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Face recognition is one of the active areas of research in computer vision and

biometrics. Many approaches have been proposed in the literature that demon-

strate impressive performance, especially those based on deep learning. However,

unconstrained face recognition with large pose, illumination, occlusion and other

variations is still an unsolved problem. Unconstrained video-based face recognition

is even more challenging due to the large volume of data to be processed, lack of la-

beled training data and significant intra/inter-video variations on scene, blur, video

quality, etc. Although Deep Convolutional Neural Networks (DCNNs) have pro-

vided discriminant representations for faces and achieved performance surpassing

humans in controlled scenarios, modifications are necessary for face recognition in

unconstrained conditions. In this dissertation, we propose several methods that im-

prove unconstrained face recognition performance by augmenting the representation

provided by the deep networks using correlation or contextual information in the

data.



For unconstrained still face recognition, we present an encoding approach to

combine the Fisher vector (FV) encoding and DCNN representations, which is called

FV-DCNN. The feature maps from the last convolutional layer in the deep network

are encoded by FV into a robust representation, which utilizes the correlation be-

tween facial parts within each face. A VLAD-based encoding method called VLAD-

DCNN is also proposed as an extension. Extensive evaluations on three challenging

face recognition datasets show that the proposed FV-DCNN and VLAD-DCNN per-

form comparable to or better than many state-of-the-art face verification methods.

For the more challenging video-based face recognition task, we first propose an

automatic system and model the video-to-video similarity as subspace-to-subspace

similarity, where the subspaces characterize the correlation between deep repre-

sentations of faces in videos. In the system, a quality-aware subspace-to-subspace

similarity is introduced, where subspaces are learned using quality-aware principal

component analysis. Subspaces along with quality-aware exemplars of templates

are used to produce the similarity scores between video pairs by a quality-aware

principal angle-based subspace-to-subspace similarity metric. The method is eval-

uated on four video datasets. The experimental results demonstrate the superior

performance of the proposed method.

To utilize the temporal information in videos, a hybrid dictionary learning

method is also proposed for video-based face recognition. The proposed unsuper-

vised approach effectively models the temporal correlation between deep representa-

tions of video faces using dynamical dictionaries. A practical iterative optimization

algorithm is introduced to learn the dynamical dictionary. Experiments on three



video-based face recognition datasets demonstrate that the proposed method can

effectively learn robust and discriminative representation for videos and improve

the face recognition performance.

Finally, to leverage contextual information in videos, we present the Uncertainty-

Gated Graph (UGG) for unconstrained video-based face recognition. It utilizes con-

textual information between faces by conducting graph-based identity propagation

between sample tracklets, where identity information are initialized by the deep

representations of video faces. UGG explicitly models the uncertainty of the con-

textual connections between tracklets by adaptively updating the weights of the

edge gates according to the identity distributions of the nodes during inference.

UGG is a generic graphical model that can be applied at only inference time or with

end-to-end training. We demonstrate the effectiveness of UGG with state-of-the-art

results on the recently released challenging Cast Search in Movies and IARPA Janus

Surveillance Video Benchmark datasets.
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Chapter 1: Introduction

1.1 Motivation

Face recognition is one of the most actively studied problems in computer

vision and biometrics. It has a wide range of applications including visual surveil-

lance, access control, etc. Basically, face recognition can be categorized into two

tasks: face identification which matches a given face query to one of the identities in

a pre-enrolled face gallery, and face verification focusing on deciding whether a pair

of face queries belongs to the same identity. For both tasks, it is crucial to learn

robust and discriminative representations for faces.

Recently, with the availability of powerful GPUs and large amounts of labeled

training data, deep convolutional neural networks (DCNNs) have demonstrated

impressive performances on many computer vision tasks such as object recogni-

tion [40, 57, 100], object detection [39, 83], face detection [68, 82] and semantic seg-

mentation [18]. It has been shown that a DCNN model can not only characterize

large data variations but also learn a compact and discriminative representation

when the size of the training data is sufficiently large. As a result, DCNNs have also

produced state-of-the-art results for face recognition as reported in [14,72,79,89,102].

However, the unconstrained face recognition problem with large pose, illumina-
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tion, occlusion and other variations is still unsolved. Compared to still image-based

face recognition, video-based face recognition is more challenging due to a much

larger amount of data to be processed and significant intra/inter-class variations

caused by motion blur, low video quality, occlusion, frequent scene changes, and

unconstrained acquisition conditions.

Popular off-the-shelf DCNNs have provided discriminant representation for

faces and overcome illumination and small pose variation already. But their per-

formance on faces captured in unconstrained conditions or in videos is far from

satisfying. To fill the performance gap between face recognition in controlled still-

faces and unconstrained/video faces, training a specific model needs large amount

of annotated data in similar domains which is very difficult and costly to collect.

In this dissertation, we focus on the theme of “augmented deep representa-

tions”. We propose four examples of augmented deep representations in the follow-

ing chapters. In order to produce more efficient and discriminative representations

for face recognition, these methods augment deep representations extracted from

the well-studied deep learning-based still face recognition approaches by utilizing

additional information in the data.

1.2 Overview

In Chapter 2, we propose two augmentation methods of DCNN features, FV-

DCNN and VLAD-DCNN, to handle large pose variations in unconstrained face

recognition by encoding the spatially distributed deep representations from the last
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convolutional layer and leveraging the spatial information in face images. For the

challenging video-base face recognition problem, in Chapter 3 we build subspaces to

leverage the correlation between deep representations of faces in the same set. It acts

as an important component of the proposed automatic video-based face recognition

system. Continuing on this topic, we exploit the temporal information in video faces

by learning linear dynamical dictionaries from deep representations in Chapter 4.

To utilize contextual information in videos, in Chapter 5, we further propose a

graphical-model-based framework called Uncertainty-Gated Graph (UGG) for video-

based face recognition to model the contextual connections between face tracklets.

Identity information from deep representations is propagated in the adaptive graph

built for each video. Finally, in Chapter 6, we conclude the dissertation and discuss

possible future directions.

In the following sections of this chapter, we will introduce the proposed meth-

ods with more details.

1.3 Spatial Encoding of Deep Convolutional Features for Uncon-

strained Face Recognition

As discussed previously, the unconstrained still face recognition problem with

large pose, illumination, occlusion and other variations is an unsolved problem. In

still faces, discriminant facial landmarks like eyes, nose, mouth, ears are distributed

at different spatial locations. Local features extracted around these landmarks only

capture partial information from the face and need to be encoded into a more robust
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representation. When the alignment of faces is poor due to extreme poses, there will

be large spatial variations of these landmarks. DCNNs usually do not account for

these spatial variations explicitly. As the last convolutional layer in many popular

DCNN models is often followed by a simple average pooling layer so the spatial

information is lost.

In computer vision, many methods have been proposed to extract local spatial

features from images and encode them into high-dimensional features to handle large

data variations and noise. Several approaches have combined feature encoding with

deep learning and successfully improved performance. Gong et al. [37] extracted the

multi-scale deep features followed by VLAD encoding [48] for feature encoding and

demonstrated promising results for image retrieval and classification tasks. Cimpoi

et al. [22] proposed a FV-DCNN approach to combine Fisher Vector (FV) [75] with

DCNN features for texture recognition.

Motivated by the success of feature encoding and deep learning for various

computer vision problems, in Chapter 2, we propose two augmentation methods

which essentially leverage the spatial information on faces by combining feature

encoding with DCNN representations for face recognition. We adopt a network

architecture similar to the one proposed in [121] and encode FV-DCNN/VLAD-

DCNN representations using the feature maps from the last convolutional layer

of the network. The spatial information in the feature maps ignored by average

pooling is incorporated by adding two additional spatial coordinate dimensions into

the features for FV/VLAD encoding.

We evaluate FV-DCNN on two face verification datasets: Celebrities in Frontal-
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Profile (CFP) dataset [90] and Labeled Face in the Wild (LFW) dataset [45]. We also

evaluate the performance of VLAD-DCNN on two unconstrained face recognition

datasets: IARPA Janus Benchmark A (IJB-A) [55] and its extension JANUS Chal-

lenge Set 2 (JANUS CS2). Extensive evaluations show that the proposed FV-DCNN

and VLAD-DCNN perform comparable to or better than many state-of-the-art face

recognition methods. Experiments also show that VLAD-DCNN works better than

FV-DCNN because of the noisy second order statistics of DCNN features.

1.4 Quality-Aware Subspace Learning and Matching for Video-based

Face Recognition

Next, we address the more challenging video-based face recognition problem.

In video-based face recognition, the first challenge is that face representations must

be robust to large within-subject variations in videos. The second challenge is how

to efficiently aggregate a varying-length set of features into a fixed-size and unified

representation, since each video contains different number of faces for each subject.

Since in videos, faces from the same subject are usually associated into a set by

face association, there is correlation between faces in the same set and this informa-

tion can be leveraged to improve the face recognition performance. Representative

and discriminative models based on manifolds and subspaces have received atten-

tion for image set-based face recognition [109] [107]. These methods model sets of

face features as manifolds or subspaces and use appropriate similarity metric for

set-based identification and verification, without any external training data.
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Following this direction, we propose an automatic system for unconstrained

video-based face recognition in Chapter 3. The system first detects faces and facial

landmarks. Then deep representations from detected faces are extracted using state-

of-the-art DCNNs. Target faces from single-shot/multiple-shot videos are associated

by tracking and association methods. Finally, we learn a subspace representation

from each video template and match pairs of templates using principal angles-based

subspace-to-subspace similarity metric on the subspace representations. Advantages

of subspace-based methods include: 1) the subspace representation encodes the

correlation between samples. Exploiting correlation between samples by subspaces

help learn a more robust representation to capture variations in videos. 2) a fixed-

size representation can be learned from an arbitrary number of video frames.

We evaluate our face recognition system on the challenging IARPA Bench-

mark B (IJB-B) [112] and IARPA Janus Surveillance Video Benchmark (IJB-S) [52]

datasets, as well as the Multiple Biometric Grand Challenge (MBGC) [67] dataset

and the Face and Ocular Challenge Series (FOCS) [69] dataset, and the results

demonstrate that the proposed system achieves improved performance over other

deep learning-based baselines and state-of-the-art approaches.

1.5 Hybrid Dictionary Learning and Matching for Video-based Face

Verification

In the video-based face recognition method discussed above, we model the

faces from each subject in a video as a set without temporal order. Sometimes faces
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in videos are tracked into sequences by face trackers. So there is temporal correlation

between faces from adjacent frames and we can exploit this temporal information

for more robust face representations. For feature aggregation in sequential data,

temporal deep learning models such as Recurrent Neural Network (RNN) can be

applied. However, training these models needs large-scale labeled training data

which is very expensive to collect in the context of video-based recognition. Linear

Dynamical Systems (LDSs) play an important role in representing sequential data.

A wide variety of spatio-temporal signals has been modeled as realizations of LDSs

[101]. On the other hand, dictionary learning methods model the data generatively

without pretraining on external data, which is an advantage compared with other

RNN-based approaches. Traditional dictionary learning methods are specifically

designed for still images. But the idea can be easily incorporated into an LDS

model as well.

Therefore, by combining deep learning, sparse representations and LDS mod-

els, in Chapter 4 we propose a hybrid dictionary learning and matching approach for

unconstrained video-based face verification, in order to utilize the temporal infor-

mation in the videos. The proposed method learns both structural and dynamical

dictionaries from videos, where dynamical dictionaries and LDSs are jointly learned

using the proposed Linear Dynamical Dictionary Learning (LDDL) algorithm. With

the learned dictionaries, the similarity between videos is measured by subspace-to-

subspace similarity, where the subspaces are spanned by the dictionaries and encode

the correlation of the deep features in videos.

Experiments on three video-based face recognition datasets: Multiple Bio-
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metric Grand Challenge (MBGC), Face and Ocular Challenge Series (FOCS) and

IARPA Janus Benchmark A (IJB-A) [55] demonstrate that the proposed method

can effectively learn robust and discriminative representation for videos and improve

the face recognition performance.

1.6 Modeling Contextual Information by Graphical-Models for Video-

based Face Recognition

For video-based face recognition, improving the recognition performance on

faces with extreme variations is always challenging. An effective idea is to utilize

some video contextual information, such as body appearance and spatial-temporal

correlation between person instances, to propagate the identity information from

high-quality faces to low-quality ones. It has been explored using graph-based ap-

proaches [30,46,92] in which graphs are constructed with nodes to represent one or

more frames (tracklets) of faces and edges to connect tracklets. However, misleading

connections in the graph may propagate erroneous information.

To address the problem, in Chapter 5 we propose a conditional random field-

based framework called Uncertainty-Gated Graph (UGG) to built more reliable

connections using contextual information. In UGG, the identity information of

tracklets from their deep representations is propagated through the connections,

that are adaptively updated by the connected tracklets. We model two types of

contextual connections separately, which allows our model to consider different con-

textual information in challenging conditions, and leads to improved performance.
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The proposed method is evaluated on two challenging datasets, the Cast Search

in Movies (CSM) dataset [46] and the IARPA Janus Surveillance Video Benchmark

(IJB-S) dataset with superior performance compared to existing methods.

1.7 Contributions

• In Chapter 2, we propose two approaches that combine spatial feature encoding

and DCNN representation for unconstrained face recognition.

– We propose FV-DCNN which encodes the spatially augmented feature

map from the last convolutional layer of a DCNN model by Fisher vector.

– We propose VLAD-DCNN which encodes the spatially augmented feature

map by VLAD encoding, as an extension of FV-DCNN.

– We evaluate FV-DCNN with VLAD-DCNN on several benchmark face

datasets and show that for unconstrained face recognition, VLAD-DCNN

works better than FV-DCNN because of the noisy second order statistics

of DCNN features.

• In Chapter 3, we propose an automatic video-based face recognition system

with components including face/fiducial detection, face association, and face

recognition.

– To exploit the correlation in face sets, we propose a quality-aware sub-

space learning approach for face feature aggregation.

– We compute the video set-to-set similarity using a subspace-based simi-
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larity metric for video-based face recognition. A variance-aware subspace-

to-subspace similarity metric is also proposed.

• In Chapter 4, we propose a hybrid dictionary learning and matching approach

for video-based face verification.

– We model the temporal correlation between DCNN features in videos

using dynamical dictionaries.

– A practical iterative optimization algorithm, Linear Dynamical Dictio-

nary Learning (LDDL), is proposed to learn the dynamical dictionary.

– We compute the video-to-video similarity by subspace-to-subspace sim-

ilarity where the subspaces are spanned by the learned structural and

dynamical dictionaries.

• In Chapter 5, we propose the UGG model to leverage contextual information

in videos for video-based face recognition.

– We explicitly model the uncertainty of connections between tracklets us-

ing uncertainty gates over graph edges.

– The tracklets and gates in the graph are updated jointly and possible

connection errors can be corrected during inference.

– We utilize both positive and negative connections for information prop-

agation.

– The proposed method is efficient and flexible. It can either be used at

inference time without supervision, or be considered as a trainable module
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for supervised and semi-supervised training.

– We achieve state-of-the-art results on two challenging datasets, the CSM

dataset and the IJB-S dataset.
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Chapter 2: Fisher Vector/VLAD Encoded Deep Convolutional Fea-

tures for Unconstrained Face Recognition

2.1 Introduction

Learning invariant and discriminative features from images and videos is one

of the central goals of research in many computer vision tasks such as object recog-

nition and face recognition. Many approaches have been proposed in the literature

that extract over-complete and high-dimensional features from images to handle

large data variations and noise. For instance, the high-dimensional multi-scale Lo-

cal Binary Pattern (LBP) [12] representation extracted from local patches around

facial landmarks is reasonably effective for face recognition. Face representations

based on Fisher vector (FV) have also shown to be effective for face recognition

problems [16, 71, 94]. Other feature encoding methods that have been success-

fully used in computer vision applications include Bag-of-Visual-Words (BoVW)

model [24], Vector of Locally Aggregated Descriptor (VLAD) [48] and Super Vector

Coding [131].

In the era of deep learning, many approaches have combined deep learning with

other feature encoding methods to further improve performance. Gong et al. [37]
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extracted multi-scale deep features followed by VLAD for feature encoding and

demonstrated promising results for image retrieval and classification tasks. Cimpoi

et al. [22] proposed a FV-DCNN approach to combine FV with DCNN features for

texture recognition.

Motivated by the success of combining feature encoding and deep learning in

various computer vision problems, we propose two face recognition methods which

essentially apply feature encoding method on DCNN representations to leverage the

spatial information for face recognition. An overview of the proposed FV-DCNN

and VLAD-DCNN methods for face recognition is shown in Figures 2.1 and 2.2

respectively. We adopt a network architecture similar to the one proposed in [121]

that has demonstrated good performance for face recognition. The DCNN model

builds a 15-layer deep architecture for convolutional neural network by stacking small

filters (i.e. 3×3) together as VGGNet [95] and is trained using the CASIA-WebFace

dataset [121] of 10,548 subjects. FV-DCNN/VLAD-DCNN features are encoded by

the feature maps coming out of the last convolutional layer of the network. These

feature maps contain spatial information ignored by average pooling. Unlike some

of the previous approaches [22] and [37], the spatial information is also encoded

by adding two spatial coordinate dimensions into the features. In our method, we

also use the average pooling features from the last convolutional layer and output

features from the fully-connected layer. Discriminative metrics learned from the

training set are applied on these features to compute similarities between feature

pairs.
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Figure 2.1: An overview of the proposed FV-DCNN representation for unconstrained face

recognition.

2.2 Method

The system pipelines for FV-DCNN and VLAD-DCNN are very similar. In

the training phase, each training image is first passed through a pre-trained DCNN

model to extract the convolutional features conv from the last convolutional layer,

the average pooled features pool from the last convolutional layer and the output

features fc of the fully-connected layer. We learn the Gaussian mixture model

over conv for FV-DCNN. The K-means clustering algorithm is applied on them

for VLAD-DCNN. We then perform the corresponding feature encoding over these

local deep features to generate the encoded representations conv fv and conv vlad.

Finally, we learn the metric from these features.

In the testing phase, we extract the DCNN features conv, pool and fc and

use the learned GMM/K-means to perform the corresponding feature encoding. We
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Figure 2.2: An overview of the proposed VLAD-DCNN framework to combine the global

average pooling, fully-connected layer features and VLAD features for unconstrained face

recognition.

then apply the learned metric to compute the similarity scores. We describe the

details of each of these components in the following sections.

2.2.1 Deep Face Representation

The DCNN model proposed in [14] is used for FV-DCNN. VLAD-DCNN fur-

ther exploits an improved version with 15 convolutional layers, 5 pooling layers and

2 fully connected layers as shown in Table 2.1. Both models are trained using the

CASIA-WebFace dataset [121] with cross-entropy loss. We use the parametric ReLU

(PReLU) [41] as the nonlinear activation function. The network input is 100×100×1

gray-scale image for FV-DCNN and 100× 100× 3 RGB image for VLAD-DCNN.

We use the output of conv52/conv53 layer as the conv features for FV-DCNN

and VLAD-DCNN respectively. The pool features are the output of pool5 layer and

the fc features are the output of fc6 layer.
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Name Type Filter Size/Ouput/Stride #Params

Conv11 convolution 3×3 / 32 / 1 0.28K

Conv12 convolution 3×3 / 64 / 1 18K

Conv13 convolution 3×3 / 64 / 1 36K

Pool1 max pooling 2×2 / 2

Conv21 convolution 3×3 / 64 / 1 36K

Conv22 convolution 3×3 / 128 / 1 72K

Conv23 convolution 3×3 / 128 / 1 144K

Pool2 max pooling 2×2 / 2

Conv31 convolution 3×3 / 96 / 1 108K

Conv32 convolution 3×3 / 192 / 1 162K

Conv33 convolution 3×3 / 192 / 1 324K

Pool3 max pooling 2×2 / 2

Conv41 convolution 3×3 / 128 / 1 216K

Conv42 convolution 3×3 / 256 / 1 288K

Conv43 convolution 3×3 / 256 / 1 576K

Pool4 max pooling 2×2 / 2

Conv51 convolution 3×3 / 160 / 1 360K

Conv52 convolution 3×3 / 320 / 1 450K

Conv53 convolution 3×3 / 320 / 1 900K

Pool5 avg pooling 7×7 / 1

Dropout dropout (40%)

Fc6 fully connection 10548 3305K

Cost softmax

total 6995K

Table 2.1: The architecture of DCNN model for VLAD-DCNN.
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2.2.2 Feature Encoding

Since the pool features are the average of the conv features from the last

convolutional layer, they capture global discriminative information with less noise

due to the average pooling operation. Each entry of the fc features shows how

the input image looks like the corresponding person in the external training set.

Different positions in conv feature maps correspond to different parts of the face.

Even though the receptive fields of high level convolutional layers are largely over-

lapped, especially for deep networks, spatial information is still preserved in conv

feature maps. Therefore, we use two feature encoding methods to incorporate this

important information from a feature map into a more discriminative feature.

