
  

ABSTRACT 

Title of dissertation:  ESSAYS ON REGULATORY UNCERTAINTY & 
ENERGY DEVELOPMENT IN THE AMERICAN WEST 

  
Jeffrey Hunt, Doctor of Philosophy, 2021  
 

Dissertation directed by:  Professor Joshua Linn, Department of Agricultural and 
Resource Economics 
 

This dissertation undertakes an analysis of regulation in the American West, 

investigating the effects of expropriation uncertainty and technological change in the 

leasing process. 

The first chapter explores the possible expropriation of drilling rights due to the 

addition of the sage-grouse under the Endangered Species Act. Leveraging prior decisions 

of the US Fish and Wildlife Service, I estimate there was a 52.6% chance the sage-grouse 

would be listed. Using the real-options framework of Kellogg (2014) and constructing an 

extension of his simulation to accommodate expropriation risk parameterized by real-world 

drilling data, I find that developers are expected to delay spudding wells to wait out the 

uncertainty. This result is corroborated with a Cox proportional hazards model. 

Additionally, using a difference-in-differences model I find robust evidence that 

developers reduce their bids for leases commensurate with the expected reduction in profits 

from possible regulation, and using a conditional logit discrete choice model I find 

evidence that firms abandon core sage-grouse habitat. Lastly, I find no evidence that 

developers increase the extraction rate of drilled wells. 

The second chapter investigates expropriation risk in the context of ozone pollution 

controls from the Environmental Protection Agency. Here, I find a hurry-up-and-drill 

response. I place this result within the literature of the green paradox, and find that the EPA 



  

regulation did not produce a green paradox but if costs were lower, or if the regulation were 

modified, a green paradox would have existed and briefly result in higher emissions under 

a stricter regulatory regime. The policy takeaway is that regulators should avoid a long 

announcement period, as it gives developers time to drain wells before regulation occurs. 

The third chapter is a cost/benefit test of auctioning drilling leases online rather 

than in-person. I leverage the fact that only specific leasing jurisdictions transitioned to an 

online system called EnergyNet in late 2016 to estimate the causal effect of moving to 

online leasing. I estimate that a given parcel sold online versus in-person will generate 40% 

higher bids against only a 2% extra cost. 
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Chapter I

Introduction

The energy development industry is well-versed in uncertainty, as drilling for oil

and gas is an inherently risky business with no guarantee of rewards. Although not

as front of mind as production potential or price volatility, regulation is a primary

risk to energy producers. The possibility government regulators intervene in mar-

kets to protect consumers or the environment can be just as threatening to producer

pro�ts as a dry well or collapsing prices. This dissertation considers two examples of

government regulation of the energy development industry in the American West:

expropriation of drilling rights by regulators and the method through which state

and federal o�ces auction exclusive leases to explore these public lands.

Expropriation - the act of a governing body taking private property by force

or decree - is an uncommon occurrence. Most examples of historical expropriation

in otherwise capitalist societies concern foreign-owned extractive industries, such

as the nationalization of oil companies during the 1970's and early 2000's Melek

(2018)[45]. While it is di�cult to think of examples of expropriation in developed

nations other than small-scale eminent domain action and the seizure of produc-

tive capital during wartime, there have been numerous instances of environmental

regulations that inherently expropriate property and/or development rights already

granted to the energy development industry. In this sense, industries in developed

countries like the United States are subject to expropriation of private property as

well.

Expropriation of extraction rights has the important quality of being inherently

1



uncertain and rarely sudden. There is typically an extended period during which

rulemakers solicit feedback or plan the expropriation process. While the regulator

conducts their review, �rms are stuck in limbo waiting for a decision. In this

intermediate period, the �rm is subject to considerably uncertainty, and must weigh

this uncertainty when making investment decisions. There has been little inquiry

into the e�ect of regulation on energy developer behavior before the regulator's

decision is complete.

This `announcement' period between the time when expropriation is �rst con-

sidered a possibility and its resolution is of critical importance. Mineral extractors

behave di�erently when they know regulation is likely or de�nite in the future,

and adjust their drilling decisions appropriately. Developers may delay making

large �xed-investments like spudding a well, which can cost anywhere from 3 from

10 million dollars per well. This practice is called `wait-and-see' and as Stokey

(2016)[58] notes, a wait-and-see reaction is most common when the resolution of

the uncertainty cannot be predicted well either in timing or outcome. Conversely, a

developer may decide to drill now to pre-empt the regulation, which is characterized

as `hurry-up-and-drill'. This can produce a perverse outcome in which hurried de-

velopment increases the negative externalities of energy production. This is called

the green paradox and has been the subject of a literature of climate change papers

since Sinn (2008)[55].

I provide two tests of whether expropriation risk elicits a wait-and-see or hurry-

up-and-drill response. The �rst subject of analysis is the 2007-2015 review of the

greater sage-grouse by the US Fish and Wildlife Service (USFWS) in the state of

Wyoming. The sage-grouse is a chicken-size bird living in several Western states
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and was added as a `candidate' for inclusion in the Endangered Species List, which

would have mandated Wyoming curtail drilling and extraction to protect the sage-

grouse. The second context is the 2010-2018 review of ozone in the Uinta Basin

in Utah by the Environmental Protection Agency (EPA). Unexpectedly high ozone

readings were found in 2010, which could have triggered drilling or extraction re-

strictions if high levels were found over several years of monitoring the local ozone

concentrations.

Both papers use agent-based modeling (ABM) simulation to model drilling tim-

ing and pro�ts based on the real-options literature of Kellogg (2014)[35]. These

simulations allow developers to choose whether or not to drill over several periods

of the model, and within each period compare the expected pro�tability of drilling

now versus drilling in each future period. Both simulations are nearly fully para-

materized by real-world drilling and meteorological data. Interestingly, simulations

suggest that developers in the Uinta Basin drilled faster as a result of expropriation

risk, while developers in Wyoming attempted to wait out the uncertainty. This

result is corroborated later in the context of the sage-grouse, in which I use real-

world drilling, production, and location data to estimate a Cox proportional hazard

rate of 58.0%, indicating that in the case of the sage-grouse, developers really did

`wait-and-see'.

The di�erence in results between the hurry-up-and-drill response to ozone reg-

ulation and the wait-and-see reaction to the sage-grouse uncertainty is explained

by the di�erence in announcement structure. I �nd that the fact that the EPA's

ozone regulation had a de�nitive period of at least 3 years without expropriation

occurring is critical in speeding spudding, but the e�ect is not so large as to create
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a green paradox in which emissions are higher for some time under regulation than

without regulation. The window granted by the EPA regulation - in contrast with

the sage-grouse decision from USWFS, which could have come at any moment -

is critically important, because it gives developers the con�dence that if they drill

now they will be able to exhaust the well and cover their costs before regulation

comes into e�ect.

Regulation shapes every aspect of the extraction process, not just the spudding

timing decision. Expropriation risk may also a�ect factors like location selection,

extraction rates and movement along production decline curves, and willingness

to pay for future extraction rights. This dissertation explores all of these factors

in the context of pending sage-grouse expropriation risk, and �nds robust results

that expropriation risk impacts bid levels in the auctions used to delegate leasing

rights. I also �nd robust results indicating that developers do not adjust their

extraction paths to bring extraction of already drilled wells forward, consistent

with the �ndings of Andreson, Kellogg, and Salant (2018)[1]. The e�ect on location

selection is less robust, but the preponderance of evidence suggests that there is a

movement away from land under expropriation risk to land that is not subject to

any uncertainty.

The last aspect I study in Chapter II - the leasing process - is the sole subject

of Chapter IV of the dissertation. In this chapter, I conduct a cost/bene�t test of

conducting the parcel leasing process online rather than in-person. Before late 2016,

all leasing outside of the state of Colorado was done in-person, but in the second

half of 2016 the federal government as well as some state leasing o�ces moved to

an online system run by the private company EnergyNet. Moving to an online
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leasing system ostensibly brought in more money per acre for leasing jurisdictions,

raising revenues for both the federal government and state budgets. This chapter

provides causal evidence that online leasing actually raises revenues, and more than

covers the 1.5-2% fee charged by EnergyNet for hosting the auctions. Using a

di�erence in di�erences model comparing trends in prices from leasing o�ces that

transitioned to an online system to trends for state o�ces that did not transition,

I �nd a 40% increase in per-acre bids for parcels, far outweighing the cost charged

by EnergyNet. The policy recommendation of this paper is that the holdout states

that still maintain in-person lease auctions should adopt EnergyNet.

Using the economics and marketing literature spearheaded by Hagiu[23] con-

cerning multi-sided platforms, I investigate the mechanism driving the increase in

bids through a variety of tests leveraging information on the bidders and parcels. I

�nd that thicker markets rather than lower search costs is the mechanism causing

higher bids. The presence of additional bidders is driving up the price of parcels

beyond what would have sold for in an in-person auction. The e�ect is particularly

pronounced in providing a second bidder so that the price of the parcel exceeds the

reservation price, which across jurisdictions is only $1 or $2 per acre. Additionally,

there is convincing evidence that the extra bidders are high-information corpora-

tions rather than low-information winning bidders who may not have the ability to

properly discern the value of what they are purchasing, mitigating equity concerns

in online parcel leasing.

5



Chapter II

The Sage-Grouse in Wyoming

1 Introduction

One prominent example of American environmental legislation that has the

power to expropriate private property rights is the Endangered Species Act. The

ESA mandates rehabilitation of plant and animal species that are designated as

endangered, and plays an outsize role in industries with pervasive e�ects on the

environment like mineral development. One such possible case was the greater sage-

grouse, a chicken-sized bird spread across 11 U.S. states and Canadian provinces

but is concentrated in Wyoming. From 2010 to 2015 the US Fish and Wildlife

Service (USFWS) reviewed the sage-grouse as a candidate for inclusion in the En-

dangered Species List (ESL) in response to a federal judge's 2007 order. Because

the sage-grouse is so pervasive across a wide swath of the mineral-rich state, the

danger a listing presents to the state's economy is well-known. Over the nearly 8

years between a mandated consideration to list the sage-grouse and the time US-

FWS declined to list the grouse, the bird could have been listed at any moment,

which could possibly cause developers' right to drill to be revoked.
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Figure 1: A Sage-Grouse

This `pre-listing' candidate review period is of critical importance to understand-

ing how developers behave under uncertainty, because once the review is complete

the species is either not listed or the species is listed resulting in severe limitation

of development. Melstrom (2017)[46] considers both the pre-listing review period

and the listing period in his study of the the lesser prairie chicken and oil and gas

well placement in Kansas and Oklahoma. Using a discrete choice framework in

which prairie chicken habitat is interacted with di�erent steps of the listing process

to determine how expected and actual listing of the lesser prairie chicken a�ected

well locations, Melstrom �nds little evidence that energy producers switched de-

velopment to non-habitat, noting a movement of just 4% of wells from habitat to

non-habitat due to the listing of the lesser prairie chicken as `threatened' under the

ESA.

The Melstrom paper, while valuable as the �rst study that evaluates how ESA

candidate listing a�ects oil and gas developer behavior, studies only one aspect of
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the drilling environment. My paper expands upon Melstrom (2017) by focusing

not just on where �rms choose to drill, but also explores the timing of drilling,

production decisions, and bidding behavior of developers, and I particularly center

the question of development under uncertainty.

Investment under uncertainty is a growing literature, and is especially salient to

the question of energy exploration. Kellogg (2014) [35] �nds that �rms decrease

drilling activity in the face of higher price volatility, re�ecting the fact that �rms

are wary of investing in a high-cost well when they are unsure of what future prices

will be. Kellogg views the �rms' behavior as an example of a `futures option'.

The idea of considering the decision to drill as an `option' is borrowed from the

real options literature, representing the fact that a well is a large sunk cost that

may not produce meaningful value. Because costs, prices, and (to a lesser extent)

production are uncertain while drilling is irreversible, the optimal behavior is to wait

until a particularly favorable drilling environment. However, not all uncertainty is

caused by the inherent inability to predict a well's productive capacity, upcoming

supply disruptions, or future oil prices. Some uncertainty is caused by government

regulators who may distort the market or may put burdensome regulations upon

producers. Stokey (2016)[58] presents a theoretical argument showing that in the

face of an unresolved regulation �rms will delay investments until resolution of the

uncertainty. She calls this the `wait-and-see' policy. The alternative to a `wait-and-

see' behavior in this context could be characterized as `hurry-up-and-drill'. Rather

than a delay of investment, in this alternative mineral developers rush drilling in

order to beat a negative ruling from USFWS.

Another paper focusing on regulatory uncertainty and �rm-decision making is
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Dorsey (2019)[15], who uses a di�erence in di�erences (DiD) approach to analyze

how power plants located in states exposed to either certainty or an uncertain policy

change their behavior. The Clean Air Interstate Rule stupulates that power plants

capture sulfur dioxide (SO2). 4 states challenged the ruling, arguing that due to

their geographic location it was unlikely they would increase concentration of SO2

in neighboring states. While their lawsuit proceeded, it was clear that other states

would have to comply with the new policy, while plants in the four challenger states

may not have to comply with the more stringent requirements. Dorsey �nds that

plants located in challenger states underinvest in scrubbing equipment compared to

non-challenger states.

Dorsey (2019)[15] provides two necessary conditions for identifying causal e�ects

of regulatory uncertainty:

1. Policy uncertainty is di�cult to measure. In the context of the sage-grouse,

the applicable question is: What's the likelihood the sage-grouse was going to

be listed by USWFS?

2. In most cases, all �rms in an industry or country are simultaneously exposed

to policy uncertainty, so establishing a credible comparsion group or counter-

factual is di�cult. In the context of the sage-grouse, the applicable question

is: What would have happened in sage-grouse territory in the relevant time

period without the uncertainty?

I believe my work adequately answers both questions. I measure the causal e�ect

of the potential listing of the sage-grouse on oil development in Wyoming, the state

most at risk due to the large local energy industry and the fact the state houses most
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of the world's remaining grouse. Using prior candidate review decisions of USFWS,

I estimate that there was a 53% chance - e�ectively a coin �ip - that USFWS

was going to list the sage-grouse. I use this �nding along with other local market

conditions to calibrate a statistical simulation measuring the timing, extraction,

and pro�tability of wells under exproproation uncertainty.

I derive theoretical conclusions using the optimal stopping work outlined by

Stokey (2016)[58] and Kellogg (2014) [35] and methodologically follow the spatial

and temporal DiD framework used by Dorsey (2019)[15] in his attempt to measure

the impact of uncertain enforcement of the Clean Air Act. Moreover, the uncer-

tainty in both papers was caused by the federal court system, although the ultimate

arbiter in the case of the sage-grouse is FWS. Exploiting the fact that only sage-

grouse habitat as de�ned by the USFWS and the state of Wyoming was at issue

for a listing, I also use regression analysis of real-world well-speci�c production and

drilling data and parcel lease auction data in Wyoming spanning 2001-2018, which

account for years before, during, and after the uncertainty.

Using a di�erence in di�erences model (DiD), I compare the change in both

spudding and well completion timing for wells located in core and non-core sage-

grouse habitat. I show that developers responded to the candidate review consistent

with economic theory given the constraints in production decisions inherent in the

oil industry. Di�erence in di�erences regression comparing the before/after time

periods of wells and parcels located inside and outside sage-grouse habitat show

that developers delay drilling when faced with uncertainty, but are unable to speed

up extraction of already drilled wells to beat the regulators' decision. Concerning

the timing of drilling, I estimate a hazard ratio of 57.6%, meaning that during
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uncertainty developers are only about half as likely to drill each period than under

a regime without expropriation risk. Additionally, �rms discount the value of future

development by 48% under the 50/50 chance of losing the right to drill sometime

in the future. These empirical results are consistent with my simulation as well as

recent research, and are robust to alternative speci�cations. Further, the statistical

simulation �nds that the vast majority of lower pro�tability is due to expropriation

of drilling rights, rather than delayed well drilling or wells that are never drilled at

all due to uncertainty.

This paper contributes to our understanding of energy investment under un-

certainty, speci�cally existential threats to business stemming from government

regulation and expropriation of property rights. These issues are becoming more

common as consumers and voters demand more of energy producers, and there

is a movement towards keeping mineral resources �in the ground�. My work pro-

vides another example of the `wait-and-see' models developed by Stokey (2016)[58]

and extends Kellogg's (2014) [35] work of these models in the �eld of energy de-

velopment, showing that threat of government regulation motivates �rms to delay

spudding and completion of wells in the same manner as price uncertainty. My

paper also serves as valuable support to the idea that �rms are unable to adjust

the rate of extraction, which remains an unresolved issue with prior studies split

on the issue. I also contribute to the nascent but growing literature using oil & gas

production microdata to glean insights into energy developer's behavior, and have

consolidated a unique dataset that can be used for other work on the Wyoming

energy market.

As mentioned above, beyond the timing of drilling, regulatory uncertainty might
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also a�ect the speed of extraction. Hotelling (1931)[30] provides that if extraction

costs are negligible, the price of an exhaustible resource rises with the interest rate

and the resource owner will extract the natural resource at the socially optimal rate

by shifting production from period to period to maximize the net present value of

the resource. In the case of a future expropriation event, a well operator would

speed up extraction if expropriation were suspected. Based on the predictions from

his purely theoretical model, Long (1975)[42] shows that oil �rms facing nationaliza-

tion speed up the production of liquid minerals. Firms increase extraction rates to

`beat' the regulator. In the face of a possible upcoming negative regulatory regime,

the operator spurs extraction in the interim to take advantage of the current favor-

able regulation. By speeding extraction, the operator is e�ectively maximizing the

present net value of his already-drilled well. The Long paper is especially germane

to the case of the sage-grouse. While nationalization of the oil industry and a listing

of an endangered species under the ESA are very di�erent drilling environments,

their impact on developers is the same: developers could lose the ability to drill

and extract.

While the theoretical result that �rms speed extraction under expropriation un-

certainty is consistent, empirical analyses have come to starkly di�erent conclusions

concerning whether developers speed development under uncertainty. The only em-

pirical analyses of expropriation other than Melstrom's work on well location comes

from studies of the Venezuelan oil nationalization of 1975. Melek (2018)[45] and

Portillo (2016)[49] �nd that the `pre-announcement' period, in which nationalization

was not o�cially planned but widely expected, caused faster extraction of liquid oil

reserves by developers to beat the announcement. However, recent empirical stud-
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ies concerning whether developers speed production during high price regimes and

slow extraction during low price regimes have called into question whether devel-

opers even have the physical ability to adjust rates. Anderson, Kellogg and Salant

(2018)[1] �nd that Hotelling's prediction does not match the data; developers do

not seem to be impacted by price or cost concerns at all. Instead, once a well

has been completed, �rms extract the maximum allowable amount each period as

constrained by the pressure remaining in the well. Anderson, Kellogg, and Salant

(2018)[1] show that extraction rates are purely a function of well mechanics, rather

than market environment, while drilling decisions are dictated by market prices.

They liken oil production to a `keg-tapping problem' rather than a `cake-eating

problem', alluding to the fact that the operator is simply deciding when to drill and

cannot control how much is extracted (eaten) per period: �Extractors in our model

choose when to drill their wells (or tap their kegs, per our analogy above), but the

maximum �ow from these wells is (like the libation from a keg) constrained due to

pressure and decays asymptotically toward zero as more oil is extracted�.

A similar result is found in gas extraction by Newell, Prest, and Vissig (2016)[48],

who analyze three key stages of production of Texas gas wells: initial investment

(spudding), completion (time when the well actually starts producing), and pro-

duction (the rate of extraction post-completion) in response to price changes. The

authors speculate that horizontal and/or fracked wells would elicit a stronger price

response on all dimensions than conventional wells because of the perceived greater

control operators have over new unconventional wells, suggesting that the techno-

logical improvement of fracking may increase observable responses to uncertainty.

Instead, they also �nd that the �xed investment is the only dimension that �rms
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can adjust. They do not �nd that �rms can extract gas faster, or complete wells

faster to enter the production phase quickly to take advantage of favorable prices.

As noted above, the results of my empirical analysis of extraction rates suggest

that developers cannot adjust extraction rates once a well is drilled, placing my work

in agreement with Anderson, Kellogg, and Salant (2018)[1] and Newell, Prest, and

Vissig (2016)[48]. Section 6 provides an explanation of why Melek (2018)[45], and

Portillo (2016)[49] interpret their results as an indication �rms speed extraction,

whereas in actuality they do not have the ability to do so. My conclusion is that

this is caused by their data, which is annual, nationwide data, rather than discrete,

well-speci�c data used in Anderson, Kellogg, and Salant (2018)[1] and Newell, Prest,

and Vissig (2016)[48] and this paper.

Anderson, Kellogg and Salant (2018)[1] and Newell, Prest, and Vissig's (2016)[48]

conclusion that drilling timing is the key choice variable of energy developers facing

uncertainty puts their research in the nascent but growing literature of �xed invest-

ment under uncertainty, which plays such a large factor in any oil & gas drilling

decision because modern oil wells cost $3-10 million1 and cannot be undone once

�nished.

The rest of the paper is organized as follows. Section 2 provides a robust overview

of the drilling environment to give the reader the necessary background to under-

stand the interplay between government regulation and drilling in Wyoming, includ-

ing an original analysis showing that the sage-grouse had an approximately 50/50

chance of being listed under the Endangered Species Act, making the species an

ideal candidate to analyze regulatory uncertainty. Section 3 provides a brief dis-

1http://www.bu�alobulletin.com/news/article_139d34f8-4c78-11e3-97dd-001a4bcf6878.html,
https://www.roseassoc.com/the-current-costs-for-drilling-a-shale-well/

14



cussion of the theoretical conclusions that are applicable to this case, and includes

an overview of a simulation exercise meant to elucidate the theory and provide a

comparison to the empirical results. Section 4 describes the source and structure

of the data used in this paper, as well as work I performed to ready the data for

analysis. In Section 5, I replicate the Melstrom (2017)[46] conditional logit discrete

choice model of well location and �nd evidence that �rms avoided habitat subject

to uncertainty, preferring to drill in sections without uncertainty. Section 6 con-

cerns my Cox proportional hazards tests showing that �rms delay well completion

due to sage-grouse uncertainty, and also DiD regressions showing that they do not

increase the rate of extraction. Section 7 includes DiD models �nding a decrease

in auction bid values commensurate with lost expected revenues due to regulatory

uncertainty. Section 8 provides concluding remarks. There are also two appendices:

the �rst provides details on the simulation of Section 3 and the second provides al-

ternative models of the regressions in Sections 6 and 7 as well as extra robustness

checks.

2 Policy and Institutional Background

2.1 Drilling Environment

Being a Western state, the federal government is the top landowner in Wyoming,

with 46.7% of state lands managed by the Bureau of Land Management (BLM),

the National Park Service, and the United States Forest Service2. The state itself

owns another 7.2% of land in Wyoming3.

2https://fas.org/sgp/crs/misc/R42346.pdf
3https://wgfd.wyo.gov/Public-Access/Access-Summary
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When considering drilling for oil and gas, well operators need to pass several

regulatory hurdles before drilling can begin. First, the operator must hold the

exclusive right to drill on a parcel of land, which is delegated by a lease. This

exclusive right is auctioned o� by state and federal agencies or is sold by a landowner

if the land is privately held. Leases obtained from the state of Wyoming receive a 5

year `primary term' (10 years for federal parcels) in which the operator is granted the

sole right to drill4. Firms use these �ve to ten years to test for mineral accessibility.

If the well is drilled and begins producing within the primary period of the lease,

the operating �rm retains the ability to drill until the pool is emptied, which is

called the `secondary period'5.

However, each well requires its own permit to drill, which is granted by a state-

level governing body following the submission of an APD (Application for Permit

to Drill). The APD process includes a rights-of-way analysis and surface use per-

mits check to con�rm the applicant has the legal right to drill. It also may include

an environmental review, in which the governing body con�rms that the proposed

drilling does not run afoul of any local, state, or federal laws concerning environ-

mental/wildlife conservation e�orts or water quality protections. All Wyoming-state

APDs are subject to this environmental review process, and regulations involving

the sage-grouse are arguably the most signi�cant aspect of the environmental re-

view. In Wyoming, the governing body is the Wyoming Oil and Gas Conservation

Commission (WOGCC), a department based in Casper to ensure the state's mineral

wealth is used for the bene�t of Wyoming citizens. If the state approves an APD,

the �rm has the right to begin drilling. See Table 1 for a succinct checklist of the

4https://frascona.com/sign-oil-gas-lease-long-will-last/
5A sample lease from the state government can be viewed here: http://slf-

web.state.wy.us/mlease/samplelease/oilandgas.pdf
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Table 1: The Extraction Process

steps needed to drill in Wyoming on state leases. Highlighted steps are evaluated

in response to regulatory uncertainty at some point in this paper.

The study of regulation in Wyoming oil & gas markets are relatively numerous

due to the importance of the energy industry in the state and the relative abun-

dance of Wyoming drilling data. A paper by Lewis (2015)[40] uses the setting to

evaluate the impact of government policy. He �nds that extra federal regulation

incentivizes �rms to expand exploratory drilling on state land instead of federal

land, as parcels near federal land presumably have similar productive capacity but

have lower costs and regulation impeding development. Piggybacking o� Lewis's

paper, a preliminary study by Edwards et al (2016)[17] also looks at the Wyoming

oil & gas market. They �nd that private and state land production and drilling is

more responsive to price changes in fossil fuels.

2.2 The Sage-Grouse in Wyoming

There are currently approximately half a million remaining sage-grouse, down

from a population of 16 million in the early 19th century6. Wyoming is home to

6https://www.audubon.org/news/trump-administration-moves-open-sage-grouse-strongholds-oil-and-gas,
https://www.eenews.net/landletter/stories/83743/
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54% of all sage-grouse in the world7, making it far and away the epicenter of the

endangered listing debate. Loud noises from drilling frighten the grouse, causing

them to scatter from their leks (groups formed for mating) where they can easily

be picked o� by predators8. Although noise is most prevalent during the initial

drilling stage of oil & gas extraction, there is signi�cant noise throughout the entire

extraction process, mainly from trucks servicing the rigs. Blickley, Blackwood, &

Patricelli (2012)[5] played simulated drilling and vehicular regular servicing noise

around leks in western Wyoming. The level of lek dispersion was signi�cant from

both types of noise, and was actually greater from the regular truck-related noise.

Additionally, sage-grouse get their name because they primarily live in and eat

sagebrush, which is often removed or even burned when drilling is expanded. A

February 2020 meta-analysis comparing the di�erent threats to the sage-grouse,

including sagebrush height, residential development, agricultural development, and

energy development. Smith & Olsen (2020)[56] found that energy development is

the single largest threat to the grouse.

The inherent trade-o� between species conservation and economic development

under the ESA is a well-studied literature. Brown & Shogren (1998)[7] write that �It

is no wonder the Act has proven controversial. Although the bene�ts of protecting

endangered species accrue to the entire nation, a signi�cant fraction of the costs

imposed by the Act are borne by private landowners. About 90 percent of the nearly

1,100 species of plants and animals listed as endangered or threatened under the

Act are found on private land. The combination of broad bene�ts and concentrated

costs can fan political �restorms.� They also state that the ESA is the �most

7https://www.eenews.net/landletter/stories/83743/
8http://commongroundrising.org/oil-and-gas-noise/
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comprehensive of all our environment laws� and is the example of �one of the most

extreme forms of government intervention�, because the ESA is one of the few laws

with the ability to completely choke o� otherwise legal private commercial activity.

Moreover, the `cost' side of including animals on the ESA is often overlooked.

Aufhammer et al (2020)[2] explain that �The federal government maintains that in

most situations, its designation of critical habitat has little economic consequence.

This stance is repeated in dozens of agency analyses of critical-habitat designation.

However, the government's arguments on this point are theoretical, not empirical.�

In fact, regulators cannot consider costs at all when considering whether or not

to list a species under the ESA. Some economists have sought to �ll in this gap.

Perhaps the most well-studied cost of listing is that borne by home and landowners

whose property is now less valuable due to development restrictions on construction

and natural resource extraction. Aufhammer et al (2020)[2] �nd that land under

ESA mandate loses roughly at least half its value. Zabel and Patterson (2006)[63]

note that the e�ect of critical habitat designation is not limited to just price level

impacts, �nding that the critical habitats reduce housing supply by 37% in the long

run, and that the e�ect is homogeneous for all sizes of habitat.

It is hard to overstate how big a threat the sage-grouse is to the state of Wyoming.

Contemporaneous news reports write that �[The grouse] is arguably the biggest

Endangered Species Act decision in history. At stake is the survival of an iconic bird

whose numbers tumbled in the 20th century after settlers mowed down sagebrush

with cows, plows and drill pads...The Fish and Wildlife Service's decision will be

the most scrutinized ESA verdict since 1990, when it listed the owl as threatened in

19



the Paci�c Northwest, decimating the region's timber industry�9. Likewise, listing

the greater sage-grouse could tie up access to 165 million acres of the West, causing

hardship for ranchers, farmers and energy producers. Extractive industries comprise

over 20% of the state's GDP and nearly 7% of the workforce. It is by far the largest

coal-producing state in the nation10 and is the eighth-largest producer of both

natural gas and crude oil11. All of these industries would be de-facto shut down

within sage-grouse territory if the bird is declared active on the Endangered Species

List. The BLM would not be able to lease sage-grouse habitat, and both the state

and the FWS would be required to develop a comprehensive recovery plan that

would almost certainly severely curtail if not outright ban drilling on sage-grouse

territory12. Scott Streater writes that �[A]n ESA listing would force states like

Wyoming with substantial sage-grouse populations to adopt sweeping conservation

measures that could cripple not only oil and gas activity but all forms of energy

development�13. While projecting loss of sage-grouse habitat across Western states,

Copeland et al (2009)[10] warn that �The economic rami�cations of listing species

are substantial with estimated costs of recovery plans and their implementation

reaching into the multi-millions, if not billions of dollars for wide-ranging species

such as sage-grouse.� In an indication of how serious the issue is, Copeland et. al

note that lease buybacks and even revocation of development rights were a possible

mitigation strategy to protect the grouse. Perhaps the most likely outcome is a

drilling ban near breeding grounds during mating season (February-June)14.

9https://www.eenews.net/greenwire/stories/1060019129/
10https://revenuedata.doi.gov/explore/WY/
11https://www.wsgs.wyo.gov/energy/oil-gas-facts
12https://www.fws.gov/endangered/esa-library/pdf/listing.pdf , https://www.eenews.net/greenwire/stories/72272

, https://www.fws.gov/endangered/what-we-do/listing-overview.html
13https://www.eenews.net/landletter/stories/83743/
14https://www.eenews.net/greenwire/stories/16841/
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The e�ects of a listing would be widely felt throughout the state. Bob Budd,

executive director of the Wyoming Wildlife and Natural Resource Trust Fund said

that, �If that [listing] happens everybody is a�ected. If you're a school district, your

revenues just went down. If you're a merchant, you're a�ected. If will a�ect every

business in this state15.� He references that not only are mineral developers' jobs at

risk, but also those who depend on the industry, which include local schools whose

revenues are �nanced by mineral leasing.

The state of Wyoming takes the sage-grouse threat seriously, and its Game and

Fish Department (WG&FD) is focused on sage-grouse management, devoting al-

most $2 million per year to population management and territory monitoring16.

Dr. Holly Copeland, the lead author of a study projecting sage-grouse populations

impacted by mineral development, saluted Wyoming's mapping of sage-grouse ter-

ritory, as the state was the �rst to widely and comprehensively map sage-grouse

habitat and breeding grounds17.

2.3 The Sage-Grouse and USFWS

Figure 2: Sage-Grouse Uncertainty

15https://www.wylr.net/wildlife/182-sage-grouse/1750-sage-grouse-core-areas-compromise-private-leases
16https://wgfd.wyo.gov/WGFD/media/content/PDF/About%20Us/Commission/WGFD_ANNUALREPORT_2018.pdf
17https://www.eenews.net/landletter/stories/83743/
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In 2005, FWS declined to add the sage-grouse to the endangered species list,

e�ectively keeping regulations as they were previously. However, on December 4,

2007 a federal judge in Idaho ordered that this decision be reconsidered due to a

failure on the part of FWS to consider the `best science' at hand when evaluating

the impact energy development has on the grouse18. This prompted a review by

FWS on March 23, 201019, when the U.S. Fish and Wildlife Service (FWS) declared

the sage-grouse a `candidate species' under the Endangered Species Act.

The immediate e�ects of being listed as a `candidate species' can be summarized

succinctly: there aren't any. There are no extra protections a�orded to candidate

species20, and although they are supposed to be subject to a �nal decision within a

year of being placed on the list, this deadline is rarely met in practice21.

