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The consumption of leafy greens increased over the last few decades due to health 

concerns. However, leafy green vegetables are highly susceptible to microbial 

contamination. The pre-harvest sampling and testing are highly important to ensure safety 

of leafy greens. Z-pattern sampling scheme is extensively used currently. However, the 

scientific rationale and performance attributes of these sampling plans are unclear in 

relation to detection of both indicator microorganisms and pathogens. The overall goal of 

this study is to evaluate and validate various sampling plans for the detection of 

pathogenic bacteria on pre-harvest leafy greens and find the optimal sampling plan. 

Computer simulations and field trials were performed to compare the effectiveness of 

various sampling plans, including simple random sampling, stratified random sampling, 



	

Z-pattern sampling, “samples of opportunity” sampling and iterative Bayesian sampling. 

Studies showed that Z-pattern sampling plan had larger variability than random sampling 

plan and stratified sampling plan when the contamination sites were randomly distributed, 

although the mean detection probabilities of these three sampling plans were the same. 

Samples of opportunity sampling performed better than random sampling plan and 

stratified sampling plan when the contamination sites were non-randomly distributed, 

such as flooded field, field with animal house nearby or field with power line above.  And 

iterative Bayesian sampling was suggested when the number of samples is limited. A 

what-if sampling strategy would be made to get a more efficient detection of pathogenic 

bacteria for the industry and government farms. This study provides the scientific and 

mathematical rationale for various sampling plans and allows leafy green growers to 

make informed decisions regarding strategies for optimizing pre-harvest microbiological 

testing programs. 
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1 Chapter	1:	Introduction	

1.1 Increasing	demand	for	fresh	produce	

Fresh	fruit	and	vegetables	are	an	important	part	of	our	daily	diet.	The	demand	

for	 fresh	 produce	 has	 increased	 continuously	 in	 the	 United	 States	 [1]	 and	 other	

countries	 in	 the	 world	 in	 the	 past	 few	 decades.	 This	 is	 largely	 due	 to	 consumer	

awareness	about	the	linkages	between	diet	and	health,	as	well	as	rising	incomes	[1].	

In	 2014,	 the	 United	 States	 produced	 about	 129	 billion	 pounds	 of	 commercial	

vegetables,	and	the	average	vegetable	and	pulses	consumption	reached	385	pounds	

per	person	[2].	Despite	this	seemingly	large	number,	after	adjustment	for	losses	and	

conversion	 to	 cups	of	produce	consumed	daily,	 each	American	consumed	only	1.6	

cups	per	day	on	average,	which	is	well	below	the	daily	recommendations	of	2.5	cups	

from	the	2010	Dietary	Guidelines	for	Americans	[2].	Therefore,	the	demand	for	fresh	

produce	is	likely	to	increase	further	in	the	coming	years	as	consumers	gain	a	better	

knowledge	 of	 diet	 and	 health	 issues	 fueled	 by	 the	 availability	 of	 information,	

especially	through	social	media.	

1.2 Microbioloigcal	risks	of	fresh	leafy	greens	

While	fresh	fruit	and	vegetables	are	an	indispensable	component	of	a	healthy	

diet,	contamination	by	 foodborne	pathogens	due	to	 improper	handling	can	 lead	to	

serious	diseases	 and	even	death.	Approximately	48	million	people	 are	 affected	by	

food-related	diseases	every	year	in	the	United	States.	A	recent	report	from	the	U.S.	

Centers	of	Disease	Control	 reviewed	 foodborne	 illness	between	1998	and	2008.	 It	

reported	that	almost	half	(46%)	of	foodborne	illnesses	and	outbreaks	between	1998	
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and	2008	were	attributable	to	fresh	produce,	with	 	 leafy	greens	causing	about	one	

fifth	(22%)	of	the	foodborne	illness	[3].		

There	 are	 several	 reasons	 why	 cut	 leafy	 greens	 have	 higher	 risks	 for	

foodborne	illness.	Leafy	greens	typically	grow	near	the	soil’s	surface	and	have	large	

surface-to-volume	 ratios,	 thus	 are	 more	 likely	 to	 be	 affected	 by	 pre-harvest	

contamination	 [4].	 It	 is	 also	 known	 during	 post-harvest	 activities,	 pathogens	 can	

grow	quickly	on	cut	salad	greens	and	reach	high	 levels	of	contaminations	 in	short	

periods	of	time	if	the	leafy	greens	are	not	kept	at	cold	enough	temperatures	[5].	Due	

to	 these	 reasons,	 there	 have	 been	 numerous	 leafy	 green	 associated	 	 foodborne	

illness	outbreaks.	For	example,	 an	Escherichia	coli	 outbreak	 linked	 to	 raw	spinach	

caused	3	deaths	and	199	illness,	including	102	hospitalizations	[6].	

1.3 Microbiological	testing	for	fresh	produce	

		 Microbiological	 testing	 of	 foods	 for	 specific	 pathogens	 or	 indicator	

microorganisms	is	used	extensively	to	help	ensure	the	safety	of	 foods.	Particularly	

with	 foods	 that	 receive	a	minimum	of	processing,	microbiological	 testing	can	be	a	

critical	 component	 of	 an	 overall	 food	 safety	 system.	 When	 sampling	 plans	 and	

methodology	 are	 properly	 designed	 and	 performed,	 microbiological	 testing	 can	

provide	 important	 information	about	the	risk	of	 fresh	produce.	However,	 if	poorly	

designed	 or	 executed	 improperly,	 	 testing	 can	 provide	 inaccurate	 or	 misleading	

information	 that	 may	 create	 either	 unwarranted	 concerns	 or	 false	 reassurances	

about	the	safety	of	produce.		

Pathogen	contaminations	can	occur	at	every	stage	of	production	from	the	field	

to	 the	 table.	Although	microbiological	 testing	 is	 important	along	 the	whole	 supply	
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chain,	the	probability	of	detecting	the	pathogens	is	very	low	when	limited	number	of	

samples	are	distributed	across	multiple	stages.	Instead,	the	HACCP	(Hazard	Analysis	

Critical	Control	Point)	approach	to	risk	reduction	requires	preventive	interventions	

at	critical	points	in	a	process	where	the	risk	of	contamination	is	high	[7].	In	the	case	

of	fresh	leafy	green	vegetables,	it	is	preferred	to	perform	product	testing	in	the	field	

prior	 to	 shipment	 to	 the	processing	 facility,	where	knowledge	of	 the	environment	

and	likely	sources	of	contamination	can	potentially	increase	the	statistical	power	of	

the	testing	regime	[8].		

1.4 Introduction	to	sampling		

In	statistics,	sampling	is	concerned	with	the	selection	of	a	subset	of	individuals	to	

estimate	 characteristics	 of	 the	 whole	 population.	 The	 only	 way	 to	 ensure	 100%	

safety	of	a	field	of	fresh	produce	is	to	test	every	part	of	it,	yet	this	is	not	practical	as	

it	would	leave	no	product	to	sell	.	Instead,	microbiological	testing	is	performed	on	a	

subset	of	 the	 food	product.	Considering	 the	 large	batch	sizes	associated	with	 food	

products,	 the	 low	 frequency	 and	 levels	 of	 pathogens	 in	 the	 product,	 and	 the	

heterogeneity	 of	 pathogen	 distribution	 in	 the	 food	 product,	 it	 is	 critical	 to	 design		

appropriate	sampling	plans	to	 improve	the	statistical	power	of	the	microbiological	

testing	[9].	

A	 variety	 of	 sampling	 methods	 can	 be	 employed,	 either	 individually	 or	 in	

combination.	 For	 example,	 a	 simple	 random	sampling	plan	 selects	 all	 subsets	of	 a	

batch	of	food	product	with	equal	probability.	A	systemic	sampling	plan	selects	every	

kth	elements	in	the	batch.	A	stratified	random	sampling	plan	first	divides	the	whole	

batch	 of	 food	 into	 distinct,	 independent	 strata,	 and	 then	 randomly	 select	 equal	



	 4	

numbers	of	samples	from	each	strata.	Choice	of	sampling	plans	depends	on	nature	

and	quality	of	the	food	batch	likely	sources	of	contamination	and	cost	or	opertional	

concerns	related	to	testing.	However,	there	is	a	lack	of	systemic	comparisons	among	

sampling	plans	for	assessing	the	food	safety	attributes	of	pre-harvest	fresh	produce.		
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2 Chapter	2.	Literature	Review	

	

Over	250	types	of	pathogens	and	toxins	can	be	transmitted	by	food,	with	31	of	

them	classified	as	major	foodborne	pathogens	[10].	According	to	a	report	from	the	

Centers	for	Disease	Control	and	Prevention	(CDC)	of	foodborne	illness,	about	1	in	5	

foodborne	illnesses	were	associated	with	leafy	green	vegetables	consumption,	more	

than	 any	 other	 type	 of	 food	 [3].	 Microbiological	 testing	 is	 considered	 an	 integral	

component	 of	 food	 safety	 control	 systems	 from	 leafy	 greens	 to	 verify	 that	 food	

safety	 controls	 are	 maintaining	 contamination	 levels	 within	 acceptable	 levels.	

Sampling	is	a	required	and	essential	first	step.	However,	selection	of	an	appropriate	

sampling	plan	depends	on	knowledge	of	both	microbiological	hazard	and	sources	of	

contamination.	To	fully	understand	the	efficacy	of	sampling	plans,	the	knowledge	of	

the	 behavior	 of	 the	microbiological	 hazard	 and	 the	 sources	 of	 contamination	 are	

required.	 This	 becomes	 particularly	 important	 when	 considering	 “samples	 of	

opportunity”	approaches	to	sampling.	In	this	section,	the	common	microbial	hazards	

associated	with	fresh	produce,	contamination	sources	and	sampling	for	food	safety	

are	reviewed.	

	

2.1 Hazards	associated	leafy	green	at	pre-harvest		

2.1.1 Salmonella	

Salmonella	 enterica	 subspecies	 enterica	 is	 a	 gram-negative,	 rod-shaped	

bacterium	 commonly	 found	 in	 the	 gastrointestinal	 tract	 of	 both	 exothermic	 and	
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endothermic	animals,	 including	humans.	 It	 is	a	member	of	 the	Enterobacteriaceae.	

Salmonella	 can	 be	 divided	 into	 serotypes	 based	 on	 antigens	 that	 the	 organism	

presents.	Scientists	have	classified	S.	enterica	into	over	2,500	serotypes.		Salmonella	

is	 the	most	 commonly	 diagnosed	 and	 reported	 foodborne	 illness	 associated	 with	

fresh	produce,	causing	15.19	cases	of	illness	per	100,000	people	in	the	U.S	annually	

[11].	Despite	some	recent	progress	 in	reducing	Salmonella	 infections,	 the	 infection	

rate	is	still	well	above	the	national	goal	for	2020:	4	cases	per	100,000	people.			

Salmonella	has	remarkable	adaptability	and	high	tolerance	for	environmental	

stress	such	as	UV	radiation	[12,	13].	Salmonella	are	widely	distributed	in	nature	and	

survive	well	 in	 a	 variety	 of	 foods,	 such	 as	 poultry,	 eggs,	 dairy	 products	 and	 fresh	

produce	[14].	Furthermore,	Salmonella	can	persist	in	the	environment	for	extended	

periods,	and	cause	infections	after	the	ingestion	of	low	doses,	e.g.,	10-100	cells	[15].	

Moreover,	 Salmonella	 can	 be	 carried	 in	 the	 intestines	 of	 domestic	 and	 wild	

mammals,	birds,	and	reptiles.	It	is	also	present	in	the	feces	of	pets,	such	as	cats,	dogs,	

hamsters,	and	guinea	pigs,	and	humans	can	serve	as	asymptomatic	carriers.	These	

properties	make	it	hard	to	control	Salmonella	contamination.		

2.1.2 Shiga	Toxin-producing	E.	coli	(STEC)	

Most	strains	of	E.	coli	 are	benign	 inhabitants	of	 the	gastrointestinal	 tract	of	

endothermic	 animals.	 However,	 strains	 that	 produce	 Shiga	 toxins,	 originally	

discovered	in	1977	[16],	can	cause	serious	illness	in	people,	especially	children	and	

elderly	people	[17].	Infections	with	Shiga	toxin-producing	E.	coli	can	occur	through	

consumption	 of	 undercooked	 ground	 beef,	 unpasteurized	milk,	 cheese,	 and	 juice;	

contaminated	raw	fruits	and	vegetables	[18];	water	contaminated	with	animal	feces;	
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or	by	direct	contact	with	farm	animals	or	their	environment.	A	2006	outbreak	linked	

to	bagged	baby	spinach	caused	more	than	200	people	to	become	ill	and	at	least	30	to	

develop	 hemolytic	 uremic	 syndrome	 (HUS),	 a	 serious	 and	 potentially	 fatal	 kidney	

pathology	associated	with	Shiga-toxin	producing	E.	coli	infections	[19].		

Surveys	in	the	United	States	and	Canada	indicate	wide	spread	distribution	of	

E.	coli	O157:H7	in	cattle	operations	[20].	A	recent	study	identified	the	proximity	to	

cattle	 feedlot	 as	 a	 risk	 factor	 for	E.	 coli	 contamination	 of	 leafy	 greens[21].	E.	 coli	

O157:H7	may	be	present	in	animal	manures	and	slurries,	particularly	cattle	derived	

material	 [22],	 and	 can	 contaminate	 fresh	 produce	 during	 manure	 application.		

Wildlife,	such	as	deer,	may	also	be	carriers	for	E.	coli	O157:H7	[23].	

2.1.3 Cryptosporidium	

Cryptosporidium	is	a	parasitic	protozoa	that	can	cause	gastrointestinal	illness	

with	 diarrhea	 in	 humans	 and	 animals.	 Water,	 including	 both	 drinking	 water	 and	

recreational	water	is	the	most	common	way	to	spread	the	parasite.	Cryptosporidium	

is	a	 leading	cause	of	waterborne	disease	among	humans	 in	 the	United	States	 [24].	

Many	Cryptosporidium	associated	outbreaks	were	reported	in	the	United	States	and	

other	countries	around	the	world	[25]–[27].	

A	number	of	studies	have	reported	contamination	of	 leafy	green	vegetables	

with	Cryptosporidium.	Dixon	et	al.	reports	the	presence	of	Cryptosporidium	on	5.9%	

of	 ready-to-eat	 packaged	 salads	 and	 leafy	 greens	 samples	 purchased	 at	 retail	 in	

Canada	[28].	Maikai	et	al.	collected	200	fresh	vegetable	samples	in	Zaria	metropolis,	

Kaduna	 State,	 Nigeria	 and	 found	 35%	 (70/200)	 samples	 were	 positive	 for	

Cryptosporidium,	 among	 which	 lettuce	 had	 the	 highest	 contamination	 rate	 (40%)	
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[29].	 	 Rai	 et	 al.	 reported	 detection	 of	 Cryptosporidium	 in	 unprocessed	 food	

(unpasteurized	milk	and	meat	samples)	in	India	[30].	

The	 parasite	 can	 survive	 outside	 the	 body	 for	 long	 periods	 of	 time,	 and	 is	

very	 tolerant	 to	 chlorine	 disinfection.	 In	 a	 recent	 study,	 Chandra	 et	 al.	 (2014)	

evaluated	 six	 different	 wash	 solutions	 for	 their	 effectiveness	 in	 removing	

Cryptosporidium	 parvum	 from	 basil.	 At	 high	 contamination	 condition	 (1,000	

oocysts/25	 g	 basil),	 the	 protozoa’s	 oocysts	 could	 be	 recovered	 from	 all	 samples	

regardless	 of	 wash	 solutions.	 However,	 at	 low	 contamination	 conditions	 (100	

oocysts/25	g),	the	recovery	rates	were	in	the	range	of	18.5%	to	70.4%	[31].		

2.1.4 Norovirus	

Norovirus	is	a	highly	contagious	human	virus	that	can	be	transmitted	by	fecal	

contamination	 of	 food	 or	 water,	 by	 touching	 contaminated	 surfaces	 and	 through	

person-to-person	 contact.	 Norovirus	 is	 the	 most	 common	 cause	 of	 viral	

gastroenteritis	 in	 humans	 worldwide.	 The	 virus	 has	 been	 reported	 to	 cause	 267	

million	infections	and	over	200,000	deaths	each	year	[32],	mostly	in	infants	and	the	

elderly	in	developing	countries	[33,	34].			

The	 consumption	 of	 contaminated	 uncooked	 food	 such	 as	 leafy	 green	

vegetables	 and	 fruits	 has	 been	 identified	 as	 a	 common	 source	 of	 norovirus	

outbreaks.	In	a	recent	study,	Baert	et	al	[35]	analyzed	a	large	number	of	samples	of	

leafy	greens,	 fresh	 fruits	and	other	 types	of	 fresh	produce	 in	Belgium,	Canada	and	

France.	Norovirus	was	detected	by	real-time	RT-PCR	 in	28.2%,	33.3%	and	50%	of	

leafy	green	samples	tested	in	Canada,	Belgium	and	France,	respectively.		
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A	 number	 of	 recent	 studies	 assessed	 the	 effects	 and	 efficacy	 of	 different	

washing	methods	on	reducing	human	norovirus	on	leafy	green.	Bae	et	al.	[36]	used	

artificially	contaminated	vegetables	 to	evaluate	 the	efficacy	of	washing	 treatments	

in	 the	 removal	 of	 norovirus.	 The	 authors	 found	 that	 wash	 treatments	 achieved	 a	

0.69	 to	1.29	 log	 reduction	 in	norovirus	 levels	 from	 the	 surfaces	of	 the	vegetables.	

Baert	 et	 al	 [37]	 compared	 the	 efficiency	 of	 sodium	 hypochlorite	 (NaOCL)	 and	

peroxyacetic	 acid	 (PAA)	 to	 reduce	 a	 murine	 norovirus	 (a	 surrogate	 for	 human	

norovirus)	 at	 two	 inoculation	 levels	with	different	 organic	 loads	 [37].	 They	 found	

that	200	mg/L	NaOCl	or	250	mg/L	PAA	was	needed	 to	obtain	 an	additional	1-log	

reduction	of	murine	norovirus	on	shredded	iceberg	lettuce,	whereas	only	250	mg/L	

PAA	 achieved	 this	 for	 normal	 bacterial	 pathogens.	 Therefore,	 PAA	 and	NaOCl	 are	

useful	in	preventing	cross-contamination	during	the	washing	process,	but	does	not	

directly	cause	a	significant	reduction	of	the	number	of	pathogens	present	on	lettuce.	

The	authors	further	found	that	the	effectiveness	of	NaOCl,	but	not	PAA	was	greatly	

influenced	by	the	presence	of	organic	material.	

2.1.5 Shigella	

Shigella	 is	 a	 gram	 negative,	 rod-shaped	 bacterium	 closely	 related	 to	

Salmonella	and	E.	coli.	 It	 is	 the	 causative	agent	of	 shigellosis	 in	humans	and	other	

primates,	but	not	 in	other	animals.	Shigella	is	a	 leading	bacterial	cause	of	diarrhea	

worldwide.	 Every	 year,	 there	 are	 an	 estimated	 500,000	 cases	 of	 shigellosis	 in	 the	

United	States,	or	4.82	cases	per	100,000	individuals	[38].	

Numerous	 outbreaks	 of	 Shigella	 have	 been	 linked	 to	 consumption	 of	 fresh	

leafy	 green	 vegetables.	 For	 example,	 a	 Shigella	 sonnei	 outbreak	 with	 46	 cases	
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occurred	in	Norway	during	October	2011	[39].	Epidemiological	evidence	and	trace	

back	investigations	linked	the	outbreak	to	the	consumption	of	imported	fresh	basil.		

Several	 recent	 studies	 have	 evaluated	 different	methodologies	 for	 removing	

Shigella	 from	fresh	produce.	Two	studies	showed	that	X-ray	radiation	significantly	

reduced	 Shigella	 and	 other	 pathogens	 on	 leafy	 green	 surfaces	 [40,	 41].	 Another	

study	 reported	 that	 a	 combined	 treatment	 with	 malic	 acid	 and	 ozone	 reduced	

pathogen	 populations	 by	 4.4	 log	 in	 radish	 and	 4.8	 log	 in	mungbean	 sprouts	 [42].	

There	 is	 also	evidence	 that	organic	 acids,	 such	as	 acetic	 acid,	 citric	 acid	and	 lactic	

acid	can	be	effective	in	reducing	Shigella	contamination	[43].	

2.2 Sources	of	Pre-harvest	Contamination	

Many	 factors	 affect	 the	 frequency	 and	 extent	 of	 contamination	 of	 fresh	

produce	 during	 cultivation	 of	 produce.	 Pre-harvest	 contamination	 can	 occur	 via	

direct	 contact	 with	 contaminated	 manure	 and	 irrigation	 water,	 as	 well	 as	 wild	

animals,	 insects	and	 field	workers.	 In	 this	section,	 common	sources	of	pre-harvest	

contamination	are	reviewed.	

2.2.1 Irrigation	water		

Irrigation	water	 is	 considered	an	 important	vehicle	 for	 contaminating	 leafy	

greens	 with	 foodborne	 pathogens.	 Irrigation	 water	 can	 be	 contaminated	 by	

pathogens	 from	animal	 fecal	deposits	or	contact	with	contaminated	surface	runoff	

[44].	Once	contaminated,	pathogens	can	survive	in	water	for	extended	periods	[45].	

