
On the Applicability of Neural Network and Machine LearningMethodologies to Natural Language ProcessingSteve Lawrence�, C. Lee Gilesy, Sandiway Fonglawrence@elec.uq.oz.au, fgiles,sandiwayg@research.nj.nec.comNEC Research Institute4 Independence WayPrinceton, NJ 08540Technical ReportUMIACS-TR-95-64 and CS-TR-3479Institute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742
AbstractWe examine the inductive inference of a complex grammar - speci�cally, we consider the task of train-ing a model to classify natural language sentences as grammatical or ungrammatical, thereby exhibitingthe same kind of discriminatory power provided by the Principles and Parameters linguistic framework,or Government-and-Binding theory. We investigate the following models: feed-forward neural networks,Fransconi-Gori-Soda and Back-Tsoi locally recurrent networks, Elman, Narendra & Parthasarathy, andWilliams & Zipser recurrent networks, Euclidean and edit-distance nearest-neighbors, simulated anneal-ing, and decision trees. The feed-forward neural networks and non-neural network machine learningmodels are included primarily for comparison. We address the question: How can a neural network,with its distributed nature and gradient descent based iterative calculations, possess linguistic capabilitywhich is traditionally handled with symbolic computation and recursive processes? Initial simulationswith all models were only partially successful by using a large temporal window as input. Models trainedin this fashion did not learn the grammar to a signi�cant degree. Attempts at training recurrent networkswith small temporal input windows failed until we implemented several techniques aimed at improvingthe convergence of the gradient descent training algorithms. We discuss the theory and present an em-pirical study of a variety of models and learning algorithms which highlights behaviour not present whenattempting to learn a simpler grammar.� Also with Electrical and Computer Engineering, University of Queensland, St. Lucia Qld 4072, Australia.y Also with the Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.

1

1 Motivation1.1 Formal Grammars and Grammatical InferenceWe give a brief introduction to formal grammars, grammatical inference, and natural language; for a thoroughintroduction we recommend Harrison [24] and Fu [15]. Briey, a grammar G is a four tuple fN;T; P; Sg,where N and T are sets of terminals and nonterminals comprising the alphabet of the grammar, P is a set ofproduction rules, and S is the start symbol. For every grammar there exists a language L, a set of strings ofthe terminal symbols, that the grammar generates or recognizes. Grammatical inference is concerned mainlywith the procedures that can be used to infer the syntactic or production rules of an unknown grammar Gbased on a �nite set of strings I from L(G), the language generated by G, and possibly also on a �nite setof strings from the complement of L(G) [15]. In this paper we consider replacing the inference algorithmwith a neural network or a machine learning methodology. Our grammar is that of the English language.The simple grammar used by Elman [13] shown in �gure 1 contains some of the structures in the completeEnglish grammar: eg. agreement, verb argument structure, interactions with relative clauses, and recursion.S ! NP VP "."NP ! PropN j N j N RCVP ! V (NP)RC ! who NP VP j who VP (NP)N ! boy j girl j cat...PropN ! John j MaryV ! chase j feed j see...Figure 1: A simple grammar encompassing a subset of the English language.In the Chomsky hierarchy of phrase structured grammars, the simplest grammar and its associated automataare regular grammars and �nite-state-automata (FSA). However, it has been �rmly established [4] that thesyntactic structures of natural language cannot be parsimoniously described by regular languages. Certainphenomena (eg. center embedding) are more compactly described by context-free grammars which arerecognised by push-down automata, while others (eg. crossed-serial dependencies and agreement) are betterdescribed by context-sensitive grammars which are recognised by linear bounded automata [42].1.2 Representational PowerNatural language has traditionally been handled using symbolic computation and recursive processes. Themost successful stochastic language models have been based on �nite-state descriptions such as n-grams orhidden Markov models. However, �nite-state models cannot represent hierarchical structures as found innatural language1 [40]. In the past few years several recurrent neural network architectures have emergedwhich have been used for grammatical inference [7] [20] [17] [18] [19]. Recurrent neural networks have beenused for several smaller natural language problems, eg. papers using the Elman network for natural languagetasks include: [50] [1] [11] [23] [32]. Neural network models have been shown to be able to account for avariety of phenomena in phonology [16] [21] [53] [52], morphology [22] [37] and role assignment [38] [32].Induction of simpler grammars has been addressed often - eg. [54] [18] on learning Tomita languages [51].Our task di�ers from these in that the grammar is considerably more complex.It has been shown that recurrent networks have the representational power required for hierarchical solutions[13], and that they are Turing equivalent [47]. The recurrent neural networks investigated in this paper1The inside-outside re-estimation algorithm is an extension of hidden Markov models intended to be useful for learninghierarchical systems. The algorithm is currently impractical for anything except relatively small grammars [40].2

constitute complex, dynamical systems. Pollack [42] points out that Crutch�eld and Young [8] have studiedthe computational complexity of dynamical systems reaching the onset of chaos via period-doubling. Theyhave shown that these systems are not regular, but are �nitely described by Indexed Context-Free-Grammars.Several modern computational linguistic grammatical theories fall in this class [33] [43].1.3 Language and Its AcquisitionCertainly one of the most important questions for the study of human language is: How do people unfailinglymanage to acquire such a complex rule system? A system so complex that it has resisted the e�orts of linguiststo date to adequately describe in a formal system [6]? Here, we will provide a couple of examples of the kindof knowledge native speakers often take for granted.For instance, any native speaker of English knows that the adjective eager obligatorily takes a complementizerfor with a sentential complement that contains an overt subject, but that the verb believe cannot. Moreover,eager may take a sentential complement with a non-overt, i.e. an implied or understood, subject, but believecannot:2 *I am eager John to be here I believe John to be hereI am eager for John to be here *I believe for John to be hereI am eager to be here *I believe to be hereSuch grammaticality judgements are sometimes subtle but unarguably form part of the native speaker'slanguage competence. In other cases, judgement falls not on acceptability but on other aspects of languagecompetence such as interpretation. Consider the reference of the embedded subject of the predicate to talkto in the following examples: John is too stubborn for Mary to talk toJohn is too stubborn to talk toJohn is too stubborn to talk to BillIn the �rst sentence, it is clear that Mary is the subject of the embedded predicate. As every native speakerknows, there is a strong contrast in the co-reference options for the understood subject in the second andthird sentences despite their surface similarity. In the third sentence, John must be the implied subjectof the predicate to talk to. By contrast, John is understood as the object of the predicate in the secondsentence, the subject here having arbitrary reference; in other words, the sentence can be read as John is toostubborn for some arbitrary person to talk to John. The point we would like to emphasize here is that thelanguage faculty has impressive discriminatory power, in the sense that a single word, as seen in the examplesabove, can result in sharp di�erences in acceptability or alter the interpretation of a sentence considerably.Furthermore, the judgements shown above are robust in the sense that virtually all native speakers will agreewith the data.In the light of such examples and the fact that such contrasts crop up not just in English but in otherlanguages (for example, the stubborn contrast also holds in Dutch), some linguists (chiey Chomsky [5])have hypothesized that it is only reasonable that such knowledge is only partially acquired: the lack ofvariation found across speakers, and indeed, languages for certain classes of data suggests that there exists a�xed component of the language system. In other words, there is an innate component of the language facultyof the human mind that governs language processing. All languages obey these so-called universal principles.Since languages do di�er with regard to things like subject-object-verb order, these principles are subject toparameters encoding systematic variations found in particular languages. Under the innateness hypothesis,2As is conventional, we use the asterisk to indicate ungrammaticality in these examples.3

