here were closer to 

the 30 km deterministic models than the models using a global min/max, and this is the 

approach used in the final models reported (Figure 5.5). 

We recommend use of the Level 3 models for informing surveillance and 

prevention measures against H5N1 threats as this set is modeled at a coarser scale 

targeted at the county or district level which is more realistic for predicting disease risk 

(as opposed to the Level 2, 1 km resolution models).  More importantly, instead of basing 

models on a single point estimate at each grid cell for each input parameter, the Monte-

Carlo models randomly sample inputs for a given cell using the assigned distribution for 

each parameter, which allows estimates of uncertainty to be incorporated within the 
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model results.  Thus, within each grid cell of the output map, a probabilistic estimate of 

risk is given.  In addition, an accompanying map of the coefficient of variation across all 

grid cells informs the user of which regions have stable results and which regions could 

use better input data. On a broad scale, the Level 3 models can be used to help target 

focal areas for improving surveillance and prevention efforts particularly for the question 

of transmission between wild and domestic birds.  For example, health experts and 

wildlife officials may both be interested in using the poultry to wild risk models (Figure 

5.5a) to identify regions where wild migratory birds are at higher risk of exposure to new 

and evolving virus strains from poultry.  Poultry farmers and health officials alike may 

use the wild to poultry risk models to identify areas where farming practices or 

vaccination programs should be enhanced to protect poultry from exposure to wild birds 

(albeit as the models show, this route may be less likely).  As the models take a combined 

density-dependent and environmental transmission approach, the results may also help 

target environmental surveillance programs.  The models are not meant to be used as a 

final dictation of transmission risk, rather to be a guiding tool for practitioners from 

multiple disciplines to join together on-the-ground to address questions and issues related 

to disease transmission between wild and domestic birds. 

Finally, we have put considerable thought towards how the models could be 

improved and validated.  Our approach towards modeling transmission risk took a spatial 

analysis approach as opposed to a data-driven statistical approach.  For example, a 

number of studies have identified drivers of H5N1 transmission by drawing statistical 

relationships between outbreak events and environmental or anthropogenic risk factors 

(Pfeiffer et al. 2007, Fang et al. 2008, Gilbert et al. 2008, Tiensin et al. 2009, Martin et al. 
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2011, Gilbert and Pfeiffer 2012. In Press).  We considered using avian surveillance and 

outbreak data to train and validate our models, and indeed, a strong match exists between 

outbreak locations and our predicted risk areas.  However, use of the outbreak data in this 

case would be misleading since we cannot determine the source of infection (be it wild 

birds, poultry, or other) for each outbreak case.  The ideal training and validation data set 

would consist of geographic and temporal data on infections in wild and domestic birds 

including information on the type of host that caused the infection.  Deriving the 

infecting population from the virus isolates is the difficult part - even the use of 

phylogenetic analyses may not definitively answer this question as intermediary 

transmissions may occur between outbreak events.  Thus, we use a forward course by 

understanding the spatial and temporal relationships between the wild and domestic 

waterfowl distributions and developing the risk models based on this concept.   

Conclusions 
 
 Here we present a structured approach to predicting transmission risk between 

domestic poultry and wild waterfowl in China.  Our approach allows us to separate the 

spatial relationships between poultry and waterfowl from the disease-specific factors to 

better understand the contributions of each to transmission risk.  We explicitly 

incorporate uncertainty measures with our risk predictions and conduct sensitivity 

analyses to understand the effects of uncertainty on the model outputs.  It is the first 

analysis of its kind and one of the few that focuses specifically on interactions between 

the wild and domestic bird populations, providing a unique contribution to our growing 

knowledge on the topic of wild birds and H5N1 transmission. 



  

      

 
Tables 
 
Table 5.1. Species name, code, population estimates, and H5N1 prevalence rates for China’s 42 Anatidae waterfowl species. Mcode 
refers to the reference map code in MacKinnon and Phillipps (2000). Population estimates were based on aCao et al. 2008 and 
bDelaney and Scott 2006. Prevalence rates were taken from cKou et al. (2009); daverage of Olsen et al. (2006), Munster et al. (2007), 
Gaidet et al. (2007b), and Hesterberg (2009); and eaverage for swans, geese, or ducks from Kou et al. (2009). 
 

Mcode Common Name Scientific Name 
Winter 

Population 
Winter 
Low 

Winter 
High 

Summer 
Populationa 

Summer 
Lowa 

Summer 
Higha 

H5N1 
Prevalance 

Rate 

M064 Lesser Whistling Duck Dendrocygna javanica 1,500a 1,000 2,000 15,000 5,000 25,000 5.3e 

M066 Mute Swan Cygnus olor 0 0 0 650 300 1,000 3.4c 

M067 Whooper Swan Cygnus cygnus 5,900b 5,015 6,785 300 100 500 4.0d 

M068 Tundra Swan Cygnus columbianus 81,000b 68,850 93,150 0 0 0 2.8d 

M069 Swan Goose Anser cygnoides 78000b 66,300 89,700 40,000 30,000 50,000 1.4e 

M070 Bean Goose Anser fabalis 150,000b 127,500 172,500 0 0 0 0.0d 

M071 
Greater White-fronted 
Goose Anser albifrons 33,000b 28,050 37,950 0 0 0 2.2c 

M072 
Lesser White-fronted 
Goose Anser erythropus 21,000b 17,850 24,150 0 0 0 2.1d 

M073 Greylag Goose Anser anser 40,000a 15,000 65,000 40,000 15,000 65,000 0.8c 

M074 Bar-headed Goose Anser indicus 15,000a 10,000 20,000 56,000 52,000 60,000 2.3d 

M075 Snow Goose Anser caerulescens 50a 25 75 0 0 0 1.4e 

M077 Brent Goose Branta bernicla 0 0 0 0 0 0 1.0c 

M079 Ruddy Shelduck Tadorna ferruginea 15,000a 10,000 20,000 19,000 13,000 25,000 2.2d 

M081 Common Shelduck Tadorna tadorna 18,000b 15,300 20,700 12,000 9,000 15,000 3.6d 

M083 Cotton Pygmy Goose Nettapus coromandelianus 200a 100 300 15,000 5,000 25,000 5.3e 

M084 Mandarin Duck Aix galericulata 20,000a 10,000 30,000 6,000 4,000 8,000 5.3e 



  

      

Mcode Common Name Scientific Name 
Winter 

Population 
Winter 
Low 

Winter 
High 

Summer 
Populationa 

Summer 
Lowa 

Summer 
Higha 

H5N1 
Prevalance 

Rate 

M085 Gadwall Anas strepera  7,700b 6,545 8,855 14,000 10,000 18,000 2.1d 

M086 Falcated Duck Anas falcate 78,000b 66,300 89,700 17,000 10,000 24,000 5.3e 

M087 Eurasian Wigeon Anas penelope 50,000b 42,500 57,500 37,000 25,000 50,000 1.9c 

M089 Mallard Anas platyrhynchos 73,000b 62,050 83,950 575,000 375,000 750,000 11.2d 

M090 Spot-billed Duck Anas poecilorhyncha 100,000b 85,000 115,000 450,000 300,000 600,000 3.7d 

M092 Northern Shoveler Anas clypeata 27,000b 22,950 31,050 40,000 30,000 50,000 10.2c 

M093 Northern Pintail Anas acuta 46000b 39,100 52,900 2,000 1,000 3,000 9.8c 

M094 Garganey Anas querquedula 50000a 30,000 70,000 30,000 20,000 40,000 5.3e 

M095 Baikal Teal Anas formosa 91,000b 77,350 104,650 0 0 0 5.3e 

M096 Common Teal Anas crecca 146,000b 124,100 167,900 80,000 60,000 100,000 3.1c 

M097 Marbled Duck Marmaronetta angustirostris 0 0 0 1,500 100 2,900 5.0e 

M098 Red-crested Pochard Rhodonessa rufina 0 0 0 1,000 500 1,500 2.9c 

M099 Common Pochard Aythya ferina 18,000b 15,300 20,700 500 100 900 5.0e 

M101 Ferruginous Pochard Aythya nyroca 5,000a 2,000 8,000 5,000 2,000 8,000 5.0e 

M102 Baer's Pochard Aythya baeri 850b 723 978 1,500 1,000 2,000 5.0e 

M103 Tufted Duck Aythya fuligula 11,000b 9,350 12,650 1,000 500 1,500 7.1d 

M104 Greater Scaup Aythya marila 80,000a 60,000 100,000 0 0 0 5.0e 

M105 Steller's Eider Polysticta stelleri 0 0 0 0 0 0 5.0e 

M107 Long-tailed Duck Clangula hyemalis 30,000a 20,000 40,000 0 0 0 5.0e 

M108 Black Scoter Melanitta nigra 40,000a 20,000 60,000 0 0 0 5.0e 

M109 White-winged Scoter Melanitta fusca 40,000a 20,000 60,000 0 0 0 5.0e 

M110 Common Goldeneye Bucephala clangula 20,000a 10,000 30,000 1,000 500 1,500 5.0e 