Instead, candidate species are placed in limbo, and a candidate species could be

de-listed or declared endangered at any time22. FWS annually publishes the relative

priority of di�erent species in their Candidate Notice of Review, rather than move

down the list in sequential order of the species being added to the list. More critical

species are placed higher on the list, expediting their review. From October 2011

on, the greater sage-grouse was given a listing priority number (LPN) of 823. LPNs

are measured on a scale from 1-12, with 1 being the most likely to trigger inclusion

18https://www.eenews.net/greenwire/stories/59554
19https://www.eenews.net/landletter/stories/72825
20The only new requirement of becoming a `candidate species' is that the state and BLM would be required to

notify FWS of any new development activity occurring on review territory, although FWS would be powerless to
stop it https://www.eenews.net/landletter/stories/87950/

21https://www.eenews.net/landletter/stories/82028/
22In 2014 USFWS agreed to a unique settlement with environmentalists that put a 1-year

time limit on a �nal listing decision. Before that agreement, there was no implicit or ex-
plicit deadline for FWS. Additionally, there was doubt as to whether FWS would abide by
this timeline even through 2015. See: https://www.eenews.net/greenwire/stories/1060005729/ ,
https://www.eenews.net/greenwire/stories/1060019129/

23https://www.federalregister.gov/documents/2011/10/26/2011-27122/endangered-and-threatened-wildlife-and-
plants-review-of-native-species-that-are-candidates-for
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on the ESL, and 12 being the least likely. Three factors determine which LPN is

given to each species:

1. Magnitude of threat: �Species facing the greatest threats to their continued

existence would receive highest listing priority24.�

(a) High

(b) Moderate to low

2. Immediacy of threat: �Species facing actual, identi�able, threats are given

priority over those for which threats are only potential or that are intrinsically

vulnerable to certain types of threat but not known to be presently facing

such threats. In assigning a species to a priority category under immediacy of

threat, the Service would consider the known occurrence or lack of documented

detrimental trade or harvest, habitat modi�cation, signi�cantly detrimental

disease or predation, and other present or potential threats25.�

(a) Imminent

(b) Non-imminent

3. Taxonomy: �[Taxonomy] is intended to devote resources on a priority basis to

those species representing highly distinctive or isolated gene pools, as re�ected

by the taxonomic level at which they are recognized. The more isolated or

distinctive a gene pool, the greater contribution its conservation is likely to

make to the maintenance of ecosystem diversity.�

(a) Monotopic genus

24All quotes in this section sourced from: https://www.fws.gov/endangered/esa-
library/pdf/1983_LPN_Policy_FR_pub.pdf

25Emphasis my own.
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(b) Species

(c) Sub-species

Note that these three criteria are hierarchical in order of importance. Thus, a sub-

species facing a non-imminent but high threat of extinction would be considered

more important than a monotopic genus facing an imminent but moderate to low

threat of extinction. Since the greater sage-grouse is not the only species in its

genus and USFWS has determined that it is facing an `imminent but moderate to

low' threat of extinction, the greater sage-grouse received a score of 8. This suggests

that while sage-grouse population numbers may not be so low as to warrant a top-

rating, the species is at a tipping-point, and continued habitat destruction could

cause a sudden collapse of the remaining population. This score, along with a

short written explanation of USFWS's decision, remained unchanged each year on

the Candidate Notice of Review from 2011-2014. The note read, �We consider the

threats to the greater sage-grouse to be of moderate magnitude, because the threats

are not occurring with uniform intensity or distribution across the wide range of

the species at this time, and substantial habitat still remains to support the species

in many areas. The threats are imminent because the species is currently facing

them in many portions of its range. Therefore, we assigned the greater sage-grouse

an LPN of 8.� It is common for species with a relatively low rating to remain on

the candidate list for up to a decade26.

Please see Table 2 for a complete table of possible LPNs, ranked in order or

priority:

26https://www.eenews.net/landletter/stories/87950/
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Table 2: LPN Dichotomies
Magnitude Immediacy Taxonomy LPN

High Imminent Monotopic genus 1
High Imminent Species 2
High Imminent Sub-species 3
High Non-imminent Monotopic genus 4
High Non-imminent Species 5
High Non-imminent Sub-species 6

Moderate/low Imminent Monotopic genus 7
Moderate/low Imminent Species 8
Moderate/low Imminent Sub-species 9
Moderate/low Non-imminent Monotopic genus 10
Moderate/low Non-imminent Species 11
Moderate/low Non-imminent Sub-species 12

Of course, this chart says little about the absolute or relative chances that a can-

didate under review for inclusion on the Endangered Species List is actually listed.

One major element of evaluating the e�ect of regulatory uncertainty is the `amount'

of uncertainty. Generally, it could be assumed that as less information is known

about a certain regulation or policy, �rms will become even more cautious and fur-

ther avoid downside risk. However, measuring uncertainty in a systematic, objective

way is di�cult because there aren't many sources available to quantify uncertainty.

Most papers measuring policy uncertainty use �nancial markets as the source of

their variation and measurement, such as Kellogg (2014)[35] and Kelly, Pastor, &

Veronesi (2014)[36]. One alternative measurement is Baker et al. (2015)[4], who

use the quantity of news articles mentioning some form of `uncertainty' to generate

uncertainty measures and �nd that their measurement is a good proxy for uncer-

tainty in the economy. Their measurement accurately predicts disinvestment in

long-term �xed cost projects. While a �nancial measurement of oil futures like Kel-

logg (2014)[35] would be ideal, the focus of my work is too localized to be re�ected
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Table 3: LPN Summary Statistics

in international oil prices.

I performed an analysis summarizing the reviews of 445 species from 1999-2015

performed by the USFWS. Each year, USFWS publishes its list of decisions made

within the prior year and the remaining candidate species, along with its current

Listing Priority Number, in the Federal Register. I located these annual reviews

from 1999-201527 and connected listing decisions to LPNs. If a candidate had a

�uctuating LPN28, I used only the LPN most up-to-date before the listing decision

was made. A chart plotting the LPNs against the chance of being listed can be

found in Table 3. Note that being listed as `endangered' or `threatened' both count

as being `listed' on the Endangered Species List - they are simply di�erent levels

indicating the acuity of the threat. While being `threatened' does not come with

as strong legal repercussions as being `endangered', both categories legally demand

a plan to improve the species' chance for survival and would existentially threaten

drilling rights in Wyoming, most especially in core territory.

27The review from year 2000 could not be located.
28This is uncommon.
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Although the chance of being listed does not montonically decrease from LPN

1-12, there is a clear downward trend as a species receives a lower-priority rating.

The sage-grouse's annual LPN of 8 corresponds to a 52.6% chance of listing. Con-

temporary news articles make clear that no one was certain whether the sage-grouse

would be listed, matching up with an approximate coin �ip's chance based on re-

cent USFWS's listing history. Exploiting this roughly 50/50 possibility of listing

gives me the ability to analyze what could accurately be considered `true' regula-

tory uncertainty. The sage-grouse being listed for only 5.5 years is short relative to

other species under LPN 8, but is in line with species across the LPN spectrum.

It is perhaps peculiar that there does not appear to be a meaningful relationship

between assigned LPN and the median years from listing to decision, because the

`priority' in Listing Priority Number refers to both the urgency of the threat to

the species as well as to how quickly USFWS is expected to resolve its candidate

review.

I ran alternative analyses of the listing data to account for the possibility that

using all American species is inappropriate. I excluded non-continental species

from states and territories like Hawaii, Alaska, Guam, and Puerto Rico, because

those areas are disproportionately represented in the data (exceeding 25% of the

total species) and may not be strong indicators for the likelihood of the sage-grouse

being listed. Removing these species provided an exactly 50% listing percentage

for LPN 8, and a 70.8% chance of listing across all species. I also limited the data

to only the states harboring sage-grouse populations29, which eliminated 290 of the

29The states are: Arizona, California, Colorado, Idaho, Montana, North Dakota, Nebraska, Nevada, Oregon,
South Dakota, Utah, Washington, and Wyoming.
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total 445 species. Among the 17 species with an LPN of 8, 35.3% were listed, while

61.9% of the 155 total species were listed.

On July 29, 2015 the state of Wyoming released Executive Order 2015-430, which

detailed new protections for the sage-grouse in an e�ort to head o� federal interven-

tion that would shut down energy production across the state. FWS accepted this

compromise and declared the sage-grouse did not warrant inclusion on under the

ESA on September 22, 201531 which was made o�cial on October 2, 2015 32. This

decision explicitly named the regulations put in place by the state of Wyoming in

2015 as a reason to de-list the sage-grouse. The period between the Idaho District

Court mandating a new review and when the sage-grouse was removed from consid-

eration from the Endangered Species List (December 4, 2007-September 22, 2015),

forms the basis of my `uncertainty period', in which there was a high probability

that new wells would not be allowed on sage-grouse territory.

Although I am not studying the current e�ects of the sage-grouse, the battle over

its territory continues to this day. After Donald Trump was elected President in

2016, his administration began undoing protections instituted by this agreement33

in 2018, and the protections a�orded to the sage-grouse today look much like they

did before 2015. In February 2020, Judge Ronald Bush of the same U.S. District

Court of Idaho that required the initial review of the sage-grouse cancelled $125

million worth of leases on sage-grouse territory to protect the bird, with most of

the cancelled leases in Wyoming, and mandated that future sales would require an

extended comment period34.

30https://www.wyoleg.gov/InterimCommittee/2019/09-201908288-01LSOSageGrouseIssueBrief.pdf
31https://www.doi.gov/pressreleases/historic-conservation-campaign-protects-greater-sage-grouse
32https://www.federalregister.gov/documents/2015/10/02/2015-24292/endangered-and-threatened-wildlife-and-

plants-12-month-�nding-on-a-petition-to-list-greater
33https://www.blm.gov/policy/im-2018-026
34https://www.nevadaappeal.com/news/government/judge-cancels-oil-and-gas-leases-on-some-sage-grouse-

28



3 Model & Simulation

3.1 Theoretical Model

3.1.1 Value and Timing of Drilling

When considering the optimal investment time, I start with the basic model

provided by Kellogg (2014)[35]:

Vit = max
Ω

E

[
∞∑
τ=1

δτ−tIτπi(Pτ , Dτ )

]
(1)

The valuation problem above can also be expressed as the Bellman Equation

Vi(P,D, σ) = max
{
πi(P,D), δ · E

[
Vi(P ′, D′, σ′)

]}
(2)

In these equations, the well operator is selecting a time t to drill that maximizes

the present value of the well Vit. Ω is a decision rule specifying when the well should

be drilled as a function of Pt and Dt, which respectively represent the price of oil

and the dayrate cost of leasing a drilling rig, discounted by factor δ. Kellogg proves

that there is a speci�c `trigger' that determines the value of binary variable Iτ

providing the optimal outcome of the decision rule each period. As Kellogg notes,

the volatility of oil prices (σ) is present in the Bellman Equation but not the pro�t

function because it is a key determinant in optimal drilling timing. Kellogg notes

that a �rm will not necessarily drill at the �rst instance in which expected pro�ts

of drilling π ≥ 0, because by doing so the �rm is losing out on the possibility that

prices increase in the future - there is a `storage value' to waiting.

I expand upon the Kellogg model by adding the impact of the regulator on both

lands/
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valuation (expected discounted pro�t) and optimal drilling time. When deciding

whether to drill, a developer must consider two factors: 1) when a decision from the

regulator is expected, and 2) how likely it is that decision will discontinue drilling,

making any drilling investment lost past the decision time. I have simpli�ed the

equation by assuming a constant likelihood of listing l (�rms do not adjust their

initial belief of how likely a listing is) and assume that the listing decision time

follows an exponential distribution. This implies that the process is `memoryless',

meaning that each period �rms expect the decision to be made on average 1/λ

periods in the future if a decision has not yet been made, regardless of what period

the developer �nds itself in. Adjusting the `wait' decision of Kellogg's Bellman

equation for this consideration results in the following equation:

E
[
Vi+1(P ′, D′, σ′)

]
= δ
[
e−λVi+1 + L0(1− e−λ)(1− l)

]
(3)

There are two terms in this equation35. The �rst, −e−λVi+1, indicates the possi-

bility that the regulator will not make a decision in the next period either, allowing

the �rm to play the decision game again with the same parameters. The �nal term,

L0(1− e−λ)(1− l), represents the value of drilling after a favorable decision in the

next period multiplied by the likelihood the sage-grouse is not listed. The value of

drilling post-decision with no restrictions, L0, is equal to the discounted pro�t of

future production, or
∞∑
i=1

PiQi −Di.

Breaking out Equation 3 into corresponding period-speci�c values, I consider a

mineral developer estimating the value of oil from a given well drilled in the present

period t. The well is expected to produce into the future, with future production

35Note that the possibility that the sage-grouse is listed and the right to drill is revoked is not included in this
optimization problem because that state holds no value to the developer.
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discounted by factor δ. Each period i's production depends primarily on that

period's revenues minus costs, or PiQi − Di. I have simpli�ed this expression of

period-speci�c pro�t to πi in the equations below.

0. π0

1. δ
[
e−λπ1 + (1− e−λ)(1− l)π1

]
2. δ2

[
e−2λπ2 +(1−e−λ)(1− l)π2 +[(1−e−2λ)− (1−e−λ)](1− l)π2

]
= δ2

[
e−2λπ2 +

(1− e−λ)(1− l)π2 + (e−λ − e−2λ)(1− l)π2

]
3. δ3

[
e−3λπ3 + (1− e−λ)(1− l)π3 + [(1− e−2λ)− (1− e−λ)](1− l)π3 + [(1− e−3λ)−

(1− e−2λ)](1− l)π3

]
= δ3

[
e−3λπ3 + (1− e−λ)(1− l)π3 + (e−λ− e−2λ)(1− l)π3 +

(e−2λ − e−3λ)(1− l)π3

]
For each speci�c period i > 0 in the future, the element e−iλ represents the prob-

ability that a listing decision has not been made. The developer is free to drill

without restriction if a decision is still forthcoming.

Summing together all periods from 0 to ∞, the total discounted present value

of drilling over all periods (Π) starting in the current period is:

Πi = π0 + δt
∞∑
t=1

([
e−tλπt +

t∑
i=1

(e−(i−1)λ − e−iλ)(1− l)πt
])

(4)

Note that there is a double summation in this equation. In any period t, the

discounted pro�t includes both the value of the production that period if a decision

has not been made, as well as the expected production dependent on which period

the regulator made a listing decision discounted by the likelihood of a favorable

regulatory decision. The developer wants to drill on a parcel it considers either
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unlikely to be listed at all, or not listed for many periods. The developer wants

to avoid drilling and then soon have USFWS revoke its right to �nish drilling, or

curtail extraction so severely that the well is not pro�table to operate.

3.1.2 Comparative Statics

Comparative statics concerning the likelihood and timing of the listing decision

behave as expected. Increasing the likelihood of listing decreases the value of a well,

and reducing the expected time before a decision lowers values as well.

Showing higher likelihood of listing → lower pro�ts is straightforward:

dΠ

dl
= δt

∞∑
t=1

([
πt

t∑
i=1

(e−iλ − e−(i−1)λ)

])
< 0 (5)

Equation 5 is unambiguously negative provided πt is positive, as the inner sum-

mation is a sum of negative values. Thus, increasing the likelihood of listing leads

to lower pro�ts.

Likewise, a shorter wait time lowers pro�ts:

dΠ

dλ
= δt

∞∑
t=1

(
πt(−e−λtt) +

[
(1− l)πt

t∑
i=1

(i− 1)e−(i−1)λ − e−iλi
])

< 0 (6)

Equation 6 is unambiguously negative provided πt is positive. The outer summa-

tion is unambiguously negative, because the expression e−λt multiplied by a negative

number results in a negative number. The inner summation is also unambiguously

negative, because the �rst term, (i − 1)e−(i−1)λ − e−iλi which simpli�es to −e−λ

because i = 1, is always negative. Terms after the �rst may be positive or negative
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depending on λ, but their summation will never exceed the value of the �rst term

in the series, −e−λ36, ensuring the inner summation is negative as a whole. This

relationship holds for any value of λ, including times when λ > 1 (implying the

decision is expected to come before the end of the �rst period).

Thus, since both the inner and outer summations are unambiguously negative,

the derivative is negative and an increase in λ causes pro�ts to fall. This conclusion

is logical. λ represents the inverse of the expected decision wait time, so a higher λ

represents a shorter wait time for a decision, lowering the time in which �rms have

the ability to operate without obstacles.

3.2 Simulation

3.2.1 Introduction

Using the Kellogg paper as a guide, I ran a theoretical simulation using agent-

based modeling (ABM) to estimate how developer behavior changes under the

threat of listing activation. Like Kellogg, I am interested in developer pro�ts, but

the primary goal of the simulation is to determine how drilling timing changes with

a change in the developers legal ability to drill in the future.

The simulation models the role of 2,500 distinct risk-neutral well owners, who

determine the optimal time to drill (or whether to drill at all) based on current and

future expected market conditions like price, drilling costs, volatility, and drilling

regulations. The goal of each developer is to maximize the expected value of the

well by drilling at the most pro�table time given their contemporaneous expecta-

tions of how market conditions will evolve. Despite the operator discounting future

36That is to say, for any λ, t, and i, e−λ>
t∑
i=2

(i− 1)e−(i−1)λ − e−iλi
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revenue streams, the optimal drilling period is not necessarily the initial period, be-

cause price and cost volatility (and in my work, threat of expropriation) produces

a `storage value' that may make waiting for a future period more valuable. For a

detailed explanation of the simulation, see Appendix A.

3.2.2 Results

Results match the theoretical predictions - the uncertainty due to the sage-

grouse listing is simulated to decrease pro�ts and delay drilling. Speci�cally, the

uncertainty causes a 5.4 month delay in spudding (a 7.8% increase in wait time),

a $165,805 loss in expected pro�t per well (a 30.1% decrease in value)37, and the

average well is anticipated to produce 22,000 fewer barrels of oil (a 42.5% loss)

across its lifetime due to restrictions on extraction38. Additionally, 2.6% of all

wells would have been drilled without uncertainty, but are not drilled under ex-

propriation uncertainty. In the empirical section of this paper (Sections 7 and 6),

I compare real-world data from Wyoming to these simulation results. Alternative

parameterizations of the model and full results are presented in Appendix A .

4 Data

To estimate the e�ect listing uncertainty had on drilling timing, extraction rates,

and bidding behavior, I used data from Wyoming state government agencies. The

Wyoming energy market is studied relatively often by researchers because of the

high-quality data available on state o�ce websites. All data used in this paper is

37If only non-dry wells are considered, the loss in pro�t is $453,405, corresponding to a 48.0% decrease in value
38Note that extraction rates per active well remain constant - �rms do not `speed' extraction in the simulation.

The simulation does not allow developers to adjust or control extraction rates. Initial production and extraction
rates are given exogenously.
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publicly available at the links provided below in Section 4.1. In order to determine

the e�ect the uncertainty had on these developer decisions, I need information

detailing when and where wells were spudded and completed, the monthly rate of

extraction of liquid minerals, the individual bids of parcels at auction and where

the parcels were located, and geodata on state-de�ned sage-grouse territory.

4.1 Data Sources

There are three primary data sources used in this paper:

1. Wyoming oil drilling and production data, provided by the Wyoming Oil and

Gas Conservation Commission (WOGCC)

2. State and federal lease sales in Wyoming, provided by the Wyoming O�ce of

State Lands and Investment (WOSLI) and the Bureau of Land Management

(BLM)

3. Sage-grouse core and secondary territory, provided by the Wyoming Game and

Fish Department (WG&FD).

Additionally, I use several other public datasets in my well location discrete choice

model based on a similar model from Melstrom (2017)[46]. For this model described

in Section 5, I include the following publicly available controls in combination with

the primary data sources linked above:

1. Annual population of Wyoming counties for 2000-2009 and 2010-2019, provided

by the United States Census Bureau.

2. Sedimentary basin locations, provided by the United States Geological Service.

3. Oil re�nery locations, provided by the United States Energy Information Agency
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Table 4: Wait and Production Summaries

4. Soil moisture regimes, provided by the Sage Grouse Initiative

4.1.1 Drilling and Production Data

Applications to drill, spud information, and monthly well production data are

provided by the Wyoming Oil and Gas Conservation Commission (WOGCC). Any

well drilled in the state of Wyoming regardless of the lease landowner (even those

on private leases) requires approval from the WOGCC. Fields in the data include

API number (the unique identi�er assigned to each individual well in the United

States), monthly production, lease number, depth, elevation, APD received date,

spud date, completion date, land type, oil �eld location, and the developer's name.

The reader may be surprised to see that the total number of wells (3,272) is

72.9% of the APDs (4,491). This is not meant to suggest that Wyoming has a

disproportionate ratio of APDs that turn into wells. Instead, this is re�ective of
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the fact that I am only analyzing APDs submitted from April 2001 through 2018

while I am analyzing any well that was active after 1997 through 2018. Thus, there

are thousands of wells included that were spudded before the data begins but still

produce oil.

4.1.2 Lease Sale Data

To my knowledge, this is the only study to utilize Wyoming state oil & gas lease

sales, and only the second paper to use lease sale data generally after Fitzgerald

(2010)[21]. I construct a unique dataset by compiling lease-level data from federal

and Wyoming state sources. Federal lease sales listings and results are provided

for the Bureau of Land Management (BLM) and run from August 1998-June 2018,

available here. State lease sales listings and auction results are provided by the

Wyoming O�ce of State Lands and Investments (OSLI) and run from to April 2003

to July 2018. The state data is available for download here39. Fields included are the

parcel size, location (Township, Range, and Section), winning developer, winning

developer business location, the royalty rate of the parcel, and the date of sale.

Township-ranges (TRs) are subdivisions of states subject to the Land Ordinance of

1785, which includes all western states like Wyoming. They functionally serve as

latitude/longitude and generally split states into 6-mile by 6-mile rectangles. TRs

are used by the BLM and state & local governments as an organizational tool to

administer public lands. BLM and state mineral rights auctions provide the location

of parcels at the TR, section (1x1 mile subsets of the TR), and lot (irregular subsets

of the section) level. The royalty rate of a parcel indicates the percentage of future

39Wyoming has recently released data going back to 1960 if needed, but leases sold before 2003 would require
signi�cantly more data cleaning to be rendered reliable.
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Table 5: Lease Summary Statistics

mineral revenues that return to the landowner, whether that is the federal or state

government.

I programatically inputted standard lease results as best I could, but because

of the non-standard format of the data (each sheet of the lease data results are

di�erent), most of the lease results were inputted by hand. I spot checked several

hundred programatically standardized records for accuracy. I believe I am the �rst

researcher to construct a tabular form of this PDF data, other than Fitzgerald

(2010)[21], who analyzed a subset of 57 federal lease sales to determine whether

`split-estate' leases are seen as less valuable by developers.

One gap in the lease data is a lack of any data on the leasing of private lands.

Beyond moving from sage-grouse habitat to other parts of the state, there is also

the possibility that �rms engage private leases instead of bidding on state or federal

leases, moving out of the auctions entirely. However, there are several reasons to

discount this concern:

1. While it is true that private leases are not subject to all the regulations of state

and federal leases, they are by no means immune to sage-grouse rehabilitation
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measures40. For example, any restrictions on drilling instituted by USFWS if

the sage-grouse were declared endangered would also apply to private leases.

Thus, private leases are a poor substitute for state or federal leases if mineral

developers are seeking to avoid drilling restrictions.

2. Private leases make up an insigni�cant portion of the overall Wyoming oil

market. Only 0.06% of APDs submitted are for private leases41.

4.1.3 Sage-Grouse Territory

Sage-grouse territory was obtained from the WG&FD and is available for down-

load here, and makes a distinction between `core', `secondary', and `non-habitat'

territory that I leverage in analyses. The `core' territory is the primary habitat of the

sage-grouse and serves as their `breeding grounds'. The process to determine what

land is sage-grouse territory, and what territory comprises the breeding grounds,

was determined by the WG&FD with the permission of USFWS42. Sage-grouse gen-

erally live their entire lives within a three miles of their leks, and so conservationists

are able to create sharp determinations of what quali�es as sage-grouse territory.

If the sage-grouse were listed as endangered post-review by FWS, it is possible

that only the `core' territory will be impacted, with the `secondary' territory found

unwarranted for extra protection43. It is also possible that both the core territory

40https://www.wylr.net/wildlife/182-sage-grouse/1750-sage-grouse-core-areas-compromise-private-leases
41This was identi�ed by searching for `FEE' in the APD data, which Robert Meyer said would pertain to

privately-held parcels. I divided this number (40) by the total number of leases with a lease number (70,940). It is
possible that among APDs with no lease number given a signi�cantly higher portion of APDs are in privately-held
parcels.

42I have not found any evidence that Wyoming manipulated these boundaries for political or economic advan-
tage, and to the extent of my knowledge the core territory represents the precise breeding locations of sage-grouse
within the state. Moreover, the location of the sage-grouse appears to be a commonly-known fact among develop-
ers and state & federal regulators since at least 2003 (see https://www.eenews.net/greenwire/stories/19724/).
The map of core, secondary, and other territory has not changed substantially over time (see this link:
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_026366.pdf) for an earlier version of the
sage-grouse map.

43https://www.eenews.net/eenewspm/stories/88353 , https://www.audubon.org/news/the-
greater-sage-grouses-most-important-habitat-auction-block , https://eplanning.blm.gov/epl-front-
o�ce/projects/nepa/112234/167289/203768/20190221.Final.20184Q_201902SupplementalSale.EA.pdf
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and secondary territory will warrant inclusion for protection. I include a map of

core and secondary territory provided by the WG&FD. In this map, `core areas are

shaded blue, yellow, purple and gold, and `secondary' territory is shaded gray. Note

that all `core' territory is a proper subset of `secondary' territory.

Figure 3: Map of Sage-Grouse Habitat

Also of interest is a map of the oil and gas plays in Wyoming, which plots where

recoverable minerals can be found:
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Figure 4: Map of Wyoming Oil & Gas Fields

There is a high degree of overlap between the sage-grouse territory and the

oil & gas plays in Wyoming. This is because the sage-grouse are found in the

more hospitable, prairie-like basins of Wyoming, rather than in heavily forested

and mountainous areas like Yellowstone Park and Bighorn National Forest. These

are also the same areas dominated by oil and gas developers, as they contain more

accessible mineral deposits and are a�orded fewer protections by the government.

This overlap underscores the dire threat to the industry posed by the sage-grouse

but does raise the possibility that any analysis will be confounded by the fact that

there is virtually no territory that is not sage-grouse habitat but also an oil or gas

play. This is the primary reason why my analysis compares core territory to other

territory, rather than all sage-grouse habitat to non-habitat.
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Table 6: Core, Secondary, and Other Territory

Table 6 includes APD, production, and leasing data by territory. The relatively

low number of monthly and lifetime barrels extracted in core territory does not nec-

essarily suggest that core territory is of lower quality relative to secondary territory.

It also re�ects a lack of investment in core territory due to uncertainty, leaving a

disproportionate number of older and past peak wells. Additionally, there are some

drilling restrictions exclusively in core territory, such as extraction being limited in

mating season.

5 Well Location

5.1 Conditional Logit Discrete Choice Well Location Model

The similarities in the research setting between Melstrom and I are obvious. Both

his study and this paper investigate the e�ect of the `pre-listing' uncertainty of a

candidate for the ESA on the local energy industry. The central �nding of Melstrom

(2017)[46] is that energy developers avoided habitat of the prairie chicken in western

Kansas and Oklahoma as the likelihood of listing under the ESA became high.

Given the similarity of our research contexts, I replicate Melstrom's work for the

setting of the sage-grouse in Wyoming. Melstrom uses a conditional logit discrete

choice model of well location, interacting pre-listing time periods with core territory
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and set of controls. His set of controls includes:

� Population density

� Soil type

� Distance to nearest oil re�nery

� Density of natural gas plants

� Whether the parcel is located in a sedimentary basin

� Whether the spudding was during the uncertainty period, which is split into 3

parts based on the updating of the prairie-chicken's LPN

Like Melstrom, I �rst sample the section (a 1x1 mile square, and 1/36th of a

township-range) of all wells drilled in the Wyoming APD data spanning April 2001-

2019. Because my research questions concern the oil industry only, I limit the

drilled wells to the 4,790 oil wells drilled during my research period. Following Mel-

strom's methodology, using simple random sampling without replacement I sample

500 sections from Wyoming that are not the section selected for drilling to form

the alternative options in the discrete choice model. The sampling frame of the

alternative options excludes sections from federally managed land that is ineligible

for development due to conservation protections44. I repeat this process for all 4,790

wells to construct my regression dataset.

I use the same or similar controls as Melstrom to control for factors determining

well placement location other than the threat of listing on the ESA. Like Melstrom, I

control for whether a section already has seen drilling before the observed spudding,

44Speci�cally, I exclude sections located in Yellowstone National Park, Grand Teton National Park, Bridger-Teton
National Forest, Bighorn National Forest, and Shoshone National Forest.
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control for county population density and use county �xed-e�ects to control for the

time-invariant land quality of the section, control for year-quarter to account for

contemporary market conditions including oil price, measure the distance from the

section to the nearest oil re�nery, and I use a map of sedimentary basins to control

for whether the well was placed in an oil & gas basin. While Melstrom controls for

the land-cover type of the section to compare the agricultural value of the section,

I control for the Wyoming soil moisture and temperature regime of the section,

which is another stand-in for the agricultural value of a given section. Because I

am considering only oil wells, I do not control for the number of gas plants in the

section's county like Melstrom does. One signi�cant di�erence between Melstrom's

model and my own is that I cluster my standard errors on season, while he uses

lease. As described in detail in Section 6, I do not have access to the lease number

of nearly all observed wells.

As provided in Equation 1 of Melstrom (2017), the expected return of choosing

section j for a new well drawn from j = 1...Aalternative sections in my discrete

choice model is:

E[Πjt] = xjtβ + δ1reviewt ∗ habitatj + εjt = wjt + εjt

A developer will select section j for their well for which Πjt ≥ Πkt for all sections

j 6= k. Assuming IID extreme error values provides a conditional logit model for

the probability of selecting any section j for drilling:

Pjt = eWjt

ΣA
k=1e

wkt

Πjt represents the pro�t of drilling in section j in quarter t. Reviewt is a binary

indicating whether spudding occurred during the review period from December

2007-September 2015 and habitatj is a binary indicating whether the section falls
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within core sage-grouse habitat. The interaction of these terms forms the key

variable in the discrete choice model. A positive coe�cient on the interaction

term indicates that developers are more likely to drill in core habitat during the

uncertainty period, perhaps to pre-empt a decision by USFWS or to intentionally

engage in habitat destruction to such a low level that preservation of the sage-

grouse is not warranted, while a negative co�cient indicates they avoid the core

habitat out of fear of losing drilling rights. The vector of controls Xjt include the

contemporaneous population density of the county section j is located in, whether

section j is located in a sedimentary basin, distance in miles from the section to

the nearest oil re�nery, �xed-e�ects for the predominant soil type of section j, and

county and season �xed-e�ects.

My primary model excludes wells that are not in sage-grouse breeding habitat

but are nearby the habitat. If a �rm wanted to drill on sage-grouse territory but was

concerned of running into regulatory issues, the �rm may simply relocate drilling

to just over the border. If that were the case, the di�erence in treatment e�ect

observed in the model may not be generalizable to the whole state, but could be

limited to just the area around the sage-grouse territory. To prevent this possibility,

my model is run with a 5-mile bu�er. The 5-mile bu�er was selected for the base

model because it is just wide enough to ensure that any signals gleaned from one

well could not be applied to wells outside the bu�er distance (see Lewis (2015)[40]].

The primary model is run with several robustness checks in the discrete choice

model as well as models used later in the paper:

1. An alternative time period, with the `uncertainty period' running when the

review actually began (March 23, 2010), rather than when the Idaho District
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Court mandated a review (December 4, 2007).

2. All data included (removes the 5 mile bu�er). I also checked the e�ect of using

3 and 10-mile bu�er zones for the primary speci�cation and received similar

results.

3. A `spatial discontinuity' regression model, including only parcels within 10-

miles of the core territory border. This model has the advantage of limiting

analysis to reasonably similar plots of land. A `spatial discontinuity' model is

not my main model, because I anticipated it would overstate the e�ects of the

uncertainty for the reason just described: a developer could reasonably expect

to have the same chance of hitting oil on a parcel just over the sage-grouse

border and would activity to that territory.

(a) Please see Appendix C.2 for an explanation of why I often see smaller

e�ect sizes in the spatial regression discontinuity model than the primary

model.

While other analyses also provide an alternative with developer controls, the loca-

tion selection analysis did not converge for that speci�cation.

One weakness of di�erence in di�erences analysis is the possibility that results are

driven by outlier observations. The reliance of a regression's outcome based on spe-

ci�c observations is called its `leverage', and di�erence in di�erences is particularly

susceptible to high leverage observations when treatment e�ects are heterogeneous

across the treated. Young (2019)[62] shows that this e�ect is pervasive across many

DiD analyses in major economics journals by removing one observation and then

re-running experimental economics regressions. As Chapters 2 and 4 use di�erence
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in di�erences, an extension of this dissertation would be to use a jackknife procedure

to determine how much my analyses are impacted by leverage.

5.2 Results

Melstrom's paper found di�ering e�ects of potential listing dependent on time

period. During the time period when the prairie chicken was �rst announced as

a candidate for review, USFWS designated the prairie chicken as an LPN of 8,

meaning the threat to the prairie chicken was imminent but not gravely serious.

This is the same designation received by the sage-grouse through its entire can-

didacy period. During this period, Melstrom �nds weak evidence that developers

were actually more likely to drill in prairie chicken territory and engage in habitat

destruction. Unlike the sage-grouse, the prairie chicken saw a change in LPN in

December 2008, when the bird received an elevated LPN of 2, meaning that the

prairie chicken was experiencing an imminent and grave threat to its existence as

a species. Melstrom �nds that developers avoided core habitat during this period.

Like Melstrom, I �nd somewhat ambiguous results from the location discrete

choice model. My results di�er based on what iteration of the model (base, alter-

native time period, no bu�er, regression discontinuity) is considered.

The primary base model, along with the alternative time period model, provide

strong evidence that developers avoided sage-grouse habitat during the uncertainty

period. The expropriation uncertainty makes developers nearly 90% less likely to

drill in sage-grouse habitat versus other land across the state. Firm conclusions are

tough to draw due to the �uctuating ratio of the coe�cients to the standard errors,
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Table 7: Location Selection Results
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although the data weakly suggests that �rms avoided locating wells in sage-grouse

habitat when faced with uncertainty. When compared with the Melstrom results,

the case of the sage-grouse provides further evidence that developers rationally

respond to the possible loss of extraction ability and pre-emptively avoid drilling in

the habitat of potentially endangered species.

Other variables mostly behave as expected. Being located in a section that's

already been drilled is a consistent and strong predictor of drilling likelihood, in-

dicating that drilling is spatially correlated due to the high probability that land

nearby other drilled parcels also contains oil reserves. Not surprisingly, population

density and distance to the nearest re�nery are negatively correlated with energy

development. There is an unexpected sign on being located in a sedimentary basin,

which should be correlated with development as per Melstrom. However, I see a

negative relationship between a section being located in a sedimentary basin and

oil development in all models45.