2.2.2.1 Fisher Vector Encoding

The Fisher Vector is a bag-of-visual-word approach which encodes a large set of

local features into a high-dimensional vector according to the parametric generative

model fitted for the features. The FV representation is computed by encoding the

local features with the derivatives of the log-likelihood of the learned model with

respect to model parameters. Similar to [75], we use a GMM in our work. The

first-and second-order statistics of the features with respect to each component for
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the FV representation are computed as follows:

Φ
(1)
ik =

1

N
√
wk

N∑
p=1

αk(vp)

(
vip − µik

σik

)
, (2.1)
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σ2
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)
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αk(vp) =
wk exp[−1

2
(vp − µk)

TΣ−1k (vp − µk)]∑K
i wi exp[−1

2
(vp − µi)TΣ−1i (vp − µi)]

, (2.3)

where wk, µk, Σk = diag(σ1k, ...,σdk) are the weights, means, and diagonal covari-

ances of the kth mixture component of the GMM. Here, vp ∈ Rd×1 is the pth feature

vector and N is the number of feature vectors. These parameters are learned from

the training data using the EM algorithm. αk(vp) is the posterior of vp belonging to

the kth mixture component. The FV representation Φ(I) of an image I is obtained

by concatenating all the Φ
(1)
k s and Φ

(2)
k s into a high-dimensional vector as

Φ(I) =

[
(Φ

(1)
1 )T , (Φ

(2)
1 )T , . . . , (Φ

(1)
K )T , (Φ

(2)
K )T

]T
(2.4)

whose dimensionality is D = 2Kd where K is the number of mixture components,

and d is the dimensionality of the local feature vector where we use d = 322 in this

work.

2.2.2.2 VLAD Encoding

VLAD is a feature encoding method introduced in [49]. It encodes a set of

local features into a high-dimensional vector using the clustering centers provided

by methods like the K-means algorithm. For the kth cluster center µk, the corre-
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sponding VLAD feature is calculated as the sum of the residuals as

vk =
N∑
i=1

αik(xi − µk) (2.5)

where {xi} is the set of local features from an image I, αik is the association of data

xi to µk with αik ≥ 0 and
∑K

k=1 αik = 1. For hard association, we simply find the

nearest neighbor of xi among centers {µk}. As a result,

αik =


1 if ‖xi − µk‖2 ≤ ‖xi − µl‖2 ∀ l 6= k

0 otherwise.

(2.6)

Then, the overall VLAD feature Φ(I) for image I is stacked by the residuals for

each center as

Φ(I) =

[
vT1 , . . . ,v

T
K

]T
. (2.7)

VLAD encoding only involves the K-means clustering procedure and a nearest

neighbor procedure (for hard assignment) to a cluster which can be done efficiently

using a k-d tree. After finding the nearest neighbor for each feature, the encoding

step is simply a summation of the feature residues.

2.2.2.3 Spatial Augmentation and Spatial Encoding

As shown in [94], spatially encoded local features are useful for face recognition.

Thus, for both FV-DCNN and VLAD-DCNN, we augment the original conv features

with the normalized x and y coordinates as

[
fTxy, x/w − 0.5, y/h− 0.5

]T
, where fxy

is the DCNN descriptor at (x, y), and w and h are the width and height of the conv

feature map, respectively. By adding the two augmented dimensions, the clustering
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method will not only cluster the training features in the feature space, but also

consider their spatial relationships. The features that are closer in spatial domain

will be more likely to be clustered together. Features that are far away will be more

likely to be assigned to different clusters.

To balance the strength of appearance and spatial features, we take the square

root and perform L2 normalization on appearance features before augmenting spatial

features. Moreover, we introduce an encoding scheme for FV-DCNN called “spatial

encoding”. Instead of using the original posterior (2.3), by spatial encoding, we

enforce the feature to be encoded by its neighborhood, which is defined as

α̃k(vp) =
wkexp[1

2
(ṽp − µ̃k)

T Σ̃−1(ṽp − µ̃k)]∑K
i wiexp[1

2
(ṽp − µ̃i)T Σ̃−1(ṽp − µ̃i)]

, (2.8)

where µ̃k and Σ̃k are the mean and covariance of the two-dimensional spatial fea-

tures for the kth Gaussian. The new posterior only considers the spatial distance

between Gaussians and dense features, instead of the distance calculated among all

dimensions. Spatial encoding improves the performance with well aligned images

and reliable spatial information.

2.2.3 Metric Learning

After obtaining the encoded features, it is important to learn a similarity met-

ric that is as discriminative as possible. There are many metric learning approaches

in the literature [9,11,63,86,87]. In this work, we mainly focus on learning two kinds

of metrics based on triplet distance embedding method and the Joint Bayesian (JB)

method.
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2.2.3.1 Triplit Distance Embedding

The triplet distance embedding has been widely used in the literature for

different applications [87]. This embedding is obtained by solving the following

optimization problem

argmin
W

∑
xa,xp,xn∈T

max{0, α + (xa − xp)
TWTW(xa − xp)− (xa − xn)TWTW(xa − xn)},

(2.9)

where xa, xp and xn are the anchor feature, positive feature and negative feature in

the training triplet set T, respectively. The goal of this embedding is to maximize

the gap of the Euclidean distance between the positive and negative pairs with the

same anchor in a triplet in the embedded space. The optimization problem can be

solved using the Stochastic Gradient Descent (SGD) method and the corresponding

update step is given by

Wt+1 = Wt − ηWt[(xa − xp)(xa − xp)
T + (xa − xn)(xa − xn)T ] (2.10)

when the update criterion α+ (xa−xp)
TWT

t Wt(xa−xp)− (xa−xn)TWT
t Wt(xa−

xn) > 0 is met. Here, we use a hard negative mining strategy introduced in [87].

Given any anchor feature, the negative feature is chosen as the closest feature in

the embedded space to the anchor feature among a random subset of the negative

candidates, which is

xn = argmin
x∈C(xa)

‖xa − xn‖2, (2.11)

where C(xa) is a random subset of the negative candidates of anchor xa. Given a

testing pair xi and xj, the similarity score is the squared Euclidean distance between
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two features in the embedded space, which is

s(i, j) = ‖W(xi − xj)‖22 = (xi − xj)
TWTW(xi − xj). (2.12)

2.2.3.2 Joint Bayesian Approach

Another metric learning method we use is the JB approach, which has been

widely used in the literature of face verification [9,11]. We directly optimize the JB

distance measure in a large-margin framework and update the model parameters

using SGD as follows

arg min
W,V,b

∑
i,j

max{1− yij(b− (xi − xj)
TWTW(xi − xj) + 2xTi VTVxj), 0} (2.13)

where W and V ∈ Rd×D with d and D as the dimensionality before and after

dimension reduction. b ∈ R is the threshold, and yij is the label of a pair: yij = 1

if person i and j are the same and yij = −1, otherwise. Then, one can update W

and V using the SGD method. The update equations are given as follows:

Wt+1 =


Wt, if yij(bt − dWt,Vt(xi,xj)) > 1

Wt − γyijWtΓij, otherwise,

Vt+1 =


Vt, if yij(bt − dWt,Vt(xi,xj)) > 1

Vt + 2γyijVtΛij, otherwise,

bt+1 =


bt, if yij(bt − dWt,Vt(xi,xj)) > 1

bt + γbyij, otherwise,

(2.14)

where dW,V(xi,xj) = (xi− xj)
TWTW(xi− xj)− 2xTi VTVxj, Γij = (xi− xj)(xi−

xj)
T , Λij = xix

T
j +xjx

T
i and γ is the learning rate for W and V, and γb for the bias
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b. We use the identity matrix to initialize both W and V if d = D. Otherwise, the

projection matrix P ∈ Rd×D for dimension reduction is used for initialization. Both

W and V are updated only when the constraints are violated. Given a testing pair

xi and xj, the similarity score is calculated as

s(i, j) = b− (xi − xj)
TWTW(xi − xj) + 2xTi VTVxj. (2.15)

2.2.4 Fusion

(a) (b)

(c)

Figure 2.3: Errors made by different features in Split 10 of the LFW dataset. (a) conv fv

errors . (b) pool errors. (c) conv fv + pool errors. Errors are significantly reduced when

conv fv and pool features are fused for verification.

In the experiments, we observe that the error patterns are different between

pool5 and FV-DCNN features. Figure 2.3 (a) shows the errors made in Split 10 of

the LFW dataset by conv fv and Figure 2.3 (b) shows the errors made by the pool

features. It is interesting to see how much the error is reduced when the conv fv

and pool features scores are fused. This can be seen by comparing the errors shown
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in Figure 2.3 (c) with Figure 2.3 (a) and (b) where Figure 2.3 (c) is obtained by a

linear combination of similarity scores from conv fv and pool. Similarly, we apply

score level fusion on pool, fc and conv vlad features for VLAD-DCNN by a linear

combination.

2.3 Experiments

We evaluate the proposed FV-DCNN on two face verification datasets: the

Celebrities in Frontal-Profile (CFP) Dataset [90] and the Labeled Faces in the Wild

(LFW) dataset [45]. The algorithm is evaluated using various metrics, including the

ROC curves, equal error rate (EER), area under curve (AUC), and accuracy based

on the test protocols defined for each dataset.

We also evaluate the performance of VLAD-DCNN on the IARPA Janus

Benchmark A (IJB-A) [55] and its extension, JANUS Challenge Set 2 (JANUS

CS2) unconstrained face recognition datasets.

2.3.1 Datasets

CFP: The CFP dataset focuses on the unconstrained frontal to profile face

verification protocol where most profile faces are in extreme poses. Sample face

pairs are shown in Figure 2.4. The dataset contains 500 subjects, and each subject

contains 10 frontal and 4 profile images. The CFP dataset consists of 20 splits in

total, 10 for frontal-to-frontal and the other 10 for frontal-to-profile face verification

tasks. Each split has 350 same and 350 different pairs, respectively.
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Figure 2.4: Sample image pairs from the CFP dataset where our method is able to suc-

cessfully verify the pairs whereas both FV and DCNN-based methods fail.

LFW: The standard protocol for the face verification task of the LFW dataset

defines 3,000 positive pairs and 3,000 negative pairs in total. The pairs are further

split into 10 disjoint subsets for cross validation, and each subset consists of 300

same and 300 different pairs. It contains 7,701 images of 4,281 subjects.

IJB-A and JANUS CS2: Both IJB-A and JANUS CS2 datasets contain 500

subjects with 5,397 images and 2,042 videos. The IJB-A evaluation protocol consists

of verification (1:1 matching) and identification (1:N search). For verification, each

of the 10 splits contains around 11,748 pairs of templates with 1,756 positive and

9,992 negative pairs on average. For identification, the protocol also consists of 10

splits which evaluates the search performance. Examples of IJB-A faces are shown

in Figure 2.5. In JANUS CS2, there are about 167 gallery templates and 1763 probe

templates. They are used for both identification and verification. The training set

for both IJB-A and JANUS CS2 contains 333 subjects, while the test set contains

167 subjects.
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Figure 2.5: IJB-A examples. Left 4 are positive pairs and right 4 are negative pairs.

2.3.2 Implementation Details

2.3.2.1 FV-DCNN

For FV-DCNN, each face image is detected and aligned using the open-source

library dlib [53, 105]. Faces are aligned into the canonical coordinate using the

similarity transform of seven landmark points (i.e. two left eye corners, two right

eye corners, nose tip, and two mouth corners) and fed into the DCNN network.

Training details of the network can be found in [14].

For the LFW dataset, we learn 64 Gaussians with spatial encoding. For the

CFP dataset, we learn 64 Gaussians with traditional encoding since the alignment

for profile faces is not reliable. A whitening PCA is applied for initializing the joint

Bayesian metric learning. A score level fusion is applied on the similarity scores

from pool and conv fv with a linear weight.

2.3.2.2 VLAD-DCNN

For VLAD-DCNN, each face image is first detected and aligned using the

Hyperface method introduced in [80], which is a multi-task DCNN network that can
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simultaneously perform face detection, fiducial extraction and gender classification

on an input image. Alignment part is the same as FV-DCNN.

The proposed DCNN model is trained on the CASIA-WebFace dataset [121]

using caffe [50], without finetuning on the JANUS training set. The data is aug-

mented with horizontally flipped faces. For training, we use 128 as the batch size,

set the initial negative slope for PReLU to 0.25, and set the weight decay of all

convolutional layers to 0 and of the final fully connected layer to 5e-4. Finally, the

learning rate is initially set equal to 1e-2 and reduced by half for every 100,000

iterations. The momentum is set equal to 0.9. The snapshot of 720,000th iteration

is used for all our experiments.

For each image, the conv features from the training set are normalized after

taking the square root (with sign preserved). Two additional dimensions are added

as extra spatial information. K-means clustering is then applied on the normalized

and augmented features with K=16. The features are encoded using the VLAD

technique with (320 + 2) × 16 = 5152 dimensions. After conv vlad, pool and fc

features are extracted, media averaging [23] is applied so that the features coming

from the same media (image or video) are averaged.

The training data used for metric learning is the JANUS training set only.

Both JB and triplet distance embedding metrics are learned for conv vlad features.

Before metric learning, the high dimensional VLAD features are first projected onto

a 200-dimensional space by the matrix P (200× 5152) learned using the whitening

Principle Component Analysis (WPCA). For JB, the learned matrices W and V

are both 200× 200 (d = D = 200). The learning rates γ and γβ are both set to 1e-2

27



and the margin α is 1e-3. The proportion between positive pairs and negative pairs

in the training set is 1:1. For triplet embedding, the learned projection matrix W is

also 200× 200. The learning rate γ and margin α are both 1e-3. Hard negatives are

chosen from 100 randomly picked negatives for a given anchor. We call the scores

obtained by triplet embedding as A, and the scores obtained by the JB metric

learning as B.

For both pool and fc features, 128-dimensional triplet embeddings are learned.

The learning hyperparameters are the same as A. We call the scores obtained from

pool after triplet embedding as C and the scores obtained from fc after triplet

embedding as D. Finally, we fused A with D and B with C by linear score level

fusion.

2.3.3 Results on the CFP dataset

First, to investigate how pose variations influence the performance of the pro-

posed FV-DCNN method, we conduct experiments on CFP.

On this dataset, the human performance for the frontal-to-profile verification

is 94.57% accuracy and frontal-to-frontal is 96.24% accuracy. The dataset has been

evaluated in [90] using previous state-of-the-art algorithms, including Fisher vector

based on SIFT features, Sub-SML [8], and a deep learning approach which uses

a similar architecture and ReLU as the activation function without applying data

augmentation.

The evaluation results and the ROC curves are shown in Table 2.2 and Fig-
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Frontal-Profile Frontal-Frontal

Algorithm Accuracy EER AUC Accuracy EER AUC

HoG+Sub-SML 77.31± 1.61% 22.20± 1.18% 85.97± 1.03% 88.34± 1.33% 11.45± 1.35% 94.83± 0.80%

LBP+Sub-SML 70.02± 2.14% 29.60± 2.11% 77.98± 1.86% 83.54± 2.40% 16.00± 1.74% 91.70± 1.55%

FV+Sub-SML 80.63± 2.12% 19.28± 1.60% 88.53± 1.58% 91.30± 0.85% 8.85± 0.74% 96.87± 0.39%

FV+DML 58.47± 3.51% 38.54± 1.59% 65.74± 2.02% 91.18± 1.34% 8.62± 1.19% 97.25± 0.60%

Deep features 84.91± 1.82% 14.97± 1.98% 93.00± 1.55% 96.40± 0.69% 3.48± 0.67% 99.43± 0.31%

Human 94.57± 1.10% 5.02± 1.07% 98.92± 0.46% 96.24± 0.67% 5.34± 1.79% 98.19± 1.13%

pool cosine 90.41± 1.16% 9.63± 1.21% 96.53± 0.99% 97.79± 0.38% 2.20± 0.36% 99.73± 0.18%

conv fv + pool cosine 89.83± 1.88% 10.40± 1.85% 96.37± 0.97% 98.67± 0.36% 1.40± 0.37% 99.90± 0.09%

conv fv 91.97± 1.70% 8.00± 1.68% 97.70± 0.82% 98.41± 0.45% 1.54± 0.43% 99.89± 0.06%

Table 2.2: Performance comparison of different methods on the CFP dataset.
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Figure 2.6: The ROC curves corresponding to (a) Frontal-Profile matching and (b) Frontal-

Frontal matching on the CFP dataset.

ure 2.6, respectively. From the figure, even though performance drops much in the

frontal-to-profile setting, the proposed FV-DCNN approach still performs compara-
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ble to the human performance and better than pool features and other approaches,

including the DCNN baseline. Since FV-DCNN encodes spatial and appearance

information contained in conv features into the high-dimensional feature vector, it

is robust to large pose variations than other approaches. Also notice that by fusing

conv fv and pool, we improve the performance for frontal-to-frontal setting. But

frontal-to-profile setting is not as good as single conv fv. This is because under ex-

treme poses, global features are not robust and will degrade the overall performance.

2.3.4 Results on the LFW dataset

We show the mean accuracy of the proposed FV-DCNN representation with

other state-of-the-art deep learning-based methods on the LFW dataset: DeepFace

[102], DeepID2 [98], DeepID3 [97], FaceNet [89], Yi et al. [121], Wang et al. [106],

and human performance. The results are summarized in Table 2.3.

Table 2.3 shows that the proposed FV-DCNN performs comparable to many

other deep learning-based methods. In addition, it also shows that the error reduces

when we fuse the similarity scores of both conv fv representation (local descriptor)

and pool representation (global descriptor). Note that some of the deep learning-

based methods compared in Table 2.3 use millions of data samples for training

the model that typically has tens of millions of parameters or fuse multiple DCNN

models together. In contrast, we use only the CASIA dataset which has less than

500K images to train a single DCNN model with about five million parameters.
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Method #Net Training Set Metric Mean Accuracy ± Std

DeepFace [102] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%

DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%

DeepID2 [98] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%

DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%

DeepID3 [97] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%

FaceNet [89] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%

Yi et al. [121] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%

Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%

Wang et al. [106] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%

Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%

Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%

Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%

Ding et al. [26] 8 471,592 images of 9,000 subjects, public unrestricted, Joint-Bayes 99.02% ± 0.19%

Human, funneled [106] N/A N/A N/A 99.20%

pool cosine 1 494,414 images of 10,575 subjects, public cosine 97.82% ± 0.59%

conv fv 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.72% ± 0.61%

conv fv+pool cosine 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.13% ± 0.40%

Table 2.3: Performance comparison of different methods on the LFW dataset dataset.
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2.3.5 Visualization of the Learned GMMs by FV-DCNN

Figure 2.7 shows an image in the LFW dataset along with the last two dimen-

sions (which are the spatial coordinates) of the Gaussians learned by FV-DCNN.

Gaussians are learned from the original 320-dimensional conv features plus two di-

mensional spatial features without dimension reduction, from the images in LFW

Split 1. We only choose Gaussians whose corresponding energy in the learned pro-

jection matrices are among the top eight or bottom eight, which implies the discrim-

inative power of these Gaussians. Figures 2.7(a) and 2.7(b) are Gaussians learned

after we apply square root and L2 normalization on the conv features. Figures 2.7(c)

and 2.7(d) are Gaussians learned without any normalization. From Figures 2.7(a)

(a) (b) (c) (d)

Figure 2.7: (a) Top eight Gaussians using square root and L2 normalization. (b) Bottom

eight Gaussians using square root and L2 normalization. (c) Top eight Gaussians without

normalization. (d) Bottom eight Gaussians without normalization.

and 2.7(b), the top eight Gaussians are located near eyes, nose and mouth after nor-

malization. The bottom eight Gaussians are out of the face region in general. But

in Figures 2.7(c) and (d), without pre-normalization, the top eight Gaussians are

32



everywhere in the image with large variations in spatial location. Also, the bottom

eight Gaussians are all located in the center of the face, which is not expected. This

comparison shows that spatial information is not encoded into Gaussians if we do

not apply normalization before learning the Gaussians.

2.3.6 Results on IJB-A and JANUS CS2 datasets

We compare VLAD-DCNN with FV-DCNN and other methods on IJB-A and

JANUS CS2. For a fair comparison, here we learn a 16-component GMM for FV-

DCNN. conv fv are computed from conv feature maps after square root normaliza-

tion and spatial encoding. The encoded FVs are of (320+2)×32 = 10304 dimensions.

Triplet embedding with 200 dimensions is learned with the same hyperparameters

as A, C and D. We denote this result by FV-DCNN.

We also compare our methods with two recent methods [1] and [65]. The

verification and identification results corresponding to different methods on the CS2

and IJB-A datasets are shown in Table 2.4, 2.5 and Figure 2.8.

To clarify the notation again, in the following tables and figures, A is conv vlad

with triplet embedding. B is conv vlad with JB metric. C is pool with triplet

embedding. D is fc with triplet embedding. FV-DCNN is conv fv with triplet

embedding. B+C and A+D correspond to score level fusion.

