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Empirical auto-tuning has been successfully applied to scientific computing ap-

plications and web-based cluster servers over the last few years. However, few studies

are focused on applying this method on optimizing the performance of database sys-

tems. In this thesis, we present a strategy that uses Active Harmony, an empirical

automated tuning framework to optimize the throughput of PostgreSQL server by

tuning its settings such as memory and buffer sizes. We used Nelder-Mead simplex

method as the search engine, and we showed how our strategy performs compared

to the hand-tuned and default results.

Another part of this thesis focuses on using data from prior runs of auto-tuning.

Prior data has been proved to be useful in many cases, such as modeling the search

space or finding a good starting point for hill-climbing. We present several methods

that were developed to manage the prior data in Active Harmony. Our intention

was to provide tuners a complete set of information for their tuning tasks.
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Chapter 1: Introduction

1.1 Overview

Automated tuning has already been successfully used in multiple research ar-

eas, especially in the field of scientific computing. In today’s software applications,

programs are no longer written for a specific hardware platform, and libraries or

re-usable components are widely shared by a huge number of users. However, ap-

plications may not be well optimized on a specific platform due to the differences

among hardware architectures, operating systems strategies and other configuration

specific details.

Tuning the parameters of applications on a specific platform for optimal per-

formance is a non-trivial problem, and it is hard to obtain a specific performance

model for the target platform because: 1. The runtime characteristics of low level

systems and the high level applications are difficult to model; 2. It takes a lot of

effort to maintain the existing performance models for a specific application. More-

over, due to the large search spaces that are common in scientific computing tasks,

finding the global optimal performance point is an NP-hard problem.

Active Harmony is an automated online performance tuning framework that

improves the runtime performance of various types of applications. Previous uses
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of Active Harmony mainly focused on compiler optimization, such as tuning loop

tiling and loop unrolling factors. However, few research topics focused on other

areas. One of the goals of this thesis is to show that Active Harmony can also be

applied to tuning database servers, and that it is able to improve the throughput of

database systems at runtime.

In addition, there is a growing demand for Active Harmony to have a man-

agement system that stores performance data from tuning tasks. During the tun-

ing process of an application, empirical performance data were usually considered

redundant and thrown away after they are tested. However, with the increasing

complexity of target applications, researchers realized that the re-usability of prior

data becomes increasingly important, and recent studies [14] [3] show that prior

data are useful in capturing the search space of the target problem. Therefore, we

present several methods that are developed recently to store and manage prior data

in Active Harmony.

Our work can be summarized as follows: Introducing new features into Active

Harmony and showing that database servers perform better after tuned by Active

Harmony.

1.2 Contributions of the Thesis

The main contributions of this thesis are:

1. Developed new methods used by Active Harmony to manage prior data.

2. Proposed an empirical approach to tune the throughput of database systems

2



using Active Harmony.

1.2.1 Prior Data Logging for Active Harmony

Learning from prior data has become a popular topic among auto-tuning tools

developers in recent years. Prior data have been usually used by researchers to build

performance models using machine learning algorithms. The benefits of doing this

include 1. Speeding up the tuning process by evaluating the performance based on

the model, rather than frequently doing empirical tests, and 2. Finding a better

starting point for future empirical tuning tasks. Previous work on empirical auto-

tuning often focused on the scalability of the framework and the tuning ability of

the search engine. However, with the target application being more complicated,

we foresee that the online empirical method would produce much overhead and be

slower to converge. Therefore, methods to manage prior data are required to meet

the future challenges.

In this thesis, we present three formats supported by Active Harmony to record

prior data: text files, XML, and TAUdb.

1.2.2 Online Performance Tuning of Database Systems

Database systems include many parameters that need to be tuned for a specific

database workload in order to get the optimal performance. These parameters can

be categorized into two classes: 1. Parameters that define the sizes for each type of

memory buffers; 2. Parameters that estimate the status of the underlying systems, in
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order to affect the strategies used by the query planner. Tuning the performance of

a database is a non-trivial problem because: 1. The performance highly depends on

the type of workloads. For example, some queries consume more sorting buffers than

others, whereas other queries may consume more maintenance buffers. Therefore, it

is important to decide how much of each type of memory buffers should be allocated

for different workloads, especially when there is a memory resource limitation. 2.

All possible configurations form an N -dimensional tuning space, and finding the

optimal configuration is an NP-hard problem without prior knowledge.

The rest of this document is organized as follows: Chapter 2 introduces the

related work; Chapter 3 introduces Active Harmony, the empirical automated tuning

framework that our studies were based on; Chapter 4 introduces the prior data

management plug-ins in Active Harmony; and Chapter 5 discusses how we use

Active Harmony to tune a database server;
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Chapter 2: Related Work

2.1 Automated Tuning Tools and Usage

2.1.1 Empirical Tuning

Empirical-based auto-tuning optimizes the target applications by using an em-

pirical feedback loop. Empirical-based tuning is a technique that provides accurate

performance evaluation. However, the tuning speed is lower than other techniques

because it measures performance empirically.

Active Harmony [10] is an empirical auto-tuning framework that has been

used to tune cluster-based web services, and static/dynamic parameters for multiple

applications.

In addition to Active Harmony, Orio [18] is another empirical tuning tool de-

veloped by Argonne National Laboratory. Orio uses an empirical feedback loop, a

search engine and code transformer to optimize the performance of GPU applica-

tions.

Performance tuning of applications that requires variations of the original pro-

grams relies on runtime code generation. CHiLL [5] contains a polyhedral loop trans-

formation and code generation framework. CHiLL is very suitable for auto-tuning
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frameworks as it mathematically represents iteration spaces and has a flexible script

interface for code generation.

Empirical auto-tuning has been widely used to tune applications in various do-

mains. I-hsin et al. [8] used Active Harmony to tune the performance of cluster-based

web services. They showed that their empirical approach improved the WIPS(Web

Interactions Per Second) of TPC-W benchmark on a simple cluster for 5-16%. It

was also used to tune the performance-related parameters of GS2 [7], SMG2000 [28],

and others.

2.1.2 Model-based Tuning

Model-based auto-tuning relies on the simulator developed for a specific appli-

cation on a specific platform. Model-based methods can be useful in well-organized

hardware systems such as memory systems or graphic processing units in which there

exist a huge number of identical components. Choi et al. [6] proposed a performance

model for GPUs and applied this model to tuning the performance of sparse matrix-

vector multiplication. However, they only verified their GPU performance model on

a few applications.

