
Abstract 
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This di sser tation explores the query optimization techniqu e of using cached res ults 

a nd feed back for improving performan ce of database systems. Cached results and 

experi ence obtained by running queries a.re used to save execut ion tim e for follow -up 

qu eri es, adapt data. and sys tem parameters, and improve overall sys tem perform ance. 

F irst, we develop a fram ework which integrates query optimization a.nd cac he man­

agement. The opt imizer is capable of genera.ting efficient qu ery plan s us ing previous 

qii e ry resulLs cached on the di sk. Alte rnative method s to access and update t he caches 

a re co nsidered by the optimizer based 011 cos t es timation. Different cache management 

st rategi es a. re al so included in thi s fr a. rn ework for compa ri so n. Empiri cal performance 

st ud y ve rifi es t he advantage a.11 d practicality o f t hi s framework. 

To help tl1e optimizer in selecting t he best plan , we propose a. novel approach for 

providin g acc urate but cost-effective selec ti vity es timation. Dist ribution of attr ibute 

va lu es is reg ressed in real t im e, using actual qu ery res ul t sizes obtained a.s feedback, 

Lo make accurate selec tiv ity estim at io n. This method avoids tlte expensive off-line 



database access overhead req uired by the conventional methods and adapts fairly well 

to updates a nd query locali ty. This is verified em p.irically. 

To exec ute a query pl an more efficiently, a buffer pool is usually provided for 

caching data pages in memory to reduce disk accesses . vVe en hance buffer u tili zatio11 

by devising a buffer allocation scheme for rec urring queri es using page fa ult feedback 

o btained from previous executions. Performance improvement of this scheme is shown 

by empirical examples and a systematic simulat ion . 
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Chapter 1 

Introduction 

1.1 Motivation 

A dalauC/. se is a. collec tion of data.. A database mcmagement system (DB:lv[S) is a 

system that is used to rna.llipulate the database . One of the primary goals of a Dl3 1V[S 

is to provide an environrn.ent that is both convenient and efficient to use in retriev in g 

infonna.t ion from a nd storing inform ation into th e da tabase. A relal'ional database 

sys te m represents th e data and th e relationships among th em as a collection of 1:aules 

( often cal led relat ions) . 

ReJa. tiolla.1 database sys tems have been used with much success in various a.ppli ­

cations in t he past. decade. One of t he factors that makes t hem s uch a. s uccess is t il e 

s upport. of a. cleclarC/.l ive Da ta N[a. nipula.Lion Lan g uage (DML), or query languar;e, by 

111 ost re lat iona l DB MS ve ndors; s uch a language a llows users to access the database 

by specifyin g t he desired informat io n in a. que ry. Such a system frees t he user from 

co ncern ove r how Lo a ccess the database efTi ciently; it is the responsib ili ty o r t il e DB lVIS 

to find the Jll ost efficie nt way to evaluate the que ry. 

To process a qu ery ex pressed in a declarative language su ch as SQL [A +rn] or 

Qu el [SWK7G] , the D l3JV[S must se lect, during a. query op t imi zation phase, a n effi cie nt 

plan for processing the qu e ry. Without query opti1J1i za.t ion, rnost relational d a.ta.li:isc 
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system s would be highly inefficient. The result of query optimization is a query plan 

w hich can be interpreted and executed by the underlying database access m e Lli od 

an d storage man agement modules . The access method module supports a.Jternat.ive 

means of accessi ng the relation s (s uch as indices); the storage management rnoclule 

o rganizes da t a base fil es on the disks, provides an interface between the access met hod 

module and the file sys t em , and is also responsible for transferring data base p ages 

be tween memory a nd disks . We refer to this whole subsystem of a DBMS as the 

Qu ery Optimization and Evalu ation Iv[odulc (QOEM). 

Jn a t rad ition al database system , the function of a QOEM is to optimiie a qu ery, 

execute the produ ced plan, and ret urn th e result to the users . '.L'hi s uni -directed 

fun ctio n Jl ow o ve rloo ks t he potentia l advantage of recycling useful query results ror 

sp eeding up subsequent cp1eries and of feedin g back useful experience or information 

learned from execution. T his dissertation commences research in t his direction . In 

parti cular , we focus on three techniques that would extend or improve the functio n of 

a QO El'v[ from this a.spect. 

• \Ve ex telld t he QOETvI Lo cachin g query or i11ten n ecliate res ul ts for re use in 

o rd er to sa.ve qu ery evaluation time for follow- up queries . This idea lia.s bC'c n 

proposed in previous .literature for diffe rent appli cations. However, to t he bes t 

of o ur knowledge, no concrete work has ever been reported , and cached results 

have never before been in Legra.ted in to the optim izer and the access pa th module 

e ffi cie 11 t ly. 

• \VP propose a novel approach o r regressin g att ribu te value dis t ributio n usin g 

query feedback to make accurate selectivity es timation. Selectivity eslim,alion is 

o ne o f th e m ost important factors affecting the correctness of query optimization 

a ud thus the quality of the output pla ns. Tradition al method s for selectivi ty 

es ti .ma tio n us ua lly in volve t he e.11 or111 o us off-line database access and co rnpu tat io n 
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overhead of colJ ectin g re levant data. stati s ti cs a.nd maintaining da.ta. distribu tion. 

We fee l that using tl1e know ledge a bout data distri bution o bta ined from q uery 

executio11 to estimate select ivities is much more effi cient than the traditional 

method s. 

• We explore t he technique of using page fau lt feedb ack to ad j ust buffer all ocation 

for recurring queries and thus to increase buffer u tili zation . Recent research on 

database buffer manageme nt has proposed vari ous allocation schemes ba.secl on 

t he sp ecific page reference patte rn s exhibited by relationa l. queries . Howevc-!r, 

t he allocation strategies ol' these methods were based on probabi listic ana lys is 

where cr ud e ass umpti ons such as uniforrnity had to be ma.d e. Instead of usiu g 

this assumption , we seek to use real page reference characte ri stics obtained from 

query feed back to adjust buffe r allocation. 

In sho rt , t he purpose of thi s st udy is to explore the query optimization technique 

of usi11g cached res ul ts a nd to invest igate the ll.Se of query feedback in select ivity 

es tim at ion a nd buffe r a. ll oca.t io 11. 

1.2 Contributions and Dissertation Outline 

The res ult s of thi s study and the conte nts of thi s thesis have been pubUshed in [CR~_)!.J b , 

CR~Jtla, CR93]. Althou gh t he expe ri ments we conducted were based on a centrali zed 

data.base environm ent , t he techniqu es proposed here cou ld be a ppli ed to a di st ribu ted 

e nvironment as well. We bri efl y di scuss the contribut ions of this di sse rtation as fol lows. 

Prev ious research ou t he iss ue o f uti li zing cached res ults has foc used on either ca.cli c 

rnana.gern e nt or t he theoret ical di scussion of how to dctermiu c if one query condi t ion 

impli es another one. Litt le a.tte 11 tion has been pa.id to t he problem of how to optimi ze a. 

qu e ry usin g previo usly cached qu ery results . Thi s iss ue is important because the bli11d 

use of cached res ults 1n a.y result in a. query plan even worse t han that c reated withou.t 



using them. To the bes t of o ur knowledge, no substantial framework of thi s so rt 

has ever been developed or prototyped in a ny data.base product or research system, 

and thus the practicality o f thi s technique is still quest ionable. On thi s basis, we 

i11 vestiga.tcd a nd developed a qu ery opt imizer that can optimize queries us ing cached 

results a nd t hat can generate more effi. cien t plans. Th is optimizer was implemented in a 

DBMS prototype, a nd the experiment al res ul ts showed that, under a. variety of que ry 

wo rkloads, the saving o f' query evaluation time is significant , a nd the optimizat ion 

ove rhead is usually extremely small. 

'vVe then t urn to the select ivity est imation problern. To m ake accurate selectivity 

estim at ion , we need to rnaintain the value distributions fo r those attr ibutes of in terest. 

Exist in g methods a ll require off-line database accesses and computation in order to 

coll ec t t he stati stics and a pproxim a te th e di st ribu t ions. \,Vhen updates to t he relatio ns 

occu r , t l1ese maintai ned distributions are not usually modified unt il the updates exceed 

a g iven t hres hold. T hi s system res ults in two problems: (1) because of th e prese nce 

of t he outdated inform ation, t he qu ery optimization wi ll operate in a degraded mode 

until the distributions arc updated , and (2) t he updating of the di st ribution s will inc ur 

more overhead. To so lve these prob lems, we propose a novel app roach of reg ressin g 

att ribu te valu e d istrib ut ions usin g act ua l qu ery res ul t sizes as feedback. With this 

tec lrni <1uc, th e di str.ibution, whi ch is adj usted gradually as que ries proceed , adapt s 

well to t he upd ates . Thi s approach requires no off- li ne data.base accesses a nd makes 

acc urate estim at ions cornp a.rable to those of the existing methods. 

Fin all y, we prese nt. a. buffer allocation schem e for rec urring que ries . Queri<~s s11 ch 

as co1npi led qu <! ries a nd non-m a teriali zed (or pointer-based) views a.re very likely to 

rec ur in a dat a. base env iron ment . For these queries, we can use information a.bout page 

refe rence behav ior learned from previous exec utions to adjust t he buffer allocation. 

'vVc use a qu ant itat ive rn o<lel to cha racterize th e page reference behavior that a. que ry 

im poses on a, relation, a nd based on th is, we devise an allocation scheme w hi ch allocates 

;J 



buffers to indi vidual relation instances according to their quantified characteristics. 

Simul atio n results have shown that the use of this t echnique can lead to significant 

perfo rmance improvernent. 

T hi s cli ssert atioll is orga.ni zed as follows. In C hapter 2 we review the concep ts of 

relationa l <la.ta.bases a.n<l query optimization and survey the relevant issues of caching 

query result s, select ivity es timation, and buffer m anagement. In Chapter :3 we inves­

tigate the query optimization teclrniqne of using cached query results. 'vVe present 

a n implementation franiework which integrates various cache management t echniqu es 

a nd query o ptirni ;;,ation. An empiri cal performance stu dy which has shown the advan­

tage of thi s fr a rn ewo rk is a lso preseute<l . In Chapter 4 we describe the technique of 

using act ual que ry resu lt sizes as feedback to reg ress attribute di stribution and rnake 

acc 11rate selectivity estim at ion. We a lso show how this method a.da.pts gracefully to 

upd ates a nd query locality. In Chapter 5 we describe th e buffer allocation scheme for 

rec urrin g <JUeries based on feedback of page fa.ult information. \Ve show the simulation 

res ult s which indicate the perform ance improvement of this sche rne over the existing 

o nes. Finally, we offer conclu sions ancl issues for future research in Chapters 6 and 7. 
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Chapter 2 

Survey 

2.1 Query Language and Optimization 

A 1-elaliorwl database consists of a collect ion of relations by which use rs can store data 

a nd represe11t rcl a.t iou ship betwee n data.. Each relat ion is associated. with a schema 

whi ch spec ifi es th e nanie of the relation , the attributes of the relation, and the dom ain 

of each att ribu te. A query language is a language in which a user requests inforrna­

tion f'rorn the database . Query languages can be categorized as being procedural or 

nonprocedu ral. In a procedural language, the use r instructs the system to perform a. 

sequence of operations on the data.base to compute th e desired. res ult. In a. nonpro­

cedural la 11 g uage, the use r describes the information desired without giving a speci fi c 

procedure for obtaining that information. 

The 1'ela.tion aluebra is a procedural query language . It consists of three fundamen­

ta l operato rs: select, project, and cartesian-producl. In th e following , we introduce 

th ese ope rators using cle1nonstrating examp les from [KS86] and [Shi93] . Suppose a. 

co mpa ny s to res its reco rd s of empl oyees, depa rtm ents and projects in three separ;ite 

relatio ns witl 1 Lite fo llowi11g schemas. 

DEPT(dept.-110, dept_name,floor.-110) 

EMP(name, dept.-110, project, salary) 
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PROJ(proj_name, contract_type) 

The select oper a,tio n se]ecLs tuples that satisfy a given predicate. A selec t operation 

is denoted by O'r,, wh ere pis tl1e predi cate . To selec t all departments tha t are located 

in t he first fl oor, we write 

O'floou10=l (DEPT) 

The prn,iect operation extracts certain attributes from the relation, A project 

operatio11 is denoted by H;1 , where A is the lis t of attributes tha t would appear in the 

res ult, To project the names of a ll employees from relation EMP , we write 

Given two relations Hand S, tlte cartesian-proclv.ct of R and S , denoted by R x S, 

is the se t of a ll t upl es thaL arc concatenated by one tuple of R and one tuple of S, A 

join operati on, written as R 1><1/J S, is a shortlrnnd for O'p(R x S), where predicate JJ .is 

called t he join predi cate. The following expression retrieves the names and salaries o f 

a ll employees who work on the fir st iloor, 

Ilname,salary( O' floor _no= 1 (EMP l><ldept__no=dept__no DEPT)) 

Most database system products provide a more " user-fri endly" qu e ry language 

o ther than relational algebra. Perhaps the most influential commercial query lang uage 

is the SQL , inLroclu ced as the query language for System R [A +76] . A ty pi cal SQL 

<1u cry has the form: 

SELECT a 1 , a2 , .. . , r1,n 

FROM R1 , R2 , , .. , Rm 

WHERE P 

Th e o.;s represe nt attributes (refe rred to as t he tm·ge/.-lisl), the R;s represent rela­

tions (refe rred to as the relation-list), and Pis a predicate (referred to as the condition­

list or the rr1w.lifical.ion). This query produces the same res ult as the following relat ional 
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a lgebra expressio n: 

Unlike reb t ional a.Jgebra. which specifies exactly in which sequeJlce the operations 

a re to be performed, SQL simply gives declarative information about what is desired . 

For examp.lc, t he rela tional algebra. expression 

TI name ,salary( O' floor ...no= 1 (EMP l><ldept ...no=dept...no DEPT)) 

can be represented in SQ L st.a.tern ent a.s 

QUCHY J: 

SELECT EMP .name, EMP.salary 

FROM EMP, DEPT 

WHERE DEPT . floor...no =1 

AND EMP.dept...no = DEPT.dept...no 

Wlicll a. SQL query is presented to a. da.tabase system, it is necessary to find an 

dftcient way, if not the best, to compute t he a nswer using the exjst ing data.base access 

methods. Each alternative way of computing a query is called a. query plan. For 

example, two query plans are possib.lc for t he a bove SQL query. 

Pla. 11 l: 

TEMP1 := Tictept..no( anoor...no= l (DEPT)); 

RESULT := TI EMP.name,EMP.salary(EMP l><lctept...no=dept...no TEMP! ); 

Plan 2: 

TEMP! := EMP l><lctept...no=dept ...no DEPT; 

RESULT := TIEMP.name,EMP.salary( O'cteptJ l oor= l (TEMP 1)); 

Tn t hi s case, Plan I is expected to be more effi cient t ha n Plan 2 because it reduces 

th e numbe r o f DEPT tuples to be joined with El\iJP by applying the select ope rato r 
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to DEPT before the join . If th ere is a.n index built on att ribute DEPT.floor-110 , we 

a,lso need to decide if it is more efficient to use this index thau not to use it when 

performing anoor-11o= 1(DEPT). 

T he re a.re generally a la.rge number of possible query plans for evaluating a. query, 

especially if the qu ery is complex. It is not uncommon that the difference in execution 

Lime betwee n a good pla.11 and a. bad pla.n may be hu ge. Thus , it is worthwhile 

for the data.base system to trade a. small a.mount of time on th e selection of a good 

plan for the significant execution time saved by the good plan. This "optirnizing", 

or more accu rately, improving of th e strategy for processing a. query, is called qv.ery 

oplirnizalion. 

Given a query, the query optimizer m ust frn cl out the most efTicient plan for com­

pu t in g th e qu ery. T here a. re two t hin gs that can affect the cost of a query plan: access 

·1ne lhods a nd join 01'fle 1·. Data.base sys tems usually provide alternative access method s 

for retrieving data. froin tables (a.side frorn seq uenti al scanning, there a.re access meth­

ods like ind exing, hashin g, and so rt-m erging), and the query optimizer must determine 

the bes t me thod to access ea.ch relation in th e context of a specific query. For example, 

a n ind ex can be used in Pla n 1 to select the departments on floor J from DEPT, o r 

we can simply scan through DEPT sequentially and select all those qualif-ie<l tupl es . 

Similarly, il' an index exist s on attribu te EivIP.depLno, then we can use this index to 

join ea.ch qua.lified tuple from DEPT with tuples in EMP that match on their d ept-110 

values . The orde r in which th e relation s are taken into join might a.s weH affect the 

cost o !' th e res ulting plan. T hi s is because different join orders access different arnou 11 L 

of tt1plcs wit hi11 each relation and produce different sizes of intermediate res ults . The 

amou nt o f' t uples accessed rnust be min imized to reduce the number of di sk accesses 

rcq uircd. 

Query optim izatio n has been well studied in the past [WY7G, s+79 , IK84, GW89, 

YL90]. 1\111ong them , perhaps th e most influential one is the System R optimizer 

9 



[s+ 79J , w hi ch is based o n the tech nique of d·ynwn ,;c · Iii Syste
11

-

1 

I),, a 
· . • programnnng. .\ 

join with N relation s is considered as a. sequen ce of 2-wa.y j oins. Two relations a.re 

fir s t j o i nee! toge
t
ber a.

11d th
e res u I t ing relation is joined with the t hircl relat ion , e t c. 

The o pt imization a lgorithm proceeds by considering increasing larger subse t s of the 

se t o f' a.H jo in relations. It begin s with findin g the optimal plans for all subsets of 

2 relat ion, a.ncl t hen fin ds t he op t imal pl a ns for all subset s of/.; relations (k 2: 3) . 

D ynamic prog ramm ing is used so tha.t the optima l pla.n of a k relat ion join is extended 

frorn o ne o f the optima.I plans for the /;; - 1 relation join s . At the sam e time, cert ain 

he uri s ti cs a.re a dopted to Lirnit t he search space . For exampl e, the famous "push -clown" 

he uri st ics attempts to apply selec tions and projections a.s early as possible a.nd delay 

ca.r t esia.n produ ct as la.te a.s possible . T he search space is at worst of 2N . However, 

for typical jo in qu eries of less t.han 10 relations, the optimization overhead is not tha.t 

'f' t I s ig n1 1c;u 1 , . 

2.2 Caching and Using Query Results 

C a chin g t he res ult o f a. q11 ery on disk can potenti a lly save the exec ution t ime for follow ­

up que ries. For example, suppose QUERY 1 h a.s been executed an d the result is saved 

. . ·e J,,t·, 011 R8SULT1. Consid er the fo ll owing qu ery whi ch lists the names, salaries !Jl d . l <· . • • 

o f' a ll th e e mployees who work on the fir st Iloo r, earn more tha.n 501( doll a rs, and a.re 

in a. pro ject o f governm ent contract . 

SELECT EMP .narne, EMP.salary 

FROM EMP, DEPT, PROJ 

WHERE EMP.salary 2: 50,000 

1J,'o rlargc ,1 0111q11 c11c~ ·, · · · .. · .. t J1·1t i11volvc t. enc< o r eve11 h1111clrcds of rel at.ions, a.not. her clas s of op t.imi za.ti on 

I I I J (IW87 SG88 Swa 89 ll(9 0] and t.h ey a.re Hot. within t he sco pe of this a lµ; o rit.h111 ~ niu ·t. Jc a.to p .ct . , . , . . , . , . 

d issc rt.a t.io 11 · 
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AND EMP.deptJ10 = DEPT.deptJ10 

AND DEPT.floorJlo =1 

AND EMP.project = PROJ .projJ1ame 

AND PROJ.contract_type = 'government ' 

It is no L ha.rd to see that we can take ad vantage of the cached res ult RESULT! 

a nd rcw riLe t he a bove qu ery as 

SELECT EMP.name, EMP.salary 

FROM RESULT1, PROJ 

WHERE EMP. s alary ~ 50,000 

AND EMP .project = PROJ .proj J1ame 

AND PROJ . contract_type = 'government' 

Thi s express io ll avoids the re-cornpnLa.tion of join between E1VIP and DEPT and is 

more likely Lo be less cos tly than the firs t expression . However , it is not expected that 

th e users wil l be skill ed enough to make thi s kind of query transfo rmation, and even if 

they a.re, th ey rnig ht not be a.ware of or able to keep track of aJl the pre-existing cached 

res ults tha.t can be m a.de use of. It should be th e responsibility of the qu ery optimizer 

to h a ndle th e task of ca.chillg and usin g query res ults and make iL transparent to the 

users . 

Finkelstein 111 [Fin 82] desc ribed a. 11 algoritlun for comparing a. query with existing 

views . Once a view rnatchillg a subex pression of the query is found , the query is 

rew riLLen by substitutin g Lh e irnbexpression wiLh that view. Larson and Yang [LY85] 

tran s forined t he problem of finding a matched view into an equivalent gra.ph theory 

problem . Ron ssopoulos in [Rou82a., llou82 b] proposed to cache query results in views 

a.lld s tore Ll1 e access paths in a. Logical Access Pa.th Schema (LAPS). The LAP S is 

a logical e nLi ty w hi ch provides a.n in teg rated representa tion of a ll t lt e possible log ical 

access pa.th s Lo de rive th e views. Jn practice , th e LAPS is phys ically recorded in 

11 



se ve ral catalog t a. b.lcs, and is used as a basis fo r common access paths recognit ion i11 

query opt imiza.t icrn. [.J +9J] proposed to support transaction time using differential 

techniqu es and ca ched results , and o ut lined an op timization algo ri thm whi ch t akes 

in to a.cco 1l!l t cached res ult s . 

T he pro fi t o f using cached res ult s is not tota lly free. Certain a.mo unt of di sk 

s pace must be rese rved for t he cache , a.ncl th e ca.ched resul ts m ust be managed in an 

effi cient way. T l1ere a.re different ways to store t he query result s. Ln [ALSO, BLTSG], 

query res ul t s a re s tored in views as regul a r data, called materialized views. [llou82b , 

Val87] p roposed to store cptery res ult s by pointers or Tuple IDs whi ch a.re addresses 

o f tu ples in relat io ns . Scl lis [Sel88] di scussed the iss ue of cache replacement st rategy 

a.nd sugges ted several use ful heuri s t ics . A cache m ust be updated when its underlying 

base relat io ns a rc mod ifi ed. Different strategies and techniq ues as of when and how 

to update deri ved relations were explo red in [Shm84, llK86, BLT 86, LHM86, Han87, 

B C L89] . In cre1n cntal up dates of t he pointer-based representation of views is fully 

develo ped in [llo u91] . We will di scuss more a.bou t t hem in Chapter J. 

Des pi te of t he intensive li terat ure on t he iss ues of caching , managing, and using 

qu ery results, t here a.re few t ha.t actu ally integ rate them all in a. con crete fra mework. 

I n Chapte r 3 , we will describe a n im p lementation which integrates cache management 

aHd qu ery op t imi za tio n using cached results in a. DBivI S prototype. 

2.3 Se lectivity Estirnation 

T he cos t of a. q uery pl an depe nds heav ily o n t he selectivities - t he size (nu m ber o f' 

t uples ) of t he result of a selec t ion o r a join. Selec tivi ty esti mation has a significau t 

i rn pa.ct 0.11 t li e selec ti o n o f bes t plan. Consider P lan 1 as an example. If 90% of t he 

co rnp a ny's de pa.r t rn cnts a. re o n t he fi rst noor , then we m ig ht choose to scan seqL1e nt ia.lly 

t h ro ug h re lat io n DEP T in stead of usin g t he index on DEPT . fl oor J10 Lo read t he 
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qualified tuples since in both cases, aln10st all pages of DEPT will be read, and using 

index will simply iucur more di sk accesses to the ind ex structure. On the other hand , 

if only 10% of the cornpa11y's departments are on first floor , th en it might be more 

e ffi cien t to use the ind ex Lo select those 10% tuples from DEPT than to read through 

the whol e relati o n. 

Selectivity depend s on the di stribution of values within attributes. However, it 

is not reali st ic to maintain ew cl distribution for each attribute in th e database. For 

siinpli cit.y, man y qnery processors make th e assumption of uniform cli s tributio11 whi ch 

ass um es that ca.c it va,luc of an attribute domain appears with equal probability [S+n), 

KS 8G]. As today's database applications involve more complex and massive a.mount of 

dat a , the un iformity ass umption is no longer satisfactory since skew data. di stribution 

is not u nu sua.L In order to make correct decision s during query optimi%ation, accurate 

selectivity est imation is des ired. 