M111 Smew Mergellus albellus 15,000b 12,750 17,250 200 100 300 5.0e 



  

      

Mcode Common Name Scientific Name 
Winter 

Population 
Winter 
Low 

Winter 
High 

Summer 
Populationa 

Summer 
Lowa 

Summer 
Higha 

H5N1 
Prevalance 

Rate 

M112 Red-breasted Merganser Mergus serrator 3,500a 2,000 5,000 200 100 300 5.0e 

M113 Scaly-sided Merganser Mergus squamatus 200a 100 300 100 50 150 5.0e 

M114 Common Merganser Mergus merganser 29,000b 24,650 33,350 10,000 7,000 13,000 5.0e 
 



  

      

 
Table 5.2. Parameters of 1 km resolution transmission risk equations including the range of values, approach for sensitivity analyses, 
and reference for each.  
Parameter Description Value Range 

(Mean, StDev) 
Sensitivity 
Analysis 

Notes 

Pte Terrestrial poultry density 0 to 9418  
(379.4, 745.7) 
Chickens/km2 

Fixed Chicken densities for China (Prosser et al. 2011b) 

Paq Aquatic poultry density 0 to 2796 
(86.2, 164.7) 

Ducks and geese/km2 

Fixed Duck and goose densities for China (Prosser et al. 2011b) 

Wpr  
Waterfowl Prevalence index, 

breeding: Wprbr  
 

Waterfowl Prevalence index, winter: 
Wprwi  

 

 
Wprbr: 0 to 0.32 

 (0.01, 0.04) 
 

Wprwi: 0 to 0.39 
 (0.006, 0.025) 

 
Low/High 

 
 

Low/High 

Distributions from (Prosser et al. 2012 In Prep.) 
 

Population estimates from (Delany and Scott 2006, Cao et al. 
2008) 

 
Prevalence rates from (Olsen et al. 2006, Gaidet et al. 2007b, 
Munster et al. 2007, Hesterberg et al. 2009, Kou et al. 2009) 

Cte Contaminant containtment, terrestrial 
poultry 

(Biosecure threshold Pte = 5000) 

Biosecure=0.75 and 
0.25 

Non-biosecure=1 

Low/High Biosecure threshold of 5000 chickens per km2. 
Reduction of population by 0.25 or 0.75 given biosecure 

designation (Fig. S5.2) 

Bte Biosecurity, terrestrial poultry 
thresholds:  

(a) Pte ≥ 50: Pbackyard = Pte*1.0 
(b) 50 < Pte  ≤ 1000, Pbackyard: 

Pte*0.5 
(c) Pte > 1000, Pbackyard = 

1000  

0 to 1000 Low/High Tri-part equation (Fig. S5.3): 
(a) At densities ≤ 50, 100% of population is backyard 

poultry 
(b) From 50 to 1000, half are backyard poultry 
(c) At greater than 1000, backyard poultry is limited to 

1000 

Vte Viral shedding rate, terrestrial poultry 101.4 and 109.8 EID50 Low/High Viral shedding rates per individual per day from (Shortridge et al. 
1998, Yu et al. 2007, Jeong et al. 2009)  

Vaq Viral shedding rate, aquatic poultry 101 and 105.7 EID50 Low/High Viral shedding rates per individual per day from (Perkins and 
Swayne 2002a, Chen et al. 2004, Sturm-Ramirez et al. 2004, 

Sturm-Ramirez et al. 2005, Phuong et al. 2011) 



  

      

Vwf Viral shedding rate, wild waterfowl 102.5 and 106.5 EID50  Low/High Viral shedding rates per individual per day from (Brown et al. 
2008) 

U Viral uptake= Consumption rate of 
virus in the environment / minimum 

load for infection 

 
 (10-15

 / (104.7 to 101.8) 
EID50) 

Low/High Consumption rate of virus in environment 10-15 (Liu et al. 2008) 
Minimum viral load of 104.7 EID50 (and 101.8 EID50) .to initiate 

infection with low pathogenic AIV (Lu and Castro 2004, Ito et al. 
1995, from Roche et al. 2009) 

 



  

      

 
 
Table 5.3. Parameter descriptions, value ranges, and Monte Carlo distributions used for the 30 km resolution uncertainty models. 
Parameters of truncated normal distribution are mean and standard deviation. Parameters of the triangular distribution are minimum, 
best estimate, and maximum. 
 

Parameter Description Value Range Distribution Level 
Pte Terrestrial poultry density 

(chickens) 
0 to 5871  

Chickens/km2 
Truncated 

normal 
Grid cell 

Paq Aquatic poultry density  
(ducks and geese) 

0 to 2796 
Ducks and geese/km2 

Truncated 
normal 

Grid cell 

Wpr H5N1 prevalence index 
 

Breeding Season: Wprbr  
Wintering Season: Wprwi  

 

 
Wprbr 0 to 0.29 
Wprwi 0 to 0.39 

 

 
Triangular 

Grid cell 

Cte Contaminant containment, terrestrial 
poultry 

 

0.5 to 1 Triangular Grid cell 

Bte Biosecurity, terrestrial poultry 
(for MC use pte*bte term) 

  

0 to 1000 Triangular Grid cell 

Vte Viral shedding rate, terrestrial 
poultry 

100, 109.8, 106.8 EID50
a
 Triangular Model 

Vaq Viral shedding rate, aquatic poultry 0, 106.5, 102.98 EID50
a Triangular Model 

Vwf Viral shedding rate, waterfowl 102.5, 106.5, 104.77 
EID50

a 
Triangular Model 

U Viral uptake: 
Consumption rate of virus in the 
environment / minimum load for 

infection 

 
 1.58e-17, 1.99e-20, 

1.99e-20 EID50
a
 

Triangular Model 

a Minimum, maximum, and best estimate for the model-level triangular distribution. Best estimate for V terms are mean shedding rates. Best estimate for U term 
takes a conservative value of the higher estimate for minimum load for infection. See Supplemental Table S5.2 for estimates and references. 



  

      

 
 
 
Table 5.4. Differences in mean values across all cells for two modeling approaches (Level 2 and 3) and four transmission scenarios. 
 

Model 
Equation 3a 

Breeding Season 
Equation 3a 

Wintering Season 

Equation 3b 
Breeding 
Season 

Equation 3b 
Wintering Season 

Level 2 (deterministic) 3.82E-10 7.13E-10 1.48E-13 3.13E-13 

Level 3 (Monte-Carlo) 1.18E-09 1.66E-09 6.03E-13 8.39E-13 

Coefficient of Variation 144 147 219 223 
 



  

      

 
 
Figures 
 
Figure 5.1. Three levels of spatial models implemented for assessing H5N1 transmission risk between wild and domestic birds in 
China.  The deterministic Level 1 and 2 models were developed to refine the transmission equations.  Level 1 models are overlay 
models that predict where wild and domestic birds may come in contact.  Level 2 models incorporate uni-directional equations for 
H5N1 transmission risk between poultry and wild birds. Level 3 models incorporate uncertainty using Monte-Carlo simulations at 
30km resolution, the average county size of China and a scale deemed more appropriate towards risk modeling.  
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Figure 5.2. Input data for models of transmission risk between domestic  poultry and wild 
Anatidae waterfowl for China at 1 km resolution.  Wprbr  and Wprwi are cumulative H5N1 
prevalence for Anatidae species during the breeding and wintering seasons, respectively;  
Pte  and Paq are terrestrial and aquatic poultry densities, respectively, Cte is the 
contamination containment rate for terrestrial poultry, and Bte is the biosecurity rate for 
terrestrial poultry. The remaining terms (Vte, Vaq, Vwf, and U) are model level 
coefficients where all grid cells have the same value (see Table 5.1 and Methods).  



  

 

 
 
 
Figure 5.3. Highly pathogenic H5N1 transmission risk between domestic poultry and wild Anatidae waterfowl at 1 km resolution for 
China. Level 1 models include (A) grid cells where domestic poultry and wild Anatidae are present, Trisk1 = [P01] * [W01]; and (B) grid 
cells where both terrestrial and aquatic poultry are present in combination with wild Anatidae (red) versus where only one poultry 
group (blue) shares a grid cell with wild Anatidae, Trisk2=[Pt01 + Pa01] * [W01]. Pt01 = presence of terrestrial poultry, Pa01= presence of 
aquatic poultry, and W01 = presence of wild Anatidae waterfowl.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

 
 
Figure 5.4. Highly pathogenic H5N1 transmission risk between domestic poultry and wild Anatidae waterfowl at 1 km resolution for 
China. Level 2 models include H5N1-specific transmission factors and are unidirectional with (A) representing transmission risk from 
domestic to wild birds, and (B) from wild birds to domestic. Equation 3a: TPtoW =([Pte * Cte* Vte] + [Paq * Vaq]) * ([Wpr* U]) and 3b: 
TWtoP = ([Wpr * Vwf]) * ([Pte * Bte] + [Paq]) * U), where Pte and Paq, are terrestrial and aquatic poultry density, Cteis the terrestrial poultry 
contamination containment rate, Vte and Vaq are terrestrial and aquatic poultry virus shedding rates, Wpr is the wild Anatidae 
cumulative H5N1 prevalence index, and U is the viral uptake rate.  Maps are symbolized using quantiles.  

