
 

 

ABSTRACT 

 

 

Title of Document: OMI TROPOSPHERIC SULFUR DIOXIDE 

RETREIVAL: VALIDATION AND 

ANALYSIS  

  

 

Brittany Katherine McClure, Master of 

Science, 2007  

  

Directed By: Professor Russell Dickerson, Department of 

Chemistry and Biochemistry, Department of 

Atmospheric and Oceanic Science. 

 

 

SO2 impacts the radiative balance of the Earth and is the precursor to the major 

acid and much of the particulate matter in the atmosphere.  Improved spectrometer 

resolution of the Ozone Monitoring Instrument (OMI) enables SO2 retrieval in the 

planetary boundary layer.  OMI has a small spatial resolution of 13 km x 24 km and daily 

near-global coverage.  I have evaluated the accuracy of the OMI by comparing aircraft 

measurements in Northeast China to the OMI retrieval of three different algorithms: the 

Band Residual Difference (BRD), the Spectral Fit (SF), and a combination of the two (SF 

& BRD). 

The SF algorithm shows the best agreement with a less than 15% difference for 

high SO2 loading (greater than 1 DU).  The SF & BRD has a ~ -0.25 DU bias, the BRD 

and SF a ~ -0.1 DU bias. The noise of the OMI is reduced to ~0.2 DU by averaging over 

100 days and is not improved by increasing the averaging time.  The OMI is also able to 

track SO2 as it moves away from its source region in the PBL and once it is lofted above 

this layer.  
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INTRODUCTION 

 

As the sophistication of science and technology increases, so does the desire for 

an improved understanding of the world around us.  In predicting the future of our planet, 

all aspects of the globe are being examined from the oceans to the atmosphere.  Changes 

made by human activity on land are believed to have an impact on the atmosphere over 

both the land and sea.  Human activity has lead to an increase in fossil fuel burning (coal, 

oil, and natural gas), ore smelters (mainly copper) and other industrial processes (Cullis, 

1980, Streets et al., 2000).  These actions produce large amounts of radiative forcing 

atmospheric gases such as SO2 and release them into the atmosphere.  In China most of 

the SO2 emissions are concentrated along the Eastern coast (Guttikunda et al., 2005, 

Heald et al., 2003) and have been steadily increasing (Streets et al, 2000, Luo et al, 2000).  

SO2 released as a result of human activity is usually emitted below 3 km in a 

region called the planetary boundary layer (PBL).  The PBL may be defined as the layer 

below the height of a temperature inversion in the atmosphere.  This height rises during 

the day as the ground heats up and lowers at night forcing many gases and aerosols to 

settle out of the atmosphere by dry deposition.  Therefore, in order for SO2 to have a large 

atmospheric impact it must be transported out of the PBL during the day by convection or 

the Warm Conveyor Belt Circulation (WCB).  WCB is when air moves up along lines of 

constant entropy ahead of a cold front (as described in Dickerson et al., 2007). Once 

lofted above the PBL into the free troposphere (FT), SO2 has been shown to have a 

lifetime of 0.6-2.6 days before turning into sulfate or settling out of the atmosphere. 

(Pham et al., 1995, Chin et al., 1996, Koch et al., 1999, Roelofs et al., 1998, Berglen et 
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al., 2004, Hains et al., 2007).  This can have a large impact on the radiative forcing 

(cooling or warming effect) of the Earth’s surface. 

 There are many pathways through which this may be done.  Currently identified 

pathways lead to the formation of sulfate aerosols from the SO2 molecule.  These 

pathways include:   

42222

4223

32

SOHOHSO

SOHOHSO

HSOOHSO

→+

→+

+→+

−

+−−

 

(Finlayson and Pitts, 1976).  The reactions with hydroxide and water occur in clouds in 

the aqueous phase.  SO2 reacts with OH
-
 in the gaseous phase and may also react with 

ozone in cloud water in the free troposphere (Benkovitz et al, 2006).  

Once a sulfate molecule is formed, it can serve as cloud condensation nucleus. 

The difference between water vapor droplets nucleating on sulfate aerosols versus on ice 

crystals is that the droplets formed on sulfate are much smaller.  This means there is less 

precipitation even though more clouds form (Qian et al., 2006).  This decrease in 

precipitation not only changes the water balance in the region but also allows the clouds 

to remain as a solar barrier between the Earth and the sun, decreasing the radiation that 

reaches the surface.  This creates a net-cooling force on the Earth.  

When it does rain, the water droplets react to form sulfuric acid, creating acid 

rain, which has a low pH.  Acid rain has environmental impacts on plants, soil, water 

pathways, and human health because it hinders plants’ growth abilities, depletes soil of 

its nutrients, contaminates the water, and increases paint and cement degradation rates 

(Gondal, 2001, EPA, 2007, Xu et al, 2007).  Prolonged high SO2 concentrations are 
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believed to have a direct impact on human health as a result of particle inhalation, which 

is thought cause birth defects (Gilboa, 2005).  

Measuring SO2 on a global scale is an important piece of the global climate puzzle 

due to its cooling effects and environmental impacts.  Previous satellite measurements 

have not been accurate enough to measure SO2 concentrations in the troposphere.  The 

spatial resolution of most satellites is not small enough to determine trace gas quantities 

at such a large distance from the measurement source.  NASA’s heritage instrument Total 

Ozone Mapping Spectrometer (TOMS) had a spatial resolution of 50 km x 50 km in 

nadir.  The European UV spectrometers, Global Ozone Monitoring Experiment (GOME) 

and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 

(SCHIAMCY), have spatial resolutions of 40 km x 320 km and 30 km x 400 km nadir 

respectively.  These large footprints don’t allow the instruments to see between clouds, 

making measurements in the PBL very difficult.  Also, both GOME and SCHIAMCY 

take several days to acquire a continuous global map (Eisinger 1998; Bovensmann et al. 

1999; Burrows et al 1999).  Due to the limitations of these satellites, anthropogenically 

produced SO2 is not well studied and its long-term effects are still being determined. 

Increased knowledge of SO2 global emissions and transport are necessary for an 

improved global understanding of the atmosphere.  The Ozone Monitoring Instrument 

(OMI) launched aboard AURA in July 2004 has a smaller spatial resolution (13 km x 24 

km in nadir) than previous satellites.  It also has daily global coverage. 

SO2  is measured by satellites using Differential Optical Absorption Spectroscopy. 

DOAS was introduced in 1975 and 1979 by Noxen and Platt (Noxon et al., 1978, Noxon, 

1975, Platt 1979, Platt et al., 1980).  DOAS measures the change in radiation between the 
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output and the input signal.  When radiation hits SO2 the energy is absorbed by the 

SO2 Absorption spectra at 273K
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Figure 1a: SO2 absorption spectrum at 273 K (Bogumil et al., 2003). 

 

molecule, moving it to an excited state.  A sample SO2 spectrum is shown in Figure 1a. 