Variou s m ethod s h ave been proposed to approximate th e distribution of attribute 

valu es a.11d thu s ma ke acc urate se lec tivity es timation. The most common method is th e 

hi::, log/'(/.m , whi ch di vid es a 11 at.t ribute domain into intervals and co unts the numb er of 

tuples holdin g values wh ich fall into each of the intervals. Variations of histograms are 

proposed in [IVI079, PS Cs,1, lvlDSS, Lyn88, Ioa93]. A nother group of methods [s+79, 

SH83, Chr8:3b , C hr83a, LST83, Fcd84, SLRD93] used certain mathematical function s 

(s uch as po lynomi als or normal dist ribution) to approximate actual di stribution. The 

above method s all rcq11ire off- line database accesses for collec ting certain statis tics . 

This t a.s k is expe nsive because it incurs intensive disk accesses and has to be re­

pc rfo rrn cd pe ri odical ly at t he presence of updates . Recently, sampling methods we re 

proposed to es timate qu ery res ult sizes [IJ0T88, LN90 , HS92]. Sample tuples arc 

taken from the relation s, and the query is performed against these samples to collect 

s tati st ics for estimating th e selec tivity. However , sampling method s arc basically used 

in a11swe rin g s tat is tical que ries ra th er than in the context of query optimization wh e re 
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tl1e overltea,d of performing sampling is prohibitive. 

In C hapter 4, we propose a novel approach of selectivity es timation which reg resses 

the di s tribution using actual qu ery res ult sizes as feedback in real time. This method 

a.vo id s the cumb erso me off- li ne data.base access overhead and gives accurate es timation 

comparable to the existing methods . 

2 .4 Buff er Managen1ent 

\!\/li e n a 11 optimal qu e ry p la.11 is ge nerated , it is sent to th e underlying access m et hod 

and storage rnau;ige1ne 11 t module fo r execution . This module reads data pages from 

the di sk a nd perf'orrn s desired co mp utation to produce t he final res ult. Sin ce a,ccesses 

to dis k pages a.re ni uch more costly than accesses to memory, most da tabase sys tems 

provide a. memory buffe r pool for caching data pages and thus reducing disk accesses. 

Carly works on database buffer management [llei76 , SB76, TLF77, Ka.p80, EH84] 

a dopted the co11ven tio na l strategies that are previously used in vir tual memory syste ,ns 

( such as LRU, \tVorkin g-Set, e tc). In these methods, database buffers are managed 

based on certa.in simple page refere nce stat is tics . The treatment is "page-oriented" 

rathe r than "query-oriented" i11 the sense that ea.ch data.base page is treated equa ll y 

regardl ess of which relat ion it resides o r in what context of que ry it is accessed. Thi s 

basicall y overlooks t he s pecifi c page ref'c rence behavior ex hibited by relational qu eries 

whi ch can be used Lo illlprove th e buffe r utili zation. 

Le t us use a 11 ex amp le to show how the buffer allocat ion strategy can affect the 

e ffec tive ness o f th e exec ution of a relational query plan. Consid er P lan 1 again , thi s 

t.irn e ass urn e there is no index on a ny att ribute of either relat ion . For the qu ery 

EMP l><lctept...11 o=dept-11o TEMP1 , suppose the optimi zer chooses to read one tuple at a 

t i Ill e from TEMPl and compares it with every tup les of EMP. It is obvious that to 

bes t utili ze the buffe rs in ass is ting this join operat io n, we should a ll ocate only l buffer 
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page to TElVIPl (since TEMPl is accessed sequentially, and ea.ch page will be read 

only once), and allocate th e rest to EJVIP (since th e data pages of EJVIP a.re accessed 

iteratively for many times). 

[SS82, SS86] first proposed to allocate buffers to individual relation instances based 

0 11 th e ref erence pallem s exhibi ted by the query plan. [CD85] refined this work and 

showed the advantage of this approach over the traditional methods. Ng, Fa.loutsos, 

and Sellis irnproved the work of [CD85] by using a more flexible allocation poli cy 

which takes into account buffer availability [NFS91], and augmented it in [FNS91] by 

considering the effect of load control. 

Tn Chapter 5, we propose a buffer a llocation scheme for recurring queries using 

feed back of page fa.u lt information. Instead of relying on ad hoc reference pattern 

classification, we use a quantita tive model to characterize the reference behavior of 

que ries and use such obtained characteris ti cs to adjust buffer allocation. This tech­

niqu e com plcments the pattern-based methods on the allocation s trategy for "random" 

ref"e rcnccs . 
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Chapter 3 

The ADMS Query Optimizer-Integrating 

Result Caching and Matching 

3.1 Introduction 

Relational dat a.base que ry languages allow users to save final query results in relations 

[s+79 , S\tVK7G]. Uml e r ce rt a in situations, for example, when sorting is performed 

or nested q ucri es a. re present, q 11 e ry in te rrnediate res ults must also be produced to 

fa cili t a te the qu e ry cornputa tion s . Jt is t he n profita.ble to cache these query resul ts 

011 di sk over a lon ge r time fo r potential reuse . Cachi ng qu ery ( in term ed iate) res ults 

for speedi 11 g up f'o ll ow-up query processing has been proposed fo r different appli ca­

tion s in previous li terat ure. In [ALSO, F in 82, LY85, Rou91], cached query results are 

used in re lational database systems to a.void repeated computations . [Sel87, Jhi88] 

addressed th e iss ue of caching qu ery results to support queries with procedures, mks 

and fun c t ion s . In a d.istr ib uted clien t- se rve r enviro nment , ca.cbing qu e ry resul ts on 

cl ient worksta.tion s can red uce bot lt t he network contention and th e server reques t 

bottlen eck [DR92]. Recently in extended relational data.bases, thi s techn ique was sug­

ges ted to save eval11 a.tio1t t ime of exp ensive predicates which involve large and compk)x 

att ri butes [I [S93]. 

H,cscarch o n t.hi s top ic !llll S l add ress to two ma.jar issues: ( l ) cache management , 
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and (2) query matching and optimization. The two issues have been investigated 

se parately in prev io us litera ture, where [ALSO, Rou82b, Val87, Rou~)l, Sel88, Jhi 88, 

RK 86, Hall 87, BLT86] focused on the cache management , and [Rou82a, Fin82, LY85, 

s+s9J addressed the query matchin g. However , no substantial work or experimental 

res ult s have been reported on the integration of caching, matching and optimization, 

except for a.lgorithmi c discussion. Therefore, it is not clear if such an integration can 

be fuUiJJ ed i11 practice effi ciently. 

In thi s cha pter, we desc ribe th e design and implementa tion of the ADivIS 1 Cache 

and Ma,tch Optimize r (CNIO) - the fir s t prototyped optimizer that integrates query 

res ul t caclti ll g and rn atdiiu g. ADl\tlS adopts an enhanced clien t-server architecture 

whi ch utili zes both the CPU and the 1/0 of the client workstations. Each server is 

dedi cated to runnin g a DDrvIS and mainta ining a main centralized database. The users 

access t he database on servers through their workstations ( the client workstations) vi a 

a local a rea network and can create their own private data.bases on the local disk. 

The system off- loads cli sk accesses from the servers by having the clients run a limited 

DBMS ( a centrali zed version of ADMS) and by caching results of both client and 

se rve r qu eri es to the client di sk. To provide cache transparency to the users, we 

integ rated th e AD !V[S qu e ry opt imizer with the underlying cache manager and with 

the matchin g rn echani s tn so tha t th e nsers do not need to worry about which caches 

to use a nd how. T he integ rated opti1nizer can generate effici ent query plans usin g 

previo usly cached res11l ts automatically. In particular, it (l) can use multiple cached 

res 11Jts ill coinirn ting a qu ery, (2) allows dynamic cache update strategies, depending 

o n whi ch is bette r, and (:3) prov ides options for different cache management strategies . 

W hile the ADMS C.tvrO qu ery optimi zer is running in a cli ent-server environment, in 

this cbapter , we on ly present the performance evaluation res ults from a central ized 

1 A l) i'v[S is a. rela.t.i o na.l DBM S prototype developed at th e Depa.rt.ment of Computer Science of 

Unive rs ity o f Ma.ry la.nd , College htrk. 
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case where t he user run s queries a.g·a.i11s t 111·s l)l·i·vc·i.t e d l 
atabase and caches t 1e query 

resu lts on t he local disk. 

T l1e rest of thi s chapter is o rganized as follow s: Section 3.2 briefs the related work, 

Section 3.:3 describ es the und erlyin g AD lvIS cache manager, Section 3.4 details the 

integration o f query matching a nd optimizat ion in the CMO optimizer , Section 3.5 

prese nts the performan ce evaluation res ults, and finally in Section 3.6, we summarize 

this work. 

3.2 Related Work 

Diffe rent iss ues co ncernin g cac he management have been widely studi ed before . [ALSO, 

Rou82b , Val87, Hou0 L] proposed all ec' rnati ve methods for storing the cached data.; 

[Sel88, .Jl1i88] di sc ussed Lhe proble rn o f selecti ve caching and cache replacement strate­

gics; iu [Rf(86, Jl a n87, IJLT8G] , different cache update strategies a.re explored. More 

detail s a bo ut these iss ues will be di scussed in Section :3.3. 

The problem of identifying useful cached resul ts that can be used in computi ng 

a qu e ry, referred to as the qu ery matching problem, was addressed in [Fin82, LY85, 

s+S9] . T he esse ntial issue here is to find a.n a lgorithm that can tes t if the qualification 

cl a use o f a query logicall y impli es that of a, view definition. T he solution usually 

i11 volves so me theorem proving teclrniqn es whose computational complexity, in genera l, 

is exponential, t hough polynon1ial algorithms exist for certain special cases of the 

problem. Optimizat io n, howeve r, was not the issue in thi s work and thus was not 

addressed sat is [a.cto ril y. 

Op t imizat ion can not be neglec ted when using cached results not only because 

th ere rna.y be diffcrl\ nt, co rnbillation s of matched caches from which th e query can 

be co ntputed , bu t a lso because it is not alwa.ys beneficial to use caches . A possible 

so lu tio n, as ment io ned in [Fi n82], is a two phase approach ; during the first phase, 
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the q uery is tra.ns[ormed into a. number of equivalent queries using different cached 

temporaries, and during the second phase, all the revised queries a.re fed to a regul ar 

optirnizer to gene rate an optimal pla.n. \t\fithout elaborate pruning, this approach is 

not sa.t isf'aclory because the sca.rc!t space for both phases is ext remely large. Even if 

only a small nu1nber o f' revised queries a.re produced from the first phase, these revised 

qu eries ca.n st ill duplicate t heir sea.rch spaces and effort during the following phase. A 

better approach is to integrate the ma tching phase with the optimization and thus, 

unify the search spaces a.ncl avoid dupli cate effort. [J+ 93J first described this approach 

a.ud used a slate lransilion n el wo ,·k to ex plore t he space, a.long with some pruning 

he uristics. Ra.ther tlta.n being implemented as a working module in any DBMS , their 

work is merely a n a lgorithmic piece. 

In the following , we describe the design and implementation of the ADMS CMO 

framework wbicb integrates que ry result caching, matching, and optimization. 

3.3 Cache Managen1ent 

Intennedi a.te a.nd final qu e ry res ults cached on disk a.re referred to as temporcl'l'ies. 

Caclied tern poraries a. re collected a.nd maintained by the cache manager. In t his 

sectio11, we rev iew relevant cache m anagement issues and describe the approach we 

a.doptcd in th e ADiVIS cache m anager. 

3.3.1 Cache Representation Methods 

T he simp lest wa.y to sto re the temporaries is to store them as regula r relations [ALSO, 

BLTSG]. This is called malerial'i::ed view o r data caching. Another approach is to store 

fo r ea.cli res ulting tuple of th (-) tempo rary, a. number of pointers or Tv.ple Idenlifi.ers 

(T!D) , iu stea.d o r mate riali zed values, whi ch point to the corresponding tuples in the 

base relat io ns ( possibly throug h several levels) that constitute the resulting tuple . \Ne 
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refer to this pointer based approach as pointe1' caching. Varia tions of this approach 

have beeu proposed in [Rou82b, Val87], and was called ViewCache in [Rou91J. 

Pointer caching is more space-effective since ea.ch tuple is represented by a small 

number of fixed leng th pointers. However, extra page references to higher level rela­

tions or temporaries are required when materialj zing tuples from pointer caches . In 

view of query matching, pointer caching is more a ttractive than dat a. caching because 

(1) more temporaries can be retained in a limi ted cache space, and (2) unlike da t a. 

caches whi ch have only projected at tribu tes, pointer caches vir tually serve as indices 

to tl1 e base tuples and thus can select any a ttributes from the underlying relation s. 

Thi s makes poin ter caching more versatile than data caching. 

In ADIVIS, both da ta caching and pointer caching a.re supported. The default can 

be set to either one, and the user can explicitly specify in a query whether the final 

result is to be stored in a pointer cache (ViewCache) or a data cache. 

3.3.2 Cache Replacement Strategies 

In a sys tem which provides unbounded di sk space, we can simply cache every thing 

generated and leave the task of how to use these t emporaries to the query optimizer. 

However , a more realistic situa tion is to bound the available space for caching. In thi s 

sit uat ion, a cache replacement strategy must be employed to decide which temporaries 

to repl ace when th e cache space is full. The problem of choosing a good replacement 

stra tegy so tha t t he most profi table query results can always be cached was addressed 

in [Sel88J. Dasica.Jly, he proposed to associa te each temporary with a rank, which is a 

weighted sum of cert ain relevant sta.tisti cs (snch as the cache size , the time since the 

te mporary is la.st referenced, etc.). The lowes t rank ca.che(s) should be cliscarclecl a t 

a l)OJ . . tl t 1 ! .·s 11eedecl U11.rortunately, they did not tell how to deri ve w 1ere cac 1e space 1. • 1
' • 

the proper weights and simply lef t it as an open problem. [Ka.m87J compared the 

cliffei·c t 1 · t· ct 1· 11 [Sel88] based on a simula tion study. Still, no empiri cal · n teuns 1cs propose · 
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evalua.tioll wa.s reported. 

With 110 ev id ence of which s t t r 
ra egy pcr10rms the best, we simply equipped the 

AD!v1S cache manager with three 01)tio11s of r·ei)lac . t .· 
• < emen strategies: 

LRU: rep lace the least rece ntly used - in case of a tie, LFU, LCS 

LFU: replace t he least frequ ently used - in case of a tie LRU LCS , , 

LCS: replace the la rgest cache space - in case of a tie, LRU, LFU 

T he purpose he re, however, is not to compare amongst the different replacement strate­

g ics, but rath er obse rve t he CI\110 performance change under different avai lable cache 

spaces without bia.s i11 g towards a ny replacement strategy, though th e result s might 

s hed a lighL inLo Lil e choi ce of' prope r repla.cement strategy und er certain query work­

load . 

3.3.3 Cache Update Strategies 

Cached temporaries become outdated when the base relations from which they are 

de ri vecl a.re lllodifi ed and thu s must be u pdatecl before they can be further used. 

There a. re three diffe rent strategies regardin g when to upd ate the outdated caches: (l) 

immediate vpda.le (i.e., right after every update to the base relations), (2) pe1·iodic 

vpdale, and (3) la zy 1tpdale (i.e., only when access to t he outdated cache is requested). 

As for th e cache update method, it can be re-e:cecvtionor incremental[LT-I!v186, llou91] . 

Whi le the re-exec ution method re-computes an outdated temporary from scratch, the 

iiicrc rn e ntal me thod ca11 e ffici ently update a temporary if only a few tup les are modified 

iu th e base rclat. io11s. Jfowe ve r, i11 crcmc nta.l update logs mu st be maint ained to support 

incrc ni c nt a l 11 pd ates. 

]twas an.i lyzcd in [llan 87] t ha t 11one of th e combinatioll s of the update time strate­

g ics and the upd a te methods is superior to all the others under all situations. As it 

1s pract icall y prohibitive to experiment with a ll the possible combinations, the lazy 
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lll)da.te strategy has been adopted in our ini ·J)le111ei·,t t' ·i· • 1 t l . a. io n )eca.use 1t can )a c 1 consec-

ut ive updates in to a single upd ate (and th us redltce t l · J I. 1· lt' le · · - 1e excessive over 1ea.c o · mu 1p 

sniall e r updates) and a.lways prevents the unnecessary updates to never-used caches. 

T he AD1VlS, howeve r , suppo rts both increment a.l a.nd re-execution methods for View­

Caches, b11 t supports only re-exec ut ion m ethod for data caches 2. T he choice between 

in crementa l and re-executi on updates is ma.de by the query optimizer, depending on 

t he esti rn ated costs . 

3.4 Query Opti1nization Using Cached R esults 

rn this section, we describe t he ADNIS CMO query optimizer, which currently handles 

onl y the cl ass of SP.I-queries- qu eries whi ch involve only projections, selections and 

joins. The optimizer e mploys a g raph search-based algori thm [NilSO] (referred to as 

s tate tran sition network iu [J +in, LW86]) , where ea.ch query is rep resented by a query 

ymph ( o r slale). Th e optirni z,\r has two comp onents: the reduction ·module and the 

sc(lrch cn.yin.e. The red 11 ct ion modul e co nsists of the procedures for performing query 

g raph t ra11 s f'o rma.t io ns. T he search engine control s the exploring sequence of the search 

space, i.e ., the orde r in whi ch the query graphs will b e explored for reductions . \ !\Then a 

pa.r t of a. qu ery gra.ph is computed either by perform ing a. join or using a matched cache, 

t lii s qu e ry graph is said to be 1'ed11ced (transform ed) to a new one. T he access cost of 

t he join or t he cache is es tim ated aml a.ccumul a.tecl in to the successive state . Thus, 

s tarting from t he ini tia l state, th e searchin g algorithm generates successive states until 

a Jiu al state which represents the totally computed query is reached. T he path with 

t he lowest cos t is sclectecl as the optim al plan. \Ve formali ze th e framework in the 

fo llowin g. 

21,, tl, c cl ic ut.-sc rv cr ;\ Dl'vlS± c nviro111 ll cnt., in c rement. al upd ,tl.e is s upport.eel for <l ow nl oacled data. 

ca.chcd Oll cl icnt. wo r k~1.a.t. io 11 d i~b. 
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3.4.1 Query Graph 

\Ve represe nt ,1. P.J S- q11 er y <J as <J = (R ,i, Aq, fq), where R1 = r 1 , r2, ... , r n q is the 

operand li s t ( cac !t 1· 1 is th e nam e o f a base rela tion or a. de rived rela tion), Aq = 

a1, a,2, . .. , c1,1,
1 

a rc att ributes proj ec ted from the relations (refe rred to as the ta,,get­

l-isl ), and f q is a boolean formula for whi ch the resulti ng tuples must satis fy ( us ually 

ca ll ed t he qunlz(icalion). In the Cl'vIO optimi zer , we use a graphic representation ca.llccl 

que'l'y u1·aph to mode l the qu e ries . 

D e finition 1 A qv ery uraph (o r a. s tale) is a. connected, undirec ted graph G = (V, E) 

where 

l. Ea.ch node x E V denotes a relatio n, a cached ternpora.ry, or an intermediate 

res ul t . 

x is associated with a projected attribute li s t 1f"x, where 1f"x is a subse t of schm,(x), 

Lit e sc !t c 11 1a. o f a; . 

:2. E:acli hypererlue e E E' co1111 ccts a s ubset of nodes Ve ~ V, and is la.belled with a 

boo lea n f'onnu la. ./c- D 

Que ry g ra ph s a rc used Lo mod el the original query as well as any partially pro­

cessed q uc ri cs durin g the opti mi za.tion. I\fo re precisely, a que ry gra ph (V, E) represents 

a query q = (R 9 , A 9 , J9 ) where Rq = V , Aq = U.1:E \f7rx, and f q = /\ eED.fe - Note that the 

a bove semanti c implies that a. qu ery g raph usually represents a query whose qualifica­

t ion is a. co 11j1111ct io 11 of s ub-for1n11l a.s. This wi ll not lose any generali zation because a 

formula can always be tr a.11 sfo rm cd into a. conjun ct ive normal form [CL73]. Therefore, 

a. qu e ry can a lways be re presented by a. qu ery gra.ph. \,Ve sa.y e is a k-connector if it 

co n nee ts /,: no des , i.e . , I Ve I = /.: . An edge is a. join edge if k 2:'. 2 a.ncl is a. selection edge 

if /;; = l. 

1n th e /'ol low i ng , we in trod 11 cc t he co ncept of in.cfo ced sub-que1·y (graph), whi ch is 

tJ ie b,1.s ic 11ni t Lo i>c co ll a psC'd du ring a. q11 c ry graph t ra.ns f'orma.tion (see Section 3.4.3). 
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Given a. state q = ( V, E) and a join edge e E E, le t Exte be the set of edges which 

connect at least one nod e fron1 Ve with at lea.st another node not in Ve, 

\Ne use all1·( E:de) to deno te t he se t of attributes that appear in t he formulas of Exte, 

allr( l~:l:l c) = {fl J a i.s an rdlrilml e appearing in f e, , where e' E E:cte}-

A lso , le t [11.l. e be th t' se lect io n edges in cident on a.ny node in Ve, 

fnl c = { e' E E J Ve, = { X} ancl x E Ve} 

D efinition 2 G iven a. query g rap h G' = (V, E), t he sub-quei·y induced by a. join edge 

e E E is a. (J ue ry ff e = ( llq., , A 9e , f qJ such tha.t 

2. Aqe = LJ.1:EVe 7r.i: LJ (.schm.(Ve) A allr(Ex te)) 

3. f ,1e = f e /\(1\e' Elnt., .J~,) D 

T!t e qu e ry g raph con es po lldi11 g to a.n induced sub-query ca.n be accordingly defined 

a ncl is ca.li ed t li c i: ,1,(/u r;ccl .,u /J-qu ery um.ph. 

3.4.2 Logical Access Path Schema 

To facilit a te th e searcliill g of useful te rn pora.ries from t he cache pool, a st ru cture 

called Logical Access Pa.t h Schema ( LAPS) [llou82a.J is adopted. The LAPS is used 

Lo keep track o f t he cached ternpora. ries effici ently. Instead of reco rding each cached 

t emp o rary ind epe!ldenl ly, th e LAPS integrntes the cached temporaries a.Jong with the.ir 

logical access path s whi ch cap tu res t he logical and derivation relationships among the 

te rn po rari cs. 



Fornmlly, a. LAPS is a. directed graph whose nodes, which reference to existing 

ba se relation s a.nd cached temporaries, a re connected with edges that represent the 

d eri vat io n path s. Tn th e following definition, we use v = (Rv, Av, f v) to denote that 

tcrnporary v is direct ly comp uted from Ru, which ma.y contain some other temporaries, 

wit hout produ cing any in termediate res ults in between. 

D efinition 3 A LA PS is a ci'irec lecl graph LAPS'= (N, E) where N is a. set of nodes 

co rrespondin g to base relations and cached temporaries, E is a set of directed hyper­

edy es co rrespondi1, g to logical access paths, and for any temporary v = (Rv, Av, f v) E 

N, 

L. fl ,, C N, and 

2. there exis ts a. hyperedge e = ( ll u, v) E E, which leads from the set of operand 

nod es Uu toward v a.nd is la.belled wit h .fv, D 

fnit.i a. ll y, the LAPS co nt. a.in s base rela.t io ns only. vVhen subsequent queries a.re 

processed, it is a ugmented by integrating the cached temporaries along with their 

logi ca l access paths. The integration o f new cached temporaries and logical access 

paths into t he LA PS is st ra.ightforwa.rcl and has been developed in [Rou82a]. A LAPS 

s ubcomponent has been emb edd ed in the CM O a.nd allows the coexistence of multiple 

a.nd equi valent caches which may ha.vc hccn derived frorn different paths. 

3.4.3 Que ry Graph Reductions 

There a. re t.wo ki11d s of reduction s: t he se/Jo in-recl11.clion, whi ch corresponds to per­

fo rmin g a rcg ula.r join wit h select ioll( s) clolle on the l1 y (called a. set.Join opera.tor), 

a nd t li e m.r1/.ch-·redu clion, whi ch co rres pond s to using a. ma.tchecl ca.ched temporary. 