5.3 Parallel Trends

Figure 5 provides the seasonal rate of drilling likelihood by core vs. non-core

territory. I have averaged the percent of observations in each season (quarter) and

run a LOESS smoothing function through the scatterplot to evaluate a trend. This

is not a traditional parallel trends chart because by construction when one group

(core or non-core) experiences a higher percentage of sections drilled, the other

territory sees a decline. This is why there is a strictly negative correlation between

the two lines. However, the lines are not mirror images of one another because there

45Because of the high number of observations and the high number of sections on which I cluster errors, I was
not able to complete this model with an alternative in which developer characteristics are controlled for.
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are many more non-core observations than core observations.

Figure 5: Parallel Trends - Location Selection

The codependent determination of the drilling rates complicates a parallel trends

story, because by de�nition the trends cause one another. However, the visual is so

stark that there is no doubt that the assumptions of parallel trends does not hold

in the opposite direction, meaning that if anything the e�ect in the regressions is

understating the true e�ect. Before treatment in 2007, the rate of drilling in core

habitat was climbing while drilling outside of the habitat was declining, and the

rates were converging to each other. After treatment, these rates are reversed, and

drilling in core habitat collapses. This story is consistent with the regression results.
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6 Timing and Speed of Drilling

6.1 Timing of Drilling - Duration Model

To evaluate whether the sage-grouse caused �rms to either delay their drilling

decisions (the `wait-and-see' approach) or speed up their plans (the `hurry-up-and-

drill' approach), I utilize a Cox proportional-hazards model to estimate the di�erent

hazard rates between core sage-grouse territory and other territory as �rms decide

when to drill their well. In this section, I evaluate the entire drilling process, which

includes both the `spudding' phase and the initial production phase. `Spudding'

refers to the �rst moment a drill bit touches the ground, and the intial production of

oil is referred to as the `completion' of the well. Since `spudding' the well initiates the

completion stage, it is the primary choice variable developers adjust in response to

price or regulatory uncertainty. Developers optimizing when to spud the well, which

represents committing to an investment of several million dollars, must balance the

goal of extracting before the regulatory makes a potentially unfavorable decision

with the possibility of waiting out the uncertainty to avoid an enormous �nancial

loss.

As Newell, Prest, and Vissig (2016)[48] make clear, the developer could adjust

behavior on both the spudding and completion dimensions in response to a price

change, making both elements worthy of consideration on their own as well as in

tandem. While the primary choice variable is the spudding time, there is also

considerable variation in the initial production stage of drilling. Newell, Prest, and

Vissig (2016)[48] note that well characteristics like depth and horizontal length are

prime determinants of the time from spudding to well completion. Their paper
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also notes that there are characteristics that can be changed, which would speed

or delay the completion. For example, fracking the well increases time between

spudding and completing the well. Market conditions also play a factor, with high

prices incentivizing operators to spend extra to speed production, while a lack of

available rigs or labor will impede completion.

In this sense, uncertainty plays the same role as the `high-price' state, though

for di�erent reasons. Developers have an incentive to beat the regulator's decision,

either because they may believe an already-producing well will evade regulation,

or to take advantage of a more favorable regulatory regime that could change at

a moment's notice. However, the uncertainty provides another opposing aspect to

the optimal completion decision - the `storage' value property of deciding when to

spud a well also pertains to the timing between spudding and completion. Slowing

completion - for example, by waiting for rig prices to fall and not spending extra

to rush production - are ways developers could try to wait out the uncertainty.

Hazard modeling is the same strategy Newell, Prest, and Vissig (2016)[48] used

to determine whether �rms speed or slow the completion of wells to take advantage

of favorable gas price regimes, and is often used in survival analysis modeling.

The Cox proportional hazards model provides estimates of what contributes to the

`failure' or `death' of a process. In my model, the completion of a well represents

this `failure'. As mentioned above, there could be a `wait-and-see' or `hurry-up-and-

drill' story for both the spudding and/or the completion stages of the process, and

my main results represent the entire life-span of the decision from APD submission

to completion. In Appendix C I provide the breakout of these decisions separately,

rather than the joint process.

52



The full Cox hazards model equation being estimated is:

CompletionDaysw = Seasons + Fieldi + Interactionw,s +WellControlsw

The well characteristics of well w include:

1. Depth of the well, as well as a quadratic term Depth2

2. Topological elevation of the well, as well as a quadratic term Elevation2

3. A binary indicating whether the well is drilled horizontally

4. The land type of the well

This equation will uncover the hazard rate of completing a well in sage-grouse

territory under uncertainty versus the same well being located elsewhere or in a

di�erent time period. Because of this structure, the hazard rate represents the

chance that a well subject to expropriation threat is completed in the next period

(in this case, day) relative to the same well not facing uncertainty, controlling for

all other factors.

Dependent variable CompletionDaysw is the number of days between APD sub-

mission and well completion. Field �xed-e�ect i represents a vector of binaries

indicating the oil �eld i containing well w. This �xed-e�ect controls for the inher-

ent, time-invariant production potential of the area the well is located. Errors are

clustered at the �eld level46. The Season �xed-e�ect controls for market conditions

in the oil & gas industries at the time the application to drill was submitted. They

are at the quarter-annual level, although yearly and monthly controls produce sim-

ilar results47. The interaction term is the primary variable of interest, and takes
46There is an argument to be made that errors should not be clustered at all, since the `treatment' of being in

sage-grouse territory is not dependent on any speci�c geography like an oil �eld. I selected �eld as my level of
clustering to follow Kellogg (2014), who clusters at the �eld level when performing survival analyses in his study
of the Texas oil well market.

47Seasons are selected as the primary time controls to better match with the price regressions (Section 6), which
have to be at the quarterly level.
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a value of 1 when the well w is located within core sage-grouse habitat and the

APD is received during the uncertainty period (December 4, 2007 to September

22, 2015). A negative value on this variable indicates there is slower `failure', and

hence less drilling, due to the uncertainty, lending credence to a `wait-and-see' ef-

fect. Conversely, a positive coe�cient indicates that �rms speed up drilling in order

to `hurry-up-and-drill'.

Ideally, I would measure the amount of time from when a developer obtained

a lease through when it spuds the well. This is the complete time between when

testing for mineral deposits can commence and when the �rm makes the large �xed

investment of about $3 million. All APDs in Wyoming are required to submit the

lease number the potential well was leased under, but in practice this information

is rarely provided and never enforced. Of the APDs the state of Wyoming received,

23.0% were submitted with no lease number whatsoever, and overall I could only

connect 7.7% of APDs to a speci�c lease48. Because of the large amount of apparent

missingness in the APD and spudding data, my `wait-and-see' analyses are based

on the time between APD submission compared to completion time, as those events

do not require joining to the lease data.

While this does create some measurement error in the dependent variable, the

error should be limited for several reasons. Because Wyoming is a `�rst-to-�le

state'49, there is an enormous backlog of APDs50. Moreover, due to the the trivial

cost of the APD ($500)51, �rms will usually submit an APD immediately upon

48I discussed this issue with Robert Meyer of the WOGC. He con�rmed that the lease number is required, but
that it is not enforced and sometimes applications do not list which lease number to which the parcel applies.

49The �rst applicant to submit an APD becomes the �operator� of the surrounding drilling and spac-
ing unit (DSU), allowing that individual or company to dictate drilling in the immediate area, see
https://trib.com/business/energy/energy-journal-state-regulators-establish-new-drilling-rules/article_b922d8c7-
5244-5997-a497-5469bbec2b1a.html

50There is a similar APD backlog for the BLM. See https://www.eenews.net/greenwire/stories/1059946951/
51https://www.wyomingbar.org/wp-content/uploads/Intro-to-Wyomings-Air-Quality-Division.pdf
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Table 8: Drilling Timing Results

acquiring a lease. No �rm wants to be in the position to not be able to drill because

they are last in the list of thousands of APDs to review, especially while they are

on a 5 or 10 year `use it or lose it' primary term (see: Hernstadt, Kellog, & Lewis

2020 [27]). Wyoming legislators are considering legislation to vastly increase the

cost of APDs to disincentivize stockpiling and incentivize �rms to focus only on

promising wells52, and in 2019 (beyond the end of my data) Wyoming passed a new

directive that nearby potential operators can challenge unused APDs53. Because

�rms submit an APD for a parcel as a matter of routine I consider the submission

date to be a good proxy for the date the parcel was acquired.

6.2 Results

52https://trib.com/business/energy/wyoming-s-oil-and-gas-permitting-war-sparks-legislation/article_e25886f8-
1015-56c9-9121-151a4645e8b8.html

53https://trib.com/business/energy/energy-journal-state-regulators-establish-new-drilling-
rules/article_b922d8c7-5244-5997-a497-5469bbec2b1a.html
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Results from Kellogg (2014) [35], Stokey (2016)[58], and Dorsey (2019)[15] in-

dicate that the `wait-and-see' e�ect can be signi�cant, and my results lend further

support to their conclusion. Results indicate that �rms do indeed `wait-and-see'

when considering when to drill, rather than `hurry-up-and-drill' to get in as quickly

as possible. The hazard rate is consistently negative and statistically signi�cant

at the 0.1% level, indicating longer waits to complete a well under sage-grouse un-

certainty even after controlling for other factors like land type, oil �eld, and time

period e�ects. The hazard rate of 58% indicates that at any period, a �rm in the

uncertainty area is only slightly more than half as likely to drill in the next period

as an identical �rm outside the uncertainty region. At its face the 58% hazard

rate is signi�cantly larger than the 7.8% increase in wait times as predicted by the

simulation, but a hazard rate is not a perfect comparison to a levels di�erence as

the measurements are qualitatively di�erent values. Importantly, the di�erences

in both the simulation and the Cox regressions measuring the di�erence in time

between submission and spudding show a statistically signi�cant increase in wait

times at least at the 5% level. Additionally, all robustness checks are negative and

signi�cant as well, and are similar in magnitude to the baseline model.

A breakdown of this process into its two component parts (APD submission

to spudding & spudding to completion), as well as the parallel trend charts, are

presented in Appendix C. Also presented in Appendix C are analyses investigat-

ing whether �rms adjust the design of their wells to account for uncertainty. For

example, drilling a horizontal well allows for more �exibility under di�erent future

regulatory regimes, but is signi�cantly pricier, exposing the �rm to higher potential

losses. In another test, I test for whether �rms adjust the extensive margin as well

56



- whether they drill at all. Lastly, I perform a check by splitting developers into

large and small categories. If small �rms are driving the delay, the `wait-and-see'

may be due to risk aversion, which is not an aspect in either Kellogg (2014)[35] or

Stokey (2016)[58]'s models. In the Appendix analyses, I �nd that:

1. Firms delay both component parts of drilling (APD submission to spudding &

spudding to completion) by a statistically signi�cant margin, rather than just

1 component.

2. Firms are less likely to drill horizontally/unconventionally under uncertainty

(conversely, they are more likely to drill conventionally/vertically).

3. There is no e�ect on well depth due to uncertainty.

4. Most speci�cations �nd that �rms are more likely to drill under uncertainty.

This is an unexpected result.

5. The `wait-and-see' e�ect does not appear to be due to risk aversion.

Of these conclusions, the �rst, that �rms delay both component parts of drilling

(APD submission to spudding & spudding to completion), is particularly impor-

tant. If only the �rst component (APD submission to spudding) saw delays, the

relationship could be due to the state government holding up approval on core ter-

ritory or developers undergoing more rigorous environmental reviews54, rather than

representing developers intentionally delaying spudding. Since I see a strong delay

in both parts, and in fact the delay between spudding and completion is the more

robust and stronger relationship, it is clear that operators are delaying development

even beyond what is required of them by regulators.

54https://www.nrc.gov/docs/ML1108/ML110830533.pdf
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6.3 Parallel Trends

The parallel trends charts of the drilling timing models show relatively constant

wait times for control observations (non-sage-grouse habitat) and see an increase

in wait times for treatment observations (sage-grouse habitat). The drilling timing

parallel trends chart is consistent with a story in which the e�ect of the uncertainty

is seen only in the treatment group.

Figure 6: Parallel Trends - Drilling Timing

6.4 Speed of Extraction - Methodology

But what about the rate of extraction itself? While the drilling timing decision

is perhaps the most important decision a developer will make, it is not the only

dimension the developer could adjust.

To evaluate whether �rms `speed up' extraction, I analyzed wells that were al-

ready drilled before the end of 2007 when the expropriation uncertainty began.
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These are wells which are sunk-costs from a drilling standpoint - since they already

have incurred the large upfront cost of drilling, the only costs are the (relatively)

trivial costs of maintaining a well. They present the ideal environment in which to

test the results of `Hotelling Under Pressure' versus the original Hotelling model,

because extraction costs are negligible and developers are faced with an unexpected

uncertainty shock.

Controlling for time since original spudding is critically important because re-

gardless of whether �rms have any behavioral response or even ability to change

extraction rates, the age of the well will be a primary determinant in extraction

rates. Since this data series is a panel dataset made of wells w across months m,

I control for the inherent productivity of every well through API number �xed-

e�ects. These �xed-e�ects also control for well characteristics like depth, elevation,

and land type. Errors are clustered at the API level. I also include month and �eld

�xed-e�ects. Month �xed-e�ects control for oil and gas prices, which will impact

production decisions if �rms actually have the ability to alter extraction rates (see

Newell, Prest, and Vissig (2016)[48]). If developers are able to adjust extraction

rates, a high oil price should speed extraction, and a high gas price should slow

extraction as they are substitutes. Depth, elevation, and land type are not directly

included in this equation because they do not vary along the same API.

ln(BarrelsExtractedi,m,w) = Agew,m + Age2
w,m + APIw + Interactionw,m +

Monthm + Fieldi + εi,m,w

6.5 Speed of Extraction - Results
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Table 9: Production Results

Regression coe�cients on the uncertainty interaction variable never approach

statistical signi�cance, and �uctuate around zero, indicating no relationship be-

tween uncertainty and production. My work corroborates Anderson, Kellogg, and

Salant (2018)[1] and Newell, Prest, and Vissig (2016)[48], refuting the theoretical

implications of Hotelling (1931)[30] and Long (1975)[42], as well as Melek (2018)[45]

and Portillo's (2016)[49] conclusion that extraction rates increase (see Section 6.5.1

below for a discussion). I �nd that �rms do not adjust the intensive margin, as I

�nd no evidence that extraction rates of already completed wells climb in the face

of regulatory uncertainty nor is completion of the well sped up under uncertainty.

While the theoretical models may approximate the oil industry in a world not bound

by geological physics, the inability of operators to control the pressure of their well

seems to render them incapable of responding to changing market conditions by
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Table 10: Production Results - Unconventional Wells

varying the rate of output of their wells. Instead, as shown in my drilling analyses,

�rms adjust the timing of their drilling to match market environments.

These results also compare favorably to the simulated results. My simulation

produced a 42.5% decrease in average extraction under uncertainty. However, this

e�ect is purely due to unfavorable regulatory decisions in the simulation that did not

occur in Wyoming. Simulations without a possible unfavorable decision indicated

no di�erence in production. See Appendix A for these simulation runs.

Unconventional wells drilled directionally are generally considered to be more

�exible in production (see Newell, Prest, and Vissig (2016)[48]), and would be more

likely to exhibit increased production under uncertainty. Given the extra control

developers have in unconventional wells, it is possible an e�ect could be observed

limiting observations to only unconventional wells. I present results limited to

unconventional wells in Table 10.
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Although coe�cients are now consistently positive (indicating quicker with-

drawal of liquid reserves), none are signi�cantly di�erent from 0, further supporting

the notion �rms are unable to adjust production rates at will.

As a robustness check, I also evaluated whether �rms cease production quicker

under uncertainty. This e�ectively tests the same question in another way - if

otherwise identical wells are drained faster (timed from initial production to �nal

production), this may represent operators successfully speeding up production to

beat the regulator. I �nd no evidence that wells under uncertainty are exhausted

quicker. For results, see Appendix C. The Appendix C contains one more test

related to production - the likelihood to `re-frack' a well. Wells can be refracked

in order to spur production quickly, and thus could be one instrument developers

use to beat the regulator to the punch on wells they have already completed. I

�nd strong and consistent evidence that developers refrack wells more often due to

uncertainty in horizontal wells only.

6.5.1 Discrepancy between prior expropriation work and this study + energy un-

certainty papers

Melek (2018)[45] and Portillo (2016)[49] both conclude that extraction rates

of oil increase during the `pre-announcement' uncertainty period before the 1975

Venezuelan oil nationalization. This result matches their theoretical and simulated

results, but con�icts with with my empirical results as well as those by Anderson,

Kellogg, and Salant (2018)[1] and Newell, Prest, and Vissig (2016)[48] that show

no change in extraction rates.
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Melek (2018)[45] presents a theoretical framework to evaluate oil developers'

incentives before the expropriation. Using a simulation and compilation of annual

nationwide data, Melek �nds that the push for nationalization of the Venezuelan

oil industry in 1975 caused multinational �rms to invest less in oil exploration, shed

workers (especially skilled foreign labor), and increase implied extraction rates of

oil in the `pre-announcement' period, or the years before the nationalization when

�rms suspected expropriation could be imminent. Melek also �nds that the industry

becomes 65% less pro�table due to the combined e�ects of expropriation uncertainty

as well as the nationalization itself.

Stressing the importance of considering expropriation as a protracted rather than

sudden event when considering causality, Portillo (2016)[49] also studies multina-

tional oil companies' behavior in the `pre-announcement' period. Portilli's the-

oretical and empirical results match Melek (2018)[45]: developers adjust the ex-

pected time-horizon of their mineral assets and raise the marginal extraction cost

by speeding extraction, even as they invest less in new exploration and development

of reserves.

The most likely explanation55 is that the apparent discrepancy between prior

work is that the studies focus on fundamentally di�erent questions. Melek and

Portillo assume that oil companies in Venezuela knew with near or full certainty

what date nationalization would occur. Indeed, this assumption is built into both

55A second explanation is simply that Melek and Portillo's extraction data do not actually show a consistent
increase in extraction rates. Rates peak in 1970, �ve years before the oil nationalization of 1975. Both authors
latch onto the earlier increasing rate of extraction as evidence that future expropriation is driving over-extraction
and appeal to the Reversion Law passed in 1971. This law dictated that control of reserves would revert back to the
government at the termination of the lease, reverting at the latest by 1983. This law implies that the expropriation
actually occurred before 1975. It is also important to note that the increase in extraction rates prior to 1970 may
not be causal, as there is no control territory to compare against Venezuelan extraction. Perhaps in the absence of
nationalization chatter extraction rates would have been even higher. Indeed, the growth rate of extraction rates
slows starting around 1960. The authors also interpret their data di�erently than may be expected. Melek claims
that extraction is speeding because extraction falls at a slower rate than the plunge seen in proven reserves - the
ratio of production to reserves increases through the entire time period. Portillo presents only years through 1970
when extraction rates peaked, claiming that developers always expected nationalization to happen by 1971 .
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of their theoretical and simulated models, while it is not assumed in my simulation

or empirics or other work on investment under regulatory uncertainty like Dorsey

(2019)[15] and Stokey (2016)[58]. This is important because Melek and Portillo

note that developers drill fewer exploratory wells under pending expropriation. Ex-

ploratory wells are meant to prove liquid reserves exist for future extraction, while

a developer drills developed wells on a pool it is already certain will provide a re-

turn. If we are to assume that developers know with near or full certainty when

expropriation occurs, it makes sense that extraction will increase, but not because

developers are spurring any given well to increase faster. Instead, they construct

more developed wells to deplete their pools before expropriation, and already drilled

wells will maintain their production path.

This is why it is important to note that Melek and Portillo are using aggre-

gated, nationwide production data. The production data source for both Melek

and Portillo is the Venezuelan Ministry of Mines and Hydrocarbons, Oil and Other

Statistical Databooks, and it provides nationwide data at annual levels. What is

happening at a macro-level may mask micro-level individual behavior. My work,

along with other work showing steady production, is at the well-month level, al-

lowing me to conclude that a given well does not adjust production rates. This is

why it is critical to have well-speci�c data when considering questions like rates of

extraction and drilling timing. Both Anderson, Kellogg, and Salant (2018)[1] and

Newell, Prest, and Vissig (2016)[48] also use well-level data and see no increase in

extraction rates. The only prior paper that has found adjustable extraction rates

using well-speci�c data is Rao (2018)[51]. She investigates developer response to a

windfall tax increase in California, and �nds that developers can limit production
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to time periods of low-taxation.

6.5.2 Parallel Trends

Although I did not �nd a signi�cant increase in extraction in response to the

listing threats, the parallel trends test is shown in Figure 7. In this parallel trends

chart, the horizontal axis is again time and the vertical axis is the log of barrels

extracted per month. There are signi�cantly more observations in this chart than

the prior parallel trends chart Because there are so many observations plotted in

these charts and the large majority of wells are `non-core', I have presented the

data in two charts. The �rst uses all the data of the production regressions, causing

the trend of the non-core territory to be tough to decipher. The second chart is

the same data with 90% of the non-core wells removed. The removed wells were

selected randomly.

In both charts, both the core and non-core wells exhibit a monotonically de-

creasing trendline through the data, suggesting that either extraction rates are

decreasing, old wells are not being replaced with new wells, or some combination of

the two. Additionally, the decrease in the trendline is steeper for core territory than

non-core territory throughout the time range, meaning that core territory is gener-

ally seeing a quicker reduction in extraction rates than non-core territory. From a

causal perspective, the charts are consistent with the regressions. Because there is

somewhat of a `�attening' in the trendline for core territory during the uncertainty

period relative to the certainty period and the non-core territory, the trendline sug-

gests that there may be a causal increase in extraction rates of a small magnitude

that cannot be di�erentiated from 0.
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Figure 7: Parallel Trends - Production

Figure 8: Parallel Trends - Random Sample of Production
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7 Does uncertainty a�ect bidding?

Expropriation uncertainty doesn't just impact developers who already hold min-

eral leases - it also a�ects future lease sales. This is because leases (the exclusive

right to drill on a parcel) represent the discounted expected value of extracted min-

erals less the cost of extraction. As shown in Section 3, my simulation results in

a 30.1% decrease in well pro�tability due to expropriation threat. There are three

possible avenues for the reduced value of a parcel, and the simulation has the ability

to parse out what share of the total average loss of $165,805 attributable to each

method of loss:

1. Some wells are never drilled (4.40%)

2. Some wells are drilled later than they otherwise would have been drilled (4.25%)

3. The regulator disallows drilling, causing loss of all revenues post-decision (91.35%)5657

The overwhelming majority of lost value is due to method (3), that the regulator

produces a decision unfavorable to the driller. This causes the developer to su�er

large losses, especially if the decision is made soon after drilling, because the de-

veloper does not recoup the value of the lost investment. As �rms are considered

to be risk-neutral in my model, �rms do not weigh these negative outcomes with

special consideration.

The upside of this breakout is that it implies little social welfare was lost in

the case of the sage-grouse. Since the sage-grouse was never listed under the ESA,

56These percentages are calculated for all holes. If only non-dry holes are considered, the percentages are
e�ectively the same (4.37%, 4.86, and 90.77%, respectively).

57Note that method (2) and (3) could conceivably occur on the same well, as well as methods (1) and (3) (in
that situation, the regulator disallows drilling, but if the regulator had not made this decision, the �rm would
have drilled in some later time period). When methods (2) and (3) intersect, I consider lost revenue post-decision
attributable to method (3) and lost revenue prior to the decision due to later drilling attributable to method (2).
When methods (1) and (3) intersect, I attribute lost revenue to method (1).
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draconian regulations were never imposed and developers were mostly free to extract

at will. As there were no developers left holding a worthless multimillion dollar

investment, the impact of the sage-grouse uncertainty on producer welfare was

limited. Of course, the converse story is that had the sage-grouse been listed as

endangered and drilling halted, �rms would have lost millions in well investments.

The decrease in expected value of a well deprives the state and BLM of revenue,

as the marginal bidder will have a lower willingness-to-pay for a parcel under un-

certainty. In this section of the paper, I determine the real-world impact of the

expropriation thereat by comparing sage-grouse habitat to non-habitat in a DiD

framework.

7.1 Methodology

This section utilizes a reduced-form standard di�erence in di�erences (DiD)

strategy to evaluate whether extractive �rms discount the value of sage-grouse re-

view territory. DiD analysis evaluates the impact of a treatment (in this case, the

uncertainty caused by the candidate listing) on an outcome (bid value) across a

treatment and control group over multiple periods, in which the treatment is only

active for some of the periods. The regression equation is:

ln(Bidi,s) = Sales + TownshipRangeFEi + Interactioni,s + γRoyaltyi,s + εi,s (7)
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5859 where Bidi,s is the bid of a parcel located in township-range i during sale s,

Sales is a categorical �xed-e�ect for sale s. There are 103 distinct sales in the

data, with one occurring approximately each quarter. As every observation is a

bid result, controlling for the sale controls for common oil market conditions during

the auction. TownshipRangei is a categorical �xed-e�ect for township-range i,

Interactioni,s is a binary equal to 1 if the observed parcel is in sage-grouse habitat

during the uncertainty period (Dec. 2007 - Sep.2015), and Royaltyi,s represents

whether the parcel has a royalty rate of 12.5% or 16.7%. The model includes a bu�er

around sage-grouse territory of 5 miles, as used in prior analyses. Observations

found within this bu�er are not included in analyses. Errors are clustered at the

township-range level60. Using township-range �xed-e�ects allows me to control for

innate di�erences in production capacity and land quality between township-ranges

will be controlled for. Otherwise, it would be possible that signi�cant �ndings are

due to di�ering levels of expected oil & gas well production. This eliminates the

possibility that results are driven simply by the non-sage-grouse territory parcels

sold in the uncertainty period being of higher quality than those sold in other

periods. I assume that the bidders are risk-neutral and the bidding market is

competitive.

The uncertainty concerning expropriation may cause developers that are con-

strained by the minimum $1 per-acre bid to drop out of bidding entirely. Any

58The regression equation is similar to Fitzgerald (2010), in that he also regresses bids on sale and geographic
�xed-e�ects. However, Fitzgerald's geographic �xed-e�ect is less precise than mine (he uses county) and he regresses
the entire bid value rather than per-acre bid, meaning he also must control for lease size. Fitzgerald does not control
for royalty rates because he only looks at federal leases.

59I did not control for whether a given lease is controlled by the federal government or the state of Wyoming
because all federal leases have a royalty rate of 12.5%, making it impossible to control for the e�ect along with
a royalty �xed e�ect. However, analyses controlling for land ownership indicate that land owned by the federal
government earns less-valuable bids than comparable land controlled by the state government. This corroborates
the �nding of Lewis (2015), which �nds that companies prefer to develop on state land because of fewer restrictions
than federal land.

60Parcels are auctioned using the township-range as the primary geographic identi�er.
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parcel that would have been valued at least at $1 per acre ($2 for the BLM) but

is considered less valuable under uncertainty will not appear in my regressions. In

this sense, the coe�cient on the interaction term in Equation 7 may understate

the true e�ect of the regulatory uncertainty, because it is not taking into account a

drop in bids below the $1 per acre minimum.

I also added two extra robustness checks for this model:

1. Prior regressions have only used oil wells. However, when parcels are auctioned,

the developer does not need to commit to producing oil or gas on a given parcel.

In fact, many developers will produce both oil and gas on the same parcel61

A key identifying assumption of my DiD model is that treatment and control

geographic areas were impacted the same by world oil & gas markets (see

my discussion in Section 7). The alternative story is that certain territory

could become more desirable relative to others as market conditions change.

It is conceivable that as oil markets were strong in the uncertainty time period

(2010-2015) relative to the beginning of the �rst certainty period and the entire

second certainty period (post September 2015), bid prices could be in�ated on

leases with more easily accessible oil than nonproductive leases. It could be the

elasticity of lease prices to world oil prices that is driving the di�ering results

by region. However, this does not appear to be the case. There is an opposing

narrative with respect to natural gas. Natural gas prices were lower during the

uncertainty period relative to the certainty periods, and so this `in�ationary'

e�ect would be `de�ationary' for regions that primarily produce natural gas

instead of oil. Using the production data, I ran the base model using only

61In fact, the same well can even produce both oil and gas. In all prior analyses, I have limited my work to wells
that are labeled as oil wells rather than gas wells in the Wyoming application and production data.
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township/ranges that produce more natural gas than oil. Model results did

not meaningfully change.

2. Like any regression minimizing the sum of squares, the model is susceptible to

outliers. The variance between observations is large, given that many parcels

are leased with no testing indicating that recoverable minerals are present.

These low-bid leases selling near the minimum $1 per acre may either be purely

speculative, or may be defensive to prevent a competing �rm from gaining a

foothold in the local market. The low-bid leases stand in contrast to leases with

proven recoverable reserves, which often go for hundreds or even thousands of

dollars per acre. The lease data spans bids ranging from $1 - $16,851 per

acre with a standard deviation of $76.40. To ensure results were not driven

by high-value outliers, the model was re-run with the top 1% most valuable

parcels excluded. Results did not meaningfully change.

7.2 Results

7.2.1 Regression results - Base Model

There is strong evidence that the threatened listing of the sage-grouse decreased

bids in both state and federal auctions. The interaction term is consistently negative

at the 0.1% level, indicating that regulatory uncertainty makes the core territory

less appealing to developers than other parts of the state. The magnitude of the

coe�cient is large relative to the average bid value: the base model indicates that

core habitat causes prices fall by 48.4%. This 48.4% almost perfectly matches

the 52.6% estimated probability of activated listing I found in Section 2.3, and
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Table 11: Bidding Results

compares favorably to the 30.1% decrease in expected value of the well, and almost

exactly matches the 48.0% loss if only non-dry holes are considered. As shown in

Appendix A, the vast majority of this lost pro�tability is due to the possibility of

an unfavorable regulatory decision, rather than delayed or lost drilling.

The bidding reductions also compare favorably to the simulated valuation results.

In my simulation, developers under uncertainty lost 30.1% of the value of their

well. Additionally, if only non-dry wells are considered, the 48.4% decrease found

in the base model matches the simulated loss of 48.0% almost exactly. Taken in

combination with the robustness checks which report consistent results spanning

a 22.5% decrease up through the 48.4% found in the base model, it is clear that

developers signi�cantly discount parcels under uncertainty of expropriation, and

discount them in line with expected reduced pro�t.

A consistent and positive value ascribed to royalty rates may seem surprising,
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as a higher royalty rate means more of the value of production is forfeited to the

lessor, but is this due to Wyoming state lands generally although not exclusively

having a higher royalty rate than federal lands (16.7% vs. 12.5%). Firms prefer to

operate on state lands due to less regulation, as found by Lewis (2015)[40].

7.2.2 Parallel trends check & `constrained response'

DiD analyses rest upon the assumption of `parallel trends', or that a given policy

only impacted the treated observations and did not a�ect the control observations.

This is usually shown by displaying running trends of the data with no discernible

change in slope of the control observations when the policy in question begins, but

a noticeable change in slope for the treated observations.

What is interesting and potentially problematic about this case is that the par-

allel trends charts show a response only in the `control' population - that is, the de-

pression in sage-grouse habitat bids compared to other territory consistently found

in almost every variation on the regression is caused by an increase in bid values

from the non-sage-grouse territory, rather than a decrease in bids in the sage-grouse

territory. It is remarkable that there is a visible response only in the non-sage-

grouse parcels that almost completely matches the uncertainty period, especially if

the uncertainty period is considered to begin when the Federal District Court of

Idaho (12/4/07) ordered a reconsideration of the decision not to list the sage-grouse.

There is no such response in the `treatment' group - the trend line is perfectly �at

through the entire dataset. See the parallel-trend chart in Figure 9 that includes

a loess-smoothed curve connecting points within and outside core territory for a

visual representation.
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Figure 9: Parallel Trends- Bids

For a discussion of why I only see a change in the non-core territory, please see

Appendix C.3.1. The most likely explanation appears to be a `�ight-to-certainty',

a phenomenon described by Falk and Shelton (2018)[19], in which developers are

shifting planned future production to areas of political uncertainty. If this is the

case, it is possible the coe�cients in this section are biased upwards.
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8 Conclusion

This paper shows that the uncertainty created by the candidate review of the

sage-grouse in which the species had a plausibly 50/50 chance of being listed on the

Endangered Species List engendered changes in oil developer behavior �tting with

both a `wait-and-see' story as well as commensurate with the expected loss in par-

cel pro�tability. Adopting the conditional logit discrete choice model of Melstrom

(2017)[46], results show that developers avoid sage-grouse habitat during regula-

tory uncertainty. Using Wyoming state drilling data �tted into a Cox proportional

hazards model of survival along with a structural drilling simulation, I �nd that

�rms delay spudding and completing wells in an attempt to wait out uncertainty.

Developers are only about 60% as likely to spud or complete the well each period

under an uncertain regime, and this delay is not due to risk aversion. Using state

and federal competitive leasing data in a di�erence in di�erences model, I also found

that developers discount uncertainty at a level virtually identical with the expected

loss of pro�tability of their parcels due to the possibility of an unfavorable regula-

tory decision to restrict drilling. Simulation results imply that the overwhelming

majority of lost pro�tability (over 90% of the 48% loss in value) is due to the threat

of regulation, rather than delayed drilling or wells that are not spudded at all due

to uncertainty.

Using state monthly oil production data, I �nd no indication that developers

speed up extraction rates of already drilled wells in an e�ort to extract liquid re-

serves before a switch to an unfavorable regulatory regime. Although this �nding

runs counter to economic logic and prior theoretical work, it matches recent land-
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mark empirical papers in the oil & gas literature showing that �rms have no ability

to adjust extraction rates. I also tested whether �rms can change the well design

in order to accommodate for the uncertainty, �nding that developers drill vertically

more often than in the certain regime, and unconventionally drilled horizontal wells

are refracked more often in an e�ort to spur production in the short term. Thus,

�rms facing an existential threat due to regulation or appropriation are mostly de-

void of available tools to mitigate the damage to their business once the well has

been completed, and their bidding behavior for future development re�ects their

inability to adapt to existential threats like expropriation after the drilling process

�nishes.