The transitions seen in Figure 1a correspond to the 
1
A1 symmetry group of SO2 (a C2v 

molecule) changing into 
1
B1 and 

1
A2 symmetry groups due to photon absorption. DOAS 

uses a continuous light source to send a signal into the atmosphere.  The light is then 

received back from the atmosphere.  The light source can be the sun or a lamp such as a 

Xe-arc lamp. Satellites use the sun as a light source.  The detector can be set up at long 

distances from the desired detection region (i.e. from space).  A very long path length can 

cause many difficulties in determining the true signal.  This will be discussed in more 

detail later in this section.  Sunlight is scattered and absorbed by molecules in the air 

depending on their size and distance.  A slotted disk rotates before the input, to scan the 

spectrum over some integration time (i.e., 0.04 s), allowing nearly simultaneous 
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measurement of many species in the spectral range.  The slant column density, S, of a 

DOAS measurement is defined as  

∫=

L

dLlcS
0

)(           (1) 

where L is the path length of the light and c (l) is the concentration of species along the 

path.  The light is then collected by a detector.  One type of detector, a charge-coupled 

device (CCD), is first used by the OMI because of its ability to measure many species 

simultaneously without the need for a scan mirror.  A CCD is a two dimension array 

made from silicion which contains light-sensitive picture elements (pixels).  The 

electronic charges created by light absorption are stored in each pixel.  

SO2 detection on the GOME, SCHIAMCY use DOAS (Platt et al., 1999) and the 

OMI aboard AURA uses a UV/VIS nadir solar backscatter spectrometer (which is similar 

to DOAS).  Trace gas detection from space is much more complicated due to the long 

path length, quantity of interfering particles, the viewing geometry, and cloud cover.  On 

the OMI, solar irradiance is Io measured directly at varying angles through a diffuser.  

There are three different diffusers on the OMI: one quartz volume and two aluminum 

diffusers.  When the solar aperture mechanism is opened once a day, the light from the 

sun passes through a mesh to reduce the solar irradiance by a factor of 10 so that the 

detectors will not become saturated, enabling the input to be determined.  The aluminum 

diffusers are used for weekly and monthly measurements while the quartz volume 

diffuser is used daily. After the irradiance passes through the diffuser it is reflected off a 

folding mirror to the detector allowing the initial signal (the solar irradiance) to be 
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determined.  When solar radiation passes through the solar photosphere it is absorbed 

creating Fraunhoffer lines (FRL). 

FRL measured in nadir are used for spectral calibration.  These lines are believed 

to be caused by Rotational Raman scattering.  The strength of the lines depends on the 

solar zenith angle (sza) which is called the Ring Effect.  The ring effect describes that the 

strength of the FRL lines decrease as the sza increases from nadir.  Therefore, Ring 

spectrum must be included in fitting calculations (Stutz and Platts, 1996). 

 When the Earth’s radiance is collected by the OMI, the light passes through a 

scrambler essentially depolarizes the signal (though it is not a truly depolarized signal) 

and making it insensitive to the instrument polarization sensitivity that GOME and 

SCHIAMACY had.  Once the signal is split by a dichronic mirror into UV-1, UV-2, and 

VIS channels, it is measured by a 2-D silicon CCD encased in aluminum to keep stray 

particles away from the CCD.  One dimension of the array collects the spectral 

information (780 pixels) and the other dimension collects the spatial information (576 

pixels), thereby allowing the instrument to function without the scan mirror needed in 

GOME and SCHIAMACY.  The instrument is calibrated once a day using green-light 

emitting diodes to determine the bad CCD pixels, the electronic gain, and the non-

linearity effects.  A WLS (tungsten halogen lamp with quartz bulb) is used to determine 

the pixel-to-pixel variations, the detector non-linearity, and the radiometric degradation. 

The optical bench (which houses the CCD) is kept at 265 K via heaters.  The signal from 

the CCD is then sent via a video signal to the electronics unit (ELU) to turn it into a 

digital signal (Levelt et al. 2006, Dobber et al. 2006).  Once the signal is converted to 

radiance data, algorithms may be applied to it. SO2 is first retrieved as slant column 
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values (SCD) and therefore must be divided by an air mass factor (AMF) to determine 

the vertical column values (VCD). 

The AMF is defined as 

VCD

SCD
AMF =          (2) 

where VCD is the vertical column density.  The AMF depends on gas concentration, 

vertical profile distribution, surface reflectivity (albedo), aerosol loading, and viewing 

geometry. Honninger et al. (2004) demonstrated the AMF dependence on sample and 

aerosol height, loading, type, and distribution.  Clouds also hinder SO2 measurements as 

the reflectivity is too high to have an accurate measure of the actual signal below the 

clouds.  However, clouds can increase OMI sensitivity if SO2 is above them.  In the OMI 

SO2 PBL product (OMSO2) (publicly available), pixels with more than a 30% reflectivity 

are not used in mass calculations but rather fill values are used for these pixels (Krotkov 

et al., 2006, Krotkov et al., 2007)  

 This paper will discuss three different algorithms for SO2 retrieval from the OMI. 

The first is the operational PBL OMSO2 product which uses a Band Residual Difference 

algorithm based on the algorithm developed for Total Ozone Mapping Spectrometer 

(TOMS) (Krotkov et al., 2006, Bhartia et al., 2002).  This algorithm is especially 

sensitive to absolute radiance measurements.  The second algorithm is the Spectral Fit 

algorithm that is currently applied off-line and is under evaluation.  Thirdly, a 

combination of these two algorithms is discussed.  To determine the noise of the 

algorithms, three regions with zero SO2 loading are analyzed over varying time periods. 

The accuracy is investigated by comparing in situ aircraft measurements with the results 
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from the algorithms.  In early April 2005, SO2 was measured during the East Asian Study 

of Troposphere Aerosols- An International Regional Experiment (EAST-AIRE) 

campaign between 0-4 km over Eastern China in the Shenyang region (Figure 1).  These 

retrievals over China are of particular importance due to the high SO2 loading.  The BRD 

algorithm is used to track an SO2 plume for 3 days as it traveled away from China out to 

the Pacific Ocean to determine the lifetime of SO2 and the ability of the OMI to track 

plume movement.  
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CHAPTER 1: Airplane Analysis 

 

1.1 Airplane Data Collection 

During the EAST-AIRE campaign in early April 2005, aircraft flights measured 

trace gases and aerosol concentrations over North Eastern China.  These flights were 

made on a Chinese Y-12 twin engine turboprop plane.  Two inlets were located on top of 

the cockpit in front of the engines; a forward facing isokinetic inlet to collect aerosols and 

a backward facing inlet for trace gas measurements.  SO2 was measured using a modified  

commercial (Luke 1997) pulse-florescence detector (Thermo Environmental Instruments 

Model 43 C).  Relative humidity and temperature were measured with a probe (EIL 

Instruments Inc., Rustrak RR2-252, Hunt Valley, MD) and pressure with a Rosemount 

Model 2005 Pressure Transducer.  Location was monitored with a Global Positioning 

System receiver (Garmin GPS-90).  Other instruments on board have been previously 

described in more detail (Taubman 2004; Dickerson et al. 2006).  

Eight flights were completed between 1 April 2005 and 12 April 2005 in the 

region shown in a green box in Figure 1.  The flight paths and more detailed flight 

information can be found at 

www.atmos.umd.edu/~yuan/web_proj/air_camp/air_camp.htm.  All flights departed from 
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Taoxian International Airport (41.640
o
N, 123.488

o
E) in the Shenyang region of China. 