Uotlt redu ctio ll s reduce a. query graph by replacing a.n indu ced sub-qu ery graph with 

,1. new nod e, wh ich mi ght ha.ve a.n in cident selection edge on it in the case of a. rn a.tch­

red uctio n. 
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Figu re :J.1: Query Crnp h Reductions a.nd Search in g 

D efinition 4 (selJoin Reduction) When applyin g a selJoin-reduction to a s tate 

(J == (V, E) on a. join edge e EE, th e optim.izer fir s t (1) finds the optimal se]Join a.ccess 

pa th for eva\ua.ting th e induced sub-qn ery qe, a.nd then (2) reduces q == (V, .E) to a 

n ew state q' == (V ' , .E' ) s uch that 

• V' == V - Ve U {v' }, where v' (j_ V 1s a new node and is labelled by a projected 

att r ibute li s t 7f u' == U ,i: EV., 7f,i: , 

• E ' == E - { e} - Jnte - E x te U E :i:t.~, wh ere Ext~ is a new set of edges formed 

from Extc by rc pla.cing ea.ch occ urrence o f node in Ve with the new node v' . D 

A se!J oin - redu ct ion is illu st rated in F ig ure 3.1.(a), where state q0 is reduced to q2 

o n th e join edge c3 . Note th e induced s ub- graph (Je3 , bounded by clashed rectangle in 

(Jo, is re pl aced by a. new nod e d in r12 whi ch corresponds to a new in termediate result. 

The opt im a.] access pa.th to evaluat e t he induced sub-qu ery Cfe3 is decided depend ing 

on th e es tim a t ed cos t s o f alternat ive join a nd select ion access methods . 

A m a t ch-redu ction , instead o f performing a regular join, uses an existing cached 

t cn1pora,ry t o rcp la.ce a n induced s ub-query of a query graph. Howeve r, for thi s to 

happe n, we mu st find the cached temporary that can be used to de1·ive the induced s ub-
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que ry. Formall y, we say an ind uced sub-qu ery q is derivable from a cached tempora ry 

v (or v is a match of q) if the re exists an attribute set A and a formula J such that, 

Co r all y d atabase in s ta.ncc D , 

w here q(D ) de.ll otes th e result of q, and v( D) denotes the content of v under database 

ins tance ]) rcspccl ivcly. A t emporary v = (Rv, Au, f u) E LAPS is a match of a 

s ub-qu ery q = (Rq, A7 , fq) if it sati sfi es all t he three conditions described below. 

Condition 1 (Ope rand Coverability) Rv = Rq 

H,a.t hc r tl 1a.11 usin g ,t looser conditi on t hat requ ires only the equivalence of the uncler­

ly ing base re lation s, thi s co ndi tion requires exactly the same set of pa.rent operands. 

Howeve r , t hi s will no\. mi ss a ny candidates wh en we cap italize on the LAPS a nd the 

rnat ch-rcdu c tion s to ide ntify the rn a.t chcd t emporaries. 

Condition 2 (Qualification Coverability) V:1:1,x2, ... , :i: n (Jq ___, fu ), and, there 

exis ts a 1·eslric lin.u formu la. j" Oil V such t hat Vx1, X2,.,,, Xn (Jq -:--o- ! u I\ r). 

In the a bove fo rmulas, x 1 , :i:2, ... , :1: n are t he attrib utes appearing iu the r espective 

formulas in pa re nth eses , and th e uni ve rsal quantifi er 'V' bounds these att ributes vari­

a bles to values from their respect ive domains . Symbols '___,'and'-' sta.nd for logical 

implicalion. and logical equi ualenl respect ively. T his condition ensures that every tuple 

l in th e res ult o f q has a corres pondin g tuple t' in v s uch th a t tis a sub-tuple of L' , 

a.nd th ere ex ists a. fo rm ula. .f,. t hro ug h w hi ch t hese L' can be selec ted from v . 

To check Co ndi t io n 2, we need a n al gorithm to tes t if f 1 ___,h is t ru e . This is known 

as t he irnplica t.ion 711·0/Jlcm. a 11d is NP -h a.rd even for a very res tri ctive problem instance 

[!U f8 0 , s+89]. H th e above tes t is tru e , we also need to find a. res tricting formula. .f1' 

w hi ch wi ll ma.kc J1 -, h I\ I' true . [LY85] and [Fin 82] considered boolean formulas 
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which consist of only att ributes, co nstants, comparison operators(>,=,<), and logi ca1 

connect ives ( /\, V). T h is is satisfactory since a large set of dat abase queries are in this 

form. [LY85] solved t hi s problem by transform ing it in to a graph theory problem. 

They did nol, howeve r , give a co nstr uctive way to find t he rest ric ting formula, a nd 

t h e effi cien cy of thei r algo ri t hm is uot kn ow n. [Fin82] allowed arithmetic additions 

Lo appear in t he fo rlllula.s and referred to the resolution method . Resolutions a.re 

ex pensive t beore m prov in g techniq ue, and th eir effect iveness in t his respect is not 

just ifi ed. We a rgue here t hat a sim p ler but weaker algo rithm is more appropriate than 

those complicated and cost prohibi tive ones. For thi s reason , we embedded in CMO a 

match ing a lgori t hm Lha.t is sound, in t he sense t hat it answers affirmatively only when 

t l1 e impl ication is valid , but not complete, in t he sense that it may respond negatively 

for some va lid s tate ments. Note that t hi s will not affect the correctness of the qu ery 

matcli ing except t hat in cc'rtain cases, mostly when qu ery predicates are co mplicated , 

som e useful cached te mp oraries rnig ht be missed for potenti al optimization . In the 

fo llowin g, we desc ribe t he theoretical bas is of t his a lgorit hm . 

An atom, clenolecl by A,, is a p redicate o f the form x 0 y , where x is an att ribute, y is 

e ither an atl ribu le o r a. co nstant , a nd 0 is a comparison operator( >, =, <) . A clmtse is 

a cli sju11ctio 11 of <1Lorns , cknotecl as C = A1 V A2 V .. . An. Using elementa ry logic [CL73], 

we ca n tran sfo rm a ny boolean fonnula. in to a. conjunctive form as .f = C1/\C2/\ .. . Cm . 

'fh e fo ll owin g lem ma gives s uffi cie nt co ndi tions for check ing .fi --, h when both .f1 

a nd ha.re in co njun ction form. \ ,Ve om it t he universal quant i f-i.ers and the quantifi ed 

a.ttr ibute vari a bles in t he fo llowing formulas, as t hey a.re clear from the content. 

Le mrna 1 J. if f or each C2,j Eh, h _, C2,j, then .fi __, h 

2. if the re exis l.s a C1,1 E .f1 such that C 1,i __, C2,j, then h __, C2 ,J 

3. if f or each A; E C 1,i, th.ere P:'Cists a !l.i E C2,.i svch that f l i-> A.i, then C1,i _, C2,.i 

D 
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\t\! hat re 111a.i11 s to be solved is the t es ting of A; -+ A .i · Obviously, it evaluates to 

fa lse if A; a nd A.i contai n different set of att ribu tes. O t herwi se, a look-up table, as 

show n in Table 3.1 , is used to decide the truth value. This table is adopted from 

[r in 82], where he te rm ed it direct elimination. If both atoms are selection predi cates, 

le t A; = :1; 01 c and A.i = x 02 c'. Th e entries in table (a) indicate the relationship 

be tween co nstants c a nd c' und er whi ch A; -+ Aj is true; a blank entry means under 

no situ at ion s can it be true. If A; = :i:0 , y a nd Aj = x02y , where both :i: and y are 

att ributes, a chec ked entry in t a ble (b) indicates that A;-+ Aj is true. 

01 \ O'.! < < > > 01 \ 02 < < > > 

< < > > v' v v 
< < < < v' v' 
< < < < v' 
> > > > v' v 
> > > > v' 

(a.) Una ry /\toms (b) Binary Atoms 

Table 3.1: Direc t E li m ination Tables for A; -+ A1 

\,Y hen f 1 - , h is t ru e, we a lso need to find a res tri cting formula so that the tupl es 

satis fy ing Ji can be ext racted from the tuples satisfying .f2 . The simplest restri cting 

forrnula, is Ii it self sin ce .ft +---+ h I\ Ji . Howeve r, in certain cases, o nly a subset of f 1 

is required . T h is wil l save t he eva luations of so me redundant predicates during query 

exec u t io n. Th e followill g lcrn 111 a. t ell s how to form a res trict iJi g formula. by eliminati .ug 

red und ant cla uses from fi. 

Lem rn a 2 S'Hppose J, - h i!:' lrn e. If there exists clauses C I E .fi, C2 E h such Lhal 

C 1 +---+ C'2 , th. en .f' = I, - {C i} i"' a res lrictinu formula , i.e .. h +---+ f2 A .f'. 0 

Jn Lite a bove le m111 a, C 1 +---+ C2 ca.11 be checked by checkin g both C1 -+ C2 and 

C2 Ci (as describ ed in Lemma 1) . We have in tegrated Lemma 1 a nd 2 into a. n 



a lgorithm so that i[ h -+ h is t rue, the restricting formula j" is computed a.t the 

sam e time a.ncl returned as the result. The algorithm is constructed directly from the 

a.bove two Je u1Lna,s using a nes ted loop, though in most cases only few iterations will 

be invo ked. 

Condition 3 (Attribute Coverability) Av "] (Aq U att.r(j")), where altr(j") a.re 

attribu tes appearing in r. 

T hi s co ndition a.ss nres that th e schema. of t emporary v contains all the attributes 

t hat a.re to be projected in qu ery q, as well as those required to evaluate r. It is not 

ha.rd to see that if a ll the above three condit ions are sat isfied, q(D) = 7fAq(a1,·(v(D))) 

f'or al] data.base instance D. That is, th e res ult of query q can be derived from tem­

porary v via. a selection and a projection. Therefore , if q is an induced sub-query 

graph nnd e r consid eration during the opt imizat ion, we can replace it with a. node and 

a. selec tion edge w hi ch corres pond to v a.nd j" respectively. 

Definition 5 (Match Reduction) Given a. state q = (V, E) and a. join edge e E E' 

nnd e r co nsid e ration. H the indu ced sub-q uery <Je is derivable from a temporary v = 

( H. v, 1\ u, .fu) E Lil PS through a restri cLing formula. .f" (i.e. , the above three coverability 

con di t ion s arc sati sri ecl ), th en we can rn.al.ch-tecluce sate q to a. new state q' = (V' , E') 

where 

l. \/ 1 = \I - Ve U {nu}, nu rJ_ V is a new node corresponding to tern porary v and is 

]a.belled with 1fu = U.cEVe 1fx, 

2. E' = E - {e} - fnl e - E :rte U E:d~ U {er}, where er is a. new selection edge 

incid ent Lo n u a.11cl labelled witll j". D 

A match -rcd11 ction is shown in Figure 3.1.(a.), wh ere state qo is reduced to (J1 on 

edge e;3. Th e i11ducccl s ub-qu e ry ffe3 is re placed by a cached ternpora.ry vl front LAPS 
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an<l a select ion edge C j", where v l is a match of q e3 and r is th e corresponding re­

s tricting formula. Note tha t schm( vi), the schema of v1 , must contain those attributes 

from Rl and R2 which appear in j" or .fe1 • This is assured in the attribute coverability 

check (Conclition 3) for vl and (fe3 • 

3.4.4 The Seaech Engine 

Th e search eng in e of the ADivJS CM O optimizer adopts the dyrw.mic programming 

technique to seq uence the qu e ry g raph reductions and find th e optimal pJan3
. It 

perform s a. breadth-first search and res tri cts the state space by eliminating isomorphic 

s tates. Formally, two states (Jx ( Vi:, E x), qy(Vy, Ey ) a.re isomorphi c, denoted as (Jx ~ (Jy , 

if there exis ts a. 1-to- l mapping '1/J : Vx ___, Vy such that for ea.ch pair of v E Vx and 

7/J ( v) E Vy, t hey eithe r denote the same base relation or cached tem porary, or they a.re 

both in termediate res ult s and have th e same set of underlying base rela.tions4
. 

\Ve also customized the dynatnic programming search so that the LAPS is traversed 

top-down in parallel with th e appli cations of selJoin- reduction and match-reduction, 

and such that no node in the LAP S is visited more than once. This saves the effort of 

searchi ng fo r pote ntial matches in two ways: (1) once a temporary is known not to be 

a match , a ll it s descendants ca.n be rejected a.utorna.tica.lly without further checki ug, 

and (2) the qa a.lifica. tion coverability checks a.re performed in an amortized style in 

the sense that for each temporary v = (Rv, Au, fu), we involve only the incremental 

fornrn la .fu (probably with some propagated res tricting formulas), which is upon the 

imm ediate pa rent nod es R u, in stead of the expanded formula. upon the base relations. 

The AD!vJS CJVJO em ploys a n extended cost model whi ch takes into acco unt th e 

3 A n A• a lgo rit.hm wa.s used i11 a.n ea rly ve rs io11 of t.h e A DIVI S optimi ze r; howeve r , exp e rim e 11t.s 

s h owed t.ha.t. it. aid ed lit.tie in redu c t.ion or t.h e sca.rchin g spa.ce. 

'
1 Di ffe rc nl. cl e finit.i o ns of iso n10rphi s 111 were impl em e nted and e xpe rim e nted in AD/vl' S . T h e one g ive 11 

he re t.11rn cd o ut. t.o h ave a. ma.11a.geable searchin g overhe ad without. t.oo great a sac rifi ce int.he quality 

o r t.h e 0 11 t.p 11 t. pl a. 11 . 

31 



costs of pointe r cache ma terialization and incremental updates. During the optimiza­

t ion o f a que ry, th e cost of a st a te <J, denoted as cost(q) , is th e least cost among 

a ll pa ths leading from the initial state to q. The search algorithm is outlined in the 

foll owing . 

Step 1 Let qo(Vo , Eo ) be the initial state. Set T := {q0 } , S := 0. Repeat Step 2 for 

\Vol - 1 tim es . 

Step 2 S' := 'J' , T := 0. For each state (J( \I, E) E S , and each join edge e E E, do the 

fo ll owin g, 

2 .1 Apply selJoin- redu ction to q on e, and let q1 be the reduced st a te; Apply 

ma tch-redu ct ion to q on e if appli cable , and let <j2 be the reduced state. 

2.2 H tltere exists nor/ E T such that r/ ~ q1 , theu T := TU {qi}. Otherwi se, 

if r/ ~ q 1 (note there can be at most one such q') and cost( q') > cost( q1 ) , 

set T := T - {r/} U {qi}. Do th e sam e thing for <j2 . 

Step 3 Output th e pa. th leading from (Jo to the final state in T as the optimal plan . 

Figure 3.1.(b) draws the search space for the query a nd LAPS given i11 figure (a). 

The selJoin -redu ctions a nd ma.Leh-reductions are drawn in solid a.ncl dashed arrows 

respecti vely. lso rnorpili c states a.re re fl ec ted by those arrows th at lead Lo the sarn e 

s t a te . Th ree iterat ions a.re perform ed , with a. final state generated at the lowest level. 

ln thi s fi g t1re, q1 is further match -reduced to (JG by using a matched temporary v 3 ; (fs 

correspond s to the pla.n of using two matched temporaries v1 and v2 • 
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3.5 Perforn.1.ance Evaluation 

\,Ve conducled a. 11 e rnpiri ca.l stLtcly in order to evaluate the performance of CMO under 

a varie ty o f qu e ry work loads . Th e experimental design a.nd detailed res ults a.re given 

as follows . 

3 .5.1 Experiment Design 

\,Ve imple me nted th e C1VIO o ptimizer on top of the AD NIS a ccess method module 

whi ch provides a si11 g lc binary selJo in operator. A binary selJoin is a join oper­

a tor betwee 11 two t a bles with selec tion s and projections done on the fly. If the inner 

t a ble is not given, it becomes a. straightforward selection opera.tor on the outer table. 

Projec tion of a subset of a.t tributes and dupli cate elimination a.re supported on the 

fl y durin g ou t put usin g 1na.in me1nory hashing . Two access methods, sequential a.Jld 

inclex access, a.re provided fo r sin g le table scan . Three join methods- nes ted loop, 

i11d ex, and ha.s h jo iJ1 --a.re s upported for th e binary selJoin operator. 

Th e expe rim ents w<:' re carri ed out by running a centralized version of ADMS on a 

Sun SPA RCstation 2. All the exp eriments were run und er a single user stand-a.lone 

mode so that th e sys tem performan ce can be measured in terms of elapsed time. 

Differe11t data.bases a.nd qu ery wo rkload s were used throughout the exp eriments to 

o bse rve Lli e pe rfonna.11 ce imp;-i.ct frorn th e ClvIO param eters a.s well as from the system 

e nvironm e nt. 

Databases 

\Ne created a. set of synthct.i c relations ba.sed on the \iViscon sin Benchmark schernas 

[BDT8:3]. Tabl e ~L2 o utlin es t li e carclina.lity, and size of ea.ch relation. The set of short 

ve rsio n is o bta ined from Lhe reg ula r on e by eliminating th e la.s t two string a ttributes, 

whi ch a. re 10.,J by les in length. Throughout th e experirnents, each tes ted da ta.base 
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J nclatio11 11 100 lk 2k 5k 10k 

Cardinality 100 l ,000 2,000 5,000 10,000 
I I Databases Relations 

Size (I<D) 20 208 108 1,008 2,016 
DDMIX lk , 2k, 5k , lOk 

DBMIX-S lks, 2ks, 5ks, lOks 

I Relatio n /1100s I lks 2ks 5ks lOks 
DfllOO 100, 100', 100 11

, 100
111 

DBlk lk , lk', ]k", lk"' 
Ca.rcli11 ,tlity 100 l ,000 2,000 5,000 10 ,000 

DB5k 5k, 5k', 5k" , 5k'" 
Size (1(13) JO 95 200 496 976 

Table 3.3 : Five Different Da tabases 
Tab le 3 .2: SyJltli et ic Relat ions 

co nsists or fo ur relat io ns from Table :3 .2. Table 3 .3 li s ts all the tes ted databases . The 

prirn es (') iucli catc cli(l'c rcnt re lat ion in sta.J1ces of the same relation schema, cardinality 

a11d attribute value di s tributions . 

Query Workloads and Characteristics 

Synthet ic qu e ry workloads a.re generated usin g a customized random query genera.tor. 

By sp ecify ing desired query cha rac teristics to the genera.tor, different instances of query 

sti·eams t ha t a ll sati s(y t he given characteristics can be generated . In our experim ent, 

each qu ery s tream has a n equal number of single-table selec tions, 2-way joins, 3-wa.y 

joins, and 4-way joins in it. T hese queries a.re randomly dis tributed within a query 

st ream. 

VVe rest rict th e uu 111ber o r perrnilted join att ributes so that common sub-expression s 

can rec ur wit hin a qu e ry stream. and so that the effectiveness of Ci\110 can be observed . 

VVc dd i 11 e rr1u:T!J conelalion, o f a q11 e ry s tream as the number of di s tin ct equal-join 

prr,cli ca.tes ,i.ppcarin g io t he qu e ry st ream. Figure 3 .2 shows three levels of query cor­

relat ions used in genera.t in g the tes ted query streams . The circles denote the relations, 

the nodes de note the pe rmitted join attributes, and the edges denote the permitted 

joi11 pred icates . Note that a. maxirnum of G, 16 , and 211 distinct join predi cates can be 

ge nerated in Hig hQC , MedQ C, and LowQC res pecti vely. For each n-way join qu e ry, 
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LowQC McdQC HighQC 

Figure 3.2: Three Levels of Query Correlation 

the qualification statement is form ed by n - l binary join predicates and a number 

of ra nd orn selection predi cates. The join predi cates are selected randomly from the 

permitted join predicates; the selection predicates a re chosen from random attributes, 

c.\,Jl<l the selection ranges a. re chosen to satisfy a specified query selectivity. When not 

otherwi se mentioned, Lile query select ivities a re set over a. wide range so that the cardi­

nal ities of query results raHge from less tha.n a hundred to several hundred thousands. 

To allow best utilization for qu ery result caching, every query is projected on all 

attrib utes o f its participating relat ions. This process makes no difference in pointer 

caching, but necessitates more space for data. caching. Updates a.re restricted to mod­

ifi ca.tio11 s on the last three st rin g attributes of ea.ch relation in order to keep the car­

dina.lities roughly unchan ged cl uring the expe riments. The qualification predi cates in 

the update qu eri es, however , a.re set against randomly chosen ,ittributes . Throughout 

the cxperirneHts, ca.ch qm~ry st ream contains at lea.s t 50 queries. \,\Then not mentioned 

explicitly, t he defa.ults !'or the tested database and the query correlation a.re DDivIIX 

a 11cl MedQC res pectively. 

Performance Metrics 

The total elapsed lim,e of a. query st ream, including qu ery optimization tim.e and query 

evaluation time, is taken as the main metri c in evaluating the performance outcome. 

Thro11ghout the whole experiment , ea.ch run (query stream) wa.s repeated several times 

a.nd the ave rage elapsed tirne was computed . 
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3.5.2 Experiment Results 

\Ve performed three sets of experiments. The first se t evaluated variations of CMO 

(with <l iff e ren t cache rnan agemen t strategies) under different sizes of available cache 

s pa.cc. T he second set was conducted to observe the performance deg radation of CTvIO 

( with three different cache update st rategies) under different degrees of update rates. 

F inal ly, we observed the impact of data.base sizes and query characteristics on C:tvIO 

pe rform ance. The optimization overhead of ClVIO, recorded from the three sets of 

experim ent s, was also compared to that of a. standard optimizer. 

Effect of Cache Management 

ln thi s set, we compared da ta. cachin g (DC) with pointer cachin g (PC) using three 

different re pl acement s tra tegies: LRU, LFU , and LCS. These a.re shown on the six 

cur ves la.bell ed accordin gly in each of th e fi gures of Figure 3.3. Two databases, DBMIX 

a 11d DDiVfI X-S, and two query streams, QSl and QS2 , were used in this set . 'vVe varied 

t he ava il ab le cache pool size and meas ured the elapsed time for t he query streams . 

In Figure 3.3.a (w here DBMIX and QSl are tested), pointer caching runs faster 

than data cachin g under all tes ted cache sizes ranging from Oto 2.S l\/fB. This suggests 

t hat wh en a moderate amo unt of intermediate res ult s are generated and written to 

and read from the disk, th e materi ali zation cost of PC is compensated by its effici ent 

write cos t. As th e cache space increases, P C reduces the elapsed time more sharply 

than D C . lu this case, with 2 MB cache space, a.11 useful temporaries were cached 

under th e PC/LCS stra tegy. rn contrast, with even more than 10MB cache spa.cc, 

the pe rforn1a. nce o f DC/ LCS is still worse than that of P C/ LCS with only 2MB . The 

inferiority of data cachin g ca,n be att ribu ted to its large overhead in writing a.ncl reading 

th e in te rm edi a te res ults. To m a.kc data. caching more competitive, the same experiment 

was per fo rmed again on a. smaller da tabase DBMIX-S whose tuple lengths were only 

a.Jrnos t ha.Ir t he length of the original ones . The results a.re shown in Figure 3.:3.h , 
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Fig ure 3.,~: Effect of Cache Management on CivIO Performance 

where th e curves o f DC now better a pproximate those of P C. Figures 3.3.c and 3.3 .d 

show the res ul ts from a nother qu ery stream QS2 which , as can be seen , a.re similar 

to those from QS1. It is also worth mentioning that in all figures, the replacement 

strategi es are co nsistently ordered with LCS as the best followed by LFU and then 

LRU. This s ugges ts th a t cache space is th e most critical factor in enhan cing the cache 

utili zation under random query workl oad s. It does not imply, however , that LCS is 

t he best un de r a ll situa tion s. For example , in a session where queries are issued by a 

user in res ponse to prev io us qu ery results, LRU might be th e bes t choi ce . 

