
TECHNICAL RESEARCH REPORT

Control of Small Formations Using Shape Coordinates

by Fumin Zhang, Michael Goldgeier, P.S. Krishnaprasad

CDCSS TR 2003-4
(ISR TR 2003-49)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site  http://www.isr.umd.edu/CDCSS/cdcss.html



Control of Small Formations Using Shape
Coordinates

Fumin Zhang, Michael Goldgeier and P. S. Krishnaprasad

Institute for Systems Research & Department of Electrical and Computer Engineering
University of Maryland at College Park

College Park, MD 20742
{fuminz, mbgold, krishna}@isr.umd.edu

Abstract— Formations that contain a small number of
robots are modeled as controlled Lagrangian systems on
Jacobi shape space. This allows a block-structured control of
position, orientation and shape of the formation. Feedback
control laws are derived using control Lyapunov functions.
The controlled dynamics converges to the invariant set where
desired shape is achieved. Controllers are implemented
in a layered fashion via the extended motion description
language(MDLe) system. Group MDLe plans are constructed
to allow structured controller design for formations.

I. INTRODUCTION

Robots in a formation can be viewed as physical objects
with the control effort viewed as interaction. Hence a robot
formation can be modeled as a controlled Lagrangian
system of particles. What are the interactions which allow
particles (robots) to form a meaningful (stable) formation
is the problem we want to investigate.

The shape of a formation is invariant under translation
and rotation. It is independent of the coordinate system
we choose to study the whole formation. Jacobi proposed
a special class of coordinates ([7], [2], [12]) which served
as the starting point to what we call the Jacobi shape
space. On this shape space, the global displacements (of
translation and rotation) are not present. This shape space
concept will be discussed in section II. It is important
to robot formation control since without knowing robot
coordinates in the laboratory-fixed coordinate system, only
shape variables can be measured using on-board sensors
of the robots. Ideally, the control laws to achieve desired
shape should only depend on shape measurements. How-
ever, as suggested by the form of the Lagrange equations
in section III, it is impossible to achieve completely
decoupled control of shape and orientation. In section
IV, we design shape controllers using control Lyapunov
functions. An estimate of the angular velocity of the
whole formation will greatly simplify the task. We are
able to control the formation to desired shape with fixed
orientation.

One can avoid implementing a formation controller on
each robot explicitly by conceptualizing a hierarchical
approach. The block-structured control law of section IV
permit such a view point. The control of overall position
and orientation can be viewed as group levelcommands.
This inspired us to add group features to an existing
unified platform called the extended motion description
language (MDLe). This work is presented in section V.

II. JACOBI SHAPE SPACE

To describe the motion of a cluster of particles, we set
up a fixed inertial coordinate frame first. Let qi ∈ R3,
i = 1,2, ...,N, denote the coordinates of N particles with
mass mi . The kinetic energy of this cluster is

Ktot =
1
2

N

∑
i=1

mi

∥
∥ q̇i

∥
∥2

(1)

This kinetic energy is translation invariant. Let M =
∑N

i=1 mi . Denote the center of mass as

qc =
∑N

i=1 miqi

M
(2)

Now one can define a new set of coordinates c f i as cf i =
qi −qc . Then the kinetic energy can be expressed as

Ktot =
1
2

M‖ q̇c‖2 +
1
2

N

∑
i=1

mi

∥∥
∥ ċf i

∥∥
∥

2
(3)

But since ∑N
i=1 micf i = 0, we seek (N − 1) indepen-

dent vectors (ρ f i , i = 1,2, ...,N − 1) from span(c f i , i =
1,2, ...,N). We want ρ f i to be chosen such that the kinetic
energy has the form

Ktot =
1
2

M‖ q̇c‖2 +
1
2

N−1

∑
i=1

∥
∥
∥ ρ̇ f i

∥
∥
∥

2
(4)

Such a set of ρ f i are called Jacobi coordinates. One way
of constructing Jacobi coordinates is to let

ρ f 1 =
√µ1(cf 2 −cf 1)

ρ f 2 =
√µ2(cf 3 −

m1cf 1 +m2cf 2

m1 +m2
)



...

ρ f i =
√µi(cf (i+1)−

∑i
k=1 mkcf k

∑i
k=1 mk

)

...