Indeed,	a	number	of	E.	coli	O157:H7	outbreaks	have	been	linked	with	contaminated	
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water.	 Irrigation	 water	 is	 a	 significant	 potential	 source	 of	 pathogens	 during	 pre-

harvest	conditions	[46	–	48].	

There	 is	 substantial	 variation	 in	 the	 quality	 and	 safety	 of	 irrigation	water,	

depending	on	 its	source.	 In	the	United	States,	surface	water	and	ground	water	are	

commonly	 used	 to	 irrigate	 a	 variety	 of	 crops.	 It	 is	 well	 established	 that	 human	

pathogens	 can	 contaminate	 and	 persist	 in	 surface	 and	 ground	 water	 [49,	 50].	 A	

recent	study	collected	a	total	of	123	samples	at	18	sites	across	New	York	State	and	

detected	generic	E.	coli,	a	microbial	 indicator	of	 fecal	contamination	 in	33%	of	 the	

samples	 and	 Salmonella	 in	 43%	 [51].	 Fecal	 indicator	 organisms	 have	 also	 been	

reported	 in	 well	 water	 used	 for	 drinking	 and	 irrigation	 [52].	 A	 recent	 study	 in	

southern	Brazil	detected	E.	coli	O157:H7	in	irrigation	and	wash	waters	[53].	

A	 number	 of	 studies	 have	 assessed	 the	 effect	 of	 irrigation	 method	 on	

transmission	and	persistence	of	human	pathogens	on	leafy	green	produce.	Solomon	

et	al.		[54,	55]	demonstrated	the	transmission	of	E.	coli	O157:H7	through	spray	and	

surface	 irrigation.	 The	pathogen	was	 found	 to	 persist	 for	 20	days	 following	 spray	

irrigation	with	contaminated	water.	A	study	of	the	survival	dynamics	of	E.	coli	after	

introduction	into	the	phyllosphere	and	soil	of	spinach	via	spray	irrigation	suggested	

a	6-day	period	between	the	last	irrigation	and	harvest	would	minimize	the	risks	of	E.	

coli	survival	in	the	spinach	phyllosphere	(but	not	in	the	soil)	[56].One	study	showed	

that	E.	coli	O157:H7	contamination	 in	 soil	persisted	 for	more	 than	5	months	after	

application	 of	 contaminated	 compost	 or	 irrigation	 water,	 with	 the	 effects	 of	

irrigation	 water	 and	 manure	 being	 similar	 [57].	 Another	 study	 showed	 that	

Salmonella-containing	manure	compost	and	irrigation	water	could	contaminate	soil	
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and	root	vegetables	for	several	months	[58].		Conversely,	a	recent	study	found	that	

under	growth	chamber	conditions,	E.	coli	O157:H7	populations	 in	 irrigation	water	

that	complied	with	the	Leafy	Greens	Marketing	Agreement	(LGMA)	water	standards	

will	 not	persist	 for	more	 than	24	h	when	applied	 to	 the	 foliar	 surfaces	of	 spinach	

plants	[59].	

In	 addition	 to	 contaminating	 the	 surface	 of	 produce,	 irrigation	 water	 may	

also	 lead	 to	 pathogen	 internalization.	 Erickson	 et	 al.	 (2010)	 showed	 that	 after	

applying	 contaminated	 irrigation	 water	 that	 contained	 E.	 coli	 O157:H7	 for	 long	

periods	 of	 time	 (48-69	days),	 the	pathogen	was	detected	both	on	 the	 surface	 and	

internally	on	spinach	and	lettuce	[60].	The	internalization	of	murine	norovirus	into	

hydroponically	grown	Romaine	lettuce	was	observed	when	the	virus	was	present	in	

the	water	source	at	high	levels	[61].		

2.2.2 Manure,	green	waste	and	compost	

Animal	manure,	compost,	and	green	waste	are	key	 ingredients	 for	 fertilizer	

and	 soil	 amendments	 in	 both	 organic	 and	 conventional	 farming.	 However,	 such	

biologically-derived	 materials	 have	 the	 potential	 for	 carrying	 pathogenic	

microorganisms.	 These	 biomaterials	 are	 potential	 sources	 for	 pathogens	 either	

through	 their	 use	 as	 soil	 amendments	 or	 through	 accidental	 cross-contamination.	

The	United	States	Department	of	Agriculture	(USDA)-Agricultural	Marketing	Service	

incorporated	the	Produce	Good	Agricultural	Practices	(GAP)	harmonized	food	safety	

standard	into	its	GAP	&	Good	Handling	Practices	(GHP)	audit	program	in	2011	[62].	

It	 is	 recommended	 that	 the	 time	 between	 application	 of	 manure	 to	 produce	

production	areas	and	harvest	should	be	maximized	[63].	



	 13	

Many	 studies	 have	 reported	 the	 presence	 of	 human	 pathogens	 in	 animal	

manure	and	green	waste.	Jay-Russel	et	al.	[64]	isolated	Salmonella	from	horses,	wild	

turkeys	and	an	edible	home	garden	fertilized	with	raw	horse	manure	 from	a	rural	

farm	 in	 costal	 Northern	 California.	 A	 number	 of	 factors	 impact	 the	 growth	 of	

pathogenic	 bacteria	 in	 manure	 compost	 (e.g.,	 moisture	 content,	 strain	 variation,	

level	of	background	microflora,	inoculum,	duration	of	composting,	and	temperature	

and	related	thermal	factors	[65	–	67].	Avery	et	al.	[68]	reviewed	the	prevalence	and	

survival	 of	 pathogens	 in	 green	 waste	 compost.	 They	 concluded	 that	 zoonotic	

bacteria	 such	 as	 verotoxigenic	 E.	 coli	 and	 S.	 enterica	 are	 unlikely	 to	 survive	 an	

effective	 composting	 process,	 whereas	 spore-forming	 microorganisms	 are	 more	

resistant	to	composting	and	equally	ubiquitous	in	the	environment.	

Human	 pathogens	 in	 manure	 or	 compost	 may	 increase	 the	 risk	 of	 fresh	

produce	 contamination	 through	 attachment	 and	 internalization.	 Wei	 et	 al.	 [61]		

observed	gold-labeled	murine	norovirus	on	the	lettuce	surface,	inside	open	cuts,	and	

occasionally	 within	 stomata	 after	 lettuce	 was	 exposed	 to	 the	 pathogen.	 The	

pathogens	entry	into	open	cuts	and	stomata	is	especially	risky	as	they	are	likely	to	

be	 protected	 from	 subsequent	 sanitization	 treatments	 [61].	 Mootian	 et	 al.	 [69]	

studied	the	transfer	of	low	numbers	of	E.	coli	O157:H7	from	soil,	manure-amended	

soil	and	water	to	growing	lettuce	plants.	They	found	that	approximately	30%	of	the	

mature	 plants	 initially	 irrigated	 with	 or	 grown	 in	 contaminated	 soil	 (including	

manure	amended	soil)	for	15	days	were	positive	for	E.	coli	O157:H7	[69].	Ongeng	et	

al.	 [70]	 demonstrated	 that	 under	 tropical	 conditions	 the	 likelihood	 of	 surface	

contamination	 and	 internalization	 of	 	 E.	 coli	 O157:H7	 and	 S.	 Typhimurium	 in	
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cabbage	 leaf	 tissues	 at	 harvest	 depended	 on	 the	 inoculum	 concentration	 and	 the	

time	of	manure	application.	

2.2.3 Animal	and	insect	activity	

Intrusion	 of	 wild	 animal	 and	 cattle	 presents	 another	 route	 of	 pathogen	

contamination.	 Animals	 may	 carry	 foodborne	 pathogens	 and	 contaminate	 crops	

directly	 via	 fecal	 deposition	 or	 indirectly	 through	 fecal	 contamination	 of	 soil	 or	

irrigation	water	 [71].	 For	 example,	 the	E.	 coli	 O157:H7	 strain	 associated	with	 the	

highly	publicized	2006	spinach	outbreak	was	isolated	from	domestic	cattle	and	feral	

swine	from	adjacent	rangeland.	 It	has	also	been	reported	that	migratory	birds	can	

carry	 Salmonella	 bongori	 [72].	 Fecal	 contamination	 of	 crops	 by	 animals	 is	 now	

considered	a	significant	risk	factors	at	the	pre-harvest	stage	[69,	71,	73].	

Insects	 can	 also	 be	 a	 potential	 source	 of	 contamination.	 Talley	 et	 al.	 [74]	

studied	 the	 association	 of	 E.	 coli	O157:H7	 with	 filth	 flies	 captured	 in	 leafy	 green	

fields	adjacent	 to	cattle-occupied	rangeland	habitats.	A	subset	of	 the	 filth	 flies	was	

found	 positive	 for	 E.	 coli	 O157:H7.	 The	 authors	 also	 demonstrated	 that	 flies	 are	

capable	of	contaminating	 leafy	greens	under	 laboratory	conditions.	Another	group	

of	researchers	assessed	whether	physical	damage	to	the	lettuce	leaves	could	cause	

internalization	 of	 E.	 coli	 O157:H7	 [75].	 However,	 they	 found	 no	 internalization	

occurred	due	to	exposure	to	insects	[75].	
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2.2.4 Human	activity	

Activities	and	personal	hygiene	of	 field	workers	are	potential	sources	of	pre-

harvest	contamination.	A	recent	study	reported	that	generic	E.	coli	was	significantly	

reduced	after	field	workers	were	trained	to	use	portable	toilets	and	hand-washing	

stations	 [76].	 Annual	 worker	 training	 is	 a	 required	 part	 of	 Good	 Agricultural	

Practices.		Appropriate	worker	supervision	can	reduce	the	risk	of	contamination.		

2.3 Sampling	in	food	safety		

2.3.1 Importance	of	food	safety	sampling	

Sampling	 and	 subsequent	 microbiological	 testing	 are	 widely	 used	 by	

government	 and	 industry	 as	 part	 of	 their	 programs	 to	 ensure	 safe	 food	 products.	

While	 it	 is	widely	 recognized	 that	 testing	 by	 itself	 cannot	 ensure	 food	 safety,	 it	 is	

equally	 recognized	 that	 testing	 is	 an	 important	 part	 of	most	 food	 safety	 systems.		

The	 major	 limitation	 associated	 with	 sampling	 of	 foods	 is	 that	 the	 only	 way	 to	

absolutely	 ensure	 that	 no	 serving	 of	 food	 contained	 a	 pathogenic	 microorganism	

would	 be	 test	 every	 serving.	 	 Since	 the	 microbiological	 testing	 of	 foods	 is	 a	

destructive	process,	 this	would	 leave	no	 food	 for	consumption.	 	 It	 is	 therefore	 the	

common	practice	to	select	a	fraction	of	the	food	product	for	analysis,	assuming	the	

samples	collected	are	representative.	

Sampling	 can	 occur	 at	many	 stages	 in	 the	 farm-to-fork	 chain.	 For	 example,	

the	industry	uses	sampling	to	verify	the	microbiological	quality	of	raw	material	and	

ingredients.	The	government	use	sampling	to	verify	safety	and	quality	of	 imported	

and	 domestic	 food	 products	 [77].	 It	 is	 also	 common	 to	 sample	 fresh	 produce	 just	
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prior	to	harvest	[4,	78].	End-product	testing	is	sometimes	required	when	there	are	

no	critical	control	points	in	the	production	process	(e.g.,	raw	or	minimally	processed	

ready-to-eat	foods).	Furthermore,	microbiological	sampling	is	one	of	key	tools	used	

to	verify	on	an	ongoing	basis	that	a	food	safety	system	is	working	as	intended.	Using	

a	realistic	sampling	scheme,	it	is	possible	to	test	for	absence	of	a	pathogen	in	a	batch	

of	 food	 to	 a	 specified	 level	 of	 confidence,	 but	 this	 can	 lead	 to	 large	 type	 II	 errors	

when	not	carried	out	correctly	[9,	79].	

2.3.2 Introduction	to	sampling	plans	

Samples	are	drawn	from	a	batch	of	food	product	or	from	the	field	according	

to	sampling	plans.	A	sampling	plan	defines	the	number	of	sample	units	to	be	taken	

(n);	 the	 analytical	 unit	 size;	 the	 analytical	 reference	 method,	 the	 microbiological	

limit	(m)	that	separates	good	quality	from	non-acceptable	or	defective	quality;	and	

the	maximum	allowable	number	of	 sample	units	 (c)	 yielding	 a	positive	 test	 result	

(which	is	usually	set	to	zero	for	pathogens)	[80].		

There	 are	 two	 types	 of	 sampling	 plans	 in	 statistics,	 variables	 plans	 and	

attributes	plans.	Variable	plans	are	intended	for	quality	characteristics	measured	in	

a	 continuous	 scale,	 and	 require	 the	 knowledge	 of	 the	 statistical	 distribution	 (e.g.,	

Gaussian	 distribution).	 Attribute	 plans	 test	 against	 a	 single	 criterion	 or	 attribute	

(e.g.,	the	presence	of	E.	coli	O157:H7	in	the	sample).		
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2.3.3 Sampling	strategies	

Within	the	framework	identified	above,	a	variety	of	sampling	strategies	can	

be	 employed	 to	 specify	 how	 samples	 are	 drawn	 from	 a	 population.	 Several	

commonly	used	sampling	strategies	pertinent	to	pre-harvest	or	post-harvest	testing	

of	leafy	greens	are	reviewed	below.	

2.3.3.1 Simple	random	sampling	

Simple	random	sample	is	a	sampling	strategy	where	in	such	that	each	part	of	

the	food	produce	has	an	equal	chance	of	being	selected	[81].	This	sampling	strategy	

eliminates	 bias.	 In	 practice,	 the	 food	 product	 lot	 is	 divided	 into	 small	

batches/locations	of	 the	same	size.	 	Each	batch/location	 is	assigned	a	number	and	

then	computer	generated	random	numbers	are	used	to	select	the	batch/location	to	

be	tested.	

2.3.3.2 Systematic	sampling	

Systematic	 sampling	 (also	 known	 as	 interval	 sampling)	 arranges	 the	

population	 under	 consideration	 according	 to	 some	 ordering	 scheme,	 and	 then	

selects	elements	at	a	regular	interval	through	that	ordered	list.	Systematic	sampling	

generally	involves	a	random	start	and	then	proceeds	with	the	selection	of	every	kth	

element	 from	 then	 onwards.	 Jongenburger	 et	 al.	 (2011b)	 detailed	 the	 effects	 of	

systematic	sampling	on	the	probability	of	detecting	positive	sample	unit.	The	study	

indicated	 that	 systematic	 sampling	 is	 preferred	 over	 random	 sampling	 to	 detect	

localized	 contamination	 fraction	 [82].	 Similar	 results	 have	 also	 been	 reported	 by	

previous	studies	[83,	84].	However,	a	potential	drawback	of	systematic	sampling	is	
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the	 potential	 to	 miss	 systematic,	 reoccurring	 contamination	 events,	 such	 as	 a	

contaminated	filler	head	or	dripping	condensation	[79].	

2.3.3.3 Stratified	random	sampling	

Stratified	random	sampling	is	a	design	where	the	target	population	is	divided	

into	non-overlapping	parts	or	sub-regions	called	strata.	A	simple	random	sampling	

plan	is	applied	within	each	stratum.	This	often	improves	the	representatives	of	the	

sample	by	reducing	sampling	error.	Because	stratified	random	sampling	combines	

the	 qualities	 of	 systematic	 and	 random	 sampling,	 this	 strategy	 is	 often	 preferred	

[79].	 Potential	 disadvantages	 of	 the	 stratified	 random	 sampling	 strategy	 include	

difficulty	in	selecting	relevant	stratification	and	higher	implementation	costs.	

2.3.3.4 Z-pattern	sampling		

A	“zig-zag”	or	“Z”	traversal	sampling	pattern	is	commonly	used	for	sampling	with	

squared-shaped	 or	 long	 narrow	 rectangular	 fields.	 This	 sampling	 plan	 has	 been		

used	 for	 field	 sampling	 such	 as	 insect	 sampling	 [85]	 and	 soil	 sampling	 [86].	 An	

advantage	 for	 the	Z-pattern	sampling	plan	 is	 that	 it	 is	more	efficient	 to	collect	 the	

same	 number	 of	 samples.	 The	 total	 distance	 travelled	 with	 a	 Z-pattern	 sampling	

strategy	 is	 generally	 shorter	 than	 simple	 random	 sampling	 or	 stratified	 random	

sampling.		
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3 Chapter	3.	Use	of	Simulation	Modeling	and	Field	

Validation	to	Evaluate	Three	Sampling	Plans	for	the	

Detection	of	Pathogenic	Bacteria	on	Pre-harvest	Leafy	

Greens	

	

3.1 Abstract	

Recent	outbreaks	of	foodborne	disease	associated	with	leafy	greens	have	led	

to	increased	pre-harvest	testing	for	pathogens	and	indicator	microorganisms.	

However,	the	scientific	and	statistical	rationale	and	performance	attributes	for	pre-

harvest	sampling	plans	are	not	well	understood.	The	performance	of	three	pre-

harvest	sampling	plans,	random,	stratified	random,	and	Z-pattern	sampling,	was	

evaluated	by	consideration	of	their	mathematical	derivations,	computer	simulations	

and	field	validation.	As	anticipated,	the	simulation	modeling	showed	that	the	

probability	of	detecting	at	least	one	positive	sample	increased	by	increasing	the	

number	of	contamination	sites	in	the	field	and	the	number	of	samples	analyzed.		

Consideration	of	probabilistic	basis	of	the	sampling	plans	indicated	that	the	three	

sampling	plans	mean	detection	rates	were	similar.		However,	use	of	simulation	

modeling	to	assess	the	uncertainty	associated	with	the	three	sampling	plans	

indicated	that	the	inherent	variability	of	the	Z-pattern	sampling	plan	was	

substantially	greater	than	the	other	two	sampling	plans.	This	uncertainty	is	most	

dramatic	when	the	number	of	contamination	sites	and	number	of	samples	analyzed	
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were	small.	A	simple	tool	was	developed	in	Matlab	that	allows	the	user	to	evaluate	

the	effectiveness	of	these	three	sampling	plans.	A	limited	validation	study	also	

observed	that	Z-pattern	sampling	had	higher	variability	than	other	two	sampling	

plans.	The	results	of	this	study	indicate	that	while	the	mean	result	obtained	with	all	

three	sampling	plans	is	similar,	the	performance	of	the	random	or	stratified	random	

sampling	plans	are	less	variable,	particularly	when	the	number	of	contamination	

sites	or	number	of	samples	analyzed	are	small.	

3.2 Introduction	

As	one	of	the	tools	for	managing	microbial	food	safety	risks	associated	with	

leafy	greens,	leafy	green	producers	and	their	clients	are	increasingly	requiring	pre-

harvest	microbiological	testing	just	prior	to	harvest	as	part	of	their	risk	

management	programs.	Such	testing	may	target	indicator	microorganisms	(e.g.,	

coliforms,	generic	E.	coli)	or	specific	pathogens	(e.g.,	S.	enterica)	as	a	means	of	

verifying	that	good	agricultural	practices	and	other	pre-harvest	mitigation	steps	

have	been	effectively	implemented.	Thus,	it	is	not	surprising	that	during	the	past	

decade	there	has	been	a	substantial	research	effort	in	the	development	of	methods	

for	the	detection	of	various	microorganisms	associated	with	leafy	greens.	However,	

as	important	for	effective	microbiological	testing	programs	is	an	understanding	of	

the	sampling	plans	used	to	implement	such	microbiological	testing	systems.		This	

requires	knowledge	of	the	statistical	principles	that	are	the	foundation	of	

microbiological	sampling	and	means	for	measuring	the	uncertainty	associated	with	

selected	sampling	schemes.	Considering	the	large	batch	sizes	associated	with	pre-

harvest	leafy	greens,	the	low	frequency	and	levels	of	pathogens	or	indicator	
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microorganisms,	and	the	heterogeneity	of	pathogen	distribution	in	leafy	greens	

fields,	it	is	critical	that	appropriate	sampling	plans	are	selected	to	optimize	the	

statistical	power	of	the	microbiological	testing	and	appropriately	interpret	the	

results	[9].	However,	despite	the	fact	that	pre-harvest	testing	of	leafy	greens	is	a	

common	practice,	there		are	few	systematic	comparisons	of	different	sampling	plans.	

Thus,	the	objectives	of	this	segment	was	to	review	the	mathematical	principles	

underlying	three	commonly	used	sampling	plans	and	use	simulation	modeling	and	

field	validation	to	assess	the	relative	uncertainty	associated	with	these	sampling	

plans	based	on	random	contaminations.	

3.3 Materials	and	Methods	

3.3.1 Simulation	modeling	
	

Three	commonly	used	sampling	plans,	random	sampling,	stratified	random	

sampling,	and	Z-pattern	sampling,	were	compared	by	(i)	evaluating	their	

mathematical	basis	and	(ii)	characterizing	their	relative	performance	using	

computer	simulation	modeling.	This	combination	of	approaches	allowed	estimation	

of	both	mean	detection	probabilities	and	the	relative	uncertainty	of	detection	

likelihood.		

A	variety	of	sampling	plans	can	be	employed,	either	individually	or	in	

combination.	Choice	of	pre-harvest	sampling	plans	depends	on	nature	and	quality	of	

the	leafy	greens,	the	prevalence	and	likely	sources	of	contamination,	the	degree	of	

confidence	required,	and	the	cost	and	related	opertional	concerns	associated	with	

microbiological	testing	(e.g.,	time	needed	to	complete	the	microbiological	analyses).	
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The	three	sampling	plans	selected	were	based	on	their	common	used	in	leafy	green	

testing.	