For da.ta cachin g, gains in available disk space and decrease in write cost can be 

ac bieved by not storin g (i. e. projectin g out) some of the non-useful attributes of th e 

iJttcrrnedi ate res ults. However, such a. projection reduces th e potenti al reuse of these 

in term edi a te res ults ill o ther queries which may need these at t ributes . Thus, for cl.a.ta. 
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cachill g, t here is a dilemma between reducing the intermediate size and enhancing the 

cha.nee of ca.che reuse . Pointer cache, on the other hand, does not have this problem at 

a. II , sin ce a,ll att ributes arc im p li citly inherited in t he non-materialized cache. If cache 

v.Lilizalion is measured as the time reduced in query execution divided by the size of 

t he cache pool , i t is clear that pointer cachin g has much bet ter cache utilization than 

dat a caching, according to the above results. For this reason, we used PC/LCS as the 

und erl ying cache man agement system and set the default cache size to 4MB for all the 

rest of o ur ex peri ments. 

Effect of Relation Updates 

In thi s expe riment , we evaluated the c:rvro performance degradation un der relat ion 

updates . T hree var iations of C:tvlO were evaluated under different degrees of update 

frequ encies and selectivities . CivlO /IN C uses incremental update only, CMO /REX 

uses re-execution update only, and CivlO /DYN chooses between incremental and rc­

execut io u methods, depending upon which is less expensive. T he performance resu lts 

of a standa rd opt imi zer STD, which uses no caching and matching technique, is also 

i1Iclu<led for compari son . 

Updale frequency is deftned as the number of update queries divided by t he number 

of total queries in a query stream; updale selectivity is defrned as the number of tuples 

a ffected by an update query divided by the relation cardinali ty. We experimented with 

three levels of upd ate select ivi t ies : LS (1 % - 5%), :tv[S (6%- 10%), and HS (6% - 10% 

for 2/3 of the update queries, a.nd 40%-50% for the other 1/3) . \i\lithin ea.ch selectivity 

level , fi ve deg rees of update frequencies, including 0%, 5%, 10%, ] 5% and 25%, were 

tested . T herefore, fo r ea.ch raw q uery st ream (which contains no update queries), 15 

vari ations were produ ced by in te rleav ing it with the different combin ations of the three 

upd ate selectiviLies and five update frequ encies. T he query thro11ghp11t, measured as 

t he ave rage n 11mbe r o f qu eries completed per rniuute, was used for tlie performan ce 
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Figure 3.4 : Com pari so n of Va riations of CMO under Different Update Loads 

corn parison. 

fi g ure 3.4 depicts th e average query throughput (among four query streams) as 

a fun ction of update frequencies, und er three different update selectivity levels. It is 

o bviou s that the CMO curves, no matter what update strategies were used, performed 

bette r tha n STD in a ll fi g ures (except for CIV[O/INC in the case of HS) , and declined 

cJc,gant]y as upd a te frequ e ncy in creased. This is no surprise since the cost of updating 

,111 o utd ated temporary was amortized among those subsequent queries that were able 

to use it before it became outdated a.gai n. As update frequency increased, the cost 

was amort ized amo ng fewer queries and thus the throughput decreased . 

In F igure 3 .4 .a, which depicts low update selectivity, Cl\if O /REX performed worse 

th a11 C !VI O /INC and C rvr O /D YN since the re-execution update did not take advantage 

of the incre mental update scheme, which is very efficient under low update workload s. 

In thi s figure, C MO/TNC is bet ter than CMO/ DYN at 5% and 10% update frequ en­

cies, but was outperform ed by CMO/DYN at higher frequencies . This is att ributable 

t.o the in creasing cost of th e in cremental npda.te log processing as a result of update fre­

qu e ncy increase . Jn Fig ure 3.11 .b , which depicts medium update selectivity, CMO /DYN 

perform s th e bes t except at. the frequ e ncy of 5%. In this figure, GMO/INC swaps po­

sit.ioJ1 s wit h C MO /HEX from the LS figure . Lastly, in F igure 3.4.c, which depicts 

hi g h select ivity, t he throughput of C!vTO/IN C declines drastically as update frequency 

39 

I .I 

1.,.;'.I ,, 

11.i . 



in creases and becom es even worse than that of STD for update frequencies greater 

than 10%. In this set, CMO /DYN still performs the best. 

Th e read ers mi ght wonder why C:tvIO /DYN, which is theoreticaJly the bes t scheme 

u nd c r a.11 circu mstances, is in fe rior to Civ[O /INC a t upd a te frequencies 5% and 10% 

in F ig ure :3.11. a. We a. naJy zcd the stati sti cal profile and found tha t CMO/DYN some­

t imes chose less effi cient pat hs than C:tvIO/IN C and/or CMO/REX. This was clue 

to th e in accuracy of cost es tim a tion ; such inaccuracies may have ca.used CMO/DYN 

to choose in co rrectly betwee n incremental and re-execution updates when their costs 

were close . A nothcr reason is t ha t opt imizing individual qu eries does not guarantee 

a. g lo ba l o ptimum over a.JI qu eries . In effect , CMO/DYN might have incorrectly de­

cid ed not to upd ate a n o utda ted cache (becau se of its high update cost) but rather 

to run from scratch, even if the hig h upd a te cost of the outdated cache actually could 

be com pensa ted by the time saved from other follow -up queries which could use it. 

Th ese two problems, referred to as th e problem of accvra/:e cos /: estimation and mul­

t iple qv.e1·y optimization, a.re gene ric iss ues to all query op timization algorithms and 

a rc no t within t he scope of thi s work. Noneth eless , CMO is cost effective in most 

en viro nments w here qu eri es do not arrive in ba t ch and thus the technique of multipl e 

qu ery op timi zation cc111 not be applied. 

Effect of Que ry Corre lation, Selectivities, and Database Sizes 

ln thi s set of ex periments, we observed the impact of the database environment on 

C JVIO pe rf'o rm ancc. Fig ure 3.5 shows th e perform ance improvement of GMO over STD 

under th e three leve ls of que ry correlation LowQ C , MedQ C, and HighQC. For ea.ch 

level, the result s from t hree random qu ery s treams (QS1, QS2, QS3), ea.ch of which 

con sists of 70 qu eri es, are presented. These results demonstrate that CMO reduces the 

tota l e la.psed tim e by a. signifi cant a.mount in all three correlation levels. In parti cular , 

t h<~ irnprovc me nt increases as qu ery correlation increases . 
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Figure 3.5 : Comparison of CTvIO and STD under Different Query Correlations 
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Figure 3.G: Comparison o f ClvI O and STD und er Different Query Selectivities 

\Ne also obser ved the effect of query selectivities. Figure 3.6 compares the results 

between two classes of query selectivities : low selectivi t ies (LS) of 0.0001 - 0.05 and 

hi gh se lect ivit ies (HS) of 0.0001 - 0.3. The res ults show that the relative performance 

im provement of CIV[O over STD in high selectivity (HS) is as good as that in low 

selectivity (LS), t hough the elapsed time has almos t doubled in HS. 

To see the e ffect of data.base size, three different data.bases were tested in another 

set of ex periments. 'vVe adjusted the query selectivities for each qu ery stream so that 

the query result sizes did not diverge g reatly a.rnong the three data.base sizes . The 

purpose of doing so was to observe the improvement trends under different dat a.base 

sizes, under the s upposition that the query result sizes were fairly small and uncha nged. 

Figure 3.7 shows the results, where CJ'vIO consistently exhibited a shorter elapsed time 
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Fig ure 3.7: Compari son o f CJVIO and STD under Different Data.base Sizes 

than did STD. No dras ti c differences in relative performance improvement, however , 

can be obse rved amoHg th e three data.base sizes . From thi s observation , it is reasonable 

to a rg ue t hat t he relat ive performance gains of GMO over STD should remain as the 

database size sea.k s up , so long as the cache space scales up proportionally. 

Fig ure 3.8.a. plots the average optimization overhead per query versus available 

cache size ba.scd o n th e statisti cs obtained from the experiments corresponding to the 

PC/LCS cu rves in Figu re 3.3 . T he res ul ts a.t cache size O correspond to th e runs where 

the cachin g and matchin g engine was Hot enabled. It ca.n be seen that introd uci ng th e 

matchin g mechani sm into the standard optimizer (as the cache size .increases from 0 

to 1 MB) docs increase optimization overhead. This is attributa ble to the additional 

sea rch space of ma tching. However , as the cache size in creases from 1 to 10 MB, 

the optimization overhead does not increase accordingly. Th is is because when an 

interm edi ate cache is to be replaced , we can free its physical storage space but can not 

delete its entry from the system ca.ta.log or the LAPS, sin ce th e intermediate cache 

cou ld be part o f th e logical access paths of o ther caches . Therefore, increasing cache 

size docs not necessarily increase the number of entries in the LA P S, which number is 

th e act ua l factor that affects t he matching overhead; increasing cache size thus docs 

not have rn ucli irn pa.ct on th e optimi zation overhead. Figure 3.8 .b shows the average 

optimization ove rh ead per qu ery for t he t hree different levels of q11ery correlat ion . Th e 
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Figure 3.8: ClVIO Optimization Overhead 

Exp. Se t. J Exp. Set '.l Exp. Set. 3 

STD 0 .081 0.087 0.088 

CMO 0.] 33 O.I 35 0.119 

Table :J .1l: Average Optimi zation Overhead (second/per query) 

overh ead increases as qu ery correlat ioll increases since a high query correlation has a 

hi ghe r chan ce of cache re- use and thu s larger optimization search space . 

Finally, we compared t he optimization overhead of ClvlO with STD. Table 3.4 

li s ts th e a.ve ra.ge optimiza.t io11 time per query for ea.ch set of ex periments we described 

a bove . Though ClVJO incurs aro und 50% - GO% more optimiza.tion time than STD, 

th e extra. ovcrh e.-ul introduced by ClvIO (all average of 1/100 - 1/10 sec . per query) 

is rel a.ti veJy small wh en corn pa.red to the tim e saved in query evaluat ion ( an average 

o f" 10- 100 sec. per query). Note that this ha.s been demonstra ted in all the above 

experime ntal res ults, where t he elapsed time includes both query optimization and 

evalu a tio11 time . 

'0/e s ummarize t he res ult s as fo llows: 

• Poin te r cac hin g is rnu ch bette r t ha n data. cachin g due to its compact size and 

much lowe r write cost. 
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• Civ[O with dy nami c use of re-execution and incremental cache upda te strategies 

has t he best performance under a.11 query loads. It improves system performance 

llll(ler low to medium update loads a.n cl loses nothing under hi gh update loads. 

• CIVJO improves sys tem performance under different query correlation s, selectiv­

ities, a nd data.base sizes . 

• Th e o ptimiza.t iou overh ead o f CMO is insignificant . This justifies its practical 

use i II gene ra l query loads, even when only few matches would occur. 

3.6 Conclusions 

We have desc ribed t he design and implementation of th e ADJVIS CMO query opti­

mizer - an opt imizer t ha.t is capable of ma t ching and integrating in its exec ution 

pl a ns q11 ery res ul ts ca.cJ1ed from prev ious queries . Dased on two kind s of query gra.ph 

tra.nsforrn a.t ioJ1 s, one o f wh ich correspo nds to using a regular join an d the oth er of 

whi ch co rresponds to usin g a ma tched cache, the optimizer performs a dynamic pro­

g ra mmin g se,irch strategy to geJ1 era.te optim al qu ery plans. The optimizer also features 

data cachin g a.ncl pointer cachin g, different cache replacement strategies (LRU, LFU , 

and LCS), and increment al and re-execution cache update methods. 

A co mprehensive set of ex periments was conducted using a benchmark database 

a.11d sy ntJ1 etic qu eries. Th e res ults showed that pointer caching and dy na mic cache 

up date s trategics substanti a lly sa.vcd qu ery exec ution time a nd thus increased query 

throu g hpu t 11nd e r situ at ions with mod e rate <1ucry correlation and update load . The 

requirement of di sk ca.cli e space was rela tively small, and the extra optimization over­

head in trodu ced by ADl\l[S CMO was more than offset by the time saved in query 

evalua tion. To the bes t o r our knowledge, this work is t he first of its kind that has 

bee n integ ra ted and implemented in a DI3MS product o r prototype. It offers evidence 

tlta,t t il e t cclt11iqu c o r usin g cadtecl qu ery results in query optimization is advantageous 
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a. 11 cl can be implemented efficiently. 
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Chapter 4 

Selectivity Estimation Using Query Feedback 

4.1 Introduction 

As de1nons t ra. tecl in Sect ion 2. 3, one of th e most impor tant factors that affects query 

plan cos t is select ivity, whicli is the number of tuples sati sfying a given predicate. 

Tltere f'ore, t he acc uracy o f selec tivity es tim a te directly affects the choi ce of best plan. 

A s tud y 0 11 error propa.gatio11 [IC91] revealed tha t selectivity es timation errors can 

in crease cxpo uen t ia lly with th e number of joins and thu s affect t he decision s in query 

o pt imi zati o n. Accurate selectivity es timation has become even more important in 

toclay's sys tem s o f rnu ch larger data.base sizes, possibly distributed over a LAN or a 

\!VA N. In such sys tems, th e query plans are expected to diverge much more in cost 

clu e to the da t a. base size and the volume of data tran smission. Therefore, accurate 

selec ti v ity es timatio n is even rnore crucial. 

The iss ue of selec tivi ty es tirnation has a ttracted popular interes t , and different 

rnctliod s have been proposecl [rv[079, Clir8Jb , Chr83a., PS C84, I<K85, HOT88, Lyu88, 

!Vll) 88, L N90 , SLRD9:1 , loaDJ]. Although accuracy is very important for selectivity 

es timates, t.lte cost of obta inin g such es timates mu st be confined if they are to be cost 

effec ti ve . In a ll th e a bove m eth ods, however, extra I/0 accesses to the da ta base are 

required for th e very purpose of collecting stati stics . This procedure might be expen-
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sive and , as s ugges ted, s hould be done off-line or when the system is light-loaded. Iu 

. t 1 ·e off-line (slack) time 
a static database wh ere upd ates a.re rare or m a sys em w 1e1 

· rr· <l I . ( . . , . clay) this overhead is a.ccept-
1s a. or aJle with a rea.sona.ble freq ue ncy e .g . once a. , ' · 

able. However , many systelll s do not affo rd to have sufficient slack t ime for coJlecting 

a nd mai n tain ing t he requi red statist ics . JV[oreover, in the presence of updates, the 

procedure inus t be re- run eit her periodi cally or whenever the updates exceed a given 

th res hold. This process not only incurs more overhead., but also degrades the query 

optimize r before t he out-dated statistics are refreshed. 

In this chap te r, we presen t a novel approach whi ch approximates the attribute 

value dis tribution usin g query feedbacks and totally a.voids the overhead of statistics 

collection. The idea. is to use s ubsequ ent ff'llei'Y f eedbacks to "regress" the distribution 

g radually, in the hope that as que ries proceed, the a pproximation will become more 

and mo re a ccurate . \tVe say that t he adapt ive approximation "learns" from the query 

executions in the sense that it not only " remembers" and "recalls" the selectivities of 

rc pea.tin g qu ery predicates, but can a lso "i nfer" (predict) the selectivities of new query 

predicates . This approach is a.clva.nta.geo us in t he following respects: 

• Efficie ncy -- Unlike th e previous methods, no off-line data.base scans or on-line 

sampling arc needed to for m th e value distribution. Also, unlike all the other 

me t ho ds where the s tatistics collection and computation overhead is proport ional 

to th e re latio n size, th e overhead of our method has a negligible cost in constant 

t i1n e fo r each qu e ry feedback, regardless of the relation size. 

• Ada.pt a.l.io n - The techniqu e we use here adapts the approximating value distri ­

butio n to que ries and updates . No ne of t he previous methods achieve this. They 

neither take in to a.cco u11t query information when approximating the value distri­

butio n ( on ly relatio ns are scanned) , nor continuously adju st the dist ribution to 

updates ( rc-co rnp11tatio11 is invoked only after the updates exceed a. threshold ) . 
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The rest of thi s chapter is organized a.s follows: Section 4.2 reviews the related 

wo rk. Sect ion 4.3 describes the adap tive selectivity es timator in de tail. Section 4.4 

presents the experimental res ults . Finall y, summary is given in Section 4.5. 

4.2 Related Work 

The exist in g method s fo r select ivity est imation can be categorized into four classes : 

th e rwn -pc1.'/ ·r1.metric rn.elhod, the paramet.1·ic rnethod, sarnpling, a.nd curve fitting. In the 

foll owin g para.g raph s, we rev iew th e esse ntial ap proaches for each of these four classes . 

A detailed sur vey of th e first two classes can be found in [1vICS88]. 

Non-Para m e tric Method IVfet hod s in this class maintain a.ttrihute value distribu­

t ions using a.cl hoc data. st ru ct m es a nd algorithms. The most common method is 

th e histogram, which divides an a ttribute domain into intervals and counts the 

nun1b er of tup les holdin g values which fa.11 into ea.ch of the intervals. Variations 

o f the hi stogram method can be found in [1vI079, P SC84, MD88, Lyn88, Ioa93]. 

T he his tog ram is simple, but trad eoff between the computation/storage over­

head a.nd the est im at ion accuracy must be conside red. Sati sfacto ry accuracy 

will not be reached unt il the domain is divided into a. sufficient la. rge number of 

small intervals. l.n a dclition to the hi stogram , a pattern recognition technique 

was used by [I\1{85] to const ru ct di screte ce ll s of dist ributio n table, a.ncl [Lyn88] 

used a kcytc rni -orie ntcd approach to keep counts of the most frequently queri ed 

attri bute va lnes . 

Pan1me tric Method Para.metri c methods approximate the actual dis t ribution with 

a rnat hc rn a.t ical di stribu tion fun ct io n of a. certain 1rnmber o f free stati sti cal pa.­

rarn e tc r(s) to be es t imated (we ca.JI s uch a function a model !'unction). Examples 

of the model fun ct ion includ e the uniform , normal, Pearson family and Zipf di s­

tribu t io!l s . fn t hese methods, statistics must be collected , either by scanning 
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through or by sampling from the rela tion , in order to estimate the free para.m­

cte r(s). T hese methods usually require less stora.ge overhead and provide more 

a.cc ura,te es tirnation than non-paramet ric methods (if the model function fit s the 

act ual di stribut ion). T he disadvanta.ge of th is method is that the "shape" of the 

a.ctua.l distribution rnust be known a. priori in order to choose a, suitable model 

fu nct ion. !Vlo reover , when the act ual dist ribu t ion is not shaped like any of the 

known mod el fun ctions , any attempt to approximate the di stribution by this 

1ncthod will be in vain. Cont ributions to research of para.metric methods can be 

fo und in [S+79, SB83, fccl84, Chr83b, Chr8:3a]. 

C urve Fitting In order to overcome the inf-lexibility of the paramet ri c method, 

[LST83] a.nc1 [S LRD93] used a gene ral polynmnial function a.nd applied the crite­

rio11 o f' least-squa re-er ror to a.pproxima,te att ribute value distribution. First, the 

rela tion is exha ustively scan ned, and the number of occurrences of each attribute 

value is co unted. These nurnbers a.re then used to cornpute the coefTicients of the 

optima.\ polyno mial t hat minimizes the sum of the squares of the est imation er­

rors over a ll di stinct attribute values . Polynomial approximation has been widely 

used i11 data. a.na lysis; however, care must be ta.ken here to avoid the problem of 

oscill ation (w hi ch may lead to negat ive vaJues) and rounding error 1 (which may 

propagate and res ul t in poor estim ation when the degree of the polynomial is 

hi gh , say, more than lll ) . 

San1pling The sampli ng method has recently been investigated for estirna.ting the 

res ult in g sizes of queries . San,ple tuples are taken from th e rela.tions, and queries 

a rc pcr!'orrned against th ese sa.rnples to collect th e statisti cs . Sufficient samples 

1Th c prnblc 111 ca.used by ro11uding e rro rs is us 11 ,tll y t e rm ed a. case of bein g ill- condi l.i.oned. This 

c a. n a.lway s b e ,tvoid ccl by re prese11t.ing \.h e ,1pproxim,lt.in g polynomial wit.h a. m o re nu.mer-ically st.able 

ha.sis . For cxa.mpl e, th e Lege ndre polynomial s a re used a.s t he b ,tsis in [LST83). 
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inust be examined before desired accuracy can be achieved. Varia tions of this 

method have been proposed in [HOT88, LN90, I-IS92]. Though the sampling 

m etho d us ually gives more accurate es timation than all other methods (suppose 

s ufficient samples a.re ta.ken), it is primarily used in answering statistical queries 

(such as COUNT(. . . ) ) . In the context of query optimization where selectivity 

estimatio n is mu ch more frequent , the cost of performing sampling on every 

predicate of qu e ries is prohibitive and thus might prevent its practical use. 

4.3 Adaptive Selectivity Estiination 

[n t his section , we describe t he irn plem entati011 of a.n Adaptive Selectivity Estimator 

(ASE) . At th e heart o f ou r a pproach is a t echnique called recu.rsive leas t-squ.are-error 

( RLSC), w hi ch is a dop t ed to adj11st the a.pproxirna.ting dis tribution according to sub­

scq11 e nt feed backs. Before explo ring the details, we first define some notations used 

t hrougho ut this pape r. 

Le t A be an attribute of relatio n .R, a.ncl le t range D = [clmin, clmax] be the donwin of 

Jl. In t his s tu dy, we co nsider only numeri cal domains (either discrete or continuous) .2 

Let D' be t he collect ion o f a ll s ub-ranges of D , a.ncl defin e .f A : D' __, N a.s the actual 

dis tributio 11 o f A, i .e. , for each s ub-range cl <;;: D, f;1(d) = l{t E .R : t .A E d}I is 

t he 1111rnbcr o f t up les in R whose values of att ribute A belong to ra.nge cl. Notice tha.t 

th e above notation is well-de rtuecl for both cl .iscrete a nd con t inuo us cases. vVe denote 

a ::;elec lion cr11e ry at s ll.A S, h (R) , w here I ::S: h, as fJ = (l, h). The selectivity of query 

r1 , clcfincd as ::; = .f..i( [l , h ]), is t l1 e number of tuples in the que ry result . The query 

f eccl&ack fro m c111e ry r1 is th en cl cfined as ( = ( l , h, s). 

.,N 
- , 0 11-1111me ric al d o m a.i11 s c;rn be 111a.pped into nume rical ones us ing ce rt.a.in m ,tpping techniques. 

'l' l1 e 111;1.ppi11g !'unn io ns s hould b e provided by t.he dat.a.ba.se c reat.ors wh o know th e semantic m 'a.nin g 

o f' ll1e ;1.Lt.r ibuLes. 
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4.3.1 Cus tomizing Recursive Least-Square-Error Approximation for 

Que ry Fe edback 

Th e goa l o f o ur a pproach is to a.pproxima te .fA by an easily evalua ted function .f 

whi ch is a ble to self-adju st from subsequ ent qu ery feedbacks . Thus, given a sequence 

of qu eries (J1 , (J2, ... , we can vi ew J as a sequence fo,fi,h , ... where .fi-l is used to 

es tim a te the selectivity of q;, and , after (J ; is optimized a.ncl executed, f;_ 1 is further 

a djust ed into .fi usin g feedback (i (whi ch conta ins the actual selectivity, Si , of query 

rJ ; o bt a.i11 ed ,d'te r th e exec ut ion). 

'vVe use a gc 11 c ral form .f( :1:) = Li~u o,;c/>; (.1:) as th e underlyin g approximating func­

t io n , w he re r/>, ( .1:), i = () , . .. , 'II , a re n + 1 pre-chosen functions ( ca.Heel model functions), 

a ml a ; a.re coe flt cie 11 ts t o be a.clju s tecl from th e query feedbacks. The corresponding 

cumvlalive di s tr ibu tion of f( :r) is given a.s P(x) = Li=D ai<l>i(:1:) , where <l> i(x) is the 

i11cl e fi niLe integ ral o f' c/> ;( :i: ). Usin g this form of approximation, the es timated selectivity 

o f' qu e ry <J = (l , h), denoted by s, is co mputed as : 

/ h+ l n 
s = /, J (:1: )clx = F(h + 1) - F (l ) = L aj [<Pj(h + 1) - <l> _i(l)] . 

