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Staphylococcus aureus is one of the most common causes of nosocomial (i.e. 

hospital-acquired) infection. Significantly, over 90% of S. aureus strains are resistant to 

penicillin, and since the mid-1980’s, methicillin-resistant S. aureus (MRSA) strains have 

become prevalent in hospitals worldwide, with resistance rates approaching 70%. In the 

U.S. alone, MRSA is responsible for over 100,000 invasive life threatening infections, 

such as necrotizing fasciitis, and causes 20,000 deaths annually. More worrisome, a 

variant known as community-acquired MRSA (CA-MRSA) is spreading in schools, 

gymnasiums, and even professional sports teams, where it infects otherwise healthy 

adolescents and young adults. Vancomycin is often considered the last antibiotic of 

choice against MRSA and other Gram-positive pathogens. However, rates of 

vancomycin-resistant enterococci (VRE) have already reached 30% and it is widely 

believed that emergence of vancomycin-resistant S. aureus (VRSA) is due to gene 



 
 

 
 

transfer during co-colonization of MRSA and VRE. Thus, alternative antimicrobial 

approaches are desperately needed. Endolysins, or peptidoglycan hydrolases, are phage-

derived enzymes that actively lyse bacterial cells upon direct contact and may be 

considered such an alternative option. Moreover, the inability of bacteria to evolve 

resistance to endolysins is due to the specificity of the N-terminal catalytic domain, 

which cleaves a conserved peptidoglycan bond, and the C-terminal cell wall binding 

domain, which binds a cell surface moiety. This thesis represents an investigation into the 

endolysin PlyGRCS, which displays potent bacteriolytic activity against all antibiotic-

resistant strains of S. aureus tested. This enzyme is active in physiologically relevant 

conditions (pH, NaCl, temperature), and its activity is greatly enhanced in the presence of 

calcium. PlyGRCS is the first endolysin with a single catalytic domain that cleaves two 

distinct sites in the peptidoglycan. Unlike antibiotics, PlyGRCS displays anti-biofilm 

activity, preventing, removing, and killing biofilms grown on abiotic and biotic surfaces. 

Engineering efforts were made to create an enzyme with a variable binding domain, 

which unfortunately displayed less activity than the wild type endolysin in the conditions 

tested. The antimicrobial efficacy of PlyGRCS was validated in a mouse model of S. 

aureus septicemia. The results from this study indicate that the endolysin PlyGRCS is a 

revolutionary therapeutic that should be further pursued for subsequent translational 

development. 
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Chapter I: Introduction and Literature Review 

Though much progress has been made in the last century towards combatting 

bacterial infections through the discovery of modern antibiotics, these types of maladies 

still account for the majority of the world’s morbidity and mortality (Woodford and 

Livermore, 2009).  Furthermore, the advances that have been made in the field seem to 

have contributed to the current predicament of increasingly antibiotic resistant bacterial 

infections and may be responsible for the undoing of the last 100 years of progress, 

compounding the situation even further (Livermore, 2009). Possibly the most infamous 

story related to antibiotic-resistant bacteria involves Staphylococcus aureus, which has 

the ability to cause a diverse array of life-threatening infections and the capacity to adapt 

to different environmental conditions. With this impending crisis upon us, researchers are 

turning to alternative methods for preventing and treating such bacterial infections.    

 

Staphylococcus aureus History and Characteristics 

Humankind has been constantly fighting the war against pathogenic bacteria, but 

it wasn’t until the 19
th

 century that we were able to establish a link between these 

organisms and infectious disease. This scientific progress led to an ability to identify and 

classify particular organisms and thus begin to understand our interactions with them.   

Staphylococcus was first discovered as the causative agent of a wound infection 

by Sir Alexander Ogston in 1880 (Ogston, 1881), although the official naming of 

Staphylococcus aureus four years later is credited to Anton Julius Rosenbach 

(Rosenbach, 1884). S. aureus is classified as a facultative anaerobic Gram-positive coccal 
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bacterium, commonly observed forming grape-like clusters under the microscope and 

gold colonies on agar plates (both characteristics from which its name is derived).  

The hardy nature of S. aureus enables it to survive in the environment on many 

types of surfaces.  S. aureus has been found to survive, on glass, wood, vinyl plastic, and 

cloth; for some of these materials, bacteria were isolated up to 90 days after inoculation 

(Neely and Maley, 2000). This persistence, combined with its commensal behavior with 

the host, make it a potentially frightening pathogen. By some estimates, up to 20% of 

healthy individuals constantly asymptomatically carry this bacterium in the anterior nares 

of their nasal passages, throats, and on their skin; in addition, 60% of the population is 

suspected to be transiently asymptomatically carrying at any particular time (Williams, 

1963). In normal healthy people, colonization usually does not lead to any symptoms or 

illness. However, S. aureus is a classic opportunistic pathogen in that it will take 

advantage of a compromised host to cause disease.    

 

Staphyloccocal Infections  

S. aureus has the capability to cause a wide range of illnesses, including skin, 

soft-tissue, ocular, brain, respiratory, bone, gastrointestinal, and endovascular disorders 

(Lowy, 1998) . While many groundbreaking medical advances have been made in the last 

century, non-healing wounds caused by S. aureus- induced skin and soft tissue infections 

still represent a significant burden to society. S. aureus skin and tissue infections can 

manifest themselves as the common pimple or can progress to the much more severe boil, 

abscess, folliculitis, impetigo, mastitis, cellulitis, or even necrotizing fasciitis; it is also 

the causative agent of scalded skin syndrome (Tong et al., 2015). Ocular infections 
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caused by S. aureus include endophthalmitis, conjunctivitis, and keratitis, and usually 

occur after refractive or cataract surgery or LASIK (Chuang et al., 2012). While 

uncommon, S. aureus induced meningitis has a poor prognosis, with mortality rates up to 

80% (Durand et al., 1993). Staphylococcal pneumonia is becoming increasingly prevalent 

in hospitals (20%–40% of all nosocomial-acquired and ventilator-associated infections) 

and the community (Rubinstein et al., 2008). Staphylococcal food poisoning, caused by 

consuming food contaminated with enterotoxin, results in gastrointestinal distress and 

can be severe enough to necessitate hospitalization (Argudin et al., 2010).  S. aureus is 

also a leading cause of bacteremia, which has a high mortality rate, especially in patients 

who are older, not treated with antibiotics, or have a medical device that has not been 

removed; S. aureus bloodstream infections allow for metastasis to other sites in the body, 

causing endocarditis, osteomyelitis, or septic arthritis, all of which can be further 

complicated by the presence of an implant (Mylotte et al., 1987). Notably, S. aureus 

causes the life-threatening toxic shock syndrome, which was associated with super 

absorbent tampons in the 1980s allowing for the accumulation of staphylococcal toxins 

(Hanrahan, 1994); non-menstrual causes include localized infections, surgery, or insect 

bites  (Lowy, 1998).       

S. aureus infections are not just limited to humans; other animals are susceptible 

to staphylococcal diseases as well. Household companion animals, such as cats and dogs, 

manifest S. aureus skin and soft tissue infections in the same way as humans do. 

Interestingly, it was found that the same genetic strain of S. aureus was carried in humans 

and their pets, and researchers suggest that it likely can be passed between species.  

(Harrison et al., 2014). Rodents (rabbits, mice, and rats) can also be colonized and 
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infected; rats may even play a role in spreading S. aureus on farms (van de Giessen et al., 

2009; Weese, 2010). Livestock are also not immune to S. aureus infections. Cows, and 

other milking animals such as buffalo and camels, are subject to intramammary infections 

(Schmidt et al., 2015). In sheep and goats, S. aureus commonly causes dermatitis, and in 

pigs, S. aureus may cause botryomycosis, urinary tract infections, or mastitis. In 

chickens, S. aureus is responsible for infections such as bumblefoot, gangrenous 

dermatitis and bacterial chrondronecrosis with osteomyelitis (Lowder et al., 2009). 

Horses are susceptible to the same wide range of infections as those observed in humans 

(Weese, 2010).   

 

Antibiotic Resistant S. aureus 

In the years between the discovery of S. aureus, but before the discovery of 

modern day antibiotics, S. aureus infections had a nearly 80% mortality rate (Dancer, 

2008). Upon the introduction and mass production of these traditional antibiotics, the 

mortality rate was dramatically reduced to 25% (Cosgrove et al., 2003; Fridkin et al., 

2003; Rubin et al., 1999).  However, in 2005, methicillin-resistant Staphylococcus aureus 

(MRSA) was responsible for an estimated 94,000 life-threatening infections and 18,650 

deaths in the U.S. alone, more than double the national estimate only five years earlier 

(Klevens et al., 2007).  

MRSA, which are also resistant to cephalosporins, was originally just a hospital 

acquired infection (HAI), due to the prevalence of elderly and immunocompromised 

individuals in this environment. Hospital-associated MRSA (HA-MRSA) represents 

about 8% of reported nosocomial infections (Hidron et al., 2008).  However, in the past 
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20 years, MRSA has now become a greater problem in our communities, affecting 

children and healthy individuals including athletes, and especially thriving in areas where 

individuals are in close proximity with one another, such as prisons (David and Daum, 

2010). Community-associated MRSA (CA-MRSA) is genetically distinct from HA-

MRSA (Fey et al., 2003) and is endemic in some U.S. cities, reaching up to 50% of all S. 

aureus infections reported (Dukic et al., 2013).  Further complicating the MRSA situation 

is the emergence of livestock-associated MRSA (LA-MRSA), which has resulted in 

transmission of a new strain from animals to humans (Ballhausen et al., 2014; Fluit, 

2012; Hetem et al., 2013; Price et al., 2012) 

The increasing prevalence of MRSA led to greater use of vancomycin (originally 

a last resort antibiotic) in the 1980s; this, in turn led to the emergence of vancomycin-

resistant S. aureus (VRSA) in 2002 (Centers for Disease and Prevention, 2002). While 

there have only been 14 cases of VRSA (and no deaths) in the U.S., the CDC has labeled 

it a concerning threat. Reports of VRSA have emerged from around the world, indicating 

that this is a severe global issue (Melo-Cristino et al., 2013; Palazzo et al., 2005; Tiwari 

and Sen, 2006).  

S. aureus has also developed resistance to the newer antibiotics; linezolid-

resistant S. aureus (LRSA) and daptomycin-resistant S. aureus (DRSA) outbreaks have 

been reported, and while they are currently uncommon, it may only be a matter of time 

until their frequency reaches MRSA levels (Endimiani et al., 2011; Marty et al., 2006; 

Sanchez Garcia et al., 2010).   

As one can imagine, this antibiotic resistance crisis has had an immeasurable 

impact not only on public health, but on economic outcomes. Antibiotic-resistant 
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infections are associated with prolonged treatments, extended hospital stays, and require 

additional doctor visits and healthcare use compared to antibiotic-susceptible bacteria, all 

leading to a costly outcome. One study estimated average cost per MRSA patient to be 

$34,657, compared with $15,923 for patients with methicillin-sensitive S. aureus 

(MSSA) (Filice et al., 2010).  MRSA infections have been suggested to cost up to a total 

of $10 billion per year in the U.S. healthcare system alone (Klein et al., 2007).  

 

Biofilms  

S. aureus has an arsenal of virulence factors that allow it to cause the multitude of 

various illnesses described, hence its notoriety as a fearsome “nightmare bacteria” 

(Gordon and Lowy, 2008). One of the most important aspects of its virulence is the 

ability to form biofilms (Fig. 1-1). Biofilms are a microbial community of bacterial cells 

that are attached to a surface and each other, and are encased in extracellular polymeric 

substance (EPS) made up of extracellular DNA, proteins, and carbohydrates. They 

exhibit behaviors divergent from bacteria in the planktonic state of growth, due to the 

complex nature of physiologically distinct cells present in the population of a bacterial 

biofilm (Kiedrowski and Horswill, 2011; Parsek and Singh, 2003). Biofilms are 

notoriously difficult to eradicate, as they are resistant to antibiotics and are resilient 

against the host immune system (Scherr et al., 2014).  Furthermore, antibiotics have been 

shown to induce changes in planktonic bacteria that result in an increased proclivity for 

forming biofilms (de la Fuente-Nunez et al., 2014). Additionally, biofilms provide a site 

for cells to disperse from and colonize other areas or cause acute infections (Costerton et 

al., 1999). Staphylococcal 
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Figure 1-1. Staphylococcal biofilm lifecycle. Biofilms form by initial attachment of 

bacteria, through specific, protein-protein interactions with an abiotic surface or non-

specifically to an abiotic surface. The maturation process consists of the production of 

molecules including exopolysaccharide, teichoic acids, extracellular DNA, and proteins 

that connect the cells and provide structural integrity. The final step of detachment occurs 

through expression of quorum-sensing systems and surfactant-like molecules and aids in 

the dissemination of an infection. Figure from (Otto, 2008) 
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biofilms are  associated with many different types of chronic infections; furthermore, the 

ability of S. aureus to form biofilms on implanted medical devices complicates these 

infections and the only option is removal of the affected material (Darouiche, 2004; 

Francois et al., 1996).   

 

Management of S. aureus   

Throughout the last century scientists have developed numerous techniques to 

prevent and treat S. aureus infections; however, the current techniques lack the desired 

degree of efficacy. Furthermore, the overuse of the most commonly used treatment 

option, antibiotics, has resulted in the selection of antibiotic-resistant bacteria, which 

further compounds the problem.  

 

Antibiotics 

After all these years, the gold standard for treatment of bacterial infections 

remains traditional antibiotics. The drug of choice for treatment of S. aureus infections is 

still penicillin, one of the first commercially available antibiotics, even though 90% of 

isolates are now resistant (Lowy, 2003; Tong et al., 2015; Vardakas et al., 2014). In the 

likely case that resistance to penicillin is encountered, penicillinase-resistant β-lactams 

such as methicillin, oxacillin, dicloxacillin or flucloxacillin are available as second 

options (Rayner and Munckhof, 2005). However, the ubiquity of S. aureus resistant to 

methicillin resulted in physicians having to use “last resort” antibiotics, such as the 

glycopeptide vancomycin, as a first course of action. Once strains with partial or total 

resistance to vancomycin emerged, new drugs had to be developed; ceftobiprole has been 
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found to be effective against vancomycin-intermediate Staphylococcus aureus (VISA) 

and trimethoprim/sulfamethoxazole was shown to have efficacy in treating VRSA. Other 

new treatment options for invasive MRSA infections include linezolid, daptomycin, 

tigecycline, and quinupristin/dalfopristin. Additionally, a number of new anti-MRSA 

compounds have been recently approved by the FDA: novel lipoglycopeptides telavancin 

in 2009, dalbavancin and oritavancin in 2014, and the oxazolidinone tedizolid phosphate 

in 2014 or are under development (iclaprim) (Higgins et al., 2005; Krievins et al., 2009; 

Louie et al., 2011; Schwalbe et al., 1996; Steiert and Schmitz, 2002). However, if the 

lessons of methicillin- and vancomycin-resistant S. aureus are any indication, replacing 

one antibiotic treatment with another will just perpetuate the cycle.  It is only a matter of 

time before resistance to these new treatments is observed as well.  Additionally, these 

new antibiotics often come with undesirable side effects.  Linezolid has been associated 

with thrombocytopenia, vision problems and serotonin toxicity (Garazzino et al., 2007; 

Lawrence et al., 2006), quinupristin/dalfopristin causes a high rate of adverse venous 

events (Nichols et al., 1999), and televancin causes adverse renal effects (Stryjewski et 

al., 2008).       

 

Vaccine development 

 The holy grail in the war against staphylococcal infections would be a vaccine; 

however, there is currently no safe and effective vaccine despite the numerous attempts at 

developing one. Many of these vaccines have failed in late stage clinical trials, after much 

time, effort, and money had already been spent. A majority of the failures have been due 

to a monovalent approach, which can be overcome by the ability of S. aureus to utilize its 
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functional redundancy to downregulate the targeted virulence factor and upregulate 

compensatory factors. In clinical trials, vaccines against the capsule polysaccharide 

(StaphVAX
® 

and Altastaph
®
 from Nabi) did not provide protection against S. aureus 

bacteremia (Shinefield et al., 2002). Two vaccines against clumping factor A from 

Inhibitex (Veronate
® 

and Aurexis
®) 

resulted in no difference in clinical end points  in 

infants and adults (Shah and Kaufman, 2009; Weems et al., 2006). However, when 

vaccines against capsular polysaccharide and clumping factor A were given in 

conjunction with each other, a greater level of protection was afforded, indicating the 

necessity of a multivalent vaccine (Tuchscherr et al., 2008). Based off of those preclinical 

results, Pfizer developed SA3Ag
®
, which performed well in a phase I clinical trial, 

proving to be safe and immunogenic, and will proceed to phase II (Nissen et al., 2015).  

A vaccine from Merck (V710
®
) against iron surface determinant B was assessed for its 

ability to prevent S. aureus infections, and it was found that patients actually fared worse 

upon receiving this vaccine (Allen et al., 2014). Aurograb
®
 from NeuTec, a vaccine 

against an ATP-binding cassette transporter, failed to treat MRSA infections in a phase II 

clinical trial (Otto, 2010). Pagibaximab
®
 by Biosynexus, a vaccine against lipoteichoic 

acid, shows great promise having passed three rounds of clinical trials; results showed 

reduced rates of sepsis in infants and so far it is safe and well-tolerated (Patel and 

Kaufman, 2015). Nabi recently conducted phase I/II clinical trials using vaccines against 

α-toxin and LukS-PV and showed good immunogenicity and safety profiles (Lalani et al., 

2013). Integrated Biotherapeutics just completed phase I clinical trials using STEBVax
®
 

against enterotoxin B, and results are pending (Larkin et al., 2010). Novadigm’s 

candidate NDV-3
®

 against agglutinin-like sequence 3 protein was safe and immunogenic 
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in phase I/Ib clinical trials (Schmidt et al., 2012). In all, the efforts to create safe and 

effective vaccines for S. aureus are numerous and represent a promising approach to 

combating these infections. Furthermore, many of the pitfalls experienced in the earlier 

iterations have allowed scientists to learn from these mistakes and strategically improve 

upon future vaccine candidates.  

  

Metals and metal chelation 

The use of metals against multiple species of bacteria has been exploited since 

ancient times, and more recently with some basic understanding of mechanism.  Referred 

to as the oligodynamic effect, the mechanism of action is thought to be that the metal ion 

(especially from heavy metals) binds to the reactive (thiol) groups of proteins involved in 

metabolism, resulting in precipitation and thereby inactivation (Gibbard, 1937). While 

many different types of metals have been utilized for their antimicrobial characteristics, 

silver and copper are most widely used due to their lower toxicity against eukaryotes 

(Singh et al., 2011). Metal ions have an application in treating burn wounds and in 

impregnation of medical devices (Church et al., 2006), and also as disinfectants in non-

medical appliances (Jung et al., 2008). Metal ion therapy has been particularly useful in 

prevention and treatment of biofilm bacteria (Nan et al., 2015; Roe et al., 2008). While 

research into metal ions as antimicrobials has been somewhat promising, resistance has 

been observed. Even more discouraging is the observation of cross- and co-resistance to 

traditional antibiotics upon exposure to metal ions, indicating that this therapy may be 

doing more harm than good (Baker-Austin et al., 2006).   
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 At the opposite end of the spectrum, removal of metals from the bacterial 

environment has also been somewhat successful in treatment of infections. Because metal 

acquisition is important during pathogenesis, scientists have experimented with the use of 

metal chelators as antimicrobials (Hammer and Skaar, 2012). Several compounds have 

shown antimicrobial efficacy against S. aureus (Prachayasittikul et al., 2013; Qiu et al., 

2011; Short et al., 2006) and may also have a role in biofilm disruption (Abraham et al., 

2012). However, as metal chelators could potentially be cytotoxic, can interfere with 

immunodefense, and some may not be able to be used systemically, they may not be the 

most ideal choice for treatment of bacterial infections (Baggiolini, 1984; Sangvanich et 

al., 2014). 