ρ f (N−1) =
√

µN−1(cf N − ∑N−1
k=1 mkcf k

∑N−1
k=1 mk

) (5)

where
1
µi

=
1

∑i
k=1 mk

+
1

mi+1
f or i = 1,2, ...,N−1 (6)

A proof for this well-known construction satisfying (4)
can be found in [22](see also discussion in [12]). As
one can see from these equations, the vectors ρ f i are
constructed by finding the scaled relative displacement
between the (i+1)th particle and the center of mass of the
sub-cluster of first i particles. This process depends on how
the particles are labeled. We can also change the way we
sub-cluster particles as in [2], [11] and [12]. Hence Jacobi
coordinates are not unique. However, between any two sets
of Jacobi coordinates there exists an element h∈O(N−1)
s.t

[ρ1
f 1,ρ1

f 2, ...,ρ1
f (N−1)] = [ρ2

f 1,ρ2
f 2, ...,ρ2

f (N−1)]h (7)

This orthogonal group O(N−1) is called the democracy
group [12].

Let Q = R3N be the total configuration space of the
formation. The space of Jacobi coordinates is R 3N−3. We
define

K =
1
2

N−1

∑
i=1

∥
∥
∥ ρ̇ f i

∥
∥
∥

2
(8)

This K is invariant under the diagonal left action on R 3N−3

by the special orthogonal group G = SO(3). The action is:

Φg(ρ f i) = gρ f i f or g∈ G (9)

This symmetry group G acts on R 3N−3 properly and
freely except for the shapes where all ρ f i are collinear.
We let the set F0 be the set of all the Jacobi coordinates
corresponding to collinear shapes. Let F = R 3N−3 −F0
and call it the Jacobi pre-shape space. It is an open
submanifold of the configuration space. Since G acts
properly and freely on F , the base space B = F/G is a
smooth manifold and the canonical projection π : F → B
is differentiable. B is called the Jacobi shape space.

In dropping from F to B, we get rid of the SO(3) sym-
metry from the Jacobi coordinates. After the reduction,
the dimension of the shape space B is (3N−6). On this
shape space we can define shape coordinates sj as

sj = sj (ρ f 1,ρ f 2, ...,ρ f (N−1)) f or j = 1,2, ...(3N−6) (10)

s.t.

sj(gρ f 1,gρ f 2, ...,gρ f (N−1)) = sj (ρ f 1,ρ f 2, ...,ρ f (N−1))
(11)

for all g∈ SO(3). Candidates for sj are functions of dot
products (ρ f i ·ρ f j) and triple products (ρ f i · (ρ f j ×ρ f k)).
Thus, mutual distances, mutual angles, areas and volumes
formed by the line segments connecting the particles all
serve as candidates for shape variables. There is a large
statistical literature on the subject of shape space and
shape coordinates([8] [9] [19]).

One can establish a body coordinate system on a
formation with certain shape. The reference orientation
of this formation can be defined as the orientation when
the body coordinate frame and the lab coordinate frame
coincide. Then the orientation of this formation with the
sameshape can be described by an element g ∈ SO(3).
The Jacobi coordinates in these two coordinate systems
have the following relationship:

ρ f i = gρi(s) (12)

where
s= (s1,s2, ...,s3N−6)T . (13)

ρi are Jacobi coordinates in the body coordinate frame
which only depend on shape coordinates.

Taking derivative on both sides of (12), we get

ρ̇ f i = ġρi +gρ̇i (14)

On a matrix Lie group G, ġ ∈ TgG. There exists Ω ∈ g
the Lie algebra s.t. ġ = gΩ . In our case, G = SO(3), so
g = (R3,×). Thus the derivative of ρ̇ f i is

ρ̇ f i = g(Ω×ρi +
3N−6

∑
j=1

∂ρi

∂sj ṡj ) (15)

In the body coordinate frame, the angular momentumof
the whole system J can be calculated as

J = g−1
N−1

∑
i=1

(ρ f i × ρ̇ f i)

= I(Ω+
3N−6

∑
i=1

Aj ṡ
j) (16)

where

I(s) =
N−1

∑
i=1

(
∥
∥ρi

∥
∥2 e−ρiρ

T
i ) (17)

is defined as the locked inertia tensorof the formation in
the body coordinate frame and

Aj(s) = I−1
N−1

∑
i=1

ρi ×
∂ρi

∂sj (18)

are vector potential functions. These quantities are defined
on the shape space because ρi only depend on shape
coordinates.