. I j=O 

Now s uppose a sequ e nce of qu ery feedbacks ( 1 , . . . ,(m, wh ere ni ~ n , have been 

collec t ed. A reaso na ble c riterion for tunin g f( x ) is to find th e optimal coefficients 

a i th a t mi11imize the s um of th e squares of th e estimation errors (thus referred to a.s 

ler1.s l- sr111.arc-c·rm1 · (LSE)): 

Ill IH 11 

L (.~i - sd = L(L <l j [<[> _j (h i + 1) - <li j (l i)] - s;)2 . ( 4.1) 
i= I i= I .i=D 

Th e ab ove p ro ble m can be reformulated in linea r algebra. form as : 

JZnd the optimal A that mznm1.zze I IX * A - YI 12 , (4.2) 
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where II · 11 2 denotes t he sum of the sq uares of a.11 elements in the vector, a.nd 

<I>o(h1 + 1) - <I>o(li) <I> n( h1 + 1) - <I> n(l1) S 1 ao 

<I>o(h2 + 1) - <}002) <I> n( h2 + l) - <I> n(l2) S2 Cl] 

)( = ,Y = ,A= 

<I>o(hm + 1) - <I> o(/m) <I> n( hm + 1) - if> n(lm) Sm an 

('1.3) 

Let X 1 be th e tran spose of)(, t.b e solution to Eq. 4 .2 is obtained as [K lvIN89]: 

( 4.4) 

Th e above co 111pu tat io n has the draw back t hat the space requirement of X a.nd Y 

increases in propo rtio na l to th e numb er of query feedbacks m , a nd ea.ch time a. new 

query feed back is ad ded , the whole thing must be re-computed. This concern can 

be reli eved with som e rearra.ngern eut of the above computation. Let P = XtX and 

N = X'·Y. Lt is no t hard to see that P is an x n matrix and N is an x 1 vector- both 

of whose dim e nsions are independent from the number of feedbacks m,. A more careful 

look into P a nd N shows that 

m. 

1:J _ vt v _ '""" vl v. - ..-,\ ~·\_ - L_-t .. .-\ _i .1\.i , 

i= l 

m 

N = LXfs .;, ( 4 .. 5) 
i=l 

whe re X i is th e ith row o f .. X , and Xf its transpose . Now, let ( 1 ,(2 , .. , ,(i , ·· · be a 

sequ e nce o l' qu e ry feed backs , and .47 be th e optim al coefficients of J( :t) corresponding 

to th e fir s t i feed backs . According to Eq. 4.4 and 4.5 we have 

A; = P;- 1 N;, for i = n + l , n + 2, ... where 

j , j) + vl v Ji\f . - Ji\T· + vt~. '01· ; - l 2 i = - £- L -'\. i _·\ ·i, 1. - ·t- 1 .fl i'"'"t, 1' ,, - , , •• • , 

(4.6) 

( 4 .7) 

witb initia.l co ndition Po = No = 0. Note tha t for i ~ n, i:r1 dose not exist and 

thu s a ddau lt d is tribution (e.g., u11iforn1ity) mu st be used temporar ily. Later in thi s 

co ntex t , we will relax thi s res triction. Also noti ce tha.t by using Eqs. 4 .G a.nd 4 .7 , only 

two consta.nt size a.rra.ys, P a.nd N, need to be main tained . 
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Tlie above equa.tio11 s can be furth er transform ed in to another form where the ex­

pensive matrix inve rsion P;- 1 need not be explicitly computed. [You84] derived the 

following rec ursive formulas, referred to as Recv.rsive Least-Square-Error (RLSE), from 

Eqs. 4.6 and 4.7 : 

A7_ 1 - G;Xf (X;11;_1 - s;), 

( ,' i G'i-1 - G.,:- 1 .. X"f(l + ...,'(jG;-1Xf)-1 X;G;-1, 

( 4.8) 

( 4.9) 

for i = 1, 2, .. . , while Ao and Go can be of any arbitrary values. In thi s expression, no 

expli cit matrix inverse operation is needed, and only an n x n matrix G ( called a gain 

nw.tri:r) needs to be maintained (actually, G = p-l ) . The computation complexity is 

in t he orde r o r 0( n '2 ) . Si nce n is a pre-chosen small integer , the computation overhead 

pe r qu ery feedback is small a nd is coHsidered constant, regard less of the relation size. 

The initial valu es C,'0 and 11 0 may affect the convergence rate of AT and, thus, the 

ra.te at whi ch f; converges to .fA- We describe later in this section how to initialize 

G'0 and Ao with appropriate values. It is interesting to see that the computation of 

/\ )' rese mbles the technique of stochastic appmximation [AG67], in the sense that A7 

is adjus ted from A7_ 1 by subtracting a correction term which is the product of the 

estimation error (..,.Y,A7_1 - s; ) and the gain value G;Xf. Because of th eir simplicity 

and efft cie ncy in both space requirement and contputa.tion, Eqs. 4.8 and 4.9 were 

adopted in the ASE. 

4.3.2 Accommodating Update Adapt iveness 

Th e RLSE 01.11 be rurthe r ge nerali zed Lo accornrnodate adaptabi lity to updates. We 

accompli sh thi s by associatin g different weights with the query feedbacks so that the 

o lltclated feedback s can be suppressed by assigning smaller weights to them. In Eq. 4. 1, 

we now associate a n im.pol'lance weigh/. (3; to the es timation error of the -ith qu ery, and 

a farl-ing weighl o: i to th e es timation erro rs of all the preceding queries . That is, instead 
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of minimi zing Eq. 4 .1 , we now wa nt to minimi ze : 

I)( II o:; ) . (3.; . (si - si)] 2
. (4 .10) 

i= l .i=i+l 

T he rec ursive solu tion to the above is simil a r to Eqs. 4.8 and 4.9 (see Appendix A for 

de ri vat ion detail ) : 

l "' p2r•. vt( v. 'l * ·) 1 i- 1 - /Ji u , .·\ ; ,·\ ,.:- i -1 - s ,. , 

( / ,: ( J )2,., /3; )2G v t( 2 /32 G t) - 1 · G - u ; -1 - ( - · i- 1.1\.i o: i + i X ; i -1Xi X; i-1, 
O'-; O'i 

(4. 11) 

(4.12) 

f"o r i = I, 2, . .. Intuitively, (J;s determine the "importance" of individual feedbacks; 

u;s determin e th e " fo rgetting" rate of previous feedbacks. Note tha t Eqs. 4 .8 and 4.9 

offer a sp ecia l case of E qs. 4 .11 and 4.12 with li'i = /Ji = 1, for all i. App arently, 

different weights a ffec t th e ad apta tion behavior of the approxima ting function. As an 

innovation , we consider on ly fi xed- value weights . vVe set (3 .; = a; = l for all i, except 

th a t o·; is ass igned anot her positi ve nurnber less than 1 if(; is the fir st feedback after 

upd ate. Th e sm a ller t he o·;, th e more th e knowledge from previous feedbacks is to be 

fo rgo t ten. No te th a t we ca nno t se t n; = 0 , because it appears as a denominator in 

E q . 4 .12 . No netheless, the sa.rn e effect (of discarding all previous knowledge) can be 

a chi eved by a ssig nin g an extremely small nurnber to a ;. Experiments with different 

va lues of u; a re give n in the next sec tion. 

Vi/e wo uld like t o point out th a t th e weighting scheme we describ ed here is strongly 

related to t he so call ed "moving window" weighting technique used in th e l i rne series 

analys is [Yo u84]. Th e "m ov ing window" weighting t echnique adapts the function only 

to t he m os t rece nt S (the window size) outcomes . In our weighted formul a., however, 

we do not keep a rnoving window , but rath er fa.de out the mernory, whi ch records the 

knowled ge of a.II th e previous outcom es , with a. fading weight ea.ch tim e as an update 

occ urs . 
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Initia lizing 1\ 0 a nd G'o 

T he ini t ia l va lues o f C,'0 a llCl Ao must be determined before the recursive form ulas in 

E qs. 11.11 a nd Li. L2 ca.11 be 11 sed . Theo retically, a rbi t rary initi al values can be used 

fo r G'0 a nd Ao [Yo us ,1], tho ugh th ey differ greatly in convergence r a tes. To speed up 

co nve rgence, we com pu te G'o(= p0- t) a nd A0 usin g Eqs . 4.4 and 4 .5 by substituting 

the followin g (n + 1) rnarwal fee dbacks into Eq. 4.3: 

. ( dma.x - dmin) 
l;= h; = dmin+(i-l )* ( l ) , . n-

ln+ 1 = dmin, h n+l = dma.x, 

IRI 
s.; = (dma:v- dmi n ) ' 

Sn+ l = !RI , 

i = 1 .. . n (4 .1 3) 

(4.14) 

where IRI deno tes t he numb er of tuples in rela tion R. T he intention here is to for ce 

ASE t o begin wit h a uniform di st ribution (enforced by Eq. 4.13), and to keep knowl­

edge o f t he relation cardi nality in th e gain m atrix ( enforced by E q. 4.14). 

C hoos ing the Mod e l Functions 

Th e remainin g probl l! lll Jl OW is to choose the mo del fun ctions c/>; ( :1:) . The polynomial 

fun cti o n is a goo d candicl ,tte du e to its generality and sim pli city and has been used 

in [LST 83] a nd [S LH,D 93] . We adopted polynomi a ls of degree 6 throu ghout our ex­

peri11 1c nt. s, i. <:\ . , t he a pp rox irnat in g fun ction is of the form f( :r) = I:to a ixi . Whereas 

po ly no mi a ls o f highe r deg rees have the p o tenti al problem of being ill-condition ed , 

po ly no rni a ls o f lower deg rees might not be fl exible enough to fi t the va ri ety of actual 

cli s tril)l) t io ns . Th e re fo re, o ur choice of degree 6 is a compromise between th ese con­

ce rns J . Ano th e r in terest in g cl ass o f fun cti o ns is th e spline fun cti ons [clD78], which a.re 

pi ecewise p oly no mi a l l'u11 ctions . Splines have m any advan tages ove r polynomi als in 

the as pect s of ad aptability a.nd uurn eri cal s tability. However , th ey arc more complex 

0 111 011r e x p c rilll c nt. s 11 s i11 g d eg ree G, th e " ill -co11diti o necl " problem did no t. a.rise . Howeve r , for 

lii g li c r d egrees we 111i g ht. 11 ccd to use a. 11 o t.h c r b a.s is (s uch a.s Legendre p oly no miaJ s or B-splin es ) sin ce 

t h e ba.s is of :,;' , i = I , . .. , 11. is i11 gc 11 « ra l ill-co nd it.i o ned fo r IMge va lu es o f n. 
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-------------------
Va1·iables 

/: a poly no mi a l of cl eg·ree Ci ,· 
F': the indefinit e integral of /; 

A: t he (adaptable ) coe ffi cienl.s o f' 1·· . , G: the gain m at ri x; 

Iuitiali:,;atiou 

Use t he manu a l feecl lncl-s l' t l · E . , 
c '· Is ec Ill 'qs. 4. l:3 a nd 4.14 to comp ute th e ini t ia l va lues 

fo r A a nd G fro m Eqs. 4 .3, 4.4 a.nd 4_5_ 

Selectivity Es timation 

T he se lecti v ity o f' query q; 

negative , s imply rcL urn 0. 

Feedback aud Adaptation 

(/;, h;) is esti mated as F( h; + 1) - F(l;); if it is 

A fter !.li e exec u t. io n o f 1/i, ge t feedback (; = ( l;, h;, s;) where s; is the a.ctu a.l 

selectivity o f' (J ,: ob l. a i11 ed f'ro rn exec ution . If q; is the first query af ter the la. tes t 

llp da.te , seL Ll, e fa.d ing weig ht o·; to a. pos it ive number less th a.11 1. Use(; to 

adjus t !l ,rncl (;', as s ho wn in Eqs. 4.ll a nd 4. 12. 

- - ---- -------- --- - ------------------------

Figure 4 .1: Outline o f ASE 

in cornp11tation and pa rti cul ar ly in represen tation. We are currently investigating t hi s 

approach and will no t di scuss it here. 

A pract ical problem o r po lyno mials is the negative values which are undesired in 

cli st ribu t iou a.pproxima.tio11 s. T h is poses no problem so long as the negative values oc­

c ur on ly o uts id e the attribu te dornaiu , or so Jong as th e resulting es timated selectivity 

of t he <1u ery of inte res t is stiJJ positi ve (even if some negative values do occur witliin 

the do main ). H a 11 cga.t ive seJect ivity is ever estimated fo r a query, we simply use zero 

in s tead (a11d note t hat if t li e e rro r is large, it will be tun ed t hrough feedback). Finally, 
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Cornparison with [SLRD93] 

Su n, Ling, Ri s he, a nd Dell g proposed in [SLRD93] a m ethod of approximating the at­

tribute di s tribut io n usill g a po ly nomial with the criterion of leas t-square-error. \iVhile 

bot h the ir met hod a nd o urs use polynomial approximations, there are several dif­

fo rc!l ces b e tween the two 1n e Lh o cl s . F'irst, their approach is s tatic in the sense it is 

nccess;-tr" to scan t he database and count the frequencies of dis tinct attribute values ., ' 

a nd , once co rnJHttcd, t.li e approximating di stribution remains unchanged until the next 

re-co1npu La.L io n. Our met hod is dynam.ic and depends only on query feedbacks, with 

no access Lo the database. Fo r a relatio n which is large and/or is updated reg ularly, the 

over l1 cad o f co llect in g o r refreshin g th e s tati stics can be very expensive. Our approach 

tota lly avoid s s uch ove rhead. Besides, in an environment where queries exhibit highly 

tempo ra l o r s patia l locali ty 0 11 certain attribute ranges, ASE's dynami c adaptation 

Lo qu e ries will pe rhap s be of greater benefit. Fina lly, ASE's adaptiveness to updates 

not o nl y elimin ates th e ove rh ead of s tatistics re-collection, but also provides a, more 

g r;-tceful pe rfo rm a nce dc,gradation f'or se lec tivity est im at ions t hrough a qu e ry session 

ill tcr lcavccl with 11pdaLcs . 

4.3 .3 An Example 

'vVe use a 11 exam ple Lo de rn o!ls t. ratc how t he ASE work s by using successive query 

feed hack s Lo a pproxi111ate t he data. di s tribu t ion. The experiment al data is from a 

mo vie database, co ur tesy of Dr. Wi ederhold of Stanford Univers ity, which records 

:n:211 n1 ov ics produ ced during the yea.rs 1890- 1989 . Figure 4 .2 snapshots th e evolution 

of Lit e a.pproxirna.Ling di st ribu tio n for a sequence of query feedbacks. The queries 

a rc li sted in the table, where [I i, h;] denotes the range of th e itlt q uery, and Si and 

Si de note the selcc t.iviti ('S cs Lim a.tc'd (by ASE) before and obtained after the query 

executio n respect ive ly. ln ca.ch fr a me, the curve of the a.pprox.irn a.tin g distribution Ji, 

draw n in so li d line, is co rnp ,Hcd to the real di stribut ion , drawn in di screte points. 
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, . . 

query sequence ] 2 3 4 5 
[I; , hi] [J 935, l 9G6] [1 925,l 950] [1901,1939] [1 890,1923] [1908, 1913] 

§ ; 1073 1138 1248 567 2 
Si 1872 1399 890 13G 11 

6 7 8 9 
[1 9,18, 1989] [ 1957,l 980] [1961,1989] [191G,1981] 

195G 1103 1041 3173 
203:J lI 30 11 3,1 3015 

(1) beg ining (2) after 2 query feedbacks 
10 0 100 

80 80 · 

60 60 

4 0 10 40 
12 

20 20 

0 
1900 1920 1940 1960 1980 

0 
1900 1920 1940 1960 1980 

(3) after 3 query feedbacks (4) after 9 query feedbacks 
100 100 ~-~ 

80 · 80 

60 60 

40 40 

19 
13 

20 20 

0 
1900 1920 1940 1960 1980 

0 
1900 1920 1940 1960 1980 

F ig llre 11. 2: Adaptat ion Dynamics of ASE - an Example 

In fra.rn e 1, uniform di stributio n is ass urn e<l at the very beginning, as no queries 

l1ave beeJ1 iss ued . Note that knowledge of t he relation cardinality (3424 tuples) has 

been impli citly e nforced in the initi a l approximating distri bution Jo , using the initial­

izat ion sche me ex pl a ined in t he previou s section . After the execution of two queries, as 

shown in fra me 2, th e a.pprox ima.t in g curve becomes closer to the actua,l distribution. 

However , h is re latively inaccurate for at tribute ranges outside [1 925, 1966] which 

h ave not beeu q ll e ri ed yet (and , thu s, no di stribution information is yet known). The 

third qu e ry a nd its feedback ( 3 = ( 1904 , 1939, 890) tu nes h in to h with better accu-
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racy fo r r a nge [1904 , 1939]. It is worth m entioning that at the same tim e, h improves 

th e di st ributio n of years g reater than 1966, tho ugh no queries against this range have 

eve r been p osed . Th is is attribu ted to ASE's abili ty to infer and properly sha.pe the 

un know 11 ranges using knowledge a bout the relation cardinality and distribution infor­

mat io n obtained from q11 eri es o n ot he r att ribute r anges . Subsequently, fr ame 4 shows 

t h e c ur ve after nin e qu e ry feedbacks , by which time the approximation has becom e 

even closer to t h e real di s tribution . 

4.4 Experimental Results 

/\ com pre he n sive se t o f expe rim e nts was performed to evaluate the ASE. \Ve ran 

t h e ex pe rirnents using the 1r1 atherna.tics package MAPLE, developed by the Symbolic 

Computat io n Gro up o f t he Un iversity of Waterloo; lVJAPLE was chosen for its pro­

visioll of imm edi ate access to matrix op erations a nd random number genera.tors. 'vVe 

ex pe ri m e nte d a lso wi t h the m ethod proposed in [SLRD93] ( referred to as SLR in what 

fo llows) for comparisons when ever appropriate. The selectivity es tima tion errors and 

t he adaptat ion dynami cs of ASE were observed and graphed for demonstration. How­

eve r , to inte rpret a nd compare the est im at ion errors correct ly, both normalized error 

a. ud 1dalivc C ITO/' a rc p rese nt ed ; t hey a.re calculated as : 

11 o r. err. = is - si x 100 rlt. err . = is - sl x 100 , 
i l?i ' s 

w here s and .s a. re the est im ated and a.ctua.l query result sizes, respectively; IR.I is 

t he cardin ality of the qu e ried re la tion. Our reason for usin g both is that neither one 

a.lo ne can rnovicle evid e nce of good o r poor estimation in all cases . For example, 

a 200% re lative e rror fo r a qu ery of select ivity of l tuple by no means represents 

a. poo r es timate; in fact, iL is th e strin ge nt selectivity (of 1 t uple) that ca.uses such 

an exagge rated re lative e rror. I t must b e pointed out tha.t we do not compare the 

co mputation ove rh ead since o ur m ethod , whi ch cos ts only neg li gible C PU time for 

q ue ry feedb ack com pu tat ion , is defrniLcly s uperior to all ot her m ethod s whi ch req uire 
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ext ra. data.base accesses ( eit her off-l ine or on-line) for statistics gathering or sampling. 

Both real and synthet ic data were used in the experiments . T he use of real data 

valid a tes the usefulness of o ur method in practice (as has been demonstrated in the 

example); t he use of synthetic cl a.ta allows systematic evaluation of ASE under diverse 

data and qu ery distribut ions . T hroughout the experimentation , only selection queries 

were considered. Each query is represented as a range [x - 8 /2, x + 8 /2], where dmin ~ 

x ~ dm"x' 0 ~ 8 ~ dmu.x - dmin · In this p a.per, we report only results from those 

ex perim e nts whe re :r a nd 8 a rc geuera.ted randomly from their respective domains 

using a ra.11do111 number gcuera.tor. Experimenta l res ults regarding the impacts of 

differe nt dist ributions of x a nd 8 on the convergence rate of ASE are prepared in a 

rnore deta iled version of t his pa.per. 

Th ree sets of exper imental res ul ts a. re presented here. The first set shows the 

a.daptabiLity o f' ASE to var ious data distribut.ions. The second set shows how ASE 

adapts to qv e ry loca.lily, in the sense tha.t it provides more accurate selectivity estimates 

fo r t he at t ri bute s ub-ranges whi ch are queried most. In the last set , we demonstrate 

ASE's elegant adaptation t hrough data.base updates which require no overhead for 

data.base re-scan and statistics re-comp utation. 

4 .4.1 Adaptiven ess to Various Distributions 

To observe A.S 8 's adaptabi li ty to various data distribut ions, synthetic data generated 

from ea.cl1 o r th<:' l'ol low i11 g fo ur customized distrib utions were tes ted: normal distri­

but ion, cl1i-squ a.rc distribution , the F' distribution, and a. " bi-modal" distribution.4 

T he notation s a.n<l custom ized para.meters of ea.ch distribution a.re described in Ta­

bles 11. L a nd 4.2. For each data distribution, three random query streams (each of 

wl1ich conta ins 50 que ries) were run for both ASE and SLR. 

·
1V\lc do no t. p rc,;c nt. t. he res ults o f uni fo rm dis t.rib11t.io 11 s ince the ASE assumes uni fo rm d is tribntio n 

fro 111 t.h c ve ry bcg i11 11i11 g. 
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r 

Na t.a.Li ons 1'v!eanin g 

N (p.,a-) No rmal cli s tribnti on with m ean / l, s tandard deviation CT 

x 2 
( n) chi-sq uare di s tri bution with n degrees of freedom 

F(m, n) F dis tribution with m/n degrees of freedom for num erator/denominator 

fl ( 11, J , (TJ , 11.,, 0-2) a bi- modal d is tribu tion which is an overlap of N (u 1 , CT 1 ) and N ( ll2, CT2) 

Table 4. 1: Notat ions of Distribution 

Dis trib u I.ion [dmin, d,na :r ] cardinality 

J\1(200, 150) [- 150 , 550] 10,000 

x 2 (10) [O , 1200] 20,000 

F(lO , ,1) [O , 800] 10 ,000 

B(250,150,150 ,50) [-1 50, 550] 12 ,500 

Ta ble 4.2 : C 11 s tomized Para.m e ters for Experimental Distribution 

1s t - 50t h q ue ri es I 0th - 50!.h qu eries 

ASE SLR ASE SLR 

no r. e rr. rl t.. e rr. no r. e rr. rl L. e rr. nor. e rr. rl t. en. nor. en. rlt. err. 

N ll. 73 ·1 .113 0.1 G 2.4 0.16 3.GG 0.lG 2.73 
., 

I .:JG J 3 .0 0. 33 8.0 0.3 .3 8 . .36 0.10 8.9.3 x-

F 2.2 28 .G 1. 7 28 .2 L IO 15 . .3 1. 76 .30.1 

JJ J .40 8 .75 0.60 .3.08 0.80 5.11 0.60 .3. 13 

Ta.h ie 4 .3: Es t imate E rrors of ASE and SLR under Various Data Distributions 

Table LI .3 li s t s th e aver age error per query of ASE and SLR under ea.ch cl ata. 

cli s tr ihu Li on. In order to a.chi eve a. fair comparison between ASE a.ncl SLR, the average 

errors, w hi ch exclud e the fir s t 10 que ri es of each query s trearn ( during whi ch ASE is 

s t ill in it s "learnin g" s tage), a.re a lso ca.lculated for comparison . The first set of columns 

shows tlta.t ASE is s lig ht ly in ferior to SLR in es timation accuracy; however, the second 

se t o r co lumn s shows t ha t a.ft.e r ASE conve rges (after 10 queries ) , its accuracy is very 

co m parable to t h at or SLR. Fig ures 4.3 t hrough 4 .6 depict the corresponding dynamics 

o f' ASE a nd S LH for 011 e o r th e qu ery s treams under each dat a set . In the figures to 

t he le ft rna rkecl ( a.), c 11 rvc .r; corres pond s to t he approxim at ing di stribution comp uted 

from S LH.; fi denotes t he adapt ive approximating di st ribution from ASE after -i query 
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feedbacks . Figures (b) com pa.re t he estimation errors of ASE and SLR by plotting 

Lhcrn a.long with the query streams. The adaptiveness of ASE can be clearly observed 

from the decreasing trend of e rrors as queries proceed. The occasionally high relative 

erro rs of ASE a.re eit her ca.u sed by stringently small selectivi ties (as evidenced by the 

high relative e rrors of SLR fo r the same queries), or a.re indications of the moments 

where feedbacks take place for the first t ime on the queried ranges. However, as can 

be seen from all the figures, after sufficient query feed backs have covered the whole 

attribute domain, ASE converges the approximating distribution to a stable curve an d 

provides est irn alio ns with constantly small e rrors. 
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(a) approximating distribution curves 

0 

ASE: /-­

SLR: g- - - -

100 200 300 400 
attribute values 

(b) selectivity estimation errors 
l 4n-.--- ~-- ------ - --~ 
a> 

·Bf 3 
C 

N2 
I!! 
2 1 

ASE o--o 

SLR• 

~ 0 ., .• , • ' ~-.J:;.;,~~~.w"--~~-
'!= 0 10 20 30 40 so 

queries 

H L~ .... A.: 1~ ...... ~.b ... J 
0 10 20 30 40 so 

quorios 

Figu re 4 .:3: Normal Distribution 

(a) approximating d istribution curves (b) selectivily estimation errors 
10,~------------~-~ 

ri[ .. ~ .. ~ ..... u~~---: __ j 60 -

50 · 

0 1 0 20 30 40 so 
queries 

20 

10 

200 400 
r~lJI .d .. L.. . ~-.. A~J.J 

0 10 20 30 40 so 
attributo values quorios 

Fig ure -'I .ti: Chi- Square Distribution 
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(a) approximating distribution curves (b) select ivity estimation errors ,'" 1 ':'30 
e 
<ii 20 

* 0 10 

~ 0 i-.+· ; . 