only the language parameters plus the language-speci�c lexicon are acquired by the speaker; in particular, theprinciples are not learned. Based on these assumptions, the study of these language-independent principleshas become known as the Principles-and-Parameters framework, or Government-and-Binding (GB) theory.In this paper, we ask the question: Can neural network or machine learning models be made to exhibitthe same kind of discriminatory power on the data GB-linguists have examined? More precisely, the goalof the experiment is to train a model from scratch, i.e. without the bifurcation into learned vs. innatecomponents assumed by Chomsky, to produce the same judgements as native speakers on the sharply gram-matical/ungrammatical pairs of the sort discussed in the next section.2 DataOur primary data consists of 552 English positive and negative examples taken from an introductory GB-linguistics textbook by Lasnik and Uriagereka [36]. Most of these examples are organized into minimal pairslike the example I am eager for John to win/*I am eager John to win that we have seen above. We notehere that the minimal nature of the changes involved suggests that our dataset may represent an especiallydi�cult task for the models. Due to the small sample size, the raw data, namely words, were �rst converted(using an existing parser) into the major syntactic categories assumed under GB-theory. Figure 2 summarizesthe parts-of-speech that were used.Category ExamplesNouns (N) John, book and destructionVerbs (V) hit , be and sleepAdjectives (A) eager, old and happyPrepositions (P) without and fromComplementizer (C) that or for as in I thought that . . .or I am eager for . . .Determiner (D) the or each as in the man or each manAdverb (Adv) sincerely or why as in I sincerely believe . . .or Why did John want . . .Marker (Mrkr) possessive 's, of, or to as in John's mother,the destruction of . . . , or I want to help . . .Figure 2: Parts of SpeechThe part-of-speech tagging represents the sole grammatical information supplied to the models about par-ticular sentences in addition to the grammaticality status. A small but important re�nement that wasimplemented was to include subcategorization information for the major predicates, namely nouns, verbs,adjectives and prepositions. (Our experiments showed that adding subcategorization to the bare categoryinformation improved the performance of the models.) For example, an intransitive verb such as sleep wouldbe placed into a di�erent class from the obligatorily transitive verb hit. Similarly, verbs that take sententialcomplements or double objects such as seem, give or persuade would be representative of other classes.3Flushing out the subcategorization requirements along these lines for lexical items in the training set re-sulted in 9 classes for verbs, 4 for nouns and adjectives, and 2 for prepositions. Examples of the input dataare shown in �gure 3.We note here that tagging was done in a completely context-free manner. Obviously, a word, e.g. to, maybe part of more than one part-of-speech. The tagger being part of a larger parsing system is capable of3Following classical GB theory, these classes are synthesized from the theta-grids of individual predicates via the CanonicalStructural Realization (CSR) mechanism of Pesetsky ([41]). 4

Sentence Encoding GrammaticalStatusI am eager for John to be here n4 v2 a2 c n4 v2 adv 1n4 v2 a2 c n4 p1 v2 adv 1I am eager John to be here n4 v2 a2 n4 v2 adv 0n4 v2 a2 n4 p1 v2 adv 0I am eager to be here n4 v2 a2 v2 adv 1n4 v2 a2 p1 v2 adv 1Figure 3: Examples of Part-of-Speech Taggingassigning the correct parts-of-speech, but no disambiguation was done to provide a greater challenge for themodels. Furthermore, tagging resulted in several contradictory and duplicated sentences. Various methodswere tested to deal with these cases, however we chose to remove them altogether for the results reportedhere. In addition, the number of positive and negative examples was equalised in all training and test setsin order to reduce any e�ects due to skewed data.3 Data EncodingFor input to the models, the data was encoded into a �xed length window made up of segments containingeight separate inputs, corresponding to the classi�cations noun, verb, adjective, etc. Sub-categories of theclasses were linearly encoded into each input in a manner demonstrated by the speci�c values for the nouninput: Not a noun = 0, noun class 1 = 0.5, noun class 2 = 0.667, noun class 3 = 0.833, noun class 4= 14. Two outputs were used in the neural networks, corresponding to grammatical and ungrammaticalclassi�cations. A con�dence criteria was used: ymax � (ymax � ymin)5.4 Nearest-NeighborsIn the nearest-neighbors technique, the nearest-neighbors to a test sentence are found using a similaritymeasure. The class of the test sentence is inferred from the classes of the neighbors. We performed simulationsusing a number of di�erent neighborhood sizes ranging from 1 to 20. The best performance was obtainedusing a neighborhood size of only one. We investigated the following similarity measures:1. Euclidean distanceThe neighbors are found based on their Euclidean distance from the test sentence in the space createdby the input encoding (pPni=1(yi � di)2).As expected, models with a small temporal window did not achieve signi�cantly greater than 50%correct classi�cation. However, models with a large temporal window (near the size of the longestsentences) achieved up to 65% correct classi�cation on average.2. Edit distance4A �xed length window made up of segments containing 23 separate inputs, corresponding to the classi�cations noun class1, noun class 2, verb class 1, etc.. was also tested but proved inferior.5For an output range of 0 to 1. 5