 

 

Figure 1: Map of Eastern China. The box in green around Shenyang and Fushun shows the 

region of the flight path as shown more detail in Figure 2 (Encyclopedia Britannica 2002). 

 

Four of these flights performed spirals to determine column contents in the lower 

troposphere.  On 5 April 2005 the aircraft departed at 18:10 UTC and headed south, away 

from the Shenyang region.  Two ascending spirals were performed during the flight over 

farmland, from about 300m up to about 4000m above sea level at 42.450
o
N, 123.70

o
E 

(Xiaoming) and 41.350
o
N, 122.648

o
E (Liaozhung).  The flight path is shown in Figure 2.  
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Flight paths on 7 and 10 April 2005 were similar to that of 5 April, with spirals in 

the same locations.  Column contents can also be determined from the landing pattern of 

the airplane on these days.  On 1 April 2005, the airplane did not perform spirals in the 

same locations but did descend into the airport at a rate that may be used for column 

content analysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An inset of the green box in Figure 1 showing the flight path on 5 April 2005. 

 

1.2  Airplane Data Analysis 

 

The voltages read by the SO2 detector were converted to SO2 mixing ratios in ppb 

using a calibration factor.  A 5.5 ppmv SO2 in air (Scott-Martin, Riverside, CA) 

calibration gas was diluted to mixing ratios of 0.0, 1.6. 11.0, 20.8, 35.6, 55.2, 74.8, and 



 12 

99.0 ppb on 20 May 2005.  These known ratios were measured by the SO2 detector.  The 

calibration factor determined from the known mixing ratios and SO2 detector reading was 

4.19.  The data was converted from volts to ppb using a calibration factor of 4.1 (personal 

communication with Can Li).  The R
2
 value of this curve is 0.99, nearly 1.0, making the 

error associated with this calculation negligible. 

Mixing Ratios (ppb) determined from the calibration were then turned into column 

content values using the formula 

dz
CTatmmbar

mbarPalt
ppbSOatmmessurePartial

o

z

z
273)(

273

)/(25.1013

)(
10)(Pr 9

2

2

1
+

×××=
−

∫  

 

where z1 and z2 denote the minimum and maximum column altitudes in meters (m).  The 

purpose of this conversion is to determine the column content of SO2 in Dobson Units 

(DU).  A Dobson Unit is defined as 2.69 x 10
16

 molecules/cm
2
.  In calculating the column 

content, 100 m intervals were used for each layer and then these values were added 

together to determine the total column content of SO2 in the region in question.  For 

example, z1= 100 m and z2 =200 m, and the partial pressure (atm-m) is calculated for a 

region.  This is repeated until the top of the sampling region and these values are added to 

determine the total column amount.  Missing values of pressure and temperature were 

assumed to be the average values of temperature and pressure found during the EAST-

AIRE campaign in each 100 m height interval.  
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1. 3  Airplane Error Analysis 

 

SO2 was measured using a modified commercial (Luke 1997) pulse-florescence 

detector (Thermo Environmental Instruments Model 43 C).  The minimum detection limit 

of the SO2 monitor is 0.08 ppb.  The data were corrected so that all the measurements 

below the minimum detection limit were set to half of this limit.  Doing this removed 

negative values and steadied the noise of the system.  Luke et al (1997) determined the 

uncertainty of the aircraft values to be 16% with a 95% confidence level for SO2 

measurements between 0.18 and 0.5 ppb.  The uncertainty becomes smaller for larger 

SO2 mixing ratios.  The contributions for this uncertainty include sampling line loss, 

instrument noise, and interference by other species.  
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CHAPTER 2: Ozone Monitoring Instrument (OMI) 

  

2.1 OMI Specifications and Air Mass Factor (AMF) 

 The Ozone Monitoring Instrument (OMI) completes 14 orbits a day at a 98.2
o
 

inclination and with a sun-synchronized polar orbit.  The DOAS spectrometer measures 

in the UV/VIS splitting the UV into two channels to reduce the stray light in the higher 

frequencies (below 290 nm).  The UV-2 channel has a performance range of 310-365 nm 

allowing it to measure SO2 (310-315 nm).  The OMI field of view is 114
o
 which leads to 

a 2600 km swath width perpendicular to the flight direction.  In the normal global mode, 

5 measurements of 0.4 sec are co-added for a total exposure time of 2 seconds.  This 

results in 13 km in the direction of flight.  Together, the total ground pixel size of the 

OMI is 13 km x 24 km at nadir and ranges up to 25 km x 150 km though the pixel size 

remains relatively constant and increases sharply at larger distances from nadir.  This 

small pixel size allows OMI to see the troposphere better than its predecessors (Levelt et 

al., 2006).  When discussing SO2 retrieval using the various algorithms, the SO2 is 

considered to be in the PBL unless otherwise noted.  The publicly released OMI SO2 data 

(version 1) uses a Band Residual Difference (BRD) algorithm (Krotkov et al, 2006).  

Two other offline algorithms are also evaluated: a Spectral Fit (SF) algorithm developed 

by Kai Yang and a combination of SF and BRD algorithms.  
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2.2 Air Mass Factor  

These algorithms all utilize an air mass factor (AMF) to correct for geometric, 

ozone, aerosol, albedo, cloud, and SO2 variation in a column.  The AMF is a function of 

the observation geometry (view θ, solar zenith, θ0 and azimuth ϕ angles), the SO2 column 

amount, the surface albedo, Rs, total column ozone amount,Ω, cloud variations, and 

aerosols.  

∫
∞

Ω=

0

0 ')'(~),,,,'(
2

dzznzmAMF SOϕθθ        (3) 

The n(z’) in equation 3 is the normalized vertical SO2 profile.  In all the algorithms, AMF 

is constant at 0.36.  This value reflects ideal conditions with no cloud cover or aerosol 

loading, 5% surface reflectivity, slant column ozone of ~1000 DU, a 1 DU SO2 loading 

with a typical vertical profile over the mid-Atlantic US region (Taubman et al, 2006), and 

1 atm surface pressure.  Offline AMF corrections have been used to try and improve the 

OMSO2 product (Figure 3).  In these corrections 

   (4) 

  

the AMF (regression) is determined using a linear parameterization of equation 2 based 

on the vertical SO2 profile, the surface albedo, and the aerosol and/or cloud presence.  

The regression uses SCO measured by OMI rather than calculating m(z) each time which 

would be time- and labor-intensive.  When the SCO is greater than 1500 DU fill values 

must be used as the resulting AMF is too small for significant PBL SO2 retrieval. 

)(
)(

36.0
)( 22 loperationaSO

regressionAMF
correctedSO ×=
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Figure 3: The AMF regressions for 5 April 2005 over Liaozhung as a function of altitude. The 

regressions assume a cloud- free and aerosol-free atmosphere at 312 nm. The solar zenith angle 

is 46
o
 and the observation direction nadir. The red lines represent total column ozone of 425 DU, 

with the dashed line showing a 0.1 surface albedo and the solid line showing a 0.05 surface 

albedo. The black lines represent a 325 DU ozone column with 0.1 albedo dashed line and 0.05 

surface albedo solid line. The blue curve is the normalized vertical SO2 profile from 0-3km as 

determined by aircraft measurement (Krotkov et al, 2007). 