0 10 30 40 50 
queri es 

150 

l 

-~ 
i. 
i" 

200 300 400 500 600 700 800 10 20 30 40 50 
attribute values queries 

F igure 4..5: the F Distribution 

(a) approximat ing distr ibu tion cuNes 
60-~-~-~--~-~-~-~~ 

50 

queries 

0 100 200 300 400 500 
rt~~-~.,-,.A•N;,A.~,,J 

0 10 20 30 40 50 
attribute values queries 

Figure 4 .6: a. bi-modal Distribution 

4.4.2 Adapt iveness to Query Locality 

No matter what method is used to estimate the data. distribution, the computation 

capacity of the method is always limi ted ( e .g., the number of intervals in a. histogram, 

the deg ree o f a. polynomial). lt is not uncommon for the distribution to be estimated 

to be too detailed Lo be 1u od clcd by th e li mited ca.pa.city. Therefore, we believe that 

i11 stea.d of approx im atin g the overall di st ribution evenly, the limi ted capacity should be 

used to a.pproxirnate more a.ccnra.tely th e local distribution of a rather narrow attribute 

s u b- ra.nge which imposes either a. temporal or spatial query locality. ASE inherits this 

merit: the more query feedbacks obtained from a local area., t he more accurate th e 

res ultin g ap proximating di st ribu tion for thi s area .. 
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I I 
Queried Range \ I 

Locality 

LowQL Jan. 194.8 - Dec. 1978 Low 

McdQL Lw . 1\H8 - June 19GO Medial 

\ llighQL \ Jan. 1\H8 - Jan. 1%3 lligl1 \ 

Ta.bk Ll .4: Three Levels of Qnery Locali t ies 

ASE S LR 

nor. err. nor . err. rlt. err 

LowQL l.l 5.G 0 .93 5 .0 

MeLlQL 0 .33 G.3 O.G6 10.G 

HighQL 0.08G 12.8 0.14. 21.3 

.... E st iin ate Errors of ASE ancl SLR un<l.er Various Qllery Loc-:\.lit" _. 
' \'a.hie 4 .::> . < 1es 

" , cnt" cla.taba.sc which conta.ins 431,258 records of even.ts during 19Ll8-l9?S 
1\ll cV 

· . ,cl in t his experin1.ent . T hree levels of query loca.l"i ties, a.s outlined in Ta.ble L\A, 
, s u :,C vJ ,1 ... 

. l to cornpa.re ASE ancl SLR. For each level of locality three l"'I'dorY\ \esigne< · , « · ., , vc rc < .. 
\ , . (ea.ch 0 [ which contains 50 queries) were testecl for both ASE a.ncl SLI"> , · st rc,,,rns . c\, . 

q11c 1Y . 

' [;1.b \C 
il. ::> summa.rizcs t he a.vcra.ge errors for the 1.0th to 50t h. queries (we exclulle<l. 

. 10 qu eries c\uring which ASE has not yet converged). T he curves of the 
t, \l c (lrst · 

. . , t· ,g· functions a.nd the estimation errors of ASE a,ncl SLR a.re graI)hec\ for 
) \·oxin:\c1. 11i ct\>\ , 

. ·1,ccorc\ 'ing to the t hree levels of loca,\i t ies, in l"igures 4 7 , LL8, a.lHl 4 .9 . It 
co 111 pa.n so n , < • 

ca.n 
both from t he ta.hies an.cl fi gures that ASE a.ncl SLR b ehave a.lrnost the be~en . . 

. , for \ow locality, but t hat as loca,lity increases , ASE t unls out to b e bett er. T his 
5c1.11\ e 

ASF ·1s corn puted dyna.mic.al\y a.ccorcling to the query feeclbac.ks a.ml thns ·1 s bcca.use , .., . . 

. ·ti t·, \·ns into acconnt the query locality; in contras t, SLR is sta.t ica.\\v c.orn11ntccl i1np\1 <.:.l y O· ''-" . J 

. \\'<' underlying data. \rom , ' , · 

3 Adaptiveness to Updates 4.4. 

\n t his section , we show the elegant a.d ,\.11ta.tion of ASE to updates . The norma1 

clist rib ution da ta. \'ro rn Sect"lon 1\.-l.l. is used a.gain. Ta.ble 4 .G briefs t he cha.ra.cteristics of 
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F igure 4.7: Adaptation under LowQL (Low Query Locali ty) 
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Fig ure 4,8: Adapta tion under MeclQL ( :tvledium Query Locali ty) 

(a) approximating distri bution curves (b) selectivity estimation errors 
1000 0.810 - - r-- ~ - ~ - ~ --~-~--~ --, 

900 

800 

700 

"' a, 

~ 600 
50 

0 500 
:;; 

J} _ _ ------- -
__ .,; ___ ,,_ __ queries 

.D 

~ 
400 

/.j 

300 

200 

100 

1i • a 1940 1950 1951 1952 1953 
attribute values (mo nth/yea r) queries 
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updaJes occ ur no. of total change of upd a te 

at tuples npcla.ted distr ibu tion sh ,tpe transit.ion 

L01\ DJ ll 1,500 local, big increase in batch 

LO ,-'\D2 ]] , J7 , 23, 29 9,000 global, slightly in crease gradual 

LO A D3 Jl , 17 , 23, 29 9, 000 global, drastic grad ual 

Table 4 .6: Characteristics of Three Update Wo rkloads 

Upd,1t,c ASEoc=o.01 ASEo=O.l ASEo=o.s 

Wo rkl o.i.d nor. err. rlt. err. nor. err. rlt. err. nor. err . rlt. err. 

LO A 01 3.38 16.7 3.58 25.7 1.71 30.0 

LO AD2 3.35 22 .2 2.66 17.2 2.59 15.9 

LOA 1)3 5.58 31.0 1.19 21.3 4.2,1 21.<l 

Table 11.7: Es tirna.te Erro rs o f Three Vari ations of ASE under Various Update Loads 

tl1ree differen t upd ate workloads to be interleaved with the query streams (more details 

a.bout tlie upda.te workloads a.re given in Appendi x: B). Orthogonal to the update loads 

arc three vers ions of ASE, nam ely, ASEo.01, ASEo. 1, and ASEo.5 , with different fading 

weight s (as indicated ill the subscripts) . For ea.ch update workload, three query streams 

( ca.ch of whi ch con ta.ins 40 selection qu eries interleaved with updates) a.re generated , 

a ud ea.ch o f thern is tes ted with all t hree fading weights. Table 4.7 tabu lates the 

average e rrors; F'ig ares 11.10 , 4.11 , a.nd 4.12 correspond to the adaptation dynamics 

of ASE in t he t hree different update loa.ds. The correspondin g curves fo r the three 

fa.din g weig hts a.re group ed and graphed in each figure . 

It can b e see n from th e fi gures that ASE adapts elegantly to all update loads. For 

ex a mpl e, in Fig ure 11.:IO.b. the errors go up ove r a few qu eries after the 10th query 

where upda.Le occ urs, aJl d t hen decl in e ba.ck to a st able low level. Tl.ti s adaptation can 

a lso he obse rved ill Fig ure 4 .10. a., whe re frames 2 through 4 show the a.cl a.pta.t ion of 

t he app rox im at in g cur ves to t he local. di stribution chan ge at interval [-50, 250]. It is 

i ntc rcs t i ng to note from Ta ble 4.7 t hat ASEo.01, ASEo.1, and ASEo.5 are respectively 

t he best in 11 pd ate loads LOADl , LOAD3, and LOAD2. This is no surprise since 
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\II LO J\ D1 , a, vast a.mount of update is done at once and thus it is a.dvanta.geous to 

\"o r g;c t previous feedba cks and rely ma.inly on new ones. Therefore, the smallest fading 

w e ig ht AS80 _01 (which for gets previous feedbacks to the greatest ext ent) outperforms 

t\il' other two in this case. Simila.rly, in LOAD2 , the sha.pe of the clistrib ution does 

l\Ot cha.nge too m.uch cluring successive updates, and thus ASEo.5 benefits the rn.ost 

ll y usin g o1cl know1edge during transition. Finally, in LOAD3, where the distribution 

s ha.pe cha.nges g reatly t hrough gradual upd ates, the use of ASEo.1 offers a compromise 

between the two extrernes. 
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4.5 Conclusions 

40 

35 40 

Jn thi s chapte r , we have presented a. nove l approach for selectivity es timation. Capital­

izin g on Lil(' techniqu e of rec ursive weighted lea.s t-square-error , we devised an adaptive 

selectivity est im ato r w hi ch uses act ua l qu ery res ult sizes as feedback to a.pproximate 
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t he a.ct ua.J att ribu te distribution and to provide efficient and accurate es timations. 

Th e most sig nifi ca.Jl t advantage of this approach over traditional methods is that it 

in curs 11 0 extra cost fo r gatheriu g da ta.base statistics. Furthermore, it adapts better 

to upd ates and query localities . 

Throughout t he ex periments, ASE converges its approximation to the actual di s­

t ribu t io n of attribute values a.fter around 10- 15 queries. This is based on the uniform 

dist ribution of query ranges among the entire attribute range. In a load with skew 

qu ery ra 11 ge di st ribu t ion, the convergence might take longer. For exarnple, if most of 

the qu e ri es have ve ry la.rge ran ges, then the ASE might only give a coarse approxi­

matio n to t he actual di st ribu t ion; if most of the queries are of point ranges, the ASE 

111ight take a long ti Ill e to co nverge to the actual distribution. However, we think thi s 

is a feat ure rather th,w a weakness of ASE in the sense that ASE learns from and 

adap t to tb e act ual q uery load. 

F in all y, \i\Te hope thi s study has inspired a new direction for data knowledge ac­

qui sition , es pecia ll y in systems wh ere statisti cs gathering is cost prohibitive because 

o f large da.ta sizes (such as tertiary <l a.ta.b ases ). 
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Chapter 5 

Buffer Allocation Using Query Feedback 

5.1 Introduct ion 

Duffe r m a nageme nt has been t he subject of much inves tigation in da tabase manage­

ment syste ms. The goal of such research has been to find suitable buffer management 

str a t egics fo r da t a.base sys tem s ancl thus to enhance system performance. Early works 

[Rei7G, SB7G , TLF77, Kap80, E H84] adapted the conventional techniques used in vir­

t ua l 1n e mo ry systems (such as LRU) to da t a.base management sys tems. Recently, 

a noth e r g roup o f' a lgo ri t hm s [C D85, SS86, NFS91] based on t he prediction of page ref 

er ence pal.Len is was proposed. By t a.kin g into a ccount the specifi c reference pattern s 

cx bibiLed by rela tion al qu eries, methods frorr1 the second group are more suitable to 

database environm ents and perfo rm better t han the conventional strategies . 

T he me t hods based on pattern predi ct ion have a major problem in that the pro­

posed patte rns a.re oversimplifi ed for clrnracteri za.tion of t he page reference behavior of 

co mplicated qu e ries . iVIoreover , it is usually difficult to predict a. priori what the page 

references of a qu e ry will be like . For occas ional queries , there is li ttle opportunity for 

irn provem e nt beca use t he exact reference behavior is not known in advance. However , 

fo r a. large set o f' rec urring q ue ries such as compiled qu eries and pointer-materialized 

v iews [Rou 82b , Va.187 , Ro u91], whose page reference strings are more likely to re-
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c ur , we can use th e information about their referenc b 1 · 1 l f · 
e e 1av1or earnec rom previous 

exec utions to ad a.pt a llocations for later executions. 

In t his ch apter we l)fOj)Ose a buffer ·>lloc·, t· l r · · 
. , c, °' 1011 sc 1eme ior recurring quen es based on 

feed back of qu ery page fault s tatistics . This method charac terizes the page reference 

beh avior o f qu eries using page fa.ult statist ics obtained from prior query execution s; it 

the n refin es the buffer allocat ion to achi eve better buffer utiJjza.tion a.net to improve th e 

overa.11 sys tem t hrou g hpu t . This a pproach is practical because most database systems 

have a soft ware- based buffe r manage r which can be extended to include the proposed 

feedb ac k mechan is m with minimal overhead. 

The res t o f thi s chapter is organi zed as follows: Section 5.2 revi ews the related work. 

Sect ion 5.J describes a. quantitative model for characterizing query page reference be­

hav io r and th e feedback mechanism for obtain.ing those characteristics. Section 5.LJ 

descr ibes a buffer a llocation scheme based on the feed back of those reference charac­

teri s ti cs . Simulat ion res ults which show the advantages of thi s allocation scheme a.re 

o· iven in Sectio n 5.5 . Sect.ion 5.6 concludes this work. D 

5.2 Related Work 

In a data.base e nvironlll e nt whe re concurrent qu eri es arrive and compete for limited 

buffe r reso urces, th e buffer ni a. nager 's goal is to redu ce the di sk operations and to 

enh a nce t he sys te m 's tluoughpu t by utili zing a. dedicated buffer pool for caching the 

data. pages . To achi eve thi s goal , three iss ues mu st be considered: (1 ) Load Co ntrol: 

Wh en a que ry a.nives, the buffer man ager must decide if the qu ery ca.n be admitted for 

execution direc tly, or wh ether it should be blocked in a. waiting queue until sufficient 

buffers are a.vaila.ble . (2) Buffer Allocation: How should the buffers be allocated to 

qu eri es o r relations '! (3 ) Buffe r Replacement: How should a. victim buffer page be 

selec ted for repla.ceme nt wh en the buffer pool is full and a new page is reques ted '? 
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allocation/repl acement poli cies for different pa tterns 

a lgo ri tlr JTJs sequen ti a.J looping random 

[/,,,;,,. , lm.a,i·] , rpl [lmin , lma:v ], rpl [/min, lma ,v ], rpl 

DDMI N [CD85] [l , l] , - [t , t] , IvIRU [l , l], RAN, 

MG-x-y [N FS9 1] [l , l] , - [:r % * t , t] , .MRU [1, y], RAN 

ED U [FNS9 1] [l , l] , - [f(load) , t], l'vIIW [!(load), by ao], RAN 

l: numb er o f di s tin ct pages refe renced in a. looping pa ttern 

:r : a cons ta nt be tween J a nd JOO ; y: a cons tant g reater than or equal to 1 

f(l oacl): a f'un cl io n whi ch re turns a number based on the current sys tern load 

byau : the ex pected nurnber of' di s tin ct pages referenced in a random pa ttern 

Ta ble 5 .1: Duffer ?vi anagement Algorithms 

admission 

policy 

L lmin ~ A 

Llmin ~ A 

Llmin ~ A 

In [Rei 76 , S1J76 , Tue76 , Kap80, EH84J, variations of traditional replacement tech­

niqu es adap ted from virtual m em ory sys tems such as LRU and Working-Set are applied 

to a g lob al da t a base buffe r p ool. These s trategies, though successful in virtual memory 

rnecJ1 a ni sm s, do not pe r/onn sati sfa ctorily in da ta base systems because dat a base ap­

plicati o ns ]r ave less page refo rence localiLy than that found in virtual memory activiti es 

flUL76 , E ]I.'S 1J, C D85J. 

A11other g ronp of algorithm s [SS82, SS86, CD85, NFS91, FNS91] proposed the al­

locatio n o f' buffers based o n sp ecific re ference pa tterns exhibited by relational qu eries. 

So1n e o f' th ese ,Ll go rithms a re summ arized in Table 5. 1, wh ere a!J references are class i­

fi ed into three pa tterns . A sequenti:alpattern is a sequ ence of di stinct page references , a 

loop in9 patterll deno tes iteratio ns of a sequ ential patter , and every thin g else is termed 

a m n clom p a.tten1. Gac h p a ttern is associated with an allowable buffer allocation range 

f/mi:n, lma:i·], a nd a s ugges ted repl acement s trategy rpl. For each relation instance r; ac­

cessed in a q11 ery, th e page reference pattern on r ; indu ced by tl1is qu ery is determined 

based 0 11 th e a na lys is of th e query plan , and a. t leas t !min buffers a re allocated tor;. 
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A (J ue ry is adrnill ed ( activated) for execution only if t he current availa ble buffers, A , 

is g reater t ha,n L lm,n - t he s um of t he mi nimum buffer requirement of each relation 

accessed in th e <J uery, Oth er wise , it mu s t be blocked in a waiting que ue until sufficient 

buffers a re avail a ble , l\1Iore t han lmin buffers can be a llocated to individual relation 

in s t ances of a n a dmit t ed q uery, but th ey should not exceed the upper bound lmax as­

socia ted with th e illCli viduaJ patterns , For all algorithms , l\lIRU (Most-Recently-Used) 

re place men t is a dop ted fo r looping pat tern s, RAN replacement- whi ch selects a ran­

do m page for re pl acem ent- is used for ra nd om pa tterns, a nd no exp.li cit replacement 

s tra tegy is 11 eedec/ fo r sequ enti a l patte rn s s in ce only one buffer page is allocated, 

Bas ica lly, t hese a lgori t hms differ only in t he allocation ranges [lmin, lmax] for loop­

in g a ud ra ndom pa tte rn s. D BJ\!fI N allocates a fix number of buffers to each pattern 

( re fl ected by lm, 11 = lnwx ), \ 1Vhile DDl\iUN was shown to outperform the traditional 

algo ri t hm s, i t s s t ri c t a llocation p oli cy might result in poor buffer utili zation, For ex­

a mple , a qu e ry with a loopin g pa ttern oft = 100 (100 dis tinct pages referenced) wjl] 

no t be a d m itted to exec ut ion even if th ere a re 90 buffer pages availa ble, MG -x-y is 

more fl ex ible in th e sense that it reduces t he minimum buffer requirernent for loopin g 

pa t te rn s t o x% * t , a nd a ll ocates up to y buffers to a random pa ttern as long as the 

expec ted mm:r;inal ga in,1 is s t ill p ositi ve. While t11IG-x-y has improved DBMIN, keeping 

:i: a nd y as glo ba l co ns t ants for all qu eries is not appropri a te because different refer­

e nce s t rin gs , eve n th ough of t he sam e pa ttern , can h ave completely different faultin g 

beh avior, ED U is 0 11 e of t he class of predictive Joa.cl con t rol algori t hm s proposed ill 

[F NS9 J] , S ubj ect to th e c urre nt buffer a vailability, a query is activated only if acti­

vat io n w.ill r es ul t in be t ter e:i;peclecl sys tem perform ance. lmin = / (load) is computed 

as Lil e rniJJi1 n um numb e r o f buffe rs required to ac tiva te a, qu ery so as to enhance the 

cuHe nt sys tem pe rfo r111 a nce , based o n th e current sys tem load. For random patterns, 

1 T l1 c e x p ec ted 111 M g i11 a l g a.i n is tli e ex p ected 1111mbe r of page faults reduced per ext ra buffe r 

a.I loca ted , 
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l m"x = b ya o is the ex pected nurnb er of di stinct pages referenced based on Ya.o's formula 

[Yao77]. T hi s a pproacli was shown to be more adaptive to different query loads than 

i'v[G-x-y. Th e computation of b yao and the expected system performance, however, are 

based o n th e ass umption of uniform page accesses, which in general is not true
2

. 

Obvio usly, th e main weakn ess o[ the above algorithms lies in their inability to 

charac teri ze random refe rence s t rings more finel y. fo these schemes, all reference 

s tri ngs, oth er than sequential and looping ones, are categorized as random and are 

treated e<1u a lly based on the ass umption of uniform page accesses. This overlooks the 

be ne fit, o f a lloca tin g m o re buffe rs to those relations which reduce page faults most and 

of a ll ocatin g fewe r buffe rs t o th e oth ers . For example, in a multi-rela tion join where 

no n-clu s t e red indi ces o r hash tables a. re used, the reference strings on the indexed or 

ha.shed rela ti ons wi.11 be class ifi ed simply as random , while the actual page references 

m a.y indeed t urn o ut to be of a. certa in locality ins tead of uniformity. 

T o cope with th e ab ove problem, we propose a feedback mechani sm to capture 

th e page rdere nce behavior of queri es by collec ting simple statistics during execu­

t io us . This model associa tes each recurring reference string with a. characteristic 

reco rd , whicli is used to adjust th e buffer allocat ion for later executions. A simple 

Joa.cl controll e r is al so ad opted; however , the scheme we propose here is basically an 

a ll o ca.tion-ori entecl approach rather than a. load-control-oriented one. LRU is used un­

de r a.II circum s tances un less a looping pattern is detected , in whi ch case MRU is used 

ins tea.d . 

2 '.f'h e a ss11111 pt.i o 11 o f 11n if on11. page occesses a.ss11111 es that. " sequ ence of pa.ge references !.o ,t rela.t.ion 
M e dis t.r ib11t.ed uni f'o r111l y am o ng a ll pages oft.his relat ion. Computed b,tscd on this a.ss11mpt.io11 , b yau 

is i11 ge ne ral 11111 ch hi g he r t. ha.n t.h c ac t.11al 1111111ber of pages refere nced. 
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5.3 The Feedback Mechanism 

In thi s sec ti o n , we p rop ose a. quantitative mod el for characterizing query page faulting 

be havior ancl desc rib e a. !llechani sm for collecting th e characteri stics during query 

exec ut io ns . 

5.3.1 The Faulting Characteristic Model 

Definition 6 A l'ef crence st ring R = {r1 , r 2 , ... } is a. finite sequence of page refer­

e nces, w he re 1·, de notes t he page numb er of the referenced page. We use IRI to denote 

t he ,wrmali::ed lenuth o r R wh ere co nsec utive references to the same page a.re counted 

as oll e refe re nce, and let C (R) be t he number of distinct pages referenced in R. D 

For example, s upp ose R = {3 ,2,2, 1,8, 1}, then IRI = 5 because page 2 is ref­

ere nced tw ice in a. row and should be counted a.s only one reference. In this case, 

C.'('R.) = .1. 

D efinition 7 S upp ose b buffer pages are dedicated to reference string Rand a.re 

manipula.t ecl und e r a buffe r n1anagc ment strategy B. 'vVe use h~.a(b) to denote th e 

numbe r or page fau lt s as a. full ct ion of b. We call fr~ .. B, or simply .f when Rand Ba.re 

u ll dcrstood , t he faulting fun ction o[ R under B. D 

From th e a.bove de finition s, it is !lot ha.rd to see that for 1 ~ b ~ C (R), 

C: (R) = f( C (T~)) ~ .fr-,s(b) ~ f(L) = IRI. 

Th is formu la. s impl y says that llO matter what kind of buffer management strategy is 

used f'o r a refe re nce s trin g R , a t lea.st C( R) disk reads must be performed to access 

a ll t he di s tin ct pages, and that at most IRI page fault s can occur (whi ch is the case 

w li ell o nl y o ne buffe r page is a.llocatecl). I t will be useful to find and keep the faulting 

f'un ct io ll f'o r ca.cit rd c 1T ll Cl' s trin g if' possible . Since th ere is no easy way to exp ress 
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f 

/RI ;\ ( / , /(/)) 

' slope g 
\ J 
' ' 

f (brJ .. 