 

Maggot therapy 

 A cure not for the slight of heart, maggot debridement therapy (MDT) 

(biodebridement, larval therapy, therapeutic myiasis), the intentional application of live 

“medical-grade” fly larvae to wounds in order to effect debridement, disinfection, and 

ultimately wound healing, is entering a renaissance period of sorts (Sherman, 2009). 

While this technique was used quite frequently in the first half of the 1900s, the 

widespread use of antibiotics eliminated its usage. However, now that society is faced 

with the emergence of antibiotic-resistant bacteria, some earlier technologies are being 

reexamined with the knowledge gained over the past century. The technical challenges of 

maggot therapy 100 years ago are now able to be overcome due to the advances in 

dressings that confine maggots to the wound and the ability to obtain germ-free maggots 

quickly and cheaply. Maggot therapy is effective because maggots can debride and 



 
 

13 
 

disinfect the wound and stimulate healing. These mechanisms of action are thought to 

occur most effectively in the presence of the animal, but attempts to isolate the “magic 

molecule” have been only somewhat successful. While some antibacterial factors have 

been discovered, they have not been compared head to head against use of the whole 

maggot (Arora et al., 2011). Maggot therapy may be most effective when there is a 

synergistic effect of multiple antimicrobial components or the physical movement of the 

maggot itself may aid in the removal of the necrotic tissue. Importantly, biofilm 

inhibition and eradication was able to be achieved with just the excretions and secretions 

from the maggot (Cazander et al., 2009). While results appear to be positive, this therapy 

faces major hurdles to becoming widely used. The number one aversion to maggot 

therapy is the obvious “yuk factor;” patients must overcome the thought of live insects 

crawling on their bodies (Steenvoorde et al., 2005). Furthermore, some users reported 

pain. On the doctor’s end, they must contend with keeping the maggots alive, a problem 

not normally dealt with when considering typical antimicrobials. Another issue is proper 

containment and eventual disposal of the maggots, as they are essentially “mobile 

fomites” and can transfer whatever infection they are trying to eradicate around a hospital 

or treatment facility.      

 

Other treatments 

In addition to the above mentioned therapies, there are numerous other treatments 

for S. aureus infections that are in various stages of development or not as commonly 

used in the clinic. A somewhat intriguing S. aureus control strategy is the use of the 

commensal organism S. epidermidis as a competitive colonizer of the anterior nares (Park 
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et al., 2011). In another approach, researchers have recently discovered that 

magnetotactic bacteria that possess magnetic nanocrystals could kill S. aureus by a 

magnetic hyperthermia mechanism (Chen et al., 2016). There has also been a push 

toward more in depth understanding of “natural” therapies in recent years, despite some 

of these treatments being used successfully for centuries. These include the 1000-year-old 

remedy known as an eye salve, consisting of garlic, onion, wine, and bile, honey, and 

various extracts from medicinal plants such as tea tree oil  (Brudzynski and Lannigan, 

2012; Carson et al., 2002; Chusri et al., 2013; Harrison et al., 2015). Other anti-

staphylococcal options that are being investigated include small molecules, antimicrobial 

peptides (AMPs), and quorum sensing inhibitors (Haisma et al., 2016; Jin et al., 2015; 

Tan et al., 2015). In addition to therapeutics, there is a need for disinfecting surfaces 

contaminated with S. aureus. Currently, alcohols, chlorhexidine, hexachlorophene, 

cetrimide, and triclosan are commonly used in places such as hospitals and gyms, and 

additional sanitizers are being investigated (Wootton et al., 2009; Yuen et al., 2015).        

 

Antibiotic Discovery and Resistance Development  

The identification of infectious agents and their associated illnesses, along with 

the beginnings of a basic understanding of mechanisms of infection, led to an ability to 

more systematically approach methods of battling pathogenic bacteria. While 

antimicrobial agents have been used throughout history, the advent of the golden age of 

antibiotics is considered to have begun in 1928 with the discovery of the β-lactam 

penicillin by Alexander Fleming (Fleming, 1929). It was introduced for widespread 

public use a decade later and hailed as a lifesaver, especially for staphylococcal 
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infections; however, the first resistance to penicillin was observed by 1945, an ominous 

sign of things to come (Lewis, 2013). In the 1940s, several translation inhibitors were 

discovered and soon thereafter were available to the public; the same resistance patterns 

were observed and interestingly, for tetracyclines, resistance was noted before going to 

market. Two other classes of 50S ribosomal subunit inhibitors, oxazolidinones and 

streptogramins, were discovered in 1955 and 1963, respectively, but were not introduced 

until 2000 and 1998.  Frighteningly, resistance to streptogramin B was observed one year 

after its discovery and it was still allowed to come to market 35 years later.  This period 

of intense discovery was rounded out by three other classes of drugs, glycopeptides 

(vancomycin in 1953), rifamycins (rifampicin in 1957) and quinolones (ciprofloxacin in 

1961), all of which bacteria developed resistance to before or very soon after becoming 

available. After that, a new class of antibiotics was not discovered until 1986 (the 

lipopeptide, daptinomycin).  Resistance was observed only a year later, yet daptinomycin 

was still approved for use by the FDA in 2003. Other newly approved antibiotics are 

derivatives from existing classes of drugs, such as tigecycline in 2005 (a glycylcycline 

derived from tetracycline) and ceftaroline in 2010 (a fifth generation cephalosporin), both 

of which have been met with the emergence of resistant strains. The last new class of 

antibiotics to be approved were the diarylquinolines for treatment of multidrug resistant 

tuberculosis in 2012, six years after resistance had been observed.  Clearly, new 

antibiotics cannot be developed quickly enough or smartly enough to be considered a 

viable therapeutic option (Boucher et al., 2013).    
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Antibiotic Mechanisms of Action  

Antibiotics are effective because they target processes or structures that are 

essential for bacterial survival (Newton, 1965). Antibiotics can be bactericidal (resulting 

in bacterial death) or bacteriostatic (preventing growth and reproduction). There are 5 

distinct mechanisms that are employed by antibiotics to achieve these goals. The largest 

class of antibiotics hinders peptidoglycan biosynthesis by preventing cell wall cross-

linking directly or interacting with precursors (e.g. penicillins, cephalosporins, 

glycopeptides, carbapenems, monobactams, bacitracin, cycloserine, fosfomycin, 

isoniazid, ethambutol). A second mechanism by which antibiotics function is by 

inhibiting translation; they directly interact with the 30S (e.g. aminoglycosides, 

tetracyclines) or 50S (e.g. macrolides, chloramphenicol, lincosamides, oxazolidinones, 

streptogramins) ribosomal subunits to suppress protein synthesis. Another group of 

antibiotics disrupt cell membrane permeability (e.g. polymyxin, ionophores). Next, 

antibiotics can block DNA (e.g. fluoroquinolones, novobiocin, nitrofurans, 

metronidazole) or RNA (e.g. rifampin, bacitracin) synthesis. Finally, they can possess 

antimetabolite activity that blocks enzyme-catalyzed reactions of the bacterial cell 

metabolism, such as mycolic acid synthesis inhibitors (e.g. isoniazid), folic acid synthesis 

inhibitors (e.g. sulfonamides, dapsone, trimethoprim), and ATP synthase inhibitors (e.g. 

diarylquinolines). The lipopeptide daptomycin is unique in that it has multiple 

mechanisms of action (Pogliano et al., 2012). It initially inserts into the cell membrane, 

where it aggregates, thereby altering membrane curvature. In turn, this change in 

curvature results in the formation of holes in the membrane, causing leakage of ions and 

massive depolarization. This loss of membrane potential then results in the inhibition of 



 
 

17 
 

protein, DNA, and RNA synthesis and ultimately cell death. Excitingly, the first in the 

newest class of antibiotics discovered in 20 years (yet still several years away from 

consumer use), teixobactin, utilizes a new mechanism of inhibition of cell wall synthesis, 

by binding to precursors of both peptidoglycan and teichoic acid (Ling et al., 2015). 

Importantly, the method by which this antibiotic was identified, the iChip, resulted in the 

growth of previously uncultivable bacteria, opening the door for many more 

antimicrobials to be found (Nichols et al., 2010).       

 

Bacterial Resistance to Antibiotics 

Although scientists have developed traditional antibiotics that use many different 

mechanisms by which to combat pathogens, they underestimated the ways in which these 

drugs would fail through evolutionary advantages obtained by the bacteria. Bacterial 

resistance to antibiotics can occur in two distinct ways (Blair et al., 2015). Inherent 

resistance is the ability to resist activity of a particular antimicrobial through intrinsic 

structural or functional characteristics. On the other hand, while some bacteria may be 

naturally resistant to certain agents, acquired bacterial resistance is caused by the 

selective pressure imposed by the introduction of an antibiotic.  Bacteria acquire these 

mechanisms through mutations, horizontal gene transfer, or vertical gene transfer. 

Mutation involves the modification of the native DNA, which results in the production of 

altered bacterial proteins. These mutations can be nucleotide(s) base substitutions/ single 

nucleotide polymorphisms (SNPs), insertions, deletions, or frameshifts. Horizontal/ 

lateral gene transfer (HGT/LGT) is the acquisition of new DNA from other bacteria, 

either through transformation (uptake of naked DNA), transduction (acquisition of 
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bacteriophage DNA during infection), or conjugation (transfer of DNA by direct bacteria-

bacteria contact). Vertical gene transfer is the transmission of spontaneously generated 

mutations from the parental generation to offspring. 

The same four mechanisms are utilized in both inherent and acquired resistance: 

the antibiotic may lack affinity for the bacterial target, be unable to enter the cell, be 

exported from the cell, or be inactivated or degraded by enzymes. S. aureus makes use of 

each one of these mechanisms of resistance, by both innate and acquired means. S. 

aureus is naturally resistant to only two commonly used antibiotics: metronidazole and 

aztreonam.  Metronidazole inhibits nucleic acid synthesis, only in its reduced form, 

which must occur in anaerobic conditions (Lofmark et al., 2010).  While S. aureus can 

grow in anaerobic environments, under typical aerobic conditions, metronidazole has no 

effect. Aztreonam has a high affinity for the penicillin-binding protein 3 (PBP-3) of 

aerobic Gram-negative bacteria, and binding causes inhibition of this enzyme to catalyze 

cross linking of the cell wall (Davies et al., 2008). The weaker binding of aztreonam to 

Gram-positive PBP-3 results in no inhibitory effect against S. aureus. While S. aureus 

only possesses natural resistance to these two antibiotics, it has developed acquired 

resistance to almost every other antibiotic currently available to treat S. aureus-induced 

infections.  

The β-lactam antibiotics (penicillins, cephalosporins, monobactams, 

carbapenems) inhibit cell wall synthesis by binding PBPs, and thereby disallowing 

crosslinking of the peptidoglycan. This weakened cell wall results in eventual lysis due to 

osmotic stress.  The most common mechanism of staphylococcal resistance to β-lactam 

antibiotics is through the production of a β-lactamase enzyme (BlaZ), encoded by a gene 
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carried on a plasmid, which degrades and inactivates these drugs (Sabath, 1982). When 

researchers developed modified β-lactams, in which the β-lactam ring core was protected 

from degradation, staphylococci acquired a new mechanism of resistance via horizontal 

gene transfer from a still unknown source: the mobile genetic element staphylococcal 

cassette chromosome mec (SCCmec) (Katayama et al., 2000). This element carries the 

mec complex composed of mecA, encoding PBP2a (PBP2’), and regulatory elements, as 

well the ccr site specific recombinase genes, and may contain other resistance genes, 

such as those against aminoglycosides, macrolides, tetracycline, or heavy metals.  PBP2a 

is a unique penicillin binding protein in that it has much weaker affinity than other PBPs 

for the β-lactam antibiotics, especially methicillin; therefore transpeptidation of the cell 

wall can still occur in the presence of these antibiotics.      

Vancomycin inhibits cell wall synthesis by binding to the acyl-D-alanyl-D-

alanine in the peptidoglycan precursor lipid II and thereby sterically hindering 

transglycosylation and transpeptidation. Resistance to vancomycin occurs in two distinct 

manners.  The first is through the thickening of the cell wall, through an as yet 

undetermined mechanism. These thicker cell walls make it harder for vancomycin to 

diffuse to its target (Hiramatsu et al., 1997). In addition, these so called VISA strains 

(MIC (minimum inhibitory concentration) from 4-8 µg/ml) display reduced crosslinking, 

which results in more D-ala-D-ala residues available to trap vancomycin.  The second 

method is by acquisition of the vanA operon via an enterococcal plasmid, causing the 

emergence of VRSA strains (MIC ≥16 µg/ml).  This results in the production of 

peptidoglycan precursors in which the peptide stem ends in D-alanyl-D-lactate, which 

vancomycin binds with 1000x less affinity than the native D-alanyl-D-alanine. 
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Acquisition of vanA also results in strains that are resistant to teicoplanin (Showsh et al., 

2001). Though resistance has yet to be observed for the newest glycopeptides, 

dalbavancin and oritavancin, they utilize the same mechanism of action as vancomycin, 

suggesting that they may also be subject to the same mechanism of resistance. The 

lipoglycopeptide televancin (a semi synthetic derivative of vancomycin) utilizes the same 

mechanism of inhibition of cell wall synthesis as vancomycin, so it is subject to 

development of resistance via acquisition of vanA  (Karlowsky et al., 2015). However it 

additionally disrupts membrane integrity via depolarization and increased 

permeabilization.  Despite this dual mechanism of action, low level resistance has been 

observed in the laboratory and once in the clinic; however it is currently not fully 

understood how S. aureus are able to overcome the secondary action of this antibiotic.              

 

Alternative Antimicrobials Needed  

The efforts to control antibiotic use to counteract the emergence of antibiotic 

resistant bacteria have been numerous and somewhat effective, but may be difficult to 

enforce. Only completely withdrawing specific antibiotics from use in the clinic led to a 

decrease in antibiotic-resistant S. aureus (Aubry-Damon et al., 1997; Barber et al., 1960; 

Ridley et al., 1970). One area in which antibiotic use can be lessened or eradicated is on 

the farm; Denmark, one of the world’s largest producers of pork, has cut antibiotic usage 

on farms by 40% without affecting production (Aarestrup et al., 2010). The European 

Union has already implemented strict guidelines on antimicrobial use in food animal 

production (Maron et al., 2013). In the United States, the CDC has obtained $160 million 

from Congress for implementation of the Antibiotics Resistance Solutions Initiative 
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(CDC, 2016).  This approach is outlined in the  National Action Plan for Combating 

Antibiotic-Resistant Bacteria and the National Strategy for Combating Antibiotic-

Resistant Bacteria (CARB); the overall vision is: “The United States will work 

domestically and internationally to prevent, detect, and control illness and death related to 

infections caused by antibiotic-resistant bacteria by implementing measures to mitigate 

the emergence and spread of antibiotic resistance and ensuring the continued availability 

of therapeutics for the treatment of bacterial infections.” Faced with this crisis of an 

impending post-antibiotic era, alternatives to these traditional antibiotics must be 

identified. As discussed, scientists are developing vaccines, quorum sensing inhibitors, 

antimicrobial peptides, iron chelators, and other unique therapies to combat bacterial 

infections. Excitingly, a both old and new field of antimicrobial research that is 

generating much interest is the use of bacteriophages and their lytic enzymes.  

 

Bacteriophage 

Bacteriophages are viruses that infect and replicate within bacteria (Drulis-Kawa 

et al., 2012). One way in which bacteriophages are classified is based upon their 

replication cycle; lysogenic (temperate) phages integrate their DNA with that of the host, 

while lytic (virulent) phages destroy the host immediately after replication of the virion. 

For the double-stranded DNA (dsDNA) phage lytic cycle, the host cell infection process 

consists of four steps.  First, is the adsorption and penetration step. The bacteriophage 

randomly encounters the host bacterium, then reversibly adheres to a specific receptor via 

its tail fibers. The viral genetic material is injected into the host through the tail core, a 

process that is either mechanical or enzymatic in nature, or both. Second, during the 

http://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf
http://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf
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synthesis of proteins and nucleic acid phase, the early proteins are transcribed and 

translated, resulting in the production of many copies of the phage DNA; this is followed 

by the transcription and translation of the late proteins, mostly structural in function. 

Third, virion assembly occurs. The structural proteins are then assembled into the mature 

virus, which is composed of the capsid head encapsulating a copy of the viral DNA and 

the tail components. During this time, endolysin also being produced to degrade the 

peptidoglycan and allow release of the mature bacteriophages. Lastly, the virion is 

released. Once the peptidoglycan is degraded, the viral particles are liberated by host cell 

lysis, thus completing the phage lytic cycle.  

After being discovered by Francis Twort in 1915 (Twort, 1915) and Felix 

d’Herelle in 1917 (d'Herelle, 1917), bacteriophages were briefly considered as potential 

therapeutic agents (d'Herelle, 1931); however, the discovery of the modern day antibiotic 

a decade later pushed them into the background in the Western world, mainly to be used 

as research tools. In the former Soviet Union and Eastern Europe, however, phage 

therapy, the use of bacteriophage for the prevention and treatment of bacterial infections, 

has been pursued with much success throughout the last century (Sulakvelidze et al., 

2001; Sulakvelidze and Morris, 2001). The earliest reported use of bacteriophage 

treatment of  staphylococcal skin disease in humans resulted in clearance of infection 

within 2 days  after bacteriophage were injected into and around surgically opened 

lesions  (Bruynoghe R., 1921).  At the Eliava Institute of Bacteriophage, Microbiology, 

and Virology (EIBMV) of the Georgian Academy of Sciences, Tbilisi, Georgia, and the 

Hirszfeld Institute of Immunology and Experimental Therapy (HIIET) of the Polish 

Academy of Sciences, Wroclaw, Poland, researchers have been actively and successfully 
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utilizing bacteriophage therapy against numerous bacterial infections, including those 

caused by S. aureus (Meladze et al., 1982; Slopek et al., 1984; Slopek et al., 1983a, b; 

Slopek et al., 1985a, b, c). In fact, the HIIET is currently conducting a clinical trial 

utilizing bacteriophage preparations against 15 different pathogens (Experimental Phage 

Therapy of Drug-resistant Bacterial Infections, Including MRSA Infections 

NCT00945087) (Vandenheuvel et al., 2015).  