Model-based tuning achieves good accuracy in performance evaluation. How-

ever, such methods are less useful in more complex applications or platforms, such

as CISC processors, due to the difficulties in developing and maintaining the models.
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2.1.3 Predictive Tuning

Predictive tuning technique uses machine learning algorithms to build a statis-

tical performance model based on empirical performance data. Predictive methods

adopt the efficiency of model-driven tuning techniques in performance measurement,

but the accuracy of this method depends on how empirical data are sampled.

Ganapathi et al. [14] developed a kernel canonical correlation analysis [13]

method to predict the performance of a database query before its execution, so that

the prediction can be further used in auto-tuning the performance of data centers.

Bergstra et al. [3] proposed a machine learning method to auto-tune GPU programs

and to decide which features are passed to the learning model. They also used

Boosted Regression Trees to predict how faster a kernel is compared to a reference

baseline.

2.2 Database Self-Tuning Techniques

The problem of tuning database parameters has been discussed over decades

in the field of database auto-administration.

Storm et al. [25] proposed a tool called Self-Tuning Memory Manager (STMM),

which is able to dynamically allocate memory for a given workload. They assumed

that each memory consumer can be regarded as an independent variable to others,

and its size versus its impact on performance can be modeled as a simple exponential

function. However, they have not considered tuning parameters other than memory

buffers. This thesis shows that decision-related parameters may fail to fit in their
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proposed model.

Duan et al. [12] approached the problem by modeling the search space using

adaptive sampling with Gaussian process. Their model is able to fit into a more

complex search space compared to the exponential function model. However, since

the number of samples increases with the number of tuning parameters, there is an

extra overhead in building and verifying the model. Besides, their optimization is

based on standby databases and is less sensitive to a changing workload.

Schnaitter et al. [22] proposed COLT, an online tuning framework that con-

tinuously analyzes the data access structure and configures the settings based on

previous statistics.

Nguyen et al. [29] developed a new approach in tuning the buffer sizes based

on the buffer miss equation. The equation identifies a buffer size limit that is useful

for buffer tuning and powering down idle buffers. They use this equation to simulate

and predict the I/O costs.

Other researchers tried to optimize database performance from other direc-

tions. For example, Chaudhuri et. al [4] and Agrawal et al. [1] both discussed

approaching the problem by automated physical database design.
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Chapter 3: Active Harmony

3.1 Introduction

We first introduce Active Harmony. Active Harmony is an empirical auto-

mated tuning framework developed for tuning the runtime performance of applica-

tions [10].

3.2 Architecture of a Active Harmony

Active Harmony uses a client/server architecture. The client is the target

application that needs to be tuned, and the server manages the tuning task and

executes search heuristics. Active Harmony consists of Harmony client API, Har-

mony server, Harmony session core, command line tools such as TUNA and other

plug-ins, such as code generator and XML Writer. Figure 3.1 shows a system that

uses Active Harmony to tune the performance of target applications.

3.2.1 Harmony APIs

The Harmony client API provides functions that the applications (the client

code) call to interact with Harmony server. The client code first describes the
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Figure 3.1: Active Harmony Automated-tuning System
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problem as a list of constraints and value strides to represent the search space of

parameters to the Harmony server, then interacts with it and forms an empirical

feedback loop in order to optimize its runtime performance. An example of the

usage of Harmony client API is shown in the code snippet in Figure 3.2. At each

harmony fetch() call, the server sends the client a new point in the search space that

has not been tested before, and it gets a reply from the client about the performance

measurement of that point when the client code calls harmony report(). Active

Harmony has multiple heuristics (search strategies) to generate the next testing

points. More details about the search strategies are described in Section 3.4.

Active Harmony has been re-factored to provide a modular architecture. By

introducing the concept of “session,” a single tuning task is described in the Harmony

server as a Harmony session, and the server is able to handle multiple sessions at

the same time. This feature not only allows running multiple tuning tasks with one

server simultaneously, but it also encourages users to divide unrelated parameters

within a single application into several parameter sets in order to speed up the

tuning process.

To tune an application using Active Harmony, the original code has to be

modified to enable communications with the Harmony server.

The code snippet in Figure 3.2 also points out the difference between a Har-

mony session and a Harmony client. Harmony session can be regarded as a tuning

task handler on the server side. A session core has to be generated by a Harmony

client, but it might not only serve one single client. However, a Harmony client can

be regarded as a “customer” for a Harmony session. It is the only one served by the

11



/*Initialization of harmony tasks*/

hsession_init();

/* Configure the Harmony session,

* inducing the search strategy and the intended plug-ins*/

hsession_cfg(&session, CFG_NAME, CFG_VALUE);

/* Register a new tuning parameter to the Harmony session,

* the below line defines an integer variable */

hsession_int(&session, "name", min, max, step);

/* Launch a new session core on the server side */

hsession_launch(&session);

/* Initialize and allocate a Harmony descriptor on the client side */

harmony_init()

/* Bind the session variables to local variables */

harmony_bind_int(hdesc, "param_name", &param_name);

/* Connect the current client to the session */

harmony_join(hdesc, NULL, 0, name);

/* Inform the server of new configurations */

harmony_inform(hdesc, "CFG_NAME", CFG_VALUE);

/* Fetch a new configuration from the server,

* and change the local parameters to new values for performance testing */

harmony_fetch(hdesc);

/* Report the performance value of the newly fetched

* configuration back to the server*/

harmony_report(hdesc, perf_val);

/* Finalization */

harmony_fini(hdesc);

Figure 3.2: An example of using Harmony Client API calls
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session in serial programs, but in parallel program auto-tuning, each client can be a

process or a thread of the program, and each process or thread is co-working with

other processes or threads under the same Harmony session.

3.2.2 Harmony Server

In the latest Active Harmony version, the Harmony server simply launches

session cores upon client requests and is responsible for passing messages between

the clients and the session cores. The client code includes the session ID when

fetching a data point or reporting a performance value in the message that it sends

to the Harmony server, and the server forwards the message using the specified

session ID to the corresponding session core.

3.2.3 Session Core

A session core is an instance of a Harmony session launched by the Harmony

server when the client code calls hsession init(). The session core holds the infor-

mation of the application, such as application name, parameter information, the

search strategy and other configuration data customized by the clients. A session

core only communicates with the Harmony server. It receives the client requests

forwarded by the Harmony server, and it also sends the newly generated points to

the Harmony server, which will later be forwarded to the client code.

Active Harmony also provides a plug-in interface for each session core. Users

of Active Harmony can develop their own plug-in routines that will be triggered
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Figure 3.3: Role of Harmony server
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Figure 3.4: Architecture of Harmony Session Core

by the session core if there is a corresponding Harmony API function call from the

client code. More details about Harmony plug-ins are described in Section 3.3.