In edit-distance computation a cost is assigned for inserting, deleting, and substituting symbols in asequence. Dynamic programming can be used to calculate the cost of transforming one sequence intoanother 6.We were unable to attain greater than 55% correct classi�cation on average. Although we expectcareful selection of the cost table to improve performance, analysis of the operation of the methodleads us to believe that it will never obtain very good performance7.5 Decision Tree MethodsDecision tree methods construct a tree which partitions the data at each level in the tree based on a particularfeature of the data. CLS [29] used a heuristic lookahead method to construct decision trees. ID3 [44] extendedCLS by using information content in the heuristic function. We tested the C4.5 algorithm by Ross Quinlan[45], which is an industrial strength version of ID3 designed to handle noise.C4.5 only deals with strings of constant length and we used an input space corresponding to the longest string- we do not expect C4.5 to be highly suitable to the problem. The default C4.5 parameters were used. Weexpect that signi�cantly more data would be required to match the performance of recurrent neural networksdue to the position dependence created by the �xed input window. We obtained 60% correct classi�cationperformance on the test data on average.6 Neural Network ModelsA brief description of the models tested follows:1. Multi-layer perceptron. The output of a neuron is computed using8ylk = f 0@Nl�1Xi=0 wlkiyl�1i 1A (1)2. Frasconi-Gori-Soda locally recurrent networks. The Fransconi-Gori-Soda network has a locally recur-rent globally feedforward architecture which includes a feedback connection around each hidden layernode [14]. Fransconi-Gori-Soda de�ne local-output and local-activation versions of the architecturewhere the feedback is taken from the respective points. We have used the local-output version wherethe output of a node, y(t) = f(wy(t� 1) +Pni=0 wixi).3. Back-Tsoi FIR [2]. An FIR �lter and gain term is included in every synapse.6Sequences of length zero up to the actual sequence length are considered. The following equations are used iteratively tocalculate the distances ending in the distance between the two complete sequences. i and j range from 0 to the length of therespective sequences and the superscripts denote sequences of the corresponding length. For more details see [34].d(ai;bj) = min(d(ai�1;bj +w(ai; 0) deletion of aid(ai�1;bj�1) +w(ai; bj) bj replaces aid(ai;bj�1) + w(0; bj) insertion of bj7Consider how you would de�ne the cost for deleting a noun without knowing the context in which it appears.8where ylk is the output of neuron k in layer l, Nl is the number of neurons in layer l, wlki is the weight connecting neuronk in layer l to neuron i in layer l � 1, yl0 = 1 (bias), and f is commonly a sigmoid function.6

De�nition 1 An FIR MLP with L layers excluding the input layer (0; 1; :::; L), FIR �lters of ordernb, and N0; N1; :::; NL neurons per layer, is de�ned asylk(t) = f �xlk(t)� (2)xlk(t) = Nl�1Xi=0 clki(t) nbXj=0wlkij (t)yl�1i (t� j) (3)where y(t) = neuron output, clki = synaptic gain, f(�) = e�=2�e��=2e�=2+e��=2 , k = 1; 2; :::; Nl(neuron index),l = 0; 1; :::; L(layer), and ylkjk=0 = 1(bias). 24. Narendra and Parthasarathy. A feed-forward network augmented with feedback connections from theoutput nodes to the hidden nodes. As described in [39].5. Elman. A simple recurrent network with feedback from each hidden node to all hidden nodes asdescribed in [12], [13].6. Williams and Zipser. A fully recurrent network where all non-input nodes are connected to all othernodes as described in [55].We expect the feedforward and locally recurrent architectures to encounter di�culty performing the taskand include them primarily as control cases.7 Gradient Descent LearningWe have used backpropagation through time9 [56] to train the globally recurrent networks10, standardbackpropagation for the multi-layer perceptron, and the gradient descent algorithms described by the authorsfor the locally recurrent networks. The error surface of a multilayer network is non-convex, non-quadratic,and often has large dimensionality. We found the standard gradient descent algorithms to be impracticalfor our problem11. We investigated the techniques described below for improving convergence. Exceptwhere noted, the results in this section are for networks using: two word inputs for the Elman network (thecurrent and previous word) and single word inputs for the Williams & Zipser network (in order to keep thedimensionality roughly equal), 10 hidden nodes, the quadratic cost function, the logistic sigmoid function,sigmoid output activations, one hidden layer, the learning rate schedule shown below, an initial learningrate of 0.2, the weight initialisation strategy discussed below, and one million stochastic updates. Due tothe dependence on the initial parameters, we have attempted to make the results as signi�cant as possibleby performing multiple simulations with di�erent initial weights and training set/test set combinations.However, due to the complexity of the task12, we could not perform as many simulations as desired. Thestandard deviation of the NMSE values are included to help assess the signi�cance of the results.Normalised mean squared error results are de�ned as9Backpropagation through time extends backpropagation to include temporal aspects and arbitrary connection topologiesby considering an equivalent feedforward network created by unfolding the recurrent network in time.10Real-time [55] recurrent learning was also tested but did not show any signi�cant convergence for our problem.11Without modifying the standard gradient descent algorithms we were only able to train networks which operated on a largetemporal input window. These networks were not forced to model a grammar, they only memorised and interpolated betweenthe training data.12Each individual simulation in this section took an average of two hours to complete on a Sun Sparc 10 server.7