The policy takeaways from this paper are the following:

1. Expropriation of development rights would incur a large loss of welfare for oil

developers.

2. Uncertainty regarding drilling ability causes �rms to pre-emptively leave core

habitat.

3. Uncertainty regarding drilling ability causes �rms to `wait-and-see' when de-

termining when to drill.

4. Developers incorporate this uncertainty in their bidding functions.

5. Mineral developers prefer to operate in more certain regimes and will prioritize

drilling in areas with a more certain environment.

6. Oil companies do not `speed up' drilling of already-spudded wells in the face of

uncertainty, but they may respond to uncertainty in other ways like re-fracking

and drilling conventionally rather than unconventionally.
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Chapter III

Ozone in the Uinta Basin

1 Introduction

In early 2010, Bureau of Land Management (BLM) regulators made an unex-

pected and disconcerting discovery. Readings from recently installed ozone monitors

in the Uinta Basin of Utah62 indicated that wintertime �measured ozone concen-

trations exceed[ed] federal health standards more than 68 times in the �rst three

months of 2010...The winter ozone phenomenon surprised BLM63, which this week

issued a draft environmental impact statement (EIS) identifying hundreds of exist-

ing oil and gas wells in the basin as the primary cause of the ozone pollution�64.

After the discovery of these high ozone readings, state and federal regulators recon-

sidered future drilling in the Uinta Basin, which was set to become one of the most

important plays in the nation.

The unsafe ozone readings were a dire threat to the energy industry because the

EPA might declare the Uinta Basin a violator of ozone pollution standards under

the National Ambient Air Quality Standards65. Being deemed a `non-attainment'

area for ozone requires the state to reduce ozone pollution to below non-attainment

levels66 under a State Implementation Plan (SIP). This plan would include limiting

new development, essentially freezing drilling at the current level. Additionally,

62There is considerable debate on whether the name of the Basin - and several surrounding natural amenities
and manmade structures - is spelled `Uinta' or `Uintah'. I keep the `h' out in this paper, following the instructions
on this website: http://theedgemagazine.blogspot.com/2010/11/uinta-vs-uintah.html

63the Bureau of Land Management, which administers most of the Uinta Basin
64https://www.eenews.net/stories/1059940555
65Ozone is one of the 6 air pollutants monitored by the EPA to designate areas being `in attainment'. The others

are carbon monoxide, lead, nitrogen oxides, particulate matter (both 10 and 2.5), and sulfur dioxide
66http://ohioepa.custhelp.com/app/answers/detail/a_id/905/~/de�nition-of-air-quality-nonattainment
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drilling could be banned during winter months, when the ozone pollution in the

Uinta Basin is most acute67. Ultimately, the Uinta Basin was determined to be in

non-attainment in 2018, and the state is attempting to thwart crippling restrictions

on drilling by instituting minor restrictions on drilling in low-elevation areas, which

are most susceptible to the collection of ground-level ozone.

Because the EPA requires a three-year moving average of elevated ozone levels

before non-attainment is o�cially declared, there was an `announcement period' in

which developers were acting without restriction but under the assumption that

future restrictions on drilling and/or extraction were likely. This depresses the

expected future value of their parcel holdings while keeping the present value of

liquid reserves constant, reducing the `option value' of waiting to drill in the hopes

of more favorable future market conditions, as discussed by Kellogg (2014)[35]. The

reduction of the option value means that while less parcels will be developed overall,

some portion of parcels are developed earlier than they would have been developed

without the EPA regulation. This could lead to a case of the `green paradox' coined

by Sinn (2008)[55], in which regulation meant to improve the environment actually

worsens the problem, at least in the short-term.

My paper uses a computer simulation of agent-based modeling (ABM) to de-

termine whether a green paradox exists. The advantage of the simulation is that

I can game out di�erent factors that would make breaching the threshold more or

less likely, repeating the simulation hundreds of times while also adjusting di�er-

ent parameters. Demonstrating the e�ect of the level of the threshold is especially

pertinent to the Uinta Basin because during the period of uncertainty, the thresh-

67https://www-eenews-net.proxy-um.researchport.umd.edu/landletter/stories/1059940555/
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old changed to become stricter based on better available evidence of the harmful

e�ect of ozone. In 2015, the EPA reduced the threshold of being in `marginal'

non-attainment to ozone to 71 parts-per-billion from 76 (which was itself a 2008

reduction from 86 parts-per-billion)68, and thresholds as low as 66 were considered

before the �nal rule was announced69.

The simulation results indicate that developers expected there was a 73.0%

chance that the Uinta Basin would at some point fall into non-attainment from

2010-2018. Of course, the Basin did indeed fall into non-attainment, which is im-

plemented in every iteration of the model. The base model does not exhibit a green

paradox, because there are no periods in which ozone emissions are higher under

EPA regulation than without regulation. However, several wells are spudded earlier

under regulation than without regulation, making the di�erence between no green

paradox and the existence of a weak green paradox in early periods a marginal call.

This paper considers which elements of the developer's production decision are

critical in determining whether a green paradox exists. Guided by the literature, I

�nd that the cost of spudding is a key factor in creating the environment ripe for a

green paradox. The very same model, input parameters, and random seed initiation

predicts a small-magnitude weak green paradox for the �rst period if there are no

costs to production. Likewise, the same model implies that varying the level of

regulatory standards while maintaining some form of regulation also produces a

weak green paradox.

The rest of the paper is organized as follows. Section 1.1 contextualizes my work

within the green paradox literature. The introduction concludes in Section 1.2,

68https://www.epa.gov/green-book/ozone-designation-and-classi�cation-information . Note that the threshold
of 76 ppb means that 75 ppb is acceptable, while 76 ppb is not.

69https://www.epa.gov/sites/production/�les/2015-10/documents/20151001_air_quality_index_updates.pdf
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which provides an overview of the energy development industry in the Uinta Basin

of Utah. Section 2 describes the data I am using, along with a brief introduction to

the mechanics of my simulation. Results of the simulation along with several alter-

natives pertinent to the green paradox are presented in Section 3. Section 4 provides

brief concluding remarks. The speci�c transition equations and justi�cations for all

parameters of my model are presented in an appendix to this paper.

1.1 The `Green Paradox'

1.1.1 Introduction

Counterintuitively, it is possible for regulation of scarce & exhaustible dirty re-

source to worsen the problem of pollution or other externalities associated with the

use of the resource. When regulation decreases the future pro�tability of the re-

source (say, through future taxation like a rising carbon tax, or through restrictions

on extraction like EPA non-attainment regulation, or through reducing future de-

mand for the resource by limiting its use or subsidizing green alternatives), owners

of the resource may speed extraction, causing higher emissions of whatever dirty

negative externality is being regulated, at least in the short run. This is called the

`weak' green paradox, in contrast with the `strong' green paradox, in which total

damages from the externality are higher in the long run under the regulation than

without regulation70. To have a strong green paradox, there generally must be

some feedback loop, nonlinearity in damages, or tipping points. For example, when

considering global warming, warming beyond 1.5° C will unlock methane held in

the ground and melt sunlight re�ecting-ice, causing further warming even without

70For a logical narrative introduction to the green paradox, I recommend Jensen et al. (2015)[33]. For a clear
theoretical background to the producer's optimization problem that causes the weak and strong green paradox, I
recommend Hoel (2013)[29].
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more emissions. If exposure to ozone exhibits nonlinearity in damages - say, if a

day at 100 ppb is more than twice as damaging to the human body than a day

at 50 ppb - then ozone regulation may be a strong green paradox example, even

if total cumulative ozone emissions are lower. This could happen if the damages

associated with the concentration of emissions within a smaller timeframe exceed

damages associated with higher total emissions with a lower `peak' over a longer

time frame.

While there have been several papers concerning the green paradox since the

original paper by Sinn (2008)[55], the theory backing the green paradox lies in

the classic Hotelling (1931)[30] model. In this model, owners of a scarce resource

extract the resource with the goal of maximizing the net present value of their

stock. As Sinclair (1992)[54] writes, "the key decision of those lucky enough to own

oil wells is not so much how much to produce as when to extract it71.� Broadly

speaking the owner will extract when the price of the resource is high and costs

are low. In the case of oil drilling, the resource owner faces the drilling timing

decision detailed by Kellogg (2014)[35], described in detail in the prior chapter of

this dissertation. In this model based on the real-options �nance literature, in each

period the resource owner considers current and expected future market conditions

when deciding whether to drill now or to keep the option to drill later and wait. If

a risk-neutral owner expects any future period to provide higher discounted pro�ts

than the current period, the resource owner will wait to drill and revisit the drilling

question again in the next period.

The green paradox is most often studied from either a purely theoretical per-

71Emphasis my own.
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spective [see: Kollenbach (2019)[37], Gerlagh (2011)[22], Grafton, Kompas, & Long

(2012)[50], Hoel (2013)[29], Eichner and Pethig (2011)[18], Hoel (2011)[28], Ryszka

& Withagen (2014)[52]] or using simulation modeling [see: Jensen et al. (2015)[33],

Cairns & Smith (2016)[8], Ryszka & Withagen (2014)[52], Michielsen (2014)[47],

Fischer & Salant (2012)[20]] due to the di�culty of locating a convincing coun-

terfactual narrative or a strong casaul identi�cation strategy. To date, there have

been only two empirical analyses of the green paradox. Di Maria et al. (2013)[13]

�nd no evidence that the announcement of future caps on sulfur dioxide emissions

(the Acid Rain program of the 1990s) led to increased burning of coal in the early

90s, but they do �nd strong evidence of a reduced price for coal and speculate the

reason they do not �nd increased consumption of coal is becaues of industry-speci�c

constraints on the short-term fungibility of inputs to energy production. Their re-

sults are contrasted with Lemoine (2016)[39], who �nds increased use of coal and

increased emissions due to legislation in 2010 that ultimately failed to pass that

would have instituted a cap-and-trade system for carbon emissions in the United

States.

Regardless of whether there is a green paradox at all, or even whether regulation

has any impact whatsoever on drilling timing or rates, it is important to remember

that these local e�ects are o�set by behavior elsewhere because oil & gas is a

commodity good with supply chains all over the world. If developers in the Uinta

Basin speed up drilling creating a green paradox and higher ozone emissions in the

Basin, there will be less drilling elsewhere in those periods. Likewise, if regulations

are so onerous that drilling in the Basin were to e�ectively stop, there would be

o�setting additional drilling somewhere else in the world.
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1.1.2 Ozone and the Green Paradox

The determination of whether ozone regulation is a meaningful weak or strong

example of the green paradox or even a paradox at all depends on assumptions of

damages associated with di�erent ozone levels and the relative response of drilling

timing and overall spudding rates to the regulation. For example, if the median

spudded well is indeed drilled earlier but a large percentage of parcels are simply

not drilled at all due to the regulation, then there will be no paradox. Ozone

emissions will be lower in all periods including the short term because so few wells

are spudded. However, if the number of wells spudded in the short term rises due

to the relatively higher pro�ts from drilling soon due to the regulation, then the

weak green paradox will be satis�ed. If the emissions associated with these wells

exhibit nonlinear damages and cumulative ozone damages under regulation exceed

damages with no regulation due to the `clumping' of spudding, then the strong

green paradox is also satis�ed.

Factors that di�erentiate current and future pro�tability are critical to deter-

mining whether the threat of regulation perversely increases pollution in the short

run, especially when coupled with other factors that make drilling more pro�table

overall. Thus, model factors that make a green paradox more likely are:

1. Higher price volatility (increasing the likelihood that some future period has a

high enough price to cover the lost discounted revenue from a delayed spudding)

2. Higher discount rate (future revenues are relatively more valuable)

3. Higher future prices relative to current prices (increasing the value of drilling

later)
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4. Lower drilling costs or higher current prices (higher pro�tabiliy of wells means

more will be drilled overall)

1.2 Drilling & Ozone in Utah

Utah is a relatively large energy developer. The state ranks as the 10th-largest

crude oil producer and 13th-largest natural gas producer in the country72. Most

of that development is centered around the Uinta Basin, an area to the east of

the Wasatch Front (which is home to the vast majority of Utah's population) and

just to the west of the state border with Colorado. Gas and oil drilling gradually

expanded in the Basin before 2010 in response to better technology. Just as these

ozone �ndings were released, developers were readying four new large-scale gas

projects that were projected to be the largest in the history of the Basin by a wide

margin73. It is estimated that these oil shale formations contain over a trillion

barrels of oil and the area has over 7 trillion cubic feet of natural gas reserves74.

By comparison, the US as a whole produces about 4.6 billion barrels of oil and 36

trillion cubic feet of gas per year75. See Figure 10 for a map of all Utah development.

72https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm
73Had all the expected wells been spudded, natural gas output in the Uinta Basin would have more than doubled
74https://www-eenews-net.proxy-um.researchport.umd.edu/energywire/stories/1059976330/
75https://www.eia.gov/todayinenergy/detail.php?id=38692
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Figure 10: Utah Oil & Gas Map

Air quality is a well-known issue in the state of Utah, due to a unique wintertime

process known as `inversion'76. In Utah's valleys and basins, wintertime ground-

level air is colder than warmer, higher-elevation air (hence the `inversion'), which

causes that cold air to become trapped in the lower elevation regions. This trapped

air contains particulate matter (PM) chemicals (particularly NOx, volatile organic

compounds (VOCs), sulfur dioxide and ammonia) are emitted at the ground-level

or are created through regular chemical reactions in the atmosphere, and the lack

of mixing with higher air prevents the pollutants from moving to higher elevations,

away from the local population. Because of this well-known inversion process, the

state of Utah monitors air quality carefully through the year, and daily television

and newspaper reports in the winter will always specially mention the current air
76https://deq.utah.gov/air-quality/inversions
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quality projection.

Ozone was not a chemical identi�ed by the state as a pollutant caused by this

`inversion' process, nor was ozone considered a by-product of drilling before 2011

at the earliest, and thus it was not specially monitored or considered a risk until re-

cently77. While lauded for its protection from ultraviolet radiation when it is found

miles up in the atmosphere, `ground-level' ozone is considered pollution. Ozone

can cause respiratory problems, including asthma. It is particularly dangerous for

the young, sick, or elderly78. Ozone is traditionally considered to be a problem in

areas with heavy tra�c, but it is also one of several pollutants formed in oil and

natural gas drilling. It results from the nitrogen oxide and volatile organic com-

pounds released in drilling, especially from deeper wells that can be accessed with

new technology79.

Ozone is broadly considered a `summertime' problem because in other areas of

the country it primarily collects in the summer80. However, ozone was identi�ed as a

`wintertime' problem in the Uinta Basin starting in late 2009, when the state of Utah

and private operators installed several ozone monitors in the Basin, an area that

was previously unmonitored81. State regulators were concerned that ozone levels

would be dangerously high because of troubling evidence from Wyoming, in which

elevated ozone levels were detected near natural gas wells in the Upper Green River

Basin. Indeed, the o�cials found unsafe ozone levels in these preliminary tests82.

Contemporaneous news articles con�rm that the ozone problem was a surprise

77https://www.sltrib.com/news/environment/2018/01/04/feds-say-utah-has-another-serious-air-quality-
problem-ozone/ , https://www.ksl.com/article/46557883/study-shows-rise-in-ozone-related-deaths-in-salt-lake-city

78https://www.epa.gov/ground-level-ozone-pollution
79https://www-eenews-net.proxy-um.researchport.umd.edu/landletter/stories/1059940555/
80https://www.nationaljewish.org/conditions/health-information/air-pollution-and-healthy-homes/outdoor-air-

pollution/summer-ozone-dangers
81https://www-eenews-net.proxy-um.researchport.umd.edu/energywire/stories/1059976330/
82https://binghamresearch.usu.edu/�les/edl_2010-11_report_ozone_�nal.pdf
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that caught developers and regulators o�-guard. An April 2011 article reads, �In

Utah, where the wintertime ozone was identi�ed as a problem just last year, regu-

lators say they are addressing the problem. But it remains unclear what strategies

will be most e�ective in bringing ozone back into compliance with the federal health

standard...The nagging questions around wintertime ozone stem in part from the

fact that ozone is traditionally a summer problem, when emissions from industry

smokestacks and automobile tailpipes mix in sunlight and heat to form the odorless

gas. Regulators are also puzzled by the inconsistency of wintertime ozone. For

example, the phenomenon was �rst discovered in Wyoming's Upper Green River

Basin in 2008, Guille said, then dropped o� in 2009 and 2010 before making a

resurgence in 2011.�83.

Moreover, the uncertainty was driven not just by the data, but by the science.

Even today, the science on ozone formation is very much up in the air84. Utah

State University's current Uinta Basin website currently says that �[M]any aspects

of the meteorology, chemistry, and emissions that allow ozone to form during winter

are still poorly understood�85. A recent atmospheric study by Mans�eld and Hall

(2018)[44] trying to isolate the speci�c reasons why the Uinta and Upper Green

River (WY) Basins have such high ozone concentrations concluded that �The single

strongest predictor of high winter ozone is the level of oil or natural gas extraction

in a basin�.

There were not any scienti�c studies on the correlation until a 2013 white pa-

per by Utah State University researchers86. This paper was supported by a 2014

83https://www-eenews-net.proxy-um.researchport.umd.edu/landletter/stories/1059948108/
84Pun intended.
85https://binghamresearch.usu.edu/�les/2-pagehandoutUBairquality.pdf
86https://binghamresearch.usu.edu/�les/2013%20�nal%20report%20uimssd%20R.pdf

87



academic article also studying the Basin in the journal Nature, which de�nitively

concluded that gas drilling caused elevated ozone concentrations87 [Edwards et al

(2014)[16]]. Because of the lack of science backing up the 2010 ozone measurements,

industry representatives questioned the data, calling it �[F]aulty...that data cannot

be used in determining the attainment status� of the Uinta Basin88. A year later,

the same spokeswoman said that "The EPA maps show data that are extrapolated

from a limited number of monitors"89.

Any initial reading of excess levels must be con�rmed through three years of

data before a region is o�cially deemed to be in `non-attainment'. This was no

idle threat: the problematic measurements from Wyoming that originally spurred

Utah to install its own monitors were con�rmed through further testing and the

EPA deemed the Upper Green River Basin of Wyoming to be in `non-attainment'

for ozone in 201290.

On May 21, 2012, the EPA designated the Uinta Basin (Duchesne County, Uin-

tah County, and the Ute Indian Tribal land) as being `unclassi�able' for attainment

status regarding ozone. The Federal Register released that day says, �The EPA

is designating one area, Uinta Basin, WY [sic]91, as unclassi�able because there is

existing non-regulatory monitoring in the area that detected levels of ozone that

exceed the NAAQS. Regulatory monitoring has been conducted in that area since

April 2011, and thus there are not yet three consecutive years of certi�ed ozone

monitoring data available that can be used to determine the area's attainment

87https://www-eenews-net.proxy-um.researchport.umd.edu/greenwire/stories/1060006726/
88https://www-eenews-net.proxy-um.researchport.umd.edu/landletter/stories/1059940555/
89https://www-eenews-net.proxy-um.researchport.umd.edu/landletter/stories/1059945402/
90https://www-eenews-net.proxy-um.researchport.umd.edu/energywire/stories/1059963950
91This is a typo on the part of the Department of the Interior. The Uinta Basin is located in Utah (plus some in

Colorado), not Wyoming. Moreover, the detailed attainment/non-attainment/unclassi�able notes located further
down this speci�c Register only provide �ndings for the Uinta Basin Utah, not the Uinta Basin Wyoming. Indeed,
the Uinta Basin, Utah is labeled as `unclassi�able'. News articles of the time also make clear this �nding is for the
Uinta Basin, Utah.
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status�92. An `unclassi�able' �nding is distinct from an the `non-attainment' and

`attainment' �ndings in that it represents an uncertain �nding pending more infor-

mation. Speci�cally, the May 2012 Federal Register reads �[T]he EPA cannot desig-

nate on the basis of available information as meeting or not meeting the standards

should be designated as `unclassi�able.'� Although not provided in the Register

itself, the EPA responded to a public comment on the Uinta Basin, saying that

while the monitors in the Basin meet the requirements of EPA regulation and data

was collected reasonably, �the data cannot be used for regulatory purposes because

of three alleged quality assurance problems�93. Ultimately, the EPA did �nd several

Utah counties to be in non-attainment. On May 1, 2018, the EPA designated por-

tions of Davis, Duchesne, Salt Lake, Toole, Uintah, Utah, and Weber Counties as

being in `non-attainment' for 8-hour ozone94. The speci�c portions that were found

to be in non-attainment were �nalized a month later. In the Uinta Basin, all land

beneath 6,250 feet in elevation was deemed to be in non-attainment95. Currently,

these non-attainment rulings are more `warnings', but if the Basin continues to have

an ozone problem after the next review in 2021, and especially if the region is now

in `moderate' violation rather than `marginal' (80 parts per billion rather than 70),

heavier restrictions will be implemented.

92https://www.federalregister.gov/documents/2012/05/21/2012-11618/air-quality-designations-for-the-2008-
ozone-national-ambient-air-quality-standards

93http://earthjustice.org/sites/default/�les/FINAL_Petition_for_Reconsideration.pdf . The 3 identi�ed prob-
lems were EPA states that it has not approved the quality assurance plan that was developed by the contractor
that operates the monitors, the plan does not include a mechanism that would allow EPA or another regulatory
agency to direct corrective actions should quality assurance issues be identi�ed in the monitoring program, and
that although the raw data is currently reported in EPA`s database, it cannot be considered quality assured. In-
dependent watchdog organizations question whether any of these three `problems' justify delaying an attainment
designation.

94https://www.sltrib.com/news/environment/2018/05/01/feds-give-utah-three-years-to-bring-ozone-pollution-
down-to-acceptable-levels/

95https://www.govinfo.gov/content/pkg/FR-2018-06-04/pdf/2018-11838.pdf
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2 Data & Simulation

2.1 Data

My simulation is parameterized using drilling data from the Uinta Basin. I

obtained a wide selection of drilling data from the Utah Department of Natural

Resources, Division of Oil, Gas and Mining. I collected data on the location and

timing of spuddings, the location and quantity of liquid minerals recovered per

month, the location and timing of approved APDs (Applications for Permits to

Drill), and characteristics of wells like elevation and whether the well was a hori-

zontal well or a traditional vertical well. The drilling data I collected is the same

structure and format as in the prior chapter, but it is maintained by the state of

Utah rather than the state of Wyoming.

Ozone monitoring data comes from Utah State University. Ozone data is only

available for winter months, but is available daily at dozens of monitors across the

state, many of which are in the Basin. I use data measuring the maximum level

of ozone sustained over an 8-hour period (called 8-hour ozone) because this is the

measurement EPA uses when determining whether an area is in non-attainment.

Data to parameterize the simulated evolution of ozone over time was heavily

sourced from Mans�eld (2017)[43], one of several papers written by Dr. Mans�eld

on Uinta Basin ozone that have helped me understand the atmospheric science and

chemistry questions associated with the local ozone problem. Dr. Mans�eld is

associated with the Bingham Research Center96, which was founded to monitor the

ozone air quality in the Basin.

In his 2017 paper, Dr. Mans�eld seeks to answer what is still an unresolved

96https://binghamresearch.usu.edu/index

90

https://oilgas.ogm.utah.gov/oilgasweb/data-center/dc-main.xhtml
https://oilgas.ogm.utah.gov/oilgasweb/data-center/dc-main.xhtml
https://binghamresearch.usu.edu/data_access


question: What causes ground-level ozone buildup? His regression results suggest

that the key determinants are metereological conditions such as the snow pack, the

lapse rate (the negative relationship between elevation and temperature), the num-

ber of days of inversion (in which the lapse rate is inverted, or temperature increases

with elevation because cold air is trapped in the Basin), and oil & gas development.

I used his data set to determine the relationship between di�erent meteorological

inputs and the ozone concentration, as well as to establish the distribution of these

elements in my simulation.

2.2 Simulation

My simulation predicts the possible distribution of outcomes from the Uinta

Basin energy exploration environment. My ABM simulation is based on the `real

options' framework used by Kellogg (2014)[35], the same framework used in the

prior chapter concerning sage-grouse regulation. In this model, in each period

risk-neutral energy developers compare the expected value of drilling now versus

keeping the option to drill in the future. If the developer decides to drill now, it

will assume an upfront drilling cost D, and then earn revenues for the lifetime of

the well of Pt ∗ Qt ∗ δ, which correspond to period price, quantity, and discount

rate. Current price is determined each period commonly for all developers, but

developers have unique assumptions of what future prices will be when they consider

drilling. Quantity is assumed to be �xed based on a decline curve generated from a

stochastically determined initial-period quantity. When deciding whether to drill in

the current period, the developer estimates expected pro�t from drilling now versus

drilling in each of the 10 periods following the initial period. 10 periods are allowed

91



for drilling (representing 2010-2020) to give developers more chances to develop

parcels approved in later periods (it is rare for a parcel to be developed more than

2-3 periods after approval).

Developers spud if all future periods have lower expected pro�ts than drilling

now and drilling now is expected to generate positive returns. However, if expected

revenues from any future period exceeds drilling now or expected returns are neg-

ative, the developer chooses not to drill in the current period and then makes the

same estimates in the next period. The simulation is run 1,000 times in order to

generate bootstrapped estimates of key outcomes including period-to-period and

overall ozone concentrations, pro�t from drilling, number of wells drilled, and the

likelihood of the Basin reaching non-attainment levels of ozone. Bootstrapping the

outcomes, rather than running the model one time, is necessary in the case of this

simulation because the outcomes are sensitive to the stochastic pricing, well quality,

and ozone concentration assumptions.

A key aspect of the simulation is the integration of EPA regulation in the ex-

pected revenue from drilling. The simulation accounts for the possibility that in

the future drilling and extraction are restricted. The likelihood of an unfavorable

regulatory regime is directly related to future ozone measurements, which are a

function of:

1. The number of spuds in the Basin, which itself is a function of time and prices

2. Random year-to-year noise based on the actual variability of ozone in the Basin

Included in Appendix B is a step-by-step explanation of the stochastic process

determining the ozone accumulation each period, which utilizes a complicated al-
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gorithm partially based on the work of Mans�eld (2017)[43]. The model also sim-

ulates the likelihood of a non-attainment rating outside of the actual real-world

resolution of di�erent meteorological covariates that is based on the historical dis-

tribution of these covariates. This allows me to estimate the a priori likelihood of

non-attainment being reached based on historical factors. The model assumes that

developers make their decisions on future drilling based on this expected likelihood,

as they are not aware of the actual resolution of the meteorogical data.

3 Results

3.1 Main Model Results

The ozone levels measured in the model compare favorably to the real-world

ozone levels measured at the Ouray monitoring station, which is located in the

heart of the Uinta Basin and is used by Mans�eld to calibrate his own model. In

Figure 11, I compare the point estimate of the base simulation97 to the actual ozone

concentrations measured in the Basin from 2011-201898. On average, the simulation

misses the real-world concentration by 8.7 ppb, or 7.4%.

97As the simulation is bootstrapped, any mention of the `point estimate' in this study refers to the median of
the boostrapped sample. Any reference to the lower or upper bound refers to the 2.5th and 97.5th percentile of
the bootstrapped sample, respectively.

98These are the 4th-highest 8-hour ozone readings, which is what the EPA considers when designating non-
attainment areas. 2010 is not provided because it is not stochastically estimated in the model.
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Figure 11: Simulated vs. Real-World Ozone Concentrations

As is clear, there is more variability in the actual ozone levels than in the simula-

tion. The bootstrapped point estimate is by de�nition less variable than any given

iteration, and the `real-world' outcome could be considered a speci�c `iteration' of

the model. The largest discrepancy between simulated and actual concentrations is

observed in 2017 is because certain meteorological input variables were not available

post-2016 and had to be simulated using prior observations. This is also why there

is a `convergence' of estimates post-2016 in upcoming charts.

The Uinta Basin �rst reached non-attainment in 2012, which is due to the ozone

concentrations identi�ed from 2010-2012, although the region was not o�cially des-

ignated as non-attainment until 2018 due to administrative issues99. This compares

favorably to the simulation, which has a point estimate of 2012 as the �rst year of

non-attainment in all 1,000 models. Additionally, based on historical distributions

of the weather data and typical energy development, the model estimates there was

99https://www.federalregister.gov/documents/2012/05/21/2012-11618/air-quality-designations-for-the-2008-
ozone-national-ambient-air-quality-standards
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Table 12: Simulation With and Without Expropriation Threat
Measurement Base Model No Regulatory Risk % Change

Average ozone 80.4 83.8 4.2%
Likelihood of non-attainment levels 73.0% 78.6% 5.6%

% Parcels drilled 11.1% 13.0% 1.9%
Drill period 2.18 2.30 5.5%

Pro�t per parcel 97,961 120,839 23.4%
Pro�t per drilled parcel 927,518 965,204 4.1%

a 73.0% likelihood that the Basin would be declared in non-attainment.

Other measurements in the simulation are reasonable. The median percent of

parcels that are drilled is 11.1% (95% con�dence interval: 2.7% to 25.5%). The

median average pro�t per parcel is $97,961 ($27,124 to $313,560), while the median

average pro�t of drilled wells only is $927,518 ($694,089 to $1,286,686). The median

drill period is 2.18 (0.72 to 3.27).

3.2 Green Paradox Speci�cations

I ran the same model with the same randomization seed, but without any reg-

ulation of developers. In this version of the model, not only does the regulator

never step in and curtail developer behavior, but developers plan and act under

the assumption that there is no regulatory risk. In this model, the median percent

of parcels that are drilled is 13.0% (95% con�dence interval: 3.1% to 28.7%). The

median average pro�t per parcel is $120,839 ($31,240 to $382,131), while the me-

dian average pro�t of drilled wells only is $965,204 ($717,339 to $1,375,126). The

median drill period is 2.30 (0.66 to 3.30).

It is illuminating to compare important bootstrapped median measurements

from the base model to the no regulatory risk model:
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Not surprisingly, parcel pro�tability would rise signi�cantly in a world with no

regulatory threat or restrictions. Across all parcels, pro�tability would increase by

23.4% (or $22,878) per parcel), while the pro�tability on drilled wells only would

increase by 4.1% ($37,686 per parcel). Multiplying by the 5,858 parcels in the study,

a back-of-the-envelope calculation suggests that ozone non-attainment restrictions

cost the Uinta Basin oil industry $134 million over the 2010-2018 period. This is

a steep cost in pro�tability, and is roughly on the scale with a prior estimate of

a $270 billion per year cost across the country if the 8-hour ozone threshold were

reduced to 60 ppb100.

Of course, this cost is well worth the lost pro�tability if the ozone situation is

appreciably better with regulation than without it. However, this does not appear

to be the case, as ozone levels routinely exceeded NAAQS standards almost every

year of the data. The average ozone concentrations would have been only 4.2%

higher if there were no EPA regulation. It is also important to remember that

unlike many other counties under EPA non-attainment regulation, the Uinta Basin

is a sparsely populated area. The combined population of Duschesne and Uintah

Counties is only roughly 55,000 Utahns, meaning that the number of people exposed

to high ozone levels is low.

To test for the weak green paradox, I can compare the period-by-period ozone

concentrations across the model with and without regulation. In my model, there

is no green paradox, although an environment without regulation has a higher

wait time between the granting of the APD and spudding (median of 2.18 periods

with regulation versus 2.30 periods without regulation). This means that while

100https://www.nam.org/potential-economic-impacts-of-a-stricter-ozone-standard/
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developers are `hurrying-up-and-drilling', the clumping of accelerated spudding in

earlier periods does not outweigh the e�ects of there being fewer wells spudded

overall, and so ozone concentrations are lower under a no-regulation regime in every

period of the model.

Figure 12: Ozone Concentrations: Regulation vs. No Regulation

It is important to note that these results are sensitive to the model assumptions.

As mentioned in Section 1.1.2, a green paradox is more likely to be found when

there is more drilling, especially more drilling happening later, as these two factors

mathematically produce a stronger shift of spudding to the earlier periods resulting

in meaningful ozone accumulation. In the literature, the green paradox is most often

considered as a supply-side question and extraction costs are usually considered

the key determinant in an optional extraction path [Kollenback (2019)[37]]. The

position that low extraction costs are key is corroborated by the theoretical results

of Gerlagh (2011)[22] and Grafton, Kompas, & Long (2012)[50], who �nd that lower

resource extraction costs can lead to a green paradox that would not exist otherwise.
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A lower cost makes a green paradox more likely, simply because there are more wells

being drilled overall, and thus more that are concentrated in the early periods under

regulation.

I ran a model that eliminates drilling costs entirely, which are sometimes assumed

to be 0 in the literature [see: Eichner and Pethig (2011)[18] and Hoel (2011)[28]].

Unsurprisingly, there is a boom in spudding in a no-cost world with correspondingly

higher pro�ts. The median percent of parcels that are drilled is 65.5% (95% con�-

dence interval: 32.0% to 71.0%). The median average pro�t per parcel is $671,972

($228,854 to $1,186,609), while the median average pro�t of drilled wells only is

$1,050,079 ($614,522 to $1,686,865). The median drill period is 3.43 (2.56 to 4.58).

Just as before, I need to run this model against one with no regulation to determine

the existence of a green paradox. In the alternative with no regulation, the me-

dian percent of parcels that are drilled is 67.7% (95% con�dence interval: 30.7% to

71.9%). The median average pro�t per parcel is $747,445 ($232,237 to $1,313,565),

while the median average pro�t of drilled wells only is $1,138,094 ($658,231 to

$1,854,628). The median drill period is 3.33 (2.60 to 4.76).