 A reinvigorated worldwide interest in bacteriophage therapy has led to many 

groups using bacteriophage to both treat and prevent S. aureus in different types of small 

mammal models of infection, as staphylococcal infections can present in a multitude of 

ways. The nasal passage is the primary route of infection; as mentioned, S. aureus 

colonizes the anterior nares of 20% of the population persistently and 60% carry 

intermittently, leading to an increased risk of surgical site infections, foreign body 

infections and bacteremia, as well as transmission to non-colonized, especially 

immunocompromised, individuals. To evaluate the efficacy of bacteriophage as a nasal 

decolonization agent, intranasal administration of bacteriophage MR-10 was utilized in a 

mouse colonization model (Chhibber et al., 2014). Bacteriophage MR-10 was able to 

reduce the bacterial load by day 2 as compared to untreated mice, and by day 10, mice 

were completely sterile. Combinatorial treatment with mupirocin resulted in bacterial 

clearance by day 5. Myeloperoxidase activity was also lowered in bacteriophage and dual 

therapy; histopathogical analysis of excised nasal tissue showed reduced inflammation 

when compared to untreated samples. Taken together, these results validate the efficacy 

of bacteriophage (and combinatorial therapy with antibiotic) for nasal decolonization of 

S. aureus.      
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As S. aureus is often a causative agent of wounds and soft tissue infections, 

several groups have set out to investigate the therapeutic efficacy of bacteriophage 

against skin infections. Phage LS2a injected subcutaneously demonstrated the ability to 

prevent and treat abscess formation in a rabbit model of infection (Wills et al., 2005). As 

S. aureus is one of the most common pathogens isolated from diabetic foot wounds, 

Chhibber, et al. developed a mouse model to study bacteriophage treatment during a 

diabetic hindpaw infection (Chhibber et al., 2013). Treatment with bacteriophage MR-10 

was able to reduce the bacterial burden starting on day 1; sterile paws and resolution of 

infection occurred by day 7, whereas untreated mice resolved the infection on day 12, yet 

still had a low bacterial load. Utilizing both MR-10 and linezolid further reduced the 

bacterial counts and resulted in lower oedema and lesion scores, highlighting the benefit 

of combinatorial therapy, as the emergence of resistant mutants can be staved off due to 

differing mechanisms of action.               

Because S. aureus is also a major causative agent of bloodstream-associated 

infections, such as septicemia, invasive endocarditis, and septic arthritis, several groups 

have evaluated the efficacy of bacteriophage treatment against systemic MRSA infection.  

Bacteriophage M
Sa

 given intravenously
 
was able to  protect 93% of mice from bacteremia 

induced death, reduced the proinflammatory response during infection, and was effective 

even when given 10 days after the start of the infection (Capparelli et al., 2007). 

Subcutaneously injected bacteriophage P-27/HP sufficiently protected mice from 

bacteremia and death and lowered the bacterial load in the spleen by 6 logs (Gupta and 

Prasad, 2011a). In a mouse model of MRSA induced bacteremia, phiMR11 was able to 
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successfully prevent death (Matsuzaki et al., 2003), as was the morphologically similar 

ΦMR25 (Hoshiba et al., 2010).  

As mentioned, staphylococcal infections can be exacerbated by the formation of a 

biofilm, especially in the present of a medical device, and because antibiotics are 

ineffective, the only solution is removal of the implant. Several groups have developed 

biofilm and implant-mediated biofilm models to study the effectiveness of bacteriophage 

in biofilm removal. Sb-1 was able to decrease the bacterial load of MRSA in a tibial 

implant model and, when used in conjunction with antibiotics, prevented the formation of 

a biofilm (Yilmaz et al., 2013). In a rabbit model of central venous catheter-

related infection, bacteriophage K, given as an antimicrobial lock therapy, reduced the 

ability of bacteria to colonize and form biofilms (Lungren et al., 2014).  A cocktail of S. 

aureus bacteriophage was shown to effectively reduce the biofilm mass in a 

sheep model of sinusitis (Drilling et al., 2014).   

As most of the bacteriophage treatment studies utilize an intraperitoneal (ip) 

method of infusion, the results may be somewhat artificial. To understand if 

bacteriophage would be just as effective when given orally, as they might be in a hospital 

setting, mice were given S. aureus bacteremia and treated with bacteriophage A5. Results 

showed that both ip and oral administration were able to reduce the bacterial load in the 

liver to the same extent, indicating the validity of the ip model and also that 

bacteriophages could enter the circulatory system via the oral route (Zimecki et al., 

2008). 

Because some individuals are carriers of S. aureus, prophylactic treatment before 

a hospital stay or treatment might be desired. In the same vein, preventative treatment 
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may also be valuable for immunocompromised individuals. The need to steer away from 

using antibiotics as prophylactics due to the promotion of resistance, led researchers to 

study the use of bacteriophage as an alternative. In one study, immunosuppressed mice 

that were given bacteriophage A5/L 30 minutes before infection with S. aureus 

bacteremia had lower bacterial cell counts in their organs and lower cytokine levels in 

their blood than those that did not receive pretreatment (Zimecki et al., 2009). In addition, 

bacteriophage seemed to stimulate myelocytic and lymphocytic cell renewal and antibody 

production, indicating a beneficial effect on the immune system. This group also 

determined that this bacteriophage extended the survival and had the same beneficial 

effects on immunosuppressed mice that underwent a bone marrow transplant, bolstering 

the case for using bacteriophages as prophylactic measures (Zimecki et al., 2010).    

To study bacteriophage therapy on respiratory infection induced S. aureus    

septicemia, a common result of healthcare-associated, hospital-acquired, or ventilator-

associated staphylococcal pneumonia, mice were intranasally inoculated with S. aureus at 

a dose effective to cause lethality at 3 days, primarily caused by fibrosis, bleeding, and 

neutrophil infiltration (Takemura-Uchiyama et al., 2014). Mice that were treated with 

bacteriophage S13’ 6 hours post-infection had a 70% survival rate 2 weeks later, had 

significantly lower concentrations of bacteria in their livers and spleens, and had lower 

concentrations of TNF-a and IL-6 in their blood. 

 While rodents provide a satisfactory model for studying staphylococcal infection 

and resolution by bacteriophage treatment, scientists have developed an invertebrate 

model to alleviate some of the hassle associated with mammalian studies. The use of 

insects of the order Lepidoptera, in particular Bombyx mori (the silkworm) and Galleria 
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mellonella (the waxworm) are excellent model organisms because no Institutional 

Animal Care and Use Committee (IACUC) protocol is necessary and they are 

inexpensive.   Furthermore, they are a proven model used to study bacterial pathogenicity 

and pharmacokinetics, pharmacodynamics, and toxicology of drugs, as they provide 

comparable data to mouse models of infection. The therapeutic effects of two 

bacteriophages were examined in a silkworm model of S. aureus infection (Takemura-

Uchiyama et al., 2013). Treatment with bacteriophage 10 minutes after the start of the 

infection was able to rescue approximately 80% of the silkworms by day 2; in the mouse 

model, 100% of the mice survived when given bacteriophage S25-3, while 50% of the 

mice remained alive when treated with bacteriophage S13’. This study indicates that 

valid information on the therapeutic efficacy of bacteriophages can be gleaned from this 

invertebrate model and can be extrapolated to mammalian systems.      

 

Bacteriophage-Derived Peptidoglycan Hydrolases: Endolysins  

Phage therapy is effective because, as mentioned, late in the bacteriophage lytic 

cycle, two enzymes are produced: a holin, which oligomerizes to create holes in the 

cytoplasmic membrane, and an endolysin (Young et al., 2000). Endolysins are 

peptidoglycan hydrolases produced by bacteriophage to degrade the now accessible 

peptidoglycan “from within” for release of progeny phage.  Researchers have taken 

advantage of this peptidoglycan-degrading mechanism by applying endolysins to the 

outside of Gram-positive bacteria, which lack an outer membrane, resulting in lysis “from 

without” (Fig. 1-2).  Due to the internal turgor pressure of 20-50 atmospheres, the 

cytoplasmic membrane alone is no longer effective at maintaining the structure of the cell  
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Figure 1-2. Thin-section transmission electron micrographs of ClyS-treated S. 

aureus. (A) After exposure of S. aureus to 250 μg of ClyS for just 3 minutes, cells 

displayed localized degradation of the cell wall, resulting in osmotic stress-induced lysis 

and visualized by extrusion of the cytoplasm. (B) The bacteriolytic activity of the 

endolysin ultimately results in cell death and the presence of “ghosts” can be observed. 

Figure from (Daniel et al., 2010) 
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and ultimately the result is death due to osmotic stress. This phenomenon means that the 

whole bacteriophage is not necessary to achieve antimicrobial efficacy; use of the 

endolysin alone causes the same result. The use of only the endolysin (a single protein 

entity) makes endolysin therapy a much more attractive option, as there are numerous 

benefits to eliminating the whole phage from a preventative or treatment regimen.  

The main benefit to the use of an endolysin over the whole bacteriophage is the 

simplification of a complex system. From both a health care and regulatory standpoint, 

use of a controlled single protein is an improvement over the use of a complicated self-

replicating virus (Gill and Hyman, 2010; Pirnay et al., 2011). The stripping of the 

bacteriophage to just the bare essentials needed for antimicrobial activity also allows for 

future improvement efforts. As evolved as endolysins are, scientists are always trying to 

improve and adapt them for use as antimicrobials. While it is not impossible to 

genetically engineer a bacteriophage to improve lytic efficacy (Westwater et al., 2003), it 

is certainly much easier to alter individual proteins. Engineering desirable properties in 

enzymes can be achieved using either rationale-based (e.g. sequence comparison, 

structure-guided site directed mutagenesis (SDM), or in silico computational modeling) 

or random techniques (e.g. random mutagenesis, gene shuffling, or directed evolution) 

(Schmelcher et al., 2012a). These proteins can be easily engineered for increased lytic 

activity, enhanced or alternative binding, or other improvements in protein characteristics 

such as thermostability. Importantly, bacteriophage resistance has been observed (Labrie 

et al., 2010), while multiple efforts to isolate endolysin resistant bacteria have been 

unsuccessful. Lastly, bacteriophages are associated with strain-specificity, which is not 

ideal for a viable antimicrobial therapy (Sulakvelidze et al., 2001). Sick patients would 
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have to be strain-typed, a process that takes longer and is more expensive than just a 

species identification. In order to deal with this problem, proponents of bacteriophage 

therapy have suggested the use of cocktails; however, the regulatory issues are magnified 

in a multi-component system. Endolysins are typically species-specific and can even be 

genus-specific; in rare cases, they have a broader host range. The not-too-narrow 

spectrum of endolysins makes them preferable as they can be used as a general treatment 

against a particular bacterial infection without having to know the exact strain.         

  

Endolysin Structure    

Endolysins from bacteriophages that infect Gram-positive hosts are typically 

composed of two modular domains: an N-terminal catalytic domain (also known as an 

enzymatically active domain (EAD) or enzyme catalytic domain (ECD)) and a C-

terminal cell wall binding domain (CBD) (Fig. 1-3) (Borysowski et al., 2006). The CBD 

is responsible for bringing the protein in contact with the bacterial cell, typically through 

an interaction with a carbohydrate, although the receptor is choline in the case of 

pneumococcal endolysins or the peptidoglycan directly for staphylococcal endolysins 

(Fischetti, 2003; Garcia et al., 1983; Lu et al., 2006).  After the protein has bound to its 

target, the business end can accomplish its enzymatic task. The catalytic domain is 

responsible for the hydrolytic cleavage of highly conserved bonds in the peptidoglycan. 

Peptidoglycan is a polymer made of repeating sugar components (β-(1,4) linked N-

acetylmuramic acid (MurNac) and N-acetylglucosamine (GlcNac)), with a peptide chain 

(L-alanine, D-glutamic acid, L-lysine, D-alanine in non-bacilli Gram-positive bacteria) 

attached to the MurNac, and crosslinked (either directly or through an interpeptide bridge  
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Figure 1-3. Modular architectures of Gram-positive endolysins. (A) A typical 

globular enzyme consisting of ECD only. (B) Typical bimodular N-terminal ECD and C-

terminal CBD joined by a linker region. Trimodular structures of (C) dual catalytic 

domains and 1 CBD or (D) 3 ECDs. (E) The unique multimeric configuration of the 

streptococcal endolysin PlyC. Figure from (Oliveira H et al., 2012)  
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(pentaglycine for S. aureus)) to other peptide chains to create a meshlike structure (Fig. 

1-4).  Peptidoglycan provides important structural integrity for the bacterial cell and is an 

ideal target for an antimicrobial as it is essential for bacterial survival. The catalytic 

domains of endolysins can be classified into four groups depending on the target bond to 

be cleaved. In the glycan component, N-acetylmuramidases are responsible for the 

cleavage on the reducing end of the N-acetylmuramic acid, while N-acetyl-β-D- 

glucosaminidases cleave at the reducing end of N-acetylglucosamine. N-acetylmuramoyl- 

L-alanine amidases cleave the bond connecting the glycan component and the peptide 

stem. Lastly, endopeptidase is a broad term encompassing any endolysin that cuts 

between two amino acids found in the stem peptide or interpeptide bridge. While there 

are multiple catalytic domains that have been associated with staphylococcal endolysins, 

the most commonly found class is the cysteine, histidine-dependent amidohydrolase/ 

peptidase (CHAP) domain. These domains have been associated with both N-

acetylmuramoyl-L-alanine amidase and endopeptidase activity. A sequence comparison 

of endolysins in the same enzyme class shows that the catalytic domains are highly 

conserved, whereas the binding domains are more variable (Oliveira et al., 2013).     

Interestingly, the domains of endolysins interact not only with the bacterial cell, 

but it has been shown that they interact with each other. Structural evidence obtained 

using the pneumococcal endolysin Cpl-1 crystallized in free and choline-bound states 

showed that, in the absence of the binding substrate, the endolysin formed a hairpin, 

rendering the catalytic domain inactive; however, choline recognition by the CBD 

allowed for the undoing of the hairpin and the proper positioning of the catalytic domain 

to access and cleave the peptidoglycan (Hermoso et al., 2003). 
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Figure 1-4. S. aureus peptidoglycan and endolysin cleavage sites.  The structure of S. 

aureus peptidoglycan consists of sugar components (β-(1,4) linked N-acetylmuramic acid 

and N-acetylglucosamine)  and a peptide stem of 4 amino acids (L-alanine, D-glutamic 

acid, L-lysine, D-alanine) crosslinked through an interpeptide bridge (pentaglycine) to 

another unit. The dotted arrows denote the sites targeted for cleavage by the catalytic 

domains of endolysins. Figure from (Fournier and Philpott, 2005)   
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Staphylococcal Endolysin Cell Wall Binding Domains  

SH3b CBD 

 All endolysins displaying activity against staphylococcal species (except one, 

described further below) possess an SH3b cell wall binding domain. SH3 (src homology 

3) domains in eukaryotes and viruses are implicated in mediating protein-protein binding 

through interactions with proline-rich sequence motifs (Weng et al., 1995); however, the 

SH3b domain in prokaryotes, while displaying sequence similarity to the SH3 domain, 

shows an alternative folding in the RT loop (Whisstock and Lesk, 1999). The SH3b 

domain is found in both staphylococcal and streptococcal endolysins, usually in 

combination with a CHAP domain or a CHAP plus another catalytic domain. The 

staphylococcal endolysins Twort, LysH5, ΦSh2, Φ11, Sal1, and LysK contain both 

CHAP and Amidase-2 EADs with SH3b CBD, staphylococcal endolysin 2638A contains 

M23 and Amidase-2 EADs with SH3b, and the GBS (Group B streptococcus) endolysin 

B30 has CHAP and Acm glycosidase EADs with SH3b (Abaev et al., 2013; Becker et al., 

2008; Becker et al., 2015; Donovan et al., 2006b; Donovan et al., 2006c; Jun et al., 2011; 

Obeso et al., 2008; Schmelcher et al., 2012b). SH3b-containing endolysins against other 

species of bacteria utilize various other catalytic domains.  

In addition to endolysins, SH3b domains have also been found in association with 

other classes of proteins, such as other enzymes, adaptor proteins, or peptidoglycan 

binding proteins. SH3b encompasses such a broad group of proteins because this domain 

is actually further classified into SH3b1 and SH3b2 and divided even more into the 

subgroups SH3_1-9; as of yet only SH3_3 and SH3_5 have been found to be associated 

with endolytic enzymes. The endolysin SH3b is unique in that most endolysin binding 
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domains interact with a carbohydrate moiety embedded in the cell wall (or choline in the 

case of pneumococci), whereas SH3b domains are predicted to bind peptidoglycan, 

specifically the peptide component (Schmelcher et al., 2012a). For staphylococcal SH3b 

domains, that peptide component is proposed to be the pentaglycine crossbridge, unique 

to S. aureus (Grundling and Schneewind, 2006; Lu et al., 2006); the streptococcal SH3b 

ligand is currently unknown, but may be the free amino group of the N-terminal alanine 

in the stem peptide (Xu et al., 2010).   

There are currently many discrepancies in our understanding of the endolysin 

SH3b domains, mainly having to do with the residues important for the binding 

interaction. Although the staphylococcal SH3_5 has been extensively investigated 

structurally and bioinformatically, there are conflicting reports about the amino acids 

responsible for binding. For example, the ALE-1 endolysin contains an SH3_5 domain 

that was shown to specifically recognize the pentaglycine crossbridge of S. aureus; 

however, some of the amino acid residues implicated in being responsible for this binding 

were outside of the canonical 63 amino acid SH3b domain and were variable from the 

residues determined to be important in the SH3_5 domain from LysGH15, despite the 

almost 50% identity between these two enzymes (Becker et al., 2009b; Gu et al., 2014; 

Lu et al., 2006). Additionally confounding is the classification of both streptococcal and 

staphylococcal endolysin SH3b as SH3_5, yet these CBDs are distinctly different from 

each other in sequence; while both contain the consensus Y(6-8x)G(xx)W(6-8x)G, they 

have virtually nothing else in common.  

Further complicating our understanding of these domains, some SH3b domains do 

not display species specificity, and it is unknown whether the lack of specificity is due to 
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the catalytic domain or the SH3b domain, as binding studies have not been performed. A 

catalytic domain that can cleave a bond shared by multiple species could perhaps act 

upon many different bacteria regardless of the binding domain. Examples include LysB4 

(VanY  L-alanoyl-D-glutamate endopeptidase + SH3_5) which shows activity against 

Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes,  LysBPS13 (PGRP + 

SH3_5) and Ply21 (N-acetylmuramoyl-L-alanine amidase + SH3_5) effectively lyses 

several bacilli species, and CP25L (N-acetylmuramoyl-L-alanine amidase + SH3_3) 

which is active against clostridial and bacilli species (Gervasi et al., 2014; Park et al., 

2012; Son et al., 2012). One endolysin (PlySs2) containing an SH3_5 domain does not 

display genus/species specificity and maintains activity against both staphylococci and 

streptococci (and some other species). In this case, however, it has been determined that 

this phenomenon is due to the promiscuity of the catalytically diverse CHAP catalytic 

domain and not due to the SH3b binding domain (Gilmer et al., 2013; Yang et al., 2015). 

This SH3b domain has been shown to directly bind streptococci, but does not interact 

with staphylococci (Huang et al., 2015). Despite this, because this SH3b domain, in both 

its natural and chimeric forms, is linked to a CHAP domain (which can cleave bonds 

present in both staphylococci and streptococci), the full length endolysin possesses 

activity against multiple bacterial species. 