Let
A = [A1,A2, ...,A3N−6] (19)



Then we can rewrite the kinetic energy in block diagonal-
ized form as

Ktot =
1
2

M ‖ q̇c‖2 +
1
2
(Ω+Aṡ)TI(Ω+Aṡ)+

1
2

ṡTGṡ (20)

where

Gjk = −AT
j IAk +

N−1

∑
i=1

∂ρi

∂sj

∂ρi

∂sk (21)

In our paper in preparation [22], a geometrically in-
trinsic approach will be taken for the above construction
following the theory of block diagonalization as in [16],
[17], [18], [10], [21].

III. LAGRANGE EQUATIONS FOR FORMATIONS

By defining Jacobi vectors and then Jacobi shape vari-
ables we have gone through a sequence of changes of
coordinates on the configuration space Q. In the first step,
the transformation is a diffeomorphism between Q and
R3N mapping configuration variables qi to the position of
the center of mass qc and the Jacobi vectors ρ f i . In the
second step, the transformation is a local diffeomorphism
between R3 ×F and R3 ×G×B mapping (qc,ρ f i) where
i = 1,2, ...,(N−1) to (qc,g,sj) where j = 1,2, ...(3N−6)
s.t.

ρ f i = gρi(s
1,s2, ...s3N−6) (22)

The Lagrangian on TQ is given by L(q, q̇) = K tot(q̇)−
V(q) .

Before the coordinate transformation, K tot has the form
in equation (1). The Lagrange equations for the system
are:

mq̈i = ui −
∂V
∂qi

(23)

for i = 1,2, ...,N where ui are control forces.
After the block diagonalization, Ktot is given by equa-

tion (20), and one can rewrite the Lagrangian in block
diagonalized form using A and G as

L(qc,g,s, q̇c, ġ, ṡ) =
1
2

M‖ q̇c‖2 +
1
2
(Ω+Aṡ)TI(Ω+Aṡ)

+
1
2

ṡTGṡ−V(qc,g,s, q̇c) (24)

Now

∂L
∂ q̇c

= Mq̇c

∂L
∂ ġ

= gI(Ω+Aṡ)

∂L
∂ ṡ

= ATI(Ω+Aṡ)+Gṡ (25)

Then the set of Lagrange equations takes the form

Mq̈c = − ∂V
∂qc

+uc (26)

d
dt

(I(Ω+Aṡ)) = −Ω× I(Ω+Aṡ)−g−1 ∂V
∂g

+ug (27)

d
dt

(Gṡ) + AT d
dt

(I(Ω+Aṡ)) =
1
2
[
∂ I
∂s

]∗ : (Ω+Aṡ,Ω+Aṡ)

+
1
2
[
∂G
∂s

]∗(ṡ, ṡ)− ∂V
∂s

+us (28)

In these equations, [ ∂ I
∂s] and [ ∂G

∂s ] are three-tensors obtained
by taking the Frechet derivatives of the matrix I ,G with
respect to vector s. [ ∂ I

∂s]
∗ and [ ∂G

∂s ]∗ are the cyclic transpose
of these three tensors c.f. [20] and [1].

The relationship between the control forces ui and
(uc,ug,us), comes from a well known fact for controlled
Lagrangian system. If the coordinate transformation r =
r(q) is a local diffeomorphism, then

ur = (
∂ rT

∂q
)−1uq . (29)

Therefore, from equation (5), we can calculate
the relations between (u1,u2, ...,ui , ...,un) and
(uc,uf 1, ...,uf i ...,uf (N−1)) as:

ui =
mi

M
uc +

√µiuf i −mi

N−1

∑
j=i+1

uf j

m1 +m2 + · · ·+mj
. (30)

for i = 1,2, ...,(N− 1). Then by using the same method,
ug and us can be solved from

ug =
N−1

∑
j=1

ρ j ×g−1uf j

usk =
N−1

∑
j=1

(
∂ρ j

∂sk
)Tg−1uf j . (31)

where k = 1,2, ...,(3N−6).

IV. FEEDBACK CONTROL USING SHAPE

MEASUREMENTS

Suppose the potential function V is invariant under
translation and rotation i.e. V is only a function of the
shape variables. Then in the system equations (26), (27)
and (28), the equation for qc is decoupled from the other
two. Then we can define a function on the tangent bundle
of the pre-shape space as

VL =
1
2

∥
∥s−s0

∥
∥2

+
1
2
(Ω+Aṡ)T I(Ω+Aṡ)+

1
2

ṡTGṡ (32)

where s0 specifies a desired shape. The derivative of this
function along the reduced dynamics (27) and (28) is