 



  

 

 
 
Figure 5.5. H5N1 transmission risk between wild and domestic birds in China and associated uncertainty predictions. Spatial 
resolution is 30 km. Risk maps represented as mean and coefficient of variation (left and right in each pair of maps, respectively).  (A) 
Top panel represents transmission risk from poultry to wild waterfowl; (B)bottom panel represents transmission risk from wild 
waterfowl to poultry.  Maps are symbolized using quantiles.  Grey boxes correspond to the Qinghai Lake and Poyang Lake Regions 
outlined in Fig.5.6.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

 
 
Figure 5.6. Comparison of model outputs for Qinghai Lake (QHL) and Poyang Lake (PYL) subregions for (A) 1 km deterministic and 
(B) 30 km Monte-Carlo model outputs using equation 3a (poultry to wild transmission risk) and winter season.  Insets (C) and (D) 
show comparisons for the breeding season 3b (wild to poultry transmission).  
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Figure 5.7. Percent difference scores for each variable in a sensitivity analysis for 
transmission risk between domestic and wild waterfowl in China. High-low estimates 
were tested for each variable while keeping all others in the equation constant.  Equation 
3a: TPtoW =([Pte * Cte* Vte] + [Paq * Vaq]) * ([Wpr* U]) and 3b: TWtoP = ([Wpr * Vwf]) * ([Pte 
* Bte] + [Paq]) * U), where Pte and Paq, are terrestrial and aquatic poultry density, Cteis the 
terrestrial poultry contamination containment rate, Vte and Vaq are terrestrial and aquatic 
poultry virus shedding rates, Wpr is the wild Anatidae cumulative H5N1 prevalence 
index, and U is the viral uptake rate.  Cte and Bte were also tested for the effect of 
removing each completely from the model.  
 

 
 
 
 



  

      

 
 
Figure 5.8. Tornado plots representing correlation between transmission risk and model inputs for (A) Equation 3a breeding 
season, (B) Equation 3a wintering season, (C) Equation 3b breeding season, and (D) Equation 3b wintering season. Equation 
3a: TPtoW =([Pte * Cte* Vte] + [Paq * Vaq]) * ([Wpr* U]) and 3b: TWtoP = ([Wpr * Vwf]) * ([Pte * Bte] + [Paq]) * U), where Pte and Paq, 
are terrestrial and aquatic poultry density, Cteis the terrestrial poultry contamination containment rate, Vte and Vaq are terrestrial 
and aquatic poultry virus shedding rates, Wpr is the wild Anatidae cumulative H5N1 prevalence index, and U is the viral uptake 
rate.  Only Monte-Carlo variables are plotted in the tornado graphs.  
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Supplemental Materials 
 

Table S5.1. Comparisons of mean model outputs for 1 km deterministic, 30 km 
deterministic, and 30 km Monte-Carlo models of H5N1 transmission risk between wild 
and domestic birds in China.  Section A notes values for parameters using truncated 
normal distributions for the Monte-Carlo simulations.  Section B notes values for 
parameters using triangular distributions for the Monte-Carlo simulations. *The 30 km 
Monte-Carlo Individual Min/Max Truncated values were used in the final models, and 
were closer to the 30 km deterministic means than the models that used a global min/max 
value for the distributions. 
 

A. 
Parameter 

1 km 
Deterministic

30 km 
Deterministic

30 km       
Monte-Carlo 

Truncated Normal Distributions 
Pte 379 378 379 
Paq 86 86 86 

B. Parameter 
1 km 

Deterministic
30 km 

Deterministic

30 km       
Monte-Carlo 

Global 
Min/Max 

30 km           
Monte-Carlo 

Individual 
Min/Max 

Truncated* 
Triangular Distributions 
Wprbr 0.01 0.01 0.13 0.03 
Wprwi 0.006 0.006 0.099 0.037 
Pte*Bte 183 184 395 227 
Cte 1.00 1.00 0.83 0.83 
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Table S5.2. Highly pathogenic avian influenza H5N1 viral shedding and uptake rates for 
poultry and wild waterfowl.  
 
Parameter Tracheal / 

Oropharyngeal 
Cloacal Units Reference Values used in Uncertainty Model 

Vte 106.45  105.95  EID50 
Log10/ml 

Forrest et al. 
2010 

Triangular parametersa:  

Min=101 

Max=109.8 

Best Estimate=106.8 EID50
 

 

 103.6  101.4  TCID50 
Log10/ml 

Jeong et al. 2009 

  106.2 to 109.8  EID50 
Log10/ml 

Yu et al. 2007 

 104.5  103.5  EID50 
Log10/ml 

Shortridge et al. 
1998 

Vaq 100.2 to 106 101.5 to 104.5 TCID50 
Log10/ml 

Phuong et al. 
2011 

Triangular parametersb:  

Min=100 

Max=106.5 

Best Estimate=103.7 EID50
 

 

 100 to 106.5 100 to 104.75 EID50 
Log10/ml 

Sturm-Ramirez 
et al. 2005 

 104.0 to 106.0 103.5 to 104.0 EID50 
Log10/ml 

Sturm-Ramirez 
et al. 2004 

 102.0 to 104.3 102.0 to 104.3 EID50 
Log10/ml 

Chen et al. 2004 

 101.6  100 EID50 
Log10/ml 

Perkins and 
Swayne 2002 

      

Vwf 105.10 to 106.46 102.5 to 104.9 EID50 
Log10/ml 

Brown et al. 
2008 

Triangular parametersc:  

Min=102.5 

Max=106.5 

Best Estimate=104.77 EID50
 

 

 101.75 to 102.63 0 to 101.75 TCID50 
Log10/ml 

Kalthoff et al. 
2008 

 101 to 103 0 to 106.2 TCID50 
Log10/ml 

Keawcharoen et 
al. 2008 

 27.4 to 44.6 31.6 to 44.6 CT value Kwon et al. 2010 

U   

 (10-15
 / 

104.7EID50) 

   

 (10-15
 / 104.7EID50) 

aVte  triangular parameters derived from all studies including isolates from 2003 or later and units in EID50 (Forrest et 
al. 2010, Yu et al. 2007). Best estimate taken as mean shedding rate across the two references.  

bVaq  triangular parameters derived from all studies including isolates from 2003 or later (Phuong et al. 2011, Sturm-
Ramirez 2004 and 2005, Chen et al. 2004). Best estimate taken as mean shedding rate of the oropharyngeal and 
cloacal samples from each reference.  

cVwf  triangular parameters derived from Brown et al. 2008 because other studies in the table used units other than 
EID50. Best estimate taken as mean shedding rate of the six challenged waterfowl species (oropharyngeal and cloacal 
samples).  
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Figure S5.1. Key steps (top panel) and three main products: (A) presence-absence 
distribution maps, (B) abundance maps, and (C) prevalence maps for China’s 42 species 
of Anatidae waterfowl. Breeding and wintering season maps were produced for each 
product. Spatial resolution of original grid maps is 1 km and abundance and prevalence 
maps were resampled to 30 km resolution for the disease models. 