 

2.3 Band Residual Difference (BRD) Algorithm 

The BRD algorithm utilizes absorption band centers from the NASA operational 

ozone algorithm (OMTO3, Collection 2 OMI Level 1b data).  At a constant temperature 

(275K), 3 pairs of residuals are converted to SO2 slant column density using differential 

SO2 cross section data (Bogumil et al 2000).  Only values with a reflectivity of less than 

30% are used.  These slant column densities are converted to total vertical column 

amount by dividing them by an air mass factor (AMF).  The column density is expressed 

in Dobson Units (DU) (Krotkov et al., 2006).  

 

2.4 Spectral Fit (SF) Algorithm 

 The offline SF algorithm is a new development by the OMI SO2 team.  All the 

spectral measurements between 310.8 nm and 315.8 nm are used rather than just the three 
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pairs as is done in the BRD algorithm.  The effects from atmospheric contributions such 

as reflectivity, ring effect, and ozone are removed, making the residuals proportional to 

the absorption cross section of SO2.  The output of the algorithm is the magnitude of 

these cross sections which yields the slant column SO2 in DU (personal communication 

Kai Yang, 2007). 

 

2.5 Combined Spectral Fit and Band Residual Difference (SF & BRD) 

Algorithm 

 This analysis combines the two methods listed above.  The wavelengths of the 

Spectral Fit are analyzed to determine the SO2 residuals.  Three pairs of these residuals 

are then used in the BRD algorithm to calculate the amount of SO2 in the slant column. 

Though the algorithm runs the same as it does with the operational data, the input 

residuals are different, so it yields unique SO2 column amounts. 
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CHAPTER 3: OMI Error estimation 

 

 The noise of the OMI is analyzed in this chapter by looking at three clean regions. 

These regions were determined by analyzing one- and two-year average SO2 plots for 

assumed zero concentration regions with view angles of ~40
o
.  The standard deviations 

given in the tables are the standard deviations of the area mean average SO2 column 

content values.  

 

3.1 South Pacific 

 SO2 was measured in the box 40
o
S to 44

 o
S, 128

 o
E to 134

 o
 E.  This box lies south 

of Australia in the South Pacific Ocean (red box, Figure 5) at about the same sza as the 

testing region in China.  The region does not receive regular emissions from Australia or 

any other known SO2 pollution sources.  This was confirmed using a yearly SO2 retrieval 

map (Figure 5) and Hysplit air mass trajectories.  From 1 January 2005 to 30 July 2005 

the average SO2 in this region, using the BRD algorithm, was -0.1 ± 0.7 DU (see Table 4 

for more details).  This was calculated by determining one mean SO2 value per box per 

day.  These means were then averages to determine the six month average. A histogram 

of the distribution of this data is shown in Figure 2.  The data has a sharper peak than a 

Gaussian curve.  This means the noise is not normally distributed around 0 but rather is 

skewed toward the mean value.  This sort of distribution can be analyzed using its 

Kurtosis value.  The Kurtosis shows the level of peakedness of the distribution of several 

measurements.  A negative Kurtosis means the distribution is flatter than a Gaussian 

distribution and a positive kurtosis means the data is more peaked than a Gaussian 
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distribution.  A Gaussian distribution has a zero Kurtosis. The magnitude of these 

numbers tells the extremity of the situation.  In this instance, the Kurtosis is 1.6, 

highlighting the peakedness of the histogram.    

 SO2 was also measured in the same box over a shorter time period (1-10 April, 

2005) using all three algorithms.  The results of the different algorithms are shown in 

Table 1.  

 

Figure 4: Distribution of the average SO2 column loading over South Pacific [40
 o
S 44

 o
 S, 128

 o
E 

134
 o
 E] from 1 Jan 2005 to 31 June 2005. The mean of these values is -0. 1 ± 0.8 DU.  

 

 Number Days Mean (DU) Standard Deviation (DU) Kurtosis (column) 

BRD 10 0.1 1.0 -0.5 

SF 9 -0.1 0.6 0.9 

SF & BRD 9 -0.2 0.6 1.6 
Table 1: The mean values of SO2 mass and column loading using the band residual difference 

(BRD) algorithm, the Spectral Fit algorithm (SF) and the combined SF and BRD algorithm over 

the South Pacific. Each mean value is for 1-10 April 2005. The SF and SF&BRD both exclude 9 

April 2005 due to their being no Spectral Fit data for this day. The box for these values was 41
 o
S 

43
 o
 S, and 12

 
2

 o
E 124

 o
 E. 
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Figure 5: One year average column content of SO2 for the world in 2005. The background 

regions are shown in boxes: the South Pacific region by a red box, the North Pacific region by a 

green box, and the North America region by a pink box.  
 

3.2 North Pacific 

 The second region chosen for a background SO2 analysis was in the North Pacific 

off the coast of California.  This region should not have large amounts of SO2 as it is far 

enough from California to not receive regular emissions from the state and should be far 

enough from Asia to not receive emissions from that region either.  The box tested over 

the North Pacific was 41
o
N to 43

o
N and 130W to 140

o
W.  The mean over this region 

using the BRD algorithm from 1 January 2005 to 30 June 2005 was -0.2 ±  0.7 DU and 

over a year the mean got closer to 0, -0.1 ±  0.6 DU.   The Kurtosis of both data sets is 

1.5 (Figure 6).  The distribution is non-Gaussian and closer to a logistic distribution 

(Kurtosis 1.2).  This region was also analyzed from 1-10 April 2005 using all  

three algorithms.  These results are shown in Table 2. 
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Figure 6: The distribution around 0 from the OMI using the BRD algorithm over the North 

Pacific [41 43
o
N, 130 140

o
 W] for 1 Jan 2005 to 31 June 2005. The mean value is -0.2 ±  0.7 

DU. 

 

 

Number 

Days Mean (DU) 

Standard 

Deviation 

(DU) 

Kurtosis 

(column) 

BRD 10 -0.07 0.6 1.5 

SF 10 0.02 0.5 3.2 

SF & BRD 10 -0.2 0.6 0.9 
Table 2: The distribution of data for 1-10 April 2005 over the North Pacific using all three 

algorithms. 

 

 

3.3 North America  

 The third clean region is over land in North America (40 50
o
N, 90 100

o
W). In 

both the one- and two-year averages, this region has a distribution around zero.  Looking 

at the mean of 1 Jan 2005 to 31 June 2005, a negative value is seen, -0.3 ±  0.7 DU. 

Unlike the two oceanic regions, this distribution is close to Gaussian with a slightly 
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positive Kurtosis value of 0.8 (Table 4). 1-10 April 2005 averages for this region are 

shown in Table 3.  
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Figure 7: Average SO2 distribution over North America [40
 
50

o
N, 90 100

o
W] for 1 Jan 2005 to 

31 June 2005. The mean value is -0.30 ± 0.7 DU. 
 

 

Number 

Days Mean (DU) 

Standard 

Deviation 

(DU) 

Kurtosis 

(column) 

BRD 10 0.5 0.4 -0.3 

SF 10 -0.06 0.3 2.1 

SF & BRD 10 -0.3 0.4 1.7 
Table 3: The distribution of data for 1-10 April 2005 over the North America using all three 

algorithms. 