Figure 3.4 illustrates the architecture of a session core. The session core re-

ceives the client’s request from Harmony server. If the client calls harmony fetch(),

it finds an untested configuration using the search heuristics, and if the clients calls

harmony report(), it reads the empirical performance measurements of previous

configurations and applies them to the search engine to generate a new testing

point.
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Figure 3.5: Mechanism of Harmony plug-ins

3.3 Plug-ins of Active Harmony

As mentioned in Section 3.2.3, the latest Active Harmony allows users to

develop their own plug-ins to extend the functionality of this auto-tuning framework.

Since the plug-ins are launched by the session core, they are commonly used to

manipulate the tuning information in the session core. A typical Harmony plug-in

is a code generator used to re-generate the code snippet based on new parameters

(e.g. loop tiling or loop unrolling factors). A plug-in can also be a user-defined

search strategy if any domain-specific tuning strategies are appropriate.

Figure 3.5 presents how each plug-in routine is triggered by the corresponding
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Harmony client API function call from the client code. Users can develop plug-ins

that optimize the generated points, store the performance measurements in their

own formats or build models based on performance data that have already been

tested.

3.4 Tuning Algorithms

An efficient tuning algorithm is the key to reaching an optimal point in the

search space, especially for empirical-based auto-tuning. The reason is that measur-

ing the performance of one point has more overhead than other tuning techniques.

Finding a good set of configurations is equivalent to searching for a k-tuple in

the entire search space defined by the value space of the parameters in the target

application. Optimization in an N -dimensional space is an application dependent

problem and has been studied for decades. Many heuristics have been developed

to prevent the search results from falling into a local minimum area. However, for

runtime auto-tuning tools, since the tuning speed is also a very important metric

to evaluate the performance of a search strategy, local optimization algorithms are

usually chosen for this purpose.

Active Harmony is an experiment-based tool which treats the objective func-

tion as a black-box, and it only relies on the function output to carry out its tuning

process. A good search strategy for auto-tuning should consider both tuning speed

and ability of convergence.

Four search strategies are provided with the Active Harmony release, including
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random search, brute force exhaustive method, Nelder-Mead simplex method, and

parallel rank ordering method.

3.4.1 Random and Brute Force Exhaustive Method

Active Harmony provides a brute force and a random method as simple tuning

strategies. Neither of them is commonly used in tuning the performance of real ap-

plications, but they are regarded as auxiliary methods for users to better understand

the search space.

The brute force method is commonly used to rebuild a small search space with

grid sampling and to judge whether a smarter tuning strategy could be applied to

such a search space. The random method is often used to make comparison with

more complex strategies in terms of optimized performance value and the number

of steps they take to converge.

3.4.2 Nelder-Mead Simplex Method

The Nelder-Mead simplex method [20] is a commonly used nonlinear opti-

mization technique. It is suitable for either continuous spaces or discrete spaces.

Therefore, it can be applied to a wider range of optimization problems compared to

gradient methods.

The Nelder-Mead method is based on the concept of a simplex, which is a poly-

tope of N + 1 vertices in a N -dimensional search space. Each vertex in the simplex

is assigned a value which is generated by the objective function. During the tuning
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process, the simplex is repeatedly transformed by different operations. At each op-

eration, it generates a new vertex that replaces an old one, in the hope of finding a

better configuration. The operations include reflection, expansion, contraction and

reduction. Figure 3.6 illustrates these operations.

The method first orders the values of each vertex in the initial simplex to

find the point with the worst value. An N -dimensional centroid point is calculated

based on the remaining vertices and the worst vertex is reflected with respect to the

centroid. If the new point achieves the best performance among all points in the

new simplex, it is further expanded with respect to the centroid. If the reflected

point is the worst, the simplex is contracted and the area it covers is smaller. If

the contracted vertex is the worst, all vertices except the best one are shrunk with

respect to the best point.

The Nelder-Mead simplex algorithm is designed for local optimization, and

the search results highly depend on the initial simplex. Therefore, methods that

can form good initial simplexes are required in the development of Active Harmony.

3.4.3 Parallel Rank Ordering (PRO)

Parallel rank ordering is derived from the Nelder-Mead simplex method and

is used to optimize an objective function in parallel. Similar to the Nelder-Mead

method, the PRO algorithm also uses the concept of a simplex and its operations

consist of reflection, expansion, and shrinking. The main difference between the

Nelder-Mead and the PRO method is that the Nelder-Mead is moving only one point
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Figure 3.6: Nelder-Mead simpex method. The upper-left figure shows
how the worst point is reflected to form a new simplex. The upper right
shows how the reflected simplex is expanded if the new point is found
to be the best. The lower left figure shows how the worst point contract
if the reflection step fails. And the lower right figure shows how simplex
reforms if the contraction step fails.
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at each step, and the PRO is moving all points except the best point simultaneously.

Therefore, the PRO method has the ability of utilizing multiple processes or threads

when tuning parallel programs to exploit the search space more efficiently.

Another difference between the Nelder-Mead and the PRO is that the simplex

in the PRO method can consist of either N + 1 or k ∗ N points (k > 1), whereas

the simplex in the Nelder-Mead method only consists of N + 1 points. Although

the simplex of the Nelder-Mead method can be made of more points, it only tests

one point at a time, so having more vertices in the simplex doesn’t help much in

speeding up the tuning process. However, since the PRO method is a technique

designed for parallel optimization problems, all points in a simplex can be tested

simultaneously. Therefore, if there are enough process or thread resources, PRO’s

search ability can be improved by adding more points to the simplex and it only

takes little extra overhead to maintain a bigger simplex. Figure 3.7 illustrates the

transformation operations of the PRO method.

For both the Nelder-Mead and the PRO methods, it is important to keep the

simplex an N -polytope to maintain their search ability. When the simplexes of them

can be represented using a lower-dimensional space, they lose the ability to exploit

in certain directions.

3.5 Performance Data Management

Active Harmony uses a data logging method that appends the performance

data of the current run to a text file that contains configuration vectors and per-
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(a) Simplex reflect (b) Simplex expand

(c) Simplex shrink

Figure 3.7: PRO transformations: (a) Reflect all the point except the
best one with respect to the best point. The reflection succeeds when the
point reflected by the worst one is performing better than the worst one.
If it performance better than the best point, it triggers the expansion
operation; (b) Expand the simplex; (c) Shrink the simplex when the
reflection fails
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formance measurements. However, the data in such text files are hard to analyze

because they are lack of organized structures and useful metadata, such as machine

and operating system configuration information.