C(R) 

b 
bo C s C(R) 

F ig ure 5. J: Fa ul t ing C ha racteris ti c Model 

a. fau lt in g fun ctio n in term s o f a compact ma them ati cal formul a., however , some kind 

o f a pproxim at ion m us t be so ug ht. In t he foll owing, we in t rodu ce a. simple model to 

characteri ze t he fa ul t in g fun ctio n. 

D efinition 8 (Faulting Charncteristic Model (FCM)) The fav.lting clwro.cleris-

1.ic o l' a. fa ul t in g fun c tio n fR,B al bu..f]e,· si::e bo is a t riple Pbo = (g, c, s), where 

g ( .IR ,s( J) - In ,s( bo))/( bo - 1) , 

C l + (b o - 1) In,s(l ) - C'(R ) ' 
.fn ,s(l) - fR ,s(bo) 

s the 'ln in im.mn b S'llch th.at for all b' > b, JR,s(b' ) = h .,s(b) 

We call !J th e ave ,·age 111.argin.o.l yo.in , c th e crit ical size, and s the saturated size. D 

Intui t ively, /J bo ch aracteri zes t he general behavior o f h~,B between the buffer range 

l'ro m 1 t o b0 . T hi s is depi cted ill Fig ure 5.1 , which shows the faulting characteris tics 

of a t y pi cal fa ultiu g fun c tion at buffer size b0 . Th e faultin g curve is approximated by 

t li ree poin ts !\ , JJ , a nd C, w hi ch call easily be computed during th e course of running 

t he r ,fcrcuce s t rin g ( we will di sc uss how these values can be ob tained later) . The 

a ve rage 111 a. rgin a l gai n !I is t he s lo pe o f' li ne L1 , whi ch conn ects points A and B , and 
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t hu s rep rese nts the average numb er of page faults reduced per extra bu:ffer allocated 

in t he range of 1 to bo bu ffers . T be sat urated sizes is t he sm allest buffer size beyond 

w hi ch t he fau lt in g cur ve becorn es ho ri zontal. T h a.t is, adding buffers beyond s will 

not lead to any add it iona l red uc tion of page fa ults . Since s depends only on R and B, 

we 11 se sn,B fo r clari ty w hen needed . It is easy t o see t ha t f( s ) = J(C(R) ) = C(R). 

In pra.cl ice, s is usua ll y s mall e r t ha.11 C(R )3 . Cri t ical size c is the x-axis value of the 

inte rsect ion po in t o f li ne L 1 a nd L2, where L 2 is t he horizontal Line .f = C(R). The 

i11 te 11 t io 11 he re is Lo t reat t he cri t ical size as t he expected buffer size around whi ch the 

rat<} of page fa.u lt reductio n slows conside rably. 

Be fo re going in to Lh e details of how to use fa ulting characteristi cs to adjust alloca­

t ions, we sh a ll fi rst desc rib e how to corn pu te t he characteris tics of a query execution 

cwd how to obtain t he 1n ost informa ti ve cha racteri stics . 

5.3.2 Coll ecting Faulting Characteristics 

Acco rdin g to t he de fi nit ion o f FCM, t he re are fo ur basic numbers to be computed for 

ea.c h refc re uce :; I. ring durin g its co urse of execut ion: fn ,s (bo), IRI , C(R ), a.ncl sn ,B- We 

d escrib e how ca.c it of t he m ca11 be o bt ain ed during the execution . 

numb e r of p age fault s .fr ,B( bu) : 

\Ne need a. co 11nt.e r to kee p t he number of page fault s. The counter will increase 

by o ne ca.ch Lime a page fa. ul t occ urs . 

norma lized le ng th IN-I : 

To o b taiu t he 11 o r1 11a li zed length , we must detect t he consecutive references to the 

sam e page . T hi s ca.n be ac hieved by keepin g a counter for l'RI a.ncl increasing it by one 

o nl y when t he curre nt page refe rence is different from th e previous one (we can use a. 

va. ria. hl r' Lo kr~c p t rack o f t he previo us pa.ge reference) . 

3 I 11 0 11 r ex p c ri lll CII Ls, if' I, 11 U is used a.nd R. is a. rand o m p a t.Lcr 11 , I.h e n sn,LRU ranges from C(R,) /3 

t.o C: ( R.) 
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number of distinct pages r eferenced C('R ): 

A dat a stru ctu re mu st be maintained to record all the page numbers that have 

bee11 a ccessed so far . Initi all y t hi s structure will be empty. As a page fault occurs , 

tli e s tructure will be searched to see if t he faulted page is a new one; if it is not in 

t he s t ru ct ure , t he counter for C(R) will increase by one and the page number of thi s 

new fau lted page will be entered into the struct ure. This can be maintained effi ciently 

usin g a bitmap s t ru ct ure w he re ea.ch bit co rresponds to a page and a zero bit is set t o 

o ne whe n th e corres pondin g page is fir s t fa,ulted. 

sat urated buffer size ~r-.s: 

Saturated size dep e nd s both on the reference st ring and the underlying buffering 

s tra tegy. It s exact valu e is not easy to calculate in general. Iteratively tracing the 

who le rcCe ren ce s tring to find t he number of page fau lts a t all buffer sizes and thus to 

o btain tli e satu rated size is impractical. If the underlying strategy is LRU, however 

t he sat urat ed size can be fo und efficientl y. Act ually, LRU is a member of a class of 

re pla cem e nt a lgori t hm s ca lled slack algorithms whose faulting function for any refer ­

ence string can be fo und during one pass trace of that string [M+7o]. According to 

t hat pape r , if we simul ate R under LRU replacement st rategy using a LllU-s tack of 

C (R) pag es, th en 
C' ('R) 

.fr ,LRu(b) =C'(R)+ L hit(i) , 
i=b+l 

w he re hit.( i) is tli c [r('q11 c 11 cy of page hi t s 0 11 the i' th page to the lop (the most recently 

11scd o r t he yrowin.y e nd ) of t. lt e LR U-stack. Since th e saturated size is the minimum 

s s uch t hat .fr ,Lrru(s) = CTR,) (by Definition 8), according to th e above equation we 

have hit(i) 0 fo r a ll (s + l ) ~ i ~ CCR) . T herefore, the saturated size can be 

co ,npu tecl a s 

-~ R ,LRU = rn ax{i lh.it (i)-/:- 0, 1 ~ i ~ C('R,) }. 

J\ ctua.J ly, thi s fo rmul a is valid as Jo ng as t he simulated stack size is greater than or 
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f 

IRl = f(J) 

C(R) =f(s) 

b 

\case a 

b' 
slope 0 --- - 5 

b~-------
~~---.:~~----­

b 
case b 

s C(R) 

Fig ure .5.:2: Adapting Faulting Characteristics 

b 

eq u ,d to t he salu rated size (in st ea.cl of C' (R)). If the stack size is less than the sa.t urated 

s ize or t he s tra tegy is not LlW , we ca11 simply set s'R.,B = C(R) as a loose upper bound. 

5.3.3 Adapting Faulting Characteristics 

Tl1 e values of the f.:wlting characteri s tics Pb depend heavily on b- the number of buffers 

allocated . H bis too smalJ (close to 1) or too large (close to the saturated size) , the ob­

ta.i ned characteri s tics, es pecia.Jly the average marginal gain, may not reflect the overall 

fau lting fun ct ion well. Therefore, we need to find "better informed" characteris ti cs 

w h icli will re fl ec t tlte average faulting beha.vior more accurately. Formally, let Pb be 

the bes t cliara.cte ri s tics so far associated with a reference string under consideration. 

Now s upp ose b' is th e !)IJffe r size allocated for th e next exec ution and Pb' is composed 

of Lh e new ly o btain ed cha ra c teri s tics, then Pb' replaces Pb only if 

a) b' > b and r b, > 0, or 

b) 61 < /J and r0, < 0, 

w h,~re 1·u1 = J(b'l=f;'(R) is th e slope between points (b' , J(b')) and (s, C(R)). We call rb, 

th e 1·esidval .r;ain at // . 0 is a g lobal threshold se t for all reference strings. Intuitively, 

Pb' is a 111 o re inform ed feedback than Pb if b' is closer to tl1e buffer size beyond which the 

79 



r es id ua. l gain becomes smaller tha n the pre- defined threshold 0. These two conditions 

ass ure t ha t the ad a p tat io n , initi ated by eith er a n under-allocation ( case a) or an over­

al locati o n ( ca se b ) , eventual ly conve rges to a well-informed characteris tic record whose 

residu a l ga in is close t o 0. This is sh own in Figure 5.2 

5.4 Buffer Allocation Based on Average Marginal Gain 

Ratio 

Sin ce th e purpose o f thi s wo rk is t o dem on strate the strength of adaptive buffer allo­

cati o n based o n feedback info rma tio11 , a. simple load control m ech a nism is used. Let 

c,1 hr) t he c ri tica l s ize o f qu e ry f/ i t hi s size is computed from the combined reference 

s t ri11 g of q. Le t A be t h e c urrent ava ila ble buffers, then quer y q is ac tiva ted only if 

A~ rnin( w 1 * cq , w 2 * MALBUF) , 

w h e re MAX-.BUF is t he size of th e buffe r pool. We set w1 = 0.5 a.nd w2 = 0.9 so th a t 

a qu e ry will be a dmitted onl y if e it he r h alf of th e critical size or , in the case where 

t he c ri t ical s ize is mu ch bigger tha. 11 th e tot al buffers, 90 % of the total buffers must 

be ,wa il a. bl e . On ce a.drnit.t cd , qu ery (J is a ll ocated wi t h m:in(w3 * cq, A) buffers, where 

we se t w3 = 0 .8 . 'J.'hi s a.Hows th e a.d,nit ted qu ery to a cquire more than half of but not 

g rcak r Lha. 11 0.8 o r t he c ri t ical s ize o f burfers . 

i\L th e s a.,n c Lim e a s a qu e ry is a dmit ted , the buffer manager mu st de termine how 

rn a.11 y bu ff c rs t o al locate to ca.ch relatio n in stan ce of the query. DB MIN and MG-x-y are 

exa mpl es o r s uch a lgo ri t hm s wh ose all ocatio n s trateg ies for a. r a ndom reference pattern 

a. re ba sed o n Lh c ass umpti o n of uniform page a ccess di s tribution. As a n a lternative, 

we i11Lro d11 ce a n a ll ocatio11 a lgo rithm b ased 011 the faulting ch a rac t eri s tics defined in 

F'CM. Sin ce F'Cl\il qu a ntifi es th e referen ce beh a vio r from feedb ack , it provid es more 

a.cct1 rate in form a ti o n t ha n Lha.t ba sed 0 11 1u1iformity. 
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Allocation based on Marg inal Gain Ratio (MGR) For ea.ch query, we a.Hocate 

buffers to i11di v id11 a.l rel ati o ns in. pl'OpM t io n to their average m arginal gains subject to 

t h e l"o ll owin g co11 st ra.int s: 

a) neve r a ll ocate m o re tha. 11 th e saturated size (a.void waste), and 

b) w he n the dc1n a nd f"o r buffe rs is hi g h, never exceed t he cri tical size of each reference 

s trin g. 

vVe <l e rn o ns tratc t he IvICR allocation po li cy, whi ch has been implemented in ADMS, 

with a. co mp lete exam pl e and show th e a da p tat ion process of the feedback mechanism 

FCM. A j o in qu er y o n t h ree base re lat ions is ta.ken as t he example: 

SELECT * 

FROM I Okl , I Okl , 10k3 

WHEREIOk L.uuJ. = 10k2.unl a nd 10k2.un2 < '500' 

AND lOkl. 5000 = J.OkJ. 5000 

Eac h r e lat io n contains 10 ,000 tuples spanning 2,500 p ages, and the query result 

l1a s 1,000 t up les . Th e q uery is chosen s uch t hat non e of the reference strings on any 

o f t he re lat io ns is o l" seque ntial o r looping pattern. Table 5.2 tabulates the a llocation s 

a nd ch a racter is t ics fo r a sequen ce o f exec ution s of thi s query performed on ADMS, 

u s in g MGR and F C1vr. 

Ea.c h tab le de notes a.n exec ution , w bcre A is the numbe r of buffers availa ble for 

t hi s ve ry excC11ti o n in s tan ce. Column b corresponds to the buffers allo cated to ea.ch 

re lat io n ; Co lu1n11 .f(b) shows t he res ultin g page faul t s ; Colum n r de11otes th e residual 

g a i 11 co 111 p11 t. c' d based 0 11 b a nd .f( b) after th e execution. After ea.ch execution th e 

1",1u lt i11 g c h;ini.ctcr is ti cs Pu a rc co lllpu ted (but a. re not show n in th e table), a nd the bes l 

so fur i11.fon11.crl fa.ul t in g chara cteri s ti c record Pb• = (g , c, s) is revised a nd stored in 

co lu111n s {/', y, c, a nd s . Note t hat b* is used in the future exec ution to determine if a. 
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Execut ion 1, A 50 

b J( b) 
II I I ,. b* g C s II IR I C(R) 

10k] 17 95 1 1.39 17 2.75 196 372 995 458 

10k2 17 879 6.98 17 7.06 123 125 992 125 

10k3 16 897 0 .06 16 0.00 1 719 897 853 

total 272 7 

Execu tio11 2, A == 100 

b j(b) 

l 

1' b* g C s 

lOkl 28 924 1.35 28* 2.62' 206' 372 

10k2 71 ,155 6 .1 1 71• 7.67* 11 4* 125 

10k3 1 897 0.06 16 0.00 1 719 

total I 2276 I ==-

I Execut ion 3, A == 300 
n l 

b J (b) r b' g C s 

!O ld J7 ,1 663 1.03 174* 1.91 * 282' 372 

10k 2 125 125 0.00 71 7.67 114 125 

10k3 1 897 0 .06 16 0.00 1 71 9 

to t. al 1685 I 

I 

1 

Exccu t. ion 4 , A== 50 

I [ 
I 

b J(b) 1' 
b* g C s 

l Okl 9 979 ] .43 174 1.91 282 372 

10k2 ,JO 701 6. 77 71 7.67 114 125 

10k3 1 897 0.06 16 0 .00 1 719 

to t. a l 25 77 

Exec ut ion 5, A == ]00 
l 

b J( b) 1' b' g C 
s 

IOk l 19 9,1,1 1.37 174 }.91 282 372 

10k2 80 402 6 .1 5 so• 7.47* 117* 125 

1Uk3 l 897 0.06 16 o.oo 1 71 9 

t.o t.a l 22,13 

Table 5.2: Acla.pt a. tion of MGR Allocation Scheme 
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new feedback should re pla ce the current one (see Section 5.3.3 ) . New adaptations of 

cha racte ri s ti cs a rc marked with asteri sks. T he threshold 0 for the residual gain is se t 

to L. O in t hi s ex pc ri rn e 11t. 

i\ t t he fir s t cxec uLio11 , s ince no feedback informatio n is yet available, MGR simply 

,.iJJ o ca.Lcs t he .50 ava il able buffe rs evenl y among all relat ions. After the execution , 

f(b), jR,j ,C: (R,) , allcl s a rc obtai ned , and based on these, r, g , and ca.re computed. 

Si 11 cc iL is Lhe fir s t exec ution , a.II t he a bove numbers a re saved. Note that IRI, C( 7?, ), 

a nd s a rc ke pt unchan ged t he rea ft e r. 

J\ t t he second cxec 11 t ion , wh e re JOO buffe rs a.re avai lable, MGR allocates the buffers 

;-1, mo ng th e re la tion s i11 proportion to t he marginal gains obtained from the previous 

exec ut io n. As a res ult of t hi s , JOkl is a. lloca.ted 100 *2.75/(2.75 +7.06+0) = 28 buffers, 

10k2 is al located LOO * 7.06 / (2 .7.5 + 7.06 + 0) = 71 buffers, and 10k3 is allocated one 

buffe r s i11 cc its marg inal ga.in is 0. A fter this execution, the residual gains for lOkl 

a nd l0k 2 a rc co1 11 p ut ccl to be J .:3G and 6.11 , both of which are still greater than the 

t h res ho ld va lu e 1.0 . Sin ce t he buffers allocated to lOkl and 10k2 (column bin t he 

second tab le ) a rc g J'<.'alc r th a. 11 Lliose record ed in column b"' in the previous table, 

t he new ch a ra c te ri s t ics should rep lace t he old feedback (according to Section 5.3.3). 

Th<2rcforc, t.h e cha rac t e ri s t ic reco rd o f lOk l get s a djusted from p17 = (2.75, 196,:372) 

o l l~xcc u Lio n l to a Ill Ore in form ed o ne P2s = (2 .62 , 206 ,372) of Execution 2. T he same 

;ula. pta.ti o n takes pl a ce for JOk2 . However , fo r 10k3 , since the faulting characteristics 

a.L buffe r s ize l a. re 1n ca 11ing lcss , t li e characteris tics obtained from Execution l pm= 

(0 .00 , J , 719) will r e 1n a i11 un ch anged. 

A t t he t h i rel excc u Li on , 300 bu ffcrs a.re ava il able, according to t he marginal gain 

ra.t. ios obta in ed fro m l·:xec utioll 2; lOkl is fir st allocated 300 * 2.62/(2.62+ 7.67) = 76 

b uffe rs a.n cl LOk2 is a ll o cated :JOO * 7.67 /(2 .62 + 7.67) = 223 b uffers. According to 

tl1 e !VI(; It sche me, howe ve r, 110 a. ll o ca.t io n ca n exceed the sat urated size; t hu s on ly 

I 2G bu ffc rs w ill he ;ii located Lo JOk 2. T he remainin g 223 - 125 = 98 b uffers a re 
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t he n rcclist rjbu ted among lOkl and 10k3, bu t sin ce 10k3 has zero rnargina.l gain and a 

cr iti cal size of' l, lOk 1 recci ves all the remaining buffers and has a total of 76 + 98 = 174 

bu ffc rs. i\Jtcr the exec ution , th e residual gain of lOkl is 1.03, which is greater than 

t he threshold , so t he charactcrjstic record is again adjusted from P2s = (2.62, 206,372) 

to p 17,1 = (l.91 , 282,:l72) . 'The characteristic record of 10k2 is not changed since its 

resid ual gain r = 0 is less than t he threshold. 

A t the fou rth cxc'c utio 11 , where 50 buffers a.re available, MGR allocates buffers 

based 0 11 til e clia.racleri:; ti cs res ult i11 g from the prior three execution s. As a result , 

it produces 2S77 page faults, whi ch is fewer than the 2727 page faults produced by 

Exec utj on l whe re th e same buffer size is provided but no feedback is available . No 

cha.ra.ctcri s tics are adapted after this execution sin ce neither condition a nor condition 

b o f t he adaptation g uid eline given in Section 5 .3 .3 is satisfied. For example, for 10k2, 

t he a llocated buffer size b = 40 at Execution 4 is less than b* = 71 at Execution 3, but 

the res icl ua.1 ga.i 11 rb = ( 701 - 125) / ( J25 - 40) = 6. 77 is greater than the threshold 0 of 

va lu e l. 

Finally, a.t t he fifth execution , where 100 buffers are provided , 2243 page faults are 

produ ced . This is slig htly srnalle r than 2276 - the number of page faults produced 

du rin g Exec ution 2, whi ch used the sam e number of buffers. This can be attributed 

to t he adapta.tio11 o f t he cha racterist ic record through Executions 2 and 3. Also note 

that the cli a. radcri s ti cs of lOU arc adjusted again after th is execution because the 

allocated buffe r size b = BO is g reater th an b* = 71 (as recorded in Execution 4), a nd 

t il e residua] ga.in rb = G. 15 is also g reater than the threshold 0 = l. 

We also cx pcri rn entecl us ing the Iv[G-x-y algorithm with the same sequence of 

exec utio ns a bove. Sin ce t he example qu ery induces random reference strings of equ al 

le ngt h o n all three re lat io ns, MG -x-y simply results in a llocating buffers equally among 

t he relat io ns . We corn pa.re t he page fault s of TvIGR with those of MG -x-y in Table 5.:3. 

[t ca.11 be seen t hat tvl GR has fewer page faults t han MG -x-y as execu tions recur. 
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Exec. 1 Exec. 2 Exec. 3 Exec. 5 

50 100 300 50 100 

2727 2276 1685 2577 2243 

pa.gc faults of iWG-x-y 2727 2572 1951 2727 2572 

Table 5.3: Page Faults of MGR and MG-x-y 

1400 

. M G - x - y 
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·, ···-.. 

\ li'1GR 
·~. 

RIA 
e 
I 
a 1.J 
l 

···· .. ... ···· ··- ... '!'!o-x-y 

______ MGR __ _ 

OPT 

100 200 

Numb<P' of Buf'fen 

(b) 

F ig ure 5 3· p, . ' . · · d.ge Fault Compan son among MGR, MG-x-y and OPT 

Dsing tl le same ex l X. - • amp e query above, we compare the page faults of MGR and MG-

.Y at diff, . . e1e11t numl . 1· 1 • . . • • obt·. Jeis O Juffers m Figure 5.3. For MGR, we used the characten stics 

ained f a ter Ex, . 

[B 
· ec ut10n 5 from Table 5.2. The optimal replacement a.1gorit11m OPT 

el66] 
' Whicl1 re J hit . P aces the page tliat will not be used for the longest time in the 

lire, is . I a so g l"lj) / l r X.- c .lee 10.r comparison. The relative performance of MGR and MG-

.Y to OPT d ,. (n urnber of page faults of MGR and NIG-x-y divided by that of OPT) is 

l d ,W11 i .n F
, . 
1g ure r: 3 (b) . . . tl ·"J • • • . , w 1th 11 urn ber of buffers rangrng from 1 to son, w 11ere sopr 1s 

1e sat urated s ize . . ' . . unde1 OPT replacement s trategy. It can be seen tlia.t MGR pe1fo1ms 

rnuch b . 
ette r th· . . . 

1
. an MG-x-y. Es1Jec1a.lly when the number of buffers 1s around 200, the 
)a.g f 

e all /ts of lv ' . . , 

0 
[GR ,u e redu ced from those of MG-x-y to half of the page faults above 

PT. · 
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figure .S.LI: Simulat ion Configuration 

I Para.me te rs I Valu es 

di:,k t ra. 11 s fer t, j Ill (; 10- 20 ms (u ni form) 

page s ize 1024 bytes 

CPU qu a.nt.urn for round robi 11 lOms 

inte rva l be t.wee n two co nsec u t.i ve logica l page accesses 0.5- 1.5 ms (uniform) 

ave rage FCM overh ea.d pe r page refe rence 0.018 m s 

Table .S.4 : System Parameters 

5.5 P erforrnance Evaluation 

5 .5.1 System Configurat ion and Buffer Management Algorithms 

In thi s sect io n we present t he results from a simulation study which evalua ted the 

perCo rrna.nce o r differen t database buffer management algorithms including MGR, MG­

x-y, a nd ED U. Th e si!llul at ion is simila r to the one used in [CD8.S, NFS91], whi ch 

sirnula.tecl a closed system wit h concurrent queries competing for buffers. Figure .S.4 

s hows Lli e sys tem co nfi g urat io n of t he simul at ion. T he number of concurrent queries 

( con currency level) varied from 1 to 32 . \ ,Vhen th e sys tem starts , successive queries are 

ge ue rated a nd e nte r th e system unt il the concurrency level is reached . As the system 

co nt inu es to run , no new qu ery can enter t he system until one of the running queries 

fini shes a.nd !eave's th e system. Co ncu rrent queries a.re scheduled for the CPU using a. 

round ro bin po li cy. Unl ess ot he rwise ment ioned, the size of the buffer pool is set to 
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qu e ry no. of result. no. of base refe rence 

t.y pe t. nples relations type 

Q J 1000 l Sequential 

Q2 1000 2 Sequentia.l, Looping 

QJ 1000 2 Random 

Q11 1000 3 Random 

Table 5 . .5: Four Query Types 

q 11 c ry 111i x QJ Q2 Q 3 Q4 

JV[ J 40% 40% 10% 10% 

1Vf2 JO% JO% 110% 40% 

M3 25% 25% 25% 25% 

Table .5.6: T hree Qu ery l'v1ixes for Simulation Workload 

1,000 pages . In a ll cases, t he qu e ry m ixes along with the configurations simulate an 

IO- bo und closed sys tem . Other system parameters are shown in Table 5.4 . 