3.3.1.1 Description	of	Model	Fields	Used	to	Compare	Sampling	Plans	
	

For	the	purposes	of	this	study,	we	considered	a	generic,	rectangular	leafy	

green	field	that	was	divided	into	𝑁!⨉𝑁!	plots.	Each	plot,	in	turn,	was	subdivided	

into	𝑆!⨉𝑆!	subplots.	The	total	number	of	subplots	is	𝑁!"#$%&' = 𝑁!𝑁!𝑆!𝑆! .	We	

assumed	that	the	field	was	contaminated	𝑁! 	times	(𝑁! > 0),	with	each	

contamination	event	randomly	contaminating	a	subplot.	For	example,	Fig.	3.1-3.3	

depict	the	actual	field	layout	used	in	subsequent	blinded	field	trials	(see	below),	

where	we	used	a	5	⨉	6	plot	array	(30	plots),	with	each	plot	having	9	subplots	

(𝑁! = 5,	𝑁! = 6,	𝑆! = 3,	𝑆! = 3).	The	x’s	within	the	field	represent	the	30	subplots	

that	were	selected	for	sampling	(𝑁!"#$%& = 30).	

3.3.1.2 Mathematical	Basis	for	Sampling	Plan	Efficiency	

3.3.1.2.1 Random	Sampling	Plans	
	

A	random	sampling	plan	selects	𝑁!"#$%& 	subplots	randomly	from	the	total	of	

𝑁!"#$%&'	subplots.	An	example	of	a	set	of	30	random	samples	is	shown	in	Figure	3.1.	
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Figure	3.1	Example	of	samples	drawn	according	to	a	random	sampling	plan	(Nsample	
=30).		The	solid	lines	represent	30	(5	X	6)	plots	and	the	dashed	lines	represent	the	
subplots	(9	subplots/plot)	for	a	total	of	9	X	30	=	270	subplots.	Samples	were	
randomly	selected	chosen	from	the	270	subplots.	
	

If	the	sampling	is	without	replacement,	this	means	that	exactly	𝑁!"#$%& 	

unique	samples	were	selected.	The	probability	that	none	of	the	contaminated	

subplots	is	detected	is,	

𝑃!"## = 1−
𝑁!"#$%&
𝑁!"#$%&'

!!

	
(3.1)	

	

	

Where:	

	 Nsample	=	the	number	of	samples	taken	

	 Nsubplot	=	the	number	of	subplots	in	the	field	
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	 Nc	=	the	number	of	subplots	that	are	contaminated	

	 Pmiss	=	the	probability	that	no	positive	sample	is	detected	

	

The	detection	probability	is	1-𝑃!"##.	

	

If	the	sampling	is	with	replacement,	the	probability	that	a	subplot	is	

contaminated	(Pc)	is,	

𝑃! = 1− 1−
1

𝑁!"#$%&'

!!

	
(3.2)	

	

The	probability	that	a	subplot	is	selected	by	the	random	sampling	plan	is,	

𝑃! = 1− 1−
1

𝑁!"#$%&'

!!"#$%&

	
(3.3)	

	 Since	the	contamination	is	independent	of	the	sampling	procedure,	the	

probability	that	a	subplot	is	both	contaminated	and	selected	by	the	random	

sampling	plan	is	𝑃!𝑃!.	The	probability	that	the	random	sampling	plan	fails	to	detect	

any	contaminated	sample	is	then,	

𝑃!"## = 1− 𝑃!𝑃! !!"#$%&' 	 (3.4)	

	 The	random	sampling	with	replacement	always	has	a	higher	miss	probability	

than	the	random	sampling	without	replacement,	because	the	number	of	unique	

samples	drawn	from	the	population	will	be	smaller	or	equal	to	𝑁!"#$%& 	for	random	

sampling	with	replacement.	
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3.3.1.2.2 Stratified	Random	Sampling	Plans	
	

A	stratified	random	sampling	plan	randomly	selects	one	sample	from	each	

plot.	An	example	set	of	samples	drawn	according	to	the	stratified	random	sampling	

plan	is	shown	in	Fig.	3.2.	The	number	of	unique	samples	would	normally	be	exactly	

𝑁!"#$%& = 𝑁!𝑁!	(though	one	could	consider	multiple	samples	per	plot,	e.g.,	2	

samples	per	plot	for	a	total	Nsample	of	60).	For	each	contamination	site,	the	

probability	that	the	contamination	site	is	not	selected	is	(1-1/𝑆!𝑆!).	The	probability	

that	none	of	the	contaminated	subplots	is	detected	is	then,	

𝑃!"## = 1−
1

𝑆!𝑆!

!!

	
(3.5)	

	 Note	that	because	𝑁!"#$%&' = 𝑁!𝑁!𝑆!𝑆! and	𝑁!!"#$% = 𝑁!𝑁! ,	
!

!!!!
= !!"#$%&

!!"#$%&'
.	

The	mean	detection	probability	of	the	stratified	random	sampling	plan	is	identical	to	

that	of	the	random	sampling	plan	(without	replacement).		
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Figure	3.2	Example	of	samples	drawn	according	to	a	stratified	random	sampling	
plan	(Nsample	=30).	The	solid	lines	represent	30	(5	X	6)	plots	and	the	dashed	lines	
represent	the	subplots	(9	subplots/plot)	for	a	total	of	9	X	30	=	270	subplots.		Each	
plot	has	one	subplot	that	was	randomly	selected	for	sampling.	
	

3.3.1.2.3 Z-pattern	sampling	plan	
	

The	Z-pattern	sampling	plan	only	samples	from	plots	lying	at	two-opposing	

edges	and	in	one	of	the	diagonal	lines	(Fig.	3.3).			The	number	of	subplots	that	lay	

within	the	selected	"Z"	region	is	𝑁! .	In	this	sampling	plan,	𝑁! = 144	(Fig.	3.3).	For	

each	contamination	site,	the	probability	that	a	contaminated	subplot	lies	in	the	"Z"	

region	is		

𝑝 =
𝑁!

 𝑁!"#$%&'
	 (3.6)	

	 The	probability	that	k	contamination	sites	lie	in	the	"Z"	region	is	

𝑃! =
𝑁!
𝑘 𝑝!(1− 𝑝)!!!! 	
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Given	that	there	are	k	contamination	sites	in	the	"Z"	region,	the	probability	

that	none	of	the	contaminations	is	detected	is		

𝑃!"##! = 1 −
𝑁!"#$%&

 𝑁!

!

	
(3.7)	

	

The	overall	probability	of	failed	detection	is	

𝑃!"## = 𝑃!𝑃!"##!

!!

!!!

	
(3.8)	

	

	

Figure	3.3	Example	samples	drawn	according	to	the	Z-pattern	(see	shaded	plots)	
sampling	plan	(Nsample	=30).	The	solid	lines	represent	30	(5	X	6)	plots	and	the	
dashed	lines	represent	the	subplots	(9	subplots/plot)	for	a	total	of	9	X	30	=	270	
subplots.		Each	plot	within	"Z"	area	has	one	or	two	subplots	randomly	selected	for	
sampling.		No	samples	were	selected	in	the	plots	outside	the	Z-pattern.	
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3.3.1.3 Comparison	of	Sampling	Plans	Using	Simulation	Modeling	
	

A	simulation	model	was	developed	in	Matlab	as	a	means	of	validating	and	

better	characterizing	the	three	sampling	plans.	At	the	beginning	of	each	simulation,	

a	random	number	between	zero	and	one	was	generated	for	each	subplot,	we	then	

contaminated	subplots	with	the	largest	𝑁! 	random	numbers.	This	generated	a	

randomly	contaminated	field	was	generated	with	𝑁! 	subplots	contaminated.	The	

field	was	then	sampled	using	the	three	types	of	sampling	plans,	each	with	100	

iterations.	For	each	iteration	the	sample	locations	were	generated	according	to	the	

different	sampling	plans	independently.	A	detection	probability	was	estimated	

based	on	the	number	of	iterations	that	a	sampling	plan	successfully	detected	at	least	

one	of	the	contaminated	sites.	The	simulation	was	then	repeated	100	times,	each	

with	a	different	contaminated	field,	to	estimate	the	distribution	of	detection	

probabilities	for	each	sampling	plan.	It	is	important	to	repeat	the	simulation	

multiple	times	as	one	sampling	plan	may	be	good	at	detecting	certain	contamination	

patterns	but	not	others.		This	was	particularly	true	with	the	Z-pattern	sampling	plan	

where	specific	plots	are	not	tested	if	they	fall	outside	the	Z-pattern.		Thus,	the	

simulations	examined	a	total	of	10,000	combinations	of	random	contamination	site	

assignments	and	random	sampling	site	assignments	based	on	the	number	of	

contamination	sites	and	the	number	of	sampling	sites	specified.		

3.3.2 Validation	in	the	field		
	

Initial	“blinded”	field	trials	were	conducted	at	the	Beltsville	Agricultural	

Research	Center,	Beltsville,	MD	in	October	2015	and	June	2016,	using	a	field	of	

soybeans	and	a	field	of	lettuce,	respectively.	The	experimental	fields	were	
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inoculated	with	a	known	indicator	microorganism	by	one	group,	with	the	field	

subsequently	sampled	by	another	group	which	had	no	knowledge	of	where	the	field	

was	inoculated.				

3.3.2.1 Inoculation		

3.3.2.1.1 Preparation	of	dairy	solids	extracts	
	

Fresh	dairy	cow	manure	(DCM)	solids	were	collected	from	Beltsville	

Agricultural	Research	Center.	The	DCM	solids	(100	g)	was	diluted	1:10	into	

deionized	water	in	a	2-L	sterile	plastic	beaker,	stirred	manually	and	with	a	stir	bar	

for	5	min	before	the	slurry	was	filtered	through	two	layers	of	sterile	cheese	cloth	in	

a	Buchner	funnel,	and	collected	in	4-L	flask.	The	extract	was	transferred	to	9-L	or	

20-L	carboys,	where	an	equal	volume	of	deionized	water	was	added	prior	to	

autoclaving	for	1	h	at	121°C.	The	resulting	sterile	DCM	solids	extract	(DCMSE)	was	

stored	at	4°C	until	used.	

3.3.2.1.2 Strains	and	culture	conditions	used	
	

A	rifampicin-resistant	(RifR),	non-pathogenic	E.	coli	strain	(TVS	355)	was	

provided	by	Dr.	Trevor	Suslow	at	the	University	of	California	Davis.	The	strain	was	

cultured	from	frozen	stocks	stored	at	-80°C	on	MacConkey	agar	(Neogen,	Lansing,	

MI)	supplemented	with	80	mg/ml	rifampicin	(Sigma	Aldrich,	St.	Louis,	MO)	(MACR)	

and	incubated	at	42°C		for	24	h.	Three	to	five	colonies	of	the	E.	coli	strain	were	

inoculated	to	200	ml	of	tryptic	soy	broth	(Neogen)	with	80	µg/ml	rifampicin	(TSBR)	

and	incubated	at	37°C	for	24	h.	A	200-ml	portion	of	each	24-h	culture	was	added	to	

separate	7-L	carboys	of	DCMSE	and	incubated	at	37°C	for	48	h.		Populations	of	the	
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cultured	strain	were	determined	after	the	incubation	period	by	plating	serial	

dilutions	in	sterile	0.1%	peptone	water	(Becton	Dickson,	Sparks,	MD)	onto	

MacConkey	Agar	(Becton	Dickinson,	Sparks,	MD)	with	80	µg/mL	rifampicin	(MACR).		

Plates	and	3M™	Petrifilm™	E.	coli/Coliform	Count	Plates	were	incubated	at	37°C	for	

18-24	h.	E.	coli	population	densities	were	enumerated	and	recorded.	The	carboys	

were	mixed	by	manual	shaking,	and	were	poured	into	a	13-L	backpack	sprayer	(H.D.	

Hudson	Manufacturing	Company,	Chicago,	IL)	immediately	prior	to	spray	

inoculation	of	the	experimental	field.		

3.3.2.1.3 Inoculum	application		
	

Inoculation	was	carried	out	by	backpack	application	onto	leaves.	Escherichia	

coli	levels	in	the	inoculum	were~2.3	X107	CFU/ml.	Inoculations	were	performed	on	

a	sunny	day.	The	field	is	divided	into	5⨉6	plots	so	that	there	are	a	total	of	30	plots.	

Each	plot	is	subdivided	into	3⨉3	subplots.	The	total	number	of	subplots	is	

𝑁!"#$%&' = 270.	The	field	was	contaminated	10	locations.	The	subplots	to	be	

contaminated	were	randomly	selected	using	a	random	number	generator.	The	plot	

and	subplot	numbers	were	recorded,	ranging	from	1-30	and	1-9,	respectively.	The	

GPS	coordinates	of	each	location	(latitude	and	longitude)	of	each	subplot	center	was	

calculated	in	a	computer	in	advance	(Fig.	3.4).	For	the	first	trial,	a	GPS	(Bad	Elf	GNSS	

Surveyor	(BE-GPS-3300))	was	used	to	locate	each	of	the	ten	contamination	

plot/subplots	to	be	inoculated.	In	the	second	trial,	a	more	traditional	“stakes	and	

strings”	approach	was	used	to	identify	the	270	subplots	(Fig.	3.5).	

After	arriving	at	the	correct	location	of	a	plot/subplot	selected	by	the	random	

number	generator	for	contamination,	a	one-meter2	polyvinylchloride	(PVC)	pipe	
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was	used	to	identify	the	inoculation	area.	The	backpack	sprayer	was	used	to	apply	

the	inoculum	within	the	area.	An	aliquot	of	417	ml	(25	s	by	sprayer)	of	inoculum	

were	measured	out	and	applied	to	each	1-meter2	subplot.	Care	was	taken	to	

minimize	spraying	any	inoculum	outside	the	designated	subplot.	The	team	applying	

the	inoculum	recorded	the	exact	positions	within	the	subplot	that	was	inoculated	

but	did	not	share	that	information	with	the	testing	team	until	after	all	analyses	were	

completed.	
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Figure	3.4	Aerial	view	of	the	experiment	field	(top)	and	the	calculated	grid	for	
sampling.	The	black	dots	represent	calibration	points	used	to	define	the	rough	
location	of	the	experiment	field.	The	red,	green	and	blue	dots	represents	sampling	
grid	for	three	experiment	fields	(270	subplots	per	each	experiment	field).	
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Figure	3.5	Example	of	one	subplot	identified	by	strings.	
	

3.3.2.2 Sampling	in	the	field	
	

The	sampling	team	went	to	the	field	the	day	after	inoculation.		The	sampling	

team	took	a	total	of	30	samples	for	each	of	the	three	sampling	plans.	The	sampling	

sites	were	selected	using	the	random	number	generator.	For	random	sampling	plan,	

a	new	set	of	random	numbers	of	plot	(1-30)	and	subplot	(1-9)	were	generated	by	

the	random	number	generator.		For	stratified	random	sampling	plan,	a	sample	was	

taken	from	each	of	the	30	plots.	A	pair	of	random	numbers	was	generated	to	

determine	the	subplot	to	be	sampled	within	each	plot.	For	Z-pattern	sampling	plan,	

the	plots	used	in	this	sampling	plan	are	fixed.		Plots	1,	2,	3,	4,	5,	6,	15,	16,	25,	26,	27,	

28,	29,	and	30	were	sampled	twice.		Plots	11	and	20	were	only	sampled	once.	The	

computer	generated	sample	locations	are	shown	in	Figure	3.6.	According	to	the	plot	



	 34	

and	subplot	numbers,	GPS	locations	of	the	subplots	to	be	sampled	recorded.	The	

sampling	team	members	proceeded	to	designated	GPS	location	and	conducted	the	

sampling.	

	

Figure	3.6	Computer	generated	sampling	locations	in	the	field.	Samples	for	random,	
stratified	random,	and	z-pattern	sampling	plan	were	shown	in	red,	blue,	and	green	
respectively.	

3.3.2.3 Sample	processing	
	

At	 each	 of	 the	 30	 locations	 for	 the	 three	 sampling	 plans,	 leaf	 samples	 of	

approximately	25	g	(10	leaves)	were	collected,	transferred	to	a	sample	bag,	placed	

in	a	cooler,	and	then	transported	to	the	laboratory.	Samples	were	processed	within	

24	h	of	collection.		For	each	sample,	25	g	of	leaves	were	weighed	from	each	sample	

into	 a	 sterile	 Whirlpak	 bag	 (Nasco,	 Jackson,WI).	 A	 50-ml	 aliquot	 of	 sterile	 0.1%	

peptone	 water	 (PW)	 was	 added	 to	 each	 bag	 and	 stomached	 in	 a	 laboratory	

stomacher	(Seward,	Stomacher	400	circulator,	U.K.)	 for	2	min	at	250	rpm	at	room	
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temperature.	A	1-ml	aliquot	was	then	pipetted	onto	3M™	Petrifilm™	E.	coli/Coliform	

Count	 Plates	 and	MacConkey	Agar	 plates	 (Becton	Dickinson,	 Sparks,	MD)	with	 80	

µg/mL	rifampicin	(MACR).		The	presence/absence	results	were	recorded	after	a	24	

h	and	48	h	incubation.	[87].	

3.3.2.4 Data	analysis	
	

Data	analysis	was	performed	with	Matlab	R2015b	(Mathworks).	The	number	

of	positive	samples	for	each	sampling	plan	was	calculated.	The	spatial	relationship	

between	positive	samples	and	contamination	sites	was	analyzed	visually	and	

statistically.		

3.4 Results	

3.4.1 Simulation	
	

The	theoretical	analysis	of	the	mean	detection	probability	was	validated	by	

computer	simulation.	The	performance	of	sampling	plans	was	characterized	by	

running	a	series	of	simulations	with	different	numbers	of	contamination	sites	and	

different	numbers	of	samples.	The	mean	detection	probabilities	as	a	function	of	the	

number	of	contamination	sites	from	both	simulation	and	probability	theory	are	

depicted	in	Fig.	3.7.	As	expected,	the	detection	probability	is	higher	with	increasing	

numbers	of	contaminated	subplots	and	increasing	number	of	samples	analyzed.	The	

simulation	results	agree	well	with	the	theoretical	derivations.		
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Figure	3.7	Mean	detection	probability	(probability	of	detecting	at	least	one	positive	
sample)	as	a	function	of	the	number	of	samples	collected	and	the	number	of	
contamination	sites.	The	dashed	line	represents	theoretical	calculations	and	the	
solid	lines	represent	observed	mean	detection	probability	from	the	random	
sampling	plan	simulation.	Detection	probability	increases	as	a	function	of	the	
number	of	contamination	sites	(x-axis)	and	the	number	of	samples	(shown	as	
different	symbols).	Each	data	point	represents	the	mean	detection	probability	from	
100	simulations.	For	each	simulation,	a	randomly	contaminated	field	and	estimated	
the	detection	probability	was	determined	by	repeating	the	random	sampling	plan	
100	times	(100	iterations/simulation).	
	

The	characteristics	of	the	three	sampling	plans	were	evaluated	by	examining	

the	distribution	of	the	mean	detection	probabilities	among	the	100	simulations	

(each	with	100	iterations)	for	the	three	sampling	plans	(Fig.	3.8).		No	significant	

differences	in	mean	detection	probabilities	were	observed	among	the	three	

sampling	plans,	and	they	all	agree	well	with	the	theoretical	predictions	when	a	

sufficient	number	of	simulations	(and	iterations)	were	performed.		However,	there	
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were	differences	in	the	standard	deviations	associated	with	the	mean	detection	

probabilities	observed	among	the	three	sampling	plans,	i.e.,	the	Z-pattern	testing	

consistently	had	larger	standard	deviations.			

	

Figure	3.8	Mean	detection	probability	as	a	function	of	number	of	contamination	
sites.	The	theoretical	estimate	captures	the	average	detection	probability	for	three	
different	sampling	plans	(Nsample	=	30).	For	other	three	simulation	results,	each	
column	represents	the	detection	probability	from	100	simulations.		The	simulation	
generated	a	randomly	contaminated	field	and	estimated	the	detection	probability	by	
repeating	the	three	sampling	plans	100	times	(100	iterations/simulation).	The	error	
bars	represent	±	1	standard	deviation	
	

How	the	detection	probability	depends	on	the	number	of	subplots	in	each	

plot	was	examined.	In	the	original	simulations,	each	plot	is	divided	into	3X3	

subplots.	In	this	evaluation	the	number	of	subplots	per	plot	was	varied	from	2X2	to	

10X10	(Fig.	3.9).	The	number	of	subplots	is	inversely	related	with	the	size	of	each	

sample.	A	10X10	subplot	scheme	would	mean	that	the	sample	size	is	100	times	

smaller	than	a	1X1	subplot	scheme.	The	mean	detection	probability	decreases	
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rapidly	as	a	function	of	total	number	of	subplots.	This	relationship	is	roughly	linear	

on	a	log-log	plot	(Fig	3.9).	There	was	no	difference	among	the	three	sampling	plans	

in	terms	of	the	mean	probability	of	detection.	It	should	be	noted	that	if	the	size	of	

the	subplots	had	been	kept	constant	and	the	size	of	the	plots	changing	accordingly,	

similar	changes	in	mean	detection	probabilities	would	be	anticipated.	

	

Figure	3.9	Log-log	plot	of	mean	detection	probability	as	a	function	of	total	number	
of	subplots	per	field	for	the	three	sampling	plans.	
	