 
 

175 
 
 

Figure S5.2.  Relationship between Cte scalar and terrestrial poultry (Pte) term for 
deterministic equation 3a  (H5N1 transmission risk from poultry to wild waterfowl).  
Biosecurity threshold (contaminent containment) is drawn at Pte = 5000.  Sensitivity 
analysis include thresholds at 3000 and 5000.  The Cte scalar is 0.5; high and low scalars 
for the sensitivity analysis are 0.75 and 0.25.  An additional sensitivity analysis also test 
the effect of removing the Pte * Cte term form the equation.  
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Figure S5.3.  Relationship between Bte scalar and terrestrial poultry (Pte) term for 
deterministic equation 3b (H5N1 transmission risk from wild waterfowl to poultry).  Pte 
is grouped into three sections where  (a) Pte ≤  50,  (b) 50 <  Pte  < 1000, and  (c) Pte  ≥1 
000.  Bte scalars are (a) Bte = 1, (b) Bte  = 0.5, and (c) Bte = a constant where Pte * Bte = 
1000.  The sensitivity analysis for the Bte  term tested the effect of removing it form the 
equation.  
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Figure S5.4. Monte Carlo convergence tests for five model variables (a-e) comparing 
LHS and random sampling for 10, 100, 500, 1000, and 10000 simulations. Three MC 
runs were conducted for each scenario (combination of sampling type and number of 
simulations). Data is for 30km resolution variables.  
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Figure S5.5. Species level distribution maps for two example waterfowl species (bar-
headed goose and mallard). Upper panels represent breeding season, lower panels 
represent wintering season. Legends represent values for four separate outputs: (1) 
presence-absence distributions, (2) abundance estimates (birds per cell), (3) prevalence 
(cumulative sum of species abundances multiplied by species prevalence rate), and (4) 
coefficient of variation (standard deviation divided by mean) for the abundance estimate.  
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Figure S5.6.  Abundance, prevalence index and coefficient of variation for China’s 
Anatidae waterfowl species based on habitat modeling. Left panel represents breeding 
season (approximately April through July); right panel represents wintering season 
(approximately November through March). Coarse transitions in predictions are a result 
of species range boundaries (eg. convex pattern in southeastern China in the breeding 
season panel).  Coefficient of variation (standard deviation divided by mean) calculated 
for abundance. 



 
 

180 
 
 

    

 
Figure S5.7. Map difference between 1 km and 30 km resolution maps visualized in 
standard deviations from the mean for waterfowl abundance (top panel) and H5N1 
prevalence estimates. Left panel is breeding season, right panel is wintering season.  
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Figure S5.8. Wintering season distribution maps for greater white-fronted goose (Anser 
albifrons) in China. Discussion in text regarding the uncommon subsection of wintering 
range in the northeast. 
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Figure S5.9. Risk output for 1 km deterministic equation 3b with the (Pte * Bte) term 
removed (see Figure 3a in main text for comparison).  The resulting formula is: TWtoP = 
(Wpr * Vwf) * (Paq * U), which predicts the risk of virus transmission from wild Anatidae 
waterfowl to domestic aquatic poultry (and not including terrestrial 
poultry).
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Figure S5.10.  Illustrating the difference between using (A) global (fixed) minimum and 
maximum value versus (b) individual values for minimum and maximum parameters for 
the triangular distribution of the Monte-Carlo simulations.  Parameters of a triangular 
distribution are: minimum, best estimate, and maximum values (represented visually by 
the left point, apex, and right point of the triangles in panel A).  For each simulation, the 
Monte-Carlo algorithm draws a value from within the defined parameters of the 
distribution.  Using a global minimum and maximum is less computationally intensive 
than setting the values individually for each best estimate value.  In this example, the 
winter waterfowl prevalence index (Wprwi) values range from 0 to 0.39.  Triangular 
distributions using global min/max values are fixed at 0 and 0.39 (panel A).  Triangular 
distributions using individual min/max values for each of the 10,495  30 km grid cells 
across China are calculated by taking  the best estimate  +/- half the range (eg., if the best 
estimate for a given cell is 0.24, the minimum and maximum values used in the triangular 
distribution for that cell would be 0.045 and  0.435.  The final estimate for each 
simulation is truncated to remain within the upper and lower bounds of the distribution.  
Truncating the distributions will affect the output by driving the mean output up if more 
values fall outside the lower range limit and driving the mean down if more values fall 
outside the upper range limit. 
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CHAPTER 6. SYNTHESIS 
 

Problem Statement 
 

Emerging infectious diseases in wildlife have become a growing concern to 

human health and biological systems with more than 75 percent of known emerging 

pathogens being transmissible from animal to humans (Taylor et al. 2001).  With the 

intensification of our agricultural systems, improvement of transportation and market 

chains, increased globalization, and addition of environmental stressors such as climate 

change and landscape fragmentation, the incidence of emerging zoonoses is likely to 

increase (Jones et al. 2008).  Emergence of the deadly zoonotic disease, highly 

pathogenic avian influenza (HPAI) H5N1 (hereafter H5N1) has caused major global 

concern over a potential pandemic (Russell and Webster 2005, Lu 2006, 2006) and since 

its emergence in 1996 (Xu et al. 1999) H5N1 has become the longest persisting HPAIV 

in history (Smith 2006).  Despite a wealth of research that has been conducted over the 

past 16 years, there are a number of outstanding questions related to this disease that 

remain unanswered, one of which centers around the role wild birds play in the spread of 

H5N1. 

 

Dissertation in a Nutshell 
 

A recent review of H5N1 risk models (Gilbert and Pfeiffer 2012. In Press) 

indicates a persistent omission of wild birds in transmission risk models, in part because 

obtaining adequate inputs for these populations is difficult.  In an effort to increase our 

understanding of how wild birds are involved in the spread of H5N1, I proposed to study 

H5N1 transmission risk between domestic and wild birds in China, the epicenter of H5N1 
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(Mukhtar et al. 2007). I chose China as the focal area for study for two main reasons.  

Firstly, the disease originated in southeastern China and continues to persist and emerge 

in new locations indicating a continued need for research, surveillance, and control.  

Secondly, the anthropogenic, wild, and environmental landscapes are each diverse across 

the country, allowing for varying levels of disease risk, both spatially and temporally, 

conditions which are found in few other places where the virus is endemic.  

 I took a combined approach of using field studies and modeling to accomplish the 

goal of assessing H5N1 transmission risk between domestic and wild bird populations.  

Chapters 1 through 5 build upon each other and integrate key pieces of information and 

model inputs that were previously lacking (Figure 6.1). Chapter 1 builds background on 

the problem and summarizes our current state of knowledge regarding wild bird 

migration and transmission risk modeling.  Chapter 2 uses satellite telemetry to study 

migratory connections in comparison to hypothesized pathways of virus movement in 

published phylogenetic studies. In addition to providing new evidence on migratory 

connectivity between outbreak regions, the satellite data provides evidence that wild birds 

do come in contact with domestic species on the landscape – an important link for the 

transmission risk models.  Chapter 3 outlines the difficult steps taken to collate and 

integrate poultry census data from multiple sources and the modeling steps taken to 

predict species-level poultry for China. It also examines differences in stratification 

methods for the regression modeling and differences among three remotely-sensed 

predictor sets. The final product is 1 km resolution models for chickens, ducks, and geese 

across China, plus an assessment of uncertainty. Chapter 4 models wintering and 

breeding season waterfowl distributions for each of China’s Anatidae species and 
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includes high-resolution species diversity maps.  In Chapter 5, results of the satellite 

telemetry field studies are integrated with the poultry and waterfowl models to provides 

H5N1 transmission risk models at multiple scales and with uncertainty measures of the 

risk predictions. An important interim step was to model hotspot regions of wild and 

domestic bird contact. These models have great utility beyond H5N1 modeling and 

towards other potential emerging disease and conservation issues. 

 The following text is a synthesis of the work completed in each chapter -  a 

narrative of what we learned through this process, how we might improve our efforts, and 

a catch-all for important topics specific to each chapter that were not included in the 

manuscripts.  I first begin by summarizing our current state of knowledge on the key 

factors of H5N1 transmission and maintenance, then follow with a section for each 

chapter, and finally, a concluding statement. 

  

Key factors of H5N1 transmission and maintenance 
 

Here I provide a short description of our current state of knowledge regarding key 

factors of H5N1 maintenance and spread.  This collated information is meant to be an 

abbreviated and concise summary of the pertinent factors used to formulation of the 

transmission models. 

 Highly pathogenic H5N1 is predominantly a disease of poultry. The virus has 

become endemic in poultry populations in five countries including China, Vietnam, 

Egypt, Indonesia, and Bangladesh (FAO 2011a).  Wild birds, particularly waterfowl 

(Anatidae) and shorebirds (Charadriidae) are reservoirs of low pathogenic avian 

influenzas and although they are rarely infected with HPAI’s, H5N1 has been reported in 
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a number of wild bird deaths since its emergence in 1996 (OIE 2012). Anatidae 

waterfowl are susceptible to H5N1, and have been suspected to be involved in the spread 

of H5N1 across long distances under certain conditions and settings (Gaidet et al. 2010, 

Prosser et al. 2011a, Newman et al. 2012a). In general, however, intensive surveillance 

programs across Asia, Africa, Europe, and North America (including more than 750,000 

samples) have found very few healthy wild birds positive for H5N1 and wild birds are 

not considered to be reservoirs of this virus. 