The no-cost model does exhibit a small and brief green paradox, in that ozone

emissions are slightly higher during the �rst period under regulation than without

regulation if costs did not exist:
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Figure 13: No Costs Ozone Modelling

There is a short one-period (representing one year) span in which ozone concen-

trations are expected to be higher under a regulatory regime than in a world with

no EPA regulation, if drilling costs did not exist. Of course, it is key to point out

that even in this imaginary no-cost scenario the increase in ozone concentrations

due to the regulation is not meaningfully large, being only 4.1 ppb (or 2.2%) in the

�rst period. All periods following the �rst see higher ozone concentrations with no

regulation than if the EPA steps in and bans drilling during non-attainment. Thus,

my model suggests that while the green paradox is something the EPA needs to

be mindful of, in the case of the Uinta Basin their regulation did not meaningfully

raise concentrations for any period.

Another interesting note is how high ozone levels become in a no-cost drilling

context. Here, ozone concentrations spike to a peak exceeding 600 ppb. A reading

of 600 doesn't come close to approaching nationwide ozone records, but is so high

that breathing will cause neutrophilic in�ammation in the lungs[38], which leads

to several pulmonary diseases. Even in years that don't approach such a high
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threshold, ozone levels are elevated to a level where they are more than simply a

mild nuisance. Ozone levels projected to be so high because I am using Mans�eld's

algorithm for ozone formation, which has several non-linear components including

interactions between di�erent input variables. In this algorithm a higher proportion

of spuddimg can lead to a blowup of estimated ozone concentrations.

Unfortunately, there is no way for me to test whether the regulation in a no-cost

environment meets the requirements of the `strong' green paradox. To have a strong

green paradox, not only would ozone concentrations be higher for some short-term

period under regulation, but cumulative damages due to the spiked ozone levels

would also be higher under regulation. This would require a reliable accounting

of damages per-person from a given concentration of ozone, along with a social

discount factor to discount damages further in the future. While there have been

many studies on the societal damages of ozone, none have given precise estimates

at di�erent levels of ozone which would be necessary to ascertain a non-linear e�ect

with extraordinary damages found in cases of elevated ozone levels [see: Lange,

Mulholland, & Honeycutt (2018)[38]]. However, given how little ozone increases for

just one period under regulation, it is highly unlikely that the EPA 8-hour ozone

regulation is a case of the strong green paradox.

3.3 2015 change in standards

In 2015 the EPA changed the standard for non-attainment of 8-hour ozone from

76 ppb to the stricter 71 ppb in an e�ort to protect at-risk populations like the

elderly101. Before the transition to the 70 ppb limit was announced, it was unknown

101https://www.epa.gov/sites/production/�les/2015-10/documents/20151001_air_quality_index_updates.pdf
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Table 13: Simulation: 2015 Change in Standards
Measurement 71 PPB Threshold 76 PPB Threshold 66 PPB Threshold

Average ozone 80.4 81.0 79.7
% chance of non-attainment levels 73.0% 70.0% 79.8%

% Parcels drilled 11.1% 11.4% 10.7%
Drill period 2.18 2.23 2.09

Pro�t per parcel 97,961 101,269 94,288
Pro�t per drilled parcel 927,518 925,387 924,514

what the new level would be, or whether the standard would even be changed. There

was discussion of an even stricter standard starting at 66 ppb, which was studied

by the EPA102.

My model can easily be adjusted to provide the e�ect of the precise level of the

threshold. The base model, which is meant to simulate the real-world conditions as

best as posssible, is calibrated to a standard of 76 ppb through 2014, and shift to a

treshold of 71 ppb in 2015. I ran one alternative in which the threshold remains at

76 through the dataset, and another in which the treshold decreases to 66 in 2015,

rather than 71.

Results from tweaking the threshold in 2015 are both minor and unsurprising.

If the threshold is not changed in 2015 and instead remains at 76 ppb rather than

reducing to 71 ppb, 11.4% of parcels are spudded (compared to the base model of

11.1%, and with a con�dence interval of 2.6% to 26.6%), drilling on average occurs

slightly later (due to the extra spudding post-2015 and less chance of regulation)

with a median drill period of 2.3 periods (compared to the base model of 2.2 periods,

and with a con�dence interval of 0.7 to 3.4) and pro�tability increases to $101,269

per well (compared to the base model of $97,961, and with a con�dence interval

of $26,629 to $328,376). Perhaps most interestingly, there is a complement to the

green paradox in this model. This model has less restrictive regulation, but period

102https://www.epa.gov/sites/production/�les/2015-10/documents/20151001_air_quality_index_updates.pdf
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1 ozone is lower in this alternative with no change to the looser regulation than with

a 2015 change to 71 ppb (103.6 ppb versus 103.9 ppb, with a con�dence interval

spanning 86.1 to 124.5 ppb). In all other periods, ozone is higher under the less

strict regulatory regime. This exhibits how the strength of the regulation can create

a green paradox, even though both alternatives have some level of regulation.

Results are the opposite in the especially strict model, as expected: If the thresh-

old were reduced in 2015 to 66 ppb instead of 71 ppb, 10.7% of parcels are spudded

(compared to the base model of 11.1%, and with a con�dence interval of 2.7% to

24.2%), drilling on average occurs earlier (due to the less spudding post-2015 and

more chance of regulation) with a median drill period of 2.1 periods (compared to

the base model of 2.2 periods, and with a con�dence interval of 0.7 to 3.2) and

pro�tability decreases to $94,288 per well (compared to the base model of $97,961,

and with a con�dence interval of $27,300 to $295,932). Again, there is evidence of

a green paradox in period 1, as the `strictest' ozone standard actually produces the

highest period 1 emisions. In this alternative, the 2015 change to 66 ppb produces

period 1 ozone concentrations of 104.4 ppb versus 103.9 found in the base model,

with a con�dence interval spanning 86.5 to 126.1 ppb). In all other periods, ozone

is lower under the more strict regulatory regime.

4 Why did the sage-grouse and ozone simulations produce

di�erent results?

When comparing Chapters 1 & 2 of this dissertation, a keen reader may have

noticed that despite both the sage-grouse and ozone being examples of potential
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regulatory expropriation, developers respond in opposite ways. Similar numeri-

cal simulations concerning oil drilling in adjacent states occuring in roughly the

same time period came to opposite conclusions. My work predicts that the possi-

ble expropriation of drilling rights in Wyoming caused a wait-and-see response in

developers, while developers in the Uinta Basin sped up their drilling and given

the right circumstances even may see a green paradox. What causes this opposite

reaction to a seemingly similar regulatory problem?

There are three reasons why I �nd di�erent results across the two contexts:

1. The announcement periods are structured di�erently. The sage-grouse could be

resolved at any time, while the ozone regulation required at minimum 3 years

of ozone readings. Thus, there was the possibility that drilling could be banned

at any moment in Wyoming, while Uinta Basin producers knew they had at

least a couple years (and likely more) before drilling rights could possibly be

expropriated. Because oil producers follow a decline curve in which production

is halved within only 7 months [see Kellogg (2014)[35]], a couple years or more

is plenty of time to extract most of the recoverable liquid resources from a well.

2. There is a di�erent likelihood of regulation between USFWS's decision on the

sage-grouse, and EPA's outcome regulating ozone. Ozone regulation is dictated

formulaically, with any three-year period in violation mandating improvement.

Because ozone readings were consistently high and had reason to increase made

a non-attainment result quite likely (my model estimates a 73.0% chance). In

contrast, the USFWS uses a more opaque process, and even the evidence that

existed suggested there was almost an exactly 50% chance of listing.
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Table 14: Simulation With Sage-Grouse Announcement Structure
Measurement Base Model No Regulatory Risk S-G Announcement

Average ozone 80.4 83.8 4.2%
Likelihood of non-attainment levels 73.0% 78.6% 74.4%

% Parcels drilled 11.1% 13.0% 9.0%
Drill period 2.18 2.30 2.40

Pro�t per parcel 97,961 120,839 71,841
Pro�t per drilled parcel 927,518 965,204 836,818

3. Spudding a well in Wyoming does not make it any more likely that the regulator

steps in, while spudding a well in the Uinta Basin directly increases ozone levels,

which increases the likelihood of regulation. This causes a `race to the bottom'

in which no developer wants to be the one who is not allowed to produce

because its neighbors spudded �rst.

I ran a version of the ozone simulation but changed the announcement period struc-

ture, likelihood of regulation, and cross-well pro�tability e�ects to match the design

of the sage-grouse model. In this model, the regulator can intervene immediately,

and the intervention follows a memoryless Poisson process with an expected wait

time of 6.3 periods103. The likelihood drilling and extraction are banned is a con-

stant 53% through the model. Otherwise the simulation remains the same, meaning

it is still parameterized by Uinta Basin production and well characteristics, density,

and spudding timing.

As is seen in Table 14, when using the sage-grouse announcement period struc-

ture combined with the Uinta Basin drilling parameterization, the ozone simulation

now provides a `wait-and-see' response rather than a `hurry-up-and-drill' reaction

to uncertainty. The median drill period rises to period 2.4 (CI: 0.74 to 3.7), an

103The sage-grouse expected wait time is 76 months, which is 6.3 years.
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increase of 4.3% over the baseline of `no regulation'. Pro�t falls to $71,841 per

well (16,637 to 274,183) and only 9.0% of parcels are spudded (1.9% to 24.1%).

This alternative demonstrates the the announcement period structure is critical in

the formation of a `wait-and-see' or `hurry-up-and-drill' response to expropriation

threat.

5 Conclusion

In this chapter, I constructed a simulation of the drilling environment present in

the Uinta Basin from 2010-2020, when the region was subject to potential regula-

tory oversight by the EPA that could have dire consequences for the local energy

industry. Using the real-options framework of Kellogg (2014)[35] and the real-

world drilling conditions present in the Basin over the relevant time period, my

work shows that developers expected there was a 73% chance that the Basin would

fall into non-attainment for 8-hour ozone, and the pending regulation nearly caused

a green paradox. In a world without drilling costs, there would have been a brief

green paradox.

Envisioning future work on this topic is easy. On a large scale, the EPA and

other regulatory agencies need to be on the lookout for policies that have perverse

incentives, especially over the short-run. These policies are particularly problematic

when there is an `announcement' period preceding the actual enforcement of the

law. It is duaring this announcement period when resource holders believe that

future regulation is upcoming that a weak green paradox is most likely to occur.

Work on de�nitively establishing whether a strong green paradox could exist in

EPA regulation would also be useful, but this paper strongly suggests that a strong
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green paradox did not occur in the Uinta Basin. Information from atmospheric and

health studies tying di�erential levels of ozone exposure to di�ering mortality levels

would be required to �ll in gaps to answer the question of whether a strong green

paradox exists.
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Chapter IV

A Cost/Bene�t Test of Online Leasing

1 Introduction

Oil, gas, and coal development in the United States is generally leased from the

land owner to mineral developers, who have a window to prove there are recoverable

reserves in the leased parcel. Given that most mineral development (particularly oil

& gas) occurs in the Western states, these landowners are predominantly the fed-

eral government (in particular, the Bureau of Land Management [BLM]) and state

governments. These auctions often make up a signi�cant portion of state bud-

gets. The state of North Dakota expects to raise $2.9 billion from oil & gas leasing

plus associated royalties, comprising 21.3% of its state budget104. Wyoming, a fel-

low energy-heavy state, raised $146 million in 2017 solely from leasing revenues105,

making up 5% of its budget106. By comparison, the BLM raked in $1.1 billion in

lease revenues alone (not including associated royalties) in 2018, which covered the

entire annual budget of BLM.107. While over a billion dollars in leasing revenue is

a record high, typical years still bring in well north of $300 million.

Despite the importance of leasing revenues relative to the size of state and federal

budgets108, the leasing process itself has been the subject of little economic research.

104https://www.apnews.com/b200edb6f060494ab5355b5c1e8a3d75
105https://trib.com/business/energy/wyoming-oil-and-gas-lease-revenue-increases-by-percent-
in/article_64046af2-f540-5b50-be96-40307bbd77bd.html
106https://trib.com/news/state-and-regional/budget-bill-makes-further-cuts-to-state-
government/article_ce37950a-5098-5abf-a1bd-9ab6f71e128c.html
107https://www.doi.gov/news/energy-revolution-unleashed-interior-shatters-previous-records-11-billion-2018-oil-
and-gas
108The leasing process itself generates around one quarter of energy development revenue for states and the
BLM. The remaining three quarters is royalties associated with extraction. These are rough percentages and vary
year-to-year depending on the number of parcels auctioned. See: https://www.blm.gov/programs/energy-and-
minerals/oil-and-gas/about
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Part of this dearth of research is due to limited data: generally, only a parcel's

winning bid value is available to the public while losing bids and bidders are kept

private, limiting the value of these auctions in furthering our understanding of

auction theory. However, there remain key policy questions the available data can

still answer. One of those questions is whether a transition to a multi-sided platform

enhances lessor revenue beyond the cost of the platform. A multi-sided platform

(MSP) is any website, device, or app that brings buyers and sellers together to

facilitate transactions. eBay is a classic examples of MSPs. Using a di�erences-in-

di�erence strategy comparing leasing o�ces that turned to EnergyNet and those

that remained o�line, this paper reviews the implementation of an MSP in the

oil & gas leasing industry. I �nd that EnergyNet signi�cantly increases revenues

brought in by public leasing jurisdictions and easily covers the cost of using the

MSP.

Prior to the fall of 2016, virtually all public auctions outside of leases by the

Colorado and Utah state government were held in-person. State commissions and

regional branches of the BLM held quarterly auctions of oil & gas parcels following

a nomination process in which lessors would solicit input on which parcels to put up

for sale. The timing and location of the auctions were released about half a year in

advance. All parcels would be put up for bidding on the same day in an open-outcry

ascending bid (English) auction style, meaning individuals or companies looking to

lease parcels would need to send a representative to isolated Western state capitals

or far-�ung BLM o�ces. Colorado and Utah had unique leasing systems, in that

Colorado transitioned to an online system early in 2013, and Utah maintained a

�rst-price sealed-bid auction before the state transitioned to an online system in
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2016. Prospective lease holders would mail in their bid values, and the winning

bidder would pay the full amount of their bid.

The mineral industry was never happy with in-person bidding, and pressured

governments to adopt online leasing. This wish was granted in the National Defense

Authorization Act in 2014, which amended the Mineral Leasing Act to allow online

sales109, which was piloted before becoming the norm for the BLM in the fall of

2016. Many Western state oil & gas commissions followed the BLM's lead and

simultaneously turned to an online auction platform. Energynet.com, a private

company that is not owned or managed by any local, state, or federal government,

is the sole platform serving state mineral commissions and the BLM. EnergyNet

hosts auctions worth millions of dollars each year. In 2017, over $1.25 billion worth

of leases were sold on EnergyNet110. EnergyNet takes 1.5% of all BLM revenues and

2% of state revenues raised on its platform, which dwarfs the cut auctioneers working

for state governments and the BLM had taken during in-person auctions. Jim

Odle, an auctioneer who worked for BLM until 2017, earned only a max of $1,500

for running an auction, which is a negligible amount compared to the millions of

dollars of leases he sold each auction111. Thus, it is imperative for state and federal

governments to understand the costs and bene�ts of using EnergyNet. There are

millions of dollars at stake each year when considering the cut the website takes,

which will only grow if more states adopt the platform or the federal government

continues allowing previously restricted land to be drilled. If governments are not

earning at minimum an extra 1.5%-2% in revenues from online leasing relative to

what they would have earned from in-person auctions, the transition to EnergyNet

109http://jacksonholeradio.com/2017/06/blm-wyoming-posts-proposed-parcels-for-oil-and-gas-lease-sale/
110https://www.outsideonline.com/2269336/obscure-texas-company-selling-public-land
111https://www.outsideonline.com/2269336/obscure-texas-company-selling-public-land
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does not pass a cost-bene�t analysis.

There are two primary reasons why states and the BLM outsourced their auc-

tioneering to the website EnergyNet. The �rst is convenience that leads to higher

bid values. Lessors believed that by reducing the cost of accessing the auctions,

more individuals and companies could participate in each auction. Theoretically,

the greater number of bidders along with lower search frictions should increase

bid values for parcels, which translates into more favorable payouts and royalties to

state governments and the BLM. By outsourcing work to an easily-accessed website,

potential lessees could more easily view information about the parcels in question.

More concrete signals and less uncertainty generally increases the value of min-

eral deposits, which commissioners hoped would further increase their revenues112.

Additionally, by allowing everyone across the world equal access to bidding since

no one would be restricted by geography, lessors believed they could increase the

distinct number of bidders and diversity of the bidders. Lastly, in-person bids have

to be concluded the day of the auction. This can be a daunting undertaking when

there are upwards of 300 distinct parcels, and sometimes bidders may miss out

on some parcels while others are being auctioned in person. Online auctions do

not have these constraints - EnergyNet usually puts parcels up for auction for 2

weeks, allowing bidders ample time and opportunity to bid on any parcels they are

interested in.

The second reason many suspect state oil & gas commissions and the BLM

transitioned to an online platform is to discourage bad publicity and protests of

leasing113. As the country has become more interested in climate change and the role

112https://www.energynet.com/page/Bill_Britain_Testi�es_Before_House
113https://westernwire.net/after-moving-lease-sales-online-blm-see-increased-participation-and-revenues-address-
security-concerns/
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fossil fuels play in a warming planet and wildlife habitat destruction, protests were

a regular occurrence outside oil & gas auctions. Some of this hysteria was caused by

Tim DeChristopher, who showed up to a BLM auction in Utah and proceeded to bid

on parcels even though he had neither the money nor legal right to bid, earning him

two years in prison114. Nicole Gentile writes for the Center For American Progress

that �The BLM's move toward privatized, online lease sales further shrouds an

already-abused and opaque system in secrecy; obstructs public oversight; and likely

costs taxpayers millions of dollars in lost revenues each year.�115 Likewise, Mya

Frazer writes �Given the agency's stated concern over the DeChristopher incident,

critics suggest that the BLM's shift to EnergyNet was motivated by the desire to

neutralize protests�116.

Indeed, the transition to EnergyNet has made it all but impossible for a regular

individual citizen to bid on parcels. Registration requires documentation that either

the individual works for an energy company or makes at minimum $200,000 per

year117. Additionally, under penalty of perjury registrants must pledge they have

are �engaged in the business of exploring for or producing oil or gas or other minerals

as an ongoing business.� Whether or not BLM was hoping to avoid more protests or

another DeChristopher incident, a movement to online sales immediately removes

a physical protest location from environmentalists.

Within major Western newspapers and online news organizations, there is plenty

of anecdotal evidence that EnergyNet succeeded in its goal of providing a reliable

online platform to raise extra revenue for governments. The Casper Star-Tribune,

114https://www.outsideonline.com/2269336/obscure-texas-company-selling-public-land
115https://www.americanprogress.org/issues/green/reports/2018/01/04/444501/trump-administration-selling-
public-lands-internet/
116https://www.outsideonline.com/2269336/obscure-texas-company-selling-public-land
117Sadly, I was rejected for this reason.
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the primary newspaper of the northern half of Wyoming and the main source of

energy news in the state, twice mentioned the positive e�ect online leasing appeared

to have on prices and the harmonious impact of online leasing on state budgets.

At the close of 2017, Heather Richards reported that revenue derived from min-

eral leasing increased over 800% from 2016 to 2017. She quotes Jason Crowder,

assistant director for the O�ce of State Lands and Investments, Trust Land Man-

agement Division, writing �it's unclear what exactly made the revenue shoot up

so dramatically, other than the state's decision to switch to an online auctioning

system which allows out of state companies to easily bid on Wyoming land. That's

the only thing we can point to118.� In her article, she cites other industry sources

that provide other possibilities for the staggering increase, including a deferred sale

from the prior year as well as a favorable administration back in power opening up

previously inaccessible land. In August 2018 Richards wrote �Both the feds and

the Wyoming Department of State Lands and Investment switched to an online

auction at the start of 2017. The online sales appeared to increase the number

of bidders, adding competition that pushed up prices for sought-after parcels119.�

Here, Richards alludes the possibility that not only have revenues increased due

to the fact bidders can participate without a costly trip to Casper, but have also

possibly increased simply because of more bidders.

Naturally, EnergyNet itself trumpets its success and the power of its platform

versus a `traditional auction'. Their website claims �It's simple: Greater buyer ex-

posure leads to more competition. More competition leads to higher returns for

118https://trib.com/business/energy/wyoming-oil-and-gas-lease-revenue-increases-by-percent-
in/article_64046af2-f540-5b50-be96-40307bbd77bd.html
119https://trib.com/business/energy/rise-in-lease-sales-pits-wyoming-s-energy-industry-
against/article_8c0d056c-8452-5fd4-b234-9bd226a9dfa1.html
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sellers120�. The same site says that the average transaction has 8.4 bidders per

transaction, whereas a traditional auction boasts only 2.3. They also advertise

advantages like a quick turnover, a higher `execution rate'121 than traditional auc-

tions and even claim their `success-based commission only' is an advantage over the

standard `commission plus extra promotional fee and penalty fees'. No source is

provided for any of their comparisons, but the advertised extra number of bidders,

higher execution rate, and the di�erence in fee structure are important measure-

ments that would help determine whether states are saving money by outsourcing

their auctions. Notably, a commission-based system is not strictly superior. If the

`take' of EnergyNet exceeds what the �at fee plus smaller commission would be from

someone like Jim Odle, then these fees are actually in excess of what governmental

bodies would have paid traditional auctioneers. EnergyNet is privately held, and

thus it is not possible to fully appraise the earnings of the company, but Outside

Online estimated that the company earned about $15 million in 2017 from running

public auctions taken as fees o� nearly $1 billion in land sales122 .

The goal of this paper is to evaluate whether states and the federal government

really do bene�t from an online leasing system, or if that $15 million paid to En-

ergyNet was an unrecouped cost. While anecdotal evidence may show that online

leasing played a large role in the recent increase in state and federal revenues, it

is possible to more rigorously determine the impact online leasing has on revenues.

Results broadly show that, yes, online leasing passes the cost-bene�t test from the

perspective of state treasuries and the BLM. Results indicate that a given parcel will

bring in roughly 40% more in revenue when being leased online than if it were leased

120https://www.energynet.com/how_do_i_sell.pl
121This is percent of parcels that receive at least the minimum bid.
122https://www.outsideonline.com/2269336/obscure-texas-company-selling-public-land
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in an in-person auction. The results are robust to di�erent model speci�cations and

several comparisons across state lines. This paper concludes that states should tran-

sition to an online leasing system to increase revenue derived from mineral leasing.

A back-of-the-envelope calculation suggests that leasing o�ces are accruing $136

million extra per year because of EnergyNet adoption, after accounting for costs.

The rest of the paper is organized as follows. Section 2 describes the mechanisms

that could generate and puts EnergyNet in the context of recent literature regarding

technological change and MSPs. Section 3 provides links to all data sources used

in this paper as well as summary statistics. Section 4 describes my di�erences-

in-di�erences methodology, results to my model, and alternative speci�cations all

showing that online leasing signi�cantly increases bid revenues. In Section 5, I

investigate the mechanisms driving this increase, and �nd evidence that the increase

is not driven by low-information bidders making up a disproportionate chunk of

online bidders, by easier access of information, by less travel costs, or by an increase

in the supply of parcels. More bidders at the auction are more likely responsible

for the increase. Concluding remarks are provided in Section 6.

2 Mechanism

Showing that a transition to online leasing is a windfall for states is the primary

conclusion of this paper. But understanding why there is such a large increase in

bid values is also valuable. Because there are several mechanisms in which MSPs

like EnergyNet can increase bid values, the case of EnergyNet and oil & gas leasing

presents an interesting intersection of several literatures within the wider auctions

literature.
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Andrei Hagiu (2007)[23] details three broad mechanisms with which a MSP en-

hances welfare for buyers and sellers:

1. Lower search costs

2. Lower transaction costs leading to more e�cient bargaining. Hagiu (2007)[23]

describes this is reducing costs that occur after the purchasing and selling

parties have identi�ed each other.

3. Thicker markets

EnergyNet is an MSP that utilizes all three mechanisms. See below:

1. Lower search costs. Potential bidders can bid from the comfort of their home.

Online leasing systems like EnergyNet require lower search costs leading to

better matching because:

(a) Bidders do not need to travel to & stay at the city hosting the auction.

(b) While EnergyNet does not produce any original information that cannot be

obtained elsewhere, the platform compiles all relevant public information

on the parcel, saving bidders search time.

2. Lower transaction costs:

(a) Participants do not need to sit through bidding for parcels they are not

interested in.

(b) Participants do not need to monitor the bidding process.

(c) Because EnergyNet pre-screens and registers participants, there are lower

enforcement costs to ensuring bidders pay their bids.

3. Thicker markets leading to higher bids:
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(a) A `thick' market means more buyers and sellers. Given the ease of using

EnergyNet relative to operating their own auctions, leasing o�ces may

put more supply up for sale on an online platform.

(b) As only the maximum-valuation bidder wins the auction, only the maxi-

mum bid value along with the second-highest bid value matters in deter-

mining auction price. A larger sample of bidders increases the expected

valuation of the maximum-valuation bidders assuming sample bidders are

drawn from any reasonable distribution123.

(c) `Additional' bidders who only participate in online auctions are likely to

be less knowledgeable about energy leasing due to lack of prior experience.

While these `additional' bidders are likely to have lower valuations than

bidders who participate in in-person and online auctions (reducing the

impact of the prior advantage), their inaccurate knowledge of parcel value

could cause them to overbid for parcels.

Of course, it is valid to argue that some of these categorizations are arbitrary. For

example, not needing to travel to the auction location could be considered a lower

transaction cost rather than a search cost. Likewise, the higher number of bidders

comprising the `thicker market' is most likely due to the attractiveness of online

auctions because of lower search and transaction costs.
123For example, assume bidders are drawn from the standard normal distribution. The expected maximum value
of a sample draw of n = 5 bidders is 1.16, while the expected maximum value of a sample draw of n = 10 bidders
is 1.52.

116



2.1 Search Frictions

EnergyNet reduces search frictions in two ways. First, with an online auction

platform, bidders do not need to travel to auction locations. This is not a trivial

reduction in cost - beyond the transportation costs, there is also food & lodging

along with the opportunity cost of the bidder's time in travel and 1-2 days of

auction. Prior auction locations were scattered across the Mountain West:

Table 15: Auction Locations
Lessor Auction Location

BLM - Colorado Lakewood, CO
BLM - Montana & Dakotas Billings, MT

BLM - Utah Salt Lake City, UT
BLM - Wyoming Cheyenne, WY

Montana - State O�ce Rotates among counties throughout MT
North Dakota - State O�ce Rotates among counties throughout ND
South Dakota - State O�ce Rotates among counties throughout SD
Wyoming - State O�ce Cheyenne, WY

Companies or individuals will sometimes reduce these costs by sending a repre-

sentative as a straw buyer who bids on their behalf. Online leasing eliminates the

cost of locating and employing these representatives.

The second way EnergyNet reduces search frictions is by compiling all relevant

information on a particular lease in one place. Information EnergyNet usually

provides includes leasing details like geographic location, acreage, royalty rate, lease

term, application fee, any provisions or stipulations (restrictions on drilling), lease

terms and conditions, lease forms, recent o�set activity (existing wellbores that are

used to guide future wells, providing signaling information that would be useful to

the �rm), contact information of the lessor, and contact information for EnergyNet.

To locate the relevant pages without EnergyNet, a bidder would need to visit

a separate website for each element of information, download all information, and
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�nally compile all information together. EnergyNet also has the advantage of pre-

senting information in a standard manner across states. Someone new to Wyoming

leasing, even if they are experienced with Colorado leasing, would not know where

to obtain relevant information from Wyoming's leasing o�ce.

As is logical, the literature suggests that lower search costs (whether for product

information or simply to join the marketplace) enhances welfare for both buyers

and sellers because of better matching of buyer to seller. Tadelis & Zettelmeyer

(2011)[59] consider a real-world MSP that connects used car buyers and sellers

that functions very similar to EnergyNet. The authors randomize the amount of

information about the cars and �nd that more easily accessible information enhances

seller revenue for all quality of cars, even if the information disclosed is negative.

This is due to the better matching of buyers' heterogeneous preferences with the

proper vehicle.

Recent literature in the oil & gas auctions literature comes to the same conclu-

sion. Covert & Sweeney (2019)[11] compare formal auctions of oil & gas leasing

rights to informal, negotiated contracts and �nd that auctions lead to a better

lessor-developer match. This better match enhances production.

2.2 Transaction Costs & Bargaining

EnergyNet generally runs semi-sealed modi�ed second-price auctions124 (hence-

forth referred to as `eBay auctions'). This is the same format as eBay, in which

buyers must exceed the bid value of the prior maximum bidder by some ε amount

in order to win the auction. If the bidder submits a bid value far above the previ-

124https://www.energynet.com/how_do_i_sell.pl
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ous maximum, they win the auction at the next-highest valuation plus ε, which is

invariably $1 per acre. Provided there are no transaction costs, the outcomes of an

eBay auction and a traditional English auction will be the same (Hasker & Sickles

2010)[25].

However, there are transaction costs in in-person English auctions that are elim-

inated on EnergyNet. Unlike in-person bidding, buyers can go straight to the

parcel(s) that interest them, rather than sitting through other parcels' auctions.

Additionally, buyers do not need to monitor the auctions they are interested in.

Like eBay, EnergyNet allows for a `maximum bid' and will bid on a buyer's behalf

if their bid value is exceeded, up until the maximum bid value.

Lastly, lessors do not need to worry about payment with EnergyNet. Welfare is

enhanced (including generating higher prices) when the seller is con�dent they will

be paid the winning bid amount. However, enforcing payment is tricky. Other MSPs

where enforcement is critically important like eBay and the dark-web marketplace

Silk Road rely upon `reputation' as an enforcement mechanism to ensure payment

(see: Houser & Wooders (2006)[31] and Hardy & Norgaard (2016)[24]). Buyers

and sellers generate reputation through prompt and accurate delivery of goods and

payments, leading to a more e�cient market. EnergyNet doesn't need to rely upon a

reputation metric because it has a thorough vetting process with legal rami�cations

including perjury if a bidder misrepresents his background or reneges on payment.

Since EnergyNet handles payments and market participants do not need to write

reviews of one another, EnergyNet's payment system also saves participants time.
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2.3 Thicker Markets

There can be a harmonious relationship between buyers and sellers on Energ-

yNet, creating a thick market with many buyers and sellers. Because it is easier

to run an auction using EnergyNet than by yourself, sellers can auction o� more

parcels at once. This increased supply along with lower search costs attracts more

bidders. From the perspective of the seller, more buyers can't be a bad thing.

An additional bidder may have a valuation above the current maximum bid value,

which would increase the �nal selling price.

Prior research by Jackson Dorsey (2019)[14] investigates a new technology with

direct similarities to my research environment. He considers the introduction of

EnergySage Inc. EnergySage is similar in both name and spirit to EnergyNet.

It provides an online platform connecting installers of solar panels with potential

customers searching for quotes. Before the introduction of EnergySage, consumers

needed to contact installers directly, and installers needed to personally visit each

house to produce a quote. Rarely did a consumer ask more than a single installer

to provide an estimate for installation at their house. This led substantial market

power, in that there were few plausible sellers that could connect with any given

buyer. Dorsey writes, �If collecting price quotes is costly for buyers, any installer

asked to give a quote can expect to be bidding against few or no other sellers,

thereby giving that installer incentive to charge a higher markup�.

On EnergySage consumers upload information and pictures of their house to

solicit quotes. The necessity of personal home visits from suppliers limited the

number of `bids' per house, and Dorsey �nds that switching from an in-person to

online platform increases the number of bids submitted from just 1 bid to almost
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4 bids per project125. Seeing increasing number of bids signi�cantly changes the

equilibrium price of solar panel installation. Simply due to the fact that there are

more bidders, the price is bid down as more suppliers enter the market and the

chance the customer is connected with an e�cient installer increases. Additionally,

and potentially more importantly, suppliers on EnergySage know they are compet-

ing against other installers. Thus, their pseudo-monopoly is broken and suppliers

provide both a lower-price and higher-quality product in response to competition.

In-person liquid mineral development auctions have the opposite problem. There

is often only one interested bidder for any given parcel, giving that bidder monop-

sony power. The bidder pays the reservation price, and wins the lease even if they

are willing and able to pay more. Bringing in any other bidder with a valuation

above the reservation price, even if their valuation is below the current bidder, will

increase the winning bid value.

It is easy to imagine the `marginal' bidder joining the EnergyNet auction but

not the in-person English auction being a casual, low-valuation participant. Those

with high valuations are likely to participate in the auction regardless to ensure

they win the parcels they want. These low-valuation marginal bidders are also

likely to be low-information bidders. Low-information bidders are those with little

experience and are likely to be those who bid on parcels as individuals (rather

than energy development companies). While low-information bidders probably have

lower average valuations than experienced bidders because of credit constraints

and possible risk-aversion, low-information bidders have a wider variance in parcel

valuation. As sample size (bidders) increases, the low-value bidders will have a

125Dorsey sometimes refers to these projects as `auctions', because the solicitation of quotes functions similarly
to an auction.
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higher expected maximum valuation than high-value bidders126. An in�ux of low-

information bidders could increase lease price at the cost of match quality.

3 Data

3.1 Data Summaries

State land leasing and BLM �eld o�ces conduct regular auctions of parcels

under their jurisdiction, and also provide data on the winning bids for each parcel.

Generally, each lessor provides two key �les for each sale: the �Sales Notice�, which

is released 1-2 months prior to a sale and contains information like parcel lease

number and location, and the �Sale Results�, which provides the winning bid value

and bidder (or indicates that no bidder bid the reservation price). By combining the

two �les for each sale, I obtain records representing each parcel leased in a given

auction with the following �elds: Bid Value Per Acre, Acres, Township, Range,

Winning Bidder, and Auction Date. I standardized the Bidders across datasets

because Bidder is not consistent from auction to auction or across states. Other

than the Utah state leasing o�ce, no state or federal jurisdiction provides any

information on losing bids or bidders, including whether any losing bids were even

entered.