As	indicted	above,	while	the	mean	detection	probabilities	among	the	three	

sampling	plans	were	the	same,	differences	in	the	standard	deviations	of	the	

detection	probabilities	among	the	simulations	were	noted	(see	error	bars	in	Figure	

3.8).	The	distribution	of	mean	detection	probabilities	across	the	100	iterations	per	

simulation	was	further	evaluated	as	a	function	of	contamination	sites	and	number	of	

samples	taken.	Figures	3.10	(A-D)	provide	examples	of	the	impact	of	the	number	of	

contamination	sites	(2	vs.	6)	and	samples	taken	(10	vs.	30).	The	detection	
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probability	of	the	Z-pattern	sampling	plan	consistently	had	wider	dispersion	around	

the	mean.	This	difference	is	most	dramatic	when	the	number	of	contamination	sites	

was	small,	where	the	Z-pattern	sampling	plan	had	zero	detection	probability	for	a	

larger	fraction	of	the	simulations.	This	is	due,	in	part,	to	the	Z-pattern	sampling	plan	

only	including	a	fraction	of	the	field’s	subplots.	If	the	contaminated	sites	lies	in	the	

Z-pattern,	it	would	have	better	detection	probability	than	the	other	sampling	plans,	

but	if	the	contamination	site	is	not	in	a	sampled	plot,	the	sampling	plan	would	fail	to	

detect	the	contamination	completely,	regardless	of	sample	numbers.	
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Figure	3.10	Distribution	of	detection	probabilities	for	the	three	sampling	plans	for	
four	combinations	of	contamination	sites	(Nc=2	or	6)	and	numbers	of	samples	
(Nsample	=10	or	30).	The	vertical	dashed	line	represents	theoretical	estimate	of	the	
mean	detection	probabilities.	
	
	

A	user	friendly	program	was	developed	using	Matlab	that	allows	the	

dispersion	of	detection	probabilities	of	the	three	sampling	plans	to	be	visually	

displayed	(Fig.	3.11).		The	user	enters	values	for	“field	size,”	“subplot	size”,	“sample	

size	(area)”,	“number	of	samples”,	“sampling	plan,”	and	estimated	number	of	

“contamination	sites.”	When	initiated	by	the	user	(“run	simulation	button”),	the	

program	runs	simulations	similar	to	those	used	in	the	current	study.		This	program	

is	available	upon	request	and	will	be	posted	on	the	UM	Specialty	Crop	Research	

Initiative	(SCRI)	website.		
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Figure	3.11	Graphical	user	interface	of	a	Matlab	application	that	allows	comparisons	
of	the	three	sampling	plans.	The	user	can	configure	the	fields	and	specify	the	
sampling	plans	on	the	left.	The	right	side	shows	displays	the	distribution	of	
detection	probabilities	for	different	sampling	plans.	
	
	

Simulation	modeling	was	also	used	to	consider	when	there	are	multiple	

“samplers”	or	when	a	field	is	sampled	multiple	times	(assuming	that	new	

contamination	sites	have	not	been	introduced	between	sampling	times).	The	impact	

of	multiple	samplers	or	sampling	times	are	then	combined	to	calculate	overall	mean	

detection	probability	(i.e.,	the	probability	that	at	least	one	sampler	detecting	at	least	

one	positive	sample).	An	example	of	the	impact	of	multiple	samplers	(3-6)	each	

taking	30	samples	in	conjunction	with	1-6	contamination	sites	was	evaluated	via	a	

single	simulation	each	with	100	iterations	(Fig.	3.12).		As	was	anticipated,	increasing	

the	number	of	samplers,	and	thus	the	total	number	of	samples,	increased	the	mean	

detection	probability.		As	noted	before,	increasing	the	number	of	contamination	

sites	also	increased	the	mean	detection	probability.		The	results	with	the	random	
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and	stratified	random	sampling	plans	were	similar	whereas	the	Z-pattern	sampling	

plan	had	lower	mean	detection	probabilities.		The	differential	between	the	Z-pattern	

and	the	other	sampling	plans	increased	as	a	function	of	the	number	of	samplers,	

particularly	when	the	number	of	contamination	sites	was	low.	

	

Figure	3.12	Mean	detection	probability	of	three	sampling	plans	as	a	function	of	the	
number	of	contamination	sites	(x-axis)	with	number	of	samplers	(Nsampler).	The	
assumption	is	that	each	sampler	collected	samples	independently.	The	detection	
probabilities	were	estimated	using	one	simulation	with	100	iterations	for	each	
sampler.		The	results	for	each	sampler	were	combined	and	detection	probability	
calculated	by	the	number	of	iterations	where	at	least	one	positive	sample	was	
indicated	by	any	of	the	samplers.	
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3.4.2 Validation	
The	 calculated	 numbers	 of	 positive	 samples	 for	 each	 sampling	 plan	 are	

depicted	 in	 Figure	 3.13.	 The	 total	 numbers	 of	 positive	 samples	 for	 each	 sampling	

plan	 were	 similar	 when	 summed	 over	 all	 three	 experimental	 fields.	 In	 the	 first	

validation	experiment:	9	for	random	sampling,	7	for	stratified	random	sampling	and	

9	for	Z-pattern	sampling.	There	is	considerable	amount	of	variation	on	the	number	

of	positive	samples	across	fields.	The	z-pattern	sampling	plan	had	highest	variation	

(standard	deviation	(SD)	of	positive	sample	number	=	2.6).	Stratified	sampling	plan	

had	 lowest	variation	(SD	of	positive	sample	number	=	1.2).	Random	sampling	had	

the	medium	variation	(SD	of	positive	sample	number	=	2.0).	In	the	second	validation	

experiment,	4	 for	 random	sampling,	3	 for	stratified	random	sampling	and	4	 for	Z-

pattern	sampling.	Again,	there	was	considerable	amount	of	variation	on	the	number	

of	positive	samples	across	fields.	The	Z-pattern	sampling	plan	had	highest	variation	

(SD	of	positive	sample	number	=	1.5).	Random	sampling	plan	had	lowest	variation	

(SD	 of	 positive	 sample	 number	 =	 0.58).	 Stratified	 sampling	 had	 the	 medium	

variation	(SD	of	positive	sample	number	=	1.0).	Z-pattern	sampling	has	the	highest	

variability	in	both	experiments.		
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Figure	3.13	Number	of	positive	samples	and	standard	deviation	of	positive	samples	
for	different	sampling	plans	in	two	trials.	
	

The	spatial	relationship	of	the	positive	samples	relative	to	the	contaminated	

sites	was	also	evaluated.	The	raw	experimental	data	from	the	field	experiments	are	

shown	in	Fig.	3.14	and	Fig.	3.15.	For	each	field,	 there	were	10	contamination	sites	

(shown	as	black	cross),	and	30	samples	were	drawn	according	to	each	of	the	three	

sampling	 plans	 for	 each	 field.	 Samples	 drawn	 based	 on	 the	 random,	 stratified	

random,	 and	 z-pattern	 sampling	 plan	 were	 colored	 as	 red,	 green	 and	 blue	

respectively.	The	positive	samples	were	labeled	as	solid	diamonds,	and	the	negative	

samples	were	labeled	as	empty	diamonds.	
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Figure	3.14	Experimental	data	from	first	field	sampling	based	on	GPS.	(	see	text	for	

details).		
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Figure	3.15	Experimental	data	from	second	field	sampling	based	on	post	&	string	

(	see	text	for	details).	

	
	

There	is	no	clear	match	between	the	contamination	sites	and	the	positive	

samples	for	first	verification	experiment,	but	an	excellent	match	for	the	second	

experiment.	The	mismatch	during	the	first	verification	study	was	likely	due	to	the	

limited	of	spatial	resolution	of	the	GPS	device	we	used	for	the	experiment.	However,	

when	the	distance	between	a	sample	and	a	contamination	site	were	quantified,	

positive	samples	are	closer	to	the	contamination	sites	than	the	negative	sample	on	

average.	The	trend	is	consistent	for	all	three	of	the	experimental	fields.		
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Figure	3.16	Distance	to	the	nearest	contamination	sites	for	negative	and	positive	

samples.	

3.5 Discussion	

The	goal	of	this	study	was	to	compare	the	effectiveness	of	three	widely	used	

sampling	plans	for	the	detection	of	bacteria	in	pre-harvest	leafy	green	fields.	Our	

results	help	quantify	the	impact	that	the	number	of	contamination	sites	and	the	

number	of	samples	analyzed	have	on	the	likelihood	of	positively	detecting	a	

targeted	pathogen	or	indicator	microorganism.	Further,	the	results	demonstrate	

that	basing	decisions	related	to	choice	of	sampling	plan	cannot	rely	on	mean	

detection	probability	solely	but	also	must	address	the	uncertainty	associated	with	

those	values.		The	use	of	relatively	simple	simulation	models	proved	to	be	highly	

effective	for	estimating	that	uncertainty.			

Quantifying	the	probabilities	provides	a	more	objective	means	of	estimating	

the	relative	effectiveness	sampling	plans	and	clearly	points	out	the	limitations	when	

small	numbers	of	samples	are	used	to	evaluate	fields	that	are	sparsely	contaminated.		
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Small	numbers	of	contamination	sites	in	combination	with	small	number	of	samples	

(N	≤5)	typically	resulted	in	mean	detection	probabilities	below	0.2	(Fig.	3.7).		

Similarly,	the	chance	of	detecting	a	target	bacterium	is	very	small	when	the	sample	

size/area	becomes	increasingly	small	(Fig.	3.9).	The	use	of	simulation	modeling	

provides	new	insights	into	the	characterization	of	the	performance	of	different	

sampling	plans	by	allowing	the	variability	and	uncertainty	of	the	sampling	plans	to	

be	quantified	along	with	the	mean	detection	probability.		This	is	dramatically	

demonstrated	when	current	simulation	modeling	of	Z-pattern	sampling	plan	yielded	

the	same	mean	detection	probabilities,	but	the	variability	was	effectively	over	and	

under	estimating	the	degree	of	contamination,	leading	to	more	erratic	results.		

Some	insect	sampling	[85]	and	soil	sampling	[86]	projects	found	Z-pattern	

sampling	to	be	more	efficient	for	insect	control	and	soil	composition	analyses.		The	

obvious	advantage	of	Z-pattern	sampling	is	the	increased	ease	of	collection	of	

samples.	The	total	distance	travelled	with	a	Z-pattern	sampling	strategy	would	be	

typically	shorter	than	either	a	random	or	stratified	random	sampling	plan.	This	is	

undoubtedly	one	of	the	reasons	for	the	adoption	of	Z-pattern	sampling	plans	when	

there	was	an	increased	need	to	collect	samples	for	pre-harvest	assessment	of	leafy	

greens	for	microbiological	contaminants.	The	current	study	clearly	indicates	that	

the	mean	detection	probabilities	of	the	three	sampling	plans	are	similar	(Fig.	3.7,	3.8,	

3.9).	However,	the	current	study	also	clearly	establishes	that	the	convenience	of	Z-

pattern	testing	must	be	balanced	against	its	increased	variability,	particularly	if	

acquiring	a	small	number	of	samples	when	the	number	of	contamination	sites	is	

likely	to	be	low.		The	results	of	the	current	evaluation	clearly	indicate	that	the	
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consistency	of	random	or	stratified	random	sampling	plans	is	superior	to	Z-pattern	

plans.		

Field	validation	experiments	were	also	conducted	in	this	study.	It	is	very	

important	to	apply	the	computer	simulations	to	the	real	world	to	approve	the	model	

really	working.	Since	we	only	applied	into	6	fields	(6	iterations),	compared	to	

10,000	iterations	in	the	simulation,	we	cannot	conclude	that	there	is	no	difference	in	

mean	detection	probability	among	three	sampling	plans.	But	the	sum	of	positive	

samples	of	three	sampling	plans	from	6	iterations	is	similar	and	the	variance	of	Z-	

pattern	tends	to	the	biggest.	To	identify	each	subplot,	a	GPS	was	used	in	the	first	

trial,	due	to	the	accuracy	limitation	of	the	GPS	device,	we	could	not	get	accurate	

location	resolution	of	less	than	1meter.	This	is	a	likely	source	of	error	in	the	initial	

validation	trial.	So,	strings	and	stakes	were	used	to	identify	the	subplots	and	it	

performed	very	well.		

The	current	study	is	based	on	the	assumption	that	contamination	is	the	result	

of	a	random	event(s).		However,	there	are	a	number	of	scenarios	where	non-random	

events	could	be	root	case	of	contamination	of	leafy	green	fields.		In	many	instances,	

microbial	contamination	could	be	non-random.		Studying	the	contamination	of	

powdered	infant	powder,	Jongenburger	et	al.[88]	reported	that	stratified	sampling	

is	preferred	over	random	sampling	for	detection	of	localized	contamination.	Similar	

results	have	also	been	reported	by	other	investigators	[83,	84].	However,	a	potential	

drawback	of	stratified	sampling	is	the	potential	to	miss	a	systematic,	reoccurring	

contamination	event	[79].	In	such	instances	sampling	performance	could	be	

enhanced	by	moving	to	stratified	random	sampling.		It	is	also	worth	noting	the	



	 52	

performance	of	random	and	randomized	stratified	sampling	plans	are	similar	when	

the	number	of	samples	≥	30	[89],	[90].			

The	current	evaluation	was	based	on	the	underlying	assumption	that	the	

samplers	have	no	a	priori	knowledge	of	potential	sources	of	contamination.		

However,	knowledge	of	the	leafy	green	production	environment	and	likely	sources	

of	contamination	could	potentially	increase	dramatically	the	statistical	power	of	

testing	regimes	[91].	It	is	feasible	that	assessment	of	a	leafy	green	field	by	a	sampler	

could	take	advantage	of	knowledge	of	potential	contamination	sources	to	improve	

the	statistical	basis	for	pre-harvest	testing.		For	example,	the	presence	of	overhead	

wires,	adjacent	animal	facilities,	areas	of	periodic	flooding,	and	prevailing	winds	are	

all	factors	that	can	lead	to	increased	potential	for	non-homogeneous	contamination	

of	leafy	green	fields.	This	suggests	that	pre-harvest	sampling	could	be	enhanced	by	

more	systematically	and	quantitatively	studying	sources	of	contamination	of	pre-

harvest	produce	to	focus	sampling	on	the	conditions	that	are	likely	to	increase	

contamination	risks.		This	would	allow	use	of	hybrid	sampling	plans	which	combine	

systematic	sampling	with	“samples	of	opportunity	(SOO).”		Such	plans	would	

involve	collecting	a	portion	of	the	samples	via	a	standardized	sampling	plan,	while	a	

second	portion	of	the	samples	would	increase	the	extent	of	sampling	in	areas	which	

the	sample	collector	observed	factors	that	are	associated	with	an	increased	

potential	for	contamination.		A	study	comparing	the	relative	effectiveness	of	

sampling	plans	that	combine	a	statistically	based	sampling	plan	with	such	with	such	

“samples	of	opportunity”	is	provided	in	the	next	chapter.	
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3.6 Conclusions	

This	study	has	shown	that	the	detection	probabilities	for	random	and	stratified	

sampling	plan	are	more	stable	than	those	for	Z-pattern	sampling.	Similarly	random	

and	stratified	random	sampling	plans	performed	more	consistently	than	Z-pattern	

sampling	plans	during	limited	in-field	validation	trials.	In	the	field	experiments,	the	

study	also	shown	that	Z-pattern	sampling	had	higher	variability	than	the	other	two	

samplings,	which	is	consistent	to	the	model	result.	The	study	demonstrates	the	

utility	of	simulation	modeling	for	evaluating	the	performance	of	different	sampling	

plans	used	in	pre-harvest	testing.	
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Chapter	4:		Evaluation	of	the	potential	for	enhanced	

sampling	effectiveness	by	assessment	of	field	

environments	and	consideration	of	likely	sources	of	

contamination:			

4 Comparison	of	sampling	plans	based	on		random,	

stratified	random,	Z-pattern	and	“samples	of	

opportunity”	sampling		

		

4.1 Abstract	

Traditional	sampling	plans	assume	sample	collectors	have	no	knowledge	

related	to	the	history	or	origins	of	a	food,	including	information	on	potential	

contamination	sources.	Knowledge	of	factors	that	could	lead	to	non-random	

contamination	could	potentially	increase	the	effectiveness	of	pre-harvest	sampling	

programs.	The	goal	of	this	segment	was	to	use	mathematical	modeling	and	field	

validation	to	determine	the	impact	of	including	a	portion	of	the	samples	based	on	

the	sampler’s	knowledge	of	risk	factors.		The	performance	characteristics	of	

sampling	plans	that	include	such	“samples	of	opportunity”	(SOO)	were	compared	to	

that	of	traditional	pre-harvest	sampling	plans.		Computer	simulations	were	
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performed	to	compare	the	relative	effectiveness	of	random,	stratified-random,	and	

Z-pattern	vs.	SOO	sampling.	The	SOO	sampling	reserved	two	thirds	of	samples	to	be	

taken	from	identified	high-risk	areas	within	a	field.	These	evaluations	assumed	the	

contamination	in	the	field	was	non-random,	with	three	contamination	scenarios	

being	evaluated:	point	contamination	(animal	house	nearby),	line	contamination	

(power	line	above	the	field),	and	directional	contamination	(field	partially	exposed	

to	floodwaters).	The	simulation	modeling	tool	allowed	a	large	number	of	field	

contamination	scenarios	to	be	generated	and	evaluated	systemically.	The	initial	

scenarios	used	6	contamination	sites	in	each	field,	with	18	samples	being	

subsequent	taken	by	each	sampling	plan.	The	detection	probability	for	a	non-

randomly	contaminated	pre-harvest	field	(5X6	plots	with	9	subplots	per	plot	(total	

of	270	subplots))	was	0.30±0.11,	0.32±0.11,	0.32±0.17	for	random,	stratified-

random,	and	z-pattern	sampling	plans,	respectively,	whereas	the	SOO	sampling	plan	

had	a	detection	probability	of	0.61±0.25.	The	mean	detection	probability	of	SOO	was	

96%	higher	than	other	sampling	plans	(p<0.001).	However,	if	the	assumption	of	

contamination	source	is	incorrect,	detection	probability	of	SOO	drops	to	0.33±0.23,	

which	is	not	significantly	different	than	the	other	sampling	plans.		This	study	

provides	mathematical	approach	for	evaluating	the	effectiveness	four	pre-harvest	

sampling	plans,	and	suggest	that	utilizing	knowledge	of	likely	contamination	

sources	in	the	field	can	be	effectively	incorporated	into	sampling	plans	to	improve	

sampling	effectiveness.		

4.2 Introduction	

Effective	microbiology	testing	requires	not	only	a	sound	understanding	of	
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detection	and	identification	techniques	but	also	requires	a	firm	grasp	of	the	

statistical	principles	that	are	the	foundation	of	microbiological	sampling.		

Traditional	sampling	plans	are	based	on	the	underlying	assumption	that	the	

sampler	has	no	knowledge	of	the	degree	or	location	of	contamination	with	a	lot	or	

field.		A	major	impact	of	the	assumption	that	contamination	is	randomly	distributed	

is	that	where	samples	are	taken	in	a	field	will	not	affect	the	performance	of	the	

sampling	plan.		However,	if	the	contamination	were	not	randomly	distributed,	then	

knowledge	of	the	geographical	distribution	would	be	expected	to	substantially	

enhance	the	likelihood	of	detection.	This	would	be	particularly	true	when	

contamination	in	commercial	fields	is	infrequent	and	at	low	levels.			

Knowledge	of	the	spatial	distribution	of	contamination	in	a	field	could	enhance	

sampling,	testing	and	the	food	safety	risk	management	decisions	that	are	informed	

by	the	acquired	data.	However,	typically	there	is	little	knowledge	of	how	

microorganisms	are	actually	distributed	in	a	field,	hence	the	default	assumption	of	a	

random	or	homogeneous	distribution.	However,	produce	safety	research	during	the	

past	decade	has	identified	and	characterized	many	of	the	risk	factors	that	could	lead	

to	localized	contamination,	and	the	heterogeneous	distribution	of	microbial	hazards	

during	primary	production	[92].	In	such	cases,	samples	collected	from	different	

parts	of	the	field	would	have	different	probabilities	for	contamination	and	thus	

likelihood	of	detecting	pathogens	or	indicatory	microorganisms.		

There	are	few	studies	on	sampling	plans	for	the	detection	of	microbial	food	

safety	hazards	in	the	field,	but	there	have	been	some	sampling	plan	studies	for	food	

safety	concerns	with	other	food	products.		Several	model	studies	in	recent	years	
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have	shown	that	sampling	strategy	becomes	important	when	contamination	is	

heterogeneously	distributed	[90	–	92].		It	has	been	suggested	that	stratified	

sampling	was	more	effective	for	detecting	localized	contamination,	particularly	

when	the	number	of	samples	is	limited	[96].		A	model	study	with	powdered	infant	

formula	demonstrated	that	stratified	random	sampling	was	better	than	random	

sampling	when	n	<	30	[88].	However,	no	studies	have	researched	how	sampling	

plans	could	be	enhanced	for	detecting	pathogens	in	pre-harvest	leafy	greens,	nor	

has	the	use	of	knowledge	of	sources	of	contamination	been	used	to	enhance	

sampling	strategies.		