De�nition 2 NMSE = PNk=1(d(k)�y(k))2�PNk=1�d(k)��PNk=1 d(k)�=N�2�=N . The denominator is the variance of the targetvalues. k ranges over all patterns and outputs in the dataset. 21. Detection of Signi�cant Error Increases. If the NMSE increases signi�cantly during training thennetwork weights are restored from a previous epoch and are perturbed to prevent updating to thesame point. We have found this technique to increase robustness of the algorithm when using learningrates large enough to help escape local minima, particularly in the case of the Williams & Zipsernetwork.2. Target outputs. Targets outputs were 0.1 and 0.9 using the logistic activation function and -0.8 and0.8 using the tanh activation function. This helps avoid saturating the sigmoid function. If targetswere set to the asymptotes of the sigmoid this would tend to: a) drive the weights to in�nity, b) causeoutlier data to produce very large gradients due to the large weights, and c) produce binary outputseven when incorrect - leading to decreased reliability of the con�dence measure.3. Stochastic updating. In stochastic update, parameters are updated after each pattern presentation,whereas in true gradient descent (often called "batch" updating) gradients are accumulated over thecomplete training set. Batch update attempts to follow the true gradient, whereas stochastic is similarto adding noise to the true gradient. There are advantages and disadvantages of each method as shownin table 1.Method: Stochastic update Batch updateAdvantages 1. Faster convergence - updateafter every pattern 1. Guaranteed convergence to(local) minima2. Stochastic trajectory helpsavoid local minima 2. Second order update tech-niques availableDisadvantages 1. Most second order methodsperform poorly 1. Very slow on large problems2. NMSE jumps around, less ro-bust parameter updating 2. Increased tendency to con-verge to poor local minima3. Convergence proofsprobabilistic4. Harder to parallelizeTable 1: Comparison of stochastic and batch updating.Table 2 shows the average NMSE and standard deviation using four di�erent simulations for each case.The training times were equalised by reducing the number of updates for the batch case. Batch updateoften converges quicker using a higher learning rate than the optimal rate used for stochastic update13,hence we investigated altering the learning rate for the batch case. We were unable to obtain signi�cantconvergence.4. Weight initialisation. Random weights are initialised with the goal of ensuring that the sigmoids do notstart out in saturation but are not very small (corresponding to a at part of the error surface) [25]).In addition, several sets of random weights are tested and the set which provides the best performanceon the training data is chosen14. In our experiments on the current problem, we have found that thesetechniques do not make a signi�cant di�erence as shown in table 3 where the results are averaged overfour simulations.13Stochastic update does not generally tolerate as high a learning rate as batch update due to the noise injected by thestochastic nature of the updates.14The number of weight sets tested is normally proportional to the number of weights squared, however we set a limit oftwenty for these simulations. 8

Stochastic BatchNMSE Std. Dev. NMSE Std. Dev.Elman 0.366 0.035 0.931 0.0036Table 2: Training set NMSE comparison for batch versus stochastic update.Single random weights Multiple weightsNMSE Std. Dev. NMSE Std. Dev.Elman 0.376 0.038 0.369 0.036Table 3: Training set NMSE comparison for single or multiple initial random weights.5. Learning rate schedule. Relatively high learning rates are typically used in order to help avoid slowconvergence and local minima. However, a constant learning rate results in signi�cant parameter andperformance uctuation during the entire training cycle such that the performance of the network canalter signi�cantly from the beginning to the end of the �nal epoch. Moody and Darkin have proposed\search then converge" learning rate schedules of the form [9] [10]:�(t) = �01 + t� (4)where �(t) is the learning rate at time t, �0 is the initial learning rate, and � is a constant.We have found that the learning rate during the �nal epoch still results in considerable parameteructuation15 and hence we have added an additional term to further reduce the learning rate over the�nal epochs (our speci�c learning rate schedule can be found in a later section).Table 4 compares the performance of four averaged simulations for the two cases: using a constantlearning rate and using a learning rate schedule. We have found the use of learning rate schedules toimprove performance considerably. Constant ScheduleNMSE Std. Dev. NMSE Std. Dev.Elman 0.742 0.154 0.394 0.035Table 4: Training set NMSE comparison for a constant learning rate and a learning rate schedule.6. Sigmoid functions. Symmetric sigmoid functions (eg. tanh) often improve convergence over the stan-dard logistic function. For our particular problem we found that the di�erence was minor and that thelogistic function resulted in better performance. Table 5 shows the averaged results of four simulationsfor each case.7. Sectioning of the training data. We investigated dividing the training data into subsets. Initially,only one of these subsets was used for training. After 100% correct classi�cation was obtained or apre-speci�ed time limit expired, an additional subset was added to the \working" set. This continueduntil the working set contained the entire training set. These trials were performed with the dataordered alphabetically. This enabled the networks to focus on the simpler data �rst. Elman suggests15NMSE results which are obtained over an epoch involving stochastic update can be misleading. We have been surprisedto �nd quite signi�cant di�erence in these on-line NMSE calculations compared to a static calculation even if the algorithmappears to have converged. 9

Sigmoid: Logistic TanhNMSE Std. Dev. NMSE Std. Dev.Elman 0.387 0.023 0.405 0.14W & Z 0.650 0.022 0.835 0.13Table 5: Training set NMSE comparison for logistic and tanh sigmoid activation functions.that the initial training constrains later training in a useful way [13]. Results of four simulations percase comparing the use of sectioning with standard training on our problem are shown in table 6. Theuse of sectioning has consistently decreased performance. Why do we obtain the opposite results tothose obtained by Elman? We suggest that in our case initial training constrains later training in anegative fashion: initial constraints may make modelling grammatical constructs only found in laterdata more di�cult. No Sectioning SectioningNMSE Std. Dev. NMSE Std. Dev.Elman 0.367 0.011 0.573 0.051W & Z 0.594 0.084 0.617 0.026Table 6: Training set NMSE comparison for the use of training data sectioning.8. Cost function. The relative entropy cost function has received particular attention ([3] [27] [49] [25][26]) and has a natural interpretation in terms of learning probabilities [35]. We investigated usingboth quadratic and relative entropy cost functions:De�nition 3 The quadratic cost function is de�ned as E = 12Pk(yk � dk)2 2De�nition 4 The relative entropy cost function is de�ned as E =Pk h 12 (1 + yk)log 1+yk1+dk + 12 (1� yk)log 1�yk1�dk i2where y and d correspond to the actual and desired output values, k ranges over the outputs (and alsothe patterns for batch update).Table 7 shows the results of four simulations for each case. We found the quadratic cost function toprovide better performance. A possible reason for this is that the use of the entropy cost function leadsto an increased range of weight changes and therefore decreased robustness in parameter updating.Sigmoid: Quadratic EntropyNMSE Std. Dev. NMSE Std. Dev.Elman 0.470 0.078 0.651 0.0046W & Z 0.657 0.019 0.760 0.023Table 7: Training set NMSE comparison for logistic and tanh sigmoid activation functions.
10