V̇L = < (s−s0), ṡ> + < Ω,ug > + < ṡ,us− ∂V
∂s

>

= < ṡ,us− ∂V
∂s

+(s−s0) > + < Ω,ug > (33)



where we use < , > to denote the inner product. Hence
by letting the control law be

ug = −k1Ω

us =
∂V
∂s

− (s−s0)− ṡ (34)

where k1 > 0, we have

V̇L = −‖ ṡ‖2 −k1‖Ω‖2 ≤ 0 (35)

We know that on the tangent bundle TF of Jacobi pre-
shape space F , VL is radially unbounded. So we can apply
LaSalle’s invariance principle to argue that the controlled
dynamics converge to the maximal invariant set C2 within
the set M2 where V̇L = 0. Hence

M2 = {(g,s,Ω, ṡ) ∈ TF|Ω = 0, ṡ= 0} (36)

and
C2 = {(g,s,Ω, ṡ) ∈ M2|Ω̇ = 0, s̈= 0} (37)

In the system equations (27) and (28), letting Ω = 0 and
ṡ= 0, we have

IΩ̇ = ug = 0

Gs̈+ IΩ̇ = us− ∂V
∂s

= 0 (38)

Thus on the set C2, in order for Ω̇ = 0 and s̈ = 0, we
must have s−s0 = 0 . Thus we have proved the following
theorem

Theorem 4.1:Suppose the potential V is rigid motion
invariant. By using the feedback control law (34), the
Jacobi shape s0 is locally asymptotically stablized.

However, by letting ug = −k1Ω we already made the
assumption that Ω can be measured. In fact, Ω need not
to be measured accurately. All we need is an estimate of
the direction of Ω which will ensure ‖Ω‖ be decreasing.
This estimate can not be obtained by only measuring s
and ṡ. Some extra sensors need to be employed which
will observe the relative movements of fixed landmarks
with respect to the formation.

V. GROUP MDLE

Motion description language (MDL) was first developed
as a setting for robot programming in [4],[3],[5]. In the
enhanced form MDLe, it provided a formal basis for
robot programming using behaviors and at the same time
permitted incorporation of kinematic and dynamic models
of robots in the form of differential equations. In the work
of Manikonda, Krishnaprasad and Hendler ([14],[13]), the
idea of introducing sensor-triggered interrupts as elements
of an enhanced MDL was introduced. In the paper [15], a
comprehensive overview of these developments on MDLe
is given. A recent implementation of MDLe is described
in [6].

In MDLe, the physical system is modeled as a so-called
kinetic state machine. As defined in [15], a kinetic state
machine is governed by a differential equation of the form:

ẋ = f (x)+G(x)U ; y = h(x) ∈ R p (39)

where x(·) : R+ → Rn, U(·) : R+ ×Rn → Rm is a time
dependent control law and G is a matrix whose columns
gi are vector fields in Rn. The smallest building block
of MDLe is called an atom. An atom is a triple of the
form σ = (U,ξ ,T), where U is the control defined before,
ξ : R p →{0,1} is a boolean interrupt function defined on
the space of outputs from p sensors, and T ∈R + denotes
the time (measured from the instance an atom is activated)
at which the atom will “time out”. To evaluate the atom
σ means to apply the input U to the kinetic state machine
until the interrupt function ξ is triggered or until T units
of time elapse, whichever occurs first. We note that T
is allowed to be ∞. The input u could be an open loop
command or could be given by a feedback law of the type
u= u(t,x). In our implementation, atoms can be assembled
using quarks. A quark is a piece of code which is reusable
by different atoms. For instance,

(Atom (bumper) (go30 30))

defines an atom to drive a robot forward at speed 30 until
it bumps into an obstacle. This will trigger the bumper
sensors to interrupt the atom. Here, “bumper” and “go”
are quarks which can be shared by other atoms.

To implement the formation control law, we define a
new concept called the group kinetic state machineby
modifying the form of equation (39) as

ẋi = fi(xi)+Gfi(xi)Uf i +Ggi(x1,x2, ...,xN)Ug;
yi = h(xi) ∈ R p (40)

where the index i denotes the i th robot. Uf i represents the
control laws that will achieve the formation stablization or
bring about changes in shape and size of the formation.
Ug represents the group level control which will treat the
whole group as one robot. As is obvious, we separated
controls achieving formations from controls that treat the
formation as a unity. With respect to this separation, we
define a group atom to be the triple (Ug,ξg,T) where ξg

is defined as the group level interrupt which depends on
the sensor information of all the robots. A shadow atomis
a modification of a group atom. It is defined as (Ui ,ξi ,T)
where