As	a	means	of	addressing	this	deficiency,	the	current	study	was	undertaken	to	

consider	three	contamination	scenarios	that	would	lead	to	non-random	distribution	

in	a	field	setting.		Computer	simulation	modeling	were	used	to	determine	if	

targeting	a	percentage	of	samples	in	areas	identified	as	posing	increase	likelihood	of	

contamination	would	increase	the	frequency	of	detecting	pathogens	or	indicator	

microorganisms	of	concern.	Thus,	the	sampling	plan	consisted	of	a	portion	of	the	

samples	being	targeted	“samples	of	opportunity”	consistent	with	the	contamination	

scenario,	with	the	remainder	of	the	samples	selected	by	random	assignment	of	

subplots	to	be	sampled.		These	knowledge-informed	hybrid	sampling	plans	were	

compared	against	random,	stratified	random,	and	Z-pattern	sampling	with	respect	

to	their	ability	to	detect	a	non-random	contamination	by	a	pathogen.	The	

hypothetical	scenarios	considered	were	based	on	risk	factors	for	pathogens	such	as	

S.	enterica	and	E.	coli	that	are	commonly	encountered	during	leafy	greens	cultivation	

[95,	96].	The	overall	objective	was	to	gain	quantitative	insights	into	the	potential	
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impact	of	harnessing	expert	knowledge	to	address	the	challenges	to	microbiological	

testing	when	dealing	with	non-random	distributions	of	microbiological	hazards	

associated	with	pre-harvest	leafy	greens.	

4.3 Materials	and	methods	

4.3.1 Computer	simulation	modeling	

4.3.1.1 Model	of	non-random	contamination	factors	

A	field	divided	into	𝑁!⨉𝑁!	plots	of	equal	sizes	similar	to	the	fields	in	Chapter	

3	was	used	to	develop	a	model	for	studying	the	sampling	of	non-random	

contamination.	Each	plot,	in	turn,	was	subdivided	into	𝑆!⨉𝑆!	subplots.	The	total	

number	of	subplots	is	𝑁!"#$%&' = 𝑁!𝑁!𝑆!𝑆! .	Like	chapter	3,	a	5	⨉	6	plot	array	(30	

plots),	with	each	plot	having	9	subplots	(𝑁! = 5,	𝑁! = 6,	𝑆! = 3,	𝑆! = 3)	was	used.		

Each	subplot	represents	the	smallest	unit	that	would	be	sampled.	The	likelihood	

that	a	plot	will	be	contaminated	in	the	designated	area	from	the	source	is	assumed	

to	be	dependent	on	its	spatial	relationship	with	a	contamination	sources.	Three	

types	of	contamination	were	evaluated:	(1)	stationary	line	contamination	(e.g.,	birds	

roosting	on	a	power	line),	(2)	stationary	point	contamination	(e.g.,	windblown	

manure	dust	coming	from	a	chicken	or	animal	house),	and	(3)	directional	line	

contamination	(e.g.,	contamination	due	to	flooding).		

The	likelihood	that	a	plot	will	be	contaminated	in	the	designated	area	from	

the	stationary	line	contamination	source	was	modeled	as:		

𝐼!"#$ 𝑥, 𝑦 =  exp{−
[cos 𝜃 𝑦 − 𝑦! − sin 𝜃 𝑥 − 𝑥! ]!

2𝜎!"#$!
}	

(4.1)	
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where	𝜃	is	the	orientation	of	the	line,	 𝑥!,𝑦! 	is	a	point	in	the	field	that	the	line	goes	

through,	𝜎!"#$ 	is	the	spatial	spread	of	the	contamination	around	the	line.	An	example	

of	line	contamination	is	depicted	in	Fig.	4.1A.		

	

The	likelihood	that	a	plot	will	be	contaminated	in	the	designated	area	from	

the	stationary	point	contamination	factor	is	modeled	as	a	two	dimensional	Gaussian	

function	

	
𝐼!"#$% 𝑥, 𝑦 =  exp{−[

𝑥 − 𝑥! !

2𝜎!"#$%!
+

𝑦 − 𝑦! !

2𝜎!"#$%!
]}	

(4.2)	

	

	

where	 𝑥!,𝑦! 	is	the	location	of	the	contamination	source,	𝜎!"#$%	controls	the	spatial	

spread	of	the	stationary	point	contamination.	An	example	a	stationary	point	

contamination	is	shown	in	Fig.	4.2B.	

The	contamination	likelihood	of	the	directional	line	contamination	factor	is	

modeled	as	a	planar	equation,		

𝐼!"#$%&"'()* 𝑥, 𝑦 = 𝑒𝑥𝑝{𝑘 cos 𝜃
(𝑥 − 𝑥!)
𝑁!

+ sin 𝜃
(𝑦 − 𝑦!)
𝑁!

− 1 }	
(4.3)	

where	𝜃	is	the	direction	of	contamination,	(𝑥!,	𝑦!)	is	the	corner	of	the	field	that	is	

closest	to	the	contamination	source,	𝑘	controls	how	fast	the	contamination	decays	

along	the	direction	of	contamination.	An	example	of	directional	line	contamination	

is	shown	in	Fig.	4.3C.	

The	overall	contamination	likelihood	is	the	sum	of	the	three	types	of	

contamination	likelihood.	
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𝐼 𝑥, 𝑦 =  𝐼!"#$ 𝑥, 𝑦 + 𝐼!"#$% 𝑥, 𝑦 + 𝐼!"#$%&"'()* 𝑥, 𝑦 	 (4.4)	
	

The	contamination	probability	of	a	plot	is	proportional	to	the	risk	factor,	

𝑃 𝑥, 𝑦 =  
𝐼 𝑥, 𝑦
𝐼 𝑥, 𝑦(!,!)

×𝑁! 	
(4.5)	

where	𝑁! 	is	the	number	of	contaminations	in	the	field.	In	the	simulations	we	

generate	contamination	sites	without	replacement	to	avoid	contaminating	the	same	

plot	multiple	times.		

	

Figure	4.1	Three	types	of	non-random	contamination	in	18m	(x	axes)	by	15m	(y	

axes)	fields.	(A).	Stationary	line	contamination.	(B).	Stationary	point	contamination.	

(C).	Directional	line	contamination.	The	color	represents	relative	contamination	

likelihood.	The	red	dots	represent	contamination	sites.	The	direction	of	
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contamination	deposition	from	their	sources	is	highlighted	with	black	lines	or	

arrows.	The	color	depiction	represents	relative	likelihood	of	contamination	of	the	

field	from	the	contamination	source.	

	

4.3.1.2 Generation	of	simulated	contaminated	fields.		

A	large	number	of	fields	with	non-random	contamination	are	generated	to	

systemically	evaluate	different	sampling	plans.	Each	simulated	field	has	18	⨉	15	

plots,	each	a	1.0	m2	(the	same	as	used	in	Chapter	3).	The	default	parameters	for	the	

equations	are	provided	in	Table	4.1.		

For	each	simulated	field	with	stationary	line	contamination,	the	line	

orientation	𝜃	was	randomly	selected	in	the	range	of	[0, 180°].	A	point	was	randomly	

selected	in	the	center	part	(4 ≤ 𝑥 ≤ 15, 4 ≤ 𝑦 ≤ 12)	of	the	field	as	 𝑥!,𝑦! 	to	make	

sure	that	the	stationary	line	contamination	goes	through	the	center	of	the	field.	The	

spatial	spread	of	the	stationary	line	contamination	𝜎!"#$ 	was	chosen	to	be	1.	

For	each	simulated	field	contamination	from	a	stationary	point	source,	a	

randomly	selected	location	on	the	boundary	of	the	field	was	selected	as	the	point	

location	 𝑥!,𝑦! .	The	spatial	spread	of	the	stationary	point	contamination	was	

assumed	to	be	𝜎!"#$% = 3.	

For	each	simulated	field	with	directional	line	contamination,	the	direction	of	

contamination	was	selected	among	[0°, 90°, 180°, 270°]	with	equal	probabilities,	and	

(𝑥!,	𝑦!)	is	selected	to	be	[(0,	0),	(𝑁! ,	0),	(𝑁! ,	𝑁!),	(0,	𝑁!)],	respectively.	The	

parameter	k	is	set	to	be	10	for	directional	line	contaminations.		
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Table	4.1	Summary	of	model	parameters	

Parameter	 Description	 Default	value	

𝑁!	 Number	of	plots	along	the	x-axis	 18	

𝑁!	 Number	of	plots	along	the	y-axis	 15	

𝜎!"#$ 	 Spatial	spread	of	stationary	line	contamination	 1	

𝜎!"#$%	 Spatial	spread	of	stationary	point	contamination	 3	

𝑘	 Decay	rate	of	directional	line	contamination	 10	

𝑁!"#$%& 	 Number	of	samples		 18	

𝑁! 	 Number	of	contaminated	plots	in	the	field	 6	

	

4.3.1.3 Sampling	plans	

We	considered	four	sampling	plans	in	this	study:	(1)	random,	(2)	stratified	

random,	(3)	Z-pattern,	and	(4)	SOO.	The	same	number	of	distinct	samples	was	

collected	each	of	the	different	plans.	The	number	of	samples	per	each	sampling	plan	

was	designated	as	𝑁!"#$%& .	An	example	of	samples	drawn	according	to	different	

sampling	plans	is	shown	in	Fig.	4.3.		

The	random	sample	plan	“collected”	𝑁!"#$%& 	samples	randomly	without	

replacement	from	all	plots	(see	Chapter	3).	The	stratified	random	sample	plan	first	

divides	the	field	into	5⨉6	primary	plots,	with	each	primary	plot	containing	3⨉3	

subplots	(see	Chapter	3).	Since	we	used	𝑁!"#$%& ≤30	for	all	simulations,	there	was	
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at	most	one	sample	collected	from	each	primary	plot.	If	𝑁!"#$%&=30	there	is	exactly	

one	sample	collected	from	each	primary	plot.		

The	Z-pattern	sampling	plan	divided	the	field	into	5	⨉	6	primary	plots	

similar	to	the	stratified	sampling	plan.	Unlike	the	stratified	sampling	plain,	the	Z-

pattern	model	only	collects	samples	from	plots	lying	at	two-opposing	edges	and	one	

of	the	diagonal	lines	(see	Chapter	3).	The	"Z"	region	consist	of	16	primary	plots	for	a	

total	of	144	plots.	Note	that	Z-pattern	sampling	plan	never	collects	any	sample	from	

the	other	126	plots.		

The	SOO	plan	first	identifies	a	potential	contamination	source,	and	then	

divides	the	field	into	high	risk	and	low	risk	areas	based	on	spatial	layout	of	the	

designated	contamination	source.	It	then	collects	two	thirds	of	the	samples	from	the	

high	risk	area	and	one	third	of	the	samples	from	the	low	risk.	In	the	simulation,	it	

assumes	the	SOO	plan	identifies	the	type	of	contamination.	For	stationary	point	

contamination,	high	risk	area	contains	plots	that	are	less	than	5	m	away	from	the	

contamination	source.	For	stationary	line	contamination,	the	high	risk	area	contains	

plots	that	are	<	2	m	away	from	the	line.	For	directional	line	contamination,	the	high	

risk	area	was	plots	that	are	<	4	m	from	the	contamination	leading	edge.	

In	one	series	of	simulations,	scenarios	where	sampler	incorrectly	identifies	a	

high	risk	area	for	consideration	by	a	SOO	sampling	plan.	In	those	scenarios	the	

actual	high	risk	area	was	first	identified	using	the	actual	locations	of	the	

contamination.	The	high	risk	area	of	the	SOO	plan	was	then	chosen	to	have	a	

variable	amount	of	overlap	with	the	real	high	risk	area.	Specifically,	a	random	subset	
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of	the	real	high	risk	area	was	included	in	the	designated	SOO	high	risk	area.	The	rest	

of	the	SOO	designated	high	risk	area	is	chosen	from	the	low	risk	portions	of	the	field.		

	

	

Figure	4.2	Example	samples	drawn	according	to	different	sampling	plans.	The	high	
risk	areas	identified	by	the	SOO	plan	are	shown	with	squares	that	has	gray	
boundaries.	In	this	case	we	assume	SOO	correctly	identifies	contamination	sources.		

4.3.1.4 Evaluation	of	sampling	plans	

The	four	sampling	plans	were	compared	using	computer	simulations.	At	the	

beginning	of	each	simulation,	a	contaminated	field	was	generated	with	one	of	the	

three	contamination	sources	(Eq.	4.1-4.3).	Given	the	simulated	contaminated	

likelihood,	𝑁! 	plots	were	selected	as	contaminated	plots	based	on	(Eq.	4.5).	The	field	

was	then	sampled	using	the	four	types	of	sampling	plans,	each	with	100	iterations.	
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For	each	iteration,	the	sample	locations	were	generated	according	to	different	

sampling	plans	independently.	A	detection	probability	was	estimated	based	on	the	

number	of	iterations	that	a	sampling	plan	successfully	detected	at	least	one	of	the	

contaminated	sites.	The	simulation	was	then	repeated	100	times	(total	of	10,000	

iterations),	each	with	a	different	contaminated	field,	to	estimate	the	distribution	of	

detection	probabilities	for	each	sampling	plan.	As	noted	in	Chapter	3,	it	is	important	

to	repeat	the	simulation	multiple	times	since	sufficiently	characterize	the	sampling	

plans	since	individual	sampling	plans	may	be	good	at	detecting	certain	

contamination	patterns	but	not	others.	

4.3.2 Validation	field	experiment	

A	limited	validation	study	was	performed	for	each	of	the	three	contamination	

scenarios	 (i.e.,	 line	 contamination	 (overhead	 power	 line),	 point	 source	 (adjacent	

Alpacas	 facility),	 and	directional	 (flooding).	The	validation	 studies	were	 limited	 to	

consideration	of	SOO	compared	to	random	and	stratified	random	sampling	plans.		Z-

pattern	sampling	was	not	evaluated	during	these	validation	trials.	

Field	Site	and	Plot	Design	

The	field	experiments	were	conducted	at	the	University	of	Maryland	Central	

Maryland	Research	&	Education	Center	(CMREC),	Clarksville,	MD	and	on	a	

commercial	farm	in	Maryland.	Three	fields	were	included:	a	field	close	to	an	animal	

facility	(commercial	farm),	a	field	with	an	overhead	power	line	(commercial	farm)	

and	a	field	that	was	purposefully	flooded	(CMREC).	The	experiments	at	each	field	

were	conducted	three	times	during	the	summer	of	2016	and	winter	and	early	spring	

of	2017.		
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The	field	used	for	the	flooding	trials	was	a	plot	(+5%	grade).	Prior	to	flooding,	

a	“U”	shape	soil	berm	was	hand-built	at	the	bottom	end	to	maintain	the	floodwater	

(Figure	4.3).	Approximately	2000	gallons	of	the	lagoon	water	used	for	the	treatment	

of	bovine	waste	was	pumped	to	the	bottom	of	the	field.	The	edge	of	this	water	was	

marked	as	the	edge	of	the	flood.		The	E.	coli	and	total	coliform	concentration	in	the	

lagoon	water	was	~2	log	CFU/mL.	The	total	aerobic	bacteria	concentration	was	~7	

log	CFU/mL.	

	

Figure	4.3	Example	of	soil	berm	built	to	contain	floodwater.	
	

A	rectangular	leafy	green	field	was	divided	into	5	⨉	6	primary	plots.	Each	

plot,	in	turn,	was	subdivided	into	3	⨉	3	1.0	m2	subplots.	The	total	number	of	

subplots	was	270.		

4.3.2.1 Sampling	in	the	field	

A	total	of	18	samples	for	each	of	the	three	sampling	plans	were	collected.	The	

sampling	sites	were	selected	using	the	random	number	generator.	For	random	
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sampling	plan,	eighteen	subplots	were	randomly	sampled	from	270	subplots.		For	

stratified	random	sampling	plan,	the	field	was	divided	into	18	big	plots	with	fifteen		

1m2	subplots.	Then,	one	sample	was	randomly	taken	from	each	big	plot.	For	samples	

of	opportunity	sampling	plan,	the	research	team	performed	a	rapid	assessment	of	

the	field	based	on	a	standardized	set	of	criteria	that	could	be	contributing	to	

contamination	(overhead	power	line,	proximity	to	an	animal	facility,	partially	

flooded	field).	After	the	assessment,	the	sampling	team	took	samplings	by	their	

judgments.		One-third	of	the	18	samples	were	taken	in	a	random	manner	and	the	

remaining	2/3	samples	were	collected	from	areas	within	the	field	where	were	

recognized	as	the	risky	area	by	the	investigator.	These	locations	were	recorded	on	

the	field	grid	map.	The	location	and	nature	of	these	factors	were	identified	on	the	

grid	map.		

4.3.2.2 Sample	processing	

At	 each	 of	 the	 18	 locations	 for	 the	 three	 sampling	 plans,	 a	 soil	 sample	 of	

approximately	50	g	was	 collected,	 transferred	 to	a	 sample	bag,	placed	 in	a	 cooler,	

and	 then	 transported	 to	 the	 laboratory.	 Samples	 were	 processed	 within	 24	 h	 of	

collection.	 	 For	 each	 sample,	 10g	 of	 soil	 were	 weighed	 from	 each	 sample	 into	 a	

sterile	Whirlpak	 bag	 (Nasco,	 Jackson,WI).	 40	 ml	 0.1%	 peptone	 water	 (PW)	 were	

added	to	each	bag	and	then	shaken	using	Orbital	shaker(Forma	Scentific,	Marietta,	

OH)		for	2	min	at	room	temperature.	Serial	10-fold	dilutions	were	prepared	in	0.1%	

PW.	 The	 levels	 of	 total	 coliforms	 and	 E.	 coli	 in	 all	 samples	 were	 enumerated	 by	

duplicate	 1-ml	 samples	 of	 appropriate	 dilutions	 plated	 onto	 3M™	 Petrifilm™	 E.	

coli/coliform	count	plates	(Cat	No.	6414)	and	incubated	at	37±0.5°C	and	44±0.5°C,	
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as	per	manufacturer’s	instructions.		Red	colonies	with	gas	bubbles	observed	at	24	h	

were	counted	as	coliforms	and	blue	colonies	with	gas	bubbles	observed	at	48	h	were	

counted	as	E.	coli	 colonies,	according	 to	standard	TC/E.	coli	Petrifilm	enumeration	

methods.	 Appropriate	 dilutions	 were	 also	 plated	 directly	 onto	 3M™	 Petrifilm™	

Aerobic	Count	Plates	(APC)	(Cat	No.	6406),	incubated	at	37±0.5°C,	and	observed	for	

red	colonies	after	48	h	for	enumeration	of	aerobic	mesophilic	bacteria	[99].	

4.3.2.3 Data	analysis		

Various	statistical	tests	to	test	the	difference	among	sampling	plans.	First,	the	

fraction	of	positive	samples	for	each	type	of	indicator	microorganism	was	assessed	

for	significant	differences	among	sampling	plans	using	Fisher's	exact	test[100].	This	

is	performed	for	each	individual	experiment.	Second,	analysis	of	variance	(ANOVA)	

was	used	to	determine	if	there	were	significant	differences	in	the	counts	of	indicator	

microorganisms	(log	cfu/g)	for	the	three	sampling	plans.	This	was	also	performed	

separately	for	each	individual	plan.	Third,	all	three	experimental	data	sets	were	

used	to	test	whether	three	sampling	plans	performed	different	for	detecting	

indicator	microorganisms.	Since	the	microbial	counts	could	have	also	been	

dependent	on	the	season,	Repeated	Measures	ANOVA	was	used	to	adjust	for	

seasonality[101].	Finally,	the	positive	and	negative	samples	from	each	sampling	

plan	was	plotted	on	a	two-dimensional	map	to	visualize	the	spatial	distribution	of	

positive	samples.	The	data	analysis	was	performed	in	Matlab	R2015b	(The	

Mathworks).		
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4.4 Results		

4.4.1 Simulation	

The	efficiency	of	different	sampling	plans	was	evaluated	by	computer	

simulations.	The	performance	of	each	sampling	plan	was	characterized	by	the	

probability	of	detecting	at	least	one	contamination	site	in	the	simulated	field.	We	

considered	three	types	of	non-random	contamination:	stationary	point	

contamination,	directional	line	contamination	and	stationary	line	contamination.	

The	mean	detection	probability	of	four	sampling	plans	with	these	three	types	of	

contamination	is	shown	in	Fig.	4.4.	Stratified-random	sampling	plan	was	a	little	

better	than	random	sampling	plans	(p=0.045).		The	SOO	plan	had	the	best	detection	

probability	for	all	types	of	contamination	(p<0.01).	This	is	because	most	of	the	

samples	collected	in	the	SOO	plan	are	from	regions	with	higher	contamination	

probability.	The	Z-pattern	sampling	plan	had	significantly	better	mean	detection	

probability	than	random	and	stratified	sampling	plan	for	stationary	point	and	

directional	line	contamination	(p<0.01),	but	was	significantly	worse	sampling	plan	

for	stationary	line	contamination	(p<0.01).	This	is	because	the	stationary	point	

contamination	and	directional	line	contamination	have	highest	contamination	

probability	near	the	boundaries	of	the	field,	whereas	stationary	line	contamination	

tends	to	have	most	contamination	sites	near	the	center	of	the	field	(see	section	

4.3.1.2).		
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Figure	4.4	Detection	Probability	of	four	sampling	plans:	random	(red),	stratified	
random	(green),	z-pattern	(yellow)	and	sampling	of	opportunity	plan	(blue).	Values	
from	bars	with	different	letters	are	significantly	different	based	on	an	ANOVA	and	
Tukey’s	post	hoc	test	(p<0.01).		Error	bars	represent	standard	deviation	of	detection	
probability	across	500	simulated	contaminated	fields.		
	