 

ΦNM3 CBD 

 As mentioned, all discovered CBDs from endolysins against S. aureus have been 

classified as SH3b domains, except for one.  The CBD of the endolysin from the ΦNM3 

prophage from S. aureus Newman has no known identity to any domains in the database 
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and is described in the literature as “non-SH3b like” (Bae et al., 2006). The native ΦNM3 

CBD is linked to a CHAP catalytic domain and it specifically binds staphylococci 

(Daniel et al., 2010). The ΦNM3 CBD has been the subject of engineering studies, due to 

its divergence from the typical staphylococcal cell wall binding domain (SH3b). ClyS, 

composed of the PlyTW endopeptidase EAD and the ΦNM3 CBD, displayed potent in 

vivo efficacy against S. aureus, decolonizing mouse nasal cavities, providing protection 

against systemic infection, and reducing the bacterial load in a skin infection after being 

topically applied (Daniel et al., 2010; Pastagia et al., 2011). ClyH (Ply187 CHAP + 

ΦNM3 CBD) also eliminated MRSA in a mouse model of systemic infection (Yang et 

al., 2014b)  

 

Endolysin Advantages 

The use of endolysins is not only preferred over using whole bacteriophage, as 

mentioned, but has many benefits over the use of classical antibiotics as well. Most 

importantly, no resistance to endolysins has been observed, despite efforts to isolate 

resistant mutants (Pastagia et al., 2011). Whereas antibiotics act against easily mutable 

targets (Spratt, 1994), the activity of an endolysin is due its binding and cleavage of 

highly conserved substrates. Furthermore, there is no chance of non-target resistance due 

to this high specificity. The usage of broad spectrum antibiotics may allow for the 

overgrowth of certain species of normal flora, resulting in a state of dysbiosis; thus, they 

could also encourage the development of resistance in populations of bacteria that 

normally occupy a small niche (Nelson et al., 2012; Schmelcher et al., 2012a). This 

selective nature of endolysins also alleviates some of the non-desirable side effects 
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caused by antibiotic-induced disruption of normal flora. The use of antibiotics can cause 

diarrhea and nausea/vomiting or vaginal and oral yeast infections due to the depletion of 

typical species that live in these environments and the overgrowth of infectious bacteria 

(Tedesco et al., 1974), whereas an endolysin would only eliminate the targeted pathogen. 

The most common side effect associated with antibiotics is an allergic reaction, ranging 

from the mild (red, itchy, flaky, or swollen skin rash) to the severe (peeling and blistering 

skin or eye problems) and life-threatening (anaphylaxis) (Anderson, 1992). Despite the 

proteinaceous nature of endolysins, they have been shown to be non-immunogenic and 

do not cause any of the allergic reactions associated with antibiotics. Endolysins also hold 

promise in the elimination of biofilms (Sass and Bierbaum, 2007; Son et al., 2010), 

whereas antibiotics are ineffective against bacteria in this lifestyle (Fig. 1-5) (Hoiby et al., 

2010). Additionally, antibiotics can only be utilized in the field of medicine, whereas 

endolysins can not only be used for public health, but have other applications, such as 

disinfectants or detection agents in the field of food safety or as biotechnological tools.     

From an economic standpoint, pharmaceutical companies do not want to spend 

money developing a traditional antibiotic when the payoff is so low, due to the fact that 

their product may soon be obsolete, when resistance emerges. Therefore, hardly any new 

antibiotics are coming through the pipeline; this, combined with the inability to use 

certain current antibiotics, puts society in a frightening situation (Boucher et al., 2013). 

The promise of endolysins’ inability to develop resistance, along with the potential of 

extending the use of antibiotics formerly thought to be ineffective through combinatorial 

therapy with endolysins, means that the pharmaceutical industry can continue to invest in 

preventing and treating bacterial infections.        
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Figure 1-5. Scanning electron micrographs of LysH5-treated S. aureus biofilms. (A) 

Biofilms formed by S. aureus 15981 after 24 hours show cells attached to each other and 

the surface and covered in a layer of EPS. (B) After endolysin treatment, bacteria in the 

biofilm have been lysed and all material has been removed from the surface. Figure from 

(Gutierrez et al., 2014) 
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S. aureus Endolysins 

Many laboratories have been searching for endolysins effective against S. aureus 

for the last two decades. Difficulties in obtaining staphylococcal endolysins in particular 

include issues with solubility, yield, and stability.  Despite these problems, scientists have  

identified or constructed approximately 50 endolysins with anti-staphylococcal activity 

(Table 1-1). Measurements of endolysin activity can be obtained using many different 

methods (zymogram, plate lysis assay, turbidity reduction, minimum inhibitory 

concentration (MIC), colony forming unit (CFU) counts, etc.), and experiments have 

been performed on numerous strains under variable conditions; thus it is notoriously 

difficult to compare one endolysin to another. Standardization of the determination of 

endolysin activity has been attempted, but needs to be effectively enforced (Briers et al., 

2007; Mitchell et al., 2010).   

 

Antimicrobial Potential  

 As mentioned, a major benefit to using an endolysin over a traditional antibiotic is 

the pathogen’s inability to develop resistance. Despite many attempts to isolate resistant 

mutants, researchers have been unsuccessful. LysH5 and chimeric endolysins composed 

of HydH5 fused to lysostaphin or just the lysostaphin CBD were unable to select for 

resistant mutants after 10 days in both solid and liquid media, while lysostaphin MICs 

increased 100-fold and 1000-fold, respectively (Rodriguez-Rubio et al., 2013b). 

Similarly, when exposed to increasing amounts of PlySs2 over 8 days, neither a MSSA 

nor a MRSA strain developed resistance (defined as a four-fold increase from the original  
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Table 1-1. S. aureus endolysins. 

Endolysin Activity 

PlyTW shows  N-acetylmuramoyl-L-alanine amidase activity via 

HPLC analysis (Loessner et al., 1998), has specific activity of 

0.2 OD600/min/mg, increases 3 fold when amidase-2 domain is 

removed (Becker et al., 2015) 

  

Lys16 crude lysate lyses 12 strains of S. aureus (Takac et al., 2005)  

  

P68 Protein 17 50 ng/ml results in 2 log killing (Takac and Blasi, 2005) 

  

LysWMY displays activity on zymogram (Yokoi et al., 2005) 

  

LysK crude lysate causes 2 log killing (O'Flaherty et al., 2005), 

purified LysK has specific activity of 0.04 OD600/min/mg, MIC 

= 32 µg/ml (Becker et al., 2008) 

  

443-Lyso, 182-Lyso  has specific activity of 0.127 and  0.059 OD600/min/mg, 

respectively (Donovan et al., 2006a) 

   

Φ11 has specific activity of 1.5 OD600/min/mg (Donovan et al., 

2006c), 20 µg/ml reduces OD600 60% in 20 minutes, 10 µg 

removes biofilms (Sass and Bierbaum, 2007) 

  

MV-L 5 µg reduces CFU counts by 2-5 logs in 30 minutes, 50 µg 

protects 100% of mice in MRSA nasal colonization model 

(Rashel et al., 2007) 

  

λSA2 digests cell walls as per mass spectrometry analysis (Pritchard 

et al., 2007), displays weak activity in plate lysis assay 

(Donovan and Foster-Frey, 2008) 10 µM reduces OD600 by 

>75% in 30 minutes (Roach et al., 2013) 

  

LysH5 5 U/ml reduces OD600 by 1.25 in 600 seconds, 160 U/ml 

decreases bacterial counts by 6 logs in 4 hours in pasteurized 

milk (Obeso et al., 2008), MIC = 50 U/ml (Garcia et al., 2010), 

has specific activity of 166.85 U/mg (Rodriguez-Rubio et al., 

2012a), 0.15 µM reduces in vitro biofilm bacterial counts by 1-

3 logs (Gutierrez et al., 2014)  

  

P16-17 displays activity on zymogram, 10 µg/ml reduces bacterial 

counts by 95% in 1 hour (Manoharadas et al., 2009) 

  

CHAPK 0.5 nmol reduces OD600 by 90% in 30 minutes (Horgan et al., 

2009), 5 μg/ml causes 3 logs killing, MIC = 31.25 µg/ml, 
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(Fenton et al., 2011b)  925 µg/60 µl decreases bacterial counts 

in nares of mice by 2 logs (Fenton et al., 2010a), 500 µg/ml 

reduces biofilm bacterial count by 4 logs, 200 µg/ml reduces 

bacterial count on pig skin by 2 logs (Fenton et al., 2013) 

  

SAL-2 5 µg displays activity on plate lysis assay,  20µg removes 

biofilms (Son et al., 2010) 

  

ClyS 250 µg results in OD600 decrease of 0.6  and 3 log killing in 30 

minutes, 1 mg reduces the bacterial load in the nasal cavities of 

mice by 2 logs and protects 88% from MRSA septicemia 

(Daniel et al., 2010), 10% (wt/wt) dose causes a 3 log 

reduction in a mouse skin infection model (Pastagia et al., 

2011) 

  

SAL-1 MIC = 0.2 – 3.2 µg/ml, 5 μg reduces OD600 by 0.5 in 15 

minutes (Jun et al., 2011), 10 μg/ml removes biofilms, 

12.5 mg/kg rescues mice in iv septicemia model (Jun et al., 

2013) 

  

P-27/HP 10 µg/ml reduces CFU counts by 4 logs in 2 hours, 250 µg/ml 

rescues 100% of mice from bacteremia (Gupta and Prasad, 

2011b) 

  

LysAB2 

 

displays activity on zymogram, 500 µg/ml kills 82% of 

bacteria (Lai et al., 2011) 

  

PRF-119 MIC = 0.024–0.780 µg/ml (MSSA),  MIC = 0.024–1.563 

µg/ml (MRSA) (Idelevich et al., 2011) 

  

HydH5, CHAP, LYZ2 HydH5 and catalytic domains alone (20 µg) reduce bacterial 

counts by 40%, 25%, and 23%, respectively (Rodriguez et al., 

2011) 

  

LysGH15 40 μg/ml reduces OD600 80% in 30 minutes, 50 μg protects 

100% of mice from MRSA induced bacteremia and reduces the 

bacterial load in the spleen 2 logs (Gu et al., 2011a; Gu et al., 

2011b)  

  

P128 50 µg/ml reduces OD600 by 0.8 in 30 minutes, 100 µg 

decolonizes 44% of rat nares (Paul et al., 2011), MIC = 1- 64 

µg/ml, MBC = 1-64 µg/ml, 1.5 µg/ml reduces bacterial counts 

by 5 logs in simulated nasal fluid (Vipra et al., 2012), 10 µg/ml  

kills 3-5 logs in serum, plasma, and whole blood (George et al., 

2012), 6 µg reduces OD600 by 65-75% in 30 minutes 

(Saravanan et al., 2013), ≥12.5 μg/mL  reduced biofilm 
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biomass by up to 95.5% (Drilling et al., 2016) 

  

λSA2-E-Lyso-SH3b, 

λSA2-E-LysK-SH3b 

have specific activities of ~.01 OD600/min/mg, display activity 

on plate lysis assay (Becker et al., 2009b), reduces bacterial 

counts in mouse intramammary infection (0.63 and 0.81 log for 

λSA2-E-Lyso-SH3b and λSA2-E-LysK-SH3b), λSA2-E-LysK-

SH3b combinatorial treatment with lysostaphin reduces 

bacterial counts 3.36 logs (Schmelcher et al., 2012c) 

  

 Lys168-87, Lys170-87 10 μg displays activity on plate lysis assay, 10 μg/ml reduces 

OD600 by 40% in 1 hour (Fernandes et al., 2012) 

  

ΦSH2 has specific activity of 0.02 OD600/min/mg, increases 3 fold 

when amidase and SH3b domain are deleted (Schmelcher et 

al., 2012b) 
  

HydH5, HydH5Lyso, 

HydH5SH3b, 

CHAPSH3b 

display activity on zymogram and plate lysis assay, have 

specific activity of 0.03-0.1 OD600/min/mg (Rodriguez-Rubio 

et al., 2012b), reduce CFU counts by 2 logs after 6 hours, 1.65 

µM CHAPSH3b kills up to 3 logs in 30 minutes in raw and 

pasteurized milk (Rodriguez-Rubio et al., 2013a), cleaves 

peptidoglycan as per mass spectrometry analysis (Rodriguez-

Rubio et al., 2013b) 

  

2638A 0.5 µM yields specific activity of 0.07 OD600/min/mg (Abaev 

et al., 2013) 

  

LysSA4 5 µl produces clearing zone via plate lysis assay (Mishra et al., 

2013) 

  

CF301 (PlySs2) 

 

32 µg/ml reduces OD600 >70% in 30 minutes, 128 µg/ml 

reduces CFU counts by 2-5 logs, 1 mg protects 90% of mice 

from MRSA bacteremia (Gilmer et al., 2013), MIC = 2-8 

µg/ml, removes biofilms, 5 mg/kg rescues 70% of mice from 

MRSA-induced bacteremia (Schuch et al., 2014) 

  

Ply187AN-KSH3b has specific activity of 1.2 OD600/min/mg (Mao et al., 2013), 

MIC = 4-8 µg/ml, reduces in vitro biofilms counts by 5 logs, 1 

μg/μl administered intravitreally at 6 h or 12 h postinfection 

reduces bacterial counts by 2 or 1 log, respectively, and 

attenuates symptoms of endophthalmitis (Singh et al., 2014) 

  

LysDW2 displays activity on zymogram (Keary et al., 2014) 

  

ClyH MIC = 0.05-1.61 µg/ml, 360U protects 100% of mice (Yang et 

al., 2014b) 
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Ply187N-V12C  MIC = 2 µM, 50 pmol results in a clearing zone (Dong et al., 

2015) 

  

ClyR 25 μg/ml reduces OD600 by 0.05-0.4 in 20 minutes (Yang et al., 

2015)  

  

MR-10 18 μg/ml and 36 μg/ml reduces biofilm bacterial counts  by ~1 

log in 6 hours in ica-negative and ica-positive MRSA, 

respectively (Chopra et al., 2015)  

  

80α, Φ11, LysK, P68, 

Twort, 2638A, ΦSH2, 

WMY  

200 μg protects 100% of mice (80α, Φ11, LysK, 2638A, 

WMY), 60% of mice (ΦSH2), 50% of mice (Twort) from 

death induced by MRSA septicemia (Schmelcher et al., 2015) 

  

LysDB displays activity on zymogram, 10 μg/ml reduces the OD600 

by 60% in 100 minutes, constitutive expression by a starter 

culture reduces the bacterial counts by 4 logs after 6 weeks 

compared to control cheese (Guo et al., 2016) 

  

Hy133 MIC = 0.125 μg/ml - 0.5 μg/ml (Idelevich et al., 2016) 

  

K-L has specific activity of 5 OD600/s/mg (Filatova et al., 2016), 

reduces intracellular bacterial load by ~50% in MAC-T cells 

and ~1 log in a mouse model of osteomyelitis, 1.4 µM reduces 

bacteria in a dynamic biofilm by 76% (Becker et al., 2016) 

  

Trx-SA1 displays activity on plate lysis assay, 20 mg given once per day 

intramammary reduces bacterial counts over 3 days (Fan et al., 

2016)  

 

A summary of endolysins possessing activity against S. aureus and results obtained from 

these studies.  
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MIC) to this endolysin, while both strains developed resistance to mupirocin (Gilmer et 

al., 2013).   

 While technically not an endolysin, lysostaphin has peptidoglycan hydrolase 

activity and its M23 lytic domain has often been utilized in chimeric engineering studies.  

Importantly, as mentioned, lysostaphin resistant S. aureus has been isolated both in vitro 

and in vivo (Climo et al., 1998; Stranden et al., 1997). One mechanism by which this 

occurs involves mutations in femA or femB, which are responsible for adding the second 

and third or fourth and fifth glycines to the staphylococcal cross bridge, respectively 

(Ehlert et al., 1997). A mono- or triglycine cross bridge is therefore more resistant to 

recognition and cleavage by lysostaphin. The other mechanism of lysostaphin resistance 

involves acquisition via shuttle vector of the lysostaphin immunity factor (lif)/ 

endopeptidase resistance gene (epr) (Thumm and Gotz, 1997).  S. aureus that express 

this protein display serines instead of glycines in their peptidoglycan cross bridges, which 

cannot be recognized and therefore cleaved by lysostaphin. However, lysostaphin 

resistance is not a terrible acquisition as it is incompatible with resistance to β-lactam 

antibiotics (Climo et al., 2001), even in strains that are originally MRSA. Thus, the 

acquisition of lysostaphin resistance by MRSA renders these strains now susceptible to β-

lactams; it has also been shown that antibiotic treatment used concurrently with 

lysostaphin prevented lysostaphin resistant mutants from arising. Additionally, 

lysostaphin resistant mutants are not as fit, as shown by reduced growth rate, increased 

susceptibility to high temperatures, and less virulence in a mouse kidney infection model 

(Kusuma et al., 2007).  
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 The high specificity of endolysins for their bacterial targets means that they can 

be safely used in medical applications; because the cleavage and binding targets are not 

present in eukaryotic cells, endolysins will not negatively interact with them. Endolysins 

have been used effectively in many animal models without causing harmful, irritating, or 

abnormal side effects (Fenton et al., 2010b). Additonally, endolysins have not displayed 

toxicity in tissue culture; PlyC did not compromise the membrane integrity of A549 lung 

epithelial cells, even though this endolysin has the unique capability to become 

internalized (Shen et al., 2016). Similarly, endolysins that were engineered to target 

intracellular staphylococci by adding a protein transduction domain (PTD) did not harm 

cells in tissue culture (Becker et al., 2016). These studies show that an endolysin can 

interact with the eukaryotic cell membrane without negatively impacting the health of the 

cell. Co-cultures of bacteria with eukaryotic cells lines have shown that the endolysin 

(whether it can go intracellular or not) will specifically lyse the target bacteria without 

harming non-bacterial cells. A major concern, however, is the fallout from massive and 

rapid bacterial lysis: an influx of proinflammatory cellular debris (teichoic acids, 

lipoteichoic acids and peptidoglycan), leading to life-threatening complications, such as 

septic shock and multiple organ failure (Nau and Eiffert, 2002). The use of interval 

dosing instead of continuous infusion may alleviate this issue (Entenza et al., 2005; 

Witzenrath et al., 2009).      

Because endolysins are proteins, they have the ability to elicit an immune 

response. Mice that were injected with the pneumococcal endolysin Cpl-1 did in fact 

generate antibodies, and the resulting hyperimmune serum slightly decreased the efficacy 

of Cpl-1 in vitro; however in vivo these antibodies did not cause a reduced ability of Cpl-
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1 to protect mice during an S. pneumoniae challenge (Loeffler et al., 2003). No adverse 

immunogenic side effects or inactivation of endolysin were also reported in several other 

studies (Jado et al., 2003; Rashel et al., 2007).  It has been proposed that the affinity of 

the CBD for the bacterial surface is higher than that of IgG for the endolysin, thus 

explaining the maintenance of potent activity in vivo (Loessner et al., 2002). The short 

half-life of endolysins (Loeffler et al., 2003) can be compensated for by addition of 

polyethylene glycol to the protein (Walsh et al., 2003).  In the case of abolished or 

severely decreased enzymatic activity (Resch et al., 2011a), it has been shown that 

dimerization can improve the pharmacokinetics of endolysins (Resch et al., 2011b). 