From the tables and curves we can see that before fusion, D has the best IJB-A

verification result. The best CS2 at 1e-2 result is achieved by A, which implies that

VLAD encoding does extract more information from the features maps of the last
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FAR
CS2 IJB-A (1:1)

1e-3 1e-2 1e-1 1e-3 1e-2 1e-1

[1] - 89.7% 95.9% - 78.7% 91.1%

[65] 82.4% 92.6% - 72.5% 88.6% -

FV-DCNN 81.83% 91.46% 97.53% 72.94% 86.63% 95.80%

A 82.92% 92.44% 97.71% 73.64% 87.65% 96.16%

B 82.34% 92.14% 97.76% 73.31% 87.11% 96.17%

C 83.42% 91.71% 97.53% 77.09% 88.21% 96.18%

D 84.04% 92.05% 97.52% 77.88% 88.70% 96.22%

B+C 84.43% 92.66% 97.90% 76.62% 88.70% 96.56%

A+D 84.69% 92.72% 97.85% 77.36% 88.85% 96.66%

Table 2.4: CS2 and IJB-A Verification Results.

Figure 2.8: Results on the JANUS CS2 and IJB-A datasets. (a) the average ROC curves

for the JANUS CS2 verification protocol and (b) the average ROC curves for IJB-A

verification protocol over 10 splits.
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Accuracy
CS2 IJB-A

rank 1 rank 5 rank 10 rank 1 rank 5 rank 10

[1] 86.5% 93.4% 94.9% 84.6% 92.7% 94.7%

[65] 89.8% 95.6% 96.9% 90.6% 96.2% 97.7%

FV-DCNN 88.80% 94.60% 96.10% 90.00% 95.20% 96.60%

A 89.20% 94.80% 96.00% 90.40% 95.30% 96.30%

B 89.10% 94.70% 95.90% 90.40% 95.20% 96.20%

C 89.30% 94.60% 95.90% 90.50% 95.20% 96.50%

D 89.70% 94.70% 96.00% 90.90% 95.30% 96.60%

B+C 89.90% 95.00% 96.40% 91.00% 95.70% 96.80%

A+D 90.20% 95.10% 96.40% 91.30% 95.60% 96.90%

Table 2.5: CS2 and IJB-A Identification Results.
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convolutional layer, instead of direct average pooling. Its IJB-A performance is also

comparable with C and D. After fusing B+C, CS2 at 1e-2 increases about 0.9%

from C. IJB-A at 1e-2 also has a 0.5% gain, which shows the effectiveness of our

fusion strategy. After fusing A+D, we obtain the best results on both CS2 at 1e-2

and IJB-A at 1e-2. Also, A performs better than FV-DCNN at both CS2 1e-2

and IJB-A 1e-2 with a gap of about 1%. All of the above results show that based

on DCNN features in this scenario, VLAD-DCNN is very competitive and performs

better than FV-DCNN.

Compared with [1] and [65], our methods performs consistently better for

verification task on both CS2 and IJB-A. For identification task at Rank 5 and 10,

our performance is slightly lower but still comparable to [65]. It is because in [65]

the CASIA WebFace dataset is expanded to over 2.4 Million images for training

using 3D synthesized image. But our model is trained using the original CASIA

dataset without any augmentation.

2.3.7 Comparison between FV-DCNN and VLAD-DCNN

We observe that FV-DCNN does not perform as well as VLAD-DCNN on

IJB-A and CS2. Our explanation is that the second order statistics are not helpful

in this scenario. The bag-of-words method is usually designed for low-level local

features like SIFT, SURF or HoG, which are basically histograms. In these cases,

for a set of histograms of local features, both the first order (mean of the histograms)

and the second order (variance of every entry of the histograms) statistics contain
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discriminative information. But for DCNN features, the second order statistics are

much less important than the first order ones. Different from the traditional local

features, the DCNN features extracted from the high level layers are already very

discriminative. As discussed in previous section, they are not as local as traditional

local features since their receptive fields in the input image are getting bigger as

the network is getting deeper. Therefore, the variance of the set of DCNN features

from the same image is more likely to contain noise than useful information. When

computing FV, we need to scale each entry of the feature according to its variance

and aggregate these shifted and scaled features together as

Φ
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1

N
√
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− 1

)
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If the variances are not reliable enough, it will degrade the performance.

In contrast, since the DCNN features are robust and discriminative, the first

order statistics still contain important information (even more robust after taking

the average over the neighborhood). VLAD only considers the first order statistics

and will not be affected by the noise variance. Thus compared to FV-DCNN, VLAD-

DCNN preserves useful information.

To examine the above assumption, we design another experiment based on

the verification protocols of CS2 and IJB-A Split 1. We first learn a GMM of 16

components based on the training set of Split 1. Then we randomly choose one

position in the 7 × 7 feature map of conv features. Given an image, instead of

average pooling these 320-dimensional local features or performing VLAD encoding
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to get the output features, we pick the 320-dimensional local feature at the randomly

selected position from the 7×7×320 conv features and consider it as a representation

of this image. In this way, every image is directly represented by the local features

at a certain position in the feature map. Then we encode them in two ways. One

follows the VLAD encoding by subtracting the features by their nearest GMM mean

as xvlad = x −mnn without encoding the variance information. The other method

mimics the FV encoding by subtracting the features by their nearest GMM mean and

dividing by the corresponding standard deviation, which is xfv = (x−mnn)/σnn.

The objective of this experiment is to see whether encoding the second order

statistics of the DCNN features will reduce the quality of these local features. Since

the FV feature is the aggregation of encoded local features, if the performance

of encoded local features decreases, it will very likely affect the performance of

FV features. We evaluated the performance of both encoded features with cosine

distance. The verification results averaged over 10 trials on CS2 and IJB-A Split 1

are shown in Table 2.6.

FAR
CS2 IJB-A (1:1)

1e-3 1e-2 1e-1 1e-3 1e-2 1e-1

xvlad 50.33% 67.77% 84.22% 41.26% 62.26% 80.07%

xfv 49.71% 67.43% 84.18% 40.63% 61.55% 79.81%

Table 2.6: CS2 and IJB-A Verification Results of Encoded Local Features.

From Table 2.6 we see that the VLAD-like encoded local DCNN features per-
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form consistently better than FV-like encoded local DCNN features, which supports

our assertion that the second order statistics of the DCNN features contain little

discriminative information. It also explains why FV-DCNN’s performance on IJB-A

and CS2 is not as good as VLAD-DCNN.

2.4 Concluding Remarks

In this chapter, we proposed FV-DCNN and VLAD-DCNN for unconstrained

face recognition which combines FV/VLAD encoding with DCNN features. We

demonstrated the effectiveness of FV-DCNN on LFW and the challenging CFP

dataset with large pose variations. It was shown that the FV-DCNN method cap-

tures both local and global variations in convolutional features. Experiments on

the challenging IJB-A and JANUS CS2 datasets show the effectiveness of VLAD-

DCNN. We also compared the performance of VLAD-DCNN and FV-DCNN on

IJB-A and JANUS CS2 datasets. We observed that VLAD encoding works better

than FV encoding for unconstrained face recognition because the noisy second order

statistics used by FV encoding deteriorate its performance.
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Chapter 3: An Automatic System for Unconstrained Video-based

Face Recognition

3.1 Introduction

Video-based face recognition is an active research topic because of a wide

range of applications including visual surveillance, access control, video content

analysis, etc. Compared to still face recognition, video-based face recognition is

more challenging due to a much larger amount of data to be processed and signifi-

cant intra/inter-class variations caused by motion blur, low video quality, occlusion,

frequent scene changes, and unconstrained acquisition conditions.

To develop the next generation of unconstrained video-based face recognition

systems, two datasets have been recently introduced, IARPA Benchmark B (IJB-B)

[112] and IARPA Janus Surveillance Video Benchmark (IJB-S) [52], acquired under

more challenging scenarios, compared to the Multiple Biometric Grand Challenge

(MBGC) dataset [67] and the Face and Ocular Challenge Series (FOCS) dataset [69]

which are collected in relatively controlled conditions. IJB-B and IJB-S datasets are

captured in unconstrained settings and contain faces with much more intra/inter

class variations on pose, illumination, occlusion, video quality, scale, etc.
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The IJB-B dataset is a template-based dataset that contains 1845 subjects

with 11,754 images, 55,025 frames and 7,011 videos where a template consists of a

varying number of still images and video frames from different sources. These im-

ages and videos are collected from the Internet and are totally unconstrained, with

large variations in pose, illumination, image quality etc. Samples from this dataset

are shown in Figure 3.1. In addition, the dataset comes with protocols for 1-to-1

template-based face verification, 1-to-N template-based open-set face identification,

and 1-to-N open-set video face identification. For the video face identification pro-

tocol, the gallery is a set of still-image templates. The probe is a set of videos (e.g.

news videos), each of which contains multiple shots with multiple people and one

bounding box annotation to specify the subject of interest. Probes of videos are

searched among galleries of still images. Since the videos are composed of multiple

shots, it is challenging to detect and associate the faces of the subject of interest

across shots due to large appearance changes. In addition, how to efficiently leverage

information from multiple frames is another challenge, especially when the frames

are noisy.

Similar to the IJB-B dataset, the IJB-S dataset is also an unconstrained video

dataset focusing on real world visual surveillance scenarios. It consists of 202 sub-

jects from 1421 images and 398 surveillance videos, with 15,881,408 bounding box

annotations. Samples of frames from IJB-S are shown in Figure 3.2. Three open-

set identification protocols accompany this dataset for surveillance video-based face

recognition where each video in these protocols is captured from a static surveillance

camera and contains single or multiple subjects: (1) in surveillance-to-single proto-
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Figure 3.1: Example frames of a multiple-shot probe video in the IJB-B dataset. The

target annotation is in the red box and face detection results from face detector are in

green boxes.

col, probes collected from surveillance videos are searched in galleries consisting of

one single high-resolution still image; (2) in surveillance-to-booking protocol, same

probes are searched among galleries consisting of seven high-resolution still face im-

ages covering frontal and profile poses. Probe templates in (1) and (2) should be

detected and constructed by the recognition system itself; (3) in the most challeng-

ing surveillance-to-surveillance protocol, both gallery and probe templates are from

videos, which implies that probe templates need to be compared with relatively low

quality gallery templates.

From these datasets, we summarize the four common challenges in video-based

face recognition as follows:
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Figure 3.2: Example frames of two single-shot probe videos in the IJB-S dataset.

1. For video-based face recognition, test data are from videos where each video

contains tens of thousands of frames and each frame may have several faces.

This makes the scalability of video-based face recognition a challenging prob-

lem. In order to make the face recognition system to be operationally effective,

each component of the system should be fast, especially face detection, which

is often the bottleneck in recognition.

2. Since faces are mostly from unconstrained videos, they have significant varia-

tions in pose, expression, illumination, blur, occlusion and video quality. Thus,

any face representation we design must be robust to these variations and to
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Figure 3.3: Overview of the proposed system.

errors in face detection and association steps.

3. Faces with same identity across different video frames must be grouped by a

reliable face association method. Face recognition performance will degrade

if faces with different identities are grouped together. Videos in the IJB-B

dataset are acquired from multiple shots involving scene and view changes,

while most videos in IJB-S are low-quality remote surveillance videos. These

conditions increase the difficulty of face association.

4. Since each video contains different number of faces for each identity, the next

challenge is how to efficiently aggregate a varying-length set of features from

the same identity into a fixed-size or unified representation. Exploiting the

correlation information in a set of faces generally results in better performance

than using only a single face.

In this chapter, we mainly focus on the second and fourth challenges. After

face association, video faces from same identities are associated into sets and the

correlation between samples in the same set is leveraged to improve the face recog-
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nition performance. For deep representation augmentation methods in video-based

face recognition, temporal deep learning model such as Recurrent Neural Network

(RNN) can be applied to yield a fixed-size encoded face representation. However,

large-scale labeled training data is needed to learn robust representations, which is

very expensive to collect in the context of video-based recognition problem. This is

also true for the adaptive pooling method [61,119] for image set-based face recogni-

tion problem. For IJB-B and IJB-S datasets, lack of large-scale training data makes

it impossible to train an RNN-based method. Also, RNN can only work on sequen-

tial data, while faces associated from videos are sometimes without a certain order.

On the contrary, representative and discriminative models based on manifolds and

subspaces have also received attention for image set-based face recognition [107,109].

These methods model sets of image samples as manifolds or subspaces and use ap-

propriate similarity metric for set-based identification and verification. One of the

main advantages of subspace-based methods is that different from sample mean,

the subspace representation encodes the correlation information between samples.

In low-quality videos, faces have significant variations due to blur, extreme poses

and low resolution. Exploiting correlation between samples by subspaces will help

learn a more robust representation to capture these variations. Also, a fixed-size

representation is learned from an arbitrary number of video frames.

To summarize, we propose an automatic system by integrating deep learning

components to overcome the challenges in unconstrained video-based face recogni-

tion. The proposed system first detects faces and facial landmarks using two state-

of-the-art DCNN face detectors, the Single Shot Detector (SSD) for faces [13] and
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the Deep Pyramid Single Shot Face Detector (DPSSD) [79]. Next, we extract deep

features from the detected faces using state-of-the-art DCNNs [79] for face recogni-

tion. SORT [5] and TFA [10] are used for face association in single-shot/multiple-

shot videos respectively. Finally, in the proposed face recognition system, we learn

a subspace representation from each video template and match pairs of templates

using principal angles-based subspace-to-subspace similarity metric on the learned

subspace representations. An overview of the proposed system is shown in Fig-

ure 3.3.

We evaluate our face recognition system on the challenging IJB-B and IJB-

S datasets, as well as MBGC and FOCS datasets. The results demonstrate that

the proposed system achieves improved performance over other deep learning-based

baselines and state-of-the-art approaches.

3.2 Related Work

1. Deep Learning for Face Recognition: Taigman et al. [102] learned a

DCNN model on the frontalized faces generated from 3D shape models built from

face dataset. Sun et al. [96, 98] achieved results surpassing human performance for

face verification on the LFW dataset [45]. Schroff et al. [89] adopted the GoogLeNet

trained for object recognition to face recognition and trained on a large-scale un-

aligned face dataset. Parkhi et al. [72] achieved impressive results using a very deep

convolutional network based on VGGNet for face verification. Ding et al. [27] pro-

posed a trunk-branch ensemble CNN model for video-based face recognition. Chen
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et al. [14] trained a 10-layer CNN on CASIAWebFace dataset [121] followed by

the JB metric and achieved state-of-the-art performance on the IJB-A [55] dataset.

Chen et al. [15] further extended [14] and designed an end-to-end system for uncon-

strained face recognition and reported very good performance on IJB-A, JANUS

CS2, LFW and YouTubeFaces [113] datasets. [17, 124] combined feature encoding

with deep neural networks. Bodla et al. [6] fused multiple networks to improve face

recognition performance. In order to tackle the training bottleneck for face recog-

nition network, Ranjan et al. [78] proposed the crystal loss to train the network on

very large scale training data. It achieved good performance on IJB-C [66]. Zheng et

al. [126] achieved good performance on video face datasets including IJB-B [112] and

IJB-S [52]. [25] presents a recent face recognizer with state-of-the-art performance.

2. Image Set/Video-based Recognition: For image set-based recognition,

Wang et al. [109] proposed a Manifold-to-Manifold Distance (MMD) for face recog-

nition based on image set. In [108], the proposed approach models the image set

with its second-order statistic for image set classification. Chen et al. [20] and [21]

proposed a video-based face recognition algorithm using sparse representations and

dictionary learning. [125, 127] are recent works on unconstrained video-based face

recognition.

3.3 Method

For each video, we first detect faces from video frames and align them using

the detected fiducial points. Deep features are then extracted for each detected face
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using our DCNN models for face recognition. Based on different scenarios, we use

face association or face tracking to construct face templates with unique identities.

For videos with multiple shots, we use the face association technique TFA [10]

to collect faces from the same identities across shots. For single-shot videos, we

use the face tracking algorithm SORT introduced in [5] to generate tracklets of

faces. After templates are constructed, in order to aggregate face representations

in videos, subspaces are learned using quality-aware principal component analysis.

Subspaces along with quality-aware exemplars of templates are used to produce

the similarity scores between video pairs by a quality-aware principal angle-based

subspace-to-subspace similarity metric. In the following sections, we discuss the

proposed video-based face recognition system in detail.

3.3.1 Face/Fiducial Detection

The first step in our face recognition pipeline is to detect faces in images

(usually for galleries) and videos. We use two DCNN-based detectors in our pipeline

based on different distributions of input.

For regular images and video frames, faces are relatively bigger and with higher

resolution. We use SSD trained with the WIDER face dataset as our face detector

[13]. For small and remote faces in surveillance videos, we use DPSSD [79] for face

detection. DPSSD is fast and capable of detecting tiny faces, which is very suitable

for face detection in videos.

After raw face detection bounding boxes are generated using either SSD or
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DPSSD detectors, we use All-in-One Face [82] for fiducial localization. It is followed

by a seven-point face alignment step based on the similarity transform on all the

detected faces.

3.3.2 Deep Feature Representation

After faces are detected and aligned, we use the DCNN models to represent

each detected face. The models are state-of-the-art networks with different archi-

tectures for face recognition. Different architectures provide different error patterns

during testing. After fusing the results from different models, we achieve perfor-

mance better than a single model. Design details of these networks along with their

training details are described in Section 3.4.2.

3.3.3 Face Association

In previous steps, we obtain raw face detection bounding boxes using our detec-

tors. Features for the detected bounding boxes are extracted using face recognition

networks. The next important step in our face recognition pipeline is to combine

the detected bounding boxes from the same identity to construct templates for good

face recognition result.

For single-shot videos, which means the bounding boxes of a certain identity

will probably be contiguous, we rely on SORT [5] to build the tracklets for each

identity. For multi-shot videos, it is challenging to continue tracking across dif-

ferent scenes. In the proposed system, we use [10] to adaptively update the face
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associations through one-shot SVMs.

3.3.4 Model Learning: Deep Subspace Representation

After deep features are extracted for each face template, since each template

contains a varying number of faces, these features are further encoded into a fixed-

size and unified representation for efficient face recognition.

The simplest representation of a set of samples is the sample mean. However,

video templates contain faces with different quality and large variations in illumina-

tion, blur and pose. Since average pooling treats all the samples equally, the outliers

may deteriorate the discriminative power of the representation. Different from other

feature aggregation approaches that require a large amount of extra training data

which are not available for datasets like IJB-B and IJB-S, we propose a subspace

representation for video face templates.

3.3.4.1 Subspace Learning from Deep Representations

A d-dimensional subspace S can be uniquely defined by an orthonormal basis

P ∈ RD×d, where D is the dimensionality of features. Given face features from a

video sequence Y ∈ RD×N , where N is the sequence length, P can be found by

optimizing:

minimize
P,X

‖Y −PX‖2F s.t. PTP = I (3.1)

which is the reconstruction error of features Y in the subspace S. It is exactly the

principal component analysis (PCA) problem and can be easily solved by eigenvalue
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decomposition. Let YYT = UΛUT be the eigenvalue decomposition, where U =[
u1,u2, · · · ,uD

]
are eigenvectors and Λ = diag{λ1, λ2, . . . , λD} with λ1 ≥ λ2 ≥

· · · ≥ λD are the corresponding eigenvalues, we have P =

[
u1,u2, · · · ,ud

]
consisting

of the first d basis in U. We use Sub to denote this basic subspace learning algorithm

(3.1).

3.3.4.2 Quality-Aware Subspace Learning from Deep Representations

In a face template from videos, faces contain large variations in pose, illumi-

nation, occlusion, etc. Even in a tracklet, faces have different poses because of head

movement, or being occluded in some frames because of the interaction with the

environment. When learning the subspace, treating the frames equally is not an

optimal solution. In our system, the detection score for each face bounding box

provided by the face detector can be used as a good indicator of the face quality,

as shown in [78]. Hence, following the quality pooling proposed in [78], we propose

quality-aware subspace learning based on detection scores. The learning problem is

modified (3.1) as

minimize
P,X

N∑
i=1

d̃i‖yi −Pxi‖22 s.t. PTP = I (3.2)

where d̃i = softmax(qli) is the normalized detection score of face i, q is the tem-

perature parameter and

li = min(
1

2
log

di
1− di

, t) (3.3)

which is upper bounded by threshold t to avoid extreme values when the detection

score is close to 1.
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Let Ỹ =

[
√
d1y1, · · · ,

√
dNyN

]
be the normalized feature set, and the corre-

sponding eigenvalue decomposition be ỸỸT = ŨΛ̃ŨT . We have

PD =

[
ũ1, ũ2, · · · , ũd

]
(3.4)

which consists of the first d bases in Ũ. The new subspace is therefore learned by

treating samples differently according to their quality. This quality-aware learning

algorithm is denoted as QSub.

3.3.5 Matching: Subspace-to-Subspace Similarity for Videos

After subspace representations are learned for video templates, inspired by

manifold-to-manifold distance [109], we measure the similarity between two video

templates of faces using a subspace-to-subspace similarity metric. In this part, we

first introduce the widely used metric based on principal angles. Then we propose

several weighted subspace-to-subspace metrics which take the importance of basis

directions into consideration.