	

Whether	the	performance	of	sampling	plans	depends	on	number	of	samples	

was	analyzed.	The	mean	detection	probability	was	calculated	with	5,	10,	18	or	30	

samples.	The	mean	detection	rate	for	all	sampling	plans	increased	as	a	function	of	

number	of	samples	(Fig.	4.5).	The	relative	effectiveness	across	sampling	plans	

remained	the	same	regardless	of	the	number	of	samples.		
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Figure	4.5	Detection	probability	of	different	sampling	plans	as	a	function	of	number	
of	samples.	The	relative	effectiveness	of	different	sampling	plans	is	the	same	as	in	
Fig.	4.4.		
	

The	effect	of	number	of	contamination	sites	on	the	performance	of	the	

sampling	plans	was	evaluated	(Fig.	4.6).	The	mean	detection	probability	for	all	

sampling	plans	increased	as	a	function	of	number	of	contaminations.	The	relative	

effectiveness	across	sampling	plans	remained	the	same	regardless	of	the	number	of	

samples.	The	difference	between	SOO	and	other	sampling	plans	is	most	dramatic	

when	the	number	of	contamination	sites	was	small.	The	SOO	yielded	a	two-fold	to	
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three-fold	improvement	in	mean	detection	probability	when	the	number	of	

contamination	sites	was	three.	This	ratio	of	improvement	decrease	as	the	number	of	

contamination	sites	increase	above	3.		

	

	

Figure	4.6	Detection	probability	as	a	function	of	number	of	contaminations	in	the	
field.		
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factors	in	the	field.	The	sensitivity	of	SOO	sampling	plans	to	the	correctness	of	the	

high-risk	areas	subsequently	evaluated	by	simulation	modeling.	Also,	in	the	

simulations	above,	the	SOO	plan	collected	two	thirds	of	the	samples	from	the	high	

risk	area.	Accordingly,	the	performance	of	SOO	sampling	plans	were	evaluated	for	

the	impact	of	the	percentage	of	samples	collected	from	the	high	risk	area.		

In	this	simulation,	a	fraction	of	SOO	high	risk	plots	were	replaced	with	plots	

that	fell	in	the	low-risk	area.	The	fraction	of	plots	that	remain	in	the	true	high-risk	

area	was	denoted	by	an	overlap	parameter:	overlap=1.0	means	the	no	high-risk	

plots	are	changed	in	the	SOO	plan,	which	corresponds	to	perfect	identification	of	

high-risk	areas,	whereas	an	overlap	=	0.0	means	all	the	high-risk	plots	were	

incorrectly	identified,	i.e.,	the	SOO	evaluation	prior	to	sample	site	selection	

completely	failed	to	detect	a	high	risk	area.	The	number	of	samples	collected	from	

the	high	risk	area	was	also	varied.	The	mean	detection	probability	was	plotted	as	a	

function	of	number	of	samples	collected	in	the	high	risk	area	is	presented	in	Fig.	4.7,	

with	each	colored	line	representing	simulations	where	a	fraction	of	high-risk	plots	

were	replaced.		

When	the	number	of	samples	collected	from	the	high-risk	area	is	high,	the	

mean	detection	probability	of	the	SOO	plan	decreases	when	more	high-risk	plots	are	

replaced	with	low	risk	plots.	However,	the	SOO	plans	still	had	better	mean	detection	

probability	than	random	sampling	plan	(Figure	4.7	black	dashed	line)	as	long	as	

more	than	20%	of	the	high-risk	plots	were	correctly	identified.	In	this	case,	the	

mean	detection	probability	increased	when	a	higher	portion	of	the	samples	were	

collected	from	the	high-risk	area.	When	the	SOO	plan	failed	to	identify	the	high-risk	
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area	(overlap	<20%),	the	detection	probability	decreased	when	more	samples	are	

collected	from	a	presumed	high-risk	area	(Figure	4.7	dark	blue	lines).		

	

	

	

Figure	4.7	Detection	probability	of	the	SOO	sampling	plan	while	the	high	risk	area	
cannot	be	accurately	determined.	Each	colored	line	represent	simulations	when	a	
fraction	of	the	plots	in	the	high	risk	area	are	randomly	replaced	with	plots	that	lie	
outside	of	the	high	risk	area.	The	overlap	parameter	denotes	fraction	of	the	plots	
that	lies	in	the	high	risk	area.	The	detection	probability	is	plotted	as	a	function	of	
number	of	samples	collected	from	the	high	risk	area	in	the	SOO	plan	(total	number	
of	samples=18).	
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4.4.2 Validation		

The	levels	of	five	indicators	microorganisms	were	tested:	total	aerobic	

bacteria	(APC),	total	coliforms	(TC	37°C)(TC37),	thermotolerant	coliforms	(TC	

44°C)(TC44),	generic	E.	coli	(E.	coli	37°C)	(EC37)	and	thermotolerant	E.	coli	(E.coli	

44°C)(EC44).	The	three	sampling	plans	compare	were	samples	of	opportunity	

sampling,	stratified	random	sampling	and	random	sampling.	The	fraction	of	positive	

samples	detected	out	of	18	samples	and	average	levels	of	five	indicators	were	

calculated.		

4.4.2.1 Flooded	field	

For	the	flooded	field,	in	the	first	trial,	the	fraction	of	positive	samples	was	

significantly	greater	for	the	SOO	sampling	plan	than	the	other	two	sampling	plans	

based	on	the	EC37	and	EC44	levels.	The	fraction	of	positive	samples	based	on	the	

SOO	sampling	plan	was	significantly	greater	than	stratified	sampling	for	the	TC44	

testing	(p<0.05).	The	log	number	of	average	bacterial	count,	for	SOO	sampling	was	

significantly	higher	than	those	for	the	other	two	sampling	plans	based	for	the	two	

E.coli	assays	(p<0.01),	APC	(p<0.01)	and	TC44	(p<0.01)	(see	Fig.	4.8).		
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Figure	4.8	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	flooded	field	from	three	
sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	random	sampling	
(R),	and	random	sampling	(R)(the	first	trial).		Red	bar	and	“*”	mean	significantly	
different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05	).	
	
	

For	the	flooded	field,	in	the	second	trial,	the	fraction	of	positive	samples	was	

significantly	greater	for	the	SOO	sampling	plan	than	the	other	two	sampling	plans	

based	on	the	EC37	and	EC44	levels	(p<0.05).	The	log	number	of	average	bacterial	

count,	for	SOO	sampling	was	significantly	higher	than	those	for	the	other	two	

sampling	plans	based	for	all	five	assays.	(see	Fig.	4.9).		
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Figure	4.9	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	flooded	field	from	three	
sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	random	sampling	
(R),	and	random	sampling	(R)(the	second	trial).		Red	bar	and	“*”	mean	significantly	
different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05	).	
	
	

For	the	flooded	field,	in	the	third	trial,	the	fraction	of	positive	samples	was	

significantly	greater	for	the	SOO	sampling	plan	than	random	sampling	plan	based	on	

the	EC37	(p<0.05).	The	fraction	of	positive	samples	based	on	the	SOO	sampling	plan	

was	significantly	greater	than	stratified	sampling	for	the	EC44	testing	(p<0.05).	The	

log	number	of	average	bacterial	count,	for	SOO	sampling	was	significantly	higher	

than	those	for	the	other	two	sampling	plans	based	for	the	EC44	assay	(p<0.01)	and	

APC	(p<0.01)	(see	Fig.	4.10).	
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Figure	4.10	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	flooded	field	from	three	
sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	random	sampling	
(R),	and	random	sampling	(R)(the	third	trial).		Red	bar	and	“*”	mean	significantly	
different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05).	
	
	

4.4.2.2 Field	with	animal	house	nearby	

For	the	field	close	to	an	animal	facility,	in	the	first	trial,	the	fraction	of	

positive	samples	from	SOO	sampling	was	significantly	higher	than	stratified	

sampling	based	EC37	testing	(p<0.05).	For	the	average	bacterial	count,	SOO	

sampling	had	significantly	higher	counts	than	other	two	sampling	plans	for	EC37	

and	EC44	assays	(p<0.01),	and	the	TC37	and	TC44	assays	(p<0.01)	(Fig.	4.11).		
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	Figure	4.11	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	animal	house	
nearby	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	first	trial).		Red	bar	and	“*”	
mean	significantly	different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05).	
	
	

For	the	field	close	to	an	animal	facility,	in	the	second	trial,	the	fraction	of	

positive	samples	from	SOO	sampling	was	significantly	higher	than	stratified	

sampling	based	TC37	testing	(p<0.05).	No	E.coli	were	detected.	For	the	average	

bacterial	count,	SOO	sampling	had	significantly	higher	counts	than	other	two	

sampling	plans	for	TC37	and	APC	assays	(p<0.01)	(Fig.	4.12).		
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Figure	4.12	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	animal	house	
nearby	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	second	trial).		Red	bar	and	“*”	
mean	significantly	different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05).	
	
	
	
	

For	the	field	close	to	an	animal	facility,	in	the	third	trial,	the	fraction	of	

positive	samples	from	SOO	sampling	was	significantly	higher	than	stratified	

sampling	based	TC37	testing	(p<0.05).	No	E.coli	and	TC44	were	detected.	For	the	

average	bacterial	count,	SOO	sampling	had	significantly	higher	counts	than	other	

two	sampling	plans	for	TC37	and	APC	assays	(p<0.01)	(Fig.	4.13).		
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Figure	4.13	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	animal	house	
nearby	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	third	trial).		Red	bar	and	“*”	
mean	significantly	different	based	on	Fisher’s	exact	test	and	ANOVA	test	(p<	0.05).	
	
	

Below	is	an	example	of	the	positive	field	samples	for	the	E.coli-37°C	assay	for	

the	three	sampling	plans	(Fig.	4.14).		Nine	samples	from	SOO	collected	close	to	the	

animals	are	all	positive	based	on	the	E.coli	indicator.		
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Figure	4.14	Example	samples	drawn	from	the	field	with	animal	house	nearby	
according	to	three	sampling	plans	(18	samples	for	each).	Solid	symbols	represent	
positive	samples	of	E.coli	(37°C)	indicator	and	empty	symbols	represent	negative	
samples	of	E.coli	(37°C)	indicator	based	on	270	subplots	in	the	field.	
	
	

4.4.2.3 Field	with	power	line	above	

For	the	field	with	an	overhead	power	line,	in	the	first	trial,	the	fraction	of	

positive	samples	from	the	presence/absence	assays	was	significantly	higher	for	SOO	

sampling	plan	than	other	two	sampling	plans	for	the	TC37	assays	(p<0.05),	but	not	

for	the	EC37,	EC44,	or	TC44	(Fig.	4.15).	The	mean	bacterial	counts	for	the	
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quantitative	assays	were	significantly	greater	for	the	EC37,	EC44,	TC37	or	TC44	

assay	with	the	SOO	sampling,	but	not	the	APC	assay	(Fig.	4.15).	Samples	of	“samples	

of	opportunity”	sampling	have	significantly	higher	counts	than	other	two	sampling	

plans	based	on	EC	and	TC	indicators	(p<0.01)	(see	Figure	4.15).		

	

	

	

	

	Figure	4.15	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	power	line	
above	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	first	trial).		Red	bar	and	“*”	
indicate	that	the	means	were	significantly	different	(p<0.05)	based	on	Fisher’s	exact	
test	and	ANOVA	test,	respectively.	
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For	the	field	with	an	overhead	power	line,	in	the	second	trial,	both	of	the	

fraction	of	positive	samples	from	the	presence/absence	assays	and	the	mean	

bacterial	counts	for	the	quantitative	assays	were	not	significantly	different	among	

sampling	plans	(Fig.	4.16).	

	

	
Figure	4.16	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	power	line	
above	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	second	trial).		Red	bar	and	“*”	
indicate	that	the	means	were	significantly	different	(p<0.05)	based	on	Fisher’s	exact	
test	and	ANOVA	test,	respectively.	
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For	the	field	with	an	overhead	power	line,	in	the	third	trial,	the	fraction	of	

positive	samples	from	the	presence/absence	assays	was	significantly	higher	for	SOO	

sampling	plan	than	other	two	sampling	plans	for	the	TC37	assay	(p<0.05).	No	EC	

and	TC44	were	detected	(Fig.	4.17).	The	mean	bacterial	counts	for	the	quantitative	

assays	were	significantly	greater	for	the	EC37,	TC37	and	APC	assays	(p<0.01)	(Fig.	

4.17).		

	

	
	

	
Figure	4.17	Fraction	of	positive	samples	out	of	18	samples	(first	row)	and	levels	of	
indicator	microorganisms	(second	row)	in	samples	in	the	field	with	power	line	
above	from	three	sampling	plans:	samples	of	opportunity	sampling	(O),	stratified	
random	sampling	(R),	and	random	sampling	(R)(the	third	trial).		Red	bar	and	“*”	
indicate	that	the	means	were	significantly	different	(p<0.05)	based	on	Fisher’s	exact	
test	and	ANOVA	test,	respectively.	
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4.4.2.4 Comparison	of	sampling	plans	across	three	repeated	trials	

ANOVA	repeated	measure	test	was	used	to	compare	the	three	sampling	plans	

based	on	three	repeated	trials.	For	the	average	count,	samples	of	opportunity	

sampling	had	significantly	higher	TC-37	(p	=	0.008)	and	APC	(p	=	0.013)	counts	in	

the	flooded	field	trials	(Table	4.2).		

	

	

	

Table	4.2	The	p-values	of	ANOVA	repeated	measures	analysis	on	average	bacterial	
indicators	from	three	fields.	
Indicator	name Animal	House 							Power	line 					Flooding 

TC	44 0.37 0.44 0.11 
TC	37 0.1 0.44 0.008* 
APC 0.06 0.16 0.013* 
EC37 0.44 0.05 0.067 
EC44 0.44 0.44 0.129 

	“*”	indicate	that	the	mean	detection	probabilities	of	SOO	sampling	plan	were	
significantly	higher(p<0.05)	than	other	sampling	plans	based	on	ANOVA	test.		
	

	

For	the	fraction	of	positive	samples,	SOO	sampling	had	significantly	higher	

positive	samples	for	TC37	(p=0.02)	in	the	field	with	animal	house	nearby	(Table	4.3).	

Samples	of	opportunity	sampling	had	significantly	higher	positive	samples	for	TC37	

testing	(p=0.04)	in	the	field	with	the	overhead	power	line.	Samples	of	opportunity	

sampling	had	significantly	higher	positive	samples	for	EC37	and	EC44	assays	

(p=0.004)	in	the	flooded	field.	
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Table	4.3	The	p-values	of	ANOVA	repeated	measures	analysis	on	fraction	of	positive	
samples	of	five	indicators	out	of	18	samples.	

Indicator	name	 Animal	house	 					Power	line	 				Flooding	
TC44	 0.51	 0.44	 0.09	
TC37	 0.02*	 0.04*	 0.74	
APC	 NaN	 NaN	 NaN	
EC37	 0.44	 0.13	 0.004*	
EC	44	 0.44	 0.44	 0.004*	

	“*”	indicates	that	the	means	were	significantly	different	(p<0.05)	based	on	Fisher’s	
exact	test.	“NaN”	means	that	the	test	cannot	be	done	since	all	the	samples	are	
positive	from	all	the	sampling	plans.	
	

4.5 Discussion	

Pre-harvest	sampling	and	testing	are	important	tool	for	verifying	the	

microbiological	safety	of	leafy	greens.	However,	since	the	levels	of	foodborne	

pathogens	are	typically	very	low,	it	is	hard	to	detect	then	with	the	number	of	

samples	typically	used	to	evaluate	pre-harvest	fields.		To	improve	the	detection	

probability,	it	is	important	to	develop	efficient	sampling	plans	for	the	pre-harvest	

produce.		Several	model	studies	have	shown	that	stratified	or	systematic	sampling	

plan	performed	better	than	random	sampling	for	food	products,	particularly	when	

the	number	of	samples	analyzed	are	limited	[92–	94].		In	the	current	study	the	

effectiveness	of	different	sampling	plans	were	evaluated	using	both	simulated	fields	

and	real	fields	to	assess	their	ability	to	detect	non-random	contamination	associated	

with	three	contamination	source	scenarios,	point	source	contamination	such	as	

windblown	contamination	from	a	nearby	animal	facility,	line	contamination	such	as	

birds	roosting	on	an	overhead	power	line,	and	directional	contamination	as	would	

be	encountered	in	a	partially	flooded	field.		The	basic	hypothesis	underlying	the	

study	was	that	sampling	plans	could	be	enhanced	by	taking	advantage	of	knowledge	
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of	the	environment	surrounding	leafy	green	fields.		Such	SOO	sampling	plans	are	

combination	of	knowledge	informed	biased	sampling	with	traditional	random	or	

systematic	sampling.		Such	hybrid	sampling	plans	provided	enhanced	performance	

to	detect	target	microorganisms	in	comparison	to	more	traditional	sampling	plans	

for	the	three	types	of	contamination	sources	using	both	simulation	modeling	and	

admittedly	limited	validation	trials.		Among	the	traditional	approaches	to	sampling,	

stratified	random	sampling	performed	significantly	better	than	random	sampling	

based	on	the	simulation	modeling,	which	is	consistent	with	the	results	of	

Jongenburger	et	al	[94]	who	showed	systematic	sampling	has	higher	mean	detection	

probability	than	random	sampling.		

Several	variables	could	affect	the	performance	SOO	sampling	plans.	The	most	

important	is	whether	expert	knowledge	led	a	sampler	to	correctly	identify	locations	

within	a	field	with	elevated,	non-random	contamination.	The	current	study	

demonstrates	that	even	if	partially	misjudging	the	likely	location	of	non-random	

contamination,	SOO	sampling	performed	better	than	other	sampling	plans	if	the	

overlap	between	hypothesized	and	actual	non-random	contamination	sites	was	≥	

10%.		Thus,	SOO	sampling	would	perform	worse	than	traditional	sampling	only	if	

the	area	of	non-random	contamination	was	completely	missed.		In	such	situation	of	

increased	uncertainty,	the	SOO	approach	could	be	adjusted	by	changing	the	

percentage	of	sample	that	was	devoted	to	biased	sampling.	Since	many	studies	have	

been	done	on	the	risk	factors	leading	to	in-field	contaminations,	it	would	be	very	

helpful	to	determine	the	most	likely	sources	of	contamination	source	for	field	prior	

to	cultivation	[89,	98].		
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In	this	study,	only	one	contamination	source	was	presented	in	the	field.		In	real	

world	scenarios,	there	might	be	more	than	one	contamination	sources.	Therefore,	

all	contamination	sources	should	be	considered	before	the	sampler	makes	a	

decision	about	where	to	collect	more	samples.	In	future	studies,	multiple	

contamination	sources	could	be	simulated	and	subsequently	validated.	The	current	

study	provides	a	systemic	way	to	estimate	the	detection	probability	of	four	

sampling	plans	in	the	field.	By	considering	three	types	of	contamination	with	

different	spatial	distributions,	our	model	is	readily	able	to	detect	non-random	

contaminations	in	the	field	for	pre-harvest	produce,	such	as	E.	coli	or	S.	enterica.	in	

lettuce	or	spinach.		For	the	non-random	contaminated	field,	a	SOO	sampling	plan	is	

suggested	for	detecting	contaminations	in	pre-harvest	leafy	greens.	

While	the	current	study	included	limited	validation	studies,	the	number	of	

replicate	field	trials	coupled	with	the	challenges	of	conducting	blinded	field	studies	

mean	that	these	trials	must	be	considered	preliminary	in	nature.		This	is	partially	

overcome	by	simulation	modeling	where	multiple	iterations	per	simulation	and	

multiple	simulations	allow	a	large	number	of	in	silico	trials	(e.g.,	100	simulations	

each	with	100	iterations)	to	be	conducted.		Ideally,	partnerships	with	the	leafy	green	

growers	could	use	the	extensive	pre-harvest	testing	data	already	being	acquired	to	

more	extensively	validate	this	hybrid	approach	to	pre-harvest	sampling.		

4.6 Conclusion	

This	study	has	shown	that	the	probability	of	detecting	microbiological	

contamination	by	SOO	plans	is	higher	than	random,	stratified-random	and	z-pattern	

sampling	plans	based	on	the	incorporation	of	knowledge	concerning	likely	sources	
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of	contamination.	The	enhanced	detection	probability	of	SOO	sampling	plan	would	

be	highly	dependent	on	expert	knowledge	of	the	samplers	and	their	ability	to	

rapidly	assess	likely	sources	of	contamination	around	the	field	environment	and	the	

percentage	of	samples	that	should	be	taken	from	high	risk	areas.		
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5 Chapter	5:	In	silico	Evaluation	of	a	Novel	Iterative	

Bayesian	Sampling	Strategy	for	Efficient	Detection	of	

Pathogenic	Bacteria	in	Pre-harvest	Produce	and	

Environments	

5.1 Abstract	

Sampling	of	pre-harvest	leafy	greens	and	their	cultivation	environments	is	

increasingly	used	as	a	tool	to	enhance	microbial	food	safety.	In	most	sampling	plans,	

the	sample	locations	are	determined	beforehand	and	all	samples	are	collected	at	

once.	This,	in	part,	is	because	traditional	methods	of	microbial	detection	take	one	or	

more	days	to	yield	results.	However,	recent	developments	in	rapid	microbial	

methods	(RMMs)	are	significantly	increasing	the	speed	of	analysis,	which,	in	turn,	

makes	it	possible	to	begin	considering	iterative	sampling	strategies.	The	goal	of	this	

section	of	the	current	study	was	to	compare	the	effectiveness	of	traditional	

sampling	plans	and	a	novel	iterative	sampling	strategy	based	on	Bayesian	Global	

Optimization	(BGO)	using	field	simulations	of	realistic	contamination	sources.	The	

effectiveness	of	iterative	BGO	sampling	and	two	traditional	sampling	plans	(random	

and	stratified-random)	were	evaluated	in	silico	using	a	simulation	model.	Pre-

harvest	fields	similar	to	those	described	earlier	with	realistic	contamination	sources	

were	generated	in	silico.	Three	types	of	contaminations	were	considered:	stationary	

point	contamination,	stationary	line	contamination	and	directional	line	

contamination.	In	these	scenarios,	it	was	assumed	that	(i)	the	likelihood	of	pathogen	



	 92	

presence	was	correlated	with	the	levels	of	an	indicator	microorganism,	and	(ii)	

there	is	no	a	priori	knowledge	concerning	the	distribution	of	contamination.	In	the	

former	it	is	assumed	that	the	indicator	microorganisms	is	associated	with	fecal	

contamination	(e.g.,	E.	coli,	thermotolerant	coliforms)	and	the	specific	pathogens	of	

concern	are	transmitted	via	an	oral-fecal	route.	The	BGO	plan	uses	prior	results	to	

inform	the	subsequent	sampling	locations	to	maximize	overall	detection	probability.		