Excitingly, endolysins have displayed synergistic behavior when used in 

combination with each other or antibiotics, resulting in lower doses, increased efficacy, 

and reduced risk of resistance development. Synergy when using multiple endolysins can 

be explained by the cleavage of multiple different bonds at the same time, or cleavage by 

one endolysin could facilitate access to the cleavage target of a second endolysin (Becker 

et al., 2008; Schmelcher et al., 2012c). Synergy between antibiotics and endolysins is 

important because it can potentially reinvigorate the use of antibiotics that were 

previously thought to be ineffective. Staphylococcal resistance to vancomycin and 

daptomycin was suppressed in the presence of the endolysin CF-301, which was shown 

to accelerate binding of these antibiotics to the bacterial cell, and utilization of 

combinatorial therapy proved to be more effective that any of the individual treatments 

(Schuch et al., 2014).                
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Endolysin-Related Applications 

The antimicrobial potential of these enzymes has recently resulted in the 

formation of endolysin-specific companies that are trying to harness their 

commercialization power. In fact, large corporations took interest in bacteriophage as 

commercial entities immediately after their initial discovery, but as mentioned, the 

antibiotic era pushed them into the background; L'Oréal marketed five preparations 

including Bacté-staphy-phage, and in the U.S., the Eli Lilly Company had seven phage 

products for human use, including Staphylo-lysate (Sulakvelidze et al., 2001).   

An obvious application for the use of endolysins is in the medical field. 

Utilization of endolysins as preventative or treatment options has been highlighted in this 

age of increasing antibiotic resistance. The Dutch company Micreos has been marketing 

Staphefekt™ since 2013, when it became the first endolysin product for human use 

against S. aureus skin conditions with an infectious component, such as acne, eczema, 

rosacea and skin irritation.  Staphefekt™ is a chimeolysin composed of the M23 glycyl 

glycyl endopeptidase domain from lysostaphin, the amidase domain from 2638, and the 

SH3b domain from 2638 that displays potent anti-staphylococcal activity (Offerhaus and 

Eichenseher, 2015). Speaking to the potential of this product, Micreos secured $13 

million in early 2016 for further clinical development and declared using Staphefekt™ to 

treat diabetic wound infections, ulcers, and burn wounds is in their pipeline. In 2015, 

Contrafect Corp. became the first company in the U.S. have an endolysin (CF-301 for the 

treatment of S. aureus bacteremia) enter and complete a phase I clinical trial in healthy 

volunteers and no adverse effects were observed. It was granted Fast Track Designation 

from the Food and Drug Administration (FDA), due to its 70% protection in a mouse 



 
 

49 
 

model of MRSA-induced bacteremia, and will be proceeding to phase II clinical trials 

(Gilmer et al., 2013). The numerous successful animal studies conducted utilizing 

endolysins against S. aureus (and other pathogens) indicate that this is just the beginning 

in the application of these enzymes for human medicine.       

Not only can human health be improved by endolysins, but animal health stands 

to benefit as well. A veterinary or animal agriculture application of endolysins could 

improve the lives of animals and humans and could pave the way for a human health 

application, as the regulatory hurdles for product use in animals are greatly lowered. As 

mentioned, S. aureus is one of the four causative agents of bovine mastitis.  Thus, this 

represents an opportunity for the introduction of endolysins for the treatment or 

prevention of staphylococcal-induced bovine mastitis. Several laboratories have 

investigated the activity of staphylococcal endolysins in milk and milk-simulating 

conditions, as a preliminary step in determining their efficacy as potential anti-mastitis 

agents; while activity was reduced in milk when compared to buffer, several endolysins 

displayed specific lytic activity against S. aureus (Donovan et al., 2006a; Donovan et al., 

2006c; Mao et al., 2013). The efficacy of chimeric endolysins λSA2-E-Lyso-SH3b and 

λSA2-E-LysK-SH3b was validated in a mouse model of staphylococcal mastitis 

(Schmelcher et al., 2012c).  The ultimate test of the application of endolysins as anti-

mastitis agents was in transgenic cows expressing lysostaphin; protection against mastitis 

was effectively achieved, indicating the viability of this option (Wall et al., 2005). While 

lysostaphin is technically not an endolysin, its structural and behavioral similarity 

indicate that this technique could be replicated with endolysins. Treating staphylococcal-

induced bovine mastitis is just one potential use for endolysins as animal therapeutics; as 
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many species are affected by S. aureus infections, staphylococcal endolysins could have a 

broad veterinary application.    

 An additional animal agricultural use for endolysins is as a disinfectant. An 

endolysin could be sprayed around animal housing facilities or on equipment as a safer 

alternative to the harsh chemicals currently used to decolonize surfaces and prevent the 

transmission of bacteria from surface to animal (or human). A proof of concept showed 

that a streptococcal endolysin, PlyC, could be aerosolized and effectively eliminate 

Streptococcus equi on surfaces (nylon, cotton, leather, neoprene, polyester, wood, 

stainless steel, glass) and under conditions (detergents, chelators, serum, hard water) 

found in horse stables (Hoopes et al., 2009).  

Food safety is one area that could benefit greatly from the usage of endolysins, 

both as antimicrobial agents and as detection devices. Just as endolysins could be used on 

the farm to decontaminate surfaces, they could additionally be used in food processing 

plants. As S. aureus is a major causative agent of food borne illness, utilizing an 

endolysin to eliminate this pathogen on equipment or on the food itself would save both 

in food waste and in trips to the hospital. The activity of endolysins against biofilms 

makes them an ideal choice for use in decontaminating the many surfaces that food 

products touch in a processing facility (Schmelcher and Loessner, 2016). Additionally, 

they can be added directly to the product; food items that S. aureus has been associated 

with include meat products, poultry products, salads, bakery products, and it is a common 

contaminant during processing of milk into cheeses and other dairy products. Endolysins 

(Lysdb and LysH5) have been engineered to be secreted from starter culture 

Lactobacillus strains during milk processing and have been shown to effectively decrease 
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S. aureus contamination (Garcia et al., 2010; Guo et al., 2016; Obeso et al., 2008). A 

major obstacle in using endolysins against bovine mastitis or during milk processing is 

the reduction of activity in milk. Additionally, many studies have employed the use of 

pasteurized and/or homogenized milk, not raw milk, thereby not replicating the 

endolysin’s application in the real world. Raw milk is a complex substance, containing 

eukaryotic cells and bacteria, and a lipid, protein, and carbohydrate profile different from 

processed milk (Jenness, 1974). If these enzymes have already shown decreased activity 

in milk free of contaminating factors and displaying different attributes, they may 

perform even more poorly when applied in the desired environment.  

Endolysins could also be utilized in food safety as agents for the detection of 

pathogens. For example, CBDs bound to paramagnetic beads have been shown to 

effectively and quickly detect specific pathogens in food by polymerase chain reaction 

(PCR), fluorescent imaging, or surface plasmon resonance (SPR) (Kong et al., 2015; 

Kretzer et al., 2007; Walcher et al., 2010). CBDs have also been utilized in a chemical 

impedance sensor to identify bacteria in milk (Tolba et al., 2012).    

Currently, companies such as Micreos and Intralytix have bacteriophage products 

targeting pathogens, including Listeria, Salmonella, and E. coli, available for use on food 

equipment and products that are approved by the FDA as “generally recognized as safe” 

(GRAS). As of yet, there are no GRAS endolysin products for use in the food processing 

industry, but the wealth of publications supporting their efficacy against many different 

pathogens on surfaces and food items indicates that they have the potential for this 

application.    
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While not relevant to staphylococcal endolysins, another application includes the 

use of endolysins as alternatives to antibiotics in the aquaculture industry (Richards, 

2014). Additionally, endolysins could be utilized in plant agriculture; for example, 

transgenic potatoes expressing lysozyme were shown to be resistant to soft rot induced by 

Erwinia carotovora (During, 1993). One agricultural use that could be applied to 

staphylococcal endolysins is the use of plants as bioreactors; the pneumococcal 

endolysins Cpl-1 and Pal and the GBS endolysin PlyGBS were able to be produced in 

tobacco plant chloroplasts at enormously high levels (Oey et al., 2009a; Oey et al., 

2009b). 

Endolysins also have an application as biotechnological tools. They can be used 

as rapid and specific agents for obtaining nucleic acids or proteins (Loessner et al., 1995).  

They could be used to gently generate empty bacterial cell envelopes (“ghosts”) for use 

as vaccines (Panthel et al., 2003). They could also be used in an auto-inducible lytic 

system in the development of bacterium based vaccines (Zhang et al., 2009). CBDs could 

be used as anchors to surface display proteins that could be used for live vaccine 

development, library screening, biocatalysis, and bioadsorption (Lee et al., 2003).      

 

Phage GRCS and PlyGRCS 

 In an effort to identify a novel bacteriophage therapy to combat S. aureus-

associated bacteremia, staphylococcal phage GRCS was isolated from raw sewage taken 

from a municipal sewage treatment system (Sunagar et al., 2010). Phage GRCS was 

classified as a member of the Podoviridae family based upon the observation of short 

noncontractile tails via electron microscopy (unpublished data). This bacteriophage 
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exhibited lytic activity in vitro against MSSA and MRSA. Because of the pressing need 

for new treatments against staphylococcal infections, phage GRCS was tested in a mouse 

model of bacteremia. Administration of phage GRCS 30 minutes post-infection protected 

100% of the mice and outperformed oxacillin, even when given in multiple doses (Fig. 1-

6). The bactericidal effect of phage GRCS was confirmed by observation of lower CFU 

of S. aureus in blood obtained from the mice 24 hours post infection, as compared to both 

PBS control and those treated with oxacillin. Delay of administration of phage GRCS 

post infection up to 4 hours resulted in 100% protection, and even postponing treatment 

20 hours still rescued 20% of mice. Importantly, although titers of IgG and IgM mildly 

increased over 4 weeks after multiple injections of phage GRCS, it appears to be non-

adversely immunogenic, as no anaphylactic reactions, changes in core body temperature, 

or other adverse events were observed.          

Due to the high association of diabetes and multi drug resistant bacteremia, phage 

GRCS was also tested for its protective ability against S. aureus in a mouse model of  

streptozotocin-induced diabetes. While the diabetic mice were slightly more susceptible 

than non-diabetic mice to the S. aureus bacteremia, a 90% survival rate was achieved 

when phage GRCS was administered 30 minutes post infection. Furthermore, although a 

delay in phage treatment of diabetic mice led to less protection than that observed in non-

diabetic mice at the same time points, it was still able to rescue 20% of mice when given 

16 hours post infection. 

The in vivo efficacy of phage GRCS suggests that it is a viable antimicrobial 

option for S. aureus-associated infections in both diabetic and non-diabetic models.   
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Figure 1-6. Bacteriophage GRCS efficacy in a mouse model of S. aureus bacteremia. 

Survival curves of (A) diabetic and (B) non-diabetic mice indicate that treatment with 

bacteriophage GRCS can protect mice from death by lethal bacteremic infection induced 

by S. aureus Figure from (Sunagar et al., 2010). 
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However, the desire to steer away from the use of whole phage for aforementioned 

reasons led us to investigate the bactericidal potential of the GRCS endolysin.  To this 

end, the phage linear double-stranded DNA genome was sequenced (Swift and Nelson, 

2014), an endolysin-like ORF was identified by bioinformatics analysis, and PlyGRCS 

was cloned, expressed, and tested for antimicrobial activity.  This thesis represents the 

investigation into the antimicrobial potential of PlyGRCS against S. aureus.  
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Chapter II: Biochemical and biophysical characterization of PlyGRCS, 

a bacteriophage endolysin active against methicillin-resistant 

Staphylococcus aureus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter, in part, is published as: 

 

Linden, S.B., Zhang, H., Heselpoth, R.D., Shen, Y., Schmelcher, M., Eichenseher, F., and 

Nelson, D.C. (2015). Biochemical and biophysical characterization of PlyGRCS, a 

bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. 

Applied Microbiology and Biotechnology 99, 741-752. 
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Abstract 

The increasing rate of resistance of pathogenic bacteria, such as Staphylococcus 

aureus, to classical antibiotics has driven research towards identification of other means 

to fight infectious disease. One particularly viable option is the use of bacteriophage-

encoded peptidoglycan hydrolases, called endolysins or enzybiotics. These enzymes lyse 

the bacterial cell wall upon direct contact, are not inhibited by traditional antibiotic 

resistance mechanisms, and have already shown great promise in the areas of food safety, 

human health, and veterinary science. We have identified and characterized an endolysin, 

PlyGRCS, which displays dose-dependent antimicrobial activity against both planktonic 

and biofilm S. aureus, including methicillin-resistant S. aureus (MRSA). The host range 

for this enzyme includes all S. aureus and S. epidermidis strains tested, but not other 

Gram-positive pathogens. The contributions of the PlyGRCS putative catalytic and cell 

wall binding domains were investigated through deletion analysis. The cysteine, 

histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain displayed 

activity by itself, though reduced, indicating the necessity of the binding domain for full 

activity. In contrast, the SH3_5 binding domain lacked activity but was shown to interact 

directly with the staphylococcal cell wall via fluorescent microscopy. Site-directed 

mutagenesis studies determined that the active-site residues in the CHAP catalytic 

domain were C29 and H92, and its catalytic functionality required calcium as a co-factor. 

Finally, biochemical assays coupled with mass spectrometry analysis determined that 

PlyGRCS displays both N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycyl 

endopeptidase hydrolytic activities despite possessing only a single catalytic domain. 
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These results indicate that PlyGRCS has the potential to become a revolutionary 

therapeutic option to combat bacterial infections.  
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Introduction 

It has been estimated that 70% of the bacteria that cause hospital-acquired 

infections are now resistant to one or more antibiotics (Taubes, 2008). One of the most 

alarming antibiotic-resistant bacterial species is Staphylococcus aureus. Specifically, 

methicillin-resistant S. aureus (MRSA) are the group of S. aureus strains resistant to the 

entire class of β-lactam antibiotics. Hospital-acquired MRSA (HA-MRSA) often leads to 

severe and life-threatening infections, such as those at surgical sites, in the bloodstream, 

or pneumonia, while community-acquired MRSA (CA-MRSA) typically leads to 

superficial skin infections that can ultimately progress to induce severe invasive 

complications, such as necrotizing fasciitis (Lowy, 1998) (Tang and Stratton, 2010). 

Approval of new antibiotics, including linezolid (oxazolidinone class) in 2000, 

daptomycin (cyclic lipopeptide class) in 2003, and tigecycline (glycylcycline class) in 

2005, provides alternatives to vancomycin, which was formerly the only antibiotic 

treatment for MRSA (Micek, 2007). These new antibiotics, along with increased 

awareness and adherence to universal decolonization practices have led to a significant 

decrease in the incidence of MRSA in intensive care units (Huang et al., 2013). 

Nonetheless, the most recent Centers for Disease Control report indicates there are still 

over 80,000 severe MRSA infections per year in the United States resulting in over 

11,000 deaths (CDC, 2013). The same report labeled MRSA as a “serious” public health 

threat and vancomycin-resistant S. aureus (VRSA) as a “concerning” threat, underscoring 

the need for development of alternative therapeutics. 

To counteract bacterial resistance and ameliorate the problems caused by S. 

aureus infections, endolysin therapy is one such avenue that is being pursued 
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(Borysowski et al., 2011; Nelson et al., 2012). Endolysins are enzymes released by 

bacteriophages during the lytic cycle of viral infection. Once produced within the 

bacterial cytoplasm by replicating bacteriophage, these enzymes hydrolyze bonds in the 

bacterial cell wall (i.e. peptidoglycan) until lysis is complete. The idea of utilizing 

endolysins therapeutically is based on the phenomenon of “lysis from without”, a phrase 

used to describe the destruction of the bacterial envelope without production of phage 

virions (Abedon, 2011).  

The classical structure of endolysins that act on Gram-positive cell walls employs 

a modular architecture consisting of an N-terminal catalytic domain linked to a C-

terminal cell wall binding domain (CBD). The catalytic domain is responsible for 

cleaving specific covalent bonds in the peptidoglycan structure that are essential for 

maintaining its intrinsic structural integrity. The CBD confers endolysin specificity by 

recognizing and noncovalently binding to species- or strain-specific epitopes associated 

with the cell envelope. It is the high specificity derived by the combined actions of the 

catalytic and CBD domains that cause endolysins to be highly refractory to the resistance 

commonly observed upon treatment with classical antibiotics (Fischetti, 2005; Schuch et 

al., 2002). This is due to the evolution of bacteriophage to target specific, conserved 

bonds in the peptidoglycan of a bacteria cell wall, ensuring that the progeny phage will 

survive (Low et al., 2011). Even if resistance were to develop, endolysins can be 

engineered through domain shuffling or used in combination with other endolysins or 

antibiotics to prolong the use of these enzymes (Shen et al., 2012). Thus, they are 

promising candidates to help prevent or treat bacterial infections.  
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This study investigates PlyGRCS, the endolysin from the GRCS bacteriophage 

which was isolated from sewers in India (Sunagar et al., 2010). While a phage therapy 

study was performed on this bacteriophage, this analysis is the first of its kind to 

investigate the PlyGRCS endolysin. We have found that PlyGRCS exhibits strong 

activity against S. aureus and have conducted a biochemical and biophysical 

characterization of this enzyme.  

 

Materials and Methods 

Bacterial Strains  

Bacterial species, strains, and any associated antimicrobial resistance phenotypes 

are shown in (Table 2-1). All staphylococci containing the NRS strain designations were 

provided by the Network on Antimicrobial Resistance in Staphylococcus aureus 

(NARSA) which is distributed by BEI Resources depository in Manasas, VA, USA, 

under the direction of the National Institute of Allergy and Infectious Diseases and the 

National Institutes of Health. A Streptococcus suis clinical isolate was obtained from Dr. 

Randy Shirbroun at Newport Laboratories in Worthington, MN, USA. Streptococcus 

pyogenes and Enterococcus facealis were obtained from Drs. Vincent Fischetti and 

Alexander Tomasz, respectively, at The Rockefeller University, USA. A Bacillus pumulis 

clinical isolate was obtained from Dr. John Mayo at Louisiana State University, USA. 

The remaining strains, Streptococcus pneumonia, Streptococcus uberis, and 

Streptococcus equi, were obtained from the American Type Culture Collection (ATCC) 

as indicated in Table 2-1. All strains were stored at -80°C and routinely grown at 37°C. 
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Table 2-1. PlyGRCS spectrum of lytic activity. 

  

Bacterial species, strains tested PlyGRCS CHAPGRCS 

MRSA NRS-385 + - 

MRSA NRS-382 + - 

MRSA NRS-384 + + 

MRSA NRS-71 ++ + 

VISA NRS-14    ++ - 

Staphylococcus epidermidis NRS-101 ++ + 

Streptococcus suis 730082 - - 

Streptococcus pyogenes D471 - - 

Streptococcus pneumococcus TIGR4 - - 

Streptococcus uberis 700407 - - 

Streptococcus equi 9528 - - 

Bacillus pumulis BJ0055   - - 

Enterococcus facealis EF24 - - 

 

Activity of PlyGRCS (6 µg) or CHAPGRCS (6 µg) against various species was evaluated 

via plate lysis assays. The strength of lytic zones was defined qualitatively: strong lytic 

zone = ++, weak lytic zone = +, no lytic zone = -. Examples of strong and weak lytic 

zones are shown below: 

Strong lytic zone =              

Weak lytic zone =   
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Streptococcal strains were grown in Todd-Hewitt broth, supplemented with 1% yeast 

extract (THY) (Alpha Bioscience), or on THY plates; staphylococcal strains, B. pumulis, 

and E. facealis were grown in trypticase soy broth (TSB) (Becton-Dickinson), or on TSB 

plates; Escherichia coli was cultivated in Luria Broth (LB) (Alpha Bioscience), or on LB 

plates. Unless otherwise indicated, all chemicals were purchased from Sigma and were of 

the highest purity available. 