To address the logging problem, we provide two new methods to store and

manage prior data, including storing the data in XML format, and managing per-

formance data using TAUdb [17]. We believe that these methods are able to provide

users a complete set of information about the tuning tasks. More details about prior

data management are provided in Chapter 4.
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Chapter 4: Prior Data Management

Empirical-based tuning is a time-consuming process and referring to prior data

is an effective way to speedup the time spent on performance measurement. In this

chapter, we present several methods used by Active Harmony to log and manage

prior data.

4.1 Data Logging in Active Harmony

In Chapter 3, we introduced the plug-in work flow of Active Harmony and

showed that a plug-in routine can be triggered by a specific Harmony API function

call from the client code. In order to record a complete set of information about

the applications tuned by Active Harmony, we developed plug-ins that made use of

such triggers to record metadata and performance data. Table 4.1 shows how each

Harmony API function call triggers a specific Active Harmony plug-in routine.

4.2 Text Log

Text Log has already been developed in the early versions of Active Har-

mony. Using a text file is a basic approach of saving configuration values and the

corresponding performance measurements. The Harmony server saves all the per-

24



Table 4.1: Harmony API in interaction with logging plug-ins

Harmony API Function Function

hsession launch Triggers the initialization of the target format, such as creation
of logging file

harmony inform This call can be used to inform the server about the metadata
on the client side

harmony report Triggers the logging system to record the configuration-
performance pair

harmony fetch Triggers the logging file to detect the source of the fetch, and
build a client mapping table for parallel program tuning

formance data it observes during a single tuning task in a local text file. However,

text files doesn’t include any metadata information, which makes it hard for the

users to analyze the tuning process.

Text files can be easily parsed by recursive regular expressions, because it

only consists of configuration values and performance values which forms a k-tuple

separated by certain delimiters, where k is equal to the number of parameters + 1.

4.3 XML

One major drawback of using text files is its lack of metadata information,

including hardware configurations and operating systems information. Metadata is

important because when referring to prior data which may or may not be produced

on the same machine, the performance measurements generated on similar hardware

configurations are more reliable. For example, when tuning an application on a x86

machine, we would always refer to the prior data generated by an x86 machine rather
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than an ARM machine. Although We can easily put all such metadata into the text

files, much extra effort will be spent on parsing such information. To address this

problem, we also provide an XML format to store history data.

The XML format is a more formalized and a more common method of sharing

data among different users. The intuition of using this format rather than text

files is to provide the users a complete set of information of their tuning tasks, not

limited to performance measurements. Other advantages of using the XML format

include that it is easy to parse, to read and to modify.

There are several major advantages of using the XML format: 1. XML is

basically a text file and doesn’t rely on underlying systems, therefore it is portable;

2. XML has an organized and easy-to-read schema. Since there are well developed

libraries for parsing and modifying XML files, it can also be easily used by others.

Figure 4.1 shows an example of the XML file generated by Active Harmony.

The corresponding tree structure is composed of two parts: metadata and raw data.

Metadata collects the general application information, the search space, as well as

the operating system and hardware information of each client. Raw data collects

each configuration generated by Active Harmony, the corresponding performance

value reported by the client, as well as the source node that the measurement is

done. The reason that we record the source node is to handle such cases that

a parallel program is executing on a heterogeneous cluster where each node has

different hardware configurations. In such cases, measurements from different nodes

should not be mixed together.
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Figure 4.1: An example of Harmony’s XML output
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4.4 TAUdb

In order to better analyze prior data, saving them locally is inefficient be-

cause it reduces the accessibility of data as well as the portability of tuning tasks.

Besides, the lack of metadata in text files also impedes the analysis of such infor-

mation. For example, one may wish to investigate how CPU configuration impacts

the performance of the application under the same configuration.

There are also several drawbacks of using the XML format regardless of its

portability and ability of organizing data. One major problem is performance issue

since indexing a specific data inside an XML file is currently based on linear search.

This approach creates a performance bottleneck when storing massive data. Besides,

since each single tuning task has its own XML data file, the management of such

files is dependent on the file system and it is difficult to combine the files’ names

with their contents. Users are left to manually organize the naming of each XML

file and have a knowledge of what is included in a specific file to do data analysis.

Given the disadvantages of using the XML format, storing data in databases

becomes an attractive alternative. Compared to the XML format, storing data

in a database has the advantage of ease of management, fast indexing and better

inserting and updating performance.

4.4.1 TAU

The TAU Performance System [23] is a toolkit for analyzing the performance

of parallel programs and is capable of gathering performance information through
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Figure 4.2: Data structures of TAU

instrumentation of functions, methods, basic blocks and statements. We integrated

Active Harmony with TAU in order to save Harmony data in the database provided

by TAU: TAUdb.

TAUdb is a derived work from PerfDMF [16] project, but it is more concise in

the schema compared to PerfDMF. Besides, TAUdb provides C API functions that

allowed us to directly call them from Active Harmony plugins.

4.4.2 Schema of TAUdb

Figure 4.2 represents the data structures used by TAU to record performance

data. The database schema is also corresponding to this structure.
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In Active Harmony, we use Trial to represent a single run of the target tuning

task. Primary metadata corresponds to the general application information, such

as the search space of tuning parameters, name of the application, etc. Secondary

metadata is used to record the hardware or operating system information related

to a specific thread or process. Metric refers to the cost function that needs to be

optimized. In most performance tuning cases, metric is the runtime of the target

applications. Each timer records all performance information for a specific routine.

Timer call path are subroutines of a timer. Timer call data is used to record du-

plicate values when the same routine is called multiple times, and the performance

values are stored in the timer value. Timer parameters holds the parameters of the

routine, which are tuned by Active Harmony. Each new set of parameters generated

by Active Harmony can be considered as a new timer since the target routine has

been re-configured.

4.4.3 Visualization of Performance Data

TAU provides several tools to visualize the performance data, including Per-

fExplorer and ParaProf. With the help of such tools, Harmony users can have a

better understanding of how their applications are tuned compared to the default

settings.

Figure 4.3 shows the overview of an MPI program running on 4 nodes which

is tuned by Active Harmony. The TAUdb plugin is able to distinguish performance

data from different clients and load it into the database.
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Figure 4.3: Example of “ParaProf” tool on an MPI program

Figure 4.4 shows how one of the 4 nodes is being tuned.