3.4 Comparisons  

Location Date Count Mean Standard 

Deviation 

Kurtosis 

N. Pacific 1 Jan-30 June 2005 164 -0.2 0.7 0.8 

N. Pacific 1 Jan-30 Dec 2005 338 -0.1 0.6 1.5 

S. Pacific 1 Jan-30 June 2005 172 0.1 0.6 1.6 

S. Pacific 1 Jan-30 Dec 2005 347 -0.1 0.7 1.1 

N. America 1 Jan-30 June 2005 173 -0.3 0.7 0.8 

N. America 1 Jan-30 Dec 2005 349 -0.1 0.6 1.8 
Table 4: The statistics for the three background regions for 6- month and one-year time periods 

using the BRD algorithm. The latitude and longitudes for the regions are as follows: N. Pacific 

[41 43
o
N, 130 140

o
W], S. Pacific [40 44

o
S, 128 134

o
E], and N. America [40 50

o
N, 90 100

o
W].  
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Figure 8: The left hand column shows the standard deviation of each day versus its 

corresponding Julian day for all three clean regions. The right hand column is the 

average reflectivity for each box per day versus the corresponding Julian day for all 

three clean regions.  

 

 

South Pacific

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

Julian Day

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

 o
f 

J
u

li
a

n
 d

a
y

North America

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

Julian Day

S
ta

n
d

a
r
d

 d
e

v
ia

ti
o

n
 o

f 
J

u
li

a
n

 D
a

y

North Pacific

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

Julian Day

S
ta

n
d

a
r
d

 d
e
v
ia

ti
o

n
 o

f 
J

u
li
a
n

 d
a
y

South Pacific

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

Julian Day

R
e

fl
e

c
ti

v
it

y
 (

%
)

North Pacific

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

Julian Day

R
e
fl

e
c

ti
v

it
y

 (
%

)

North America

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

Julian Day

R
e

fl
e
c

ti
v

it
y

 (
%

)



 24 

  

  

  

Figure 9: Sigma prime versus the number of days in 2005 over the three clean regions. 

Sigma prime is equal to  the average standard deviation divided by the square root of the 

number of measurements, N. In the left hand column N1= 1 July 2005 and the right hand 

column has N1 = 1 January 2005. Note the seasonal dependance of the graphs. 

 

 

 

 

South Pacific, N1=1 July 2005

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350

Number of Days (N)

s
ig

m
a

 p
r
im

e

North America, N1= 1 July 2005

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350

Number of Days (N)

S
ig

m
a
 p

r
im

e

North America, N1= 1 Jan 2005

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400

Number of Days (N)

S
ig

m
a

 p
r
im

e

North Pacific, N1= 1 Jan 2005

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350

Number of Days (N)

S
ig

m
a
 p

r
im

e

South Pacific, N1=1 Jan 2005

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

Number of Days

S
ig

m
a

 p
r
im

e

North Pacific, N1= 1 July 2005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

Number of Days (N)

S
ig

m
a
 p

ri
m

e



 25 

Location Spring (DU) Summer (DU) Fall (DU) Winter (DU) 

S. Pacific -0.2 (0.6) 0.1 (0.3) 0.0 (0.4) -0.4 (0.8) 

N. Pacific -0.2 (0.7) -0.1 (0.6) 0.1 (0.5) -0.3 (0.7) 

N. America -0.3 (0.8) 0.1 (0.5) 0.1 (0.6) -0.2 (0.6) 

Table 4a: Seasonal average SO2 column contents for three regions in 2005. The latitude 

and longitudes for the regions are as follows: N. Pacific [41 43
o
N, 130 140

o
W], S. Pacific [40 

44
o
S, 128 134

o
E], and N. America [40 50

o
N, 90 100

o
W]. In the northern hemisphere spring 

was considered to be March-May, summer: June-August, fall: September-November, 

winter: December-February. These months were reversed for the southern hemisphere 

(ie. Winter: June-August). The standard deviation is shown in parenthesis. 

 

3.5 Conclusions 

 The yearly mean SO2 values from the BRD algorithm over all three regions 

(Table 4) are -0.1 DU.  This consistency seems promising for the precision and accuracy 

of the BRD algorithm over long time periods.  The distribution around this mean is nearly 

constant at a standard deviation of 0.6 DU.  The kurtosis of all of these values is greater 

than 0, suggesting the noise is not normally distributed but is more peaked.  This 

consistency of negative mean values over land and water for long time periods suggests 

that the BRD algorithm has a slightly negative bias of -0.1 DU.  Figure 9 shows that the 

noise of the OMI BRD algorithm retrieval scales well with the square root of N up to 

about 100 days independent of the starting time of the year. Depending on the season 

chosen as the starting day a peak may or may not be seen after ~100 days.  Using time 

averaging the uncertainty, defined as 2 sigma, can be reduced to 0.2 DU or 1 ppb in a 2 

km thick layer. This is promising for future work in regions where the seasonal average 

SO2 is a few ppb such as over the Eastern seaboard of the United States.  Averaging over 

longer than 100 days does not improve the detection limit.   
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Breaking down the three regions into seasons shows an interesting trend. In the 

months where reflectivity is higher (Figure 8) due to snow and ice cover (winter and 

spring), all three regions have negative mean values and larger standard deviations then 

the summer and fall (Table 4a). Over North America the noise of the system is the lowest 

during the summer when the albedo is the lowest.  All three regions have lower standard 

devations during their summer months when the reflectivity is lowered (Figure 8).  This 

may also be due to lower ozone loading in the summer or other column content feature 

changes between the seasons.  The BRD algorithm has a small negative bias during the 

winter and spring, -0.3 DU and -0.2 DU respectively, but no bias in the summer and 

spring.  This bias may be caused by changes in reflectivity, temperature, ozone and 

aerosol loading, or other changes in atmospheric chemical composition.  The cause of the 

bias is still under investigation. 

 Comparison of the noise in the different algorithms is more difficult due to the 

small range of Spectral Fit data currently available.  Only ten-day averages can be used 

for this analysis.  The BRD algorithm for this small sampling period hovers around zero 

in all three regions though it does not show the consistency of the long-term data 

resulting in larger uncertainty.  All three algorithms resulted in a negative mean agreeing 

with the spring time negative bias seen in Table 4a. The SF data in these regions is 

consistently slightly negative by ~-0.1 DU on average.  If this result is steady over longer 

time scales, the negative bias of the Spectral Fit algorithm is similar to that of the BRD 

algorithm. Also, the values found by the Spectral Fit algorithm in the three different 

regions are more constant than the BRD algorithm.  The combined BRD & SF algorithm 

is the most negative of the three with a bias of ~-0.25 DU.  All three algorithms are 
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within the standard deviation of the other algorithms which shows their precision.  The 

consistency of all three algorithms to result in slightly negative values over a short time 

periods and long time periods for the BRD algorithm may also suggest that the OMTO3 

data used to determine the SO2 loading may be the cause of these negative results.  
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CHAPTER 4: Validation Study 

 

A validation study was completed for 1, 5, 7, and 10 April 2005.  Aircraft 

measurements have been compared with OMI measurements using the various algorithms 

as described in Chapter 2.  The 2
o
 x 2

o
 sampling region is over Eastern China [122 124

o
E, 

41 43
o
N] and the AMF is 0.36 unless otherwise noted for all calculations.  The 

meteorology of the dates is also analyzed to determine source regions and aerosol 

loading.  