The	same	number	of	samples	was	collected	in	each	sampling	plan	(n=18).		In	

simulated	fields	with	5X6	plots	and	9	subplots/plot	(270	potential	sampling	

locations	and	contamination	sites),	BGO	sampling	plan	dramatically	increased	

detection	probability	compared	to	traditional	sampling	plans	(random:	0.30±0.11;	

stratified	random:	0.32±0.11;	BGO:	0.63±0.23)	with	same	number	of	samples.		The	

difference	was	highly	significant	(p<0.0001).		This	study	provides	a	novel	iterative	

sampling	strategy	for	microbial	quality	testing.	This	alternative	sampling	approach	

would	be	particularly	beneficial	when	implemented	as	part	of	testing	program	that	

monitors	pre-harvest	fields	over	the	course	of	the	cultivation	cycle.	

5.2 Introduction	

Understanding		microbiological	distributions	in	pre-harvest	settings	can	

potentially		improve	sampling	effectiveness	by	increasing	detection	probability,	

thereby	improving	food	safety	management	decision-making	based	on	the	data	

[103].	Intuitively,	the	detection	probability	of	a	sampling	plan	can	be	improved	if	we	

collect	more	samples	from	areas	with	higher	microbial	contamination	likelihoods.	

As	discussed	in	previous	chapters,	one	approach	is	to	determine	high	risk	areas	

based	on	knowledge	of	the	field.	For	example,	closeness	to	animal	facilities,	
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presence	of	power	lines	above	the	field,	and	evidence	of	flooding	can	be	used	to	

define	high	risk	areas[21,	76,	100].	However,	when	such	knowledge	is	not	available	

to	the	sampler,	it	can	be	difficult,	if	impossible	to	make	informed	decisions	

regarding	high	risk	areas	before	samples	are	collected.		

In	this	study,	a	novel	iterative	sampling	approach	is	proposed.	It	is	based	on	

using	knowledge	gained	as	a	result	of	prior	samples	to	select	additional	sample	

locations	in	a	manner	that	maximizes	overall	detection	probability.	It	is	based	on	

treating	sampling	as	a	global	optimization	problem	where	the	goal	is	the	detection	

of	the	area	or	areas	within	a	leafy	green	field	with	the	greatest	microbial	

contamination	likelihood.	Problems	similar	to	this	have	been	studied	extensively	in	

the	field	of	geostatistics	(e.g.,	estimating	distribution	of	gold	deposits	based	on	

samples	from	a	few	boreholes)[105]	and	in	computer-based	experimentation	that	

requires	optimizing	algorithms	for	time-consuming	simulations	(e.g.,	automotive	

crash	simulations)	[106].	In	the	current	study,	a	Bayesian	Global	Optimization	

(BGO)	approach	was	selected	to	determine	if	detection	efficiency	could	be	enhanced	

by	the	iterative	field	testing	over	a	relatively	short	time	period.		

The	BGO	method	has	several	attractive	features.	First,	it	is	able	to	maximize	

the	expected	improvement	of	a	cost	function	which	is	the	opposite	of	detection	

probabilities	for	each	collected	sample	based	on	previously	collected	samples.	

Second,	it	provides	a	fast	approximation	to	the	overall	distribution	of	microbial	

detection	probability	in	the	field,	together	with	an	estimate	of	the	uncertainty	at	

each	location.	Finally,	it	is	able	to	provide	a	credible	stopping	rule	based	on	the	

expected	improvement	of	contamination	probability	from	further	searching.	In	this	
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chapter,	the	BGO	sampling	plan	and	traditional	sampling	plans	are	compared	with	

the	same	number	of	samples	on	the	detection	probability	of	non-random	

contaminations.		

5.3 Materials	and	Methods	

5.3.1 Iterative	sampling	with	Bayesian	Global	Optimization	

The	probability	of	detecting	microbiological	contamination	in	a	field	setting	

using	a	fixed	number	of	samples	is	most	effective	when	one	can	target	areas	with	

the	highest	likelihood	of	contamination.	In	the	SOO	sampling	approach	(see	Chapter	

4),	this	was	achieved	by	knowledge	of	the	potential	sources	of	contamination	in	the	

cultivation	location.			In	the	BGO	approach,	this	is	alternatively	achieved	by	using	an	

iterative	sampling	approach	where	the	results	of	the	prior	sampling	inform	the	

location	of	the	next	set	of	samples.		We	assumed	that	the	contamination	probability	

of	each	previously	collected	sample	can	be	assessed	by	measuring	indicator	bacteria	

level,	and	that	the	contamination	probability	of	nearby	locations	in	a	field	is	

correlated.	Given	these	assumptions,	after	obtaining	the	results	of	an	initial	

sampling,	a	set	of	additional	sampling	iterations	are	developed	as	a	global	

optimization	problem,	i.e.,	given	the	results	of	a	set	of	previously	collected	samples,	

a	set	of	new	sample	points	are	selected	such	that	the	expected	contamination	

probability	among	all	samples	are	maximized.	This	type	of	problem	has	been	

addressed	in	the	field	of	Bayesian	Global	Optimization	(BGO)	[103,	104].		The	

mathematical	formulation	and	the	algorithmic	solution	to	this	problem	are	

formulated	in	the	context	of	microbiological	sampling	below.	
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In	Bayesian	global	optimization,	one	considers	optimization	of	a	function	f	

with	respect	to	some	parameters	x.	The	goal	is	to	find	an	approximate	solution	to	

𝐱 = argmin
𝐱∈𝚨

𝑓(𝐱)	 (5.1)	

In	the	case	of	microbiological	sampling,	x	represents	the	location	of	a	sample	in	the	

field;	the	domain	𝚨	is	set	of	all	possible	sample	locations	in	the	field.	To	maximize	

the	microbiological	contamination	probability	of	the	collected	samples,	𝑓 =

−risk(𝐱)	is	used,	where	risk(𝐱)	is	the	contamination	likelihood	at	location	x.	The	

evaluation	of	f	is	expensive	and	time-consuming,	and	that	evaluations	provide	only	

the	value	of	f	at	the	evaluated	point.		

The	function	f	is	modeled	as	a	Gaussian	process,	which	is	specified	by	its	

mean	𝜇	and	a	positive	semi-definite	covariance	function	𝑘(𝐱, 𝐱′).	The	concept	of	

Gaussian	process	has	a	long	history	in	the	field	of	statistics.	It	can	be	thought	as	

defining	a	distribution	over	functions	or	a	collection	of	random	variables,	where	any	

finite	number	of	the	random	variables	have	a	joint	Gaussian	distribution	[109].	We	

denote	the	Gaussian	process	as,	

𝑓~𝐺𝑃(𝜇, 𝑘) ,	or	𝑓(𝐱(!)) = 𝜇 + 𝜖(𝐱(!))	

	

(5.2)	

Where	𝜇	is	the	mean	of	the	stochastic	process,	𝜖(𝐱(!))~Normal(0,	𝜎!)	and	the	

correlation	between	errors	is	not	zero.	Instead,	we	assume	the	correlation	between	

two	locations	in	the	field	depends	on	the	distance	between	the	two	locations	via	a	

square	exponential	function:	
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𝑘 𝐱(!), 𝐱(!) = 𝐶𝑜𝑟𝑟[𝜖(𝐱(!)), 𝜖(𝐱(!))] = 𝛼exp[−
𝑥!
(!) − 𝑥!

(!) !

𝜆!
!

!

!!!

] 	
(5.3)	

	

The	model	contains	the	parameters	𝜇,𝜎,𝛼, 𝜆!, 𝜆!.	𝜆!,𝑎𝑛𝑑 𝜆!,	which	are	the	spatial	

scales	of	the	correlation	along	the	horizontal	and	vertical	direction,	𝛼	controls	the	

strength	of	the	correlation.	These	parameters	are	estimated	by	choosing	them	to	

maximize	the	likelihood	of	the	observed	samples.	

Before	the	BGO	process	is	performed,	an	initial	set	of	n	samples	is	first	

collected	according	to	random	sampling	plan.	By	analyzing	these	samples	for	a	

quantitative	attribute,	we	can	assess	the	microbiological	contamination	likelihood	at	

a	few	locations	of	the	field.	Let	𝐲 = (y(!), . . .  , y(!))	denote	the	observed	function	

value	of	n	sample	locations,	Σ	denotes	the	𝑛×𝑛	matrix	whose	(i,	j)th	entry	is	

𝑘 𝐱(!), 𝐱(!) ,	and	I	denote	an	n-vector	of	ones.	The	likelihood	function	[107]	is	given	

by:	

1

(2𝜋)!/!(𝜎!)!/!|Σ|
!
!
exp −

(𝐲 −  𝐈𝜇)!Σ!!(𝐲 −  𝐈𝜇)
2𝜎!

 	
(5.4)	

	

Note	that	the	dependences	on	𝛼 and	𝜆	is	via	the	correlation	matrix Σ.	Given	the	

correlation	parameters,	the	values	of	𝜇,𝜎	can	that	maximize	the	likelihood	function	

can	be	solved	in	closed	form	

𝜇 =
𝐈!Σ!!𝐲
𝐈!Σ!!𝐈

	
(5.5)	

𝜎! =
(𝐲 −  𝐈𝜇)!Σ!!(𝐲 −  𝐈𝜇)

𝑛
 	

(5.6)	
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Given	the	estimated	𝜇	and	𝜎!,	𝛼 and	𝜆		can	be	estimated	by	optimizing	the	likelihood	

function	[107].	Once	the	estimated	parameters	were	calculated,	the	posterior	

distribution	of	𝑓(𝐱)	based	on	knowledge	of	the	n	samples	can	be	formed.	

Given	this	posterior	distribution,	the	expected	function	value	for	an	arbitrary	

location	𝐱∗	is	given	by	[110],	

𝑦(𝐱∗) = 𝜇 + 𝐫!Σ!!(𝐲 −  𝐈𝜇)	 (5.7)	

where	r	is	a	n-dimensional	vector	containing	correlations	between	the	error	terms	

at	𝐱∗	and	the	error	terms	at	previously	sampled	point.	That	is,	the	ith	element	of	r	is	

𝑟!(𝐱∗) = 𝑘(𝐱∗, 𝐱(!)).	Intuitively,	if	𝐱∗	is	far	away	from	any	previously	collected	

samples,	its	expected	function	value	will	be	close	to	𝜇.	The	predictor	interpolates	the	

data	between	previously	sampled	points.	

	

The	mean	squared	error	of	this	predictor	can	also	be	calculated,	which	is	

given	by,	

𝑠!(𝐱∗) = 𝜎! 1 − 𝐫!Σ!!𝐫 +
(1 − 𝐫!Σ!!𝐫)!

𝐈!Σ!!𝐈
	

(5.8)	

In	the	expression	above,	the	term	−𝐫!Σ!!𝐫	represents	the	reduction	in	

prediction	error	due	to	the	fact	that	𝐱∗	is	correlated	with	the	sample	points.	This	

adjustment	would	be	zero	if	the	𝐱∗	is	not	correlated	with	any	previously	sampled	

points.	The	last	term	reflects	uncertainty	due	to	not	knowing	𝜇	exactly.		

The	next	step	is	to	choose	the	set	of	points	to	evaluate	next	based	on	the	

posterior	distribution.	This	is	achieved	using	a	decision-theoretic	approach	by	

optimizing	a	metric	called	the	"expected	improvement".	Let	𝑓!∗ = min!!!𝑓(𝐱(!))	

indicate	the	value	of	the	best	sample	point	evaluated.	Suppose	q	more	samples	from	
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the	field	were	collected,	the	value	of	the	best	point	evaluated	after	all	q	samples	are	

collected	will	be	min(𝑓!∗,min!!!,...,!𝑓(𝐱(!))).	The	difference	between	these	two	values	

is	called	the	improvement,	which	is	equal	to	 𝑓!∗  −  min!!!,...,!𝑓(𝐱(!))
!,	where	

𝑥 ! = max(x, 0).	Note	that	although	the	exact	value	of	𝑓(𝐱(!)), (𝑖 = 1, . . . , 𝑞)	cannot	

be	calculated,	the	estimated	posterior	distribution	based	on	knowledge	from	

previously	collected	samples	can	be	calculated.	An	expected	improvement	can	be	

calculated	as,	

𝑞 − 𝐸𝐼(𝐗) = 𝔼![ 𝑓!∗  −  min!!!,...,!𝑓(𝐱(!)) !
]	 (5.9)	

	

where	𝔼![∙] = 𝔼![∙ |𝐱(!:!), y(!:!)]	is	the	expectation	taken	with	respect	to	the	

posterior	distribution.		Then,	the	set	of	points	that	maximizes	the	expected	

improvement	is	evaluated,	

argmax
𝐗

𝑞 − 𝐸𝐼(𝐗)	 (5.10)	

This	can	be	achieved	using	stochastic	gradient	ascent	algorithm	and	Monte	

Carlo	simulation	[108].	In	this	study,	an	open	source	library	called	Metric	

Optimization	Engine	(MOE)	was	used	[111].		

	

5.3.2 Model	of	non-random	contamination	factors	

A	field	was	divided	into	𝑁!⨉𝑁!	plots	of	equal	size.	Each	plot	represents	the	

smallest	unit	that	can	be	sampled	from.	It	is	based	on	the	assumption	that	the	

likelihood	of	contamination	for	a	given	plot	depends	on	its	spatial	relationship	with	

contamination	sources.	Three	types	of	contamination	are	considered,	including	(1)	
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line	contamination	(e.g.,	below	a	power	line),	(2)	point	contamination	(e.g.,	around	

an	animal	house)	and	(3)	directional	contamination	(e.g.,	contamination	due	to	

flooding)	(the	same	as	chapter	4).		

The	contamination	likelihood	of	due	to	line	contamination	is	modeled	as		

	
𝐼!"#$ 𝑥,𝑦 =  exp{−

[cos𝜃 𝑦 − 𝑦! − sin𝜃 𝑥 − 𝑥! ]!

2𝜎!"#$!
}	

	

	

	

(5.11)	

where	𝜃	is	the	orientation	of	the	line,	 𝑥!,𝑦! 	is	a	point	in	the	field	that	the	line	goes	

through,	𝜎!"#$ 	is	the	spatial	spread	of	the	contamination	likelihood	around	the	

line(See	Chapter4).	

The	contamination	likelihood	of	the	point	contamination	factor	is	modeled	as	

a	two	dimensional	Gaussian	function	

𝐼!"#$% 𝑥, 𝑦 =  exp{−[
𝑥 − 𝑥! !

2𝜎!"#$%!
+

𝑦 − 𝑦! !

2𝜎!"#$%!
]}	

(5.12)	

	

where	 𝑥!,𝑦! 	is	the	location	of	the	contamination	source,	𝜎!"#$!	controls	the	spatial	

spread	of	the	point	contamination(see	Chapter	4).		

The	contamination	likelihood	of	the	directional	contamination	factor	is	

modeled	as	a	planar	equation,		

𝐼!"#$%&"'()* 𝑥, 𝑦 = 𝑒𝑥𝑝{𝑘 cos 𝜃
(𝑥 − 𝑥!)
𝑁!

+ sin 𝜃
(𝑦 − 𝑦!)
𝑁!

− 1 }	
(5.13)	
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where	𝜃	is	the	direction	of	contamination,	(𝑥!,	𝑦!)	is	the	corner	of	the	field	that	is	

closest	to	the	contamination	source,	𝑘	controls	how	fast	the	contamination	decays	

along	the	direction	of	contamination	(see	Chapter	4).		

The	overall	contamination	likelihood	is	the	sum	of	the	three	types	of	

contamination	likelihood.	

𝐼 𝑥, 𝑦 =  𝐼!"#$ 𝑥, 𝑦 + 𝐼!"#$! 𝑥, 𝑦 + 𝐼!"#$%&"'!"# 𝑥, 𝑦 	 (5.14)	

	

The	contamination	probability	of	a	plot	is	proportional	to	the	risk	factor,	

𝑃 𝑥, 𝑦 =  
𝐼 𝑥, 𝑦
𝐼 𝑥, 𝑦(!,!)

×𝑁! 	
(5.15)	

	

where	𝑁! 	is	the	number	of	contamination	sites	in	the	field.	In	the	simulations	we	

generate	contamination	sites	according	to	the	contamination	probability	equation	

without	replacement	to	avoid	contaminating	the	same	plot	multiple	times	(See	

Chapter	4).		

5.3.3 Generation	of	simulated	contaminated	fields.		

A	large	number	of	fields	with	non-random	contamination	were	generated	to	

systemically	evaluate	different	sampling	plans.	Each	simulated	field	has	18⨉15	

plots	and	can	be	affected	by	only	one	of	the	three	contamination	types.	Each	plot	

represents	a	1	m2	square.	A	list	of	default	parameters	is	given	in	table	5.1.		

For	each	simulated	field	with	line	contamination	the	line	orientation	𝜃	is	

randomly	selected	in	the	range	of	[0, 180°].	A	point	in	the	center	part	(12⨉9)	of	the	

field	is	randomly	selected	as	 𝑥!,𝑦! 	to	make	sure	that	the	line	contamination	goes	
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through	the	center	of	the	field.	The	spatial	spread	of	the	line	contamination	𝜎!"#$ 	is	

chose	to	be	1.	

For	each	simulated	field	with	point	contaminations,	a	location	on	the	

boundary	of	the	field	is	selected	as	the	point	location	 𝑥!,𝑦! .		The	spatial	spread	of	

the	point	contamination	is	set	to	be	𝜎!"#$% = 3.	

For	each	simulated	field	with	directional	contamination,	the	direction	of	

contamination	is	selected	among	[0°, 90°, 180°, 270°]	with	equal	probabilities,	and	

(𝑥!,	𝑦!)	is	selected	to	be	[(0,	0),	(𝑁! ,	0),	(𝑁! ,	𝑁!),	(0,	𝑁!)]	respectively.	The	

parameter	k	is	set	to	be	10	for	directional	contaminations.		

5.3.4 Sampling	plans	

Three	sampling	plans	are	considered	in	this	study,	random,	stratified	random	

and	BGO	sampling.	Each	sampling	plan	collected	the	same	number	of	distinct	

samples	with	different	strategies.	The	number	of	samples	per	each	sampling	plan	is	

denoted	as	𝑁!"#$%& .	An	example	of	samples	drawn	according	to	different	sampling	

plans	are	shown	in	Figure	5.1.		

The	random	sample	plan	collects	𝑁!"#$%& 	samples	randomly	without	

replacement	from	all	plots.	The	stratified	random	sample	plan	first	divides	the	field	

into	5⨉6	plots,	with	each	main	plot	containing	3⨉3	subplots.	There	is	at	most	one	

sample	collected	from	each	plot.		

The	BGO	sampling	plan	first	collects	𝑁!"#$%&!"!#!$% 	samples	randomly	from	the	field	

(without	replacement),	and	then	collects	the	rest	of	the	samples	across	multiple	

𝑁!"#$ 	iterations,	where	𝑁!"#$%&!"#$ 	samples	are	collected	during	each	iteration.	The	total	
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number	of	samples	(𝑁!"#$%&!"!#!$! + 𝑁!"#$𝑁!"#$%&!"#$ )	is	the	same	as	other	sampling	plans.	We	

chose	𝑁!"#$%&!"!#!$% = 6	for	all	simulations	if	not	specified	otherwise.	The	number	of	

iterations	and	samples	per	iteration	are	varied	in	the	simulations.	We	included	a	

noise	term	to	mimic	uncertainty	of	contamination	likelihood	evaluation	of	collected	

samples.	The	measured	contamination	likelihood	is	the	true	contamination	

likelihood	times	a	multiplicative	noise.		

𝑓!"#$%&"'(𝐱) = 𝑓(𝐱)𝑧	 (5.16)	

where	z~ Gamma(!
!
,𝜃)	is	a	random	variable	that	follows	a	gamma	distribution	with	

mean	of	one	and	variance	of	𝜃.	The	parameter	𝜃	is	the	scale	parameter	of	the	

Gamma	distribution	and	controls	the	strength	of	noise.	The	use	of	the	Gamma	noise	

ensures	that	the	measured	noise	is	always	greater	or	equal	to	zero.	𝜃	was	varied	

between	0.1	and	5	in	the	simulation.		