8 Simulated AnnealingPrevious work has shown the use of simulated annealing for �nding the parameters of a recurrent networkmodel to improve performance [48]. For comparison with the gradient descent based algorithms we haveinvestigated using simulated annealing to train exactly the same Elman network as has been successfullytrained to 100% correct training set classi�cation using backpropagation through time (details in a latersection). We have obtained no signi�cant results from these trials16. Currently, the best trial has onlyobtained an NMSE of 1.2 after two days of execution on a Sun Sparc 1017. In comparison, the successfulElman models obtain an NMSE of approximately 0.1. We have not found the use of simulated annealingto improve performance, as Simard et. al. [48] have. Their problem was the parity problem with only fourhidden units.9 ResultsOur results are based on multiple training/test set partitions and multiple random seeds. We have also useda set of Japanese control data. Japanese is at the opposite end of the language spectrum when comparedwith English and we expect a model trained on the English data to perform poorly on the Japanese data.Indeed, all models do perform poorly on the Japanese data.Results of initial simulations using all models are shown in table 8. Using a large temporal input window, theneural network models (except the Williams and Zipser model) were able to attain 100% correct classi�cationperformance on the training data and 65% correct classi�cation on the test data. The nearest-neighbor anddecision tree methods did not exceed this performance level. Using a small temporal input window, nomodel except the Elman recurrent network exceeded 55% correct classi�cation on the test data. The Elmannetwork was able to attain 74% correct classi�cation on the test data. This is better than the performanceobtained using any of the other networks, however it is still quite low. The available data is quite sparseand we expect increased generalisation performance as the amount of data increases, as well as increaseddi�culty in training.The best neural network models were then selected from the full set for more in-depth analysis. Fivesimulations were performed for each network architecture. Each simulation took approximately four hourson a Sun Sparc 10 server. Table 9 summarises the results obtained with the various networks where eachnetwork contained 20 hidden nodes. Table 10 summarises the results for simulations where each networkcontained 30 hidden nodes. In order to make the number of weights in each architecture approximately equalwe have used only single word inputs for the Williams & Zipser model but two word inputs for the others.Experiments indicate that this reduction in dimensionality for the W & Z network was desirable.The results for the 30 hidden units case are generally worse than those for the 20 hidden units case butfollow a similar trend across architectures. We also ran simulations with 10 hidden units where the trendacross architectures was again similar but the performances were lower again (the Elman network attainsroughly 88% correct classi�cation on the training data and 65% on the English test data).9.1 Network OperationIn this section we take a closer look at the operation of the networks analysed in detail. The error duringtraining for a sample of each network architecture is shown in �gure 4. The errors shown in the graph are the16We have used the adaptive simulated annealing code by Lester Ingber [30] [31].17The package used for simulated annealing by Lester Ingber includes speedups to the basic algorithm but even when weused these the algorithm did not converge. 11

TRAIN large smallwindow windowMLP 100 55FGS 100 56BT-FIR 100 56Elman 100 100W&Z 94 92TEST large smallwindow windowEdit-distance 55 -Euclidean 65 55Decision trees 60 -MLP 63 54FGS 65 55BT-FIR 64 54Elman 65 74W&Z 62 71Table 8: Average results summary.TRAIN Classi�cation Std. dev. Con�denceElman 99.6% 0.84 78.8%FGS 67.1% 1.22 17.6%N & P 75.2% 1.41 32.2%W & Z 91.7% 2.26 63.2%ENGLISH TEST Classi�cation Std. dev. Con�denceElman 74.2% 3.82 75.4%FGS 59.0% 1.52 18.8%N & P 60.6% 0.97 26.9%W & Z 71.3% 0.75 65.1%JAPANESE TEST Classi�cation Std. dev. Con�denceElman 45.5% 2.0 87.2%FGS 56.7% 12.2 18.4%N & P 57.2% 10.6 23.9%W & Z 50.0% 12.5 62.6%Table 9: Results of the network architecture comparison for networks containing 20 hidden units.NMSE over the complete training set and that parameters are being updated throughout each epoch. Notethe nature of the Williams & Zipser learning curve and the utility of detecting and correcting for signi�canterror increases18.Figure 5 shows an approximation of the "complexity" of the error surface based on the �rst derivatives of18The learning curve for the Williams & Zipser network can be made smoother by reducing the learning rate but this tendsto promote convergence to poorer local minima. 12

TRAIN Classi�cation Std. dev. Con�denceElman 98.3% 1.2 72.1%FGS 62.8% 0.39 11.2%N & P 62.5% 0.23 13.8%W & Z 93.7% 1.0 73.4%ENGLISH TEST Classi�cation Std. dev. Con�denceElman 72.1% 6.2 65.6%FGS 57.6% 0.20 11.9%N & P 55.8% 0.63 12.9%W & Z 69.3% 5.0 69.9%JAPANESE TEST Classi�cation Std. dev. Con�denceElman 45% 11.5 67.3%FGS 32% 0.22 11.4%N & P 38% 10.3 20.4%W & Z 59% 13.5 70.5%Table 10: Results of the network architecture comparison for networks containing 30 hidden units.the error criterion with respect to each weight C = Pi @E@wiNw where i sums over all weights in the network andNw is the total number of weights. This value has been plotted after each epoch during training. Note themore complex nature of the plot for the Williams & Zipser network.Figure 6 shows the individual partial derivatives of the error criterion with respect to each weight aftertraining has completed. Note the varying ranges of the values and the generally higher values for theWilliams & Zipser network.These plots give an insight into the nature of the error surface for each architecture. The Williams &Zipser fully connected network is more powerful than the Elman architecture, yet the Williams & Zipsererror surface is far more complex - leading to di�culty for gradient descent optimization, and decreasedperformance. The relative simplicity of the error surface for the less powerful networks is evident.Figure 7 shows a sample error surface with respect to the two most sensitive weights (largest @E@wi values)for a sample run of each architecture. While these graphs vary considerably from trial to trial, the samplesshown have been observed to be typical. These graphs are of minimal value compared to the true errorsurface but back up observations on complexity from the previous graphs.9.2 Complete Simulation DetailsComplete details on a sample Elman network follows:The network contained three layers including the input layer. The hidden layer contained 20 nodes. Eachhidden layer node had a recurrent connection to all other hidden layer nodes. The network was trained for atotal of 1 million stochastic updates. All inputs were within the range zero to one. All target outputs wereeither 0.1 or 0.9. Bias inputs were used. The best of 20 random weight sets was chosen based on trainingset performance. Weights were initialised as shown in Haykin [25]. The logistic output activation functionwas used. The quadratic cost function was used. The search then converge learning rate schedule used was� = �0nN=2+ c1max�1;(c1�max(0;c1(n�c2N))(1�c2)N � where � = learning rate, �0 = initial learning rate, N = total training13