4.5 Discussion

In this chapter we introduced the architecture and functions of Active Har-

mony. We also presented some new methods of managing performance data gener-

ated by Active Harmony. We showed that these data are well organized and they

can be applied to machine learning algorithms for search space modeling.
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Figure 4.4: ParaProf’s visualization on one node in an MPI program
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Chapter 5: Tuning Database Systems

Performance of database systems has become a critical issue due to the in-

creasing use of DBMS’s in e-commerce applications. Database optimization meth-

ods usually include physical design tuning, query optimization, and tuning memory

buffers or other parameters. In this chapter, we focus on applying Active Harmony

to tuning database parameters such as memory buffers sizes, and parameters that

affect the decisions made by the query planner.

5.1 Motivation

One traditional method for a database administrator to improve the perfor-

mance of the database is by looking into the current transaction profiles and the

details of incoming queries, then configuring the database parameters accordingly.

However, this can be a tedious and repeating task, and it also requires trial-and-

error for the administrator to get the optimal performance for a specific workload.

In the worst case scenario it will take a DBA days or weeks to go through the pro-

cess of performance tuning. Our work tries to address this problem by using Active

Harmony to automate the entire tuning process.

Previous work on database optimization includes iTuned [12], STMM [25]
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and other approaches [4] [1] [29]. iTuned used an adaptive sampling method with

Gaussian process to predict the best point and to adapt the model into the real

search space with empirical tests. STMM proposed an exponential function that

tries to model the relationship between the size of each memory consumer and the

total throughput of the database system.

This work was also motivated by the fact that previous methods can be im-

proved by Active Harmony. iTuned applied Gaussian process on empirical data to

capture the search space. However, this method requires a relatively large number

of samples to fit the real hyper space to make the estimation accurate. In addition,

this method is an offline strategy that runs on standby machines. Furthermore,

iTuned is not responsive to changing workloads.

According to our observations, the model proposed by STMM is accurate for

some workloads. However, this model may fail to model the search space for param-

eters that are not related to memory buffers allocation. Besides, STMM requires

the client connections being stable. To address these problems, our approach ap-

plies a Nelder-Mead simplex method to optimize the parameters in a hyper space.

Our results not only show that Active Harmony is able to tune various parameters

efficiently with a semi-online tuning strategy, but also show that it is adaptive to

changing workloads.

The final goal of this work is to automate the performance tuning process

of database servers and improve the throughput compared to the default settings

under certain workloads. We also compared the tuned performance with parameter

values recommended by both PostgreSQL official site and its wiki [24].
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5.2 Problem Statement

The database parameter optimization problem is similar to other optimization

problems and can be stated as follows:

Having a series of parameters P1, P2, ..., Pn
, an unknown environmental input E

and a black-box function F (P1, P2, ..., Pn
, E), find the set of (P1, P2, ..., Pn

) subject to C

that produces the most optimal output. In the case of database tuning, P1, P2, ..., Pn

are database settings, the environmental input is the workload that sends queries to

the database and the objective function value of F (P1, P2, ..., Pn
, E) is the through-

put (number of transactions per minute) of the database during a given time period.

5.3 Platforms

5.3.1 PostgreSQL

PostgreSQL [15](also Postgres) is chosen in our experiments as the target

database to tune. PostgreSQL has a large number of settings that need to be tuned

for optimal performance, and we mainly focus on memory buffer sizing parameters

such as shared buffer and work mem, as well as the parameters that affect the

strategy in which the server takes to process the queries.

5.3.1.1 Postgres Offline Parameters

There are some parameters in PostgreSQL that require restarting the database

before they become effective. These parameters include shared buffers, maximum

35



number of connections, etc. All of them are considered global because clients are

not allowed to change them.

5.3.1.2 Postgres Online Parameters

Most of the parameters in PostgreSQL can be reconfigured online, which

means that these parameters can be reconfigured and reloaded without restart-

ing the server. Such configurations include effective cache size, work mem, ran-

dom page cost, etc. Each of them is a major factor for a specific class of SQL

queries.

Some of the online parameters are globally initialized but can be customized by

each database client. However, in our study, all memory buffer sizes and parameters

are treated as global variables, which means each client consumes the same amount

of memory. The intention was to find a global configuration that optimizes the

throughput for a workload, instead of each individual client.

5.3.2 TPC-H Benchmark

We use the TPC-H benchmark [9] to generate the workload of Postgres. TPC-

H is a decision support benchmark that consists of a suite of business oriented

ad-hoc queries and concurrent data modifications. The query models and data set

have broad industry-wide relevance and can be used to simulate industrial database

workloads. The benchmark simulates a decision supporting system that examines

large volumes of data and executes queries with a high degree of complexity. The
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performance of TPC-H queries is measured by Composite Query-per-Hour, which

can reflect the database throughput when queries are submitted concurrently. More

details can be found on TPC website [9].

The benchmark can generate different queries under the same template. We

used this feature to randomly generate queries under the same TPC-H query type.

For example, a workload of 6Q7 includes 6 concurrent TPC-H query number 7s with

different contents.

We built the workloads by selecting different types of queries from the bench-

mark and combined them to build multiple search spaces. The details are discussed

in Section 5.4.2.

5.3.3 Environment

The machine that runs the database server is equipped with four Intel (R)

Xeon(R) processors, each with a clock frequency of 2.33GHz. The total available

RAM is 4 GB. The operating system we used is 64-bit Linux 2.6.18 smp, . We have

also populated a database using a data set of 10 GB from the TPC-H benchmark.

5.4 Methodologies

5.4.1 Performance Measurement

Previous work on self-tuning of database systems usually aimed at optimizing

the runtime for each query or optimizing the number of queries committed in a given

time interval, in other words, improving the throughput of a database.
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There have been multiple research projects that tuned the amount of running

time for a single query or a certain combination of different queries. However, in an

industrial database workload, queries are usually an interleaved mixture of different

segments, so it is hard to find a specific configuration to satisfy the performance

requirements for each client query. The reason is that the client workload might be

a large number of combinations of different basic query blocks, and the search space

varies for each combination.

An alternative is to find a global configuration shared by all clients that opti-

mizes the number of transactions processed by the database within a certain period

of time. In our experiments, the database performance is based on the number of

transactions processed per minute.

When a new configuration is applied to the database system, we also assign

an amount of time to warm up the cache and memory, so that the memory access

pattern can be stabilized before starting to sample the performance value.

One major problem of sampling the throughput value of PostgreSQL is that

when running the same configuration under same workload for multiple times, the

performance may vary. There are two major reasons that cause the problem: 1.

The database performance is vulnerable to external noise; 2. The throughput metric

used by PostgreSQL is not accurate. The integer number of committed queries is

recorded by the variable xact commit in a table called pg stat database. However,

a query is not considered committed even if it is mostly done. This leads to the fact

that although a query might almost be finished within a sampling period, it might

contribute the throughput number to the next sampling period.