	

Table	5.1	Summary	of	model	parameters	
Parameter	 Description	 Default	value	

𝑁!	 Number	of	plots	along	the	x-axis	 18	

𝑁!	 Number	of	plots	along	the	y-axis	 15	

𝜎!!!" 	 Spatial	spread	of	line	contamination	 1	

𝜎!"#$%	 Spatial	spread	of	point	contamination	 3	

𝑘	 Decay	rate	of	directional	contamination	 10	

𝑁!"#$%& 	 Number	of	samples		 18	

𝑁! 	 Number	of	contaminated	plots	in	the	field	 6	
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𝑁!"#!!"!"!#!$% 	 Number	of	samples	collected	during	the	first	

iteration	of	the	BGO	sampling	

6	

𝑁!"#$ 	 Number	of	iterations	of	the	BGO	sampling	 12	

𝑁!"#$%&!"#$ 	 Number	of	samples	collected	in	each	iteration	 1	

	

5.3.5 Evaluation	of	sampling	plans	

Sampling	plans	were	compared	using	computer	simulations.	At	the	beginning	

of	each	simulation,	the	likelihood	of	contamination	on	a	simulated	field	was	

generated	with	one	of	the	three	contamination	sources	(Eq.	5.14).	Then	𝑁! 	plots	

were	selected	as	contaminated	plots	based	on	the	contamination	likelihood	(Eq.	

5.15).	This	simulated	field	was	then	sampled	using	the	three	types	of	sampling	plans	

(random,	stratified-random	and	BGO),	each	with	20	iterations.	With	each	iteration,	

the	sample	locations	were	generated	according	to	different	sampling	plans	

independently.	For	random	and	stratified-random	sampling	plans,	the	sample	

locations	were	generated	in	one	pass	without	replacement.	For	BGO	sampling	plans,	

the	sample	locations	were	generated	in	an	iterative	fashion	(eq.	5.10).	The	BGO	

algorithm	generated	new	sampling	locations	based	on	the	contamination	likelihood	

value	of	the	samples	collected	previously.		The	same	number	of	unique	samples	was	

collected	for	all	three	sampling	plans.	A	detection	probability	was	estimated	based	

on	the	number	of	iterations	that	a	sampling	plan	successfully	detected	at	least	one	of	

the	contaminated	sites.	The	simulation	was	then	repeated	20	times,	each	with	a	

different	contaminated	field,	to	estimate	the	distribution	of	detection	probabilities	

for	each	sampling	plan.		
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5.4 Results	

The	effectiveness	of	random,	stratified-random	and	BGO	sampling	plans	were	

compared	on	simulated	contaminated	fields	with	non-random	contamination	

patterns.	The	BGO	sampling	plan	collects	samples	iteratively.	At	each	iteration,	BGO	

uses	information	of	previously	collected	samples	on	the	contamination	likelihood	to	

decide	where	to	collect	samples	next	such	that	the	overall	sampling	effectiveness	

can	be	maximized.	The	set	of	samples	drawn	based	on	the	BGO	plan	is	shown	

together	with	samples	drawn	from	random	and	stratified	random	sampling	plans	

(Figure	5.1A).	To	highlight	the	iterative	sampling	of	BGO,	we	labeled	the	order	of	

each	collected	samples.	The	BGO	sampling	typically	have	three	phases.	The	first	six	

samples	are	collected	at	one	time	randomly	to	have	an	initial	estimation	of	the	

contamination	patterns	in	the	field.	The	BGO	collected	a	few	more	samples	

iteratively	(one	sample	each	time)	from	locations	with	high	uncertainty	(sample	7-

11).	The	final	set	of	samples	(sample	12-18)	are	collected	iteratively	(one	sample	

each	time)	from	areas	with	the	highest	contamination	likelihood.	Overall	BGO	tends	

to	collect	more	samples	from	areas	with	high	contamination	likelihood	than	the	

random	and	stratified	random	sampling	plan.	

After	a	set	of	samples	is	collected,	the	BGO	sampling	plan	provides	the	

estimated	distribution	of	microbial	contamination	likelihood	(Fig.	5.1B),	together	

with	the	uncertainty	(standard	deviation)	of	this	estimated	contamination	

likelihood	at	each	location	in	the	field	(Fig.	5.1C).	In	this	case	the	estimated	

distribution	closely	resembles	the	true	contamination	likelihood	distribution	(Fig.	

5.1A)	even	though	only	a	small	number	of	samples	are	collected.	The	uncertainty	is	
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low	near	the	sampled	locations.	These	estimators	are	used	to	guide	selection	of	the	

next	sample	points	such	that	the	expected	improvement	with	the	new	samples	will	

be	maximized	(see	section	5.3.1).	

	

Figure	5.1	Example	samples	drawn	according	to	different	sampling	plans.		A.	The	
samples	drawn	according	to	the	random	(cross),	stratified	random	(triangle)	and	
BGO	(square)	are	shown	together	with	contaminations	and	likelihood	of	
contaminations.	The	order	of	the	BGO	samples	are	labeled	with	numbers.	B.	
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Estimated	distribution	of	contamination	likelihood	in	the	field	from	the	BGO	
sampling	plan.	C.	Standard	deviation	of	the	estimated	likelihood	based	on	the	BGO	
sampling	plan.	
	

The	performance	of	the	three	sampling	plans	on	a	large	number	of	simulated	

fields	with	different	types	of	contamination	was	quantified,	including	point	

contamination,	line	contamination	and	directional	contaminations.	The	average	

detection	probability	is	shown	in	Fig.	5.2A.	BGO	has	significantly	better	detection	

probability	than	the	other	two	sampling	plans	for	all	three	types	of	contamination	

patterns	(p<0.05).	The	improvement	is	most	dramatic	for	fields	that	had	high	

contamination	near	a	hot	spot	or	along	a	line.	The	stratified	sampling	plan	has	small,	

but	significant	better	performance	than	the	random	sampling	plan	on	point	

contamination	using	a	pairwise	test	(p<0.05).	The	difference	is	not	significant	for	

other	types	of	contaminations.		

Detected	contamination	likelihood	of	samples	collected	from	different	

sampling	plans	was	analyzed.	The	samples	collected	by	the	BGO	plan	have	higher	

likelihood	on	average	than	samples	collected	by	the	random	or	stratified	sampling	

plan	(Fig.	5.2B).	The	difference	is	significant	for	all	three	types	of	contaminations.	

The	maximum	of	the	detected	likelihood	among	the	18	collected	samples	also	differs	

across	sampling	plans	(Fig.	5.2C).	The	BGO	plan	typically	can	find	locations	with	

high	contamination	likelihood	towards	the	end	of	sampling.		
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Figure	5.2	Performance	of	three	sampling	plans	with	different	types	of	
contamination	patterns.		(A)	Detection	probability	of	the	contaminated	site	for	
different	sampling	plans.	(B)	Average	contamination	likelihood	of	samples	collected	
from	different	sampling	plans.	(C)	The	maximum	contamination	likelihood	among	
the	18	samples	collected	from	different	sampling	plans.	The	error	bars	represents	
standard	deviation	across	different	fields	with	the	same	types	of	contaminations.	
Values	from	bars	with	different	letters	are	significantly	different	based	on	an	
ANOVA	and	Tukey’s	post	hoc	test	(P	<0.05).			
	

Detection	probability	as	a	function	of	number	of	samples	for	the	three	

sampling	plans	was	analyzed	(Fig.	5.3).	The	detection	probability	increases	when	

more	samples	are	allowed	to	be	collected.	Because	BGO	iterative	sampling	only	

collected	samples	iteratively	after	more	than	six	samples,	there	is	no	difference	

between	BGO	and	random	sampling	plans	for	𝑁!"#$%& ≤ 6.	BGO	starts	to	have	higher	
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detection	probability	than	random	and	stratified-random	plan	when	𝑁!"#!"# ≥ 10.	

The	difference	increases	as	a	function	of	number	of	samples.		

	

Figure	5.3	Performance	of	three	sampling	plans	with	different	number	of	samples	
collected.	The	detection	probability	is	plotted	as	a	function	of	number	of	samples.	
Note	that	the	first	6	samples	of	the	BGO	plan	are	drawn	randomly.	The	difference	
between	BGO	and	other	sampling	plans	is	significantly	when	number	of	samples	is	
higher	than	10.	
	
	

The	simulations	in	Figure	5.2	and	Figure	5.3	collects	one	sample	per	iteration	

in	the	BGO	plan.	How	the	detection	probability	changes	when	the	number	of	

samples	per	iteration	changes	while	the	total	number	of	sample	is	fixed	is	evaluated.	

It	found	that	the	detection	probability	decreases	if	fewer	numbers	of	iterations	is	

allowed	(more	number	of	samples	per	iteration)	(Fig.	5.4).		The	BGO	plan	is	still	
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significantly	better	than	random	and	stratified	random	sampling	plans	with	6	

samples	per	iterations	(3	iterations	total).	However,	the	difference	between	BGO	

and	other	sampling	plans	is	small	and	insignificant	if	with	9	samples	per	iterations	

(2	iterations).	

	

Figure	5.4	Detection	probability	of	the	BGO	plan	as	a	function	of	number	of	samples	
per	iteration.	The	detection	probability	of	BGO	is	calculated	with	increasing	number	
of	samples	per	iteration	(decreasing	number	of	iterations)	on	fields	with	point	
contaminations.	The	number	of	samples	collected	in	the	initial	random	sampling	
period	is	6	for	𝑁!"#$%&!"#$ 	≤6	and	9	for	𝑁!"#$%&!"#$ 	=9.	The	total	number	of	iterations	is	12,	
6,	4,	3,	2,	1	for	𝑁!"#$%&!"#$ 	=1,	2,	3,	4,	6,	9	respectively.	The	detection	probability	for	
random	and	stratified-random	plans	are	shown	as	blue	and	red	dashed	lines	
respectively.	
	
	

So	far	the	microbiological	contamination	likelihood	assumed	can	be	perfectly	

assessed	for	previously	collected	samples.	The	robustness	of	the	BGO	sampling	plan	
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with	respect	to	noise	during	assessment	of	contamination	likelihood	is	evaluated	

next.	The	uncertainty	of	contamination	likelihood	was	modeled	with	a	multiplicative	

Gamma	noise.	The	measured	likelihood	is	chosen	to	be	the	product	of	the	true	

likelihood	and	a	Gamma	noise,	where	the	variance	of	the	Gamma	noise	is	varied	to	

control	noise	strength	(see	Materials	and	Methods	Eq.	5.16).	The	detection	

probability	decreases	when	small	amount	of	noise	is	introduced.	However,	the	

detection	probability	of	the	BGO	plan	remains	to	be	much	higher	than	other	

sampling	plans	even	with	very	large	amount	of	noise	(Fig.	5.5).	The	results	are	the	

same	with	other	types	of	noise.		

	

Figure	5.5	Robustness	of	the	BGO	plan	to	noise	in	contamination	likelihood	
measurement.	Mean	detection	probability	is	plotted	as	a	function	of	the	variance	of	
the	multiplicative	Gamma	noise.	The	mean	detection	probabilities	for	random	and	
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stratified-random	plans	are	shown	as	blue	and	red	dashed	lines	respectively.	This	
simulation	is	performed	with	point	contamination.	
	

5.5 Discussion	

In	this	study,	BGO	gives	much	better	detection	probability	than	traditional	

sampling	plans	where	there	is	not	a	priori	knowledge	of	the	distribution	of	

contamination.	The	effectiveness	of	the	BGO	sampling	plan	relies	on	two	

assumptions.	The	first	assumption	is	that	the	microbial	contamination	likelihood	

varies	smoothly	in	the	field.	Locations	that	are	close	to	each	other	have	similar	

microbial	contamination	likelihood.	Second,	microbial	contamination	likelihood	of	

previously	collected	samples	could	be	evaluated	in	a	quantitative	fashion.	This	can	

be	achieved,	for	example,	by	measuring	the	amount	of	indicator	bacteria	in	each	

sample.	There	are	many	studies	that	report	indicators	bacteria	are	closely	related	to	

pathogen	occurrence.	For	example,	fecal	indicators	are	often	correlated	with	

Salmonella	spp.	[112][113].	A	study	also	shown	that	the	correlation	between	

indicators	and	pathogens	are	controversy	due	to	insufficient	data	[114].		

One	potential	drawback	of	the	BGO	sampling	plan	is	the	paradigm	of	iterative	

sampling	requires	longer	sampling	time.	It	is	assumed	that	the	contamination	

likelihood	does	not	change	during	the	course	of	BGO	sampling.	However,	since	

microbiological	contamination	likelihood	of	previously	collected	samples	are	

assessed	before	deciding	where	to	sample	next,	the	entire	sampling	process	can	take	

multiple	days.	It	shows	that	the	detection	probability	is	significantly	better	than	

random	sampling	plan	even	with	a	small	number	of	three	iterations.	In	traditional	

ways,	it	would	take	at	least	three	days	to	finish	three	iterations	since	it	would	take	
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at	least	24h	to	get	the	detection	results.	Currently	it	would	take	at	least	a	week	if	

samples	were	collected	6	times	iteratively.	However,	the	contamination	pattern	

could	change	overtime.	For	example,	the	pathogen	or	indicator	microorganisms	

could	die	off	over-time	or	re-emergence	due	to	a	rain	event.	New	contamination	

source	also	could	appear	after	first	iterative	sample	is	taken.	So,	traditional	

detection	methods	may	not	suitable	for	use	with	BGO	method.		

The	development	of	rapid	and	ultra-rapid	microbial-detection	methods	such	

as	polymerase	chain	reaction	(PCR)[115],	quartz	crystal	microbalance	(QCM)[116],	

surface	plasmon	resonance	(SPR)[117],	allows	samplers	to	obtain	microbiology	

result	faster	compared	with	traditional	culture-plate	methods	[110	–	113].	In	2015,	

an	ultra-rapid	microbial-detection	method	using	an	immunoassay	in	combination	

with	a	3D-printed	helical	microchannel	device	was	invented[122].	Sometimes	the	

result	can	be	obtained	in	a	matter	of	hours,	as	opposed	to	days	or	weeks	in	

traditional	cases	[123].	These	rapid	methods	for	microbial	detection	can	be	

sensitive	and	quick,	which	may	allow	multiple	rounds	of	sampling	in	a	relatively	

short	period	of	time.	The	iterative	sampling	could	be	finished	one	or	two	days	by	

using	rapid	detection	methods.		This	is	reasonable	and	possible	with	the	rapid	

development	of	the	rapid	methods	for	microbial	detection.	

The	BGO	sampling	plan	requires	evaluation	of	the	microbial	contamination	

likelihood	of	each	sample.	One	important	question	is	that	the	measurement	of	

microbial	contamination	likelihood	may	not	be	accurate	in	practice.	This	can	be	due	

to	inaccuracies	of	plate	counts	[124],	low	correlations	between	indicator	bacteria	

and	pathogens,	and	other	experimental	error.	Inaccuracies	of	contamination	
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likelihood	measurement	are	simulated	by	multiplying	the	true	contamination	

likelihood	with	a	noise	variable	that	follows	Gamma	distribution	with	a	mean	of	one.	

It	found	that	although	the	performance	of	the	BGO	sampling	plan	decreases	initially	

with	small	amount	of	noise,	it	remains	much	better	than	traditional	sampling	plans	

over	a	wide	range	of	noise.	This	suggests	that	the	improvement	of	BGO	sampling	is	

robust	with	respective	to	inaccuracy	of	risk	assessment.		

The	BGO	sampling	plan	and	SOO	sampling	plans	(in	chapter	4)	also	can	be	

combined.	When	the	high-risk	area	was	found	by	BGO	sampling	plan	based	on	a	

microbial	indicator,	SOO	sampling	plan	could	then	be	used	to	assess	the	likelihood	

of	a	target	pathogen.	For	example,	12	samples	are	collected	in	high-risk	area	

identified	by	the	BGO	results,	and	6	samples	are	collected	randomly	in	the	field.		
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6 Chapter	6:	Summary	and	Future	Studies	

6.1 Summary	

Pre-harvest	microbiological	testing	of	leafy	green	vegetables	based	on	

statistically	valid	sampling	plans	is	increasingly	becoming	an	important	of	food	

safety	systems	for	fresh	and	fresh-cut	produce.	However,	the	efficacy	of	the	current	

sampling	plans	was	very	low	and	there	is	little	consensus	on	optimal	sampling	plans	

that	are	“fit	for	purpose”.	The	research	project	has	attempted	to	systematically	

evaluate	the	effectiveness	of	current	common	pre-harvest	sampling	plans,	and	

explored	means	of	enhancing	detection	capabilities	through	understanding	the	

underlying	statistical	concepts	and	parameters.	

Chapter	3	focused	on	evaluating	the	performance	three	pre-harvest	sampling	

plans,	random,	stratified	random,	and	Z-pattern	sampling	by	consideration	of	their	

mathematical	derivations	and	computer	simulations	based	on	random	

contamination	sites.		It	has	been	concluded	that	while	the	mean	result	obtained	with	

all	three	sampling	plans	is	similar,	the	performance	of	the	random	or	stratified	

random	sampling	plans	are	less	variable,	particularly	when	the	number	of	

contamination	sites	or	number	of	samples	analyzed	are	small.		Furthermore,	

validation	field	study	was	conducted	to	compare	three	sampling	plans	based	on	
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random	contamination.	Fewer	positive	samples	were	detected	in	z-pattern	sampling	

plan.		

In	the	real	world,	contaminations	always	occur	non-random	due	to	many	risk	

factors	in	the	field,	such	as	wild	animals,	poultry,	flooding.	In	chapter	4,	computer	

simulations	were	performed	to	compare	the	relative	effectiveness	of	random,	

stratified-random,	Z-pattern	and	SOO	sampling	which	is	the	method	based	on	the	

sampler’s	knowledge	of	risk	factors.	SOO	sampling	plan	performed	the	best	among	

all	the	sampling	plans	if	the	assumption	of	contamination	source	is	incorrect.	This	

study	indicated	that	having	the	knowledge	of	the	contamination	source	in	the	field	

would	highly	improve	effectiveness	of	sampling.	Field	study	was	conducted	to	

validate	the	model	in	Chapter	4	for	the	non-random	contaminated	fields.	It	

concluded	that	SOO	sampling	plan	performed	better	than	other	sampling	plans	

based	on	the	field	with	power	line	above,	field	with	animal	house	nearby	and	

flooded	field.	

However,	if	the	assumption	of	contamination	source	were	incorrect,	the	

detection	probability	of	SOO	would	be	not	significantly	different	than	the	other	

sampling	plans.	It	indicate	that	it	highly	depend	on	the	knowledge	and	decision	of	

the	samplers.	It	cannot	be	always	right.	Therefore,	in	chapter	5,	a	novel	sampling	

method	is	invented,	which	is	iterative	sampling	strategy	based	on	Bayesian	Global	

Optimization	(BGO).	In	this	chapter,	the	effectiveness	of	traditional	sampling	plans	

and	a	novel	iterative	sampling	strategy	were	evaluated	on	simulated	fields	with	

realistic	contamination	sources.	The	study	concluded	that	the	novel	sampling	
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strategy	performed	much	better	than	traditional	sampling	plans	in	realistic	

scenarios	and	can	save	samples	as	well.		

To	our	knowledge,	this	is	the	first	systemic	study	to	evaluate	and	compare	pre-

harvest	sampling	plans	for	food	microbial	safety.	The	current	project	compare	all	

the	current	common	pre-harvest	sampling	plans	based	on	random	and	non-random	

contaminations	using	computer	simulations	and	field	validations.	A	novel	sampling	

strategy	is	also	developed	to	get	better	detection	probability	and	improve	sampling	

efficacy	without	field	knowledge.		

The	outcomes	of	the	current	project	provide	scientific	evidence	and	guidelines	

for	researchers	and	samplers.	The	suggested	sampling	plans	for	different	situations	

are	discussed	as	follow.	

(1) If	the	field	is	randomly	contaminated,	such	as	contaminated	by	overhead	

irrigation	water,	random	and	stratified	random	sampling	plan	are	suggested.	

(2) If	the	field	is	non-randomly	contaminated	or	there	is	some	potential	risk	

factors	near	the	field,	such	as	power	line	above	the	field,	animal	house	

nearby,	flooded	field	and	wild	animal	activity	in	the	field,	then	samples	of	

opportunity	sampling	plan	was	recommended.		

(3) If	you	have	no	idea	of	the	field	and	you	also	want	to	evaluate	the	

contamination	situation	with	least	samples,	then	iterative	sampling	(BGO)	is	

suggested.	
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6.2 Future	studies	

The	current	study	represents	our	current	best	knowledge	of	pre-harvest	

sampling	plans	for	produce	microbial	safety.	Several	gaps	were	identified	and	

elaborated	in	each	chapter.	Some	possible	areas	of	research	related	to	pre-harvest	

sampling	plans	are	proposed	as	follows.	

(1) For	the	non-random	contaminated	field,	this	study	covered	the	field	with	one	

contamination	source,	the	field	with	multi-contamination	sources	can	be	

researched.	

(2) For	the	model	on	samples	of	opportunity,	more	details	need	to	be	considered,	

such	as,	weather	and	wind	strength,	the	height	of	the	power	line,	the	size	and	

mass	of	the	bird	drippings,	the	animal	species	in	the	animal	house.	The	

contamination	range	can	be	changed	due	to	the	above	factors.		

(3) Validation	studies	need	to	be	done	on	the	iterative	sampling.	The	BGO	

sampling	plan	need	to	be	applied	in	the	field	to	further	assess	the	feasibility	

and	efficacy.		
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