3.3.5.1 Principal Angles and Projection Metric

One of the mostly used subspace-to-subspace similarity is based on principal

angles. The principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π
2

between two linear

subspaces S1 and S2 can be computed by Singular Value Decomposition (SVD).

Let P1 ∈ RD×d1 , P2 ∈ RD×d2 , denoting the orthonormal basis of S1 and S2,

respectively. The SVD is PT
1 P2 = Q12ΛQT

21, where Λ = diag{σ1, σ2, . . . , σr}. Q12

and Q21 are orthonormal matrices. The singular values σ1, σ2, . . . , σr are exactly
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the cosine of the principal angles as cos θk = σk, k = 1, 2, . . . , r.

Projection metric [31] is a popular similarity metric based on principal angles:

sPM(S1, S2) =

√√√√1

r

r∑
k=1

cos2 θk (3.5)

Since ‖PT
1 P2‖2F = ‖Q12ΛQT

21‖2F = ‖Λ‖2F =
∑r

k=1 σ
2
k =

∑r
k=1 cos2 θk, we have

sPM(S1, S2) = sPM(P1,P2) =

√
1

r
‖PT

1 P2‖2F (3.6)

and there is no need to explicitly compute the SVD. We use PM to denote this

similarity metric (3.6).

3.3.5.2 Exemplars and Basic Subspace-to-Subspace Similarity

Existing face recognition systems usually use cosine similarity between exem-

plars to measure the similarity between templates. The exemplar of a template is

defined as its sample mean, as e = 1
L

∑L
i=1 yi, where yi are samples in the template.

Exemplars mainly capture the average and global representation of the template.

On the other hand, the projection metric we introduced above measures the similar-

ity between two subspaces, which models the correlation between samples. Hence,

in the proposed system, we make use of both of them by fusing their similarity scores

as the subspace-to-subspace similarity between two video sequences.

Suppose subspaces P1 ∈ RD×d1 and P2 ∈ RD×d2 are learned from a pair of

video templates Y1 ∈ RD×L1 and Y2 ∈ RD×L2 in deep features respectively, by

either Sub or QSub methods introduced in Section 3.3.4. Their exemplars are

e1 = 1
L1

∑L1

i=1 y1i and e2 = 1
L2

∑L2

i=1 y2i respectively. Combining the orthonormal
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bases and exemplars, the subspace-to-subspace similarity can be computed as:

s(Y1,Y2) = sCos(Y1,Y2) + λsPM(P1,P2)

=
eT1 e2

‖e1‖2‖e2‖2
+ λ

√
1

r
‖PT

1 P2‖2F (3.7)

where sCos(Y1,Y2) is the cosine similarity between exemplars, denoted as Cos,

and sPM(P1,P2) is computed by (3.6). Since the DCNN features are more robust

if we keep their signs, instead of using s2Cos(Y1,Y2) as in [109] where the sign

information is lost, we use sCos(Y1,Y2) in our formulation. Accordingly, we also take

the square root of the principal angle term to keep the scale consistent. λ here is a

hyperparameter that balances the cosine similarity and principal angle similarity. If

Pi’s are learned by Sub, we denote the whole similarity metric (including exemplars

computing and subspace learning) as Cos+Sub-PM. If Pi’s are learned by the

proposed QSub, we denote the similarity as Cos+QSub-PM.

3.3.5.3 Quality-Aware Exemplars

In either Cos+Sub-PM or Cos+QSub-PM we are still using simple average

pooling to compute the exemplars. But as discussed in Section 3.3.4, templates

consist of faces of different quality. Treating them equally in pooling will let low-

quality faces deteriorate the global representation of the template. Therefore, we

propose to use the same normalized detection score as in Section 3.3.4 to compute

the quality-aware exemplars by eD = 1
L

∑L
i=1 d̃iyi, where d̃i = softmax(qli) and

li are computed by (3.3). Then, the cosine similarity between the quality-aware
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exemplars is

sQCos(Y1,Y2) =
eTD1eD2

‖eD1‖2‖eD2‖2
(3.8)

and we denote it as QCos. Using the new cosine similarity, the similarity becomes

s(Y1,Y2) = sQCos(Y1,Y2) + λsPM(P1,P2) (3.9)

If Pi’s are learned by QSub, the similarity is further denoted by QCos+QSub-

PM.

3.3.5.4 Variance-Aware Projection Metric

As previously discussed, the projection metric SPM(S1, S2) is the square root

of the mean square of principle angles between two subspaces and it treats each

basis direction in each subspace equally. But these basis vectors are actually eigen-

vectors of an eigenvalue decomposition problem. Different basis vectors correspond

to different eigenvalues, which represents the variance of data in the corresponding

direction. Obviously, those basis directions with larger variances contain more in-

formation than those with smaller variances. Therefore, based on the variance of

each basis direction, we propose a variance-aware projection metric as:

sV PM(P1,P2) =

√
1

r
‖P̃T

1 P̃2‖2F (3.10)

where

P̃i =
1

tr(log(Λi))
Pi log(Λi) (3.11)

Λi is a diagonal matrix whose diagonals are eigenvalues corresponding to eigenvec-

tors in Pi.
1

tr(log(Λi))
is the normalization factor. We use the logarithm of variance to
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weight different basis directions in a subspace. This similarity metric is inspired by

the Log-Euclidean distance used for image-set classification in [108]. Empirically,

we use max(0, log(Λi)) instead of log(Λi) to avoid negative weights. We use VPM

to denote this similarity metric (3.10).

3.3.5.5 Quality-Aware Subspace-to-Subspace Similarity

By combining the quality-aware subspace learning, quality-aware exemplars

and variance-aware projection metric, we propose the quality-aware subspace-to-

subspace similarity between two video templates as:

s(Y1,Y2) = sQCos(Y1,Y2) + λsV PM(PD1,PD2) (3.12)

where sQCos is defined in (3.8), PDi’s are learned by (3.4) and sV PM is defined in

(3.10). This similarity metric is denoted as QCos+QSub-VPM. Comparisons of

the proposed similarity metrics and other baselines on several challenging datasets

are discussed in Section 3.4.

3.4 Experiments

In this section, we report video-based face recognition results for the proposed

system on two challenging video face datasets, IJB-B and IJB-S, and compare with

other baseline methods. We also provide results on MBGC, and FOCS datasets, to

demonstrate the effectiveness of the proposed system. We introduce the details of

datasets, protocols and our training and testing procedures in the following sections.
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3.4.1 Datasets

IARPA Janus Benchmark B (IJB-B): IJB-B dataset is an unconstrained

face recognition dataset. It contains 1845 subjects with 11,754 images, 55,025 frames

and 7,011 multiple-shot videos. IJB-B is a template-based dataset where a template

consists of a varying number of still images or video frames from different sources.

A template can be either image-only, or video-frame-only, or mixed media template.

Sample frames from this dataset are shown in Figure 3.1.

In this work, we only focus on the 1:N video protocol of IJB-B. It is an open

set 1:N identification protocol where each given probe is collected from a video and

is searched among all gallery faces. Gallery candidates are ranked according to their

similarity scores to the probes. Top-K rank accuracy and True Positive Identification

Rate (TPIR) over False Positive Identification Rate(FPIR) are used to evaluate the

performance. The gallery templates are separated into two splits, G1 and G2, all

consisting of still images. For each video, we are given the frame index with face

bounding box of the first occurrence of the target subject, as shown in Figure 3.1.

Based on this anchor, all the faces in that video with the same identity should be

collected to construct the probes. The identity of the first occurrence bounding box

will be considered as the template identity for evaluation.

IARPA Janus Surveillance Video Benchmark (IJB-S): Similar to IJB-

B, the IJB-S dataset is also a template-based, unconstrained video face recognition

dataset. It contains faces in two separate domains: high-resolution still images

for galleries and low quality, remotely captured surveillance videos for probes. It
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consists of 202 subjects from 1421 images and 398 single-shot surveillance videos.

The number of subjects is small compared to IJB-B, but it is even more challenging

due to the low quality of surveillance videos.

Based on the choices of galleries and probes, we are interested in three different

surveillance video-based face recognition protocols: surveillance-to-single protocol,

surveillance-to-booking protocol and surveillance-to-surveillance protocol. These are

all open set 1:N protocols where each probe is searched among the given galleries.

Like IJB-B, the probe templates are collected from videos, but no annotations are

provided. Thus raw face detections are grouped to construct templates with the

same identities.

Galleries consist of only single frontal high resolution image for surveillance-

to-single protocol. Galleries are constructed by both frontal and multiple-pose high

resolution images for surveillance-to-booking protocol. For the most challenging

surveillance-to-surveillance protocol, galleries are collected from surveillance videos

as well, with given bounding boxes. In all three protocols, gallery templates are

split into two splits, G1 and G2. During evaluation, the detected faces in videos

are first matched to the ground truth bounding boxes to find their corresponding

identity information. The majority of identities appears in each template will be

considered as the identity of the template, and will be used for further identification

evaluation. Example frames are shown in Figure 3.2. Notice the remote faces are of

very low quality.

Multiple Biometric Grand Challenge (MBGC): The MBGC Version

1 dataset contains 399 walking (frontal face) and 371 activity (profile face) video
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sequences from 146 subjects. Figure 3.4 shows some sample frames from different

walking and activity videos. In the testing protocol, verification is specified by

two sets: target and query. The protocol requires the algorithm to match each

target sequence with all query sequences. Three verification experiments are defined:

walking-vs-walking (WW), activity-vs-activity (AA) and activity-vs-walking (AW).

(a) MBGC Walking (b) MBGC Activity

(c) FOCS Walking (d) FOCS Activity

Figure 3.4: Examples of MBGC and FOCS datasets.

Face and Ocular Challenge Series (FOCS): The video challenge of FOCS

is designed for frontal and non-frontal video sequence matching. The FOCS UT

Dallas dataset contains 510 walking (frontal face) and 506 activity (non-frontal

face) video sequences of 295 subjects with frame size of 720×480 pixels. Like MBGC,
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FOCS specifies three verification protocols: walking-vs-walking, activity-vs-walking,

and activity-vs-activity. In these experiments, 481 walking videos and 477 activity

videos are chosen as query videos. The size of target sets ranges from 109 to 135

video sequences. Sample video frames from this dataset are shown in Figure 3.4.

Figure 3.5: Verification results on MBGC and FOCS datasets.
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3.4.2 Implementation Details

In this part, we discuss the implementation details for each dataset respec-

tively.

3.4.2.1 IJB-B

For the IJB-B dataset, we employ the SSD face detector [13] to extract the

face bounding boxes in all images and video frames. We employ the facial landmark

branch of All-in-One Face [82] for fiducial detection on every detected bounding

boxes and apply facial alignment based on these fiducials using the seven-point

similarity transform.

The aligned faces are further represented using three networks proposed in [81].

We denote them as Network A, Network B and Network C. Network A modifies the

ResNet-101 [40] architecture. It has an input size of dimensions 224× 224 and adds

an extra fully connected layer after the last convolutional layer to reduce the feature

dimensionality to 512. Also it replaces the original softmax loss with the crystal

loss [78] for more stable training. Network B uses the Inception-ResNet-v2 [99]

model as the base network. Similar to Network A, an additional fully-connected

layer is added for dimensionality reduction. Naive softmax followed by cross entropy

loss is used for this network. Network C is based on the face recognition branch in

the All-in-One Face architecture [82]. The branch consists of seven convolutional

layers followed by three fully connected layers.

Network A and Network C are trained on the MSCeleb-1M dataset [38] which
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contains 3.7 million images from 57,440 subjects. Network B is trained on the

union of three datasets called the Universe dataset: 3.7 million still images from

the MSCeleb-1M dataset, 300,000 still images from the UMDFaces dataset [4], and

about 1.8 million video frames from the UMDFaces Video dataset. For each network,

we further reduce its dimensionality into 128 by triplet probabilistic embedding

(TPE) [86] trained on the UMDFaces dataset.

For face association, we follows the steps outlined in [10]. Then, features

from associated bounding boxes are used to construct the probe templates. We

use quality-aware pooling for both gallery and probe templates to calculate their

exemplars (QCos) where t = 7 and q = 0.3 are used for detection score normaliza-

tion. Subspaces are built by applying the quality-aware subspace learning method

(QSub) on each template and taking the top three eigenvector with the largest

corresponding eigenvalues. When fusing the cosine similarity and variance-aware

projection similarity metric (VPM), we use λ = 1 so two similarity scores are fused

equally. We compute the subspace-to-subspace similarity score for each network

independently, and combine the similarity scores from three networks by score-level

fusion. We also implement baseline methods using combinations of exemplars from

vanilla average pooling (Cos), subspaces learned by regular PCA (Sub) and pro-

jection similarity metric (PM).
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Methods Rank=1 Rank=2 Rank=5 Rank=10 Rank=20 Rank=50 FPIR=0.1 FPIR=0.01

[10] with Iteration 0 55.94% - 68.40% 72.89% - 83.71% 44.60% 28.73%

[10] with Iteration 3 61.01% - 73.39% 77.90% - 87.62% 49.73% 34.11%

[10] with Iteration 5 61.00% - 73.46% 77.94% - 87.69% 49.78% 33.93%

Cos 78.37% 81.35% 84.39% 86.29% 88.30% 90.82% 73.15% 52.19%

QCos 78.43% 81.41% 84.40% 86.33% 88.34% 90.88% 73.19% 52.47%

Cos+Sub-PM 77.99% 81.45% 84.68% 86.75% 88.96% 91.91% 72.31% 38.44%

QCos+Sub-PM 78.02% 81.46% 84.76% 86.72% 88.97% 91.91% 72.38% 38.88%

QCos+QSub-PM 78.04% 81.47% 84.73% 86.72% 88.97% 91.93% 72.39% 38.91%

QCos+QSub-VPM 78.93% 81.99% 84.96% 87.03% 89.24% 92.02% 71.26% 47.35%

Table 3.1: 1:N Search Top-K Average Accuracy and TPIR/FPIR of IJB-B video search

protocol.

3.4.2.2 IJB-S

For the IJB-S dataset, we employ the multi-scale face detector DPSSD to de-

tect faces in surveillance videos. We only keep face bounding boxes with detection

scores greater than 0.4771, to reduce the number of false detections. We use the fa-

cial landmark branch of All-in-One Face [82] as the fiducial detector. Face alignment

is performed using the seven-point similarity transform.

Different from IJB-B, since IJB-S does not specify the subject of interest, we

are required to localize and associate all the faces for different subjects to yield the

probe sets. Since IJB-S videos are single-shot, we use SORT [5] to track every face

appearing in the videos. Faces in the same tracklet are grouped to create a probe
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template. Since some faces in surveillance videos are of extreme pose, blur and low-

resolution, to improve precision, tracklets consisting of such faces should be rejected

during the recognition stage. By observation, we find that most of the short tracklets

are of low quality and not reliable. The average of the detection score provided by

DPSSD is also used as an indicator of the quality of the tracklet. On the other

hand, we also want to take the performance of face detection into consideration to

strike a balance between recall and precision. Thus in our experiments, we use two

configurations for tracklets filtering: 1) We keep those tracklets with length greater

than or equal to 25 and average detection score greater than or equal to 0.9 to reject

low-quality tracklets and focusing on precision. It is referred to as with Filtering.

2) Following the settings in [52], we produce results without any tracklets filtering

and focusing on both precision and recall. It is referred to as without Filtering.

Because of the remote acquisition scenario and the presence of blurred probes

in the IJB-S dataset, we retrain Network A with the same crystal loss but on the

Universe dataset used by Network B. We denote it as Network D. We also retrain

Network B with the crystal loss [78] on the same training data. We denote it as

Network E. As a result of combining high capacity networks and large scale training

data, Networks D and E are more powerful than Networks A, B, and C. As before,

we reduce feature dimensionality into 128 using the TPE trained on the UMDFaces

dataset.

In IJB-S, subspace learning and matching parts are the same as IJB-B except

that we combine the similarity score by score-level fusion from Networks D and

E. Notice that for the surveillance-to-surveillance protocol, we only use the single
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Network D for representation as Network E is ineffective for low-quality gallery faces

in this protocol.

3.4.2.3 MBGC and FOCS

For MBGC and FOCS datasets, we use All-in-One Face for both face detection

and facial landmark localization. The MBGC and FOCS datasets contain only

one subject in a video in general. Hence, for each frame, we directly use the face

bounding box with the highest detection score as the target face. Similar to IJB-S,

bounding boxes are filtered based on detection scores. From the detected faces,

deep features are extracted using Network D. Since MBGC and FOCS datasets do

not provide training data, we also use the TPE trained on UMDFaces dataset to

reduce feature dimensionality into 128. For MBGC and FOCS, subspace learning

and matching parts are the same as for IJB-B and IJB-S.

3.4.3 Evaluation Results

In the following section, we first show some face association results on IJB-

B and IJB-S datasets. Then we compare the performance of the proposed face

recognition system with several baseline methods. For each dataset, all the baseline

methods listed below use deep features extracted from the same network and with

the same face detector.

• Cos: We compute the cosine similarity scores directly from the exemplars

with average pooling.
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• QCos: We compute the cosine similarity scores from the exemplars with

quality-aware average pooling.

• Cos+Sub-PM: Subspace-to-subspace similarity is computed by fusing the

plain cosine similarity and plain projection metric, and subspaces are learned

by plain PCA.

• QCos+Sub-PM: Subspace-to-subspace similarity is computed by fusing the

quality-aware cosine similarity and plain projection metric, and subspaces are

learned by plain PCA.

• QCos+QSub-PM: Subspace-to-subspace similarity is computed by fusing

the quality-aware cosine similarity and plain projection metric, and subspaces

are learned by quality-aware subspace learning.

• QCos+QSub-VPM: Subspace-to-subspace similarity is computed by fusing

the quality-aware cosine similarity and variance-aware projection metric, and

subspaces are learned by quality-aware subspace learning.

IJB-B: Figures 3.6 and 3.7 show some examples of our face association results

using TFA in IJB-B dataset. Table 3.1 shows the Top-K Accuracy results for IJB-B

video protocol. For this dataset, besides the baselines, our method is compared

with original results in [10] corresponding to different iteration numbers. Results

shown are the average of two galleries. Notice that our proposed system and [10]

use the same face association method, but we have different networks and feature

representation techniques.
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Figure 3.6: Examples of face association results by TFA on IJB-B. The target annotation

is in the red box, and the associated faces of the target subject are in magenta-colored

boxes.

IJB-S: Figure 3.8 shows some examples of our face association results using SORT

in IJB-S dataset. Tables 3.2, 3.3 and 3.4 show the results for IJB-S surveillance-

to-single protocol, surveillance-to-booking protocol and surveillance-to-surveillance

protocol respectively. Notice that under the with Filtering configuration, we use
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Figure 3.7: Associated faces by TFA corresponding to examples in Figure 3.6. Face images

are in the order of the confidence of face association.

the regular top-K average accuracy for evaluation. Under the without Filtering

configuration, we use the End-to-End Retrieval Rate (EERR) metric proposed in [52]

for evaluation. For surveillance-to-surveillance protocol, we show results for two

different network configurations as well. We also implement state-of-the-art network

ArcFace [25] on IJB-S and compare with our method. Results from ArcFace are

shown with the prefix Arc-.

Two recent works [35, 36] have reported results on the IJB-S dataset. These
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Figure 3.8: Associated faces using SORT in IJB-S. Face images are in their temporal

order. Notice the low-quality faces at the boundaries of tracklets since the tracker cannot

reliably track anymore.

works mainly focused on face recognition and not detection so that they built video

templates by matching their detections with ground truth bounding boxes provided

by the protocols and evaluated their methods using identification accuracy and not

EERR metric. Our system focuses on detection, association and recognition. There-

fore after detection, we associate faces across the video frames to build templates

without utilizing any ground truth information and evaluate our system using both

identification accuracy and EERR metric. Since these two template building proce-

dures are so different, a directly comparison is not meaningful.

MBGC: The verification results for the MBGC dataset are shown in Table 3.5 and
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Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos [25] 52.03% 56.83% 63.16% 69.05% 76.13% 88.95% 24.45% 26.54% 29.35% 32.33% 36.38% 44.81%

Arc-QCos+QSub-PM 60.92% 65.06% 70.45% 75.19% 80.69% 90.29% 28.73% 30.44% 32.98% 35.40% 38.70% 45.46%

Cos 64.86% 70.87% 77.09% 81.53% 86.11% 93.24% 29.62% 32.34% 35.60% 38.36% 41.53% 46.78%

QCos 65.42% 71.34% 77.37% 81.78% 86.25% 93.29% 29.94% 32.60% 35.85% 38.52% 41.70% 46.78%

Cos+Sub-PM 69.52% 75.15% 80.41% 84.14% 87.83% 94.27% 32.22% 34.70% 37.66% 39.91% 42.65% 47.54%

QCos+Sub-PM 69.65% 75.26% 80.43% 84.22% 87.81% 94.25% 32.27% 34.73% 37.66% 39.91% 42.67% 47.54%

QCos+QSub-PM 69.82% 75.38% 80.54% 84.36% 87.91% 94.34% 32.43% 34.89% 37.74% 40.01% 42.77% 47.60%

QCos+QSub-VPM 69.43% 75.24% 80.34% 84.14% 87.86% 94.28% 32.19% 34.75% 37.68% 39.88% 42.56% 47.50%

Table 3.2: 1:N Search results of IJB-S surveillance-to-single protocol. Using both Networks

D and E for representation.