38



Figure 5.1: The Sampling Problem of PostgreSQL: the colored lines are
the timespans for the server to process a single query. The sampling point
only considers committed queries and ignores running queries, which may
cause the sampled performance to be unstable for the same configuration

Figure 5.1 illustrates an example for the sampling problem stated above. It

shows that although an interval may contribute most for some queries, it can only

be recorded as a valid transaction after it finishes.

To address this problem, multiple runs have been done on the same configura-

tion and the best performance value among them is reported to the Active Harmony

server. An empirical test has been done to decide the number of runs that is needed

to avoid such fluctuation, and in our case, we ran 3 samples for each set of configu-

rations.
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5.4.2 Workload

The optimal value for each configuration varies among different TPC-H queries.

For each class of the queries, there are some specific database settings that domi-

nate the performance of that query. The SARD [11] project provides a statistical

research on how PostgreSQL configurations have an impact on different queries. We

took into consideration their statistics to help us decide the tuning parameters.

Table 5.1: Ranking of configuration parameters for a workload of TPC-H queries [11]

Parameter Q1 Q8 Q9 Q13 Q16

cpu tuple cost 15 6 15 15 15

effective cache size 15 15 11 1 15

geqo 15 6 7 15 15

maintenance work mem 15 2 3 15 15

deadlock timeout 15 6 15 15 15

max connections 15 6 5 15 15

random page cost 15 12 1 15 15

shared buffers 15 12 3 2 2

temp buffers 15 12 7 15 15

work mem 1 1 13 3 1

Table 5.1 shows that for a specific query, the importance of different database

parameters varies. We are interested in setting up multiple workloads, and each

of them consists of a combination of queries that are dominated by more than

one database parameter. We also studied the characteristics of the top ranked

parameters. The detailed analysis and results are shown in Section 5.4.4
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5.4.3 Tuning Parameters

Table 5.1 [11] provides an overview of how performance of each type of TPC-H

queries is affected by database parameters. To maximize the benefit of tuning, we

focus on tuning the parameters having the greatest performance impact. Besides, in

order to study the search ability of search heuristic given a fixed memory budget (the

buffer limit), we included all the parameters related to memory buffer allocation.

Table 5.2 shows the list of PostgreSQL parameters that are chosen to be tuned by

Active Harmony in this work.

Table 5.2: PostgreSQL parameters chosen for performance tuning

Parameter Function

work mem Specifies the amount of memory to be used by internal
sort operations and hash tables before switching to tem-
porary disk files

shared buffers Specifies the amount of memory that PostgreSQL uses
for shared memory buffers

maintenance work mem Specifies the maximum amount of memory to be used
in maintenance operations, such as VACUUM, CREATE
INDEX, and ALTER TABLE ADD FOREIGN KEY

effective cache size Tells the database the size of the operating system data
cache, so that the database can draw different execution
plans based on that data

random page cost Sets the ratio of doing a random disk access from the
database over a sequential access, which influences the
planner’s choice of index vs. table scan, this value highly
depends on the hardware performance

temp buffers Sets local buffers for accessing temporary tables

41



Figure 5.2: Throughput vs. work mem on a workload with 12Q7. It
shows that the buffer size vs. throughput can be modeled as an expo-
nential function under a simple workload

5.4.4 Search Space

The multi-dimensional search space varies among different workloads and its

projection on a lower dimensional space shows its nonlinear characteristics [12]. In

order to understand the key features of the space, we projected the space onto a 1-

dimensional space. We first verified the accuracy of the exponential function model

proposed by STMM, and then present cases that the exponential model does not

work well.

Figure 5.2 and 5.3 show the impact of work mem and shared buffers vs. through-

put under simple workloads(which are composed of same type of TPC-H queries),

when all other parameters are set with their default values. It is an example that

verifies the statement by STMM project [25] that the memory characteristics can

be modeled as a simple exponential function.
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Figure 5.3: Throughput vs. shared buffers on 2 Different Workloads

Figure 5.4: Throughput vs. work mem on workload with 3Q6, 3Q7, 3Q8,
3Q13. The model is much worse in this case and It produces higher error
rate when fitting into these samplings
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Figure 5.5: Throughput vs. random page cost on workload with 12Q6

Figure 5.6: Throughput vs. random page cost on Workload with 3Q6,
3Q7, 3Q8, and 3Q13

The exponential model becomes less accurate for more complex workloads

because of the cumulative effects of different types of TPC-H queries. Figure 5.4

illustrates a more complicated 1-D projection for work mem vs. throughput for a

more complex workload with 3Q6, 3Q7, 3Q8 and 3Q13.

The exponential function model fails for the parameters that are not related

to buffer allocation. Figure 5.5 shows the projection of random page cost vs. the

throughput on a workload with 12Q6. This search space has a “cliff” that is rel-
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atively hard for methods such as gradient descent to effectively optimize. Yet,

Figure 5.6 presents the shape of a workload with mixed queries, which appears to

be smoother than the previous curve.

5.4.5 Search Strategy

In this work, we focused on Active Harmony’s ability to improve the through-

put of a single database. We used the standard Nelder-Mead simplex method to

optimize the database performance. The details of this algorithm are presented in

Chapter 3.

5.5 Online-Offline Co-tuning

Given that the parameters are divided into online and offline parameters, the

entire tuning task can now be divided into the online session and the offline session.

During the offline tuning session, the Nelder-Mead simplex consists of 2 ver-

tices to optimize a single parameter: shared buffers. It forms a 5 parameter simplex

during the online tuning session. The major reason that prevented us from doing

linear search on each parameter is that, under memory budget, the parameter order

can hardly be determined given an unknown workload.

The offline session focuses on tuning shared buffer. During the offline session,

the database is restarted at every new configuration and disallows any incoming

connections during the restart. Only a few iterations are needed to tune the offline

session because only one parameter is involved. The online session focuses on tun-
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Figure 5.7: One-pass tuning flow

ing work mem, maintenance work mem, effective cache size, random page cost and

temp buffers. Online session requires more iterations to converge.The combination

of the two sessions forms a semi-online tuning flow.