When comparing parcel count by year, it is clear that most of my data comes

from 2004-2013, before the transition to online leasing. But it is important to note

that Wyoming and especially North Dakota are far better represented in the data

126For example, assume the valuation of high-knowledge bidders are drawn from the normal distribution H ∼
N(10, 1) and the valuation of low-information bidders are drawn from the normal distribution L ∼ N(1, 5). With
a small sample size of 10, the high-knowledge bidders have the higher expected maximum value (11.5 > 8.7), but
at a sample size of 100, the expected value of the maximum of the low-information bidders exceeds the expected
maximum of the high-knowledge bidders (13.5 > 12.5).
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Table 16: Leases by State Over Time

than other states. In fact, nearly 50% of all parcel observations are from North

Dakota, and North Dakota in the only state represented before 2000. Colorado and

South Dakota do not have any data available before 2010.

Breaking the data out further by lessor, it is immediately clear that state leasing

o�ces, not the BLM, are the lessors on most of the observations. Although the

federal government manages far more land than states in the West, the predomi-

nance of states is not surprising. On the supply side, states are often more generous

with the quantity of parcels sold in each auction. On the demand side, developers

value state land more than federal land, as state land usually comes with fewer
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Table 17: Online vs. O�ine Leases by State

restrictions.

Because most of my data predates the transition to online leasing and Montana

and South Dakota state leasing o�ces never went online, the large majority (80.3%)

of parcels are sold o�ine, whether through the mail (Utah state o�ce) or in-person

English auctions (all other leasing jurisdictions). Average bid value varies consid-

erably among states and lessors. South Dakota has the lowest bid value, with an

average of only $11/acre. North Dakota has by far the highest value per acre at

$500, with its small number of federal parcels going for an average of almost $5,000

per acre. This is because all of the federal parcels up for lease in North Dakota are

located in the Bakken Formation, a highly productive play.
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3.2 Data Sources

All leasing data can be downloaded from the following links: Colorado State Land

Board,Montana Department of Natural Resources and Conservation, North Dakota

Trust Lands, South Dakota School and Public Lands, The State of Utah School

and Institutional Trust Lands Administration, Wyoming O�ce of State Lands and

Investments, Colorado BLM Regional O�ce,Montanas & Dakotas BLM Regional

O�ce,Utah BLM Regional O�ce , and theWyoming BLM Regional O�ce, or by

inquiry to the author.

4 Impact on Bidding

4.1 Methodology

This paper utilizes a reduced-form standard di�erence in di�erences (DiD) strat-

egy to evaluate whether online leasing leads to higher bid values. DiD analysis

evaluates the impact of a treatment (in this case, a particular auction being held

online rather than in person) on an outcome (bid value) across a treatment and

control group over multiple periods, in which the treatment is only active for some

of the periods. In these regressions, certain jurisdictions serve as the control popu-

lations (these are states that never transitioned to an online leasing system, or were

always online, namely Montana, South Dakota, and Colorado), and other jurisdic-

tions serve as treatment states (jurisdictions that transitioned to an online system

in late 2016, namely North Dakota, Utah, Wyoming and the BLM). The primary

regression equation is:
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log(Bidi,s) = Y earSeasonFEs+TownshipRangeFEi+FederalFEi,s+Onlinei,s+Nearbyi,s+εi,s

(8)

127where log(Bidi,s) is the bid value of a parcel located in township-range i dur-

ing Year/Season s, Y earSeasonFEs is a categorical �xed-e�ect for Year/Season
128

s. Season �xed-e�ects control for contemporaneous market conditions, such as the

prices of oil & gas and cost and tax structures common to the industry nationwide.

TownshipRangeFEi is a categorical �xed-e�ect for township-range i129. Control-

ling for township-range accounts for the time-invariant characteristics of the well

location, and is also the geographic level state leasing agencies and the BLM use

to auction o� parcels. Otherwise, it would be possible that signi�cant �ndings are

due to di�ering levels of expected oil & gas well production, eliminating the possi-

bility that results are driven simply by the online auctioned parcels being of higher

quality than those sold in person. FederalFEi,s represents a �xed-e�ect that is

equal to 1 when the parcel is managed by the federal government, rather than a

state o�ce. Onlinei,s is a binary equal to 1 if the observed auction was held online.

Errors are clustered at the township-range level for all models, including alterna-

tive speci�cations and robustness checks. Nearbyi,s is a binary equal to 1 if the

parcel is in the same township-range as another parcel leased by the same winning

127The regression equation is similar to Fitzgerald (2010)[21], in that he also regresses bids on sale and geographic
�xed-e�ects. However, Fitzgerald's geographic �xed-e�ect is less precise than mine (he uses county) and he regresses
the entire bid value rather than per-acre bid value, meaning he also must control for lease size.
128Di�erent jurisdictions do not hold their auctions on the same date, but often will host one auction per season,
or one auction every other season. Both federal and state leasing agencies hold auctions at regular times each
year in the same areas. For example, the Montana/Dakotas branch of the BLM auction o� parcels in Montana
in December/January, May and October, and parcels in the Dakotas in July and September.Controlling for the
year/season allows me to take into account the current market conditions prevailing in any given season, and isolate
the e�ect of online leasing independent from time-varying e�ects.
129Note that a given township-range will never span multiple states; any township/range will be unique to one
state.
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developer in the last �ve years. I control for nearby managed parcels because devel-

opers may have inside information about the parcel in question gathered from tests

and production from nearby parcels. Additionally, developers may be interested in

continguous plots. Errors are clustered at the township-range level for all models,

including alternative speci�cations and robustness checks. Note that results do not

meaningfully change if lessor-speci�c controls are used (for example, controlling for

di�erent federal leasing o�ces separately versus subsuming them into a `federal'

�xed-e�ect) and if winning-bidder speci�c controls are used.

There is one potential threat to validity with this methodology that I cannot fully

account for. It is possible that states expecting they had more to gain by switching

to an online leasing system are indeed those that transitioned. This would bias my

result upwards. I do not have any way to control for this, but there is no indication

in any news reports or from my discussion of state leasing representatives that this

was the case. Moreover, the fact that all states that transitioned and the BLM made

the transition e�ectively simultaneously in late 2016/early 2017 makes it doubtful

that there is an endogeneity issue in my model.

One of the primary reasons states and the federal government elected to move to

an online system was to avoid in-person protests of lease sales. These protests are

embarrassing to state leasing o�ces and were e�ective. On several occasions states

were forced to delay in-person auctions to avoid con�ict with protestors130 . If there

were selection into treatment, states with more exposure to protests would be more

likely to enroll in online leasing. To evaluate this possibility, I used Google News

to count all news articles from January 2000-June 2016 that included the terms

130https://archive.sltrib.com/article.php?id=3287268&itype=CMSID
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`lease',`protest',`climate', and the given state131. I run an alternative in which I

search for the word `environment' instead of `climate'. There was no correlation

between the number of articles concerning environmental protests and selection

into treatment:

Table 18: News Articles on Protests
State Articles - Climate Articles - Environment Oil Rank Gas Rank Treatment

Montana 245 167 13 20 No
South Dakota 88 176 25 30 No
North Dakota 61 69 2 12 Yes

Utah 179 336 10 11 Yes
Wyoming 141 346 8 8 Yes

There does not appear to be a discernible relationship between local interest

in protests and selection into treatment. When counting articles mentioning `cli-

mate', the average count of articles from states that did not transition to online

leasing actually exceeds the count of average number of articles from states that

did transition, 166.5 articles to 127132. The relationship is reversed when counting

articles mentioning `environment', with 171.5 articles from states that did not go

online versus 250.3 articles for states that did go online. Moreover, more articles

from states that went online would be expected because they are heavier energy

producing states with more auctions to protest133.

131Omitting `climate' from this list does change results in that more articles are written about states that transi-
tioned than those that did not. However, many articles about leasing `protests' without mentioning climate concern
the formal `protest' process, rather than an in-person demonstration opposing leasing. Any parcel put up for auc-
tion can be `protested', which means that some third party does not think the parcel should be up for nomination.
Parties that often protest parcels include environmental groups, other governmental bodies, private businesses, and
citizens living nearby. They may be motivated by wildlife or environmental interests, loss of recreational oppor-
tunities, or the desire to develop the land instead for agriculture or housing. The formal `protest' process is not
an in-person demonstration; it is a written process in which the protestor identi�es speci�c parcels that are `under
protest' and if their claims have merit the leasing jurisdiction delays those speci�c parcels from being sold. For
more information on the `protest' process, see this link: https://www.gao.gov/assets/310/308276.pdf .
132Colorado is missing from this chart, because it has always used online leasing.
133https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from.php,
https://www.eia.gov/tools/faqs/faq.php?id=46&t=8. Note that for gas production only onshore production
was considered when creating the state rankings, although the table would not meaningfully change if o�shore
production were considered as well.
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Table 19: All States Pooled Results

4.2 Results

My base model includes data from all states in analysis (Colorado, Montana,

North Dakota, South Dakota, Utah, and Wyoming), including both state leasing

o�ce parcels and BLM parcels. This is called the `pooled' model. The pooled model

evaluates the average e�ect of moving to an online platform across all included

states. The lessor �xed-e�ects ensure that this treatment e�ect is not due to the

state o�ce vs. the BLM (or both jurisdictions) moving online together in late 2016.

Note that I run the model with and without Utah because of Utah's unique auction

format.

There is convincing and consistent evidence that the online leasing platform

EnergyNet signi�cantly increases bid revenue for state and federal co�ers. The

base model including Utah implies that bids increased 39.7% due to online leasing.

The same model excluding Utah indicates online leasing leads to a 56.7% increase

in bids. Both models are signi�cant at the 0.1% level.

An increase of 39.7% in bids for a given parcel is remarkable, and clearly shows
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that the EnergyNet system covers its `take' (2% of sale revenues from states, and

1.5% from BLM). Even the lower bounds of the 95% con�dence interval (7.8%

and 17.9%) exceed the cost of implementing the system. A back-of-the-envelope

calculation suggests that using EnergyNet instead of in-person auctions provides

an extra $136 million per year to the states and federal government134.

Because state and federal leasing o�ces did not transition at precisely the same

time because of di�ering jurisdictional laws and regulations, the pooled regression

is an example of a `staggered' DiD model. A staggered DiD model is one in which

transition to treatment is not simultaneous across the treated, and can result in

biased coe�cient estimates if di�erent groups respond to treatment heterogeneously

[see Baker, Larcker, & Wang (2021)[3]]. However, there are reasons to think this is

not a serious concern in the context of my pooled regression:

1. All switches were completed over a small window relative to the entire range

of analysis (July 2016 to February 2017)

2. O�ces have only 3-4 sales per year, meaning that even though o�ces switched

at di�erent dates, there were not many auctions in the `intermediate' period.

3. Most importantly, only the pooled model is `staggered'. Models run across a

single state border - whether limited to parcels near the border in the spatial

RD model or using the whole state data - do not have the staggering issue.

Likewise, the state vs. BLM model also does not have a problem with `stag-

gered' treatment. These other models produce e�ects at least as large as the

pooled model, typically clearing higher signi�cance thresholds as well.
13439.7% increase in bids less 1.75% take (average of 1.5 and 2% take) multiplied by the `typical' $358 million
from all leasing revenues across the country. See: https://www.instituteforenergyresearch.org/fossil-fuels/gas-and-
oil/2018-oil-and-gas-lease-sales-generated-record-revenue-of-1-1-billion/
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Table 20: Neighboring States Results

4.3 Alternative Speci�cations

4.3.1 State vs. Neighboring State

In these regressions, I expand the model by comparing a treatment state to an

adjacent control state (for example, the states of Wyoming and Colorado). This

e�ectively breaks down the main model `pooled' regression into discrete state-to-

state analyses. The same econometric model is used as in the pooled regression

(Equation 8). All observations within a state are used in these regressions.

The online leasing variable is statistically signi�cant at least at the 10% level

across all treatment/adjacent control state combinations other than Colorado/Utah,

and presents a premium of at least 27.3% for online leasing. The fact that the coe�-

cient exceeds the 2% `take' for EnergyNet for all state borders and is almost always

signi�cant (usually at the 1% level) presents strong evidence that a transition to

EnergyNet is a �nancial win for leasing o�ces. Certain state combinations show

particularly strong impacts of online leasing - particularly, the Colorado/Wyoming
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border and North Dakota/South Dakota border, which suggests that bids are more

than doubled. While an e�ect that large may be implausible, the strong and consis-

tent relationship seen across all possible state combinations suggests that the e�ect

of online leasing is not driven by only one state's transition.

4.3.2 Spatial Discontinuity

In this section, I repeat the adjacent state regressions provided in Section 4.3.1

but only include observations near the state state border. By limiting the state-to-

state comparisons, the regression analysis becomes a spatial discontinuity di�erences-

in-di�erence model. The advantage of spatial DiD is that land on either side of the

border is especially likely to be similar, making the identi�cation of the causal ef-

fect of online leasing even more resilient than simply using geographic �xed e�ects.

To ensure that similar geology and local factors are controlled for, I only consider

township-ranges within 2 degrees of latitude/longitude of the state border. Parcel

location is assumed to be the centroid 135 of the township/range136. Figure 14 is a

sample map of township ranges that I restrict to for the North Dakota/Montana

state border.

Figure 14: State Border Restriction

135Special thanks to Bill Clark of EarthPoint for providing township-range centroids at a very generous discounted
academic rate. Please see Bill's website for a variety of GIS services: www.earthpoint.us
136Township-ranges are 6 mile x 6 mile squares, meaning the maximum error on this estimate will be 8.5 miles.
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Table 21: Spatial Discontinuity Results

The regression speci�cation is again the same as Equation 8. Results of the

spatial discontinuity model are presented in Table 21.

The lack of consistency using only observations along the state border is strik-

ing when considering the consistency displayed in the pooled regressions and entire

state-to-state comparisons. All borders still exhibit a positive relationship between

online leasing and price other than Colorado/Utah, and for the other borders the

relationship is statistically signi�cant at least at the 5% level except along Mon-

tana/North Dakota, but the coe�cients cover an implausibly large range. There are

a relatively low number of parcels, especially when considering that township-range

controls, season controls, lessor controls, and developer controls are still included.

This accounts for higher standard errors in the estimation of the e�ect.

4.3.3 State vs. BLM

The comparison of BLM regional o�ce results to state leasing o�ce results is par-

ticularly ripe for analysis because these organizations manage the same township-
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Table 22: States vs. BLM Results

ranges within the same state, with the split between the jurisdictions occurring at

the section level137. There are two BLM regional o�ces that transitioned to an

online leasing system in late 2016 while the local state system maintained the same

system. The Colorado BLM moved to an online system while the state o�ce has

conducted their auctions online since 2013. Additionally, the Montana & Dakotas

regional o�ce moved online in late 2016 but the state-level o�ces of Montana and

South Dakota remain in-person to this day. Because Montana and the Dakotas are

managed by the same regional o�ce, I have combined those three states into one

regression. The econometric speci�cation is the same as Equation 8.

Results in the BLM vs. state o�ce speci�cations are still positive, indicating a

20.9% increase in the Colorado speci�cation and a 42.5% increase in the Montana

& Dakotas speci�cation. However, only the Montana & Dakotas speci�cation pro-

duces statistically signi�cant results, perhaps because the Colorado speci�cation

137A section is 1/36 of a township-range and measures 1x1 square miles. Traditionally, states are delegated
the 16th and 36th sections of each township-range by the federal government with the purpose of funding state
education systems.
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Table 23: Quantile Results

includes only 858 parcels.

4.4 Quantile Analysis

Quantile analysis involves ordering the data by the outcome variable and then

running the same model on separate sections of the data to determine whether the

e�ect is being driven by a segment of the data. This helps determine the economic

- not statistical - signi�cance of the issue. For example, if the e�ect of increasing

bid values by online leasing were being driven by the lowest-value parcels only, say

in which bid values were changing from $4 to $5 per-acre while high-quality parcels

were not seeing an e�ect, there would be little economic and practical importance

to online leasing.

I split up the data into 4 equal buckets based on bid value, and ran the same

model as Equation 8. Results are presented in Table 23 by quartile of data.

Altough the e�ect of online leasing is notably smaller in the quantile regressions
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than the main model, it is clear that the e�ect is not being driven by the lowest-

value parcels. There is not a meaningful relationship between parcel quality and

the change in revenue due to online leasing. These results matches the news articles

praising the revenues derived from online leasing. If it were the lowest value parcels

seeing the largest increase, it is possible states would not have seen the windfall

revenue gains post-transition.

4.5 Parallel trends check

Typically DiD analyses will include a `parallel trends' test showing that a given

policy only impacted the treated observations and did not a�ect the control obser-

vations. This is usually shown by displaying running trends of the data with no

discernible change in slope of the control observations when the policy in question

begins, but a noticeable change in slope for the treated observations. This shows

that the result found by the DiD model is in fact causal, and is not due to some

spillover in the policy from the control observations responding to the treatment.

Figure 15 plots the parallel trends chart comparing the log bid against the year.

In this chart, a dot labeled `treatment' represents a parcel from a lessor that tran-

sitioned to online in late 2016, while a dot not labeled `treatment' is from one of

the 3 lessors that did not transition (Colorado, Montana, and South Dakota state

o�ces).
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Figure 15: Parallel Trends - Online Leasing

Interestingly, the parallel trends chart indicates that the trend was not the same

before the transition in late 2016, but that trends were moving in the opposite

direction, making the estimation of a large positive impact on bid values from

online leasing conservative. If anything, the trend before online leasing indicates

that average bid values in treatment jurisdictions were decreasing faster than non-

treatment leasing o�ces. Of course, this parallel trends chart includes data from 6

di�erent states and even within each state 2 di�erent leasing agencies, so the mix

of the parcels being included matters. My regressions control for parcel township-

range, so the time-invariant quality of the land being o�ered is controlled for. This

is why what is an apparent negative impact on bid value from looking at the parallel

trend chart is in fact a positive e�ect.

5 Investigation of Mechanism

In this section of the paper, I explore whether the di�erent mechanisms described

in Section 2 really are driving the increase in bids. The conclusions of this section are
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that a disproportionate in�ux of low-information bidders and more easily-accessed

information are not driving the increase. It is possible that a higher number of

overall bidders and more e�cient bidding may be stimulating bids. In Table 24 I

provide a guide to the possible mechanisms, along with my conclusions.

Table 24: Mechanism Breakout
Mechanism Is this mechanism increasing bids?

1a:Bidders don't need to travel NO
1b: EnergyNet compiles information NO

2: Lower transaction costs N/A
3a: More parcels supplied NO

3b: More bidders YES
3c: In�ux of low-information bidders NO

N/A means I have no way to answer the question. I have no feasible way to

determine whether online leasing lowers transaction costs.

5.1 Does zero travel costs increase bids?

Before online leasing, auction participants gathered at state and federal leasing

o�ces, requiring travel and lodging in the auction city. Online leasing doesn't

require any travel, equalizing the costs of participation between bidders near and

far from the auction itself. Thus, if travel was a prohibitive factor in the sale of

parcels, online leasing should result in more winning bidders being from out of state.

5.1.1 Comparing Home State to Auction State

To evaluate whether online leasing leads to less bidder travel, I compare the

home state of winning bidders to the location of the auction. This is not a perfect

comparison for three reasons:

1. Many leasing companies have several locations, or have an employee in a state

closer to auctions.
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2. This process does not discriminate by distance. For example, someone living

in Evanston, Wyoming is further from Wyoming state and BLM auctions in

Cheyenne than some living in Fort Collins, Colorado.

3. I was not able to locate the developer state for 11,979 observations, or 21.5%

of observations.

These three drawbacks will attenuate any e�ects I �nd.

In these regressions, I run a logistic regression to determine whether online leasing

leads to a higher likelihood that the winning bidder is not from the state of the

auction. The regression equation is:

DifferentStatei,s = Y earSeasonFEs+TownshipRangeFEi+FederalFEi,s+

Onlinei,s +Nearbyi,s + εi,s

In this regression, a positive and signi�cant coe�cient on the `Online' variable

indicates that online leasing increases the chance the winning bidder is from out of

state. I ran a robustness check in which adjacent states would also count as being

in the `same' state, meaning that a winning bidder would only be considered `out

of state' for a parcel in the state of Utah if they were not from Utah, Wyoming,

Montana, Idaho, Nevada, Arizona, or Colorado.

Results show no e�ect between leasing format and likelihood that the winner

is from out-of-state. Although this could be a function of the attenuation bias

described above, the small value of the coe�cients relative to the standard error,

along with the �ipping of the sign in the own-state only and adjacency models

indicate that there is not a meaningful relationship between the measures.
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Table 25: Home vs. Out of State Bidders

5.1.2 Using `New State' Winners

An alternative speci�cation is to instead use the bidder as the central focus of

analysis, rather than the parcel. In this regression, the outcome variable is again a

0/1 binary, but is a 1 when the parcel was won by a bidder winning in that state

for the �rst time. This regression measures the relationship between leasing format

and the likelihood that the winner has `expanded their horizon' and won a bid in a

new state. Given the lower travel costs under online leasing, this may happen more

often under an online format. The regression equation is138:

NewStatei,s = Y earSeasonFEs+TownshipRangeFEi+FederalFEi,s+Onlinei,s+

εi,s

Results indicate that there is no relationship between online leasing and bidders

`expanding their horizons' to new states. Overall, the evidence suggests that if

online leasing increases revenues through less travel, it does so only marginally, and

138Note that nearby parcels are not controlled for, because the outcome variable is whether or not the bidder has
won in the state before. By de�nition if a bidder is winning for the �rst time in a given state it does not already
control nearby parcels.
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Table 26: New State Results

that is not what is driving the increased bid values.

5.2 Easier information access does not increase bids

Almost all `mechanisms' listed in the beginning of this section apply uniformly

across parcels, rather than increasing the bids of some parcels versus others. For

example, there were 12 registered bidders139 for the in-person auction of BLM Utah

leases on May 19, 2015 in Salt Lake City. All 14 parcels had the same number of

potential bidders (12), from the parcel that sold for $500 an acre to the 3 parcels

that did not garner any bids. Likewise, all 156 parcels auctioned during the March

25, 2019 EnergyNet were available to all 42 registered bidders, regardless of the

quality of the parcel.

The converse of this situation is a mechanism that ampli�es the bidding of cer-

tain parcels more than others. One of these mechanisms is mechanism 1.B: lower

search costs for information on the parcel. EnergyNet compiles publicly available

documentation on parcels in a user-friendly format, while gathering all relevant �les

139https://www.blm.gov/sites/blm.gov/�les/uploads/BiddersList_0.pdf
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for a given parcel without EnergyNet is burdensome. Developers are unlikely to

research all parcels, especially those being auctioned from low-productivity areas.

This e�ect is ampli�ed by the fact that developers are less likely to be familiar low-

productivity areas from prior experience, meaning they cannot substitute lack of

parcel information with personal private information. Thus, it is possible that the

gains from EnergyNet would accrue most to parcels from low-productivity areas.

In his analysis of split-estate bidding, Fitzgerald (2010)[21] shows that co-ownership

of mineral rights leads to lower bids, presumably because developers must contend

with multiple leasing agencies and regulations when drilling. He also �nds that

the e�ect of split-ownership is strongest for the most expensive parcels, as those

sure-�re parcels also have the most to lose by additional costs from split ownership.

Overall, his results show a monotonically increasing discount attributable to split

ownership as parcel value increases, meaning that the highest-value parcels lose the

largest share of their bids due to split ownership.

Fitzgerald's methodology can be used to help answer the `mechanism' question

in online leasing regarding information. I sort the township-ranges in my pooled

dataset (all states included) by average lease value and then split the pooled data

into four datasets by quartile of equal numbers of townsip-ranges140. I only include

township-ranges with parcels auctioned before July 2016 to split the data by be-

havior observed before the treatment, although I have a robustness check with the

data split using all observations. I then run the main model across the dataset by

quartile. If there are meaningful e�ects from enhanced access to information, it is

likely that the `online leasing' binary will be strongest for the �rst quartile, and

140Note that this produces an increasing number of observations per quartile, as township-ranges in higher quartiles
have more parcels auctioned per quartile than lower quartiles. The higher number of parcels auctions corresponds
to the higher quality of land in those township-ranges.
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Table 27: Quartile Regressions 1 Results

become less important as I consider higher quality township-ranges.

In fact, I see the opposite. It is the fourth quartile that sees virtually all of the

price premium e�ect of online leasing. This means that it is in fact the parcels from

areas already most familiar to developers that accrue the largest increase in bids

from online leasing.

I ran a robustness check of these results using data from all parcels, which re-

sulted in narratively identical results.

It is clear that the bene�ts from online leasing �ow disproportionately to parcels

that were already receiving attention from bidders, making more easily accessible

information an unlikely conduit for the general rise in bids.

5.3 EnergyNet does not increase supply of parcels

A `thicker' market typically implies more demand and supply. To determine

whether online leasing increases the supply of parcels, I count the number of parcels
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Table 28: Quartile Regressions 2 Results

being put up for sale at each auction. Without other e�ects like a transition to an

MSP, a change in the nationwide oil & gas market, or a switch to a new political

administration, the supply of parcels should be relatively constant from year-to-

year. States and the BLM put di�erent sections of their jurisdiction up for sale at

regular times of the year. The econometric model is:

Parcelss = Onlines + Y earSeasonFEs + StateFEs + LessorFEs + εs

I regress the number of parcels put up for auction in auction s on season, state,

and lessor �xed-e�ects, along with the Online binary. If EnergyNet increases the

number of parcels up for auction, the Online coe�cient will be positive.

There is no evidence that EnergyNet increases the quantity supplied of parcels.

In fact, the coe�cient on Online is negative, whether all jurisdictions are considered

or only state leasing o�ces. This is not surprising, because the energy leasing

market is not a regular industry. State governments and the BLM have a mandate

to manage their resources responsibly, extracting fair rents for their use. The goal
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Table 29: Supply Results

of lessors is not to sell as many parcels as possible, but to lease their lands for the

good of the state population.

Although the coe�cient on the Online variable is never statistically signi�cant,

meaning that the model does not establish a link between online leasing and parcel

availability, a reduction in parcel quantity is interesting because the increase in

bid values could simply be a function of supply and demand. If lessors reduce the

number of parcels available (reduce supply), price rises. Of course, this assumes

a local market to energy, and that developers have no outside option. Energy

development is a worldwide market, and it is safe to assume that a reduction in

parcel availability under online leasing, if it even exists, should not change the

equilibrium price of leases.

5.4 There is evidence EnergyNet attracts more bidders

More bidders indicates higher interest in a parcel, and drives prices upwards

because bidders must compete with each other and will bid closer to their reservation

price. Strong evidence of a causal relationship between online leasing and increasing
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number of bidders would be immensely valuable in determining what mechanisms

are causing the growth in bids. However, no state governments other than the

Utah School and Institutional Trust Lands Administration (SITLA) nor the BLM

keeps the distinct number of bidders per parcel from their legacy o�ine in-person

auctions. In-person auctions are rapid-�re and taking note of who bid what would be

di�cult, especially given that the same few bidders may outbid each other multiple

times. Tracking this information would be a waste of resources, since the only bid

that matters to governments is the winning bid. Because of this, I have no way to

identify how many bidders bid on a speci�c parcel.

5.4.1 Using Winning Bidders

In lieu of a dataset with the number of bidders for states other than Utah,

I instead use the number of winning bidders per auction. Of course, this is an

imperfect proxy - there is no de�nite relationship between the number of winning

bidders and the number of losing bidders of a parcel. However, the number of

winning bidders could reasonably be assumed to be well-correlated with the number

of bidders. Moreover, the winning bidders are more important than the losers

from the perspective of state and federal leasing agencies, as the winning bidders

represent the high-valuation revenue generators. The appeal of regressing winner

bidder counts on online leasing is that the story is causal using a di�erences-in-

di�erences methodology comparing treatment and control states before and after

late 2016.

In this section I collapse sales down to the auction level. For each auction, I

count the number of distinct winning bidders and the number of parcels available.
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I also sum the total bid value as a proxy for land quality independent of parcel

count. Finally, I limit to auctions with a minimum of 10 parcels (adjusting the

minimum number does not meaningfully drive results). I use the following regression

speci�cation:

WinningBidderss = Onlines + Parcelss + BidV alues + Y earSeasonFEs +

LessorFEs + εs

I again control for Season �xed e�ects, which controls for universal market con-

ditions like the prices of oil and gas. I also still use lessor �xed e�ects, which control

for the time-invariant characteristics of the leasing o�ce and inherently also con-

trol for jurisdiction-wide land quality. I do not control for township-range �xed

e�ects because the regressions are at the auction level, with each observation in the

dataset representing one speci�c auction. Because Montana and the Dakotas are

grouped under one BLM leasing jurisdiction, using state-level controls would need

to entail splitting one auction into 3, so state is not controlled for. Instead, the

Lessor controls, which are determined by geography, control for the time-invariant

quality of parcels across the leasing agency's jurisdiction. Errors are clustered at

the lessor level.

The coe�cient on online leasing is positive, but not signi�cant (p-value > 0.1).

This indicates that the model predicts online leasing does increase the number of

winning bidders by almost 2 bidders per auction, but the model can not di�eren-

tiate the e�ect from the null hypothesis of no e�ect. This provides only limited,

inconclusive evidence that online leasing increases the number of bidders. More

auctions (N = 383)141 would assist in determining whether the relationship is sig-

141This number is less than the total number of auctions (422), because some auctions are the only sales in a
given quarter.
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Table 30: Number of Bidders Results

ni�cant. Not surprisingly, the coe�cients on parcel count and total bid amount are

positive and signi�cant at the 5% and 0.1% level, respectively. More parcels being

o�ered, and higher bids, are associated with more distinct winning bidders.

5.4.2 Using Non-Reservation Price Bids

One thing we do know is that any parcel selling above the reservation price has

more than 1 bidder. If there is only 1 bidder, the winning bid will be the reservation

price regardless of the bidder's true valuation. This is true of both English auctions

and eBay auction formats142. Thus, a higher share of non-reservation price bidders

is indicative of more overall bidders. To test whether online leasing increases the

likelihood of a bid beyond the reservation price, I run the following regression:

Non−reservationPricei,s = Y earSeasonFEs+TownshipRangeFEi+LessorFEi,s+

Onlinei,s + εi,s

The outcome variable in this regression is whether the parcel won by a bid

greater than the reservation price. The BLM, state of Colorado, and state of South

142The exception to this rule is parcels sold through the Utah State Leasing O�ce, as SITLA uses a �rst-price
sealed-bid auction. This means that the winning bidder pays whatever he bid, even if he is the sole bidder. I have
excluded Utah state o�ce parcels from the regression.
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Table 31: Reservation vs. Non-Reservation Price Results

Dakota have a reservation price of $2/acre. The states of North Dakota, Utah,

and Wyoming have a reservation price of $1/acre. The state of Montana has a

reservation price of $1.50 per acre. If online leasing leads to more instances of

multiple bidders, the coe�cient on the Online variable will be positive. I utilize

the same controls as in prior regressions other than controlling for developer, which

controls for time-invariant land quality and contemporaneous market conditions.

Errors are again clustered at the lessor level.

The answer is a resounding `yes'. Online leasing leads to more bids that exceed

the reservation price. The logistic regression indicates that there is over a �ve-

hundred percent increase in the odds that the bid will exceed the reservation price

if the parcel is sold online vs. in-person. This result is so large in magnitude that

it provides convincing evidence that online leasing really is bringing in new bidders

to the auction, which is raising revenue.
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5.5 The extra participants are not low-information bidders

5.5.1 Experience level of winning bidder

Using developer experience, I �nd that an in�ux of low-information bidders are

de�nitively not driving the increase in bids. I run the following logistic di�erences-

in-di�erence regression across my pooled dataset:

LowExperiencei,s = Y earSeasonFEs +TownshipRangeFEi +FederalFEi,s +

Onlinei,s +Nearbyi,s + εi,s

The outcome variable in this regression is whether the parcel was won by a

high-experience (or conversely, low-experience) developer. I split developers into

`high-experience' and `low-experience' developers based on total parcels won by the

winning bidder, splitting the data as equally as possible into `large' and `small'

developers. If online leasing allows a surge of predominantly low-experience, low-

information bidders, the coe�cient on the Online variable will be negative. I utilize

the same controls as in prior regressions other than controlling for developer, which

controls for time-invariant land quality and contemporaneous market conditions.

Errors are again clustered at the township-range level.

The split of developers into high and low experience could be impacted by the

transition to online leasing itself as I use all the data when counting how many

leases a given developer won. To avoid this problem, I only consider leases won

before July 2016 in determining which developers are `high' and `low' experience.

As some developers only win auctions post July 2016, those developers are excluded

from the model. I ran separate models in which all data is considered. For both the

main speci�cation and robustness check, winning more than 5 parcels quali�es a

developer as being `high' experience, while winning 5 or fewer makes the developer
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Table 32: Bidder Experience Results

`low' experience.

These regressions preclude di�erential bidder experience as being a driver for

increased bids. The strongly negative coe�cient on nearby parcels is not surpris-

ing; having a nearby parcel by formulation makes a bidder more likely to be an

`experienced' bidder.

I further test for the experience of the winning bidder by evaluating whether

the auction was won by a `new' winner. A new winner is de�ned as someone who

has not won a parcel before, in any leasing jurisdiction's auctions. The regression

model is143:

NewWinneri,s = Y earSeasonFEs + TownshipRangeFEi + FederalFEi,s +

Onlinei,s + εi,s

The coe�cient on Online is negative, indicating that online leasing is less likely

143Note that nearby parcels are not controlled for, because the outcome variable is whether or not the bidder has
ever won before. By de�nition if a bidder is winning for the �rst time it does not already control nearby parcels.
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Table 33: New Bidder Results

to produce winners that are new to leasing auctions relative to in-person auctions.