Figure 3.5. We compare our method with the baseline algorithms, Hybrid [125]

and [20] using either raw pixels as DFRVpx (reported in their paper) or deep features

as DFRVdeep (our implementation). We also report the results of the proposed

method applied on the ArcFace features with the prefix Arc-. Figure 3.5 does not

include all the baselines, for a clearer view. The result of [20] is not in the table

because the authors did not provide exact numbers in their paper.

FOCS: The verification results of FOCS dataset are shown in Table 3.5 and Fig-

ure 3.5. O’Toole et al. [70] evaluated the human performance on this dataset. In

the figures, Human refers to human performance with all bodies of target subjects

seen and Human Face refers to performance that only faces of the target subjects

are seen. Here besides baseline algorithms and Hybrid [125], we also compare our

method with [20] in either raw pixels as DFRVpx (reported in their paper) or deep

features as DFRVdeep (our implementation). We also report the results using Arc-
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Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos [25] 54.59% 59.12% 65.43% 71.05% 77.84% 89.16% 25.38% 27.58% 30.59% 33.42% 37.60% 45.05%

Arc-QCos+QSub-VPM 60.86% 65.36% 71.30% 76.15% 81.63% 90.70% 28.66% 30.64% 33.43% 36.11% 39.57% 45.70%

Cos 66.48% 71.98% 77.80% 82.25% 86.56% 93.41% 30.38% 32.91% 36.15% 38.77% 41.86% 46.79%

QCos 66.94% 72.41% 78.04% 82.37% 86.63% 93.43% 30.66% 33.17% 36.28% 38.84% 41.88% 46.84%

Cos+Sub-PM 69.39% 74.55% 80.06% 83.91% 87.87% 94.34% 32.02% 34.42% 37.59% 39.97% 42.64% 47.58%

QCos+Sub-PM 69.57% 74.78% 80.06% 83.89% 87.94% 94.33% 32.16% 34.61% 37.62% 39.99% 42.71% 47.57%

QCos+QSub-PM 69.67% 74.85% 80.25% 84.10% 88.04% 94.22% 32.28% 34.77% 37.76% 40.11% 42.76% 47.57%

QCos+QSub-VPM 69.86% 75.07% 80.36% 84.32% 88.07% 94.33% 32.44% 34.93% 37.80% 40.14% 42.72% 47.58%

Table 3.3: 1:N Search results of IJB-S surveillance-to-booking protocol. Using both Net-

works D and E for representation.

Face features. Similarly, the results of [20] and human performance are not in the

table since they did not provide exact numbers.

3.4.4 Discussions

For the IJB-B dataset, we can see that the proposed system performs con-

sistently better than all the results in [10] and the baseline Cos on identification

accuracy. For open-set metric TPIR/FPIR, the proposed quality-aware cosine sim-

ilarity achieves better results, but the proposed subspace similarity metric still per-

forms better than [10] with a large margin. For the IJB-S dataset, we have similar

observations: the proposed system with subspace-to-subspace similarity metric per-

forms better than Cos on surveillance-to-single and surveillance-to-booking proto-

cols, by relatively large margin. It also achieves better accuracy than Cos on the

surveillance-to-surveillance protocol. We notice that the fusion of Networks D and

71



Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos [25] 8.68% 12.58% 18.79% 26.66% 39.22% 68.19% 4.98% 7.17% 10.86% 15.42% 22.34% 37.68%

Arc-QCos+QSub-PM 8.64% 12.57% 18.84% 26.86% 39.78% 68.21% 5.26% 7.44% 11.31% 15.90% 22.68% 37.83%

Cos(D+E) 9.24% 12.51% 19.36% 25.99% 32.95% 52.95% 4.74% 6.62% 10.70% 14.88% 19.29% 30.64%

QCos+QSub-VPM(D+E) 9.56% 13.03% 19.65% 27.15% 35.39% 56.02% 4.77% 6.78% 10.88% 15.52% 20.51% 32.16%

Cos(D) 8.54% 11.99% 19.60% 28.00% 37.71% 59.44% 4.42% 6.15% 10.84% 15.73% 21.14% 33.21%

QCos(D) 8.62% 12.11% 19.62% 28.14% 37.78% 59.21% 4.46% 6.20% 10.80% 15.81% 21.06% 33.17%

Cos+Sub-PM(D) 8.19% 11.79% 19.56% 28.62% 39.77% 63.15% 4.26% 6.25% 10.79% 16.18% 22.48% 34.82%

QCos+Sub-PM(D) 8.24% 11.82% 19.68% 28.68% 39.68% 62.96% 4.27% 6.25% 10.92% 16.18% 22.39% 34.69%

QCos+QSub-PM(D) 8.33% 11.88% 19.82% 28.65% 39.78% 62.79% 4.33% 6.21% 10.96% 16.19% 22.48% 34.69%

QCos+QSub-VPM(D) 8.66% 12.27% 19.91% 29.03% 40.20% 63.20% 4.30% 6.30% 10.99% 16.23% 22.50% 34.76%

Table 3.4: 1:N Search results of IJB-S surveillance-to-surveillance protocol. D stands for

only using Network D for representation. D+E stands for using both Networks D and E

for representation.

E does not work well on surveillance-to-surveillance protocol, especially at higher

rank accuracy. Such observations are consistent under both tracklets filtering con-

figurations and their corresponding metrics: with Filtering with Top-K average

accuracy and without Filtering with the EERR metric. The proposed system also

outperforms ArcFace with larger margin in surveillance-to-single and surveillance-

to-booking protocols of IJB-S. For MBGC and FOCS datasets, from the tables and

plots we can see that in general, the proposed approach performs better than Cos

baseline, DFRVdeep, DFRVpx and Hybrid.

Figure 3.9 shows the visualization of two templates in IJB-S dataset in PCA-

subspace, which illustrates the advantage of the proposed subspace learning method.

In the plot, each dot corresponds to a sample in the template, where x- and y-
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Methods

MBGC FOCS

WW AW AA WW AW AA

FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1

Arc-Cos [25] 84.40% 92.20% 53.88% 75.00% 32.47% 66.49% 98.18% 99.09% 48.61% 69.44% 48.36% 78.87%

Arc-QCos+QSub-PM 85.32% 92.20% 55.58% 75.00% 32.99% 64.43% 98.64% 99.09% 52.31% 74.07% 50.23% 79.81%

DFRVdeep [20] 78.90% 95.87% 43.69% 71.36% 33.51% 64.95% 87.73% 96.36% 42.13% 78.70% 56.81% 84.51%

Hybrid [125] 77.06% 94.04% 48.06% 79.37% 42.53% 71.39% 95.00% 97.73% 47.69% 79.63% 50.23% 80.75%

Cos 77.52% 92.66% 45.87% 76.94% 43.30% 71.65% 94.09% 96.36% 50.46% 81.48% 57.75% 83.57%

QCos 77.52% 92.66% 47.57% 76.94% 43.30% 71.13% 95.91% 99.09% 53.70% 80.09% 58.22% 83.57%

Cos+Sub-PM 77.98% 94.95% 47.57% 79.13% 41.24% 72.68% 91.82% 97.27% 49.07% 83.33% 54.93% 85.45%

QCos+Sub-PM 77.98% 94.95% 48.30% 78.64% 41.75% 73.71% 95.91% 98.64% 52.78% 82.87% 55.40% 85.92%

QCos+QSub-PM 77.52% 94.95% 48.54% 78.64% 41.75% 73.20% 95.91% 99.09% 52.31% 81.02% 55.87% 85.92%

QCos+QSub-VPM 77.06% 94.95% 48.06% 78.16% 41.24% 72.68% 95.91% 99.09% 53.70% 81.94% 56.34% 85.92%

Table 3.5: Verification results on MBGC and FOCS datasets.

Figure 3.9: Visualization of example templates in IJB-S. Each sample is a dot in the plot

with their first two principal components as the coordinates. Samples with di ≥ 0.7 are

in blue dots and the rest samples are in red dots. Grey line and black line are the

projection of the first subspace basis learned by Sub and QSub respectively.

axes correspond to the first two principal components of the samples, learned from

each template respectively. Relatively high-quality detections with detection score

greater than or equal to 0.7 are represented by blue dots. Relatively low-quality
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detections with detection score less than 0.7 are represented by red dots. The

projections of the first subspace bases learned by Sub and the proposed QSub

onto the PCA-subspace are grey and black straight lines in the plot, respectively.

From the plot we can see that, with quality-aware subspace learning, the subspaces

learned by the proposed method put more weights on the high-quality sample. It

fits the high-quality samples better than the low-quality ones. But the plain PCA

takes each sample into account equally, which is harmful for the representation of

the template.

We also compare our system with other baseline methods as part of an ablation

study, from baseline cosine similarity Cos to the proposed quality-aware subspace-

to-subspace similarity QCos+QSub-VPM. As we gradually modify the method

by including quality-aware cosine similarity QCos, quality-aware subspace learning

QSub and variance-aware projection metric VPM, we can see the performance also

gradually improves, especially for IJB-B and IJB-S datasets.

From the results above, we observe the following:

• The proposed system performs the best in general, which shows the effective-

ness of 1) learning subspace as template representation, 2) matching video

pairs using the subspace-to-subspace similarity metric and 3) utilizing quality

and variance information to compute exemplars, learn subspaces and measure

similarity.

• QCos generally performs better than Cos, which shows that quality-aware

exemplars weigh the samples according to their quality and better represent
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the image sets than plain average exemplars.

• In most of the cases, Cos+Sub-PM achieve higher performance than Cos.

It implies that a subspace can utilize the correlation information between

samples and is a good complementary representation of exemplars as global

information.

• QCos+QSub-PM performs better than QCos+Sub-PM in general. It

shows that similar to QCos, we can learn more representative subspaces based

on the quality of samples.

• QCos+QSub-VPM works better than QCos+QSub-PM in most of the

experiments. It implies that by considering the variances of bases in the sub-

spaces, VPM similarity is more robust to variations in the image sets.

• The improvement of the proposed system over the compared algorithms is

consistent under both with filtering and without filering configurations on

the IJB-S dataset. It shows that our method is effective for both high-quality

and low-quality tracklets in surveillance videos.

• For IJB-S, the performance on surveillance-to-surveillance protocol is in gen-

eral lower than the performance on other protocols. This is because the gallery

templates of this protocol are constructed from low-quality surveillance videos,

while the remaining two protocols have galleries from high-resolution still im-

ages.

• The fusion of Networks D and E does not perform as well as single Network D
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on surveillance-to-surveillance protocol, especially at higher rank accuracy. It

is probably because of the low-quality galleries in this protocol which Network

E cannot represent well.

• On IJB-S, the proposed method performs better than state-of-the-art network

ArcFace [25] in general, especially on surveillance-to-single and surveillance-

to-booking protocols, which shows the discriminative power of the features

from the proposed networks. ArcFace still performs better on surveillance-to-

surveillance protocol. But the results also show that using the quality-aware

subspace-to-subspace similarity improves the performance for ArcFace features

as well.

• On MBGC and FOCS, ArcFace performs better in the walking-vs-walking pro-

tocol but Network D outperforms ArcFace on more challenging protocols like

activity-vs-activity. Also, by applying the proposed subspace-to-subspace sim-

ilarity on both features, the performance consistently improves, which shows

its effectiveness on different datasets and using different features.

• For the FOCS dataset, the performance of our system surpasses the human

performance, which again demonstrates the effectiveness of the proposed sys-

tem.
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3.5 Concluding Remarks

In this chapter, we presented an automatic face recognition system for uncon-

strained video-based face recognition tasks. The proposed system learns subspaces

to represent video faces and matches video pairs by subspace-to-subspace similar-

ity metrics. We evaluated our system on four video datasets and the experimental

results demonstrate the superior performance of the proposed system.
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Chapter 4: Hybrid Dictionary Learning and Matching for Video-based

Face Verification

4.1 Introduction

As we discussed in Chapters 1 and 3, unconstrained video-based face verifi-

cation is still an open problem due to variations present in video frames including

changes in pose, expression, illumination, blurring and low quality of videos. In

Chapter 3, we assume that the faces are associated into sets where the temporal or-

ders are ignored. But once the faces are associated by a face tracker into sequences,

it is important to also exploit the inherent temporal information available in these

sequences.

Over the last decade, generative and discriminative models based on sparse

representations have received significant attention in computer vision and pattern

recognition [32, 62, 76, 84, 114, 115, 117, 118]. In sparse representation, given sam-

ples and a redundant dictionary, the goal is to represent the samples as sparse

linear combinations of the dictionary atoms. One of the main advantages of sparse

representation-based classification methods is that they are robust to noise. Tra-

ditional dictionary learning methods are specifically designed for still images. Lin-
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ear Dynamical Systems (LDSs) play an important role in representing sequential

data. A wide variety of spatio-temporal signals has been modeled as realizations of

LDSs [101]. The idea of sparse representation can be easily incorporated into an

LDS model as well. Since sparse representation methods model the video genera-

tively, no pretraining on external data is needed, which is an advantage compared

with Long-Short Term Memory (LSTM) [28] and other recurrent neural network-

based approaches that require a large-scale labeled training dataset to learn robust

representations. Also, based on the observations made in [98], deep features are

moderately sparse. This property guarantees that sparse representation is also rel-

evant for deep features.

Classic video-based face recognition algorithms based on sparse representation

were presented in [20, 21]. In order to deal with large pose and illumination vari-

ations in video sequences, these algorithms cluster the video frames and learn the

sparse representation and dictionary for each cluster. The dictionary of the whole

video is built by concatenating these dictionaries from different clusters together.

The method works well for raw pixels. But in the context of DCNN features, the

shortcomings of this method are: 1) Clustering removes the temporal order of video

frames. So the dictionaries do not account for temporal correlation. 2) Reconstruc-

tion error is used as the similarity metric for recognition tasks. However, DCNN

features do not necessarily lie in the Euclidean space because of their high non-

linearity. Thus, reconstruction error may not reflect the actual distance between

videos.

In this chapter, we propose a hybrid dictionary learning and matching ap-
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proach for the unconstrained video-based face verification task, in order to overcome

the shortcomings of the method presented in [20,21], and utilize the temporal infor-

mation in the videos. The proposed method learns both structural and dynamical

dictionaries from videos. Structural dictionaries are learned based on the struc-

ture of deep representations in videos. Dynamical dictionaries and LDSs are jointly

learned using the proposed Linear Dynamical Dictionary Learning (LDDL) algo-

rithm from video sequences. Similar to the method in Chapter 3, with the learned

dictionaries, the similarity between videos is measured by subspace-to-subspace sim-

ilarity instead of the reconstruction error, where the subspaces are spanned by the

dictionaries and characterize the local structures of the deep features in videos.

We evaluate our method on MBGC, FOCS and IJB-A datasets to demonstrate

that the proposed method performs better than deep learning-based baselines and

other state-of-the-art approaches.

4.2 Related Work

Sparse Representation and Dictionary Learning: The K-SVD algo-

rithm [2] is one of the most popular algorithms used for learning sparse represen-

tation from data. It learns the dictionary using an optimization algorithm which

alternates between sparse coding and dictionary update steps. Besides generative

methods, the design of supervised discriminative dictionaries has also received sig-

nificant attention [51, 64, 77, 120, 123]. The advantages of methods in this category

are: 1) the dictionaries can be learned from much smaller set of training data than
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needed for deep learning approaches, and 2) they can be trained in an unsupervised

manner.

Linear Dynamical Systems (LDS): Linear Dynamical Systems have been

used to model the evolution of dynamic textured scenes [29, 85]. They offer lower-

dimensional representations for videos and have been extensively used for activity

modeling, clustering [104] and characterizing the dynamic textures [85]. In [47], each

video sequence is modeled as an LDS. Then dictionaries are learned based on the

observability matrices of these LDSs. Here the sparsity comes from the generation

of observability matrices of LDSs. A sparse coding method based on the LDS model

for dynamic textures was proposed in [33], where the LDS was learned from every

training video sequence and each testing sequence is modeled as a sparse linear

combination of these LDSs. This method is different from the classical dictionary

learning method in that sparsity comes from the sparse combination of different

dictionaries, not from the combination of atoms in a specific dictionary.

The proposed approach combines the advantages of deep learning, dictionary

learning and the LDS model, and is able to learn a compact, robust and discrimi-

native representation for faces in videos for verification.

4.3 Method

An overview of the proposed dictionary learning and matching algorithm for

face verification is shown in Figure 4.1. Given a pair of face videos, we first ex-

tract their deep features using DCNN models proposed in [14]. For each video, the
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Figure 4.1: Overview of the proposed method.

structural dictionary is learned by solving the basic dictionary learning problem.

The dynamical dictionary is learned using the proposed LDDL algorithm. Sub-

spaces spanned by these dictionaries and sample means of the videos (also know as

exemplars) are used to produce the similarity scores between the video pair by a

subspace-to-subspace similarity metric. Finally, the scores from the structural dic-

tionaries and dynamical dictionaries are fused to produce the final similarity score

between two videos.

In the following sections, we discuss the proposed dictionary learning and

dictionary-based face matching algorithms in detail.
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4.3.1 Dictionary Learning from Deep Features

The performance of a video-to-video matching algorithm depends on how good

the learned representation is. The basic problem formulation for video-based face

verification is: given faces from the input video sequence V = {I1, I2, . . . , IL},

Ii ∈ RC×C , we need to find a robust and discriminative representation for the

face appearing in the video. A DCNN model can provide a nonlinear mapping

φ : RC×C → SM that maps the face Ii into a feature space as φ(Ii), which can

be more discriminative. Let Y =

[
φ(I1), · · · , φ(IL)

]
be the sequence of deep rep-

resentations. Then the problem now reduces to finding a good representation of

Y.

In this work, we use sparse dictionary leaning-based approach to augment the

deep representations Y and find a meaningful representation. This can be done

in two ways. One way ignores the order of features in Y and considers them as

a set of features. The dictionary learned in this way focuses on characterizing

the structure of the feature set. We call it the structural dictionary Ds. The

other way treats Y as an ordered sequence of features and tries to capture the

temporal correlation of the features in Y. This is very important for video-based

face verification. We call the resulting dictionary as dynamical dictionary Dd. In

our approach, we extract meaningful representations from the deep representations

by learning both dynamical and structural dictionaries.

Given a video feature sequence Y ∈ RM×L, the Structural Dictionary Learning

(SDL) problem is to learn the structure of Y by solving the following optimization
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problem

min
Ds,X
‖Y −DsX‖2F s.t ‖xi‖0 ≤ T, dTi di = 1 ∀i, (4.1)

where ‖·‖F is the Frobenius norm, ‖x‖0 is the `0 norm of x which counts the number

of nonzero elements in x, Ds =

[
d1, . . . ,dS

]
∈ RM×S is the structural dictionary of

the video, X =

[
x1, . . . ,xN

]
∈ RS×L are the sparse coefficients, S is the number of

atoms in the dictionary and T is a sparsity parameter. The dictionary Ds is learned

such that the columns of Y are best represented by the sparse linear combination

of atoms in Ds. This problem is the classical dictionary learning problem and can

be solved by the K-SVD algorithm [2].

4.3.2 Linear Dynamical Dictionary Learning

In order to learn the dynamical dictionary Dd that captures the temporal in-

formation from the video, we introduce LDS into the dictionary learning framework

to model the temporal correlation between frames in a video sequence. The LDS

for the sequence can be defined as:

yt = Bzt + wt

zt+1 = Azt + vt, (4.2)

where yt is the observed feature, zt ∈ RS is the hidden state of the LDS model,

A ∈ RS×S is the transition matrix, B ∈ RM×S is the observation matrix. Here, wt ∈

RM and vt ∈ RS are measurement and process noise, respectively. In this model,

the transition matrix A is introduced to model the linear relationship between the
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states of adjacent samples and essentially encodes the temporal information between

samples.

If we consider the dynamical dictionary Dd as the observation matrix B in the

LDS model and combine the basic dictionary learning problem and (4.2) together,

the new model would inherit the advantages of both LDS and dictionary learning

models. Though in video-based face verification task, the detected faces of the target

subject across the entire video contain complex motions from facial expression, head

movements, and errors introduced by the face detector and tracker which cannot

be modeled by a single linear model. We approach this problem by assuming that

after splitting the video into blocks and each with a relatively short length, the

motions of faces can be regarded as piece-wise linear. Within each video block, the

face motion and detection error motion can be considered to be stationary. Thus,

suppose we are given a DCNN feature sequence Y, it is first partitioned into N

blocks uniformly so that each block corresponds to a local temporal correlation in

the video, as Y = [Y1, · · · ,YN ] ∈ RM×
∑
Ln .