 

4.1    1 April 2005 

Hysplit (Draxler et al., 2003) back trajectories on 1 April 2005 show air in the 

sampling region coming from the North and Northwest (Figure 11), a region with few 

SO2 sources.  A few large cities, including Shenyang and Fuschun, lie due north of the 

sampling region.  These cities have been previously shown to have high SO2 emissions 

(Streets et al., 2003).  Measurements of this region showed significant SO2 both from the 

OMI and the aircraft measurements.  The BRD algorithm has the highest retrieval (2.1 

± 1.5 DU) and the SF & BRD algorithm had the lowest (0.9 ±  1.0 DU).  The aircraft and 

SF algorithm has similar results, 1.3 ±  0.2 DU and 1.1 ± 1.0 DU respectively (Figure 

10).  The aircraft only completed one spiral on this date above the Taoxian Airport.  
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Figure 10: Top left: Normalized aircraft profile from 0-3km over Taoxian Airport on 1 April 2005 

using the maximum values from all flights. Top right: BRD algorithm retrieval for 122 124
o
E, 41 

43
o
N on 1 April 2005. Bottom Left: SF algorithm retrieval for 122 124

o
E, 41 43

o
N on 1 April 2005. 

Bottom Right: SF&BRD algorithm retrieval for 122 124
o
E, 41 43

o
N on 1 April 2005. The triangles 

show the spiral locations. The pink, Liaozhung, the green,Taoxian Airport, and the blue, Xiaoming.  
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Figure 11: NOAA Hysplit 24 hour back trajectories from 41.350
o
N, 123.70

o
E for 1 April 2005 (left) 

and 5 April 2005 (right). 

 

4.2    5 April 2005 

 On 5 April 2005 air originated from the southwest into the sampling region 

(Figure 11) ahead of a cold front.  As the air passed over the eastern coast of China it 

passed many SO2 sources allowing the air to accumulate SO2.  The air also picked up 

many anthropogenic aerosols such as black carbon.  Figure 12 shows the SO2 loading 

determined by the aircraft at three locations (as described in Section 1.1) and OMI 

retrievals for the BRD, SF, and SF&BRD algorithms.  
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Figure 12: Top left: Normalized aircraft profile from 0-3km over the three spiral locations on 5 April 

2005 using the maximum values from all flights. Top right: BRD algorithm retrieval for 122 124
o
E, 41 

43
o
N on 5 April 2005. Bottom Left: : SF algorithm retrieval for 122 124

o
E, 41 43

o
N on 5 April 2005. 

Bottom Right: : SF & BRD algorithm retrieval for 122 124
o
E, 41 43

o
N on 5 April 2005. The triangles 

show the spiral locations. The pink, Liaozhung, the green,Taoxian Airport, and the blue, Xiaoming. 

The AMF was modified on 5 April using the SO2 profiles seen with the aircraft 

(Figure 8) and the aerosol loading determined by the aircraft. The aircraft measured an 
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aerosol index of about 2.1. Correcting the SO2 values for 5 April results in increased SO2 

loading (2.8 DU) over Xiaoming and Liaozhung, making the airplane and OMI BRD 

retrieval agreement decrease. 

 

4.3     7 April 2005 

 The air mass in the sampling region moved in from the northwest after the cold 

front passed through the region on 6 April (Figure 13).  This front “cleaned out” the air, 

leaving little SO2 and industrial aerosols.  The air did not pass over any regions of known 

SO2 emission and carried with it mineral dust from the Mongolian desert region.  Figure 

14 shows the SO2 profile from the aircraft and OMI retrievals for the same area. 

 
 

Figure 13: NOAA Hysplit 24 hour back trajectories from 41.350
o
N, 123.70

o
E for 7 April 2005 (left) 

and 10 April 2005 (right).  
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Figure 14: Top left: Normalized aircraft profile from 0-3km over the three spiral locations on 7 

April 2005 using the maximum values from all flights. Top right: BRD algorithm retrieval for 122 

124
o
E, 41 43

o
N on 7 April 2005. Bottom Left: : SF algorithm retrieval for 122 124

o
E, 41 43

o
N on 7 

April 2005. Bottom Right: : SF & BRD algorithm retrieval for 122 124
o
E, 41 43

o
N on 7 April 2005. 

The triangles show the spiral locations. The pink, Liaozhung, the green,Taoxian Airport, and the 

blue, Xiaoming. 
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Figure 15: Top left: Normalized aircraft profile from 0-3km over the three spiral locations on 10 April 2005 

using the maximum values from all flights. Top right: BRD algorithm retrieval for 122 124
o
E, 41 43

o
N on 10 

April 2005. Bottom Left: : SF algorithm retrieval for 122 124
o
E, 41 43

o
N on 10 April 2005. Bottom Right: SF 

& BRD algorithm retrieval for 122 124
o
E, 41 43

o
N on 10 April 2005. The triangles show the spiral locations. 

The pink, Liaozhung, the green,Taoxian Airport, and the blue, Xiaoming. 

10 April 2005

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

SO2/SO2 max (SO2 max = 0.49 DU) 

P
r
e

s
s

u
r
e

 D
e

r
iv

e
d

 A
lt

it
u

d
e

 (
k

m
)

XIA

LIA

TIA



 35 

4.4    10 April 2005 

Hysplit trajectories for 10 April show a similar condition as seen on 7 April 

(Figure 13). The air had low SO2 loading because it passed over few SO2 emission 

sources, as may be seen by both aircraft measurement and OMI retrievals (Figure 15).  

 

4.5 Comparisons and Discussion 

 Mean SO2 values and standard deviations are shown in Table 5.  The BRD 

algorithm yields numbers that are higher than airplane measurements for all days  

 

Table 5: Column contents of SO2 over 41 43
o
 N, 122 124

o
 E with the standard deviation in 

parenthesis for all three algorithms and average aircraft retrieval.  

 

sampled.  This suggests that the SO2 between sampling regions may have been higher. 

Looking at the detailed pictures of the OMI BRD retrieval show that pixels between the 

sampling region are higher making this a reasonable assumption though it likely does not 

account for the entire discrepancy.   The percent difference between the aircraft and the 

OMI values was determined using the equation 

%100
(DU) airplane

(DU) OMI-(DU) airplane
  difference % ×=      (5) 

  

 
1 April 

(% difference) 

5 April 

(% difference) 

7 April 

(% difference) 

10 April 

(% difference) 

Airplane: SF 16 0 340 164 

Airplane: SF&BRD 33 38 -150 -56 

Airplane: BRD -59 -79 -800 -400 

Table 6: The percent difference between the in situ airplane data and the various algorithms 

calculated using equation 5.  
 