5.5.1 One-pass Tuning Flow

Figure 5.7 illustrates a one-pass tuning flow. A one-pass tuning represents a

work flow that tunes the offline session first, followed by the online session. This is

a simple work flow for tuning a non-changing workload.
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5.5.2 Multi-pass Tuning Flow

The major disadvantage of the one-pass tuning work flow is that, it is not

adaptive to changing workloads. Figure 5.8 shows a multi-pass tuning strategy

which aims at addressing this problem by repeatedly running offline and online

parameter tuning. It provides several advantages: 1. When the performance value

changes dramatically after the simplex of the online tuning session converges, we

assume that there is a change in the workload, and Active Harmony can immediately

restart both tuning session to adapt to the new workload; 2. If there is a workload

change but produces the same performance as the converged value, the Harmony

server can still adapt to it after the online tuning loop is over. Therefore, the tuning

process can be made sensitive to changes in workload over time; 3. Active Harmony

can abort the online session and restart from the offline session if the simplex of

the online tuning session falls into a local minimum. Active Harmony detects a

local minimum for the online session if the performance value of all vertices in the

simplex are worse than the best performance in the previous offline session by a given

threshold. If there exists a route to escape from the local minimum, the multi-pass

tuning flow provides the ability for Active Harmony to escape from local minimum

areas.

5.5.3 Scalability

Since Active Harmony is a scalable framework that can be connected by multi-

ple clients, it can be utilized to tune multiple nodes in a database cluster in parallel
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Figure 5.8: Multi-pass tuning flow
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using PRO algorithm (see Section 3.4.3), if the nodes are load-balanced and applied

with similar types of workloads. The PRO method proved to be much faster than

the sequential Nelder-Mead algorithm [28] in tuning parallel programs because it

measures newly generated points in parallel at each iteration.

5.6 Memory Budget Constraints

A DBMS always has a problem when the desired memory space exceeds the

total available physical memory. For example, setting the work mem to be 100MB

may satisfy the performance requirements of queries including sorting operations.

However, doing so is dangerous because work mem is allocated upon each connection

and sorting operation. To address this issue, we define a global memory budget

constraint on all memory consumers.

All memory buffers should follow the inequality 5.1 to prevent memory over-

flow.

W ∗ n + S + M + T + O < Total Available RAM (5.1)

where W is work mem, n is the total number of connections and sort oper-

ations, M is maintenance work mem, S is shared buffer, T is temp buffers and O

refers to operating system reserved memory.

However, directly applying this rule to the tuning system is problematic be-

cause this rule includes all memory buffers, but the offline tuning session is separate

from online parameters. To address this problem, we set a budget for shared buffers
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and allow it to consume up to 50% of the RAM size, then, we define a new memory

budget constraint for the online session according to the remaining RAM space.

After the offline search, we defined an inequality 5.2, a memory budget con-

straint rule for online parameters and applied it to the search space.

W ∗m+M + T < Total RAM − Shared buffers−O (5.2)

where m is the number of connections. This inequality is an estimation of the

memory constraint and has an error rate of W ∗ (n−m).

At runtime, in order for the online parameters to follow the constraint inequal-

ity 5.2, we used a tool called Omega Test [21] to handle the constraint problem.

Omega Test is a system to manipulate sets of affine constraints over integer vari-

ables and it was originally designed as a decision test for the existence for integer

solutions to affine constraints. The main goal for us to use Omega Test was firstly,

to detect if the generated configuration meets the memory budget constraint; Sec-

ondly, to determine the upper and lower bounds for individual parameters given a

memory constraint. It helps Active Harmony to reduce the search space by creating

a bounding box for the feasible area. When initializing the simplex, a pure ran-

dom sampling is applied on the bounded space to generate the initial simplex. The

initialization does not end until all initial vertices are feasible, which takes a few

seconds.

Although we guarantee that all vertices in the initial simplex meet the con-

straint rule, they may move to the infeasible area during simplex transformation
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operations (e.g. reflection). There are two commonly used strategies to handle in-

feasible parameters. Tiwari et al. [2] used an approximate nearest neighbor (ANN)

projection server [26] to project an infeasible point to its nearest feasible neighbor.

However, such strategy requires pre-loading feasible samples of the entire search

space. Since the search space highly depends on the workload, ANN server has to

reload feasible samples every time the workload changes, and the overhead produced

by loading such samples at runtime is not acceptable in our case.

We used a second strategy by reporting a penalized performance measurement

for an infeasible point. In this method, Harmony server forwards every point gener-

ated by the search engine to the client and notifies the client if the point is feasible or

not. The client reports the penalty value immediately back to the server whenever

it finds the point infeasible, without re-configuring the database server. Since the

penalized measurement is pre-assigned to a large value, the Nelder-Mead method

always discards this point and later contracts (or reduces) the simplex to eventually

reach a feasible point. Using this method only produces little overhead.

Figure 5.9 illustrates the process in which one of the vertices goes out of the

feasible area. Since the new point is assigned to a penalized value and is guaranteed

to be the worst in the reflected simplex, Active Harmony then considers the reflection

to be a failure and contract the original simplex that finds a new point within the

feasible area.
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Figure 5.9: Avoiding infeasible data points by applying penalty factor.
In this case the reflected point is discarded and it causes the simplex to
constract.

5.7 Experimental Results

5.7.1 Search Space versus Search Ability

In our experiments, we set the upper and the lower bounds for each param-

eter using commonly used PostgreSQL parameter ranges. We assigned was set

upper and lower bounds for work mem with a range of (1MB, 200MB), mainte-

nance work mem with a range of (1MB, 1GB), temp buffers with a range of (1MB,

1GB), and shared buffers with a range of (32MB, 2GB). During the tuning process,

the search space is reduced by Omega based on the given memory budget. Since

random page cost is set to 4 by default based on a 90% cache hit rate, we set the

random page size from 0.1 to 30 assuming that the workload does not generate a

cache miss rate which is approximately higher than 75%. And effective cache size

is assigned a range of (128MB, 2GB). We also applied a memory budget of 1GB on
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Figure 5.10: Tuning curve for 4Q6, 4Q9, and 4Q13

all online memory buffers parameters.

Figure 5.10 shows the tuning process for a workload with 4Q6, 4Q9 and 4Q13.

Figure 5.11 shows the results of the harmonized throughput for 6 different work-

loads. The results show that Active Harmony is capable of tuning the throughput

of the database empirically under reasonable constraints and greatly improves the

performance of the database compared to the default settings by an average of

300%. We also compared our results to the performance generated by the recom-

mended setting. The recommended setting is: 25% of total RAM space (1GB)

for shared buffers, 50MB for work mem, 128MB for maintenance work mem, 4 for

random page cost, 2GB for effective cache size and 256MB for temp buffers. The

results show that our method can achieve an average of 100% improvement over the

recommended settings for 4 out f 6 workloads.