After partitioning the video, the proposed video-specific dictionary learning

approach is defined as follows

min
Dd,X,A

N∑
n=1

‖Yn −DdX
n‖2F + η

N∑
n=1

‖Xn
1 −AnXn

0‖2F + γ
N∑
n=1

‖An‖2F

s.t. ‖xni ‖0 ≤ T, di
Tdi = 1 ∀i, n (4.3)

where di is the ith column of Dd ∈ RM×S, which is the overall dynamical dictionary.

Xn ∈ RS×Ln is the sparse coefficients for each partition. Xn
0 ∈ RS×(Ln−1) and

Xn
1 ∈ RS×(Ln−1) contains the first and last Ln− 1 columns of Xn. An ∈ RS×S is the
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video specific transition matrix.

Simultaneously solving for Dd, Xn and An is intractable. Instead, we introduce

an auxiliary matrix Wn ∈ RS×Ln into the optimization problem and solve

min
Dd,X,A,W

N∑
n=1

‖Yn −DdX
n‖2F + β

N∑
n=1

‖Xn −Wn‖2F

+ η

N∑
n=1

‖Wn
1 −AnWn

0‖2F + γ

N∑
n=1

‖An‖2F

s.t. ‖xni ‖0 ≤ T ,dTi di = 1 ∀i, n (4.4)

where xni is the ith column of Xn, Wn is the auxiliary matrix with the same di-

mension as Xn, Wn
0 and Wn

1 contain the first and last Ln − 1 columns of Wn,

respectively.

The idea of introducing these auxiliary matrices is to separate the LDS term

from the sparse coding term in order to make the optimization more tractable.

We use the continuation parameter β to link the sparse coefficients Xn with the

LDS state coefficients Wn. The parameter β is increased in each iteration until it

strongly clamps Xn to Wn. Similar methods have been used previously [122]. Note

that in our formulation, we learn a single subject-specific dynamical dictionary Dd.

However, the transition matrices An are learned separately from each video block.

4.3.3 Optimization of LDDL

Here we propose an iterative algorithm to solve the optimization problem

in (4.4). After introducing auxiliary matrices, we solve for Dd, Xn, Wn and An

iteratively by optimizing with respect to only one variable and fixing the others.
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We iterate these steps until the algorithm converges:

4.3.3.1 Solving for X

In this step, we fix Dd and Wn and solve for Xn. Note that given Dd, the sparse

coefficients Xn of different video blocks are independent. Thus we can solve for Xn

independently. For each block, it turns into the following optimization problem

min
Xn
‖(K−1)T (DT

dYn + βWn)−KXn‖2F

s.t. ‖xni ‖0 ≤ T ∀i (4.5)

where UΛUT is the eigenvalue decomposition of DT
dDd+βI, K = Λ

1
2 UT , which can

be efficiently solved using the Orthogonal Matching Pursuit (OMP) algorithm [74].

4.3.3.2 Solving for W

When Dd,X
n and An are fixed, the update for Wn is obtained by solving the

following linear system of equations

Rw̃ = βx̃. (4.6)

where x̃ =

[
xT1 , . . . ,x

T
Ln

]T
∈ RLnS is the vectorized version of Xn, R = βI+ηÃT

2 Ã2,

Ã2 = I− Ã and

Ã =



I

An

. . .

An 0


∈ RLnS×LnS
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is the reformulated version of An. Note that R is positive definite. Hence, this equa-

tion can be solved efficiently by conjugate gradient methods [43]. After obtaining

the solution of (4.6), we simply reshape it into Wn.

4.3.3.3 Solving for A

When Wn is fixed, we obtain the update step for An by an analytical solution

An = Wn
1Wn

0
T

(
Wn

0Wn
0
T +

γ

η
I

)−1
. (4.7)

4.3.3.4 Solving for Dd

Different from Xn, Wn and An which are unique for each video block, Dd is

shared by the entire video. When Xn and An are given, following the atom update

procedure in [2], we update the entire dictionary Dd column by column—updating

one atom di at a time as

di =
Ỹαi

‖Ỹαi‖2
. (4.8)

until it converges, where Ỹ = Y − ∑
j 6=i

djα
T
j , αT

j is the jth row of X and

X = [X1, · · · ,XN ] ∈ RS×
∑
Ln .

The entire LDDL algorithm is summarized in Algorithm 1.

4.3.4 Dictionary-Based Similarity Metric

After representing video sequences as dictionaries, traditional sparse representation-

based methods usually use the reconstruction error as the similarity metric for recog-

nition tasks as in [20,21]. As we mentioned above, DCNN features do not necessarily
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Algorithm 1: LDDL algorithm.

Data: Video Sequence:

Y = [Y1, · · · ,YN ].

Initialize Dd using random samples;

for n = 1 : N do

Initialize Xn using OMP [74], initialize Wn by zeros, initialize An based

on initialized Xn;

end

repeat

for n = 1 : N do

Update Xn by solving (4.5), update Wn by solving (4.6), update An

by (4.7) ;

end

Update Dd by (4.8);

Iter = Iter + 1;

until Convergence;

Result: Dynamical Dictionary Dd, transition matrices {An}, sparse

coefficients {Xn}.

lie in the Euclidean space because of the nonlinearity introduced by activation func-

tions (e.g., sigmoid, tanh, ReLU, etc). Therefore, the reconstruction error is not a

good measurement for video sequences in deep features.

Similar to the method introduced in the previous chapter, we model each

video using the orthogonal subspace spanned by the learned dictionary of the video.
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Even though the features are highly nonlinear, since these local structures on the

manifold can be considered as Euclidean by approximation, subspaces can still model

the videos properly.

Suppose dictionaries D1 ∈ RM×S1 and D2 ∈ RM×S2 are learned from a pair of

videos Y1 ∈ RM×L1 and Y2 ∈ RM×L2 in deep feature sequences, we compute two

orthonormal bases P1 ∈ RM×S1 and P2 ∈ RM×S2 corresponding to the dictionaries

using the QR decomposition. We also denote their sample means (i.e. exemplar) as

e1 = 1
L1

∑L1

i=1 y1i and e2 = 1
L2

∑L2

i=1 y2i. With the orthonormal bases and exemplars,

the subspace-to-subspace similarity can be computed as:

sM(P1,P2) = cos θ0 +

√√√√1

r

r∑
k=1

cos2 θk

=
eT1 e2

‖e1‖2‖e2‖2
+

√
1

r
‖PT

1 P2‖2F (4.9)

where cos θ0 is the cosine similarity between exemplars and {θk}ri=1 are the principal

angles which are the minimal angles between any two basis vectors of the subspaces.

Similar to Chapter 4, instead of using cos2 θ0 as in [109] where the sign information

is lost, we use cos θ0 in our formulation. Accordingly, we also take the square root

of the principal angle term to keep the scale consistent.

4.3.5 Fusion

After we learn the structural dictionaries {Dsi} and dynamical dictionaries

{Ddi} as well as subspaces {Psi} and {Pdi}, from the videos Y1 and Y2, respec-

tively, the overall video-to-video similarity is computed by the weighted sum of the

subspace-to-subspace similarity between the structural and dynamical dictionary
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pairs respectively as

s(Y1,Y2) = λ1sM(Ps1,Ps2) + λ2sM(Pd1,Pd2). (4.10)

In the experiments, we empirically set λ1 = λ2 = 0.5.

4.4 Experiments

In this section, we present the video-based face verification results of the pro-

posed method using three challenging datasets: MBGC, FOCS and IJB-A.

4.4.1 Implementation Details

We employ [82] for face detection and facial landmark detection. The MBGC

and FOCS datasets contain only a single person in a video. Hence, we directly use

the face detection results in our method without association. For the IJB-A datasets,

because there are multiple people appearing in a video, we compare the detected

face bounding boxes with the ground truth for further improving the detections.

For all datasets, deep representations are first extracted using the DCNN ar-

chitecture presented in [14]. TPE, a metric learning method proposed in [86], is used

to learn an embedding from our external training data and reduce the dimensionality

of testing features to 128. Since MBGC and FOCS datasets do not provide training

data, we use a subset of external training dataset [4] with 167,877 face images of

3,605 unique subjects. We did not use the training data provided by the IJB-A pro-

tocol. To compare with state-of-the-art methods, we also apply our method on the

features from the ResNet-101 network trained by the crystal loss introduced in [79].
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(a) Walking-vs-Walking (b) Activity-vs-Walking

(c) Activity-vs-Activity

Figure 4.2: Verification results for the MBGC dataset

Given a video (for MBGC and FOCS datasets) or a template containing both still

images and video frames (for IJB-A dataset), we learn the dictionaries using the

proposed SDL and LDDL algorithms. The corresponding subspaces are computed

by QR decomposition from the dictionaries. The similarity scores between video or

template pairs are computed using the subspace-to-subspace similarity metric. For

template-based IJB-A dataset, we modify the LDDL algorithm so that the still im-

ages are also considered when the dynamical dictionaries are updated. The temporal
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(a) Walking-vs-Walking (b) Activity-vs-Walking

(c) Activity-vs-Activity

Figure 4.3: Verification results for the FOCS dataset

correlation constraints are enforced only for video frames.

As we discussed in Section 4.3, to enable the LDS to properly model video sub-

segments and to strike a balance between speed and accuracy, we split the videos

uniformly into smaller fixed length blocks in with motions are consistent. In MBGC

and FOCS datasets, since there are no scene changes in a single video, we uniformly

split the videos and empirically fix the block length to be 10 frames. Low quality

frames are filtered out based on face detection scores. In IJB-A dataset, the block
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length is five frames, which reduces the influence of scene changes in a block. For

LDDL, the dictionaries are shared over all blocks from the same video while the

transition matrices from different blocks are independent.

In the following section, we compare the performance of the proposed method

along with several baseline methods and other dataset specific approaches. All

the following baseline methods use deep representations extracted from the same

network and with the same face detector, unless otherwise specified.

• Cosine: We compute the similarity scores directly using the cosine similarity

between sample means of deep representations of video faces.

• DFRVdeep: We implement the adapted version of the video-based face recog-

nition method [20], which uses deep representations instead of pixel intensity.

• RE: We compute the similarity scores using the reconstruction error with

the learned structural dictionary, to compare with the subspace-to-subspace

similarity.

• AVDL: We compute the similarity scores using the subspace-to-subspace sim-

ilarity metric with dynamical dictionary learned by the temporal model based

method proposed in [111], to compare with the proposed LDDL algorithm.

• SDL: We compute the similarity scores using the subspace-to-subspace simi-

larity metric with the structural dictionary.

• LDDL: We compute the similarity scores using the subspace-to-subspace sim-

ilarity metric with the dynamical dictionary learned by the proposed LDDL
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Methods

TAR@FAR on MBGC TAR@FAR on FOCS

WW AW AA WW AW AA

1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

Cosine 63.30% 83.49% 28.64% 58.50% 25.26% 60.31% 90.00% 97.72% 28.24% 64.81% 38.03% 75.59%

DFRVdeep 64.22% 83.95% 28.64% 58.01% 20.10% 59.79% 85.45% 94.09% 32.87% 67.13% 40.38% 69.95%

RE 63.76% 83.49% 30.58% 62.38% 21.91% 59.02% 68.18% 88.18% 25.00% 61.57% 21.13% 66.20%

AVDL 60.09% 81.65% 25.24% 58.25% 16.49% 58.76% 78.64% 93.64% 24.54% 64.35% 28.64% 71.36%

SDL 65.14% 84.86% 29.85% 59.71% 26.29% 62.89% 89.55% 96.36% 31.48% 68.98% 40.38% 77.93%

LDDL 65.14% 84.40% 29.61% 60.44% 27.32% 63.92% 89.55% 96.82% 31.94% 68.98% 43.66% 76.53%

Hybrid 65.60% 84.86% 29.61% 60.92% 27.58% 62.11% 90.00% 96.82% 31.48% 68.52% 42.72% 77.93%

Arc-Cosine [25] 83.95% 94.50% 51.46% 77.18% 26.80% 69.59% 98.18% 99.09% 43.06% 70.37% 38.50% 70.89%

Arc-Hybrid 84.40% 94.50% 53.88% 77.91% 30.67% 69.85% 98.64% 99.09% 47.22% 73.61% 38.50% 69.01%

CL-Cosine 77.06% 92.66% 46.36% 77.18% 42.27% 71.13% 95.00% 97.73% 46.76% 78.24% 48.83% 80.28%

CL-Hybrid 77.06% 94.04% 48.06% 79.37% 42.53% 71.39% 95.00% 97.73% 47.69% 79.63% 50.23% 80.75%

Table 4.1: Verification results for MBGC and FOCS datasets

algorithm.

• Hybrid: We compute the similarity scores by fusing the scores from SDL and

LDDL.

• CL-: Prefix of using features from the ResNet-101 network trained by crystal

loss [79].

4.4.2 Evaluation Results

MBGC: In the MBGC protocol, the verification task is specified by two sets: target

and query. The protocol requires the algorithm to match each target sequence with

all query sequences. Three verification experiments are defined: walking-vs-walking
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(WW), activity-vs-activity (AA) and activity-vs-walking (AW). The verification re-

sults for the MBGC dataset are shown in Table 4.1 and Figure 4.2. We compare our

method with the baseline algorithms and [20] using raw pixels as features (DFRVpx)

.The results of [20] are not included because they did not provide exact numbers in

their paper. We also apply our method on features from the state-of-the-art network

ArcFace [25]; results from ArcFace are shown with the prefix Arc-.

FOCS: Like MBGC, FOCS specifies three verification protocols: walking-vs-walking,

activity-vs-walking, and activity-vs-activity. In these experiments, 481 walking

videos and 477 activity videos are chosen as query videos. The size of target sets

ranges from 109 to 135 video sequences. O’Toole et al. [70] evaluated the accuracy

of humans recognizing people in the UT Dallas dataset. Human performance was

reported for both through static and dynamic presentations of faces and bodies. The

verification results of FOCS dataset are shown in Table 4.1 and Figure 4.3. Here

we also compare our method with [20] in raw pixels as DFRVpx. In the figures,

Human refers to human performance with all bodies of target subjects seen and

Human Face refers to performance that only faces of the target subjects are seen.

Similarly, the results of [20] and human performance are not included since they

didn’t provide exact numbers. Similar to MBGC, we also apply our method on the

ArcFace features, the results of which are shown with the prefix Arc-.

IJB-A: Table 4.2 shows the verification results for IJB-A dataset. In this dataset,

our method is compared with results in [1, 7, 65,86,93,116].

From the results on the MBGC and FOCS datasets, we observe the following:
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Methods
TAR@FAR

0.1% 1% 10%

[1] - 78.70% 91.10%

[65] 72.50% 88.60% -

[86] 81.30% 90.00% 96.40%

[7] 92.10% 96.80% 99.00%

[116] 92.00% 96.20% 98.90%

[93] 95.25% 97.50% -

Cosine 76.95% 88.73% 96.04%

DFRVdeep 58.55% 83.31% 93.83%

RE 64.63% 85.37% 94.35%

AVDL 34.86% 81.44% 94.83%

SDL 78.00% 89.60% 96.32%

LDDL 78.58% 89.67% 96.51%

Hybrid 78.30% 89.65% 96.45%

CL-Cosine 94.73% 97.01% 98.46%

CL-Hybrid 95.04% 97.18% 98.56%

Table 4.2: Verification results for the IJB-A dataset

• In general, the proposed hybrid dictionary learning and matching approach

performs better than cosine similarity, and reconstruction error-based meth-

ods, which shows the effectiveness of 1) learning discriminative information

using structural and dynamical dictionaries which leverages the correlation of

faces in videos and 2) matching video pairs using the subspace-to-subspace

similarity metric, without any extra training data.
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• LDDL performs better than AVDL consistently, which implies that the pro-

posed method learns improved dynamical dictionaries than [111].

• In general, subspace-to-subspace similarity metric performs better than the

reconstruction error-based metric, especially at low FARs, which shows that

subspace-to-subspace similarity metric is more robust in difficult cases.

• The hybrid approach achieves better performance than single SDL and LDDL

approaches in general. This implies that since the dictionaries are learned in

different ways and capture different information, the error patterns of simi-

larity scores computed from different dictionaries are complementary. Thus

fusion can make consistent improvement on different datasets.

• Since [20] learns dictionaries from the raw pixels, the ROC curve is close to

random guess in challenging protocols like activity-vs-activity and activity-

vs-walking. In contrast, much better performance can be achieved by using

the same algorithm using deep features, or even the cosine similarity between

deep features, which shows the discriminative power of deep representations

compared to raw pixels. In addition, the proposed approach can further im-

prove the performance by exploiting the structural and temporal information

to learn a more robust representation.

• The results using crystal loss features are comparable to the results using

ArcFace features. Crystal loss features perform better than ArcFace features

in more challenging protocols like activity-vs-walking and activity-vs-activity.
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The proposed method shows consistent improvements on both features.

For the IJB-A dataset, the proposed method using crystal loss features per-

forms better than other methods and baselines and is comparable to state-of-the-art

result recently reported in [93]. The margin between the proposed method and the

baseline methods in IJB-A is smaller compared to the MBGC and FOCS dataset

because of the following reason: the videos in this protocol are much shorter than

the MBGC and FOCS datasets since they consist of only I-frames. Also, some of the

videos contain scene changes which cause the temporal correlation between frames

to be much weaker than the MBGC and FOCS datasets. So it is difficult for the

dynamical dictionary to extract helpful temporal information.

We wish to point out that, our dictionary learning algorithm usually converges

within 20 iterations. The required number of atoms for each dictionary is small,

which makes it computationally efficient. Since traditional reconstruction error-

based methods like [20] perform inference of the sparse code (involves OMP) between

every video pair, they are more time-consuming than the proposed approach which

computes subspace-to-subspace similarity between videos.

4.5 Concluding Remarks

In this chapter, we proposed a dictionary learning and matching approach

using deep representations for unconstrained video-based face verification. The

proposed method learns structural and dynamical dictionaries from faces in video

frames. A subspace-to-subspace similarity metric is defined for comparisons between
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videos. We evaluated our approach on three video datasets. The experiment results

demonstrate the effectiveness of the proposed approach.
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Chapter 5: Uncertainty Modeling of Contextual-Connections between

Tracklets for Unconstrained Video-based Face Recogni-

tion

5.1 Introduction

In this chapter, we continue to study the problem of video-based face recogni-

tion. Let us first look at a face recognition example in IJB-S. As shown in Figure 5.1,

a single face is hard to recognize. But by utilizing the contextual information like

body appearance, we may use the identity information obtained from the frontal

face S4 to help recognize the profile face S1, which is very difficult to recognize

otherwise. Thus an effective idea to improve the performance for unconstrained

video-based face recognition is to leverage some video contextual information, such

as body appearance and spatial-temporal correlation between person instances, to

propagate the identity information from high-quality faces to low-quality ones.

This idea has been explored using graph-based approaches [30,46,92]. Graphs

are constructed with nodes to represent one or more frames (tracklets) of person

instances and edges to connect tracklets. However, a major limitation of these ap-

proaches is that their graphs are pre-defined and the edges are fixed during informa-
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Still Face Galleries

Samples from Video

Frame 1 Frame 2

S1

S2 S3

S4

G1 G2 G3

Figure 5.1: An example of video-based face recognition problem consisting of three still

face gallery subjects and four samples from the videos. Orange arrows show positive con-

nections from body appearance similarity. Black arrows indicate negative connections

constructed from co-occurrence information. Blue arrows represent the facial similarities

to the ground truth galleries. The thicker the arrows, the stronger the connections. The

red cross indicates an misleading connection. A graph with fixed connections may prop-

agate erroneous information through these misleading connections. (The figure is best

viewed in color.)

tion propagation. A misleading connection may propagate erroneous information.

As shown in Figure 5.1, these methods may propagate the identity information

between S2 and S3 based on their similar body appearance, which might lead to

erroneous propagation.

To address the problem, we propose a graphical-model-based framework called

Uncertainty-Gated Graph (UGG) to model the uncertainty of connections built us-
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ing contextual information. We formulate UGG as a conditional random field on the

graph with additional gate nodes introduced on the connected graph edges. With a

carefully designed energy function, the identity distribution of tracklets1 is updated

by the information propagated through these gate nodes during inference. In turn,

these gate nodes are adaptively updated according to the identity distributions of

the connected tracklets. The uncertainty gate nodes consist of two types of gates:

positive gates that control the confidence of the positive connections (encourage

the connected pairs to have the same identity) and negative gates that control neg-

ative ones (discourage pairs to have the same identity). It is worth noting that

negative connections can significantly contribute to performance improvements by

discouraging similar identity distribution between clearly distinct subjects, e.g., two

people in the same frame2. Explicitly modeling positive/negative information sepa-

rately allows our model to consider different contextual information in challenging

conditions, and leads to improved uncertainty modeling.