 1 April  (DU) 5 April (DU) 7 April (DU) 10 April (DU) 

SF 1.09 (0.95) 1.60 (1.00) 0.44 (1.24) -0.058 (0.81) 

(SF+BRD) 0.87 (1.50) 0.99 (1.17) -0.050 (1.24) 0.14 (1.16) 

BRD 2.07 (1.45) 2.87 (1.15) 0.90 (1.40) 0.45 (1.18) 

Airplane 

average 

1.3 (0.2) 1.6 (0.3) 0.10 (0.02) 0.09 (0.01) 



 36 

The results of equation 5 are given in Table 6.  

All three algorithms have a much better agreement with airplane measurements 

when the SO2 loading is greater than 1.0 DU, to forthwith be called “high loading”.  The 

Spectral Fit data has the best agreement when there is high loading.  In low loading 

situations, SO2 less than 0.5 DU, all three algorithms accuracy decrease.  The OMI is able 

to distinguish between high and low SO2 loading on a daily basis.  Currently, the 

quantitative results have large uncertainties making numerical analysis less reliable then 

qualitative analysis.  The ability to distinguish on a daily basis between high and low SO2 

loading is novel among satellites.  
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CHAPTER 5: Trajectory Analysis 

 

 The SO2 plume observed on 5 April 2005 was followed for three days to 

determine whether the OMI was able to track plume movement and to estimate the 

lifetime of SO2.  All values were calculated using the BRD algorithm with AMF 

corrections.  The Corrections were determined from observed aircraft profile and aerosol 

height.  

5.1 Forward trajectories of the polluted air  

Three daily, 24-hour trajectories were used to verify a 72-hour forward air mass 

trajectory starting on 5 April 2005, 18:00 UTC.   Trajectory simulations were made using 

the NOAA HYSPLIT model.   A box was made around the plume seen on 5 April 2005 

(Figure 15) and the four corners were used as the starting latitude and longitude points for 

the forward trajectories.  Each trajectory was made for a 24-hour time period to 

determine the new location of the air mass on a daily basis.  This new location was used 

as a starting position for another 24-hour trajectory.   Finally, a third 24-hour trajectory 

was modeled using the previous 24-hour trajectory’s end point.  These three 24-hour 

trajectories were concatenated and compared to the 72-hour trajectory (Figure 16c).  This 

data showed that the final locations of both the three 24 hour trajectories and the 72-hour 

trajectory were in agreement. 

   During the trajectory simulations, altitudes of the mass of pollution were also 

taken into consideration.  Based on aircraft data, all of the significant SO2 mass on 5 

April 2005 was determined to be between 0-3 km, with the majority concentrated below 

2km.  Subsequently, only air from this region was considered to contain SO2 and used in 

further calculations.  The forward trajectories of this air mass to 6 April were then used to 
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determine the maximum and minimum heights of SO2 for the following day.  

This process was repeated for 7, 8 April. These heights are given in Table 7.   

 

5.2 Plume Trajectory, 5-8 April 2005 

                  The 35 49
o
N, 117 132

o
E box under consideration on 5 April 2005 was 

followed until 8 April 2005 when the plume became very dispersed.  The air mass was 

assumed to move along as predicted by Hysplit forward trajectories as described above. 

This was confirmed by the OMI data which showed the plume moving east each day 

along the same path.  The plume showed significant rising of the air that originated 

between 0-3 km above ground from 5-6 April as the air moved out to sea.  The 

mechanism for lofting has been suggested to be WCB (Dickerson et al., 2007).  The air 

height then remained nearly constant between 2-5 km until the air mass became too 

spread out and diluted with other air to have a clear plume anymore.  A corrected AMF 

(Figure 14d) was used to calculate the mass of SO2 for 6-8 April 2005 due to this lofting. 

The corrected AMF assumed the SO2 had a Gaussian profile around 3km.  The sensitivity 

of the OMI detection increases directly with SO2’s atmospheric height.  Therefore, 

without making a correction for the lofting, the amount of SO2 increased, appearing to 

violate conservation of mass (Figures 16a and 16b).  This is demonstrated between 5 and 

6 April in Table 7.  Using air mass trajectories, SO2 height may be determined and an 

appropriate AMF correction applied to the data.  OMI offers the unprecedented ability to 

track SO2 movement for high loading  
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episodes.  Figure 17 shows OMI retrieval from 5-8 April using the corrected AMFs with 

boxes around the sampling mass region. 

  

 

 

Figure 16 (a-top left): OMI operational PBL SO2 on 6 April 2005. The amount of SO2 is overestimated 

due to the SO2 height being above the algorithm.  

(b-top right) OMI SO2 data corrected for the elevated plume altitude (~3km) and reflectivity.  

 (c-bottom left) NOAA Hysplit trajectory originating at 42N, 121E on 5 April 05 at 4 UTC for 500, 

1000, and 2000m air. The trajectory illustrates the air being lofted up to 3000m rapidly as it heads out 

to sea and remaining at that height during transport over the Pacific Ocean. Similar trajectories were 

seen from other points located within the sampling region. 

(d-bottom left) AMF regressions for PBL plume and elevated plume ~3km on 6 April. As the AMF 

increases the amount of SO2 in the column will decrease. 
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Table 7: The maximum and minimum height of SO2 loading for each day as determined from 

aircraft measurements and air mass trajectories.  

 

5.3 SO2 mass calculations 

SO2 mass was calculated on 5 April 2005 assuming the SO2 is concentrated below 

3 km. For 6-8 April, the SO2 mass was determined by assuming the SO2 had a Gaussian 

profile around 3 km.  This correction was made to account for the lofting determined 

from the trajectory analysis discussed above.  The box size was kept constant assuming 

no SO2 dispersion. 

Date SO2  (AMF=PBL) 

(tonnes) 

SO2 (AMF=3km 

Gaussian) (tonnes) 

Box size 

(km
2
) 

5 April 2005 74600 --- 1950000 

6 April 2005 76400 32600 1950000 

7 April 2005 31800 13200 1940000 

8 April 2005 32200 10100 2080000 
Table 8: OMI SO2 masses for each day calculated using the standard AMF in the OMSO2 

product and using a corrected AMF assuming the SO2 has a Gaussian distribution around 3km.  

 

Date Minimum Height (km) Maximum Height (km) 

5 April 2005 0.0 3.0 

6 April 2005 2.0 4.0 

7 April 2005 3.0 5.0 

8 April 2005 2.0 5.0 
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Figure 17: SO2 plume motion from 5 April (top left) to 8 April (bottom right). The area of the 

plume measured is shown by the white box. Note the longitude of the plots change as the plume 

moves eastward.  

  

5.3 Lifetime and Dispersion 

 The initial SO2 plume on 5 April 2005 traveled east over the sea of Japan on 6 

April 2005 after being lofted above 2 km.  Trajectory analysis shows that the majority of 



 42 

the plume followed this path but some of it traveled north, away from the main pathway. 

Based on trajectories about 30% of the initial SO2 plume did not travel with the plume 

over the Sea of Japan on 6 April (Li, C. et al, 2007).  In determining the SO2 mass, the 

OMSO2 product uses a background box correction to account for background levels of 

SO2.  These boxes change the mass of SO2 by 35% on average but can have both larger 

and smaller effects (Table 9).  Therefore, a 35% uncertainty is expected with the mass 

measurements. 