 HPAI H5N1 has no long-term reservoir outside of live animals (FAO 2008). The 

primary source of spread is through live infected birds, generally through the fecal-oral 

route (Shortridge et al. 1998, Alexander 2007) although H5N1 has evolved to replicate in 

the respiratory tract (Webster et al. 2007a) providing an additional route of transmission 

from bird to bird under high density situations such as poultry farms. Pathogenicity and 

viral shedding varies among host species (Alexander 2000). Of the three domestic poultry 

species commonly farmed in China (chickens, ducks, and geese), chickens show the 

highest rates of mortality, shedding virus for approximately four days before 100% 

mortality of the infected flock (Alexander and Capua 2008).  Pathogenicity in domestic 

ducks is less clear with some studies showing high to mixed rates of mortality and length 

of viral shedding (Sturm-Ramirez et al. 2004, Pantin-Jackwood et al. 2007, Kim et al. 

2008, Li et al. 2010) and others showing a clear evolution of domestic ducks as silent 

reservoirs, shedding virus for multiple weeks without exhibiting clinical signs of 

infection (Hulse-Post et al. 2005, Sturm-Ramirez et al. 2005, Phuong et al. 2011).  The 

situation for domestic geese is not as well studied, although it appears they are a less 
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productive host for virus evolution and persistence than asymptomatic domestic ducks 

(Alexander 2007). 

In China and across much of Asia, the farming production structure differs for 

aquatic (duck, goose) and terrestrial poultry (chicken).  Chickens are farmed on land 

either in housing structures or in the outside environment generally depending on scale of 

the farm (see below). In contrast, domestic ducks are commonly farmed in association 

with rice production systems where duck production is timed to match the planting or 

harvesting of rice (Muzaffar et al. 2010).  Young ducks are released to feed in rice 

paddies during the day and return to penned housing for safety from predators during the 

night. This integrated farming system reduces the cost of food for duck farmers while 

providing benefits to the rice farmer by reducing the insect load on growing rice and 

removing waste grains after harvesting (FAO 2010). The free-range nature of this type of 

duck production provides opportunity for wild and domestic ducks to share aquatic 

habitats (Li 2001b).  Additionally, in parts of southeastern China, an increasing demand 

for ‘healthy’ wild meat has led to the establishment of dozens of wild bird farms that are 

managed under a similar model as the duck-rice systems which also provides opportunity 

for wild migratory populations to mix with the farmed wild populations (Xiao et al. 

unpublished data http://csa.ou.edu/NIH/Xiao_Newman.pdf). 

China is the global leader in poultry egg and meat production, supporting 44 and 

18 percent of the world’s total production (Wang 2006). In 2005, the national flock was 

5.3 billion birds (end of year standing population), and nearly 10 billion birds were 

marketed across the year. Chickens are the largest sector, followed by ducks and geese at 

83, 15, and 2 percent, respectively (China National Bureau of Statistics 2008). The scale 

http://csa.ou.edu/NIH/Xiao_Newman.pdf�
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of farming has implications for disease transmission risk in regard to multiple factors 

including the source for incoming birds, the farm’s position in the market chain, and the 

level of biosecurity that is implemented. FAO (2004) defined four poultry sectors which 

relate the scale of farming to levels of biosecurity. The largest industrial farms (Sector 1) 

have higher levels of biosecurity and commercially marketed birds; here birds are 

confined to sealed houses often with an all-in all-out production system (birds raised and 

sold as a single cohort) that allows for cleansing of the housing between production 

cycles. Sector 2 commercial poultry farms have moderate to high number of birds and 

biosecurity levels; birds are marketed commercially and are housed indoors. Smaller 

scale commercial farms (Sector 3) have low to minimal biosecurity controls and 

marketing at live bird markets; birds are housed in open structures with potential access 

to the environment. Small-scale backyard production (Sector 4) does not employ 

biosecurity measures and birds are consumed locally. Although these patterns are found 

to be generally true under field investigations, FAO (2008) also notes that even Sector 1 

farms, purported to be most biosecure, can have inadequate biosecurity and some smaller 

farms may have biosecurity sufficient for the level of risk that they face.  

 An important pathway for transmission of AIVs is through contaminated water or 

moist environments (Webster et al. 1978, Markwell and Shortridge 1982, Ito et al. 1995).  

Alexander (2007) reported that the greatest threat of spread of avian influenza is by 

mechanical transfer of infective feces in which virus may be present at concentrations as 

high as 107  infectious particles per gram and may survive for longer than 44 days.  The 

length of time an influenza virus can survive in wet conditions varies depending on the 

strain of virus and water conditions such as pH, temperature, and salinity.  Some strains 
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of avian influenza have been known to survive in water at 17º C for up to 207 days, and 

even longer at 4º C (Stallknecht et al. 1990).  Stallknecht et al. (1990a) found that AIVs 

survived longer in water at lower temperatures (17 versus 28º C), and lower salinities (0 

ppt versus 20 ppt).  They also found an interaction effect between pH and salinity.  

Shortridge et al. (1998) found that AIV survived for 4 days in wet feces at 25º C.  Brown 

et al. (2007b) were the first to study persistence of H5 and H7 AIVs in water (LPAI 

viruses from wild birds and HPAI H5N1 isolated from whooper swans in Mongolia and 

duck meat in Anyang).  They determined that these viruses can persist for extended 

periods of time in water, that the persistence of these viruses is inversely proportional to 

temperature and salinity of water, and that a significant interaction exists between the 

effects of temperature and salinity on the persistence of these viruses (the effect of 

salinity is more prominent at lower temperatures).  Some studies suggest that avian 

influenza viruses can survive in ice, allowing for persistence of the virus over winter 

(Zhang et al. 2006), although others discredit these findings due to laboratory 

contamination (Worobey 2008).  Lang (2008) successfully extracted a wide diversity of 

AIVs from sediments of ponds used heavily by waterfowl during spring, fall, and winter 

(under ice), although they did not test whether the viruses were viable and able to 

replicate.  Despite the relatively small number of studies conducted on AIV persistence in 

water and environment, transmission of virus through this medium is likely an important 

factor in the spread of AIV. 

 
Chapter 1 – Literature Review 
 
 The literature review needed to cover a broad spectrum of topics pertinent to the 

goal of modeling H5N1 transmission risk between wild and domestic birds including: (1) 
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avian influenza structure, classification, hosts, transmission pathways, H5N1, and the 

debate on wild birds; (2) wild Anatidae waterfowl global characteristics, population 

monitoring programs, and distribution mapping approaches; (3) gridded population 

modeling; and (4) disease risk modeling.  Conducting the review on each of the topics 

was inherently informative, particularly the influenza and modeling sections which were 

less familiar to me.  One of the most interesting aspects was discovering the gaps in 

knowledge and how these have changed (or not) over the course of this work.  For 

example, early in the process, virtually no information existed on the movement patterns 

of wild birds in H5N1 endemic regions nor regarding how the virus affects different 

species.  At this point in time, data may still be limited, but there have been a number of 

tracking studies in Asia and Africa – many related to this work (see USGS-UNFAO 

partnership:http://www.pwrc.usgs.gov/resshow/prosser/USGS-

FAOWildBirdAIProgram.pdf, (Muzaffar et al. 2008, Newman et al. 2009, Prosser et al. 

2009, Gaidet et al. 2010, Batbayar et al. 2011, Gilbert et al. 2011, Prosser et al. 2011a, 

Newman et al. 2012b)); and there have been valuable H5N1 challenge studies in wild 

species such as the work completed by the Southeastern Cooperative Wildlife Disease 

Study at University of Georgia and others (Brown et al. 2008, Kalthoff et al. 2008, 

Keawcharoen et al. 2008, Lebarbenchon et al. 2009). Numerous H5N1 risk modeling 

papers have also been published, particularly over the last few years.  Gilbert and Pfeiffer 

(2012. In Press) have summarized risk models that focus on the spatio-temporal patterns 

of H5N1 – within they note that the number of published studies on HPAIV H5N1 

increased from 40 prior to the first large wave of outbreaks (2003-2004) to nearly 2000 in 

2010.  Three common risk factors identified within the published modeling studies 

http://www.pwrc.usgs.gov/resshow/prosser/USGS-FAOWildBirdAIProgram.pdf�
http://www.pwrc.usgs.gov/resshow/prosser/USGS-FAOWildBirdAIProgram.pdf�
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included domestic waterfowl, anthropogenic variables, and indicators of water.  They 

also note that very few studies include wild birds in their risk models.  The work in this 

dissertation will be one of the first to address this gap in knowledge.  

 

Chapter 2 – Satellite Telemetry 
 

The telemetry paper is one of the first to examine movement ecology of wild host 

species in relation to H5N1 epidemiology.  Prior to this work, fine scale movement data 

of wild waterfowl from outbreak locations did not exist.  One of the most prominent 

lessons learned from this part of the study is that relying on phylogenetics alone to 

explain movement patterns of the virus is incomplete; having an understanding of the 

ecology of the host species is critical as well. Understanding the ecology of host species 

can help support or refute hypotheses put forward by the phylogenic studies and aid in 

explaining the mechanisms by which H5N1 spread to different geographic regions.  From 

an ecological or conservation perspective, the findings from this study are also valuable 

towards learning about the migratory patterns, timing, and habitat use of the waterfowl 

species studied – a field that is in great need of more information. 