Our approach can be directly applied at inference time, or plugged onto an

end-to-end network architecture for supervised and semi-supervised training. The

proposed method is evaluated on two challenging datasets, the Cast Search in Movies

(CSM) dataset [46] and the IARPA Janus Surveillance Video Benchmark (IJB-S)

dataset [52] and shown to yield superior performance compared to existing methods.

1We follow the same definition of tracklets with [46].
2In Figure 5.1, the co-occurrence of S3 and S4 in the same frame of the video is a strong prior

to indicate their different identities.
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Figure 5.2: Overview of the proposed method. Given still face galleries and probe videos,

we first detect all the faces and corresponding bodies from the videos. Faces are associated

into tracklets by a tracker. Face features for galleries and tracklets, and body features for

tracklets are extracted by corresponding networks. Similarities are computed from these

flattened features. Facial and body similarities, together with cannot-link constrains from

the detection information are fed into the proposed UGG model. After inference, the

output is used for testing, or generating the loss for end-to-end training.

5.2 Related Work

Label Propagation: Label propagation [132] has many applications in com-

puter vision. Huang et al. [46] proposed an approach for searching person in videos

using a label propagation scheme instead of trivial label diffusion. Kumar et al. [58]

proposed a video-based face recognition method by selecting key-frames and prop-

agating the labels on key-frames to other frames. Sheikh et al. [91] used label

propagation to reduce the runtime for semantic segmentation using random forests.

Tripathi et al. [103] introduced a label propagation-based object detection method.

Conditional Random Field: The Conditional Random Field (CRF) [59]

104



is a commonly used probabilistic graphical models in computer vision research.

Krähenbühl et al. [56] is one of the early researchers to use CRF for semantic

segmentation. Chen et al. [18, 19] proposed a DCNN-based system for semantic

segmentation and used a CRF for post-processing. Zheng et al. [129] further intro-

duced an end-to-end framework of a deep network with a CRF module for semantic

segmentation. Du et al. [30] used a CRF to solve the face association problem in

unconstrained videos.

Graph Neural Networks: A Graph Neural Network (GNN) [42, 88] is a

neural network combined with graphical models such that messages are passed in

the graph to update the hidden states of the network. Shen et al. [92] used a GNN

for person re-identification problem. Hu et al. [44] introduced a structured label

prediction method based on a GNN, which allows positive and negative messages

to pass between labels guided by external knowledge. But the graph edges are

fixed during testing. Wang et al. [110] introduced a zero-shot learning method

using stacked GNN modules. Lee et al. [60] proposed another multi-label zero-shot

learning method by message passing in a GNN based on knowledge graphs.

Most of the graph-based methods mentioned above only allow positive mes-

sages to pass in the graph, and all of them rely on graphs with fixed edges during

testing.
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5.3 Method

The overview of the method is shown in Figure 5.2. For each probe video, faces

are detected and associated into tracklets. Initial facial similarities between gallery

images and probe tracklets are computed by a still face recognizer. Connections

between tracklets are generated based on the similarity of their facial, body ap-

pearances and their spatio-temporal relationships. Then, we build the UGG where

these tracklets and connections act as nodes and edges. The connections between

tracklets are modeled as uncertainty gates between nodes. The inference can be

efficiently implemented by message passing to optimize the energy function of the

UGG module.

5.3.1 Problem Formulation

For a video-based face recognition problem, suppose we have C gallery subjects

and a probe video. The faces in this video are first detected and tracked into N

tracklets. For each tracklet, we compute C similarity scores to gallery subjects.

Suppose we are given the gallery-to-tracklet similarity Sgt =

[
sgtli

]
∈ RC×N and

the tracklet-to-tracklet similarity Stt =

[
sttij

]
∈ RN×N , where sgtli is the similarity

between the gallery l and the tracklet i, sttij is the similarity between tracklet i and

j. Furthermore, a cannot-link matrix Ltt =

[
Lttij

]
∈ {0, 1}N×N is given such that

Lttij =


1 identities of tracklet i and j are different

0 no constraint

(5.1)
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A cannot-link exists between tracklet i and j if they absolutely do not belong to

same gallery subject.

Here, Sgt provides prior identity information, Stt provides the positive contex-

tual information between tracklets and Ltt provides the negative contextual infor-

mation. By combining these information, the output gallery-to-tracklet similarity

is computed as

S̃gt = UGG(Sgt,Stt,Ltt) ∈ RC×N (5.2)

where UGG(·) is a function based on the proposed Uncertainty-Gated Graph. In

the following sections, we introduce the model in detail.

5.3.2 Uncertainty-Gated Graph

First, given a video withN tracklets detected, a graph G = (V , E) is built where

each node corresponds to a tracklet. Node i is only connected to its neighbors N (i).

Based on the graph G, we define a random field X = {X1, . . . , XN} associated to

nodes V . Xi ∈ L = {1, . . . , C} is the label variable of tracklet i. Xi = l means

gallery subject l is assigned to tracklet i. We call these nodes as sample nodes.

We further add gates nodes to each of the edges in E attached with a random

field Y = {Y p
i→j, Y

n
i→j}. In each gate node i → j, we place two gate variables,

the positive gate Y p
i→j ∈ {0, 1} and the negative gate Y n

i→j ∈ {0, 1}, to control the

connections between tracklets i and j.
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5.3.2.1 Energy Function

The energy function of the UGG module is defined as

E(x,y) =
∑
i∈V

ψxu(xi) +
∑

i∈V,j∈N (i)

[ψpu(y
p
i→j) + ψnu(yni→j) + ψpt (xi, xj, y

p
i→j) + ψnt (xi, xj, y

n
i→j)]

(5.3)

The unary potential for tracklet i is defined based on the identity information

Sgt as

ψxu(xi = l) = −Tgt · sgtli (5.4)

where Tgt is the temperature factor. The penalty will be low if identity information

sgtli is strong.

We also define the unary potential for the positive gate based on relationship

information Stt as

ψpu(y
p
i→j = 1) = −Ttt · sttij (5.5)

where Ttt is the corresponding temperature factor. Penalty of an open positive gate

at edge i→ j will be low if positive connection sttij is strong.

The unary potential for the negative gate is defined as

ψnu(yni→j = k) =


0 if Lttij = k

+∞ otherwise

(5.6)

for k ∈ {0, 1}. Therefore, opening of the negative gate at node i→ j is determined

by the negative connection Lttij.
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The positive triplet potential is defined as

ψpt (xi, xj, y
p
i→j) =


αp if ypi→j = 1 and xi 6= xj

0 otherwise

(5.7)

where αp is the positive penalty. Since ypi→j = 1 means an open positive gate between

tracklet i and j, it generates positive information to nodes i and j if xi and xj take

different labels.

Similarly, the negative triplet potential is defined as

ψnt (xi, xj, y
n
i→j) =


αn if yni→j = 1 and xi = xj

0 otherwise

(5.8)

where αn is the negative penalty. Since yni→j = 1 means an open negative gate

between tracklet i and j, it generate negative information to nodes i and j if xi and

xj have the same label.

5.3.3 Model Inference

Directly looking for the label assignment that minimizes E(x,y) is a combi-

natorial optimization problem which is intractable. Instead, similar to [56], we use

the mean field method to approximate the distribution P (X,Y) ∝ exp(−E(X,Y))

by the product of independent marginals

Q(X,Y) =
∏
i

Qi(Xi)
∏

j∈N (i)

Qp
i→j(Y

p
i→j)Q

n
i→j(Y

n
i→j) (5.9)

Here Qi(Xi) is the identity distribution of node i, Qp
i→j(Y

p
i→j) and Qn

i→j(Y
n
i→j) are

the status distributions of positive and negative gates on edge i→ j respectively.
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Minimizing the KL-divergence D(Q||P ) between P (X,Y) and Q(X,Y) yields

the following updating equations:

1) For the tracklet nodes, we have

Q
(t)
i (xi = l)

=
1

Zi
exp

−ψxu(l)−
∑
j∈N (i)

∑
l′

∑
k∈{0,1}

ψpt (l, l
′, k)Q

(t−1)
j (l′)Q

p,(t−1)
i→j (k)−

∑
j∈N (i)

∑
l′

∑
k∈{0,1}

ψnt (l, l′, k)Q
(t−1)
j (l′)Q

n,(t−1)
i→j (k)


=

1

Zi
exp

−ψxu(l)− αp
∑
j∈N (i)

Q
p,(t−1)
i→j (1)

∑
l′ 6=l

Q
(t−1)
j (l′)− αn

∑
j∈N (i)

Q
n,(t−1)
i→j (1)Q

(t−1)
j (l)


=

1

Zi
exp

Tgtsgtli + αp
∑
j∈N (i)

Q
p,(t−1)
i→j (1)Q

(t−1)
j (l)− αn

∑
j∈N (i)

Q
n,(t−1)
i→j (1)Q

(t−1)
j (l)


(5.10)

where Zi is the normalization factor and Q(t)(·) is the approximated distribution at

the t-th iteration. It is initialized by

Q
(0)
i (xi = l) =

1

Zi
exp{Tgtsgtli } (5.11)

2) For the positive gates, we have

Q
p,(t)
i→j (y

p
i→j = 1) =

1

Zp
i→j

exp

−ψpu(1)−
∑
l,l′

∑
j∈N (i)

ψpt (l, l
′, 1)Q

(t−1)
i (l)Q

(t−1)
j (l′)


=

1

Zp
i→j

exp

{
−ψpu(1)− αp

∑
l′ 6=l

Q
(t−1)
i (l)Q

(t−1)
k (l′)

}

=
1

Zp
i→j

exp

{
Ttts

tt
ij + αp

∑
l

Q
(t−1)
i (l)Q

(t−1)
j (l)− αp

}
(5.12)

For normalization purpose, we set the factor Zp
i→j so that

∑
j∈N (i)Q

p,(t)
i→j (1) = 1.
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Thus we have

Q
p,(t)
i→j (y

p
i→j = 1) =

1

Zp
i→j

exp

{
Ttts

tt
ij + αp

∑
l

Q
(t−1)
i (l)Q

(t−1)
j (l)

}
(5.13)

It is initialized by

Q
p,(0)
i→j (ypi→j = 1) =

1

Zp
i→j

exp{Tttsttij} (5.14)

3) For the negative gates, we have

Q
n,(t)
i→j (yni→j = 1) =

1

Zn
i→j

exp

−ψnu(1)−
∑
l,l′

∑
j∈N (i)

ψnt (l, l′, 1)Q
(t−1)
i (l)Q

(t−1)
j (l′)


=

1

Zn
i→j

exp

{
−ψnu(1)− αn

∑
l

Q
(t−1)
i (l)Q

(t−1)
j (l)

}
(5.15)

Since

ψnu(yni→j = k) =


0 if Lttij = k

+∞ otherwise

(5.16)

for k ∈ {0, 1}, we have

Q
n,(t)
i→j (yni→j = k) =


k if Lttij = 1

1− k otherwise

(5.17)

for k ∈ {0, 1}, t = 0, . . . , K.

Let q
(t)
i =

[
Qi(1)(t) · · · Qi(C)(t)

]T
be the identity distribution vector of

node i at the t-th iteration. π
p,(t)
i→j = Q

p,(t)
i→j (1) and π

n,(t)
i→j = Q

n,(t)
i→j (1) be the probability

of opened positive and negative gates on edge i → j respectively, we have the

following message passing equations:
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1) For sample nodes, we have

q
(0)
i = softmax(TgtS

gt
:,i)

q
(t)
i = softmax(TgtS

gt
:,i + αp

∑
j∈N (i)

π
p,(t−1)
i→j q

(t−1)
j − αn

∑
j∈N (i)

π
n,(t−1)
i→j q

(t−1)
j ) (5.18)

where Sgt:,i is the ith column of Sgt.

2) For gate nodes, we let the marginal distribution of positive gates
∑

j∈N (i) π
p,(t)
i→j =

1 for normalization purpose. Then we have

π
p,(0)
i→j = softmax

N (i)
(Ttts

tt
ij)

π
p,(t)
i→j = softmax

N (i)
(Ttts

tt
ij + αpq

(t−1)
i · q(t−1)

j ) (5.19)

where softmaxN (i)(·) is the softmax operation in the neighborhoodN (i). From (5.6),

we also have

π
n,(t)
i→j = Lttij (5.20)

for t = 0, . . . , K. Thus, the marginal probability of a negative gate is fixed during

inference.

Two illustrations of message passing and node update are shown in Figure 5.3.

From these recursive updating equations we can see that:

1) When updating sample node i, identity information from qj inN (i) is prop-

agated through positive gate πpi→j and negative gate πni→j and collected as positive

(αp) and negative (−αn) message, respectively. These messages together with the

prior identity information Sgt:,i are combined to update qi, the identity distribution

of node i, in the next iteration.

2) When updating gate node i → j, the identity similarity between qi and
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Figure 5.3: (a) shows the update of q1. Distribution of the neighbors are weighted by the

probability of opening gates and collected as positive and negative messages, respectively.

The new marginal distribution is updated by the sum of messages and the unary scores.

Grey boxes are the ground truth labels of samples. (b) shows the update of gate πp1→2

and πp1→3. Distributions of sample node pairs are used to modify the marginal probability

of positive gates. We can see that the connection between sample 1 and 3 is misleading

since stt13 is large but they belong to different identities. After updating the probability of

gates by utilizing the information from neighboring nodes, πp1→3 drops comparing to (a),

results in less positive information passing between sample 1 and 3 in the next iteration.

� is inner product operation.

its neighbor qj in N (i) is measured by pairwise inner product. By combining this

similarity with the initial contextual connection score sttij, the probability of gate

openness πpi→j for the positive gate is updated. If qi ·qj is small, πpi→j will gradually

vanish in iterations, which avoids misleading connections propagating erroneous

information. Negative gates based on cannot-links are fixed during inference.

We conduct these bidirectional updates jointly so that the samples nodes re-

ceive useful information from their neighbors through reliable connections to gradu-
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ally refine their identity distributions, and the misleading connections in the graph

are gradually corrected by these refined identity distributions in return.

After obtaining the approximation Q(X,Y) that minimizes D(Q||P ) in K

iterations, we use the identity distribution q
(K)
i as the output similarity scores S̃gt:,i

from tracklet i to gallery subjects.

5.3.4 UGG: Training and Testing Settings

Testing with UGG: For testing, the UGG module can be directly applied

at inference time, where we compute input matrices Sgt, Stt and Ltt from the video,

setting the hyperparameters in the UGG module. Then the module produces the

output similarity S̃gt by recursive forward calculations.

Training with UGG: Similar to RNN, the proposed UGG module can

be considered as a differentiable recurrent module and be inserted into any neural

networks for end-to-end training. If video face training data is available, we can

utilize them for training to further improve the performance.

Given tracklets {Ti} from a training video and galleries {Gl}, we use two

DCNN networks Fgt and Ftt with parameters θgt and θtt pretrained on still images

to generate Sgt and Stt respectively as

sgtli = Fgt(Gl, Ti;θgt), sttij = Ftt(Ti, Tj;θtt) (5.21)

and feed into the UGG module.

After the module generates output similarity S̃gt =

[
s̃1, . . . , s̃N

]
after K iter-
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ations, we compute the loss of this video as

L =
1

N

∑
i∈S

LC(s̃i, z
c
i ) + λ

1

N2

∑
i,j∈S

LP (sttij, z
b
ij) (5.22)

Here, LC is a cross-entropy loss on s̃i with ground truth classification label zci . LP

is a pairwise binary cross-entropy loss on sttij with ground truth binary label zbij. λ

is the weight factor. S is the set of labeled tracklets.

Back-propagation through the whole networks on the overall loss L is used to

learn the DCNN parameters θgt, θtt in Fgt and Ftt, together with the temperature

parameters Tgt, Ttt in the UGG module. Tgt, Ttt are learned in order to find a

good balance between the unary scores and the messages from the neighbors during

updates.

Depending on the different choices of S, the training can be categorized into

three settings:

1. Supervised Setting: S = V , where every training sample in the graph

is labeled. In this setting, we can directly utilize all the tracklets in the graph for

training.

2. Semi-Supervised Setting: ∅ ⊂ S ⊂ V , where training samples in

the graph are only partially labeled. In this setting, the output of the module still

depends on all the tracklets in the graph through information propagation. Thus, via

back-propagation, the supervision information is propagated from labeled tracklets

to unlabeled tracklets through the connections in the UGG module and enable them

to benefit the training.

3. Unsupervised Setting: S = ∅, where no labeled training data is avail-
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able. In this setting, we skip the training part since no supervision is provided.

5.4 Experiments

In this section, we report experiment results of the proposed method in two

challenging video-based person search and face recognition datasets: the Cast Search

in Movies (CSM) dataset and the IARPA Janus Surveillance Video Benchmark (IJB-

S) dataset.

5.4.1 Datasets

CSM: The CSM dataset is a large-scale person search dataset comprising

a query set containing cast portraits in still images and a gallery set containing

tracklets collected from movies. The evaluation metrics of the dataset include mean

Average Precision (mAP) and recall of the tracklet identification (R@k). Two pro-

tocols are used in the CSM dataset. One is IN which only search among tracklets

in a single movie once a time. Another is ACROSS which search among tracklets

in all the movies in the testing set. Please refer [46] for more details.

IJB-S: In this chapter, we mainly focus on two protocols related to our topic,

the surveillance-to-single protocol (S2SG) and the surveillance-to-booking protocol

(S2B). We report the per tracklet average top-K identification accuracy and the End-

to-End Retrieval Rate (EERR) metric proposed in [52] for performance evaluation.
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Methods
IN ACROSS

mAP R@1 R@3 R@5 mAP R@1 R@3 R@5

FACE(avg) 53.33% 76.19% 91.11% 96.34% 42.16% 53.15% 61.12% 64.33%

PPCC(avg) [46] 62.37% 84.31% 94.89% 98.03% 59.58% 63.26% 74.89% 78.88%

PPCC(max) [46] 63.49% 83.44% 94.40% 97.92% 62.27% 62.54% 73.86% 77.44%

UGG-U(avg) 62.81% 85.21% 95.65% 98.30% 63.31% 66.73% 76.09% 79.32%

UGG-U(max) 63.74% 84.93% 95.36% 98.37% 63.42% 65.72% 74.90% 77.88%

UGG-U(favg) 64.36% 84.96% 94.90% 97.98% 64.85% 67.33% 75.38% 78.21%

UGG-ST(favg) 65.12% 86.73% 95.70% 98.34% 67.00% 71.16% 77.82% 80.15%

UGG-T(favg) 65.41% 87.28% 95.87% 98.28% 67.60% 71.51% 78.33% 80.56%

Table 5.1: Results on CSM dataset. Notice that UGG-U(favg) is the unsupervised, initial

setting before training. UGG-ST(favg) is the semi-supervised training setting with 25%

samples labeled. UGG-T(favg) is the supervised training setting.

5.4.2 Implementation Details

5.4.2.1 CSM: Pre-processing details

For the CSM dataset, we use the 256-dimensional facial and body features

provided by [46]. We first flatten both facial and body features in each tracklet by

average pooling. Denote facial features for galleries as Fg
F , flattened facial features

for tracklets as Ft
F and flattened body features for tracklets as Ft

B. Three linear

embedding matrices Wgt
F , Wtt

F , Wtt
B, all with size 256 × 256 are applied on the

features respectively for more discriminative representation.

We use the cosine similarity between Wgt
F Fg

F and Wgt
F Ft

F as the gallery-to-

tracklet similarity Sgt = SgtF,cos. To improve the reliability of positive connections,
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Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

FACE(favg) 64.86% 70.87% 77.09% 81.53% 86.11% 93.24% 29.62% 32.34% 35.60% 38.36% 41.53% 46.78%

PPCC(favg) [46] 67.31% 73.21% 79.06% 83.12% 87.38% 93.68% 30.57% 33.28% 36.53% 39.10% 42.00% 47.00%

FACE(sub) [126] 69.82% 75.38% 80.54% 84.36% 87.91% 94.34% 32.43% 34.89% 37.74% 40.01% 42.77% 47.60%

UGG-U(favg) 74.20% 77.67% 81.43% 84.54% 87.96% 93.62% 32.70% 35.04% 37.54% 39.79% 42.43% 47.10%

UGG-U(sub) 77.59% 80.46% 83.70% 86.20% 89.23% 94.55% 34.79% 36.88% 39.11% 40.90% 43.37% 47.86%

Table 5.2: 1:N Search results of IJB-S surveillance-to-single protocol. UGG-U(favg) di-

rectly uses the cosine similarities between average-flattened features. UGG-U(sub) uses

the subspace-subspace similarity proposed in [126].

we use the fusion of the cosine similarities between Wtt
FFt

F and between Wtt
BFt

B as

the tracklet-to-tracklet similarity Stt = λfS
tt
F,cos + (1− λf )SttB,cos, with fusion weight

λf . No detection information is provided in this dataset so the cannot-link matrix

Ltt is all-zero. We feed Sgt, Stt and Ltt into the proposed UGG module. The module

iterates for K iterations and produce the output similarity S̃gt.