\i\fc used fo ur ba sic qu e ry types to mix the qu ery streams . The reference strings of 

the qu e ry types a rc coJl cc t cd from executin g them against the Wisconsin Benchmark 

da.ta ba.sc [1JDT8:~J o n AD MS. Th e nu mb er of partici pating relations in each query 

va ri es fro m o ne to t hree, a nd each re lation contain s 10,000 tuples spanning 2,500 

pages . Table !j_!j s hows t he cha racteri stics of the page references for each of the query 

ty pes we chose . T he qu e ry ty pes have bee n chosen such that each of them accesses 

va ri o us num bers o f di s t inct p a.ges rangin g from 100 to 1,500. Ql accesses 250 different 

p;iges, Q2 a ccesses 10 pages of t he o uter relat ion and has a looping access on a set of 

98 pages of t he inn e r relation. Q3 a nd Q4 per form random accesses to their relations , 

wit h totals o f' J J l O a nd l4J 6 di s t in ct pages refe renced respectively. 

'J' hrcc diffe re nt qu e ry mixes a.re gell era.tecl according to different percentages of the 

fou r qu e ry types . T hey are show n in Table !J.6. Qu ery mix Ml represents the situa.tiou 

whe re rn os t o f t he rcferc.11 cc s t rin gs a rc eith er sequential o r looping, M2 simulates the 

87 

,, 
, I 
,:/ ' 



situation wh ere random references dominate, and in M3, all query types have the same 

freq UCH Cy. 

One of t he factors t hat affects buffer uti lization is the degree of data sharing 

[DDT83, C D 85, NFS91, F NS91J. \Ne a dopted the same methodology from [BD84, 

CD85, NFS9 1, FNS91J for classifying the degree of data sharing in our simulation. 

Three degrees of data sha ri ng a re tested. In no data sharing, all concurrent queries 

access diffe rent copies of the relat ions or completely different data.bases . In partial 

clala sh.arin9, e very two of t he concu rrent qu eries access t he same copy of database. 

In full da ta slrnri11.9, a ll CJ uerics access t he same database. The higher the degree of 

sharing, the bet t e r buffer utilization due to the fact that pages in the buffers are used 

by several con c urrent qu eries. 

For t h e purpose of establishing a baseline comparison , LRU is selected as the 

representat ive for tradition al strategies . According to [EH84, CDS.SJ, all the traditional 

s trategics in cl u ding LlUJ, VVorki ug-Set, and Clock make no signiJica.n t performance 

diffe rence when applied to data.base applicat ions. Two schemes, local LRU (LLRU) 

and global LHU (GLRU) are tested. Local LRU keeps an LRU list for every relation 

in stan ce o f every running query. G lobal LRU manipulates the en tire buffer pool using 

a sing le LRU lis t for all qu eries . There is no explicit load control for global LRU; 

a. qu ery is ad mitted irnrnedia.tely as it arri ves. For local LRU, however, a. query is 

a clmiLtcd o nly w he n Llr e re a rc availa ble buffers. 

Sin ce DB!VI IN lr as IJce11 0 11 tpe rforrn ccl by MG-x-y using a. flexible allocation [NFS91], 

we d o not include DBM1 N in t he co rnpa rison. By trial and error , we have adjusted the 

values of parameters :r and y of 1vJG-x-y so that it reached its best overall performance. 

Six pairs o f (:r, y) are experim ented: (50, 100), (.50, 200) , (50, 400), (100, 100), (100, 

200) , a. ncl ( 100, 1100) . A qu ery is admitted if the number of available buffers is greater 

t lr a.n t li c s 111n o f" ca.cir of its accessed relation 's m i11irnum buffer requirements (see Ta­

bJ c 5.l). After a qu e ry is a dm itted, MG-x-y a.llocates as many buffers as possible to 
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ea.ch rel . . a.t1on but I • • • . 1
eve1 exceeds a specified upper bound ( see Table 5.1). 

Among th - l . · e c ass of predi ctive load control algorithms proposed in [FNS91] the 

alg .· . ' 
outlun wit h the I - . . 

. · ,est over all per for man ce, called EDU, JS chosen a.s a representative 

in our .· . s1mula.t10n S l . , . . · u )Ject to the current number of available buffers, EDU activates 

a query onl .f . . . Y 
1 

doing so wrll result in better effective disk utilization than that of the 

current state . 
After th e query is admitted, it allocates buffers in the same wa.y as does 

MG-x-y. 

As descri b J · 
ec earli er , f11IGR uses a. simple load controller based on FClVL MGR uses 

the ma.rg i1nl . . 
< garn ,·atios for buffer allocation for both queries and relations. Jt use.s 

LRU re l 
p acem ent unless a looping pattern is detected, in which case MR.U is used 

instead. T 
· he overhead of collecting and computing characteristics is also estimated 

a.
11

cl includ ed · ·I· · . . . . . · · · 1 l "' t "srmulatrou , though 
1
t ,s 1nsrgnrficant when compared to thew 10 e 

query eva.lua.t' · . . . · 1 t· f MGR ion t i rn e ( a.ccorcl1 ng to our expemnent from the nnp ementa, ion ° · 
on ADMS) . . · It s hould be poiuted out that for the first trme a querY runs, MGR. srmply 

uses l'vIC . 
,-x-y 

st
rn.tegy for allocation since no feedback is yet available. After the 

first 
· query feedback, however, MGR uses the faulting characteristics to adjust the 

a llo n f 
< ,ons for recu,·rin g queries . Because MGR uses more inforrnation about the 

behavior . . . . . . , . . of 
th

e querres, it is expected to do better than all other techniques. 

In 
th

e reS
t 

of th is section we 
1
,resent the results of the sirnulation . In all figures , 

tl , , l e lhi·ov 1 . . cl . . t .g rpul refers to the average number of querres finrshe per rnrnu e. 

5,5.2 imulat10n Results s· . 

Effect of Sequential and Looping References 
Figure r ,. . . . 1· 'fl1e throngh1Jut of each scheme 

. , .. , shows th e res ults under query mix NJ. 
increases Lil t· J . . . . 1 f ur after which buffer con-

1 
1 

t he numbe r of concurrent queries 1ea.c
1
es 

O 

' 
tention oc . . . , Due to the Joad control, 

cu 
I
s, and thu s the throughput starts to declnie. 

however tl , . . I twelve concurrent queries 
' 1.e throughput reaches a. saturated level a.rounc 
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Figure 5 .. 5: Throughp t C . 
u ompan son under Query Mix Ml, No Data Sharing 

better t} . ll 
un a the others because it makes more effective allocation 

re f erenc' tl 
c1

01

. . · cs ian do th e otl1ers. Since sequential and loor)ing· references 

n1nat" " in t l · . us load MC - - . . . . act 

1

,. . ' ' x-y, wluch makes allocation for both based on then ex-

a.ttern s, outperfonr tJ 1 
dccis· 

15 
, e oad control-based scheme EDU which malces admission 

. ions b·1.s i c ec, on an t . . 
do · es ,mated performance pointer. This implies that load control 

es not l i.a.ve as I . 
seq · muc 

1 

rm pact as does buffer allocation on the performance under 

uenti- 1 a. -and-lo . Em opmg-dominated query mixes . 

ect of R andom References 

Fig nre 5.G . . 
erence compares the t hro ughput under query mix M2, where the random ref-

s dominate . As 
sm a ll .. opposed to Figure 5.5, where the throughput increases for a 

. ic1.nge o f 

0 

r c c ur rcu t q ueri cs, the throughp ut in this toad declines as the number 

oncurr, . 
cut q uer·i , · · . . . · · · b ff · th. cs '"Cl eases SJ u ce rnn donr references us uallY cons ume ,nor c u eis 

a.n <lo sec1 L1 . . ent1a l · I . 
i rn Jr · anc loop mg references . MGR still provides substantial performance 

1 ovem 
en t bec1 . , ,. · . . · b l · · · · t·l In t 

1 

. ' use °' r ts ab ,l I ty to ch aracten ze random access e 1a v,01 con ec , Y· 

. 11 s ca se th · d 
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Figure 5.9.a. shows the effects of full data sharing. For concunency levels between 

I and 8, GLRU outperform all other strategies including MGR. This is because in 

full data sharing, global LRU can keep the locality set s of several queries in buffers 

at a. time. When the number of concunent queries increases, however, this advantage 
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disappears as the overall locali ty set becomes too large to fit into the buffer pool, and 

thus l\lIGR and EDU again perform best . In this sim ulation, the performance of EDU 

is close to that of MGR, which indicates that when data sharing increases, the impact 

of buffer allocation decreases . 

Whe n we shrink t he buffer pool from 1,000 to 600 pages, the effect of full data 

sharing becomes less significant. T his is shown in Figure 5.9.b, where GLRU now 

degrades drastically. The performance improvement of MGR over ED U now increases 

a.gain. T his implfos that when buffer contention occurs, those buffer management al­

gorithm s which can characterize the reference behavior more accurately achieve better 

buffer utilization . 
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Figure .5 .9: Query J\!Ijx MJ, FtdJ Data. Sharing, (a.) 1000 buffers, (b) 600 buffers 

5.6 Conclusions 

[n t his ch apter , we have proposed a buffer allocation algorithm, MGR, for recu rring 

queries using feedback o f' page fault s from executions. T his a.lgorithm uses a quantita­

tive model to cha racterize the page reference behavior of queries and allocates buffers 

to individual refercJ1 ce strings according to their quantifted characteristics. The simu-
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lation results show that MGR demonstrates significant performance improvement over 

the pattern prediction-based algorithm MG-x-y and tJ1e Joa.cl control-based algorithm 

EDU. In all cases of query mixes with no data sharing, MGR outperforms the second 

best strategy with 1.5 % - 30% throughput improvement on average. We also observed 

tl1e e.ffec t of da ta sharing. The results showed that, except for the cases involving full 

data sharing with a very large buffer availability and small concurrency level, MGR is 

s till favored. 

The advantage of MGR can be attributed to tl1e tuning of the buffer allocation 

technique based on the real access behavior obtained by query feedback rather than 

proba bili s ti c query path analysis where crude assumptions such as uniformity have to 

be made. Furthermore, since queries are treated as reference strings, our approach is 

applicable not only to relational algebra access paths but also to access paths of other 

more advanced database sys tems such as deductive and object-oriented databases . 
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Chapter 6 

Conclusions 

To en ha nce sys tem performance, traditional relational database systems have adopted 

various techniques to improve and tune the query optimization and evaluation phases . 

Such systems, however, overlook the potential advantage of recycling useful query re­

s ults a.ucl of using informative feedback learned from query execution. T his dissertation 

ex te nd s t he tra.d itiona.l query optimizer to integrate query res ult caching and matching 

a.ud explores the techllique of using query feedback to adapt selectivity estimation and 

buffer allocation. 

In Chapter 3, we developed an integrated framework of query optimization using 

cached res ult s . The extended query optimizer is able to match and integrate in its 

cxecu I.ion plans query res ults cached from previous queries. The framework suppor ts 

da.t a-based cachiu g a.ncl pointer-based caching, re-execution and incremental cache 

upd a te st rategies, a nd alternati ve cache replacement st rategies . The bes t plan of 

a. qu e ry, which may or may not use previously cached results, is selected based on 

a.Jl ex.t eudecl cost m odel whi ch ta kes into acco unt the costs of incremental updates 

a.Jld cache mat 'ri alizat ion. T his work was implemented on a. DBMS prototype, and 

th e e 111p iri cal perfo rm ance stud y showed that, by using pointer-based caching and 

a. cly na.n1ic UJ H.ia.te s trategy, q uery t hroughput can be substantially improved under 

111 ode ra.te que ry correlations a nd moderate upcla.te loads. T he requirement of the disk 
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cache space is relatively small, and the extra. optimization overhead introduced is more 

than offset by t he time saved in query evaluation. 

f n Cha pte r 4, we proposed a novel approach for selectivity estimation. Capitalizing 

o n t he techn ique of recursive, weighted least-square-error, we devised an adaptive se­

lectivity est imator which uses act ual query result sizes as feedback to approximate the 

att ribu te distribution a nd to provide efficient and accurate estimations. The dist rib u­

tio11 is adju sted grad ua lly and with little CPU overhead after ea.ch query execution in 

real time. T he most significant advantage of this ap proach over traditional methods is 

that it incu rs 11 0 off- line database access overhead for gathering statistics . Moreover, 

it ada.pts fairly well to upd ates and query locality, while such adaptation usually can 

not be achieved eas ily by t raditional methods. 

In Cha p ter 5, we proposed a n adaptive buffer allocation algori thm for recurring 

q11 c ries . This a lgori thm uses a qu antitative model and simple st atistics obtained from 

executions to ch aracterize the page reference behavior of queries ; the algorithm allo­

cates buffe rs to ind ividu al rela,tion ins ta.11c:es (of a. query) according to t heir quantified 

chasacterist ics . T he a.d vantage of t his scheme is attributable to the t uning of t he buff. r 

a llocation based o n the real access beha vior obtained by query feedback rather t han 

probabilis ti c query path analysis where crude ass umptions such as uniformity have to 

be ma.d e. Si mu latio n res ults show tha t this scheme demonstrates significant perfor­

mance irnp rove 111cnt over t he ex isting m ethods which are based on reference pattern 

classifi catio n or load coJ1trol. 

T he techn iques of using cached results and query feedback are not restricted to 

cent ra li zed H.DD l'vISs on ly. In the emerging techn ology of replical:ed systems [D+94, 

Dic9tl, C\ND94] which support materialized views a.s data.replica. at different sites, the 

optimize r we proposed here can be easily adopted to provide replica. transparency (to 

th e use rs) a.nd to ma.ke best use of t he replica. In a. multi-data.base or heterogeneous 

cl a.ta.basc sys te m w here iJ1d ependent data.base systems interoperate while preserving 
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their a t · · t 
cu onomy, the proble m of global or hetemgeneous query optimization is a grea 

cli,ll le nge s in ce t li e p a r t ic ipa.t in g DD ivISs are autonomous and may not be able to 

p rov id e t h e necessary i11form ation (s 11ch as query selectivi t ies and costs) for global 

que ry o p t.illl i%ation [DKS92, L+~J2 , ZL94J. We believe that using query feedback is 

a prope r solu tion to t hi s problem becau se it can be implemented effi ciently without 

c h a ng in g· t l1" I· · J f tl · 1· · J J • · t · DB~,rs l b 't p ·ov1·c·les " ,c1 ne s o 1e rnc 1v1c u a p a r t1c1pa. rng · n'1 s anc eca.use 1 1 

,i.cc urate·1 11 cl cl · · r· · 1· J fl 1 t l t I · · · · l · · < , y 11alll1c 111 ormat10 11 w 11c 1 r e ects t 1e curren ca a.Jase 1mc1.ge anc sys-

te 111 lcn I ' l 'J I · · l d 1 J ' c · l e a )ovc a rc Just two o f t he many area.s where usrng cac 1e resu ts a1H 

qu e ry fee dba c k is profitab le c111d /or can achieve much more t h a n the existing methods. 

In 
t h

e fut u re, we ex p ect t.o explore a.ud apply the t echnology of query feedback to 

"
111 " r 0

·inff cht· I · J J · · 1 I d ' · l t t· d - -
0 o < c1. )a se areas w it 1 c y11am1 c en v ironments w 1ere t 1e tra 1t1ona. s a 1c an 

prol>ab ili s t ic m et hod s arc cl cc n1 c d in a ppropriate. 
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Chapter 7 

Future Research 

We wo u Id like Lo ex tend the J\ D iV[S C1v[ 0 CJ uery optimizer to a. client-server distributed 

enviro n 1n c 11 L A I) l'vlS+ [ IU( 8G, It ES9J] · Ca.ch ing query results on client workstations has 

Lh <~ !'a ll ow in g a.cl va.ntagcs: ( l ) it reduces the data transmission over the network , (2) 

it. redu ces th e se rver co nte ntion, and finall y (3) it provides concurrent and parallel 

a.cccss to data cached o n mul t iple di sks of worksta tions. To fulfill these advantages, 

t il e qu ery op t imi zer mu st be a ble Lo rind a most effi cient way to compute a query using 

Lhe co rn pu t a. Li o n power o !' both client a nd server workstations and the results cached 

0 11 t he di sks of cli e nt wo rkstati ons. 

Th e a.da.pti ve selecti vity est imato r can be improved a.nd explored in several direc­

t ions. l·'irsL, we wo uld like Lo extend t hi s work to complex queries which involve joins or 

loµ; ica l o pera. to rs such r1 s ,.\ ND, Oil , e t. c. 'v\/e ca.n r [111 e the query feedback mechanism 

so t h;i. t a.da.ptaL io 11 \\' ill s t.o p aJLcr th e app rox irn a.t iug distribution converges and will 

he t ri gge red aµ; a in aJU• r updr1.tes. To achi eve this, a, co ndition for testing convergence 

a nd a n a.ppro pri a. t. c t h rcsholcl of estilllation error for the a.da.pta.tion trigger must be 

sought. iVla. Lh e1na. ti ca l an a lysis of ASE is al so desired in order to give deeper insight 

ill LO it s pc rfo r111a.11 ce b ,]ia.vior under di ve rse query distributions and into its theoreti-

1 I. ·L . 1\ s ·' 11 0 Lh c r 1>ossibi lity we ca.n use 13-s1)lines [clB78] as the model fun ctions. ca. 11 11 1 s . . "· · · . , · 

T he di st ribution t hu s l'o r111 cd is a. pi ecewise polynomial , whi ch is called a spline. Piece-
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wise polynomi a ls a.re much more s uitable than regular polynomials in approximating 

attribu te valu e di strjbut io u. In a.ddjtjon, sjnce both histograms and polynomia ls are 

spccja] cases of splines , usin g D-splines allows the <la.ta.base administrator to have the 

fl exi bjli ty o f choosing the most appropriate function, with the consideration for space 

overh ea d a nd ac tual da.ta. skewness. 

We a. re a lso investigati ng t he potential use of query feedback for query optimization 

ui he teroge neous or rnulti-da.ta.ba.se systems. In a. multi-database system, the internals 

of in d ivid uaJ hos t DDiVISs usually ca.n not be accessed or altered from the outside. 

This ma kes th e problem o f qu ery optimizatio n in a multi-data.base system much more 

di fTi cuJt th a n that in a sing le database system. For example, to join relations Rl and 

LU whicli res id e in two differe nt DDlvJS hosts, it is not easy to determine whether Rl 

sho uld be jmpo rt cd into th e DHMS host of R2 to do the join or vice versa., since we <lo 

no t know th e opl.irnj zation a.lid access st rategies of individual DBMS hosts. However, 

if we ca n predi c t the costs of both a lternatives, we can make an appropriate decision. 

Fo r tJii s problem , we can use th e elapsed t ime of query execution as feedback to regress 

th e cos t fo rrn11l as . We class ify queri es into a few types and associate ea.ch type with 

a cos t fonn,d,t w hi ch co ntain s certain para.meters to be estimated. \Nhen a query is 

exec uted , we m eas ure the elapsed time and use it to adapt the cost parameters. We 

be li e ve that th e use of qu ery feedback is a promising solution for query optimization 

in a he teroge neou s environm e nt. 
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Appendix A 

Recursive Solution for Weighted LSE 

Using the not a tions defin ed in Section 4.3 , for each query feedback (1 = !;, h;, ;) , e 

Now suppose 1n query feedbacks ( i, i = J, 2, .. . , m, are given. It is not hard to see that 

Eq. 4.10 can be rearranged and expressed as 

(A.J ) 

where ,-1:'m is am, x n weighted m a trix, y m is am x J weighted vector , and the respective 

ith rows of .,ym a nd y m a.re defin ed as 

m m xr = ( II O!j). /3; . X;, Yt = ( II O:j). /Ji . Sj (A.2) 
.i= i+l 

According to Eqs . 4.7 and A.2, the optimal values of A that minimize Eq. A.J is 

computed as 

A;i GmNm (A.3) 
m m -1 

G [~( v .m )t v .mJ-1 = [0:2 ~ (,,y m-I)t ;i:_m -1 + /32 xt X mJ-1 (A.4) 
1n L__; _/ t i t'L,t ni ~ i t m . ,n 

i=l i=l 
m m -1 

~ ~( v m)ty m _ 2 ~ ( v m-l)tym-1 + /3 2 yt 8 (A.5) i l ,n 0 ,-Li i - a m 0 ,'Li z m -' m m 

~ 1 ~l 
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First, we derive the recursive formula for Gm. From the above equations we have 

G-1 2 c - 1 (32 vt X 
m = am m-1 + m ..,'- m m 

Do Gm X (Eq .A.6) xG111 _ 1 , we obtain 

Multiply the above equation by X
1
;i, and we get 

Rearrange Eq.A.9 and multiply it by XmGm-1, 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Finally, substitute Eq.A.10 into Eq.A.8 and rearrange, we obtain the recursive formula. 

for Gm: 

G ( l )2 , fJm)2G v,.l [ 2 (32 X G yt 1-1 v G' 
rn = - Gm-1 - (- rn -l -''-rn am+ rn m 7 m-l./ m ./\.m 7 m-1 

am a 111 

(A.11) 

Now we can derive the rec ursive formula for A*. Substitute Eqs . A.7 and A.11 into 

E [ 2 (32 v G' vt 1-1 bt · q . A.3 and Jet .6 = 0'111 + m..,'- m m-U'-m , we o a1n 

G111 _1 JV,n-l - (J,2,iGm -1-'Y1~i.6)(mGm-1Nm-1 

( /Jm )2G' vt ( fJ;/i )G' vt A v G yt + - · m-1 -''- mSm - - 2 ' m - 1./\.mL..l-''- m 7 m - l ./ ·mSm 
am am 

11;,_1 - Grn-i X ,~ .6[/J!XmA;i-i - ( /Jm )2( a~ + f312,iXmGrn-1X;rJsm 
Cl:m 

(A.12) 
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The term G'm-1X,;,6 in t11e a bove expression can be further simplified as 

now su bstitue Gi;:;1 above with Eq . A.6 

G'm _)(1t,, (A.13) 

Therefore, from Eq.A.12 and A.13 we get the recursive formula for A*: 

(A.1 4) 
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Appendix B 

Dpdat c e Workload S .., pecifications 

In th e eXJ) · . en ments . 
of the . _ _ · ' an npd,te query is simulated by its effect on the value distribution 

0 

· rn tcrcst. An up<late query is specified by five parameters, 
a.tt nbu tc f. 

Ci, N, D, [min, 1naxJ,prob1Ns), 

Where -i lll eaus LI .. 
st re 

115 

u p<latc Lakes place i,nmediately before the ith query in the query 

am. N. · ctttr· I 
11

"

111 

,e,· of tuples updated (either inserted or deleted)- Each tuple's 
is t he I 

I )Ute va.Ju c 
" raudomly generated from range [min , max] according to a di

st

ri-

bu tion D A t UJ) l ' . ' l 
c " n,serted with probability prob ItJS or <leleted with probabi ity 

.':, . 

1 

J' CC I' fl ' l . l . . t -1 -d \Vi th . _ ' ' erent upd ate workloads are tested, each of w uc 1 JS rn er eave 1- ]Jrob J N ·, r] ' I 

•not her 10 ,. . . . : . the foll . ,1.

n
<lom sclect,on queries - The three update worUoads are speufred ,n 

ow ing 
N ( ' where U ( x, y) denotes the uniform distribu tiun among ,a,,ge [x , y] and 

enotcs tl . d · t' · re llOrlJJ al di stribution with nrean J' and standard evra ,on °· 
~L ,a) d, 

LOAD Lo l: ( ll , <GOO , U I - -10, 250), [-50, 250], J.0)-

A D2 · ( L 
· 

1
, 2250 , u c - 1.10, 5.111 ), 1-150, 550], o.75), 

( 
17

, 22511 , U I - 1.111 , .550), [-150, 550) , o.75), 

12:
1
, 22511 , U( - 1.10, 550 J, 1-150, 550] , 0.15), 

i2D, 2250, [/( - 100, 5-10), [-150,5.\0] , 0-75)­

( I l , :JOOO , N(- (j:J , 50),[- 150,25], 0,9 ), 
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( J 7, 1500, N( 112,40), [25,200], 0.1), 

(23, 2250, N (290, 60), [200,375], 1.0), 

(29, 2250, N ( 455, 50), [375,550], 0.4 ). 
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