0.01

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Learning

NMSE - final 0.0569
Var (NMSE) - final 0.125

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Waz 8:20:2 L=0.2 B=20: Learning

NMSE - final 0.258
Var (NMSE) - final 0.335

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Np 16:20:2 L=0.2 B=20 W=2: Learning

NMSE - final 0.693
Var (NMSE) - final 0.506

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Fgs 16:20:2 L=0.2 W=2: Learning

NMSE - final 0.835
Var (NMSE) - final 0.336

Figure 4: Average NMSE over the training set and variance of the NMSE over the training set duringtraining. Top to bottom: Elman, Williams & Zipser, Narendra & Parthasarathy and Fransconi-Gori-Soda.epochs, n = current training epoch, c1 = 50, c2 = 0:65. The training set consisted of 373 non-contradictoryexamples as described earlier. The English test set consisted of 100 non-contradictory samples and theJapanese test set consisted of 119 non-contradictory samples. 73% correct classi�cation was obtained on theEnglish test set and 53% correct classi�cation was obtained on the Japanese test set. Figures 8 to 12 showthe NMSE and the learning rate during training, along with training and test set con�dence histograms forthe cases where the output was correct and where the output was incorrect.10 DiscussionAre the methods really learning anything? Nearest-neighbors, decision trees, and feed-forward neural net-works do not learn a grammar - they work by �nding statistically close matches in the training data. Theyare expected to require a much larger amount of data for similar performance. On the other hand, recurrentneural networks do learn a grammar. 100% correct classi�cation of the training data is not possible using14

1e-05

0.0001

0.001

0.01

0.1

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Sum of Der E/Der W at Current Weights

1e-05

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Waz 8:20:2 L=0.2 B=20: Sum of Der E/Der W at Current Weights

0.001

0.01

0.1

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Np 16:20:2 L=0.2 B=20 W=2: Sum of Der E/Der W at Current Weights

1e-05

0.0001

0.001

0.01

0.1

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Fgs 16:20:2 L=0.2 W=2: Sum of Der E/Der W at Current Weights

Figure 5: Approximate "complexity" of the error surface during training. Top to bottom: Elman, Williams& Zipser, Narendra & Parthasarathy and Fransconi-Gori-Soda.only a small temporal input window without forming a state machine.We investigated the use of Fransconi-Gori-Soda, Narendra & Parthasarathy, Elman and Williams & Zipsernetworks in detail. From best to worst performance, the architectures are: Elman, Williams & Zipser,Narendra & Parthasarathy and Fransconi-Gori-Soda. Theoretically, the Williams & Zipser network is themost powerful in terms of representational ability, yet the Elman network provides better performance.Investigation shows that this is due to the more complex error surface of the Williams & Zipser architecture.This result is supported by the parsimony principle [46]. Results indicate that a global minimum is neverfound for the task and algorithms described here, however, we note that the local minima which are foundconsistently possess performance which is similar within each architecture.The hierarchy of architectures with increasing computational power give an insight into whether or not theincreased power is used to model the more complex structures found in the grammar. The Fransconi-Gori-Soda network can be considered a control case - it is not capable of representing the kind of structuresfound in natural language. Its poor performance gives us more con�dence that the modelling power of15

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700
Weight

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Der E/Der W values for each weight

1e-05

0.0001

0.001

0.01

0.1

1

10

0 100 200 300 400 500 600
Weight

Nl No C/D No Sectioning/Alpha Using Waz 8:20:2 L=0.2 B=20: Der E/Der W values for each weight

1e-07
1e-06
1e-05

0.0001
0.001
0.01
0.1

1
10

0 50 100 150 200 250 300 350 400 450
Weight

Nl No C/D No Sectioning/Alpha Using Np 16:20:2 L=0.2 B=20 W=2: Der E/Der W values for each weight

1e-10

1

1e+10

0 50 100 150 200 250 300 350 400
Weight

Nl No C/D No Sectioning/Alpha Using Fgs 16:20:2 L=0.2 W=2: Der E/Der W values for each weight

Figure 6: @E@wi for each weight in the networks. Top to bottom: Elman, Williams & Zipser, Narendra &Parthasarathy and Fransconi-Gori-Soda.the remaining architectures is being utilised by the learning algorithms. The fact that the more powerfulElman and Williams & Zipser networks do provide increased performance suggests that they are able to �ndstructure in the data which cannot be modelled by the remaining networks. Additionally, analysis of thedata suggests that 100% correct classi�cation on the training data with only two word inputs would not bepossible without learning signi�cant aspects of the grammar.Another comparison of recurrent neural network architectures, that of Giles and Horne [28], compared variousnetworks on randomly generated 6 and 64-state �nite memory machines. The locally recurrent and Narendra& Parthasarathy networks proved as good or superior to more powerful networks like the Elman network,indicating that either the task did not require the increased power, or the vanilla backpropagation throughtime learning algorithm used was unable to exploit it.Although we have demonstrated the ability of the Elman and Williams & Zipser networks to model thegrammar, we found considerable di�culty in �nding suitable parameters for the models. Standard gradientdescent methods did not work. Experimenting with various techniques for improving the convergence of16

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Error Surface

Error Surface
 1.96
 1.93
 1.89
 1.86
 1.82
 1.79
 1.76
 1.72
 1.69
 1.65
 1.62
 1.59
 1.55
 1.52
 1.48
 1.45
 1.42
 1.38
 1.35
 1.31

-4
-3 -2

-1 0 1 2 3
-5

-4
-3

-2
-1

0
1

2
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Weight 647: 0.999913Weight 50: -0.999335Series 1

Weight 50: -0.999335Series 1

Nl No C/D No Sectioning/Alpha Using Fgs 16:20:2 L=0.2 W=2: Error Surface

Error Surface
 1.1
 1.1
 1.1

 1.09
 1.09
 1.09
 1.09
 1.09
 1.09
 1.09
 1.08
 1.08
 1.08
 1.08
 1.08
 1.08
 1.08
 1.07
 1.07
 1.07

-4 -3
-2 -1

0 1 2 3 -4
-3

-2
-1

0
1

2
3

1.065

1.07

1.075

1.08

1.085

1.09

1.095

1.1

1.105

Weight 161: 0.927514Weight 323: 0.484378Series 1

Weight 323: 0.484378Series 1

Nl No C/D No Sectioning/Alpha Using Np 16:20:2 L=0.2 B=20 W=2: Error Surface

Error Surface
 2.16
 2.11
 2.06
 2.01
 1.96
 1.91
 1.86
 1.81
 1.77
 1.72
 1.67
 1.62
 1.57
 1.52
 1.47
 1.42
 1.37
 1.32
 1.27
 1.22