 
Chapter 3 – Poultry Models 
 
 Aside from the need for this project, the poultry models were sought after by 

others in the H5N1 risk modeling community, including partners of the renowned 

Gridded Livestock of the World (GLW) producers.  The main reason for the high demand 

was that prior to this work, species-level poultry data was not available – domestic ducks, 

in particular, were the target due to their importance in H5N1 transmission as potential 

silent reservoirs.  China is one of Asia’s largest producers of domestic poultry, and is 
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central to the origin and persistence of H5N1 virus.  The connection was made between 

this project and the GLW partners as I had the data for China’s poultry and had created 

distribution maps for chickens, ducks, and geese.  All parties benefitted from this 

collaboration as I was able to work with the world’s experts on modeling poultry 

distributions (which improved my original models and also provided output consistent 

with GLW methods) and they received access to China data to complete efforts towards 

modeling duck distributions across all of Monsoon Asia.  Artifacts of the original work 

being followed by the partnership can be seen in certain aspects of this manuscript, and 

help to explain some of the decisions made within.  For example, I examined the effects 

of three predictor data sets and three stratification methods for the regression modeling.  

The three predictor datasets were borne of my original predictors for China, the 

traditional GLW predictors, and a combination of the two.  My original predictors 

included remote sensing data and models specifically developed for China: LandSat land 

cover (produced and validated by the Chinese Academy of Sciences), cropping intensity 

(Yan et al. 2010, Yan et al. In Review), and human population (Tian et al. 2005).  The 

GLW predictors included a combination of MODIS data developed for epidemiological 

modeling (Hay et al. 2000, Hay et al. 2006), agro-anthropogenic variables developed by 

the Environmental Research Group of Oxford (for example distance to different types of 

livestock, length of growing period, etc.), and human factors such as human population 

and distance to urban areas from the Global Rural Urban Mapping Project (GRUMP).  

The GLW models are global models and therefore rely on global datasets for spatial 

consistency.  In some cases, such as the global GRUMP models which are purported to 

be less accurate in predicting human factors such as population, accuracy was sacrificed 
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for global consistency.  For this reason, in the final manuscript, I retained my original 

predictor sets and compared their capacity to model poultry distributions in comparison 

to the GLW and combined data sets. As it turns out, the combined set performed the best. 

In similar fashion, I retained my China-focused stratification scheme and compared it 

with two others from the GLW group.  The best stratification differed depending on the 

species, with geese being best modeled using my original stratifications and chickens and 

ducks using one of the GLW stratification schemes.   

 Unfortunately, there are no suitable independent datasets available to validate the 

poultry models. To address this issue, I took an approach that is commonly accepted as a 

validation procedure by peer-reviewed studies which includes reserving a portion of the 

available data for assessing model fit.  Here I reserved 75 percent of the available census 

data for training the models and used 25 percent for validation which was measured by 

goodness of fit tests correlation and root mean square error.  

 Obtaining the census data and developing a method for filling data gaps was 

equally challenging if not more so than the modeling aspect of the study.  Talking to 

poultry experts and scouring the multitudes of agricultural yearbooks to find data and 

develop the best approach towards quantifying poultry populations across all of China at 

a sub-provincial level took much effort.  Here one of the valuable lessons learned was 

how to integrate data from different sources and develop a methodology that is repeatable 

and transparent. 

 
Chapter 4 – Waterfowl Models 
 

A lack of survey data required us to take a different approach towards creating 

species distribution models for China’s waterfowl.  Survey data was not sufficient to 
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employ data driven models (such as the regression modeling in the poultry paper) and 

therefore I turned to habitat modeling to develop occurrence models for each species. 

However, each seasonal distribution map (30 breeding and 37 wintering) is a contribution 

to the field of waterfowl ecology, and the manuscript for this chapter was written to focus 

on the presence-absence models and accompanying species diversity maps.  These are the 

first distribution models created for China’s waterfowl species and at this point in time 

represent our best state of knowledge on distributions across the suite of species.  I would 

like to make several improvements to the models, some of which are obtainable in the 

near future, and some of which may not be possible for many years to come. I hope 

publication of these entry-level models will stimulate further study on these species, and 

eventually the development of a coordinated monitoring program for China’s waterfowl.  

The China Anatidae Network was established in 2008, marking a move towards 

coordinated research and better communication among parties that study and monitor 

waterfowl in China. 

 
Chapter 5 – Transmission Risk Models 
 
 In a recent review of spatial risk modeling of H5N1, Gilbert and Pfeiffer (2012. In 

Press) indicate a continued absence of studies that incorporate wild birds in the modeling 

process. They attribute the difficulty in obtaining pertinent spatial data on wild birds as 

one of the main reasons for this gap.  Thus, the work outlined in this chapter and Chapter 

4 present a much needed contribution towards improving our understanding of spatial and 

temporal risk of wild birds and H5N1 transmission.  It will be one of the first papers to 

explicitly model H5N1 transmission risk between domestic and wild birds. 
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 One of the challenges in this process was making the jump from the waterfowl 

distribution models of Chapter 4 to models of abundance and prevalence.  Cao et al. 

(2010) has provided population estimates for China’s wintering species, but conducting 

surveys for breeding waterfowl is much more difficult as their behavior turns from 

gregarious in the winter to secretive and dispersed during the nesting season.  At a certain 

point in the process, I questioned whether I could create the abundance maps for the 

breeding season given the lack of published data.  However, not being able to account for 

differences between wintering and breeding seasons for the waterfowl component of the 

risk models would have greatly reduced the value of the risk models.  Having a tool such 

as the Monte-Carlo simulations that allow one to quantify the uncertainty associated with 

model inputs is what helped me to move forward.   Here I could derive the best estimates 

possible but also quantify the level of confidence associated with these estimates, and 

incorporate it explicitly in the final risk models.   

 One of the main limits of these models was not being able to take a data-driven 

approach during model development because there is no good set of outbreak data that 

can be used to draw statistical relationships with predictor variables.  In order to do so, 

we would have to know what type of host initiated the infection in the outbreak group 

(for example, to be able to decipher relationships between predictors and poultry 

outbreaks caused by wild bird infections and vice-versa).  This is difficult and perhaps 

impossible to determine without having genetic samples of many types of populations 

surrounding an outbreak.  Even the few large scale active surveillance efforts within 

China in wild birds and wet markets (Kou et al. 2009, Lei et al. 2011, Martin et al. 2011) 

do not indicate the infecting population.  However, even if we could derive this 
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information from the existing outbreak data, the approach has its drawbacks, as well.  

The fault with using outbreak data to train the models is the potential bias in outbreak 

reporting – that the distribution of outbreaks reported may not adequately represent the 

true distribution of infections.  In addition, underreporting has been purported to be high 

in China. In the end, taking the approach of modeling the poultry and waterfowl 

populations and developing risk models from these frees us of potential biases in an 

outbreak predictor data set. 

 
Concluding Remarks 
 
 When I began this project, the debate on wild birds and their role in transmission 

of H5N1 was a new and hotly debated topic, with little solid data to support arguments on 

either side.  Since then, multiple key publications have advanced our knowledge on the 

topic of H5N1 transmission. Notably, strong associations have been drawn between duck 

farming and H5N1 prevalence (Gilbert et al. 2006a, Songserm et al. 2006, Gilbert et al. 

2007, Gilbert et al. 2008), challenge studies indicate varying levels of pathogenicity 

among wild and domestic host species (Hulse-Post et al. 2005, Sturm-Ramirez et al. 

2005, Brown et al. 2008, Keawcharoen et al. 2008), and a wide scale telemetry project 

concluding differing levels of involvement of wild birds in H5N1 transmission in 

different regions (Newman et al. 2009, Prosser et al. 2009, Gaidet et al. 2010, Takekawa 

et al. 2010a, Gilbert et al. 2011, Prosser et al. 2011a, Newman et al. 2012a).  The topic of 

wild birds and H5N1 continues to be debated and likely will never be fully resolved, as 

the situation is complicated and factors that apply in one region may not in others.  

Despite our advances, there still are a number of topics regarding wild birds and H5N1 

that could use further research including how H5N1 affects individual wild species – 
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from the length of the asymptomatic period post-exposure to pathogenicity and 

transmissibility rates.  It would also be helpful to have information on whether wild birds 

can truly fly if infected with H5N1, including possibly a response curve of their reduced 

capability to migrate through the incubation, infection, and recovery stages. 