Trial 

Minimum 

Latitude 

(N) 

Minimum 

Longitude 

(E) 

Maximum 

Latitude(N) 

Maximum 

Longitude 

(E) 

Area 

(km
2
) 

Background 

Box SO2 

(tonnes) 

Total 

SO2 

(tonnes) 

Uncertainty 

percentage 

standard 50 105 55 110 194166 0 76584 0.00 

1 20 135 25 140 294725 11726 64857 15.31 

2 35 120 40 125 253069 49194 27389 64.24 

3 45 115 50 120 215490 33184 43400 43.33 

4 45 130 50 135 215490 42582 34001 55.60 

5 45 105 50 110 215490 2967 73616 3.87 

6 45 105 55 120 1210058 11455 65128 14.96 

7 52 105 55 107 49537 0 76584 0.00 

8 45 105 55 125 1610308 23875 52708 31.17 

9 40 110 50 120 890906 33227 43356 43.39 

10 30 105 55 135 6837127 33175 43408 43.32 

11 25 105 55 140 9880410 20001 56582 26.12 

Table 9: SO2 mass calculations for the box (35 49
o
N, 117 132

o
E) on 5 April 2005.The standard 

was used as the basis for background box size and locations. Trials 1-5 have similar areas but 

the locations and SO2 loading varying substantially. Trials 6-11 have varying background box 

areas but are all in the same locations. This yields background boxes with more consistent 

masses. 

 

Taking both of these errors into account the lifetime of SO2 from this trajectory analysis 

ranges from 1.0 to 3.0 days (Figure 18). 
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 Figure 16: SO2 lifetime over the Sea of Japan as an SO2 plume from 5 April 2005 travels eastward over 

the Sea of Japan to the Atlantic. The blue line shows the average SO2 mass changes due to lofting, 

neglecting dispersion. The purple is the average SO2 mass assuming 30% dispersion from 5-6 April. The 

red represents the highest SO2 loading with uncertainty and corresponds to a lifetime of ~1 day. The green 

is the lowest SO2 loading (assuming 30% lost to dispersion and 35% uncertainty in the measurements) and 

corresponds to a lifetime of ~3 days.  

 

5.4 Conclusions 

Using tools available online and the OMSO2 product, the path of SO2 released 

into the PBL can be tracked.  This novel ability will prove useful for determining the 

extent of SO2’s impact as it travels in the atmosphere.  This study revealed a lifetime of 

~1-3 days.  This is within previous estimates of lifetime as discussed in the introduction. 

Overall, OMI shows promise in its ability to track SO2 in the PBL for a few days, though 

dispersion limits the length of this tracking ability.  A rough lifetime has been estimated 

though this will improve with improved SO2 retrieval from the OMI. 
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CHAPTER 6: Discussion 

 

 The OMI has the ability to see on a daily scale the difference between high and 

low SO2 vertical column contents using all three algorithms.  Currently, the SF algorithm 

shows the best agreement with in situ data over China, with less than 15% difference on 

high-loading days.  The BRD algorithm is precise but it is not highly accurate (~ 40% 

difference) on high-loading days.  Combining the two algorithms decreases both the 

accuracy and precision for all loadings.  On low-loading days, all three of the algorithms 

fail to have precise measurements with percentage errors greater than 100.  This is most 

likely due to the SO2 levels being below the detection limit of the instrument. 

 As the time scale increases so too does the accuracy and precision of the OMI’s 

measurement.  Three six-month averages (January-June) of the BRD algorithm over 

clean regions in 2005 lead to mean values that ranging from -0.3 to 0.1 DU, yet when the 

time scale is increased to a year for the same regions, the algorithm yields -0.1 DU for the 

North Pacific, South Pacific, and North American clean regions (Chapter 3).  The 

standard deviation of the mean is 0.6, 0.7, and 0.6 DU respectively leading to an average 

standard deviation of mean 0.6 DU.  Yet this does not accurately describe the SO2 

concentrations in these regions as seasonal variations are ignored and accuracy decreases. 

In the winter and spring of 2005, all three regions have negative mean values and 

standard deviations between 0.6-0.8 DU yet in the summer and fall the mean values are 

within 0.1 DU of zero and the standard deviations decrease to 0.3-0.5 DU.  The noise 

scales with the square root of N up to ~ 100 days.  Averaging over longer time periods 

does not improve the detection limit due to seasonal variations.  
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 The OMI is also able to track SO2 plumes for a period of days, offering novel 

information to the scientific community.  Tracking the motion of SO2 once released will 

enable improved SO2 lifetime in models and help determine the impact of a source region 

on a global scale.  In this analysis, a lifetime of 1 to 3 days was determined though this 

may change with more accurate mass estimates in the future. 
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CHAPTER 7: Future Work 

 

1) The Spectral Fit data needs to be expanded so that longer time periods and 

more scenarios may be studied using the SF algorithm.  This would lead to a better 

understanding of the uncertainty associated with this algorithm.  Currently this algorithm 

requires manual determination of the residuals making it time-consuming and unrealistic 

for use with all incoming data from the OMI.  Determining an algorithm to compute these 

residuals is essential to make the SF algorithm a viable retrieval option.  

2) The current AMF correction for the BRD algorithm seems to increase the 

column loading and decrease the agreement with the in situ data.  Better AMF correction 

could help improve BRD algorithm’s accuracy.  More work is needed to determine how 

to enhance the AMF to improve the retrieval.  Current AMF corrections do not 

incorporate in situ ozone corrections which could help improve them. 

3) OMI data needs to be compared with model studies with SO2.  This will allow 

analysis of longer time periods than in situ data provides.  One future plan is to compare 

OMI data with SO2 from the GO-CART model (Chin et al., 2000, Chin et al., 2003). 

4) More in situ data collected via aircraft campaigns would aid in validation 

studies.  Future work includes another flight campaign in China in 2008.  The sampling 

region is southwest of the current campaign, in an area where high SO2 is seen on a 

regular basis.  

5) The OMTO3 data (source data for SO2) is currently being improved by the 

algorithm team.  Future releases of this data could lead to improved retrieval by one or all 

of the algorithms discussed.  Current analysis was done using Collection 2 data. 

Preliminary Collection 3 data (due to be released in late summer 2007) shows promising 
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results over China with the BRD algorithm.  Collection 3 data has improved retrieval 

which minimizes the effect of stray light better than the Collection 2 data.  An example of 

results using the BRD algorithm with the preliminary Collection 3 data is shown in 

Figure 19b for 1 April 2005.  

  

Figure 19a: Collection 2  (OLD) 
Mean SO2 for region (PBL): 2.072 

SO2 Std Dev (PBL): 1.445 

Figure 19b: Collection 3 (current) 
Mean SO2 for region (PBL): 1.279 

SO2 Std Dev (PBL): 1.473 
 

1 April 2005 OMSO2  PBL data (AMF=0.36):  Left : Collection 2 (operational )  Right: Collection 3 (test 

data) 
 

The average for the region (1.3 DU) from this retrieval matches the aircraft-measured 

value in this region of 1.3 DU.  Future examinations with Collection 3 data are necessary 

once the information is publicly released. 
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