Ui = Uf i +ηi ; Gfi(xi)ηi = Ggi(x1,x2, ...,xN)Ug (41)

and ξ i is a function of (yi ,ξg). This will result in

ẋi = fi(xi)+Gfi(xi)Ui ; yi = h(xi) ∈ R p (42)

which agree with the kinetic state machine representation
of a single robot. The mapping from group atoms to



shadow atoms will allow formation keeping controllers to
take effect. Mappings can be written a priori by designing
proper quarks. Thus all shadow atoms can share a small
set of mapping quarks. For instance,

(GroupAtom(Bumper) (go30 30))

is a group atom which will drive a group of robots forward
until any of them bumps into an obstacle. In order to keep
all the robots in formation, assume one of the robots is
lagging behind its nominal position, the shadow atom on
this robot might be

(Atom (Bumper) (go31 31))

where the number “31” is obtained by a mapping quark
where formation control is implemented.

A set of atoms can be composed into a string with its
own interrupt function and timer. Such strings are called
behaviors. Behaviors themselves can be used to form
higher-level structures (partial plans) which in turn can be
nested into plans. MDLe allows for arbitrarily many levels
of nested atoms, behaviors and plans. The behaviors and
plans consisting purely of group atoms are called group
behaviors and group plans. Group plans are shared by
all the robots in a formation.

To illustrate the usage of MDLe for formation control,
we show an MDLe script that will command a group
of two mobile robots to wander around without hitting
obstacles while keeping their initial relative positions.
main = (ExecPlan 1 (nop)
robotOn
(GroupConnect 2 12346 12356 sulu:12345 sulu:12355)
(GroupPlan -1 (or (not (areclientsconnected 1)) (bumper))
(GroupAtom frontObstacle (go 30 30))
(GroupAtom (GroupClear 20 15 10) (go -50 50)))
robotOff);

Here, “robotOn” and “robotOff” are quarks that
will turn on and off the robot. “GroupConnect” is a quark
which will terminate after it connects to every other robot
in the group. Its arguments include the ports this robot
should listen on for connections and the addresses of the
robots it will connect to. The “2” is the number of robots
in the group and “sulu” is the name of the other robot.
Note that in this example, we are using TCP/IP sockets
for inter-robot communications.

The group plan specifies a plan level interrupt that will
stop the entire plan from executing if either the bumper
is hit, or if one of the robots that is supposed to be in
the group gets disconnected. The parameter “-1” indicates
that this plan will run forever unless interrupted. It will
run each of the two group atoms, one after the other . The
first atom moves straight ahead until the front is not clear,
i.e. obstacles are detected. The next one turns the robot
until the front is clear, i.e. obstacles are avoided.

Experiments are done using a pair of Hilare-type mobile
robots to show that the mapping from group atoms to
shadow atoms is necessary. In the first experiments, the
two robots will run the sample script without mapping
the group atoms into shadow atoms. The result is shown
in Figure (1). In this figure, the thick lines indicate the
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Fig. 1. Executing the Group Plan without Formation Control

ground trajectories of the two robots. The dashed lines
connected the two robots at specific time to show their
formation. Positions A, B, C indicates where one of the
robot detects obstacles. We can see that the robots failed
to keep in the starting formation after a short while. We
find that the main reason for this is that by using TCP/IP
sockets there is a delay of on average about 200ms. In the
second experiment, the mappings are added. A simple PI
controller is implemented within the mapping process.
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Fig. 2. Executing the Closed Group Plan with PI Controllers

As one can see in Figure (2), the controllers have caused
the robots to no longer track straight lines. The formation
is successfully kept. However, the performance is limited.
Also at position E,F and G one can observe errors caused
by communication delays.



VI. SUMMARY

In this paper we have outlined an approach to the
problem of formation shape control using the theory of
Jacobi coordinates and associated block-diagonalization of
the Lagrangian dynamics of a system of robots modeled
as point masses. A feedback law for locally stabilizing
a shape of interest is given. The approach also permits
overall advection of the formation in the Euclidean group.
Details of this as well as an intrinsic geometric treatment
of our ideas will appear in a work in preparation. We
have also investigated the problem of devising formation
controllers for mobile robots in software. Proceeding
from a motion description language framework, we have
shown how certain specific constructs in the language
MDLe that support group behavior together with certain
communication primitives that support effective sharing
of sensor data enable stable coordination of a set of
robots. These experimental results are preliminary and
work is under way to devise light-weight protocols for
robot communication that reduce the effects of latency in
the feedback loop.
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