 I was asked during the defense if this dissertation answers the question: Are wild 

birds implicated in transmission of H5N1, and if not, how would we answer this 

question?   Firstly, the models in this dissertation were not designed to answer this 

question – they were designed to model where wild and domestic birds have the potential 

to interchange virus material.  They work under the assumption that wild birds have the 

potential to become infected and transmit virus to the environment and thereby other 

populations. However, wild birds were implicated by much of the political community as 

H5N1 spread beyond Qinghai Lake in 2005 and on to new countries and continents – 

without any scientific data to support these claims.  The implication without information 

on movement ecology or disease ecology in these populations is one a main reason we 

began investigating migratory movements in relation to H5N1 (Chapter 2). The results 

from Chapter 2 and some related papers (Prosser et al. 2009, Prosser et al. 2011a, 

Newman et al. 2012b) indicate that yes, in certain cases, wild birds appear to contribute 

to the long-distance transport of H5N1 (but don’t in other regions (Newman et al. 2009, 

Takekawa et al. 2010a)).  For example, in the Central Asian Flyway, in it appears that the 

bar-headed goose may have acted as a vector of H5N1 transmission. We observed spatial 

and temporal overlap between marked geese and captive bar-headed goose farms on the 

wintering grounds (showing the potential for virus transfer from infected poultry to wild 

migratory geese) and, (b) H5N1 outbreaks.  Also, although it was not common, the fastest 
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goose migrated from the Lhasa wintering grounds (where H5N1 outbreaks occurred in 

poultry) to Qinghai Lake in just over 5 days. Challenge studies have shown bar-headed 

geese to be asymptomatic for approximately 5 days post exposure to H5N1 (Brown et al. 

2008) indicating that there is the potential for this species to move long distances 

(1200km; the distance from Lhasa to Qinghai Lake) before being crippled by the effects 

of H5N1 infection. 

 The need to truly work in an interdisciplinary manner to accomplish this work has 

been both challenging and rewarding.  A critical benefit of this project was the 

opportunity to work with experts from fields very different from my own, including 

remote sensing, modeling, and disease experts.  In particular, very close cooperation was 

conducted with the epidemiologist in this group, making the final transmission models a 

more rigorous product. Also, the guidance provided by the GLW partners has greatly 

improved the original poultry distribution models.  Finally, the multiple collaborations 

revolving around the waterfowl models have been slower to manage, but I expect will be 

extremely beneficial to the field of waterfowl ecology.   

As a result of this work, we now have the first models that focus specifically on 

H5N1 transmission between wild and domestic birds.  We also have the first species level 

poultry maps for China, and the first waterfowl maps for China.  The adage that all 

models are wrong (by statistician George E.P. Box, 1987) is true, and certainly apply to 

the models herein.  However, I do believe these models are useful to a broad spectrum of 

researchers and practitioners from the fields of epidemiology and public health to wildlife 

conservation.  I hope that this work will stimulate additional papers on this topic, and the 

development of better models. 
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Figure 6.1. Dissertation chapters in a nutshell.  Interconnected boxes list the main results 
of each chapter and illustrate how they each support the main transmission risk models of 
Chapter 5. 
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APPENDIX A.   
 
Table A.1. Prevalence of influenza A virus in live wild birds from three review papers covering North America (Olsen et al. 2006), 
Europe (Munster et al. 2007), and Africa (Gaidet et al. 2006).   
 

    North America Europe Africa
        Olsen et al. 2006     Munster et al. 2007      Gaidet et al. 2006 

Order Family Common Name Species 
Sampled 

(n) 
Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

Anseriformes Ducks 36 species (Olsen et al. 2006) 34,503 9.5     
  9 species (Munster et al. 2007)   13751 6.9   
  19 species (Gaidet et al. 2006)     2864 9.4 
  Mallard Anas platyrhynchos 15250 12.9 8938 7.3   
  Northern Pintail Anas acuta 3036 11.2 448 2.9 24 8.3 
  Blue-winged Teal  Anas discors 1914 11.5     
  Common Teal  Anas crecca 1314 4 940 6.4 24 12.5 
  Eurasian Wigeon Anas penelope 1023 0.8 2538 3   
  Wood Duck Aix sponsa 926 2.2     
  Common Shelduck Tadorna tadorna 881 6.5 355 0.6   

  
American Black 
Duck Anas rubripes 717 18.1     

  Green-winged Teal Anas carolinensis 707 4     
  Gadwall Anas strepara 687 1.5 298 2.7   
  Spot-billed Duck Anas poecilorhyncha 574 3.7     
  Northern Shoveler Anas clypeata   135 3.7 6 16.7 
  Tufted Duck Aythya fuligula   62 3.2   
  Common Eider Somateria mollissima  37 5.4   
 Geese 8 species (Olsen et al. 2006) 4806 1     
  6 species (Munster et al. 2007)   6428 1.8   
  Canada Goose Branta canadensis 2273 0.8     
  Greylag Goose Anser anser 977 1.1     
  White-fronted Goose Anser albrifrons 596 2.2 3821 2.1   



 
 

 

    North America Europe Africa
        Olsen et al. 2006     Munster et al. 2007      Gaidet et al. 2006 

Order Family Common Name Species 
Sampled 

(n) 
Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

  Barnacle Goose Branta leucopsis  1139 0.7   
  Brent Goose Branta bernida   413 1   
  Bean Goose Anser fabalis   315 0.6   
  Pink-footed Goose Anser brachyrhynchus  285 2.1   
 Swans 3 species (Olsen et al. 2006) 5009 1.9     
  2 species (Munster et al. 2007)   200 2   
  Tundra Swan Cygnus columbianus 2137 2.8     
  Bewick's Swan Cygnus columbianus bewickii 153 2   
  Mute Swan Cygnus olor 1597 1.3 47 2.1   
  Whooping Swan Cygnus cygnus 930 1.5     
Charadriiformes Gulls  9 species (Olsen et al. 2006) 14505 1.4     
  4 species (Munster et al. 2007)   2602 0.8   
  3 species (Gaidet et al. 2006)     366 3.8 
  Ring-billed Gull Larus delawarensis 6966 2     
  Black-tailed Gull Larus crassirostris 1726 1     
  Black-headed Gull Larus ridibundus 770 2.2 1583 0.9   
  Herring Gull Larus argentatus 768 1.4 753 0.7   
  Mew Gull Larus canus 595 0 226 0.9   

  
Greater Black-
backed Gull Larus marinus   41 4.9   

 Terns 9 species (Olsen et al. 2006) 2521 0.9     
  Common tern Sterna hirundo 961 1.7     
 Shorebirds 10 species (Olsen et al. 2006) 2637 0.8     
  2 species (Munster et al. 2007)       
  13 species (Gaidet et al. 2006)     409 1.5 
  Red Knot Calidris canutus   230 0.4   
  Red-necked Stint Calidris ruficolis   5 20   
 Auks Guillemot  Uria aalge   817 0.4   
Gruiformes Rails 3 species (Olsen et al. 2006) 1962 1.4     
  1 species (Munster et al. 2007)   237 0.4   



 
 

 

    North America Europe Africa
        Olsen et al. 2006     Munster et al. 2007      Gaidet et al. 2006 

Order Family Common Name Species 
Sampled 

(n) 
Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

Sampled 
(n) 

Percent 
Positive 

  8 species (Gaidet et al. 2006)     438 0.7 
  Eurasian Coot Fulica atra 1861 1.2 237 0.4   
Procellariiformes Petrels 5 species  1416 0.3     

  
Wedge-tailed 
Shearwater Puffinus pacificus 794 0.5     

Gaviiformes Cormorants 1 species (Olsen et al. 2006) 4500 0.4     
  2 species (Gaidet et al. 2006)     148 0 
  Great Cormorant Phalacrocorax carbo 4500 0.4   130 0 
Other Other 36 species (Gaidet et al. 2006)     196 0 
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Table A.2. Summary of global HPAI outbreaks in domestic poultry (Alexander 2000, 
United Nations Food and Agriculture Organization 2004, Swayne 2008). 
 

Year Country Species Virus Subtype 
1959 Scotland Chicken H5N1 
1963 England Turkey H7N3 
1966 Ontario Turkey H5N9 
1976 Victoria (Australia) Chicken H7N7 
1979 Germany Chicken H7N7 
1979 England Turkey H7N7 

1983-1984 Pennsylvania Chicken H5N2 
1983 Ireland Turkey H5N8 
1985 Victoria (Australia) Turkey H7N3 
1991 England Turkey H5N1 
1992 Victoria (Australia) Chicken H7N3 
1994 Queensland (Australia) Chicken H7N3 
1994 Mexico Chicken H7N2 
1994 New South Wales Chicken H7N4 

1994-1995 Pakistan Chicken H7N3 
1996 Guangdong (China) Goose H5N1 

1997-2008 Hong Kong Chicken H5N1 
1997 Italy Turkey H5N2 
1997 New South Wales Chicken H7N4 

1999-2000 Italy Turkey H7N1 
2002 Chile Chicken H7N3 
2003 Pakistan Chicken H7N3 
2003 Netherlands, Belgium, Germany Chicken H7N7 
2004 Canada Chicken H7N3 
2004 Texas Chicken H5N2 

2004, 2006 South Africa Ostrich H5N2 
2005 Korea Chicken H7N7 
2007 Canada Chicken H7N3 

 
           



 
 

 

APPENDIX B 
 
Table B.1.  Examples of data sources used for sub-provincial level poultry statistics: Xinjiang province (Tibet). 
 