 

Cloning, Domain Constructs, and Site Directed Mutagenesis 

  The phage GRCS genome has recently been elucidated (GenBank Accession 

KJ210330) (Swift and Nelson, 2014). Bioinformatic analysis using BLAST and PFAM 

programs [both from the National Center for Biotechnology Information (NCBI)] 

predicted a putative endolysin for ORF15 (AHJ10590), which we named PlyGRCS, that 

contains an N-terminal cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) 

catalytic domain and a C-terminal bacterial src-homology 3 (SH3_5) binding domain. As 

such, individual domain clones for CHAP (i.e. CHAPGRCS) and SH3_5 (i.e. SH3_5GRCS) 

were amplified using the primer pairs shown in Table 2-2. For the full-length PlyGRCS, 

the CHAP-F and SH3_5R primers were utilized. All reverse primers incorporated a 

6XHis purification tag. Specific point mutations to putative active-site residues (C29S 

and H92A) were made with phosphorylated primers (Table 2-2) using the Change-IT 

Multiple Mutation Site Directed Mutagenesis Kit (Affymetrix USB) according to the 

manufacturer’s instructions. All PCR products were cloned into pBAD24, transformed 

into E.coli BL21 (DE3) cells and were consequently sequenced (Macrogen, Rockville,  
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Table 2-2. Primers. 

Primer  Sequence (5’ → 3’) 

CHAP-F 
GGGGAATTCATTATGAAATCACAACAACAAGCAAAAGAAT

GGATATA 

CHAP-R 
AAATCTAGATTAATGATGATGATGATGATGACTAGCAGAA

AATTTAG 

SH3_5-F 
GGGGAATTCATTATGAATACATTTGGAAATTGGAAACAAA

ACCAATAC 

SH3_5-R 
AAATCTAGATTAATGATGATGATGATGATGTGAGAACACCC

CCCAAG 

C29S [Phos]-GCATATGGTTTTCAAAGCATGGACTTAGCTGTT 

H92A [Phos]-AATTCTCAATATGGTGCGATTCAATGTGTAATA 

 

Primers utilized in this study to amplify the full-length PlyGRCS, each domain 

individually, and make site-directed mutations.  
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MD). The ApE program (University of Utah) was utilized for DNA sequence analysis 

and manipulations.  

 

Expression and Purification  

E. coli were grown at 37°C in baffled flasks to an OD600 = 1 in LB supplemented 

with 100 µg/ml ampicillin. Expression was induced with 0.25% arabinose overnight at 

18°C. Crude protein extracts were purified by a Bio-Scale Mini Profinity IMAC 

Cartridge (Bio-Rad) and eluted in 10 ml fractions of 20 mM, 50 mM, 100 mM, 250 mM, 

and 500 mM imidazole, followed by SDS-PAGE analysis.  Fractions containing proteins 

of the correct predicted molecular weight were pooled and dialyzed against PBS pH 7.4 

with 300 mM NaCl. 

  

Quantification of Lytic Activity 

Lytic activity was based on turbidity reduction assay, as previously described 

(Nelson et al., 2012). Briefly, bacterial cells were centrifuged (4,000 RPM, 5 minutes, 

4°C), resuspended in buffer and mixed 1:1 (v/v) with endolysin to a final OD600 = 1. 

OD600 readings were taken every 15 seconds for 20 minutes at 37°C. Endolysin activity 

was equated to the Vmax dictated by the linear portion of the resulting killing curve. Each 

experiment was performed in triplicate. 
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Characterization of PlyGRCS 

To determine dose response, PlyGRCS was serially diluted and each dosage (100 

µl) was added in triplicate to a 96-well polystyrene microtiter plate (Nest Biotech Co, 

Ltd) just before addition of bacterial cells (100 µl) according to the turbidity reduction 

assay described above. For optimum pH determination, bacterial cells were suspended in 

40 mM boric acid/phosphoric acid (BP) buffer, pH 3–11, and were challenged against 

PlyGRCS. The influence of NaCl on PlyGRCS activity was tested in BP buffer at the 

experimentally determined pH optimum using the same assay. The effect of divalent 

cations was determined using the turbidity reduction assay with several modifications. 

First, PlyGRCS was incubated at room temperature in PBS or PBS supplemented with 5 

mM EDTA for 10 minutes. Secondly, the EDTA-treated samples received either no 

further treatment, or were supplemented with 6 mM CaCl2 or 6 mM MgCl2. Finally, the 

lytic active of the samples was then immediately assayed and compared to PlyGRCS in 

PBS prior to EDTA inactivation. Kinetic stability was evaluated as described (Son et al., 

2012), with minor modifications. Lytic assays were performed in optimal conditions after 

PlyGRCS was incubated at indicated temperatures for 30 minutes and subsequently 

recovered on ice for 5 minutes. 

 

Cell Wall Binding 

  An overnight culture of S. aureus NRS-14 was concentrated 5X in BP buffer and 

was incubated at room temperature with 10 µg SH3_5GRCS containing the 6XHis tag for 

10 minutes. A control without SH3_5GRCS was also utilized. The samples were washed 

with PBS and incubated for 10 minutes at room temperature with 1 µl mouse anti-His 
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antibody (Gen Script). After washing with PBS, AlexaFluor-488 conjugated goat anti-

mouse IgG (H+L) antibody (1 µl) (Invitrogen) was incubated with samples for an 

additional 10 minutes. Samples were washed again with PBS before being visualized via 

fluorescence and bright field microscopy. An Eclipse 80i epifluorescent microscope 

workstation (Nikon) with X-Cite 120 illuminator (EXFO) and Retiga 2000R CCD 

camera was used. NIS-Elements software (Nikon) was used for image analysis.  

 

Host Range Analysis 

Host range analysis was performed as described (Schmelcher et al., 2012c), with 

minor modifications. Bacterial cells were diluted in sterile PBS to an OD600 = 1 and 

spread on each plate. 10 µl spots (600 µg/ml) of PlyGRCS or CHAPGRCS were applied. 

Plates were incubated overnight at 37°C. Strength of lytic zones was defined 

qualitatively. 

 

Biofilm Assay 

An overnight culture of S. aureus NRS-14 (1 ml per well) was placed into 24-well 

CELLBIND plates (Corning) containing 500 µl of TSB per well. After an additional 24 

hour incubation at 37°C, media was aspirated and samples were washed with PBS to 

remove unattached cells. Two-fold serial dilutions of PlyGRCS in triplicate were added 

in 1 ml BP buffer pH 7 and incubated at 37°C for one hour. Liquid was aspirated and 

samples were washed with distilled water before drying. Biofilms were stained with .01% 

crystal violet for 10 min at room temperature. After removing the excess crystal violet, 
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samples were washed with PBS and dried before the addition of 1 ml 10% SDS to extract 

the crystal violet from the biomass for quantification at OD595. 

 

Bactericidal Analysis 

Sterile-filtered PlyGRCS was 2-fold serially diluted in PBS supplemented with 1 

mM CaCl2 and an equal volume of either various concentrations of enzyme or buffer only 

was added to 10
5
 S. aureus NRS-14 in a microtiter plate. Samples were incubated at 37ºC 

for 1 hour, then serially diluted, plated on TSB agar, and incubated overnight at 37ºC to 

obtain CFU counts. The MBC (minimum bactericidal concentration) was determined as 

the minimum concentration of enzyme that killed ≥99.9% of bacteria.  

 

Circular Dichroism (CD) Spectropolarimetry 

CD experiments for wild-type (WT) and active-site mutants were performed on a 

Chirascan CD spectrometer (Applied Photophysics) equipped with a thermoelectrically 

controlled cell holder. CD spectra were obtained in the far-UV range (190-260 nm) in a 1 

mm path length quartz cuvette at 1 nm steps with 5 second signal averaging per data 

point. Spectra were collected in triplicate, followed by averaging, baseline subtraction, 

smoothing and conversion to mean residue ellipticity (MRE) by the Pro-Data software 

(Applied Photophysics). Secondary structure prediction was performed using the 

Provencher and Glockner method (Provencher and Glockner, 1981) provided by 

DICHROWEB (Whitmore and Wallace, 2004). Melting experiments were performed by 

heating PlyGRCS at a 0.1 mg/ml concentration in 20 mM sodium phosphate buffer pH 7 
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from 20°C to 95°C using a 1°C/min heating rate. MRE was monitored at 218 nm in a 1 

mm path length quartz cuvette at 0.5°C °C steps with 5 second signal averaging per data 

point. The melting data was smoothed, normalized and fit with a Boltzmann sigmoidal 

curve. The first derivative of the melting curve was then taken to determine the 

temperature (Tm) at which the folded and unfolded protein species in solution were at 

equilbrium (Fallas and Hartgerink, 2012).  

  

Biochemical Assays 

For analysis of reducing sugars released from the peptidoglycan, the 

dinitrosalicylic acid (DNSA) assay was used (Danner et al., 1993). S. aureus NRS-14 

peptidoglycan was purified as previously described (Pritchard et al., 2004; Schmelcher et 

al., 2012d) and was treated for one hour at 37ºC with 50 µg/ml of PlyGRCS in optimal 

conditions. Samples were centrifuged and the supernatant was added to an equal volume 

of 87.7 mM DNSA (20 g/L in .7 M NaOH). After boiling for 5 minutes, samples were 

allowed to cool and the absorbance was read at OD535. Known concentrations of glucose 

were used to create a standard curve. To determine an increase in free amine groups, the 

trinitrophenylation reaction originally described by Satake et al. and modified by 

Mokrasch was used (Mokrasch, 1967; Satake et al., 1960). Purified peptidoglycan 

(OD600=1) was treated with PlyGRCS (50 µg/ml) for one hour at 37ºC. Samples were 

pelleted and the supernatant was filtered through a 0.22 µM filter. The sterile filtrate was 

added to sodium tetraborate and trinitrobenzenesulfonic acid and incubated for 30 

minutes at room temperature. Samples were read at OD420. Lysine was used as a 

standard.  
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Cleavage Analysis by Mass Spectrometry 

For determination of cut sites within the staphylococcal peptidoglycan, purified 

cell walls were digested with PlyGRCS and the resulting fragments were analyzed via 

mass spectrometry as previously described (Becker et al., 2009a; Pritchard et al., 2004). 

Briefly, SA113 ΔtagO cell walls (Atilano et al., 2010; Weidenmaier et al., 2004) were 

digested in 25 mM Tris, 200 mM NaCl, pH 7.4 at 37°C for 18 hours with 50 µg/ml of 

PlyGRCS, filtered through 5000-MW cutoff Vivaspin 500 units (Sartorius North 

America Inc., Bohemia, NY), and desalted using C18 Zip Tips (Millipore, Zug, 

Switzerland). Controls included peptidoglycan digested with the amidase domain of 

2638A, a known N-acetylmuramoyl-L-alanine amidase (M. Schmelcher, unpublished 

data), or undigested peptidoglycan. To further define the PlyGRCS cut site, double 

digests with PlyGRCS and a truncation construct containing only the CHAP domain of 

LysK (CHAP-K),  a known D-alany-glycyl endopeptidase (Becker, Dong et al. 2009), 

were performed. The samples were eluted from the Zip Tips with 50:50:0.01 (v/v/v) 

CH3OH:H2O:HCOH (pH ~2), and NanoESI-MS analysis was performed on a Q-TOF 

Ultima API mass spectrometer (Micromass, UK).  

 

Results 

Expression of PlyGRCS and Domain Constructs  

The phage GRCS genome was recently sequenced (KJ210330) (Swift and Nelson, 

2014) and bioinformatic analysis predicted an endolysin for ORF15 (AHJ10590), which 

we named PlyGRCS. This enzyme contains a putative N-terminal CHAP domain, which 

has been shown to encompass bacteriolytic activity in other characterized endolysins, and 
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a C-terminal bacterial src-homology 3 (SH3_5) domain that functions as a CBD in many 

staphylococcal and streptococcal endolysins (Nelson et al., 2012). The closest homologs 

to PlyGRCS are a hypothetical protein from S. aureus 2011-60-1490-31 (EZV76040.1, 

98% identity), an amidase from Staphylococcus phage 44AHJD (NP_817310.1, 96% 

identity), ORF009 of Staphylococcus phage 66 (YP_239469.1, 97% identity), the SAL-2 

amidase from Staphylococcus phage SAP-2 (YP_001491539.1, 96% identity), and an 

unnamed protein product of Staphylococcus phage S24-1 (YP_004957430.1, 92% 

identity). To study the full-length enzyme and elucidate the contributions of each domain, 

we cloned the full length PlyGRCS, as well as its isolated CHAP domain (CHAPGRCS, 

amino acids 1-140) and SH3_5 domain (SH3_5GRCS, amino acids 150-250) into 

expression vectors. All three constructs were expressed as soluble proteins and purified to 

homogeneity by nickel affinity chromatography via the C-terminal 6XHis tags on each 

protein.  

 

Characterization of PlyGRCS 

PlyGRCS displayed a dose-response curve from 28 to 1.75 µg/ml when tested in a 

turbidity reduction assay using stationary phase S. aureus NRS-14 cells (Fig. 2-1A). The 

highest dose corresponded to a 70% decrease in optical density in just 15 minutes (50% 

decrease in < 10 minutes). When tested at equimolar concentrations, CHAPGRCS 

displayed ~8% of full-length PlyGRCS activity (Figure 2-2). In contrast, SH3_5GRCS did 

not display any lytic activity. However, this domain alone possessed the ability to 

specifically bind staphylococci as detected by antibody recognition of the 6XHis  
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Figure 2-1. Biochemical characterization of optimal conditions for PlyGRCS 

activity. The influence of (A) dose, (B) pH, (C) NaCl, and (D) divalent cations on 

PlyGRCS activity against stationary phase S. aureus NRS-14. Error bars represent the 

standard deviation, and all experiments were done in triplicate. Statistical analysis was 

performed by unpaired t test.  *** P <  0.0001 

*** 
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Figure 2-2. PlyGRCS contains an N-terminal catalytic domain. Turbidity reduction 

analysis reveals CHAPGRCS displays ~8% of full-length PlyGRCS activity, while 

SH3_5GRCS does not display any lytic activity, indicating the importance of both domains 

for full activity. Error bars represent the standard deviation, and all experiments were 

done in triplicate.  Statistical analysis was performed by unpaired t test.  *** P <  0.0001 
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purification tag on the staphylococcal surface (Fig. 2-3). Control experiments without 

SH3_5GRCS did demonstrate binding of the antibody (data not shown). Therefore, while 

the CHAP domain is independently capable of lysing S. aureus, the full antimicrobial 

efficacy of the endolysin is dependent on the simultaneous presence of both the CHAP 

and SH3_5GRCS domains.  

Lytic activity of PlyGRCS was then tested in BP buffer with a pH range from 3.0 

to 11.0 to determine optimum conditions. Optimal pH was determined to be 7.0, with an 

active range between 6.0 and 8.0 (Fig. 2-1B). PlyGRCS activity was markedly reduced at 

pH extremes. Based on the above observations, subsequent turbidity reduction and 

antimicrobial assays were performed in BP buffer pH 7.0. Because the activity of many 

endolysins, including various staphylococcal endolysins (Becker et al., 2008; Garcia et 

al., 2010), is enhanced by the addition of NaCl, we investigated the activity of PlyGRCS 

in the presence of NaCl ranging from 0 to 500 mM. Surprisingly, NaCl had little effect 

(±10%) on PlyGRCS activity up to 125 mM and only slightly inhibited activity at higher 

concentrations (~35% decrease at 500 mM) (Fig. 2-1C). Several CHAP domain-

containing staphylococcal endolysins (Donovan et al., 2006c; Fenton et al., 2011b), as 

well as streptococcal endolysins (Celia et al., 2008; Pritchard et al., 2004), have been 

shown to require calcium for activity. Furthermore, the structure of the staphylococcal 

LysGH15 CHAP domain shows calcium in an EF-hand-like structure (Gu et al., 2014) 

and the CHAP domain of PlyGRCS shares identity in three critical aspartic acid residues 

known to complex this cation in LysGH15 and other calcium binding proteins, although 

it only shows 42% in overall identity with the LysGH15 CHAP domain. With this in 
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Figure 2-3. PlyGRCS contains a C-terminal cell wall binding domain. SH3_5GRCS 

directly interacts with S. aureus NRS-14. Images represent brightfield (left) and 

fluorescent (right) images viewed at 1000X magnification. Cell wall binding was 

detected via mouse anti-His and goat anti-mouse IgG AlexaFluor 488. 
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mind, the activity of PlyGRCS was analyzed in either the presence or absence of calcium. 

PlyGRCS was first incubated with EDTA to remove all divalent cations from solution. 

EDTA-treated PlyGRCS was devoid of lytic activity (Fig. 2-1D). Next, EDTA-treated 

PlyGRCS was incubated with excess CaCl2. Calcium-treated PlyGRCS displayed nearly 

twice the lytic activity when compared to PlyGRCS prior to EDTA treatment. To 

determine divalent metal dependence of PlyGRCS is specific to calcium, the activity of 

the EDTA-treated endolysin was measured after the addition of an alternative divalent 

metal, magnesium. The activity of magnesium-treated PlyGRCS mimicked that of the 

EDTA-treated sample, suggesting that the divalent metal dependence of PlyGRCS is 

calcium-specific.  

Finally, the kinetic and thermodynamic stability of PlyGRCS was investigated. 

PlyGRCS displayed > 90% residual lytic activity after incubating at temperatures ranging 

from 4°C to 37°C for a total of 30 minutes. At temperatures of ≥ 40°C, lytic activity was 

not observed (Fig. 2-4A). Melting experiments performed on a CD spectrophotometer 

show cooperative unfolding of PlyGRCS with a Tm of 43.5°C (Fig. 2-4B), which further 

confirms the lack of activity at ≥ 40°C observed during the kinetic stability experiment. 

CHAPGRCS (Fig. 2-4C) and SH3_5GRCS (Fig. 2-4D) had similar Tm values of 44.8°C and 

44.5°C, respectively. The observed PlyGRCS stability profile is consistent with that of 

other phage lysins. For example, the S. aureus endolysin LysK is kinetically inactivated 

at 42.0°C and the Streptococcus pneumoniae endolysin Cpl-1  displays a Tm of 43.5°C 

(Filatova et al., 2010; Sanz et al., 1993).  
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Figure 2-4. PlyGRCS temperature stability. (A) Stationary phase S. aureus NRS-14 

treated with 25 μg/ml of PlyGRCS after being held at indicated temperatures for 30 min 

and recovered on ice for 5 min. Error bars represent the standard deviation, and all 

experiments were done in triplicate The thermal stability of (B) full-length PlyGRCS as 

well as (C) CHAPGRCS and (D) SH3_5GRCS was determined by means of CD melting 

experiments. Samples were heated from 20 to 95 °C at 1 °C/min in 20 mM sodium 

phosphate buffer pH 7 using a protein concentration of 0.1 mg/ml. 
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PlyGRCS Host Range  

In order to determine the host range of PlyGRCS, activity was tested against 13 

different bacterial strains including methicillin-resistant and vancomycin-intermediate 

resistant S. aureus, methicillin-resistant S. epidermidis, and several other representative  

Gram-positive pathogens (Table 2-1). At 6 µg, lytic activity was seen against all 

staphylococcal strains, with PlyGRCS exhibiting the greatest strength against S. aureus 

strains NRS-71 and NRS-14 and S. epidermidis NRS-101. As expected, CHAPGRCS did 

not exhibit as much activity, causing only weak clearing zones on plates of S. aureus 

strains NRS-384 and NRS-71 and S. epidermidis NRS-101. No lytic activity was 

observed on any other strains. Thus, PlyGRCS has an activity spectrum confined to 

staphylococcal species, as no activity was observed against streptococci or representative 

bacilli and enterococci species listed in Table 2-1. 