5.5.2 Individuals vs. companies

Just as more experienced bidders are more likely to be highly knowledgeable

about the productive capacity of tracts up for auction, larger developers are also

more likely to have an accurate prediction of production. While I do not have

revenue data for bidders, I can proxy for this by �agging winning bidders as `indi-

viduals' or `corporations'. Mineral leasing auctions are not limited to just corpo-

rations; individuals representing themselves attend and often win auctions. These

individuals are often tangentially connected to a larger company or will resell the

parcels to developers. However, sometimes they are simply community members, or

are speculators with little knowledge of the industry. To determine whether online

leasing increased the likelihood that winners were smaller individual players rather

than corporations, I ran the following logistic regression:

Individuali,s = Y earSeasonFEs+TownshipRangeFEi+FederalFEi,s+Onlinei,s+

Nearbyi,s + εi,s
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Table 34: Individual vs. Company Results

Results show that online auctions are much more likely to be won by corporations

than individuals. Just as above, there is no indication that smaller players like

individuals are more likely to participate in online auctions than in-person auctions.

My analysis strongly suggests that online leasing does not disproportionately attract

low-information bidders. If anything, high-information bidders are more drawn to

online leasing.

The �nding that using an MSP results in high-information bidders rather than

low-information bidders winning auctions despite the `equalizing' aspect of online

auctioning �ts well with the literature. Lewis & Wang (2013)[41] build upon Tadelis

& Zettelmeyer (2011)[59] with a theoretical model con�rming that MSPs that lower

search costs enhance seller revenue and generate additional welfare for buyers and

sellers as a whole. However, their theoretical extension proves that buyers with weak

preferences (low-information buyers) can be harmed with easier search because

of more competition leading to a better match. These results provide empirical
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support for Lewis & Wang's theoretical results, as I show that with online leasing

the higher-information, experienced bidders are those more likely to win auctions.

6 Conclusion

This paper showed through a di�erences-in-di�erences model focusing on oil &

gas parcels being leased on state borders that auction format has a meaningful

implication for state and federal energy revenues. The increase is most likely due to

extra high-information bidders joining the auction. The presence of extra bidders

increases bid values for both low and high-value parcels, leading to an estimated

increase of an extra $136 million for the federal and state governments.

A future extension of this work could be to determine the welfare implications

of moving to online leasing. The analyses presented above are presented exclusively

from the perspective of the leasing o�ce, in which higher revenues in excess of

extra cost is strictly preferred to lower revenues. However, if this extra revenue is

solely a transfer of wealth from developers to leasing jurisdictions, there is not a

social welfare improvement, but simply a transfer of welfare from private companies

to public co�ers. For example, if Developer A valued Parcel 123 in Wyoming at

$5 an acre and was the only bidder in an in-person auction, Developer A would

receive the parcel for only $1 an acre, giving Developer A a surplus of $4 per acre

and Wyoming $0 per acre. But if Developer B with valuation $3 is only willing

to participate in online auctions, moving online will net Wyoming an extra $2 per

acre, as Developer A will need to outbid Developer B to win the lease. In this case,

Developer A and Wyoming split the $4 per acre surplus down the middle with $2

apiece. Note that there is no welfare enhancement in this situation; whether or not
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the parcel was sold online or in-person Parcel 123 is leased to Developer A and $4

per acre of surplus is generated.

There are two ways online leasing could enhance social welfare:

1. Certain parcels would only be bid on using online leasing; in person, no de-

veloper would bid the minimum bid. In this situation, welfare is enhanced

because the parcel has the possibility of being developed.

(a) Establishing this mechanism is not trivial. While I know which parcels

are bid on and which are not for all jurisdictions, the parcels being put

up for auction are not exogenously determined. Parcels may be requested

by developers to be up for auction, or may be nominated by the lessor

itself because the lessor wants to lease the parcel, both of which are not

determined formulaically and can be politically in�uenced.

2. The parcel is won by a more e�cient developer using online leasing than in-

person leasing. E�ciency varies on both allocative and productive dimen-

sions. Some developers are low-cost developers, and are able to extract a given

amount of oil from a parcel at a lower cost. This is the allocative e�ciency

story. Likewise, some developers are able to extract more oil from the parcel,

representing increased production.

(a) Getting reliable estimates of the allocative and productive e�ciencies is

not trivial. To calculate the allocative e�ciency, I would need cost data

from developers, which are not publicly accessible. Productive e�ciency

gains are possible to estimate incompletely. Production data is publicly

available by each state's mineral management agency, but connecting this
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production data to a given lease is not easy (see Section 6.1, in which I

describe how I can only connect about 8% of wells to a speci�c lease in

Wyoming). Production data generally does not provide what lease number

the well pertains to, and even a geographic join is not su�cient, because

multiple leases (even to the same developer!) are common for a speci�c

township/range/section combination. Geographic joins also require devel-

oper name standardization, and names are not standardized even within

a state between its leasing data and its production data. If leases could

be reliably linked to speci�c wells, then another DiD analysis like those

presented above could help determine whether more productive developers

are winning online bids.

Of course, whether or not there is welfare enhancement from transitioning to an

online leasing system, the policy implication from this paper is clear. Transitioning

to an online leasing system from an in-person auction provides a large and consistent

increase in bid values for parcels relative to an in-person auction. The extra revenue

derived from hosting an auction on EnergyNet far exceeds the cost incurred by

using the EnergyNet service. States potentially mulling the switch, like Montana

and South Dakota, should �nd this evidence encouraging the movement to an online

leasing platform.

156



A Simulation: Sage-Grouse

A.1 Introduction

The drilling-under-regulatory uncertainty model was run 2,500 times (represent-

ing 2,500 drilling decisions). The goal of the model is to collect mean and me-

dian drilling times, well pro�ts, and well production, and see how those summary

statistics change as input parameters are adjusted. In each run of the model, the

developer begins with a well and must optimally determine when (if at all) to spud

the well. The developer is given the decision rule to drill if expected pro�ts from

the well exceed the expected value from waiting and drilling in a future period. An

operator may wait to drill because price and cost volatility may produce a more

favorable state than the state the operator �nds itself in when making the decision.

The developer weighs the following criteria when deciding in which period to

drill:

1. Present and expected future oil prices

2. Present and expected future drilling costs

3. Their discount factor

4. The expected productivity of their well

5. When a decision is expected from the regulator on whether drilling is allowed

on the parcel

6. How likely it is the regulator will disallow drilling

Each of the 2,500 simulated drilling decisions contains an evolution of prices and

costs over time, but �rms are only given 120 periods (months) in which to decide
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to drill. If a �rm does not decide to drill in the �rst 120 periods, it is assumed the

�rm will never drill144. Each period after drilling, the �rm gains revenue from the

drilled well as it extracts mineral resources.

A.2 Transition Equations and Initial Parameter Values

Because my simulation model is to be compared to my theoretical model con-

structed in Section 3, the value of any given well w in the model exactly matches

Equation 4, dependent on when the operator decides to drill:

Πw = π0 + δt
∞∑
t=1

([
e−tλπt +

t∑
i=1

(e−(i−1)λ − e−iλ)(1− l)πt
])

, with πt = PtQt −Dt.

State variables change through the model, mostly consistent with the Kellogg

work. Below I list how each variable changes from period to period.

Price transitions from one period to the next following the �rst-order Markov

process:

lnPt+1 = lnPt + µ(Pt, σ
2)− σ2/2 + σεt+1

In this equation, the next period's price is determined by the current price plus

a mean-reverting price drift and a random shock depending on the volatility (σ) of

the price data. These price equations are the exact same as in Kellogg, except that

I make a simplifying assumption that �rms do not change their estimates of price

volatility over time. In Kellogg, all volatilities are labeled σt as he allows changes

in the volatility.

The mean-reverting price drift equation µ(Pt, σ
2)− σ2/2 taken from Kellogg is:

µ(Pt, σ
2)− σ2/2 = κp0 + κp1Pt + κp2σ

2 − σ2/2

Because Kellogg's drilling cost data are too low to properly represent theWyoming

144The largest standard primary period to drill (in which developers must drill or they forfeit their rights to the
parcel) is 10 years, which is 12 x 10 = 120 periods (months).
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oil market, I modify his treatment of costs. In my model, there is only one large

upfront cost of spudding the well, and no maintenance or continual costs post-

spudding. Costs transition from one period to the next following the �rst-order

Markov process:

Dt+1 = Dt + ραεt+1

Cost volatility is assumed to be proportional to price volatility σ by factor α.

Kellogg makes the same assumption since he is not able to estimate cost volatility.

The other di�erence is that the error rate of costs is expected to be correlated, but

not perfectly match (0 < ρ < 1), the price shock. This is logical, because as the

price of oil increases there is competition for rigs and labor, and so these �gures

will usually move together. Kellogg models cost shocks in the same manner.

I model production in the same manner as Kellogg, in that I estimate hyperbolic

decay in production. Kellogg shows that production in typical wells roughly follows

hyperbolic decay, with production rapidly declining month-to-month. I con�rmed

this hyperbolic relationship using Wyoming production data. Speci�cally, I assume

that production declines over time in the following manner:

Qt = Q0

1+kt

Thus, at any period, the production will be a hyperbolically decayed value de-

pendent on the spud period's production Q0 and a decay factor k. This implies

that the developer does not have any control over extraction rates once the well is

drilled.

The source of all parameters is described below.

1. δ = 0.992 Kellogg stipulates that the typical discount factor for a mineral

developer is 0.910. This value was on an annual level, so I bring that discount
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factor to the month level.

2. λ = 1/76 While compiling the ratio of species that were eventually listed, I

found that on average it takes USFWS 76 months to make a decision.

3. l = 0.53 This is the % of species in Listing Priority Number 8 that were

eventually listed. See Section 2.3 for my work.

4. σ = 0.194 This was computed by Kellogg.

5. α = 1.16 This was computed by Kellogg.

6. ρ = 0.413 This was computed by Kellogg.

7. κp0 = 0.0094 This was computed by Kellogg.

8. κp1 = −0.00054 This was computed by Kellogg.

9. κp2=0.401 This was computed by Kellogg.

10. k = 0.022 This was estimated using Wyoming production data.

My model makes many of the same assumptions as Kellogg, which include:

1. Developers are risk-neutral (although runs of the model incorporating risk-

aversion see even stronger responses)

2. Developers are price-takers in oil prices.

3. Developers do not exercise monopsony power in rig rentals.

4. Firms' drilling decisions are independent of one another.

For my purposes, I also make some additional assumptions:

1. Firms are completely responsive to a change in expected price volatility.
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2. Firms do not update their valuation of the well's productive capability over

time (although I maintain a diversity of original well production capability -

not all wells are created equal)

3. USFWS orders a total shutdown of drilling (I am not considering a partial

shutdown only during mating season)

Like many simulations, the model depends on initial starting values. For example,

since quantity follows a strictly decay across periods, a higher initial value of pro-

duction per period will necessarily increase all period productions as well as pro�ts.

Kellogg begins with initial values equal to the market conditions existing in the

Texas oil market in 1993-2003. Because I am using a di�erent time period as well

as a di�erent geographic setting, I sourced as many initial values from my setting

as possible. My initial values and justi�cations for each are presented below:

1. Price is set to $70 per barrel. This is the average price of a barrel of oil from

2001-2015.

2. The cost of a well is centered at $3 million per well, with a standard deviation

of $1 million145 to provide heterogeneity in costs across wells that re�ects vary-

ing di�culty in drilling. These numbers are sourced from local news reports

detailing the costs of drilling in Wyoming from 2013-2016146.

(a) Note that costs are often expected to decrease as �rms become more adept

at mastering new technology. This could especially be expected for indus-

tries like liquid mineral extraction, because there is a wealth of public

145This was calculated by taking the standard deviation of drilling costs at di�erent locations across the state.
146http://www.bu�alobulletin.com/news/article_139d34f8-4c78-11e3-97dd-001a4bcf6878.html,
https://www.roseassoc.com/the-current-costs-for-drilling-a-shale-well/
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knowledge about drilling mechanics of rival �rms as well as real-world ob-

servable evidence of behavior. Thus, this could be a particularly ripe in-

dustry for learning-by-doing, including learning spillovers from company to

company. However, Covert (2015)[12] �nds minimal evidence of learning-

by-doing or spillovers, suggesting that costs do not meaningfully decline

over time.

3. Initial production is set at 1,238 barrels per month per well, and the hyper-

bolic decay factor of k = 0.022. The �rst month's production is centered at

1,238 barrels with a standard deviation across wells of 1,791 barrels, providing

heterogeneity in anticipated production across wells. These numbers are re-

spectively the average and standard deviation of number of barrels produced

in the �rst full month of production by oil wells in Wyoming from 2001 to

2015, using data provided by the Wyoming Oil and Gas Conservation Com-

mission. The decay rate was determined by �tting a hyperbolic decay curve

to the initial value and the average 3-year production of Wyoming oil wells of

33,071 barrels147.

(a) Note that in period 0, there is a 64% chance the well's initial quantity

is set to 0. This is to represent the percentage of wells that are never

drilled by developers even though they received approval from the state to

commence drilling148. What this represents on the ground is a developer

obtaining a new lease, performing seismic tests, and discovering the well

is most likely not going to be pro�table at any reasonable price due to low

1473 years' worth of production was used to match Kellogg's methodology, although the length of time does not
meaningfully change model parameters.
148https://www.wyo�le.com/industry-sitting-on-permits/
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productive capacity.

A.3 Results

The model was tested for several di�erent parameterizations of the 2,500 runs

to compare the e�ects of changing parameters. The goals of this exercise were to:

1. Compare simulated results to empirical results and comparative statics, in-

cluding:

(a) Estimating changes in drilling time, pro�ts, and production by imposing

a 53% likelihood the regulator will disallow drilling in the future

(b) Estimating changes in drilling time, pro�ts, and production by imposing

a 100% likelihood the regulator will disallow drilling in the future

(c) Estimating changes in drilling time, pro�ts, and production by varying the

length of time before a decision is expected

2. Con�rm Kellogg's results, which were:

(a) Price volatility delays drilling

(b) Price increases speed drilling

(c) Cost increases delay drilling

To explore these possibilities, I ran several runs of the model, changing the param-

eters to test the model. After collecting and summarizing each of the 2,500 drilling

times, pro�ts, and production totals, each parameter change was tested against the

`base' model using a Welch 2-sample T-test to determine whether the means of

the distributions were signi�cantly di�erent. I also tested the change of using an
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Table 35: Sage-Grouse Simulation Results: Drill Period

alternative de�nition of the listing likelihood. As noted in Section 2.3, considering

only listing decisions from the lower 48 implies the sage-grouse has an exactly 50%

chance of being listed. Additionally, considering a wider range of possible listing

priority numbers rather than solely the sage-grouse's LPN of 8 also implies a 50%

listing probability. The model labeled `Alternate Uncertainty' is a run with a 50%

chance of listing, rather than 52.6%. Results are not substantially di�erent from

the 52.6% model.

All results from the simulations match Kellogg's work, my theoretical work, and

my empirical results in direction and are similar in magnitude. Most importantly,

the average wait time under uncertainty is 7.8% higher than in the base model, and

18.6% higher if there is a 100% chance the sage-grouse is listed, consistent with a

`wait-and-see' approach to the uncertainty. Results across all models are provided

in Tables 35-39, along with the results of the T-test with a 95% con�dence interval.

The di�erence between the two pro�t calculations is that one set only averages the

value of non-dry holes, while the other takes dry holes into account. Dry holes are

discovered 64% of the time, as described in Appendix A.2.
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Table 36: Sage-Grouse Simulation Results: Pro�t - All Holes

Table 37: Sage-Grouse Simulation Results: Pro�t - Non-Dry Holes
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Table 38: Sage-Grouse Simulation Results: Production

Table 39: Sage-Grouse Simulation Results: % of Wells Drills
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B Simulation: Ozone

B.1 Introduction

The drilling-under-regulatory uncertainty model was run 1,000 times. Within

each of the 1,000 iterations, 5,858 independent parcel-lessees149 decide whether/when

to develop their parcels. Not all 5,858 parcels are able to be drilled immediately,

however. I `release' the number of parcels that were approved each year from 2010-

2018, meaning that the following number of parcels are available to be developed

each period Y2010, Y2011, ...Y2018.

The goal of the model is to collect mean and median drilling times through 11

di�erent periods150, well pro�ts, and well production, and see how those summary

statistics change as input parameters are adjusted. In each run of the model, the

developer begins with a well and must optimally determine when (if at all) to spud

the well. The developer is given the decision rule to drill if expected pro�ts from

the well exceed the expected value from waiting and drilling in a future period. An

operator may wait to drill because price and cost volatility may produce a more

favorable state than the state the operator �nds itself in when making the decision.

The developer weighs the following criteria when deciding in which period to

drill:

1. Present and expected future oil prices

2. Their discount factor
149There were 5,858 APDs for potential oil wells approved during the years 2010-2018 in the Uinta Basin.
15011 periods represents 2010-2020 for development. 11 was chosen because I took APD data from 2010-2018,
which were the years before a non-attainment level of ozone was reached. Extending 2 extra periods in the model
gives the developers with parcels approved and released late in the model several opportunities to drill. Note that
in all charts and table of this paper year 2010 is Period 0 and is sometimes not displayed because the only action
taken in Period 0 is the resolution of Period 0 drilling decisions.
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3. The expected productivity of their well

4. The likelihood of drilling regulation in future periods

(a) This likelihood is dependent on expected ozone levels, which itself is de-

pendent on drilling from prior periods and the expected number of wells

drilled in each future period.

(b) This likelihood is also dependent on the elevation of the parcel. Higher ele-

vation parcels have a lower likelihood of experiencing a negative regulatory

regime.

When considering whether or not to drill in each period, the developer compares

the expected value of drilling now (the discounted stream of pro�ts from the current

period and all future periods) against maintaining the discounted value option of

drilling in the future. Developers are assumed to be risk-neutral (like Kellogg 2014),

and once a well is drilled, it is permanently drilled (the well cannot be re-drilled

and cannot be un-drilled). When considering to drill, the �rm expects to receive a

declining revenue curve for 53 periods151:

Πw = π0 + δt
53∑
t=1

πt, and π0 = P0Q0 ∗ (1− λ0 ∗ rw)−Dw πt = PtQt ∗ (1− λt ∗ rw)

In the above equation, Πw represents the aggregate pro�t from drilling across 53

future periods. π0 is the pro�t from the present period, which is a function of the

initial quantity Q0, the present price P0, the current-period's regulation likelihood

λ0
152 discounted by the well's chance of being subject to regulation (rw) and the

parcel's cost of drilling Dw. Dw is de�ned as a draw from the normal distribution

151The average oil well in the Uinta Basin produces for 53 months.
152Since this is the current period's likelihood of regulation, this likelihood will always resolve to 0 or 1 (the
developer knows whether or not extraction is allowed in the current period). A develope never drills in a period
with a restriction likelihood of 1.
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centered around µD with standard deviation σD, with a minimum set at 0. Each

well has its own speci�c Dw.

Future pro�ts, discounted by δ each period, are dependent on the period-speci�c

price Pt, the period-speci�c quantity Qt, and the period-speci�c regulation likeli-

hood λt discounted by rw. Please see Section B.2 for a detailed breakdown of the

determination of all parameters of the model, including formulas determining initial

and future prices, quantities, drilling costs, and regulation likelihoods.

The model is dynamic in that each period is taken across all wells simultaneously,

and in the following period developers update their expectation of future pro�ts and

regulation based on how manywells were drilled in the prior period (for example, in

period 2, a developer bases its decision on how many wells were drilled in periods

0 and 1, and how many it expects to be drilled in periods 2 through 10. Then in

period 3, the decision is based on how many parcels were drilled in 0 through 2 and

how many the developer expects to be drilled in 3 through 10).

In each period, the regulator calculates the ozone level of the prior three periods

and compares this average to the legally-mandated threshold of non-attainment:

P (Regulation) =


0 avg(Ot−1, Ot−2, Ot−3) < T

1 avg(Ot−1, Ot−2, Ot−3) ≥ T

If the average of the prior 3 periods' 8-hour ozone meets or exceeds the threshold

T , the model assumes that extraction is not allowed. In practice it also disallows

drilling, because no developer will ever drill when expected revenue in the current

period is equal to 0. This `penalty' exceeds the actual penalty incurred in the Basin

when it was declared in marginal non-attainment in 2018, but certainly could be
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on the horizon if either the concentrations break the moderate non-attainment

threshold or even simply remain at the same elevated marginal non-attainment

levels. The model allows a `turn-on/turn-o�' phenomenon, where the unfavorable

regulatory regime may not be permanent. If the ozone level improves, developers

resume well completions and extraction.

The model also incorporates heterogeneous risk of exposure to the regulator.

Every parcel is given a speci�c chance of being subject to regulation, rw. If this

constant is equal to 0, the developer is certain to not be subject to regulation and

ozone concentration will not factor into that developer's decision. On the other

extreme, if this constant is equal to 1, the developer will certainly be subject to

drilling and extraction regulations imposed by the regulator. Finally, if 0 < rw < 1,

then the developer may be subject to regulation, but isn't certain of whether it

would be impacted by a regulatory decision. In this case, the developer discounts

current and future revenues by the factor rw ∗ λt, or the likelihood the drilling

and extraction restrictions are in place scaled by the chance the developer would

be subject to the restrictions. rw is calculated for each well and is de�ned by a

draw from min(max(N ∼ (µr, σr), 0), 1), which means it is drawn from a normal

distribution centered around µr with standard deviation σr and bounded by the

interval [0,1]. This phenomenon is meant to mimic the widely expected possibility

(and actual result) that only low-elevation parcels would be subject to any negative

regulations.
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B.2 Initial Parameter Values and Transition Equations

The model is parameterized to as best possible match the actual drilling con-

text of the Uinta Basin from 2010-2018. As discussed in Section B.1 above, each

iteration comprises 5,858 parcels considering whether to drill over 9 periods, with

each period considering the discounted value of extracting reserves for 53 periods

into the future. Other parameterizations and their respective derivations from the

actual drilling data are discussed below. Throughout the model, several parame-

ters change to allow for heterogeneous experiences by di�erent developers and to

integrate the change in ozone and expected regulation based on the prior period's

drilling outcome.

B.2.1 Transition Equations - Price and Quantity

1. Price (not unique to each parcel - every parcel experiences the same price level

within the same period of the simulation). Each period, the price experiences

a mean-reverting process of the equation Pt = max(N ∼ (Pt−1, σp)+Sp ∗ (Pl−

Pt−1), 0).

(a) Pt is the current price of a barrel of oil

(b) Pt−1 is the prior period's price of a barrel of oil

(c) σp is the standard deviation in the price of a barrel of oil

(d) Sp is the `speed' of the price of oil, which represents how quickly it returns

to the long-run price.

(e) Pl is the long-run price of a barrel of oil

2. Quantity (unique to each parcel within each period). Each period, the pro-

171



duction quantity declines along the curve Qt = Q0

1+kt
.

(a) Qt is the well's current period production

(b) Q0 is the well's initial period production

i. Q0 is de�ned as a draw from the normal distribution centered around µq

with standard deviation σq, with a minimum set at 0. Q0 = max(N ∼

(µq, σq), 0). Each well has its own speci�c Q0.

ii. Note that since Q0 and k are known to the developer (although Q0

is determined stochastically), the model assumes that the developer

knows precisely how much oil will be extracted in each period during

and after spudding.

(c) k is the hyperbolic decline factor

(d) t is the period

B.2.2 Transition Equations - Ozone

The level of ozone in the Basin �uctuates through each period based on metere-

ological factors and oil development. Factors in�uencing the level of ozone were

identi�ed by Mans�eld (2017)[43]. Mans�eld (2017)[43] provides an accompanying

dataset with Uinta Basin daily data of the above data from winter 2010 to winter

2016153. I take his entire dataset and supplement with data from 2017 and 2018.

For later years, I was not able to locate data on snow depth, solar zenith angle, or

humidity, so I imputed values based on the mean value from 2010-2016 on day α.

For example, to construct humidity on March 3, 2018, I averaged the humidity on

153Only wintertime data is available because Uinta Basin ozone information is only monitored consistently in the
wintertime. Additionally, Mans�eld (2017) data on spudding rates are estimated based on the assumption that a
certain rig is rented for 15 days to spud a well.
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March 3 of 2011, 2012, 2013, 2014, 2015, and 2016.

To determine the relationship between a period's ozone level and the inputs

provided by Mans�eld (2017)[43], I run the Mans�eld 8-variable regression model

with 7 of his variable inputs:

yα = A+ ΣjBjxj + Σ[j,k]Cj,kxjαxkα

In this equation, y represents ozone concentrations at the Ouray weather station

(the station used by Mans�eld), α represents a certain day from December 2015-

March 2020, and x is a speci�c covariate. The 7 covariates in my regression model

are:

1. The lapse rate (the change in temperature relative to elevation, measured in

◦K
km

)

2. Temperature (measured in ◦C)

3. Snow pack (measured in mm)

4. Solar zenith angle

5. Consecutive days of inversion

6. Absolute humidity (measured in mbar)

7. Number of wells spudded

Other than the exclusion of active wells, my regression model is identical to Mans-

�eld's. The active well rate does not appear in the ozone transition equation because

the ozone regression equation indicates that extraction rates decrease ozone con-

centrations, which cannot be correct. Mans�eld (2017)[43] is also perplexed by this

relationship, writing �[I]ts downward trend is contrary to our expectation. We do
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not have a complete understanding of this behavior, but a few observations can be

made. As seen in Figure 8, petroleum production was at its lowest for the 2010 and

2016 winters, yet Winter 2010 has had more exceedances than any season on record.

This fact alone indicates that petroleum production is probably not a good proxy

variable for ozone percursor emissions. Improvements in operating procedures and

equipment over the 7-year course of study suggest the same thing. Finally, with

standard error in the model at about 11 ppb, sensitivities around 6 ppb or lower

may not have strong statistical signi�cance.� Because of this inexplicably negative

correlation and lack of evidence of a statistically signi�cant relationship, I have

decided to exclude production from the ozone formulation equation. This means

that only the spudding of new wells, and not the extraction rate or even number of

extracting wells, has any in�uence on my model.

Running the above regression model results in 36 parameters tranforming given

meteorological and development conditions (1 intercept, 7 linear e�ects, and 28

quadratic e�ects [each of the 7 covariates is paired with all 7 covariates]). I take

all parameters that do not directly use the number of wells spudded154 to create

a base level of estimated ozone concentrations every day of the model. For each

winter, I order in descending ozone concentration and select the day with the 4th

highest concentration, as EPA considers the 4th highest record when determining

NAAQS standards. I added the e�ects of spudding including linear and quadratic

e�ects for each period at the end of each iteration based on how many wells were

spudded in the model each period. The actual parameters from the regression

model for spudding must be scaled to an annual level, because the typical rig is

154The number of wells spudded is not included because the number of wells spudded is determined within the
model.
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active for 15 days. Thus, I scale the coe�cients by 15/365=4%. After adding the

e�ects of spudding to the prior ozone concentrations, I have �nished calculating

the `simulated' annual ozone level displayed in Figure 11 of the chapter on ozone

regulation. The `actual' annual ozone level is simply the 4th highest reading at the

Ouray monitor each winter.

However, developers do not have the luxury of perfect foresight when deter-

mining optimal drilling time. When considering what they expect future ozone

concentrations to be, agents rely on draws from a normal distribution characterized

by long-run averages and variation in each variable:

1. The lapse rate (the change in temperature relative to elevation, measured in

◦K
km

) µ = −0.3, σ = 7.6

2. The number of consecutive inversion days (days in which temperature and

elevation are positively correlated) µ = 4, σ = 8

3. Snow pack (measured in mm) µ = 104, σ = 86

4. Solar zenith angle µ = 56.3, σ = 6.7

5. Humidity (measured in mbar) µ = 3.3, σ = 1.3

6. Temperature (measured in ◦C) µ = 1.0, σ = 8.6

B.2.3 Expected Future Price and Ozone Transition Equations

Along with the period-to-period movement of price, quantity, and ozone concen-

trations, �rms also project into the future when considering whether to drill. The

transition equations parcel-holders use in this projection are exactly the same as
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in the actual transition equations for price and quantity155, but slightly di�ers for

ozone.

1. Ozone level (not unique to each parcel - every parcel experiences the same

price level within the same period of the simulation). Firms anticipate that

ozone concentrations will follow the following formula in future periods: Ot =

max(N ∼ (µo+(Wy+Wp∗Pt)∗O/W ), σo), 0). In this equation, the anticipated

ozone level �uctuates over time based on the number of wells that are expected

to be completed, which is based on the expected future prices. All variables are

the same as in the ozone state transition equation, with the following additions:

(a) µo = 57 parts per billion is the long-run average ozone concentration in

the Basin (mean of ozone in the Mans�eld data)

(b) Wy is the constant additional number of wells expected to be drilled each

period, regardless of price.

(c) Wp is the constant additional wells expected to be drilled each period

based on the expected price of period t

(d) Pt is the expected price of period t, which is estimated using the same

transition equation as the actual price transition equation

(e) O/W = 0.091, the contribution to ozone of a single spud based on my own

calculation of the linear e�ect of one spudding on ozone concentrations in

the Basin, isolated from other e�ects.

(f) σo = 24 parts per billion is the standard deviation of ozone concenrations

in the Mans�eld data
155Howvever, note that each parcel will have a di�erent projection of the price, as each takes an independent draw
in each period of its projection from the normal distribution.
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B.2.4 Initial Parameter Values

1. W = 5858 There were 5,858 APDs (potential wells) approved between 2010

and 2018 in the Uinta Basin. They are released according to the annual number

of parcels approved in the Uinta Basin:

0. 506 new parcels (506 cumulative)

1. 777 (1,283)

2. 1,182 (2,465)

3. 1,138 (3,603)

4. 1,075 (4,678)

5. 485 (5,163)

6. 109 (5,272)

7. 325 (5,597)

8. 261 (5,858)

2. Periods = 53 The average oil well produces for 53 months in the Uinta Basin.

Thus when a developer calculates expected well revenue they do so over 53

periods.

3. δ = 0.91 Kellogg stipulates that the typical discount factor for a mineral

developer is 0.910.

4. µq = 3, 516. This is the mean of the �rst month's production of oil wells in

the Uinta Basin from 2010-2018.

5. σq = 6, 197. This is the standard deviation of the �rst month's production of

oil wells in the Uinta Basin from 2010-2018.
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6. k = 0.085 k is the decline rate, meaning how much production is expected

to fall each period as a share of the initial value. This was estimated using

Uinta Basin production data, �tting a decline curve starting at 3,516 barrels

per month that ultimately produces a lifetime mean of 72,679 barrels across

53 months (the average production lifetime of a well).

7. P0 is the price of a barrel of oil in 2010, $82.

8. Pl is the average price of a barrel of oil from 2010-2018, $72.

9. σp is the standard deviation of the price of a barrel of oil from 2010-2018, $24.

10. Sp is determined to be 0.055, which was determined from this document156 as

the half-life of the price of oil returning to its long-run price is given to be 13

months.

11. µd = $2, 096, 066. This is the mean cost of wells drilled in the Uinta Basin from

2010-2018, assuming a cost of $150 per foot of depth for a traditional well and

a cost of $500 per foot of depth for a horizontally drilled well based on this157

information, and a mixture of traditional and horizontal wells consistent with

the actual drilling in the Basin over the given time period.

12. σd = $681, 853. This is the standard deviation of the drilled wells with the

same assumptions as above.

13. O0 is 57 parts per billion, the long-run average of ozone concentrations in the

Basin.
156https://core.ac.uk/download/pdf/52955755.pdf
157https://www.oilgasequity.com/resources/drilling-completion-facts/#:~:text=The%20cost%20to%20complete%20a,foot%20of%20lateral%20well%20completed.
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14. Wy= 2.5% of the total well count of 5,858. This was determined to be the

typical number of extra wells drilled each year in the Uinta Basin from 2010

to 2018, after taking account the impact of price.

15. Wp= 0.2% of the total well count of 5,858. This was determined to be the

typical number of wells drilled per dollar of the price of oil, after taking into

account the typical growth in the number of drilled wells.

16. W0 = 1, 572 . This is equal to the number of active oil wells in 2010 in the

Uinta Basin that were drilled before that year.

17. µr = 0.5 The actual share of parcels of elevation greater than or equal to 6,250

feet is 22%, not 50%. However, I used 50% because I had no way to estimate

the uncertainty around the estimate. Had I used 22%, any estimate of the

uncertainty would either have to allow the likelihood of not being subject to

regulation to be less than 0% or greater than 1%, or produce a biased estimate

after putting [0,1] bounds on the likelihood.

18. σr = 1 This is the standard deviation around the regulatory risk of rw = 0.5.

1 was selected arbitrarily to provide heterogeneity in the regulatory risk.

19. T = 0.71 parts per billion. Across the entire country, the EPA declares

`marginal' non-attainment of 8-hour ozone at 71 parts per billion158.

158https://www.epa.gov/green-book/ozone-designation-and-classi�cation-information
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C Empirical Robustness Checks and Extra Analyses

C.1 Timing and Speed of Drilling

C.1.1 Decomposition of `Wait-and-see' Duration Model

As described in Section 6.1, there are in fact two discrete steps I am combining

into one process in my Cox hazard rate survival models:

1. APD submission to spudding

2. Spudding to completion

Either one or both of these processes could be subject to `wait-and-see' or `hurry-up-

and-drill'. My duration model shows that the combination of the processes shows

a `wait-and-see' story. Testing these processes separately provides a `wait-and-see'

story for both components of the completion. That is, developers under uncertainty

delay spudding their well after submitting an APD, and also complete their wells

more slowly once spudded.