5.4.2.2 CSM: Testing details

For testing, we use all the tracklets in each movie to build the graph. The

neighborhood N (i) for tracklet i is defined as the top 10% of the tracklets in the

movie with the largest tracklet-to-tracklet similarity score to tracklet i. We apply

identity embedding matrices on the features and compute similarities. Then the

UGG module is used to produce the output similarity scores S̃gt. Using the vali-

dation set, we choose parameters Tgt = 10, Ttt = 15, αp = 5, K = 2, λ = 0.1 and

λf = 0.1 for the IN protocol and Tgt = 20, Ttt = 30, αp = 15, K = 2, λ = 0.1 and
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Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

FACE(favg) 66.48% 71.98% 77.80% 82.25% 86.56% 93.41% 30.38% 32.91% 36.15% 38.77% 41.86% 46.79%

PPCC(favg) [46] 68.96% 74.44% 79.84% 83.75% 87.68% 93.80% 31.37% 33.98% 37.04% 39.49% 42.35% 47.01%

FACE(sub) [126] 69.86% 75.07% 80.36% 84.32% 88.07% 94.33% 32.44% 34.93% 37.80% 40.14% 42.72% 47.58%

UGG-U(favg) 74.79% 78.35% 81.81% 84.85% 88.15% 93.80% 33.29% 35.48% 37.87% 40.02% 42.60% 47.14%

UGG-U(sub) 77.02% 80.08% 83.39% 86.20% 89.29% 94.62% 34.83% 36.81% 39.11% 41.10% 43.38% 47.74%

Table 5.3: 1:N Search results of IJB-S surveillance-to-booking protocol. UGG-U(favg)

directly uses the cosine similarities between average-flattened features. UGG-U(sub) uses

the subspace-subspace similarity proposed in [126].

λf = 0.1 for the ACROSS protocol.

5.4.2.3 CSM: Training details

For end-to-end training, we train the embedding matrices Wgt
F , Wtt

F , and

Wtt
B, together with temperatures Tgt and Ttt in the UGG module, implemented in

PyTorch [73]. For each movie, we use all the galleries and randomly pick 1/8 of

the tracklets to construct the graph. The overall loss is computed by (5.22). The

network is trained using Adam solver [54] for 20 epochs with batch size 2 (2 movies

in each batch). The initial learning rate is 1 × 10−4. All embedding matrices are

initialized as identity matrix. We initialize Tgt and Ttt by 10 and 15 respectively

and fix other parameters as αp = 5, K = 2, λ = 0.1 and λf = 0.1 during training.
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5.4.2.4 IJB-S: Pre-processing details

For the IJB-S dataset, we follow the pre-processing steps in [126]. We employ

the multi-scale face detector DPSSD [79] to detect faces in surveillance videos. We

use the facial landmark branch of All-in-One Face [82] as the fiducial detector.

Face alignment is performed using the seven-point similarity transform. Similar

to [126], we use a ResNet-101 [40] and a Inception-ResNet-v2 [99], both trained

on the union of the MSCeleb-1M dataset [38], the UMDFaces dataset [4], and the

UMDFaces Video dataset with the crystal loss [78], to represent the faces. A triplet

probabilistic embedding (TPE) [86] trained on the UMDFaces dataset is applied on

face features for dimensionality reduction to 128.

We also use the Mask R-CNN [39] implemented on Detectron [34] to detect

the bodies in the videos and match each body to the face with the highest over-

lap ratio. The detected bodies are represented by a re-id network with ResNet-50

architecture trained on the Market1501 dataset [128], implemented on [130]. The

network produces 2048-dimensional feature for each body.

We use SORT [5] to construct tracklets for every face appearing in the videos.

Facial and body features are first flattened by average pooling for each gallery and

tracklet. Sgt and Stt are computed in the same way as the CSM dataset, except there

is no embedding matrices applied since no training set available on IJB-S. We use

the bounding box information from the detector to build the co-occurence cannot-

link matrix Ltt such that all the tracklets with distinct bounding boxes appear in

the same frame will have cannot-links between them.
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5.4.2.5 IJB-S: Testing details

For the IJB-S dataset we empirically use the hyperparameter configuration of

Tgt = 15, Ttt = 15, αp = 10, αn = 2, K = 4, λ = 0.1 and λf = 0.1 in the UGG

module for testing. All the other details are the same as the CSM dataset.

To compare with [126], we use the same configurations for tracklets filtering

and evaluation metrics for each configuration: 1) with Filtering: We keep those

tracklets with length greater than or equal to 25 and average detection score greater

than or equal to 0.9. 2) without Filtering.

5.4.3 Baseline Methods

We conduct experiments on the CSM and IJB-S dataset with two baseline

methods: FACE: facial similarity is directly used without any refinement. PPCC:

The Progressive Propagation via Competitive Consensus method proposed in [46] is

used for post-processing. For the CSM dataset, we use the numbers reported in [46].

For the IJB-S dataset, we implement the method using the code provided by the

author.

For fair comparisons, following [46], two settings of input similarity are used:

avg: similarity is computed by the average of all frame-wise cosine similarities be-

tween a gallery and a tracklet, or two tracklets. max: similarity is computed by

the maximum of all frame-wise cosine similarities between a gallery and a track-

let, or two tracklets. On IJB-S, we also implement the subspace-based similarity

following [126], denoted as sub.
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As introduced in Chapter 3, two recent works [35,36] have also reported results

on the IJB-S dataset. These works built video templates by matching their detec-

tions with ground truth bounding boxes provided by the dataset. Our method fol-

lows [126] and associates faces across the video frames to build templates(tracklets)

without utilizing any ground truth information. Since these two template building

procedures are very different, a direct comparison is not meaningful.

Results of these baselines on two datasets are shown in Tables 5.1, 5.2 and 5.3

respectively. Average run time of PPCC is also reported in Table 5.4, on a machine

with 72 Intel Xeon E5-2697 CPUs, 512GB of memory and two NVIDIA K40 GPUs.

We observe that PPCC only achieves marginal improvements on the IJB-S dataset.

Its speed is also slow during inference, especially when large graphs are constructed.

5.4.4 Evaluation on the Proposed UGG method

On the CSM dataset, depending on the usage of training data, we evaluate

three settings of UGG including: UGG-U: without training, the UGG module works

in unsupervised setting as post-processing module. UGG-T: with fully-labeled train-

ing data, the UGG module and linear embeddings are trained in supervised setting.

UGG-ST: with 25% labeled and 75% unlabeled training data by random selection

in each movie, the UGG module and linear embeddings and are trained in semi-

supervised setting. On the IJB-S dataset, since the dataset only provide test data,

we use the unsupervised setting and only test UGG-U.

The additional input similarity used for training is the cosine similarity be-
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tween flattened features after average pooling and denoted as favg. Corresponding

results are shown in Tables 5.1, 5.2 and 5.3 respectively, with average run time tested

on the same machine reported in Table 5.4.

5.4.4.1 Observations on CSM

1. UGG vs FACE: All the settings of UGG perform significantly better than

the raw baseline FACE. UGG-T(favg) provides state-of-the-art results on almost all

the evaluation metrics with large margins, which demonstrates the effectiveness of

the proposed method utilizing contextual connections.

2. UGG vs PPCC [46]: Using the same input similarity without training,

UGG-U performs better than PPCC with relatively large margin, especially in

the ACROSS protocol. Since in the ACROSS protocol, queries are searched among

tracklets from all movies, the connections based on body appearance are not reliable

across movies as those in the IN protocol. Thus by updating the gates between

tracklets during inference, UGG is able to achieve much better performance than

PPCC which is based on a fixed graph.

3. Supervised vs Unsupervised: From UGG-U(favg) to UGG-T(favg), we

observe significant improvements brought by training. It demonstrates that with

labeled data, the UGG module can be inserted into deep networks for end-to-end

training and achieve further performance improvement.

4. Semi-Supervised vs Unsupervised: We observe considerable improve-

ments from UGG-U(favg) to UGG-ST(favg). It implies that by reliable information
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propagation in the graphs, the UGG module can be trained with only partially-

labeled data, and still achieves results comparable to the supervised setting.

Methods
CSM IJB-S

IN ACROSS S2SG S2B

PPCC [46] 2.23s 458.56s 571.31s 580.16s

UGG-U 2.60s 41.85s 104.88s 111.35s

Table 5.4: Average run time on CSM and IJB-S datasets.
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Figure 5.4: A qualitative example from the CSM dataset. The positive connection be-

tween tracklets i and j is initially strong because of the similar body appearance. During

the inference step of the proposed method, this connection is weakened because of the di-

vergent identity distributions between the two tracklets. It avoids erroneous information

propagation through the connection. In contrast, the connection between tracklets i and

k is strengthened due to their similar identity distributions.
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5.4.4.2 Observations on IJB-S

1. UGG vs FACE and PPCC [46]: UGG-U performs better than FACE

and PPCC on almost all evaluation metrics with relatively large margin, in both

protocols, which again shows the effectiveness of the proposed method.

2. UGG + Better Similarity Metric: UGG-U(sub) achieves state-of-

the-art results by combining subspace-based similarity and UGG. It shows that the

proposed method can further improve the performance over the improvement from

the similarity metric.

3. EERR Metric: EERR metric [52] is relatively lower than identification

accuracy, because it penalizes missed face detections, which is out of the scope of

this method.

Run time: From Table 5.4, we observe that UGG runs five times faster than

PPCC on most of the protocols, which shows that UGG is more suitable for testing

on large graphs during inference.

Qualitative Results: To illustrate the effectiveness of the proposed ap-

proach, a qualitative example is also shown in Figure 5.4. Tracklets i and j belong to

different identities and tracklets i and k belong to the same identity. The initialized

positive gate probability πp,(0)i→j = 0.41 is greater than πp,(0)i→k = 0.15. If the gate is fixed,

information will be erroneously propagated between i and j. Using the proposed

method, we can adaptively update the gate based on the identity information from

i and j. Since identity distribution similarity q
(0)
j · q

(0)
i = 0.05 is very small, the

two tracklets are unlikely to have the same identity. Hence the positive connection
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π
p,(1)
i→j = 0.09 is weakened after the update. Similarly, since q

(0)
i · q

(0)
k = 0.64 is large,

the positive connection π
p,(1)
i→k = 0.61 is strengthened correspondingly.

Configurations
CSM in avg CSM in max IJB-S in favg

IN ACROSS IN ACROSS S2SG S2B

PG PGcl NG aG mAP R@1 mAP R@1 mAP R@1 mAP R@1 A@1 E@1 A@1 E@1

58.72% 76.19% 55.67% 53.15% 61.29% 76.64% 58.20% 54.60% 64.86% 29.62% 66.48% 30.38%

X 61.14% 84.95% 62.00% 66.02% 61.60% 84.79% 62.05% 64.63% 71.21% 30.66% 72.05% 31.37%

X - - - - - - - - 71.26% 30.73% 72.16% 31.54%

X X - - - - - - - - 73.24% 32.35% 73.78% 32.88%

X X 62.81% 85.21% 63.30% 66.73% 63.74% 84.93% 63.42% 65.72% 72.32% 30.92% 73.15% 31.64%

X X - - - - - - - - 72.46% 31.02% 73.28% 31.73%

X X X - - - - - - - - 74.20% 32.70% 74.79% 33.29%

Table 5.5: Ablation study. In configurations, PG stands for adding positive gates for

positive information. PGcl stands for adding positive gates with extra control from cannot-

links. NG stands for adding negative gates for negative information. aG stands for

adaptively updating positive gates. A@1 stands for Average Accuracy with filtering at

R@1. E@1 stands for EERR without filtering at R@1.

5.4.5 Ablation Studies

We conduct ablation studies on CSM and IJB-S datasets to show the effective-

ness of key features in the proposed model. The results are shown in Table 5.5. We

start from the baseline FACE without any information propagation, then gradually

add key features of the method: PG: add fixed positive gates to propagate posi-

tive information. PGcl: same as PG except that positive information will not be

propagated when cannot-link exists. NG: add negative gates to propagate negative
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Configurations IN ACROSS

PGTrain aGTrain UGGTest mAP R@1 R@3 R@5 mAP R@1 R@3 R@5

61.13% 77.86% 91.79% 96.65% 58.34% 56.56% 63.83% 66.34%

X 61.39% 77.99% 91.77% 96.61% 58.94% 57.31% 64.26% 66.88%

X X 61.40% 78.12% 91.85% 96.67% 58.70% 57.64% 64.49% 67.22%

X 64.14% 85.90% 95.42% 98.10% 65.82% 69.45% 76.83% 79.34%

X X 64.58% 86.36% 95.53% 98.27% 66.90% 70.74% 77.83% 80.02%

X X X 64.60% 86.68% 95.56% 98.24% 67.09% 71.31% 77.93% 80.39%

Table 5.6: Additional study on semi-supervised training on CSM dataset. PGTrain stands

for using fixed positive gates during training. aGTrain stands for adaptively updating the

gates during training. UGGTest stands for using UGG model during testing. In all

experiments, only 25% of the training samples are labeled.

information. aG: adaptively update positive gates in PG or PGcl using the pro-

posed method. Since detection information is not given in the CSM dataset, there

is no co-occurrence cannot-links available and we do not use negative gates in this

dataset. Thus, the proposed method UGG-U corresponds to PG+aG on the CSM

dataset and PGcl+NG+aG on the IJB-S dataset.

From Table 5.5 we observe that: 1) by introducing fixed positive gates, the

performance improves compared to the baseline results, which indicates that positive

information propagation controlled by body similarity improves the performance. 2)

by adding cannot-links to control the positive gates as well, marginal improvements

are obtained. Thus, the performance improvement is limited if allow only positive

information to propagate. 3) by introducing additional negative gates using the

same cannot-links, the performance improves significantly, which demonstrates the
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effectiveness of allowing negative information to propagate between tracklets. 4)

finally, by adaptively updating the positive gates, we achieve the best performance

in all protocols of both datasets. The result implies the advantages of adaptively

updated gates.

5.4.6 Experiments on Different Training Settings

We also perform additional experiments on semi-supervised training on the

CSM dataset with results shown in Table 5.6. We basically follow the regular train-

ing settings on the CSM datasets. The differences are

• For each movie, similar to the UGG-ST setting, we use all the galleries and

randomly pick about 1/4 of the tracklets to construct the graph. Then we

randomly pick 25% tracklets in the graph as labeled samples, and the rest

75% as unlabeled samples.

• We only train the 256×256 linear embedding matrix Wgt
F on the face features.

Other embeddings are fixed as identity matrices.

• During training, we fix the parameters as Tgt = 10, Ttt = 15, αp = 5, K =

2, λ = 0 and λf = 0.1. λ = 0 because we are not training the pairwise

embeddings.

Suppose after applying the embedding we want to learn, the similarities be-

tween galleries and labeled/unlabeled tracklets are Sgt =

[
Sgtl ,S

gt
u

]
. We use three

different settings to train the embedding: 1) directly train on the labeled similarities
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Sgtl using cross-entropy loss, without invoking the UGG module. 2) use the UGG

module with positive gates to process Sgt and train on the output similarity S̃gtl

corresponding to the labeled tracklets by cross-entropy loss, denoted as PGTrain.

3) adaptively update the positive gates used in PGTrain, denoted as aGTrain.

Two settings are used to test the performance of the embedding: 1) directly

test on Sgt from the learned embedding, without using the UGG as post-processing.

2) test on S̃gt from the learned embedding and with the UGG post-processing,

denoted as UGGTest.

From the results in Table 5.6, we observe that in the semi-supervised setting,

the embedding trained with the UGG is more discriminative than the one trained

without the module. It achieves better performance in both test settings. It shows

that by propagating information between tracklets, the UGG also leverages the

information from those unlabeled tracklets during training, which is important for

semi-supervised learning. Also, the UGG with adaptive gates performs better than

fixed gates, which demonstrates that adaptive gates is also helpful during training

by propagating the information more precisely between tracklets.

5.5 Concluding Remarks

In this chapter, we proposed a graphical model-based method for video-based

face recognition. The method propagates positive and negative identity informa-

tion between tracklets through adaptive connections, which are influenced by both

contextual information and identity distributions between tracklets. The proposed
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method can be either used for post-processing, or trained in supervised and semi-

supervised fashions. It achieves state-of-the-art results on CSM and IJB-S datasets.

Ablation study further implies the effectiveness of the key features of the proposed

method.
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Chapter 6: Conclusions and Directions for Future Research

6.1 Summary

In this dissertation, we studied the problem of unconstrained still/video-based

face recognition using augmented deep representations. In Chapter 2, we proposed

two deep representation augmentation methods FV-DCNN and VLAD-DCNN to

tackle the large pose variations in unconstrained face recognition by leveraging spa-

tial information. We demonstrated the effectiveness of FV-DCNN on LFW and CFP

datasets and showed that the FV-DCNN method can capture both local and global

variations in the convolutional feature maps. The experiments on the challenging

JANUS dataset show the effectiveness of VLAD-DCNN. We also compared the per-

formance of VLAD-DCNN and FV-DCNN on the JANUS datasets and concluded

that VLAD encoding works better than FV encoding because of the noisy second

order statistics used by FV.

In Chapter 3, we proposed an automatic face recognition system for uncon-

strained video-based face recognition. The proposed system consists of modules

for face detection and alignment, face association and tracking, face representation,

subspace learning and matching. In the last module, we used subspaces to utilize the

correlation between deep representations in video face sets. These subspaces along
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with quality-aware exemplars of templates are used to produce the similarity scores

between video pairs by a quality-aware principal angle-based subspace-to-subspace

similarity metric. We evaluated the system on four video datasets. The experimen-

tal results demonstrated the superior performance of the proposed system and the

subspace learning and matching method.

In Chapter 4, we proposed a dictionary learning and matching approach using

deep representations for unconstrained video-based face verification. The proposed

method learns structural and dynamical dictionaries from faces in video frames to in-

corporate temporal information and help improve the face recognition performance.

Using the proposed LDDL algorithm, dynamical dictionaries and LDSs are jointly

learned from the videos. A subspace-to-subspace similarity metric is defined for

comparisons between videos. We evaluated the approach on three video datasets.

The experiment results demonstrated the effectiveness of the proposed approach.

In Chapter 5, we proposed the UGG model for unconstrained video-based face

recognition. The framework propagate identity information (computed from deep

representations) from high-quality samples to low-quality samples through connec-

tions derived from contextual information in videos. It uses gate nodes and the

associated random fields to model the uncertainty of connections between samples

and enable the edge weights to be adaptively adjusted according to the neighboring

samples. The gates also allow both positive and negative information to propagate

simultaneously. The proposed method can be either used for post-processing, or

trained in supervised and semi-supervised fashion. It achieves state-of-the-art re-

sults on CSM and IJB-S datasets which validates the effectiveness of the proposed
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method.

6.2 Directions for Future Research

In this section, we outline several promising future directions that could be

explored.

In Chapter 2, we studied the augmentation of deep representations for face

recognition. A possible extension would be to design an supervised end-to-end FV-

DCNN or VLAD-DCNN network for face recognition. Currently, the DCNN model

is fixed when we are learning the FV/VLAD representation. Also, the Gaussians

in FV encoding or the means in VLAD encoding are learned in an unsupervised

manner. In order to achieve better performance for the face recognition problem,

if sufficient amount of labeled training data is available, we can jointly finetune the

DCNN model and the FV/VLAD model in a supervised way. Some work along these

lines has been done in [3]. Also, since features from different layers of the network

contain different levels of local information, an end-to-end multi-layer VLAD-DCNN

model utilizing features from different layers can be developed. The analysis of

VLAD and FV encoding on features from other DCNN architectures can also be

pursued leading to new feature encoding techniques.

In Chapter 3, we used subspace representation to model the correlation be-

tween deep representations in a video. To improve the discriminative power of sub-

space representation, we could replace subspace-to-subspace similarity by manifold-

to-manifold similarity. Since videos are not always single shot, faces in different parts

133



of the video may have different pose, illumination, expression and quality. Therefore

a video partitioning method can be applied to separate different shots from a video.

Instead of a single subspace, each video can be modeled by a manifold consisting

of several component subspaces, where each component subspace is learned from a

single shot. Then the manifold-to-manifold distance can be computed similar to the

method proposed in [109].

In Chapter 4, we exploited the temporal information in videos by a linear

dynamical dictionary learning method for video-based face recognition. A future

extension of this method is to use the transition matrices learned by LDDL for

other tasks like video-based facial expression recognition. Compared to dictionaries

that capture the appearance information like the shape of mouths, eyes and eye-

brows, transition matrices can capture the motion information in the video such

as the opening of mouths, eyes, and the changing of eyebrow shapes, which is also

discriminative for facial expressions.

We studied how a graphical-model assists video-based face recognition in

Chapter 5. Currently we only use body appearance similarity and spatio-temporal

positions of detections as contextual information. An interesting future work will be

using reliable attribute information, such as gender, to construct negative connec-

tions and adaptively update negative gates. Another extension would be to make

the method taking video streams as input. Instead of processing the whole video and

build the graph at a time, the method will build the graph incrementally as it re-

ceives frames from the video stream. Face recognition can also be performed jointly

with face association and tracking, in order to improve the overall performance.
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