 

Biofilm Assay  

Considering the ability of S. aureus to form biofilms and thus present a further 

barrier to traditional treatments, we investigated the anti-biofilm properties of PlyGRCS. 

When 1 day biofilms were treated with PlyGRCS for 1 hour, a dose response decrease in 

the amount of biofilm was visualized, with as little as 6.25 µg/ml affecting a ~50% 

decrease in biofilm biomass (Fig. 2-5).  

 

Bactericidal Effects of PlyGRCS 

It has been noted that the minimal inhibitory concentration (MIC) assay may not 

be the most appropriate assay to measure endolysin efficacy due to the speed at which the  
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Figure 2-5. Antibiofilm activity of PlyGRCS. S. aureus NRS-14 was allowed to form 

static biofilms for 24 h and treated with PlyGRCS at indicated concentrations for 1 h. The 

amount of biofilm is represented by the quantification of crystal violet staining of 

biomass at OD595. Error bars represent the standard deviation, and all experiments were 

done in triplicate. 

 

 

 

 

 

 

 

 



 
 

80 
 

enzyme acts (Kusuma and Kokai-Kun, 2005). Therefore, we employed the minimum 

bactericidal concentration (MBC) assay, which is the lowest concentration of enzyme that 

kills ≥99.9% (i.e. 3 logs) of the test inoculum (Jones et al., 1985). When tested against a 

VISA strain in stationary phase, 25 µg/ml PlyGRCS resulted in 3 log killing, 12.5 µg/ml 

yielded a 2.5 log decrease, and 6.25 µg/ml reduced bacterial counts by 2 logs (data not 

shown). Of note, VISA strains possess thicker cell walls than other S. aureus strains. This 

phenotype may cause the bacteria to be more resilient to endolysin treatment, and hence 

require higher than normal MBC values (Howden et al., 2010; Sieradzki and Tomasz, 

2003). Nonetheless, our results compare favorably to other anti-staphylococcal 

endolysins. PlySs2 represents the only other staphylococcal endolysin with reported 

bactericidal activity against a VISA strain, requiring 128 µg/ml to decrease the colony 

counts of mid-log phase cells by 2 logs (Gilmer et al., 2013).  

 

Confirmation of N-terminal CHAP Catalytic Domain 

 By definition, CHAP domains contain two invariant residues, a cysteine and a 

histidine (Bateman and Rawlings, 2003; Rigden et al., 2003). Presumably, the cysteine 

acts as a catalytic nucleophile and the histidine may function as a general base to 

deprotonate the thiol group of the cysteine. To determine the contributions of these 

putative critical residues in PlyGRCS, we used site-directed mutagenesis to alter C29 and 

H92, the residues identified by a PFAM alignment of PlyGRCS to archetypical CHAP 

domains. Circular dichroism analysis demonstrated that both the C29S and H92A point 

mutants had similar secondary structures to WT PlyGRCS (data not shown). No lytic 

activity was observed when the C29S mutant was used against S. aureus NRS-14 in a 
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turbidity reduction assay (Fig. 2-6); however, H92A still exhibited lytic activity, although 

reduced to 40% compared to WT. At present, it is not clear why activity is associated 

with the H92A mutant, although similar mutagenesis of active-site histidine residues in 

cysteine proteases have likewise displayed reduced, but measurable activity(Ekici et al., 

2008; Khayat et al., 2001). While not proven, it is possible that other residues near the 

active-site residues could substitute for the histidine as an electron acceptor during the 

nucleophilic attack by the cysteine.  

 

Cleavage Specificity of the CHAP Domain  

 CHAP domains are associated with N-muramoyl-L-alanine amidase (amidase) or 

endopeptidase activity (Bateman and Rawlings, 2003). Specifically, CHAP domains of 

staphylococcal endolysins have been characterized as amidases or D-alanyl-glycyl 

endopeptidases (Schmelcher et al., 2012a). To determine the specific catalytic nature of 

the PlyGRCS CHAP domain, two biochemical assays were employed to analyze the 

reducing sugar (indicative of glycosidase activity) or amine (indicative of 

amidase/endopeptidase activity) release upon PlyGRCS treatment. As predicted, 

PlyGRCS did not show any glycosidase activity. However, free amines were detected 

when S. aureus cell walls were treated with PlyGRCS, revealing that the catalytic activity 

is indeed an amidase or endopeptidase (Fig. 2-7A).   

 To further elucidate which hydrolytic activity PlyGRCS possesses, enzymatically 

digested S. aureus peptidoglycan preparations were subjected to electron spray 

ionization-mass spectrometry (ESI-MS). Unexpectedly, the PlyGRCS digest (Fig. 2-7B, 

top spectrum) revealed a peak at m/z=702.35, which could only be produced by the 
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Figure 2-6. PlyGRCS contains an N-terminal catalytic domain with an active site 

cysteine and histidine. Stationary phase S. aureus NRS-14 was treated with 25 μg/ml 

PlyGRCS, PlyGRCS-C29S, or PlyGRCS-H92A. The reduction in activity of PlyGRCS-

C29S and PlyGRCS-H92A indicates that these are the active site residues. Error bars 

represent the standard deviation, and all experiments were done in triplicate. Statistical 

analysis was performed by unpaired t test. *** P < 0.0001, ** P < 0.01. 
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Figure 2-7. Catalytic Mechanism of PlyGRCS. (A) The TNBS assay (left) and DNSA 

assay (right) performed on PlyGRCS-digested peptidoglycan reveal that PlyGRCS 

displays amidase or endopeptidase activity, but not glycosidase activity. Error bars 

represent the standard deviation, and all experiments were done in triplicate. (B) ESI-MS 

analysis of PlyGRCS digested peptidoglycan results in a spectrum (top) containing a peak 

at m/z =702.35, indicating that PlyGRCS possesses endopeptidase and amidase activities. 

This peak is absent in peptidoglycan digested with a known N-acetylmuramoyl-L-alanine 

amidase (second spectrum), or undigested peptodiglycan (third spectrum). Double digest 

with PlyGRCS and CHAP-K (bottom spectrum) yields a spectrum identical to that of 

PlyGRCS alone. (C) Schematic showing the A2QKG5 fragment corresponding the 702.35 

peak generated by both an N-acetylmuramoyl-L-alanine amidase activity (black arrows) 

and a D-alanyl-glycyl endopeptidase activity (white arrows). (D) PlyGRCS 

peptidoglycan digest data showing both the A2QKG5 (702.35 m/z peak) and the larger, 

doubly charged A4Q2K2G10 moiety (684.84 m/z peak). Analysis performed by M. 

Schmelcher and F. Eichenseher. 

D 
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presence of two enzymatic activities, an N-acetylmuramoyl-L-alanine amidase and either 

a D-alanyl-glycyl endopeptidase or a glycyl-glycyl endopeptidase, to yield the fragment 

A2QKG5 (single letter amino acid code) (Fig. 2-7C). Moreover, a larger double-charged 

ion (m/z=684.84) was also observed that likely corresponds to the fragment A4Q2K2G10 

 (without a water molecule), resulting from incomplete peptidoglycan digest (Fig. 2-7B 

and D). Presence of the 702.35 and 684.84 peaks was reproducible on independent 

digests and ESI-MS experiments. Control experiments with peptidoglycan digested with 

the 2638A amidase domain, a known N-acetylmuramoyl-L-alanine amidase (Fig. 2-7B, 

second spectrum), or undigested peptidoglycan (Fig. 2-7B, third spectrum) did not 

contain the 702.35 or 684.84 peaks suggesting that generation of the 702.35 and 684.84 

fragments by PlyGRCS was not an artifact of a single enzymatic activity acting on 

uncrosslinked or partially cleaved peptidoglycan. Furthermore, a double digest with 

PlyGRCS and CHAP-K, which reportedly has D-alanyl-glycyl endopeptidase activity 

(Becker et al., 2009a), was performed to elucidate the specific nature of the 

endopeptidase activity. Because this spectrum was identical to that of the PlyGRCS alone 

digested peptidoglycan, it was determined that PlyGRCS possesses a D-alanyl-glycyl 

endopeptidase activity, as a glycyl-glycyl endopeptidase activity would have yielded a 

different fragment pattern. Taken together, these data imply that PlyGRCS, which has a 

single catalytic CHAP domain, can cleave two distinct bonds in the staphylococcal 

peptidoglycan.   
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Discussion  

The use of endolysins provides a targeted treatment for bacterial infections that 

circumvents traditional antibiotic resistance mechanisms (Spratt, 1994). In this study, the 

novel endolysin PlyGRCS was characterized and demonstrated bacteriolytic activity 

against MRSA successfully. The endolysin dosage used in this study demonstrates that 

the efficacy of PlyGRCS is comparable to or better than other published staphylococcal 

endolysins (Gilmer et al., 2013; Jun et al., 2011; Sass and Bierbaum, 2007) and since the 

optimal conditions for PlyGRCS activity were determined to be in the physiological 

range, this enzyme has the capability to be used as an antimicrobial agent. Even more 

impressive is the ability of PlyGRCS to act against stationary phase staphylococci as well 

as medically relevant biofilms, a further hindrance to traditional antibiotic therapy. The 

ability of endolysins, like PlyGRCS to disrupt biofilms may lead to their use in 

conjunction with classical antibiotics. In this scenario, the endolysin would provide the 

initial disturbance to the biofilm structure, thereby allowing the antibiotic to subsequently 

access the now susceptible target bacteria. It has already been shown that antibiotics 

applied in combination with endolysins bind more efficiently to their planktonic target 

bacterial cells; this same phenomenon may also be observed in biofilms as well (Schuch 

et al., 2013).  

Identification of the PlyGRCS cleavage sites is a critical finding. To our 

knowledge, this is the first reported case of a single CHAP domain, or any individual 

endolysin catalytic domain, that possesses the ability to cleave two disparate bonds in the 

bacterial peptidoglycan. Initially we thought the results could be attributed to a single 

cleavage of uncrosslinked peptidoglycan resulting in a fragment that appeared to be 
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created by two cleavage events. However, spectra from repeated experiments on 

undigested control peptidoglycan and control digests with enzymes of known specificity 

collectively indicate that PlyGRCS is capable of liberating the fragment A2QKG5 from 

the staphylococcal peptidoglycan. This would necessitate cleavage of the amide bond 

formed between MurNAc and Ala residues as well as the hydrolysis of the amide bond 

formed between D-Ala and Gly residues or one of the Gly-Gly bonds. Further 

experiments with a double digest, including PlyGRCS and CHAP-K, a D-alanyl-glycyl 

endopeptidase, showed an identical pattern to the PlyGRCS only spectrum, indicating 

that the endopeptidase activity of PlyGRCS is identical to CHAP-K. While these findings 

indicating both amidase and endopeptidase activities associated with the single CHAP 

domain containing PlyGRCS were surprising, it is noteworthy that CHAP domains have 

been associated with an N-acetylmuramoyl-L-alanine amidase activity in the 

streptococcal PlyC endolysin (McGowan et al., 2012) as well as D-alanyl-glycyl 

endopeptidase activity in multiple staphylococcal endolysins (Schmelcher et al., 2012a). 

Moreover, the recently crystallized CHAP domain from the staphylococcal endolysin 

LysGH15 shows highest structural homology to the aforementioned CHAP domain of 

PlyC, with a root-mean-square deviation (RMSD) = 2.32 Å (Gu et al., 2014), further 

supporting our interpretation that these domains can exhibit multiple activities. Finally, 

consistent with the findings of our biochemical assays, both amidase and endopeptidase 

activities would yield free amine groups via cleavage of peptide moieties and additionally 

would not liberate reducing sugars, which requires the cleavage of at least one of the two 

glycosidic bonds responsible for maintaining the glycan backbone of peptidoglycan.  
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The implications of a single catalytic domain with two cleavage specificities are 

numerous for bioengineering efforts. First, it is well known that endolysins display 

synergy with other endolysins of different cleavage specificities. For example, killing of 

pneumococci is enhanced when the endolysins Cpl-1, an N-acetylmuramidase, and PAL, 

an N-acetylmuramoyl-L-alanine amidase, are used together compared to twice the 

concentration of either enzyme alone (Loeffler and Fischetti, 2003). Likewise, 

mutagenesis of active-site residues was used to show synergy between two catalytic 

domains, an N-acetylmuramoyl-L-alanine amidase and a glycosyl hydrolase, within the 

PlyC endolysin (McGowan et al., 2012) . While not proven, it is believed that synergy 

arises from cleaving the peptidoglycan at two different locations, which is more 

destabilizing to the superstructure than repetitive cleavages at one location and would 

result in accelerated osmolysis of the bacterial cell. Additionally, cleavage of one bond 

may facilitate access to the second target, further contributing to this synergistic effect.   

A second benefit of a catalytic domain with dual activities is that it would be less 

susceptible to development of resistance. While there are currently no specific reports of 

bacterial strains developing resistance to phage-encoded endolysins, resistance to 

peptidoglycan hydrolases as a general class has been reported. Notably, modifications to 

the peptidoglycan backbone can render N-acetylmuramidases (i.e. lysozymes) ineffective 

(Davis and Weiser, 2011; Vollmer, 2008). More specific to the staphylococcal 

peptidoglycan, resistance to lysostaphin, a bacterial derived glycyl-glycine 

endopeptidase, can be achieved by simple modification of the pentaglycine crossbridge in 

these species (Nelson et al., 2012). It is thus anticipated that endolysins naturally evolved 
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or engineered to have more than one catalytic activity would circumvent resistance 

development targeting the specificity of one activity. 

 This study is only the beginning in understanding PlyGRCS. As protein 

therapeutics, PlyGRCS and other endolysins are amenable to domain shuffling, directed 

evolution, and bioengineering approaches to further enhance efficacy and/or specificity. 

The unique dual substrate activity of the PlyGRCS catalytic domain offers an ideal 

starting point for chimeragenesis studies with other domains from staphylococcal-specific 

endolysins.   
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Chapter III: Anti-Biofilm Activity of PlyGRCS: Removal, Prevention, 

and Bacteriolytic Efficacy of a Bacteriophage Endolysin Against Multi-

Drug Resistant Staphylococcus aureus Biofilms     
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Abstract 

 The ability of Staphylococcus aureus to form biofilms represents a major 

virulence factor and contributes to its ability to cause chronic infections. Furthermore, S. 

aureus can form biofilms on medical devices, leading to colonization of areas of the body 

where it would not normally be able to persist. Biofilms are notoriously difficult to 

eradicate, as they are resistant to antibiotics and are resilient against the host immune 

system. Currently, the treatment for S. aureus biofilm infections is debridement or 

removal of the affected implant, which is not a desirable outcome, and as such, 

alternative therapies are needed. PlyGRCS, an endolysin which has shown antimicrobial 

activity against planktonic S. aureus, represents such an alternative option. In this study, 

we investigate the use of PlyGRCS against staphylococcal biofilms. PlyGRCS displays 

the ability to remove biofilms from abiotic surfaces at concentrations much lower than its 

minimum inhibitory concentration. In addition to its ability to disperse biofilms, as shown 

by crystal violet staining, in vivo imaging, and confocal microscopy, PlyGRCS also kills 

bacteria within biofilms. PlyGRCS removes S. aureus biofilms formed under dynamic 

conditions in medical-grade catheters, mimicking an in vivo infection. Finally, PlyGRCS 

possesses the ability to kill bacteria within biofilms grown on epithelium, without 

harming the eukaryotic cells. In summary, we show that PlyGRCS has a potential 

application an anti-biofilm therapeutic.    
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Introduction 

Staphylococcus aureus is one of the most commonly isolated antibiotic-resistant 

bacteria in both the community and in the hospital setting (Lowy, 1998). It is particularly 

frightening as methicillin-resistant S. aureus (MRSA) infections alone have a 15% 

morbidity rate just in the United States (CDC, 2013), and as we enter a post-antibiotic 

era, that number may increase drastically. Further complicating this situation is the ability 

of S. aureus to participate in the biofilm lifestyle; the biofilm mode of growth is an 

important key to pathogenesis, as biofilms are resistant to host defense and the most 

commonly used treatment for bacterial infections, antibiotics (Otto, 2008).  Bacterial 

biofilms are microbial communities of physiologically and metabolically diverse cells 

attached to each other and a surface, encased in a matrix of extracellular polymeric 

substance (EPS), and formed by a highly regulated process, influenced by environmental 

and genetic factors (Archer et al., 2011).  

While not necessary for S. aureus biofilm formation, the presence of medical 

devices such as catheters, heart valves, stents, cosmetic, dental, and prosthetic implants, 

and additional indwelling devices allows S. aureus to persist in areas of the body in 

which it would not normally be able to colonize and cause diseases that are infinitely 

harder to treat (Costerton et al., 2005). Infections caused by S. aureus biofilms include 

urinary tract infections, endocarditis, peri-implantitis, osteomyletis, and other persistant 

infections. Implant mediated biofilm infections caused by non-S. aureus (non-coagulase 

staphylococci, Gram-negative bacilli) may be attempted to be treated by antibiotics (at 

100-1000X MIC) via antimicrobial lock therapy (ALT); however, in the case of S. 
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aureus, the protocol in every hospital in the U.S is to remove the affected device (Mermel 

et al., 2009).     

Because the widespread use of antibiotics has contributed to the development of 

bacterial resistance and due to the inability of antibiotics to disperse and kill biofilm 

bacteria, alternative methods to combat biofilm-associated bacterial infections must be 

investigated. One promising technique is the use of endolysins, peptidoglycan hydrolases 

that are released by bacteriophages during the lytic cycle of viral infection (Nelson et al., 

2012). While naturally produced in the cytoplasm, resulting in lysis from the inside out, 

researchers have found that endolysins can be applied externally to the bacterial cell to 

achieve the same end goal. The canonical structure of an endolysin consists of an N-

terminal catalytic domain responsible for cleavage of a specific peptidoglycan bond and a 

C-terminal cell wall binding domain that interacts with a ligand on the bacterial surface. 

Endolysins display several traits that make them ideal for treatment of bacterial 

infections. The specificity for both cleavage site and binding site ensures that resistance is 

unlikely to be observed.  However, even if resistance were to develop, the modular 

domain architecture makes endolysins amenable to engineering efforts. 

Moreover, use of endolysins is a better option for treating biofilm-associated 

bacterial infections because the reasons for the ineffectiveness of antibiotics against 

biofilm bacteria do not apply to endolysins. First, the formation of a biofilm prevents an 

antibiotic from reaching its target, whereas endolysins can easily penetrate and can even 

be attracted to the bacterial cell surface (Keren et al., 2004). Second, the heterogeneous 

nature of a biofilm results in subpopulations of persister cells and metabolically inactive 

cells, thereby not allowing for an antibiotic that targets active cell processes to be 
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effective; however, endolysins are effective regardless of bacterial metabolic state or 

phase of growth. Antibiotics have even been shown to induce changes in planktonic 

bacteria that result in an increased propensity for forming biofilms (Kaplan et al., 2012), 

a phenomenon that does not occur upon application of endolysins (Gutierrez et al., 2014). 