Province Province  Year Sub-provincial Level Poultry Data Source Sub-provincial Level Poultry Data Source (in Chinese) 

(in 
Chinese) 

(Data)     

 新  疆 Xinjiang 
(Tibet) 

2005 Chen Hong. 2006. Xinjiang Statistical Yearbook. Edited by 
Statistics Bureau of Xinjiang Uygur Autonomous Region. 
Beijing. China Statistics Press.  

陈虹. 2006. 新疆统计年鉴. 新疆维吾尔自治区统计局编. 北京. 

中国统计出版社.  

    2004 Wang Guirong. 2005. Xinjiang Statistical Yearbook. Edited 
by Statistics Bureau of Xinjiang Uygur Autonomous Region. 
Beijing. China Statistics Press. pp.393-395 

王贵荣. 2005. 新疆统计年鉴. 新疆维吾尔自治区统计局编. 北京. 

中国统计出版社. pp.393-395 

    2003 Wang Guirong. 2004. Xinjiang Statistical Yearbook. Edited 
by Statistics Bureau of Xinjiang Uygur Autonomous Region. 
Beijing. China Statistics Press. pp. 331-333 

王贵荣. 2004. 新疆统计年鉴. 新疆维吾尔自治区统计局编. 北京. 

中国统计出版社. pp. 331-333 

    2005 Sun Fachen. 2006. Xinjiang Production &Construction Group 
Statistical Yearbook. Edited by Statistics Bureau of Xinjiang 
Production & Construction Group. Beijing. China Statistics 
Press. pp. 258-269. 

孙法臣. 2006. 新疆生产建设兵团统计年鉴. 

新疆生产建设兵团统计局编. 北京. 中国统计出版社.pp. 258-269 

    2004 Shen Weizhen. 2005. Xinjiang Production &Construction 
Group Statistical Yearbook. Edited by editorial committee of 
Xinjiang Production &Construction Group Statistical 
Yearbook. Beijing. China Statistics Press. pp. 260-282. 

沈炜珍. 2005. 新疆生产建设兵团统计年鉴. 

新疆生产建设兵团统计年鉴编辑委员会编. 北京. 中国统计出版社. pp. 
260-282. 

    2003 Shen Weizhen. 2004. Xinjiang Production &Construction 
Group Statistical Yearbook. Edited by editorial committee of 
Xinjiang Production &Construction Group Statistical 
Yearbook. Beijing. China Statistics Press.  

沈炜珍. 2004. 新疆生产建设兵团统计年鉴. 

新疆生产建设兵团统计年鉴编辑委员会编. 北京. 中国统计出版社 



 
 

 

Table B.2.  Provincial level poultry statistics for chickens, ducks, and geese from China statistical yearbooks. 
 

Province Name Number of farms     Number of animals present at end of 

year. 

Total number of poultry sold per 

year 
  

    
TOTAL 
Poultry 
Farms 

Chicken 
Egg 
Farms 

Chicken 
Meat 
Farms 

Duck 
Farms 

Goose 
Farms 

Chickens 
(egg 

layers) 

Chickens 
(broilers) 

Ducks Geese Egg type 
grand-parent 

stock 
stations(pair) 

Meat type 
grand-parent 

stock 
stations(pair) 

Breeder 
duck  

stations 
(piece) 

Breeder 
goose  

stations 
(piece) 

  全  国 China 4012   1 243   1 361 793 615 17727387 39421036 8185024 1 369798 17639244 39004091 166149019 6957729 

 北  京 Beijing 49 21 21 7   1182500 779000 114800   2118000 360000 1360000   

 天  津 Tianjin  15 11 2 2   148200 43000 24000     940000    

 河  北 Hebei 169 123 37 7 2 1907906 846300 130000 26000 800000 2900000 2000000 75000 

 山  西 Shanxi 45 42 2 1   1108100 52000 2200         

 蒙古 Neimenggu 8 5 3                

                       

 辽  宁 Liaoning 188 60 104 11 13 652600 2078900 71470 134900 4080000  5717600 4047000 

 吉  林 Jilin 106 44 55  7 980000 3160000  76000       

 龙江 Heilongjiang 111 34 72  5 281710 1192536  29600   500000  500 

                       

 上  海 Shanghai 35 10 17 8   221200 278740 116527   4400000 1791000 29005200   

 江  苏 Jiangsu  673 243 206 74 150 2045062 3425429 441536 423220 1840000 4940000 920000 1405000 

 浙  江 Zhejiang 91 18 34 23 16 187000 1154370 388550 38500 100000 269091 12594932 252600 

 安  徽 Anhui 279 59 79 63 78 1154580 2678412 1250900 91040    36500 7500 

 福  建 Fujian 64 4 28 28 4 113200 745453 381360 4200    5038500 50830 

 江  西 Jiangxi 30 9 15 3 3 25401 494913 65818 5788   1510000 268000 272330 

 山  东 Shandong 579 223 272 78 6 2497852 6710953 1678062 19121 2300414 1764000 23697416 8020 



 
 

 

Province Name Number of farms     Number of animals present at end of 

year. 

Total number of poultry sold per 

year 
  

    
TOTAL 
Poultry 
Farms 

Chicken 
Egg 
Farms 

Chicken 
Meat 
Farms 

Duck 
Farms 

Goose 
Farms 

Chickens 
(egg 

layers) 

Chickens 
(broilers) 

Ducks Geese Egg type 
grand-parent 

stock 
stations(pair) 

Meat type 
grand-parent 

stock 
stations(pair) 

Breeder 
duck  

stations 
(piece) 

Breeder 
goose  

stations 
(piece) 

                       

 河  南 Henan 150 99 37 10 4 2033541 3476156 546000 14100 1910700 6700000    

 湖  北 Hubei 65 23 13 14 15 254950 392200 131828 100462    1105110 297180 

 湖  南 Hunan 15  10 2 3   96000 50000 2100 2130 11520000 8653846 63000 

 广  东 Guangdong 631 11 122 226 272 486850 6842307 918150 330521       

 广  西 Guangxi 91 2 83 3 3 39000 2919792 900862 4790    669005 36548 

 海  南 Hainan 79 2 43 33 1 11200 262500 126100 2000   3000000 10581200 15000 

                       

 重  庆 Chongqing 97 24 15 47 11 228343 284010 199603 8251 60500  12562210 85406 

 四  川 Sichuan 253 36 49 147 21 909050 926459 630188 46205   2710000 51373500 341815 

 贵  州 Guizhou 8 2 5 1   6000 14500 2600     100000 468000   

 云  南 Yunnan 17 7 7 2 1 203000 152735 2670 13000       

 西  藏 Xizang 2 1 1    4723 21450          

                       

 陕  西 Shanxi 110 95 12 3   562744 268200 11800   27500  98000   

 甘  肃 Gansu 20 18 2    38225 36221          

 青  海 Qinghai 1 1                 

 宁  夏 Ningxia 11 8 3    341650 29000          

 新  疆 Xinjiang 20 8 12     102800 59500             

 



 
 

 

 
Table B.3.  Number of counties and prefectures for which poultry statistics were available from China yearbooks for 2003, 2004, and 
2005. 
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APPENDIX C. 
 
Table C.1.  China Land Cover dataset created by the Chinese Academy of Sciences 
(CAS) Institute of Geographical Science and Natural Resources Research (IGSNRR) 
from 30m Landsat TM satellite imagery (Liu et al. 2002, Liu et al. 2005).   
 
Broad Category Code Land Cover Class 
Arable Land 11 Paddy 
 12 Rainfed 
Forest   
 21 Forest 
 22 Scrub 
 23 Shrub 
 24 Other Forest 
Grassland   
 31 Grassland (>50%) 
 32 Grassland (20-50%) 
 33 Grassland (5-20%) 
Water   
 41 River and Irrigation 
 42 Lake 
 43 Reservoir and Pool 
 44 Snow Capped 
 45 Shores (Sea) 
 46 Bank/Shoal (River/Lake) 
Developed   
 51 Urban 
 52 Rural Residence 
 53 Other Constructed 
Pristine   
 61 Sand 
 62 Gobi 
 63 Salt Lick 
 64 Marsh 
 65 Bare Ground 
 66 Gravel and Rocky Ground 
 67 Other 
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