-5
-4 -3

-2 -1
0 1

2
-5

-4
-3

-2
-1

0
1

21

1.5

2

2.5

Weight 45: -0.996686Weight 44: -0.997304Series 1

Weight 44: -0.997304Series 1

Nl No C/D No Sectioning/Alpha Using Waz 8:20:2 L=0.2 B=20: Error Surface

Error Surface
 2.36
 2.3

 2.25
 2.19
 2.14
 2.08
 2.02
 1.97
 1.91
 1.86
 1.8

 1.75
 1.69
 1.63
 1.58
 1.52
 1.47
 1.41
 1.36
 1.3

-4
-3 -2

-1 0 1 2 3
-3

-2
-1

0
1

2
3

41

1.5

2

2.5

Weight 248: 0.057568Weight 341: 1.22877

Weight 341: 1.22877Figure 7: Error surface with respect to the two most sensitive weights. Clockwise from top-left: Elman,Fransconi-Gori-Soda, Williams & Zipser and Narendra & Parthasarathy.
0.1

1

10

0 500 1000 1500 2000 2500 3000 3500
Epoch

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Learning

NMSE - final 0.136
Var (NMSE) - final 0.473

Figure 8: Average NMSE over the training set and variance of the NMSE over the training set duringtraining.
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 500 1000 1500 2000 2500 3000 3500

L
ea

rn
in

g
R

at
e

Epoch

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Learning Rate

Layer 1
Layer 2

Figure 9: The learning rate during training.standard gradient descent eventually led to success, however, this is not ideal: some techniques add extraparameters to the process, and analysis of convergence is di�cult. We investigated using simulated annealingfor �nding the parameters - a technique with much stronger theoretical convergence proofs. However, wefound the technique to be too computationally expensive.17

0
10
20
30
40
50
60
70
80

-0.5 0 0.5 1 1.5

H
is

to
gr

am

Output

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Training Set Performance

Confidence when Wrong
Confidence when Correct

Figure 10: Training set performance.
0

5

10

15

20

25

30

35

-0.5 0 0.5 1 1.5

H
is

to
gr

am

Output

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Test Set 1 Performance

Confidence when Wrong
Confidence when Correct

Figure 11: English test set performance.
0

2

4

6

8

10

12

14

-0.5 0 0.5 1 1.5

H
is

to
gr

am

Output

Nl No C/D No Sectioning/Alpha Using Elman 16:20:2 L=0.2 B=20 W=2: Test Set 2 Performance

Confidence when Wrong
Confidence when Correct

Figure 12: Japanese test set performance.We cannot make signi�cant conclusions based on the generalisation of the models due to the sparseness ofthe available data, however we believe that our comparison of architectures and algorithms on a complexproblem and success in training the Elman and Williams & Zipser networks is signi�cant. With an increasein the amount of data we expect better generalization performance, however we also expect training to bemore di�cult. It is clear that there is considerable di�culty scaling the models considered here up to largerproblems. Hence, we need to continue to address the convergence of the training algorithms. We believe thatfurther improvement is possible by continuing to address the nature of parameter updating during gradientdescent. However, a point must be reached after which improvement with gradient descent based modelsrequires consideration of the nature of the error surface. Further insight may be gained by investigating:the input and output encodings (these are not commonly chosen with the speci�c aim of controlling theerror surface), the ability of parameter updates to modify network behaviour without destroying previouslylearned information, and the method by which the networks implement structures such as hierarchical andrecursive relations.
18

References[1] Robert B. Allen. Sequential connectionist networks for answering simple questions about a microworld. In 5thAnnual Proceedings of the Cognitive Science Society, pages 489{495, 1983.[2] A.D. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network architecture for time series modelling.Neural Computation, 3(3):337{350, 1991.[3] E.B. Baum and F. Wilczek. Supervised learning of probability distributions by neural networks. In D.Z. An-derson, editor, Neural Information Processing Systems, pages 52{61, New York, 1988. (Denver 1987), AmericanInstitute of Physics.[4] N. Chomsky. Three models for the description of language. IRE Transactions on Information Theory, IT-2:113{124, 1956.[5] N.A. Chomsky. Lectures on Government and Binding. Foris Publications, 1981.[6] N.A. Chomsky. Knowledge of Language: Its Nature, Origin, and Use. Prager, 1986.[7] A. Cleeremans, D. Servan-Schreiber, and J. McClelland. Finite state automata and simple recurrent recurrentnetworks. Neural Computation, 1(3):372{381, 1989.[8] J. P. Crutch�eld and K. Young. Computation at the onset of chaos. In W. Zurek, editor, Complexity, Entropyand the Physics of Information. Addison-Wesley, Reading, MA, 1989.[9] Christian Darken and John Moody. Note on learning rate schedules for stochastic optimization. In NeuralInformation Processing Systems 3, pages 832{838. Morgan Kaufmann, 1991.[10] Christian Darken and John Moody. Towards faster stochastic gradient search. In Neural Information ProcessingSystems 4, pages 1009{1016. Morgan Kaufmann, 1992.[11] Je�rey L. Elman. Structured representations and connectionist models. In 6th Annual Proceedings of theCognitive Science Society, pages 17{25, 1984.[12] J.L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.[13] J.L. Elman. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learn-ing, 7(2/3):195{226, 1991.[14] P. Frasconi, M. Gori, M. Maggini, and G. Soda. Uni�ed integration of explicit rules and learning by example inrecurrent networks. IEEE Transactions on Knowledge and Data Engineering, 1992. To appear.[15] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cli�s, N.J, 1982.[16] M. Gasser and C. Lee. Networks that learn phonology. Technical report, Computer Science Department, IndianaUniversity, 1990.[17] C.L. Giles, D. Chen, C.B. Miller, H.H. Chen, G.Z. Sun, and Y.C. Lee. Second-order recurrent neural networksfor grammatical inference. In 1991 IEEE INNS International Joint Conference on Neural Networks - Seattle,volume II, pages 273{281, Piscataway, NJ, 1991. IEEE Press.[18] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C. Lee. Learning and extracting �nite stateautomata with second-order recurrent neural networks. Neural Computation, 4(3):393{405, 1992.[19] C.L. Giles, C.B. Miller, D. Chen, G.Z. Sun, H.H. Chen, and Y.C. Lee. Extracting and learning an unknowngrammar with recurrent neural networks. In J.E. Moody, S.J. Hanson, and R.P Lippmann, editors, Advances inNeural Information Processing Systems 4, pages 317{324, San Mateo, CA, 1992. Morgan Kaufmann Publishers.[20] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, and D. Chen. Higher order recurrent networks & grammaticalinference. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 380{387, SanMateo, CA, 1990. Morgan Kaufmann Publishers.[21] M. Hare. The role of similarity in hungarian vowel harmony: A connectionist account. Technical Report CRLTech report 9004, Centre for Research in Language, University of California, San Diego, 1990.[22] M. Hare, D. Corina, and G. Cottrell. Connectionist perspective on prosodic structure. Technical Report CRLNewsletter Volume 3 Number 2, Centre for Research in Language, University of California, San Diego, 1989.[23] Catherine L. Harris and Je�rey L. Elman. Representing variable information with simple recurrent networks.In 6th Annual Proceedings of the Cognitive Science Society, pages 635{642, 1984.[24] M.H. Harrison. Introduction to Formal Language Theory. Addison-Wesley Publishing Company, Inc., Reading,MA, 1978. 19