The �rst component I tested was the timing from APD submission to spudding:

The speci�ed Cox hazards model is the same as in Section 6.1 :

SpuddingAgew = Seasons + Fieldi + Interactionw,s +WellControlsw

All variables in this equation are the same as the Cox hazards model. The

dependent variable SpuddingAgew represents the number of days between APD

submission and spudding. Errors are clustered at the �eld level.

The second component I tested was the timing from spudding to completion:

The speci�ed Cox hazards model is the same as in Section 6.1 :

Daysw = Seasons + Fieldi + Interactionw,s +WellControlsw
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Table 40: Drilling Timing Results: APD to Spud

All variables in this equation are the same as the Cox hazards model. The

dependent variable Daysw represents the number of days between spudding and

completion. Errors are clustered at the �eld level.

Both components show a sizable `wait-and-see' e�ect. The e�ect is larger for the

second component (spudding to completion), with a 57.9% hazard rate, compared

to a 75.9% hazard rate for the submission of the APD to spudding. Since both

measurements have a hazard rate signi�cantly below 1, it is clear that developers

delay both components of the well completion.

C.1.2 Risk Aversion Test

While both my simulation and Kellogg's theoretical and empirical work do not

make the assumption that developers are risk-averse, risk aversion has the potential

to make the impact of `wait-and-see' even stronger, as risk-averse �rms would shy

away even further from territory subject to uncertainty. One possible way to test
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Table 41: Drilling Timing Results: Spud to Completion

for risk-aversion is to break up the `wait-and-see' regressions into di�erent runs

based on the size of the company, as smaller �rms with a larger portion of their

budget invested in any single well could reasonably be considered more risk-averse.

I segregated drilling data into those drilled by `large' companies (those with more

than 20 wells) and `small' companies (those with 20 or fewer wells). Errors are

clustered at the �eld level, and the speci�ed Cox hazards model is the same as in

Section 6.1 :

CompletionAgew = Seasons + Fieldi + Interactionw,s +WellControlsw

In these regressions, both `large' and `small' developers have a `wait-and-see'

e�ect. Because both categories of developers see a `wait-and-see' response I �nd it

unlikely that risk aversion is driving my empirical (or for that matter, simulated)

results.
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Table 42: Risk Aversion Results

C.1.3 Likelihood to Drill

There is question of the intensive versus extensive margin of drilling. Above,

I measure the impact of the sage-grouse uncertainty on the intensive margin - or

delays in wells that are drilled regardless of the uncertainty. There is also the

question of the extensive margin, or wells that were not drilled at all due to the

uncertainty. I used a logistic di�erence in di�erences regression model to measure

whether uncertainty impacted the likelihood to drill given that a �rm has received

permission to drill:

Drilledw = Seasons + Fieldi + Interactionw,s +WellControlsw

The dependent variable in the equation,Drilledw, takes on a value of 1 when the

well is drilled. Well controls like depth, elevation, direction of the well, and land

type are still included because this information is required to be listed on the APD
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Table 43: Drilling Likelihood Results

even before spudding159, meaning both completed wells and incomplete wells have

populated well characteristic controls.

Unexpectedly, all speci�cation coe�cients are positive and most are statistically

signi�cant. While the base speci�cation is only signi�cant at the 10% level, the

alternate time period is signi�cant at the 0.1% level, and the `no bu�er' and re-

gression discontinuity speci�cations are signi�cant at the 5% level. The base model

with company controls is not statistically signi�cant160.

The somewhat inconsistent results make conclusions di�cult, but the fact the

coe�cient is consistently positive is surprising on its own. The simulation as well

as economic logic predicts that the coe�cient on the uncertainty interaction in this

model should be negative. The simulation predicts that 2.5% of wells that would

159https://casetext.com/regulation/wyoming-administrative-code/agency-055-oil-and-gas-conservation-
commission/subagency-0001-general-agency-board-or-commission-rules/chapter-3-operational-rules-drilling-
rules/section-3-8-application-for-permit-to-drill-or-deepen-a-well-form-1
160This model had to be run as a linear probability DiD model rather than a logistic DiD model because the
likelihood function did not converge.
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have been drilled absent uncertainty would not be drilled under uncertainty. The

logistic DiD results show the opposite. They show an increase in the chance a

given well is drilled. While a story of a lower drilling rate or an unchanged drilling

rate are sensible (especially given the small e�ect seen in the simulation), a large

and positive e�ect observed in some of the alternative speci�cations is tough to

rationalize.

This seemingly contradictory story is the same found by Melstrom (2017) [46]

in his review of the lesser prairie chicken ESA listing. Of the time periods he

tested161, all but one indicate that upcoming and active development restrictions

did indeed cause developers to move out of habitat territory. Interestingly, the one

period that Melstrom �nds an increase in wells drilled is the `candidate' period,

in which the prairie chicken was being reviewed for inclusion under an LPN of 8,

which was the same LPN held by the sage-grouse. Melstrom interprets the evidence

that �rms moved towards prairie chicken habitat during the initial review period

during a lower LPN as evidence that �rms are speeding up habitat development in

an e�ort to beat the regulator. His only explanation of why �rms would develop

quicker under a review but then back out once the LPN was raised to 2 from 8 is

speculation that developers' interests changed over the time period.

My results suggest the same result: �rms do drill more in habitat territory under

review - but they do so later, closer to the end of the primary period in which they

have to drill or forfeit their right to do so. It is possible the looming threat of

expropriation makes it unlikely the developers will ever hold a lease for the parcel

161The steps Melstrom tests for an e�ect for are the initial candidate announcement, when USFWS changed its
LPN from 8 to 2, the proposed regulations that were put out before the listing decision, drilling restrictions put in
place by an interstate wildlife agency just before the listing, and the actual listing decision which resulted in the
prairie chicken being declared `threatened'.
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in core habitat again, making the the end of the primary period the ultimate `use

it or lose it' situation.

C.1.4 Likelihood to Drill Horizontally + Well Depth

I tested whether �rms were more likely to engage in horizontal drilling (ver-

sus vertical) drilling at all. Drilling horizontally would indicate �rms are leaving

themselves more options in the future to respond to uncertainty resolution. Newell,

Prest, and Vissig (2016)[48] write that �[C]onventional oil and gas investments re-

semble high-risk/high-reward, `big game trophy hunting,' which involves drilling

many dry holes in search of a few highly productive ones. This stands in stark

contrast to modern unconventional extraction from shale, which is commonly said

to resemble a `manufacturing process' in that operators have much more �exible

and certain control over their production levels.� This process allows the developer

to more �exibly adjust plans in the face of uncertainty. However, this �exibility

comes at a cost. Horizontal wells are roughly three times costlier than conventional

wells, meaning even a risk-neutral �rm facing regulatory uncertainty may refrain

from drilling a horizontal well. Given these competing e�ects, the expected result

of uncertainty is ambiguous.

I again utilize a logistic di�erence in di�erences model to determine whether

developers are more likely to drill horizontally under uncertainty, using the same

controls as in the refracking model (less age controls, as wells are spudded at age

= 0):

Horizontalw = Seasons + Fieldi + Interactioni,s +WellControlsw

In this equation, the outcome variable is equal to 1 when the well is drilled
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Table 44: Unconventional Drilling Likelihood Results

unconventionally, and 0 when it is a standard vertical well. Errors are clustered at

the �eld level.

Results are consistently negative and almost always signi�cant at the 5% level.

This indicates that it is possible developers are in fact less likely to drill horizon-

tally under regulatory uncertainty. This could be due to apprehension of investing

millions of dollars in a well, or it could be due to the fundamental nature of the

uncertainty. Developers may be less likely to drill horizontally in response to regula-

tory uncertainty than price uncertainty. While maintaining the option of expanding

your well to respond to price volatility is plausible, a prohibition due to regulation

is likely to impact your ability to extract from the entire parcel. This mitigates the

�exibility of drilling horizontally.

There is no e�ect whatsoever on the depth of the well due to uncertainty. I

tested well depth because it is plausible that developers may avoid deep wells during
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Table 45: Depth Results

uncertainty due to the higher cost of reaching those reserves. I ran the following

DiD regression:

Log(Depthw) = Seasons + Fieldi + Interactionw,s +WellCharacteristicsw

I regress depth upon the �xed-e�ects of season drilled, �eld location, the uncer-

tainty interaction, and well characteristics. Well characteristics in this regression

include elevation, land type, and drilling direction.

C.1.5 Speed to �nish extracting a well

As discussed in Section 6.5, I did not �nd evidence �rms sped up production of

already drilled wells in an e�ort to beat the regulator. This supports the notion

that developers have little ability to adjust the rate of extraction. To supplement

this test, I also performed an analysis of the e�ect uncertainty has on the speed to

�nish extracting a well. Just as with the `wait-and-see' duration survival analysis
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Table 46: Completion to Exhaustion Results

models, I use Cox proportional hazards modeling to determine whether uncertainty

leads to quicker depletion of the well's resources:

ExhaustionDaysw = Seasons + Fieldi + Interactionw,s +WellControlsw

ExhaustionDaysw represents the number of days between well completion and

the last month of extraction. I again use season and �eld �xed e�ects, and the

same well controls as in other duration models (alternative time period, removal of

bu�er, spatial discontinuity, and controlling for developer). Errors are clustered at

the �eld level. Results are presented in Table 46.

Results broadly indicate that �rms do not speed exhausting their wells under

uncertainty. The only speci�cation in which a statistically signi�cant e�ect was

found, the base model, indicates slowing if anything.

The model was also run using unconventional well data only. Results are similar,

in that no speci�cation shows an e�ect of uncertainty. These results lend further

support to the production regressions that did not show a statistically signi�cant
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Table 47: Completion to Exhaustion Results: Unconventional Wells Only

increase in production rates under uncertainty.

C.1.6 Refracking

Extraction rates are not the only potential `choice' variable �rms have when

trying to pre-empt an unfavorable regulatory decision.`Re-fracking' a well through

chemical stimulation is a method �rms can use to enhance and speed production.

Wells are refracked by sending miniature plastic balls in wells that plug low-pressure

cracks, boosting the well's productivity both in the short-term and overall162.

Refracking is not something the state of Wyoming tracks, and thus must be

inferred from the production data. I identify 8,248 times in the production data

that oil wells increase their production from one quarter to another by at least

500 barrels per month (excepting the �rst to second quarter of production, which

could be representative of less than a full �rst month's production). My regression

162https://www.reuters.com/article/us-energy-refracking-insight/refracking-brings-vintage-oil-and-gas-wells-to-
life-idUSKBN0GK0CC20140820, https://www.hartenergy.com/exclusives/citi-refracks-clearly-work-29659
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Table 48: Refracking Results

dataset comprises a well/season panel through the life of all oil wells, with a binary

indicating whether or not in a given season i the well w in township-range s was

re-fracked. I then run a logistic di�erence in di�erences model to determine whether

developers are more likely to refrack under uncertainty, after controlling for well,

time period, and innate township-range characteristics:

Refrackw,s = Agew,s+Age
2
w,s+APIw+Interactionw,m+Seasons+Fieldi+εm,w

Well controls like depth, elevation, direction, and land type are not included

because they do not vary across the same API. Refrackw,s takes on a value of

1 when the developer refracks well w in season s, and is otherwise 0. Errors are

clustered at the �eld level.

Results across all speci�cations do not show evidence that �rms are more likely

to re-frack, except for the alternative time period which had a coe�cient signi�cant

at the 10% level:
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Table 49: Refracking Results: Unconventional Wells Only

Just as in the production regressions, a result would be more expected in the un-

conventional wells than in vertical wells. Although vertical wells can be refracked,

refracking usually occurs in horizontally drilled wells. Indeed, results change sub-

stantially when only horizontal wells are considered. Table 49 shows results for the

same regression only using data from unconventional wells.

All speci�cations show roughly a doubling of refracking likelihood under uncer-

tainty. These results show that it is likely �rms are re-fracking wells in order to

spur and speed production, as it is one adjustable tool after well completion still

available to the developer.

C.2 Sage-Grouse Spatial Regression Discontinuity Balance Tests

For all sage-grouse empirical analyses, I include an alternative speci�cation of

my base model leveraging a spatial regression discontinuity. In this alternative, I

only consider wells or parcels within 10 miles of the border between core habitat and
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other territory. My concern with this speci�cation is that a developer could relocate

just across the border of core sage-grouse territory in order to evade regulation while

still taking advantage of the same quality land. Thus, the expectation of the RD

model was that it would overstate the e�ect of uncertainty.

However, I see the opposite. In 5 of the 6 empirical analyses163 in which I found

statistically signi�cant results with the e�ect going in the expected direction, the

uncertainty treatment e�ect is smaller in magnitude for the RD model than for the

base model. Perhaps even more suprising is that the location selection model does

not meet any threshold of statistical signi�cance in the RD speci�cation, whereas

it is signi�cant at the 0.1% level in the base speci�cation (the 4 other models

with a smaller e�ect under RD maintain their statistical signi�cance under RD).

One possibile explanation for these diminished e�ects is that the territory near the

border is fundamentally di�erent than other land across the state.

To investigate this possibility, I ran balance tests on the wells and township-

range-sections for the RD speci�cations. I split the statewide well and section data

into buckets within 10 miles of the core habitat border and wells/sections further

than 10 miles of the border (mimicking the observations included and excluded

from the RD speci�cation). Note that both core territory and non-core territory

will comprise both buckets, as some core territory is further than 10 miles from the

edge of core habitat. I tested all well characteristic controls I use in the drilling

timing models and section chacterteristics I use in the location selection model,

which are also informative for the lease price bidding models as the bidding tests

use the same level of geographic controls. Because land type and soil type are

163These 5 models are location selection, drilling timing (APD to completion), drilling timing (spudding to com-
pletion only), lease price bidding, and likelihood to refrack unconventional wells. The model in which the RD
speci�cation shows the stronger e�ect is drilling timing (APD to spudding only).

193



Table 50: Balance Test

categorical variables rather than binary or continuous variables, I tested for the

balance of all land and soil types with greater than 50 observations by creating a

binary for individual land or soil types.

Indeed, the covariates of my models are not balanced across the buckets as the

balance test repeatedly fails. In the drilling timing models that were tested for both

spudded and completed wells, only well elevation is balanced across populations.

In the location selection model, only population density is balanced. All other vari-

ables (well depth, vertical vs. horizontal, all land types, distance to oil re�nery,
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sedimentary basin binary, prior drilling binary, and all soil types) are unbalanced.

In total, the balance test fails 16/18 times (27/29 times if spudded and completed

wells are counted separately). This indicates that the lack of a strong e�ect in the

RD speci�cation may be due to idiosyncratic di�erences between territory near the

border and land further from the border, suggesting these populations are funda-

mentally di�erent. This means that the reduced e�ects of the RD speci�cations

cannot be extrapolated across the whole state, and provides futher justi�cation for

not using the RD speci�cation as my primary model.

C.3 Bidding Regressions

C.3.1 Bidding Parallel Trends Discussion

The parallel trends charts of bid price indicates there is only an upward response

in non-core territory, rather than a depression in core territory.

Oil & gas are often described as homogeneous goods, meaning that a supply

interruption in one region shouldn't impact world prices so long as that region is

small enough. While Wyoming is certainly a major player by U.S. standards, it

is not large enough to a�ect the global market. Thus any increase in demand for

parcels out of the sage-grouse region should theoretically be dispersed throughout

the world, making any local increase imperceptibly small. The local increase is

notable, meaning that some other explanation is at play.

One possibility is that the actual counterfactual narrative is that in the absence

of the expropriation uncertainty, there would be a price `bubble' in both sage-grouse

habitat and other territory due to some oil boom due to favorable world market

conditions, new technology that is especially well-suited to Wyoming geology, or

195



unexpected positive signals about Wyoming oil potential (examples of this could

be local wells producing unexpectedly favorable oil & gas quantities or encouraging

seismic tests). In this scenario, the control territory serves as a valid counterfactual

and the e�ect of the uncertainty was simply to smooth out the bubble in the treat-

ment habitat. I investigated each of these explanations, and neither adequately

explain the price `bubble'. There is a price increase only in crude oil during the

uncertainty period relative to before or after the uncertainty period.

Figure 16: Oil & Gas Prices Over Time

However, this price spike did not correlate with increased production inWyoming.

Statewide production of oil was virtually �at until 2011, when it began increasing

steadily until mid-2015. Wyoming gas steadily increased until February 2010 and

then steadily declined until about January 2017, and exhibits no correlation with

the price of gas.
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Figure 17: Wyoming Production
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These charts indicate that energy-producing �rms are insensitive to price in-

creases, which is sensible given the erratic nature of gas and especially oil prices,

and also matches the results of Anderson, Kellogg, and Salant (2018)[1]. It is also

interesting to note that the period of highest `sage-grouse uncertainty' coincided

with completely �at statewide oil production, providing further evidence that �rms

have shifted production to local areas without risk of expropriation.

There was also a minor local boom due to new horizontal drilling techniques

allowing developers to reach new pools164, rather than extremely localized seismic

testing or unexpectedly productive pools. The advent of horizontal drilling should

164https://opengov.com/article/the-anatomy-of-an-oil-boom-and-bust , https://www.wyomingnews.com/news/local_news/energy-
industry-recovery-likely-to-be-slow-in-laramie-county/article_a1db1ad4-150e-11e7-b9ab-2bb1ad9f239a.html
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reasonably be expected to a�ect the entire state, and the sage-grouse is not limited

to just one area - it is spread all across the state of Wyoming.

Instead, what appears to be happening is a statewide `�ight-to-certainty'. Devel-

opers are relocating production to habitat not a�ected by sage-grouse regulations,

even though oil and gas are examples of global markets. This has been docu-

mented in the literature before. Falk and Shelton (2018)[19] study the impact of

political uncertainty on manufacturing investment by analyzing states with close

gubernatorial elections following cases of the prior governor being term limited or

dying/becoming incapacitated in o�ce. They �nd that political uncertainty in spe-

ci�c states causes an increase in investment in nearby states that do not experience

political uncertainty. The authors call this behavior a `�ight-to-certainty' and con-

trast their story with the traditional `wait-and-see' narrative of Stokey (2016)[58].

The implication of the `�ight-to-certainty' is that the bidding regressions may have

biased causal results. If the control group is impacted by the uncertainty, then the

coe�cient will be biased upwards in absolute value. Thus the coe�cients might

represent a ceiling on the true causal impact.

D Sources of Images Used

� Figure 1: Wikimedia Commons (royalty and copyright free image)

� Figure 3: Wyoming Game and Fish Department

� Figure 4: Enhanced Oil Recovery Institute - University of Wyoming

� Figure 10: American Geosciences Institute

198



References

[1] Soren T. Anderson, Ryan Kellogg, and Stephen W. Salant. Hotelling under
Pressure. Journal of Political Economy, 2018.

[2] Maximilian Au�hammer, Maya Duru, Edward Rubin, and David L. Sunding.
The economic impact of critical-habitat designation: Evidence from vacant-
land transactions. Land Economics, 96(2):188�206, 2020.

[3] Andrew Baker, David F. Larcker, and Charles C. Y. Wang. How Much Should
We Trust Staggered Di�erence-In-Di�erences Estimates? SSRN Electronic

Journal, (March), 2021.

[4] Scott R Baker, Steven J Davis, Adam Jorring, Kyle Kost, Adulla Al-kuwari,
Sophie Bi�ar, Jörn Boehnke, Vladimir Dashkeyev, Olga Deriy, Eddie Dinh,
Yuto Ezure, Robin Gong, Sonam Jindal, Ruben Kim, Sylvia Klosin, Peter
Lajewski, David Nebiyu, Rebecca Sachs, Ippei Shibata, Corinne Stephenson,
Naoko Takeda, and Nicholas Bloom. Measuring Economic Policy Uncertainty.
NBER Working Paper Series, (Working Paper 21633):75, 2015.

[5] Jessica L. Blickley, Diane Blackwood, and Gail L. Patricelli. Experimental
Evidence for the E�ects of Chronic Anthropogenic Noise on Abundance of
Greater Sage-Grouse at Leks. Conservation Biology, 26(3):461�471, 2012.

[6] Sergei Boyarchenko, Svetlana; Levendorskii. Irreversible Decisions Under Un-
certainty. 2007.

[7] Gardner M. Brown and Jason F. Shogren. Economics of the Endangered Species
Act. Journal of Economic Perspectives, 12(3):3�20, 1998.

[8] Robert D. Cairns and James L. Smith. Green Paradox, Hotelling Cul de Sac.
2016.

[9] Maria Abou Chakra and Arne Traulsen. Evolutionary Dynamics of Strategic
Behavior in a Collective-Risk Dilemma. PLoS Computational Biology, 8, 2012.

[10] Holly E. Copeland, Kevin E. Doherty, David E. Naugle, Amy Pocewicz, and
Joseph M. Kiesecker. Mapping oil and gas development potential in the US
intermountain west and estimating impacts to species. PLoS ONE, 4(10):1�7,
2009.

[11] Thomas Covert and Richard Sweeney. Relinquishing Riches: Auctions vs In-
formal Negotiations in Texas Oil and Gas Leasing. SSRN Electronic Journal,
2019.

[12] Thomas R. Covert. Experiential and Social Learning in Firms: The Case of
Hydraulic Fracturing in the Bakken Shale. SSRN Electronic Journal, (1962),
2018.

[13] Corrado Di Maria, Ian Lange, and Edwin van der Werf. Should we be worried
about the green paradox? Announcement e�ects of the Acid Rain Program.
European Econoimc Review, 69:143�62, 2013.

199



[14] Jackson Dorsey. Access to Alternatives: Increasing Rooftop Solar Adoption
With Online Platforms. SSRN Electronic Journal, 2019.

[15] Jackson Dorsey. Waiting on the Courts: E�ects of Policy Uncertainty on
Pollution and Investment. SSRN Electronic Journal, pages 1�51, 2019.

[16] Peter M. Edwards, Steven S. Brown, James M. Roberts, Ravan Ahmadov,
Robert M. Banta, Joost A. DeGouw, William P. Dubé, Robert A. Field,
James H. Flynn, Jessica B. Gilman, Martin Graus, Detlev Helmig, Abigail
Koss, Andrew O. Langford, Barry L. Lefer, Brian M. Lerner, Rui Li, Shao Meng
Li, Stuart A. McKeen, Shane M. Murphy, David D. Parrish, Christoph J. Sen�,
Je�rey Soltis, Jochen Stutz, Colm Sweeney, Chelsea R. Thompson, Michael K.
Trainer, Catalina Tsai, Patrick R. Veres, Rebecca A. Washenfelder, Carsten
Warneke, Robert J. Wild, Cora J. Young, Bin Yuan, and Robert Zamora.
High winter ozone pollution from carbonyl photolysis in an oil and gas basin.
Nature, 514(7522):351�354, 2014.

[17] David Edwards; Eric C., O'Grady; Trevor, Jenkins. The E�ect of Land Own-
ership on Oil and Gas Production: A Natural Experiment. Working Paper,
(December), 2016.

[18] Thomas Eichner and Rüdiger Pethig. Carbon leakage, the green paradox, and
perfect future markets. International Economic Review, 52(3):767�805, 2011.

[19] Nathan Falk and Cameron A. Shelton. Fleeing a lame duck: Policy uncertainty
and manufacturing investment in US States. American Economic Journal:

Economic Policy, 10(4):135�152, 2018.

[20] Caroline Fischer and Stephen W. Salant. Alternative Climate Policies and
Intertemporal Emissions Leakage. Resources for the Future Discussion Paper,
12(16), 2012.

[21] T. Fitzgerald. Evaluating Split Estates in Oil and Gas Leasing. Land Eco-

nomics, 86(2):294�312, 2015.

[22] Reyer Gerlagh. Too much oil. CESifo Economic Studies, 57(1):79�102, 2011.

[23] Andrei Hagiu. Multi-Sided Platforms: From Microfoundations to Design and
Expansion Strategies by Andrei Hagiu. 2006.

[24] Robert Augustus Hardy and Julia R Norgaard. Reputation in the Internet
black market: An empirical and theoretical analysis of the Deep Web. Journal
of Institutional Economics, 12(3):515�529, 2016.

[25] Kevin Hasker and Robin Sickles. eBay in the Economic Literature: Analysis of
an Auction Marketplace. Review of Industrial Organization, 37(1):3�42, 2010.

[26] Evan M. Hernstadt, Ryan Kellogg, and Eric Lewis. The Economics of Time-
Limited Development Options: The Case of Oil and Gas Leases. NBER Work-

ing Paper Series, 27165, 2020.

[27] Evan Herrnstadt, Ryan Kellogg, and Eric Lewis. The Economics of Time-
Limited Development Options: The Case of Oil and Gas Leases. SSRN Elec-

tronic Journal, 2020.

200



[28] Michael Hoel. The supply side of CO2 with country heterogeneity. Scandina-
vian Journal of Economics, 113(4):846�865, 2011.

[29] Michael Hoel. Supply Side Climate Policy and the green paradox. 2013.

[30] Harold Hotelling. The Economics of Exhaustible Resources. Journal of Political
Economy, 39(2):137�175, 1931.

[31] Daniel Houser and John Wooders. Reputation in auctions: Theory, and evi-
dence from eBay. Journal of Economics and Management Strategy, 15(2):353�
369, 2006.

[32] Robert Hurn, A.S.; Wright. Geology or Economics ? Testing Models of
Irreversible Investment Using North Sea Oil Data. The Economic Journal,
104(423):363�371, 1994.

[33] Svenn Jensen, Kristina Mohlin, Karen Pittel, and Thomsa Sterner. An In-
troduction to the Green Paradox: The Unintended Consequences of Climate
Policies. Review of Economics and Policy, 9(2):246�265, 2015.

[34] John H. Kagel and Dan Levin. Independent Private Value Auctions: Bidder
Behaviour in First-, Second- and Third-Price Auctions with Varying Numbers
of Bidders. The Economic Journal, 103(419):868, 2006.

[35] Ryan Kellogg. The E�ect of Uncertainty on Investment: Evidence from Texas
Oil Drilling. American Economic Review, 104(6):1698�1734, 2014.

[36] Pietro Kelly, Bryan; Pastor, Lubos; Veronesi. The Price of Political Uncer-
tainty: Theory and Evidence from the Option Market. NBER Working Paper

Series, (Working Paper 19812):1�69, 2015.

[37] Gilbert Kollenbach. Unilateral climate policy and the green paradox: Extrac-
tion costs matter. Canadian Journal of Economics, 52(3):1036�1083, 2019.

[38] Sabine S. Lange, Sean E. Mulholland, and Michael E. Honeycutt. What are
the net bene�ts of reducing the ozone standard to 65 ppb? An alternative
analysis. Iternational Journal of Environmental Research and Public Health,
15(8), 2018.

[39] Derek Lemoine. Green Expectations: Current E�ects of Anticipated Carbon
Pricing. The Review of Economics and Statistics, 99(3):499�513, 2017.

[40] Eric Lewis. Federal Environmental Protection and the Distorted Search for Oil
and Gas. Job Market Paper, 2014.

[41] Gregory Lewis and Albert Wang. Who bene�ts from improved search in plat-
form markets? SSRN Electronic Journal, 2013.

[42] Ngo V. Long. Resource Extraction under the Uncertainty about Possible Na-
tionalization. Journal of Economic Theory, 10(1):42�53, 1975.

[43] Marc L. Mans�eld. Statistical analysis of winter ozone exceedences in the Uin-
tah Basin, Utah, USA. Journal of the Air and Waste Management Association,
68(5):403�414, 2017.

201



[44] Marc L. Mans�eld and Courtney F. Hall. A survey of valleys and basins of the
western United States for the capacity to produce winter ozone. Journal of the
Air and Waste Management Association, 68(9):909�919, 2018.

[45] Nida Melek. Productivity, Nationalization, and the Role of "News": Lessons
from the 1970s. Macroeconomic Dynamics, (June 2014), 2018.

[46] Richard T. Melstrom. Where to drill? The petroleum industry's response to
an endangered species listing. Energy Economics, 66:320�327, 2017.

[47] Thomas O. Michielsen. Brown backstops versus the green paradox. Journal of
Environmental Economics and Management, 68(1):87�110, 2014.

[48] Richard G. Newell, C. Prest, Brian, and Ashley Vissing. Trophy Hunting
vs. Manufacturing Energy: The Price-Responsiveness of Shale Gas. NBER

Working Paper Series, 22532:1689�1699, 2016.

[49] Jorge E Portillo. Oil nationalisations as protracted a�airs: evidence from
Venezuela. OPEC Energy Review, 40(1):50�68, 2016.

[50] R. Quentin Grafton, Tom Kompas, and Ngo Van Long. Substitution between
biofuels and fossil fuels: Is there a green paradox? Journal of Environmental

Economics and Management, 64(3):328�341, 2012.

[51] Nirupama L. Rao. Taxes and US oil production: Evidence from California
and the windfall pro�t tax. American Economic Journal: Economic Policy,
10(4):268�301, 2018.

[52] Karolina Ryszka and Cees Withagen. Unilateral Climate Policies: Incentives

and E�ects, volume 63. Springer Netherlands, 2016.

[53] Rehan Sadiq and Solomon Tesfamariam. Environmental decision-making un-
der uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP).
Stochastic Environmental Research and Risk Assessment, 23(1):75�91, 2009.

[54] Peter Sinclair. High Does Nothing and Rising is Worse: Carbon Taxes Should
Keep Declining to Cut Harmful Emissions. The Manchester School, 60(1):41�
52, 1992.

[55] Hans-Werner Sinn. Public Policies Against Global Warming: A Supply Side
Approach. International Tax and Public Finance, 15(1):360�394, 2008.

[56] Joseph T Smith and Andrew C Olsen. Are Sage-Grouse Fine-Scale Specialists
or Shrub-Steppe Generalists? The Journal of Wildlife Management, 2020.

[57] Luke C.D. Stein and Elizabeth Stone. The E�ect of Uncertainty on Investment:
Evidence from Options. SSRN Electronic Journal, 104(6):1698�1734, 2012.

[58] Nancy L. Stokey. Wait-and-See: Investment Options Under Policy Uncertainty.
NBER Working Paper Series, (Working Paper 19630):1�49, 2016.

[59] Steven Tadelis and Florian Zettelmeyer. Information disclosure as a matching
mechanism: Theory and evidence from a �eld experiment. American Economic

Review, 105(2):886�905, 2015.

202



[60] Magnus Tjostheim. Investment Under Price Uncertainty. Norweigian School

Of Economics, 2013.

[61] William Vickrey. Counterspeculation , Auctions , and Competitive Sealed
Tenders. The Journal of Finance, 16(1):8�37, 1961.

[62] Alwyn Young. Channeling Fisher: Randomization Tests and the Statistical
Insigni�cance of Seemingly Signi�cant Experimental Results. The Quarterly

Journal of Economics, 134(May):557�598, 2019.

[63] Je�rey E. Zabel and Robert W. Paterson. The e�ects of critical habitat des-
ignation on housing supply: An analysis of California housing construction
activity. Journal of Regional Science, 46(1):67�95, 2006.

203


	ABSTRACT
	ABSTRACT PT 1
	ABSTRACT PT 2

	Dissertation - 0207
	I Introduction
	II The Sage-Grouse in Wyoming
	Introduction
	Policy and Institutional Background
	Drilling Environment
	The Sage-Grouse in Wyoming
	The Sage-Grouse and USFWS
	Model & Simulation
	Theoretical Model
	Value and Timing of Drilling
	Comparative Statics
	Simulation
	Introduction
	Results

	Data
	Data Sources
	Drilling and Production Data
	Lease Sale Data
	Sage-Grouse Territory

	Well Location
	Conditional Logit Discrete Choice Well Location Model
	Results
	Parallel Trends

	Timing and Speed of Drilling
	Timing of Drilling - Duration Model
	Results
	Parallel Trends
	Speed of Extraction - Methodology
	Speed of Extraction - Results
	Discrepancy between prior expropriation work and this study + energy uncertainty papers
	Parallel Trends


	Does uncertainty affect bidding?
	Methodology
	Results
	Regression results - Base Model
	Parallel trends check & `constrained response'


	Conclusion
	III Ozone in the Uinta Basin0
	Introduction
	The `Green Paradox'
	Introduction
	Ozone and the Green Paradox

	Drilling & Ozone in Utah

	Data & Simulation
	Data
	Simulation
	Results
	Main Model Results
	Green Paradox Specifications
	2015 change in standards
	Why did the sage-grouse and ozone simulations produce different results?
	Conclusion
	IV A Cost/Benefit Test of Online Leasing0
	Introduction
	Mechanism
	Search Frictions
	Transaction Costs & Bargaining
	Thicker Markets
	Data
	Data Summaries
	Data Sources
	Impact on Bidding
	Methodology
	Results
	Alternative Specifications
	State vs. Neighboring State
	Spatial Discontinuity
	State vs. BLM

	Quantile Analysis

	Parallel trends check
	Investigation of Mechanism
	Does zero travel costs increase bids?
	Comparing Home State to Auction State
	Using `New State' Winners

	Easier information access does not increase bids
	EnergyNet does not increase supply of parcels
	There is evidence EnergyNet attracts more bidders
	Using Winning Bidders
	Using Non-Reservation Price Bids

	The extra participants are not low-information bidders
	Experience level of winning bidder
	Individuals vs. companies

	Conclusion
	Simulation: Sage-Grouse
	Introduction
	Transition Equations and Initial Parameter Values
	Results

	Simulation: Ozone
	Introduction
	Initial Parameter Values and Transition Equations
	Transition Equations - Price and Quantity
	Transition Equations - Ozone
	Expected Future Price and Ozone Transition Equations
	Initial Parameter Values


	Empirical Robustness Checks and Extra Analyses
	Timing and Speed of Drilling
	Decomposition of `Wait-and-see' Duration Model
	Risk Aversion Test
	Likelihood to Drill
	Likelihood to Drill Horizontally + Well Depth
	Speed to finish extracting a well
	Refracking
	Sage-Grouse Spatial Regression Discontinuity Balance Tests
	Bidding Regressions
	Bidding Parallel Trends Discussion

	Sources of Images Used

