Active Harmony is sensitive to the user-defined search space for specific prob-
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Figure 5.11: Tuning result for multiple workloads

lems. Our experiments also show that enlarging the search space degrades the final

converged performance in database tuning. To show how the search range affects the

simplex algorithm in database tuning, we assumed that the administrator is igno-

rant about database administration and adopts redundant search space by assigning

a large search range for parameters without any budget constraint.

Figure 5.12 shows the tuning process of a workload with 3Q6, 3Q7, 3Q8 and

3Q13. Although Active Harmony greatly improves the throughput of this workload

compared to the default settings, it fails to perform as good as the result shown

in Figure 5.11 for the same workload. This is mainly because random page cost is

converged at a value greater than 100, which indicates that the cache miss rate is

very high for this workload, and this causes the query planner to use index scan

rather than random disk access. Therefore, enlarging the range of parameters may

limit the search ability for the Nelder-Mead method because it is harder to find a
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Figure 5.12: Tuning curve for 3Q6, 3Q7, 3Q8, and 3Q13

good initial simplex.

5.7.2 Impact of Memory Budget Constraints

Knowing how the memory budget constraint affects the search ability of the

Nelder-Mead method is an interesting topic to study, and it helps us to understand

the limitations of this search strategy. In order to conduct such an experiment,

we intended to test on a workload whose performance is affected by more than

one memory buffer. Then, we tightened the constraint so that the memory buffers

compete with each other. We built a workload which consists of multiple TPC-H

query types, including 3Q6, 3Q7, 3Q8, 3Q13 and 3Q15.

In this experiment, we only focused on online parameters (shared buffers is set

to 2GB for all tests). We compared the performance obtained by the Nelder-Mead

search with different memory budgets, ranging from 2GB down to 64MB. We also
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Figure 5.13: Search result by the Nelder-Mead vs. memory budget con-
straint for online parameters

tested the performance values for default online parameter setting and compared it

to our tuning results.

Figure 5.13 shows the relationship between the values of memory budget con-

straints versus the final throughput optimized by Active Harmony. We ran 3 tests

using single-pass tuning work flow on each of the constraints and picked the worst

result to reduce the possibility that a good performance was produced by random-

ness. The results show that the performance begins to degrade from a budget of

512MB in the first pass. And it performs worse than the default setting with a

budget of 64MB. However, by applying a multi-pass tuning flow, when the online

session falls into a local minimum, Active Harmony can detect it and restart from

the offline session, and it is possible to escape from the local minimum area.
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Figure 5.14: Workload shift from one workload to another after 90 minutes.

5.7.3 Workload Shifting

Active Harmony is sensitive to dramatic shifts of database workloads after the

Nelder-Mead simplex converges during the online tuning session. The convergence

of the simplex is defined as: all performance values in the simplex are subject to a

given variance, or all vertices are converged to a single point. At the moment when

the simplex converges, Active Harmony records the best and the worst value among

all vertices in the converged simplex and creates a bound. Whenever there is a fixed

number (current value is 3) of later data points that are out of the bound, Active

Harmony regards such condition as a workload shift.

To show how Active Harmony detects workload shifts, we carried out an exper-

iment to run a workload with 12Q6 for 90 minutes, and then shifted to a workload

with 6Q7 and 6Q13. A memory budget of 512MB was also applied to the search

space for online parameters.
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Figure 5.15: Shared buffers shift corresponding to workload shift

Figure 5.14 shows that the workload changes dramatically at 90 min, which

was detected by Active Harmony. Then, Active Harmony restarts from the offline

tuning session to adapt itself to the new workload.

Figure 5.15 shows the corresponding shift for shared buffers. After Active

Harmony detects the workload shift, it begins to re-configure this parameter to

adapt to the new workload.

This is also an example to show the reason why a multi-pass tuning work flow

is necessary for tuning long running servers. After shifting the workload, Active

Harmony is able to detect when the simplex converges to a local minimum and to

restart the offline tuning session to approach the global minimum if there exists

a route. We observed that Active Harmony finds a much better value during the

second pass. Figure 5.16 shows that the curves for shared buffers vs. throughput

change under different online parameter values. It indicates that offline and online

sessions are dependent to each other to some extent, and this is one of the reasons
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Figure 5.16: Shapes of shared buffers differ under 3 different online pa-
rameters for the same workload. It indicates that the search space for
offline parameter is dependent on the status of online parameters

that we use a multi-pass tuning flow in order to drive offline and online parameters

out of the local minimum area.
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Chapter 6: Future Work

In the short term, one of the future directions is to find a good initial simplex

for Nelder-Mead method. The current approach in Active Harmony uses pure ran-

dom sampling or boundary values to initialize the simplex. The former method is

not always robust, and when a strict constraint is applied to the search space, both

methods become not robust. One strategy to address the problem is to apply Latin

Hypercube Sampling [19] technique to create a more evenly distributed sampling on

the space. Another method is to refer to the prior data stored in TAUdb or XML

files to form the initial simplex using best configurations from prior runs.

Another short-term goal is applying our method on a load-balanced database

cluster, where all nodes have the same physical design and similar types of query

loads. Multiple servers can cooperate with each other to tune the performance

in parallel, and we believe that the parallel tuning strategy can outperform the

sequential Nelder-Mead method due to its ability to exploit the search space in

parallel.

In future auto-tuning tasks, runtime performance is not the only metric to

evaluate a system. Researchers have also focused on tuning and balancing power

versus performance in high performance systems [27]. Also, in database auto-
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administration, balancing the performance and the memory consumption is also

an important topic to study.
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Chapter 7: Conclusions

In this thesis, we reviewed Active Harmony, an empirical automated tuning

framework. We discussed several previous use cases that used Active Harmony to

tune different type of applications. We also pointed out the limitations of previous

versions of Active Harmony in managing prior data, and we presented the develop-

ment of two methods to store prior data in order to provide the users a complete

set of tuning information.

We also applied Active Harmony to optimize the performance of database

servers for different workloads. Compared with other works, our approach achieves

both effectiveness and efficiency with a semi-online strategy. It can be applied to not

only memory buffer sizing, but also the parameters that are not related to memory

buffers. Results show that the throughput can be improved by an average of 300% for

the 6 workloads that we tested compared to the default settings. Besides, most tuned

servers also outperformed the performance of servers under recommended settings

from PostgreSQL website. It further proves that with proper underlying tuning

algorithms, Active Harmony is a useful tool in tuning many kinds of application,

not limited to compiler optimization problems. We also discussed the impact of

constraints by showing that the search result using the Nelder-Mead method is
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robust with a loose constraint but starts to degrade upon a threshold, and showed

that a multi-pass tuning work flow can improve the search ability of Nelder-Mead

method under a certain constraint.
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