[25] S. Haykin. Neural Networks, A Comprehensive Foundation. Macmillan, New York, NY, 1994.[26] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-WesleyPublishing Company, Inc., Redwood City, CA, 1991.[27] J.J. Hop�eld. Learning algorithms and probability distributions in feed-forward and feed-back networks. Pro-ceedings of the National Academy of Sciences, USA, 84:8429{8433, 1987.[28] B. G. Horne and C. Lee Giles. An experimental comparison of recurrent neural networks. In Advances in NeuralInformation Processing Systems 7, page to appear, 1995.[29] E.B. Hunt, J.Marin, and P.T.Stone. Experiments in Induction. Academic Press, New York, NY, 1966.[30] L. Ingber. Very fast simulated re-annealing. Mathl. Comput. Modelling, 12:967{973, 1989.[31] L. Ingber. Adaptive simulated annealing (asa). Technical report, Lester Ingber Research, McLean, VA,ftp.caltech.edu: /pub/ingber/asa.Z, 1993.[32] M. F. St. John and J. L. McLelland. Learning and applying contextual constraints in sentence comprehension.Arti�cial Intelligence, 46:5{46, 1990.[33] A. K. Joshi. Tree adjoining grammars: how much context-sensitivity is required to provide reasonable structuraldescriptions? In L. Karttunen D. R. Dowty and A. M. Zwicky, editors, Natural Language Parsing. CambridgeUniversity Press, Cambridge, 1985.[34] Joseph B. Kruskal. An overview of sequence comparison. In David Sanko� and Joseph B. Kruskal, editors, TimeWarps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley,Reading, Massachusetts, 1983.[35] S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.[36] H. Lasnik and J. Uriagereka. A Course in GB Syntax: Lectures on Binding and Empty Categories. MIT Press,1988.[37] B. MacWhinney, J. Leinbach, R. Taraban, and J. McDonald. Language learning: cues or rules? Journal ofMemory and Language, 28:255{277, 1989.[38] R. Miikkulainen and M. Dyer. Encoding input/output representations in connectionist cognitive systems. InG. E. Hinton D. S. Touretzky and T. J. Sejnowski, editors, Proceedings of the 1988 Connectionist Models SummerSchool, pages 188{195, Los Altos, CA, 1989. Morgan Kaufmann.[39] K.S. Narendra and K. Parthasarathy. Identi�cation and control of dynamical systems using neural networks.IEEE Trans. on Neural Networks, 1(1):4, 1990.[40] Fernando Pereira. Inside-outside reestimation from partially bracketed corpora. In ACL 92, 1992.[41] D. M. Pesetsky. Paths and Categories. PhD thesis, MIT, 1982.[42] J.B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227{252, 1991.[43] C. Pollard. Generalised context-free grammars, head grammars and natural language. PhD thesis, Departmentof Linguistics, Stanford University, Palo Alto, CA, 1984.[44] J.R. Quinlan. Discovering rules from large collections of examples: a case study. In D. Michie, editor, ExpertSystems in the Microelectronic Age. Edinburgh University Press, Edinburgh, 1979.[45] Ross Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, California, 1993.[46] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scienti�c, Singapore, 1989.[47] H.T. Siegelmann and E.D. Sontag. On the computational power of neural nets. In Proceedings of the Fifth ACMWorkshop on Computational Learning Theory, pages 440{449, New York, N.Y., 1992. ACM.[48] P.Y. Simard, M.B. Ottaway, and D.H. Ballard. Analysis of recurrent backpropagation. In D. Touretzky, G. Hin-ton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, pages 103{112,San Mateo, 1989. (Pittsburg 1988), Morgan Kaufmann.[49] S.A. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered neural networks. Complex Systems,2:625{639, 1988.[50] Andreas Stolcke. Learning feature-based semantics with simple recurrent networks. Technical Report TR-90-015,International Computer Science Institute, Berkeley, California, April 1990.[51] M. Tomita. Dynamic construction of �nite-state automata from examples using hill-climbing. In Proceedings ofthe Fourth Annual Cognitive Science Conference, pages 105{108, Ann Arbor, Mi, 1982.20

[52] D. S. Touretzky. Rules and maps in connectionist symbol processing. Technical Report Technical Report CMU-CS-89-158, Carnegie Mellon University: Department of Computer Science, Pittsburgh, PA, 1989.[53] D. S. Touretzky. Towards a connectioninst phonology: The 'many maps' approach to sequence manipulation.In Proceedings of the 11th Annual Conference of the Cognitive Science Society, pages 188{195, 1989.[54] R.L. Watrous and G.M. Kuhn. Induction of �nite-state languages using second-order recurrent networks. NeuralComputation, 4(3):406, 1992.[55] R.J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks.Neural Computation, 1(2):270{280, 1989.[56] R.J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent connectionist networks. InY. Chauvin and D.E. Rumelhart, editors, Backpropagation: Theory, Architectures, and Applications. Erlbaum,Hillsdale, NJ, 1990.

21