We have previously identified and characterized PlyGRCS, the endolysin from 

the S. aureus bacteriophage GRCS, and have shown that it possesses activity against 

static S. aureus biofilms. This study is an in depth investigation into the further 

application of PlyGRCS as an anti-biofilm therapeutic.    

 

Materials and Methods 

Bacterial Strains  

All bacterial strains were routinely grown at 37°C. Staphylococcal strains were 

grown in trypticase soy broth (TSB) (Becton-Dickinson), or on TSB plates; S. aureus 

AH1350 was grown in TSB with 1000 µg/ml spectinomycin (TSBspec) for plasmid 

maintenance; Escherichia coli was grown in Luria Broth (LB) (Alpha Bioscience), or on 

LB plates, with 100 µg/ml ampicillin for plasmid maintenance. AH1350, a GFP 

derivative of RN4220, was a kind gift of Alex Horswill (via Mark Shirtliff). Unless 

otherwise denoted, all chemicals were obtained from Sigma and were of the highest 

purity available. 

 

Expression and Purification  

PlyGRCS was expressed and purified as in (Linden et al., 2015). Briefly, E. coli 

were grown at 37°C in baffled flasks to an OD600 = 1 in LB supplemented with 100 µg/ml 
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ampicillin. Arabinose (0.25%) was used for induction of expression for 4 hours at 37°C 

and then overnight at 18°C. Cells were harvested, lysed by sonication, and crude protein 

extracts were purified by a Bio-Scale Mini Profinity IMAC Cartridge (Bio-Rad).  

Fractions containing the desired protein were then pooled and dialyzed against PBS pH 

7.4 plus 300 mM NaCl and 0.25 mM CaCl2. 

 

Minimum Inhibitory Concentration 

Serial dilutions of PlyGRCS or antibiotics in PBS 1 mM CaCl2 were added to an 

equal volume of bacteria (100 µl) (overnight cultures diluted 1:10000 in 2X TSB (2X 

TSBspec for AH1350)). Samples were incubated at 37ºC overnight, and the MIC 

(minimum inhibitory concentration) was determined to be the lowest concentration of 

enzyme that allowed the medium to remain clear.   

 

Minimum Bactericidal Concentration 

Serially diluted PlyGRCS or antibiotics in PBS 1 mM CaCl2 or buffer control 

(100 µl) were added to an equal volume of bacteria (~10
5
 CFU/ml). Samples were 

incubated at 37ºC for 60 minutes, then serially diluted, plated, and incubated overnight, 

whereupon CFU counts were obtained. While the MBC (minimum bactericidal 

concentration) is often defined as the lowest amount of antibacterial agent required to 

totally kill an organism, we define the MBC as the minimum concentration of enzyme 

that caused a 3 log (≥ 99.9%)  decrease in the amount of bacteria as compared to the 

untreated sample (Jones et al., 1985). 
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Static Biofilm Eradication Assay 

For treatment of established static biofilms, aliquots of overnight S. aureus 

AH1350 cultures (1 ml per well) were placed into 24-well CELLBIND plates (Corning) 

containing 500 µl of TSBspec and 2.5 mM glucose. After allowing for formation of 

biofilms (24 hr), media was aspirated and samples were washed with PBS to remove 

unattached cells. PlyGRCS at indicated concentrations or controls were added in 1 ml 

PBS plus 0.25 mM CaCl2 and incubated at 37°C for one hour. Liquid was aspirated, at 

which point samples were imaged using the In Vivo Imaging System (IVIS) Lumina XR 

(Caliper Life Sciences/ Perkin Elmer).  Biofilms were washed with PBS and, after drying, 

were stained with 0.1% crystal violet for 10 min at room temperature. Upon removal of 

excess crystal violet, samples were washed with PBS and dried before the addition of 1 

ml 1% SDS to extract the crystal violet from the biomass for quantification at OD595 on a 

spectrophotometer. 

 

Microscopy of Static Biofilms 

For observation of cell death via fluorescent microscopy, static S. aureus AH1350 

biofilms were grown as described above for 24 hours in poly-L-lysine coated 8-well 

Nunc™ Lab-Tek™ Chambered Coverglass slides. Medium containing planktonic cells 

was discarded and the remaining biofilm-associated cells were washed with PBS, then 

treated with 200 µl PlyGRCS (100 µg/ml) in PBS with 0.25 mM CaCl2 or controls and 30 

µM propidium iodide (PI) for 15 min. Biofilms were examined with an Eclipse 80i 

fluorescence microscope with a 20x/1.3 objective lens (Nikon, Melville, NY, USA) using 

an X-cite 120 illuminator (EXFO, Quebec, Canada). Images were acquired using a Retiga 
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2000R camera with Q Capture Pro software (both from Q-imaging, Surrey, Canada). To 

quantify the viable cells, the mean fluorescent intensity of live (green channel) and dead 

(red channel) cell populations was calculated using NIS-Elements software (Nikon) and 

compared to a fluorescence calibration curve generated from a known ratio of live and 

dead cells stained with PI. 

For observation of biofilm degradation via confocal laser scanning microscopy, 

images were acquired using a Carl Zeiss 710 inverted microscope in combination with 

the Zeiss Argon laser scanning confocal imaging system. Images and z-stack analysis 

were obtained with a 20x/1.3 objective lens and analyzed by Zen 2010 digital imaging 

software (Carl Zeiss). In order to visualize the degradation of the biofilm matrix by 

PlyGRCS, S. aureus AH1350 biofilms were grown as described in 4-well Nunc™ Lab-

Tek™ Chambered Coverglass slides, coated with 0.1% gelatin, for 48 hours. Medium 

containing planktonic cells was discarded and the remaining biofilm-associated cells 

were washed with PBS, then treated with 1ml PlyGRCS (100 µg/ml) or oxacillin (100 

µg/ml) in PBS 0.25 mM CaCl2. Three dimensional image stacks were recorded at 

indicated times. 

 

Determination of Cell Death 

Static S. aureus AH1350 biofilms were grown as described above for 24 or 48 

hours on poly-L-lysine coated black 96 well plates, then were treated for 30 minutes with 

100 µl PlyGRCS (100 µg/ml) in PBS 0.25 mM CaCl2 or controls and 30 µM propidium 

iodide (PI). Fluorescence of live (530 nm) and dead (630 nm) cell populations was 

monitored via a SpectraMax M5 spectrophotometer (Molecular Devices). Using a 
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fluorescence calibration curve generated from a known ratio of live and dead cells stained 

with PI, the percentage of viable cells was obtained from the ratio of mean fluorescent 

intensities. 

 

Dynamic Biofilm Eradication Assay 

For treatment of established dynamic biofilms, the Stovall flow cell system was 

used, as per manufacturer instructions, with the flow cell chambers replaced by catheters 

(Excel International siliconized arteriovenous fistula, tube length 12”, tube i.d. 0.14”). An 

overnight culture of VISA NRS-14 was diluted 1:10 into fresh media (TSB with 2.5 mM 

glucose) and 3 ml was injected into each catheter via a 27 G syringe. The system was 

incubated statically for 1 hour to allow for adherence, after which flow was initiated and 

continued for 18 hours at 0.5 ml/min. PBS with 2.5 mM glucose and 0.25 mM CaCl2 was 

allowed to flow through the system for 20 minutes after which 3 ml PlyGRCS (1 mg/ml) 

in PBS with 2.5 mM glucose and 0.25 mM CaCl2 or controls lacking PlyGRCS were 

injected and incubated statically for 24 hours. Then, PBS with 2.5 mM glucose and 0.25 

mM CaCl2 was flowed at 0.5 ml/min for 20 minutes. For quantification of bacteria 

survival after treatment, catheters were sonicated to disrupt biofilm, then were flushed 

and samples were serially diluted, plated, and incubated overnight, whereupon CFU 

counts were obtained. 

 

Biofilm Induction/Inhibition Assays  

Two-fold serially diluted PlyGRCS in PBS and 0.25 mM CaCl2 (100 µl) or 

controls were added to 200 µl of S. aureus NRS-14 (in TSB with 2.5 mM glucose) in 96-
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well CELLBIND plates (Corning).  Samples were incubated at 37°C overnight after 

which liquid was aspirated and biofilms were stained with crystal violet as described 

above.  

  

PlyGRCS Toxicity on MAC-T Cells 

MAC-T bovine mammary epithelial cells were grown in a 2 well chamber slide in 

DMEM-F12 and 10% FBS until 80% confluent. Media was removed and cells were 

washed 3X with HBSS. Serum-free media with 1 µg/ml PI (1 ml per well) and PlyGRCS 

(100 µg/ml) or 0.02% Triton X 100 was added and cells were incubated for 30 minutes at 

37 ºC. Samples were washed with HBSS and cells were fixed with 4% PFA at room 

temperature for 15 min. Samples were mounted with Prolong Gold DAPI antifade and 

imaged on an Eclipse 80i fluorescence microscope with a 20x/1.3 objective lens (Nikon, 

Melville, NY, USA) using an X-cite 120 illuminator (EXFO, Quebec, Canada).     

 

Biofilm Formation of S. aureus on MAC-T and Treatment  

MAC-T cells were grown until 100% confluent as described above in an 8 well 

chamber slide (approximately 10
6
 cells in each well). Media was removed and cells were 

washed with HBSS. DMEM/F12 with 10% FBS (500 µl) and 5 µl DAPI was added to the 

wells and incubated for 30 min at 37 ºC. Media was removed and samples were washed 

with HBSS. An overnight culture of  S. aureus AH1350 diluted 1:100 in  DMEM-F12 

with 10% FBS and 1 mg/ml spectinomycin and 500 µl was added to the wells and 

incubated for 1 hour at 37 ºC to allow for attachment   Media was removed and samples 

were washed with HBSS to remove non-adhered bacteria. DMEM/F12 with 10% FBS 
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and 1 mg/ml spectinomycin was added to the wells to allow biofilm formation for 5 hours 

at 37 ºC. Media was removed and samples were washed with HBSS. DMEM/F12 with 1 

mg/ml spectinomycin and 1 mg/ml PlyGRCS (or no PlyGRCS control) was added to the 

wells and one section in the center of the wells was imaged on a Carl Zeiss 710 inverted 

microscope in combination with the Zeiss Argon laser scanning confocal imaging system 

at several time points. At the end of the experiment, the supernatant was plated, along 

with bacteria recovered from a wash step. The remaining adherent biofilm bacteria were 

plated after treatment with Triton X 100 (.025%) and Trypsin (.25%) to remove the 

MAC-T cells from the wells.   

 

Results 

Minimum Inhibitory and Bactericidal Concentration 

To set a benchmark for PlyGRCS activity against S. aureus, the minimum 

inhibitory concentration for endolysin and antibiotics was determined. It was found that 

planktonic S. aureus (MSSA, MRSA, and VISA) are susceptible to both traditional 

commonly used antibiotics and PlyGRCS at concentrations ranging from 128-256 µg/ml 

(Table 3-1). Of note, due to the mass differences between antibiotics and PlyGRCS (~29 

kDa), on a molar basis of comparison, 20-85X more antibiotic than PlyGRCS would be 

needed at comparable molar concentrations.    

Because of the speed at which endolysin activity occurs, the minimum 

bactericidal concentration (MBC) may be a more accurate measurement of antimicrobial 

efficacy (Kusuma and Kokai-Kun, 2005). Significantly, at only 16 µg/ml, the MBC for 

PlyGRCS was less than the MIC, while the MBC for all antibiotics could not be  
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Table 3-1. Antimicrobial susceptibility.  

Strain Minimum Inhibitory Concentration 

 PlyGRCS PEN OXA VAN CAM 

 29.3 kDa .34 kDa .40 kDa 1.45 kDa .32 kDa 

      

AH1350 >256 µg/ml >64 µg/ml (R) .125 µg/ml 2 µg/ml 4 µg/ml 

 >8.74 µM >188.24 µM .312 µM 1.38 µM 12.5 µM 

      

NRS-14 128 µg/ml .5 µg/ml .5 µg/ml 4 µg/ml (I) 4 µg/ml 

 4.37 µM 1.47 µM 1.25 µM 2.76 µM 12.5 µM 

      

ATCC27217 128 µg/ml <.0625 µg/ml (S) .125 µg/ml 1 µg/ml 8 µg/ml 

 4.37 µM <.183 µM .312 µM .690 µM 25 µM 

      

NRS-71 256 µg/ml 64 µg/ml (R) >64µg/ml (R) 1 µg/ml 2 µg/ml 

 8.74 µM 188.24 µM 160 µM .690 µM 6.25 µM 

      

 

The minimum inhibitory concentration (MIC) obtained for PlyGRCS and indicated 

antibiotics against several strains of S. aureus. (R) = Resistant, (S) = Sensitive, (I) = 

Intermediate. 
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determined during the same time frame (Fig. 3-1). This is indicative of the quick 

bactericidal and lytic activity of endolysins. 

 

Disruption of Static Biofilms 

Having determined that PlyGRCS possesses inhibitory and bactericidal activity 

against planktonic S. aureus, we wished to evaluate its efficacy against bacteria in the 

biofilm mode of growth. After one hour of treatment, PlyGRCS at even the lowest dose 

tested (6.25 µg/ml), was able to disrupt static biofilms as visualized by both fluorescent 

imaging using IVIS and crystal violet staining (Fig. 3-2). Importantly, PlyGRCS was 

more effective than even a high dose of oxacillin, even though AH1350 is a methicillin- 

sensitive S. aureus and indeed was inhibited by approximately 1000X less oxacillin in the 

MIC assay. Notably, the PlyGRCS doses needed for biofilm disruption were less than the 

MIC and MBC for this strain (both of which could not be achieved at 256 µg/ml, the 

maximum concentration tested for this strain).  

After observation of biofilm disruption at the macroscopic level, we assessed the 

ability of PlyGRCS to destroy the three dimensional structure of the biofilm matrix by 

confocal laser scanning microscopy (Fig. 3-3). Upon treatment with PlyGRCS, the 

fluorescence decreased over time (a middle slice is shown as a representative image), and 

visualization of the entire Z-axis showed diffusion of the fluorescence away from the 

structured biofilm as early as 15 minutes post-treatment, indicating that the biofilm was 

being degraded and perhaps that lysis was occurring. At 30 minutes, the biofilm 

superstructure was completely degraded. In contrast, treatment with oxacillin resulted in 

maintenance of an ordered compact structure throughout the experiment. 



 
 

103 
 

 

 

 

Figure 3-1. Bactericidal activity of PlyGRCS. PlyGRCS kills S. aureus in a dose 

dependent manner.  The minimum bactericidal concentration (16 µg/ml) against S. 

aureus NRS-14 was determined after incubating endolysin and bacteria for 1 hour. Error 

bars represent the standard deviation, and all experiments were done in triplicate. 
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Figure 3-2. Removal of static biofilms by PlyGRCS. Disruption of S. aureus AH1350 

biofilms can be visualized by measuring (A) fluorescence via IVIS or (B) crystal violet 

staining.  Error bars represent the standard deviation, and all experiments were done in 

triplicate. Statistical analysis was performed by unpaired t test. ** P < 0.01. 
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Figure 3-3. Degradation of staphylococcal biofilms. Confocal microscopy (200X 

magnification) shows the complete disruption of S. aureus AH1350 biofilms upon 

addition of (A) PlyGRCS (100 µg/ml), while (B) oxacillin (1000X MIC) does not disturb 

the structure. 

5 min 0 min 15 min 

30 min 60 min 120 min 

A 

B 

0 min 120 min 



 
 

106 
 

Killing of S. aureus in Static Biofilms  

The limits of crystal violet staining and biofilm disruption assays are that these 

techniques only allow for the determination of biomass. As the previous assays only 

established that PlyGRCS was able to disrupt static biofilms, we wished to determine if 

the bacteria in the biofilm were actually being killed or if the structural integrity was 

simply being destroyed. To this end, we assessed the killing ability of PlyGRCS in S. 

aureus biofilms, by staining with propidium iodide (Fig. 3-4A). Prior to treatment, 

biofilms were mostly green, indicating viable bacteria; however dead cells, visible by red 

staining by propidium iodide, naturally occur in a low but measurable frequency in 

biofilm populations. When biofilms were treated with 100 µg/ml oxacillin, the percentage 

of viable bacteria did not decrease when compared to control biofilms as quantified by 

fluorescent signals; in contrast, 100 µg/ml of PlyGRCS was able to eliminate ~60% of 

the bacteria in 24 hour biofilms and ~30% of the bacteria in 48 hour biofilms. We were 

also able to visualize this phenomenon microscopically (Fig 3-4B); control biofilms were 

composed predominately of viable bacteria, with few dead cells, while biofilms that were 

treated with PlyGRCS were mostly removed from the surface and most of the cells that 

did remain attached were killed on contact.   

 

Treatment of Dynamic Biofilms  

The environment in which a biofilm forms is often not static, but rather involves a 

dynamic flow, especially in medical devices. Importantly, these dynamic biofilms are 

much harder to eradicate due to the increased shear force exerted upon them (Shaw et al., 

2004). To more accurately represent the conditions a S. aureus biofilm would encounter  
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Figure 3-4. Killing of bacteria in staphylococcal biofilms. PlyGRCS kills S. aureus 

AH1350 grown in static biofilms as visualized by (A) spectrophotometric readout of 

fluorescence and (B) fluorescent microscopy. Live cells are green (GFP) and dead cells 

are red (propidium iodide). Overlay image is shown on the right and brightfield image is 

shown on the left. Images were obtained at 200X magnification. Error bars represent the 

standard deviation, and all experiments were done in triplicate.   
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in a medically relevant setting, we constructed a modified Stovall flow cell system to 

include catheters. S. aureus biofilms were grown in the catheters under flow for 18 hours, 

then treated with PlyGRCS for a dwell time of 24 hours, after which the detached 

biofilms were flushed out of the catheter and the remaining attached bacteria were 

quantified.  PlyGRCS was able to efficiently remove on average 10
3
 cfu/ml (Fig. 3-5). 

This is the first reported use of an endolysin against a dynamic staphylococcal biofilm 

grown in a medical grade device. 

 

Biofilm Prevention 

Important considerations when using a typical antimicrobial treatment are the 

notions that a subpopulation of persister cells may be selected and biofilm formation may 

be induced. Notably, antibiotics have been shown to be ineffective towards preventing 

biofilms or may actually induce biofilm formation. To determine if PlyGRCS would 

induce biofilm formation, S. aureus were exposed to sub-MIC concentrations of 

PlyGRCS and then assessed for their ability to form biofilms. When S. aureus was 

allowed to form biofilms in the presence of low concentrations of oxacillin or penicillin, 

an increase in the amount of biomass was observed (Fig. 3-6). Treatment with 

vancomycin slightly decreased the amount of biofilm formation at very low 

concentrations; however, approaching the MIC caused a slight upward trend in biofilm 

formation (a phenomenon observed with other VISA strains). In contrast to the increase 

in biofilm formation observed when S. aureus was incubated with select antibiotics, 

PlyGRCS treatment greatly diminished the ability of S. aureus to form biofilms.  
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Figure 3-5. Eradication of dynamic biofilms.  (A) Schematic of biofilm flow setup 

(Sternberg and Tolker-Nielsen, 2006). Arrow indicates direction of flow. (a) Input media 

(b) Peristaltic pump (c) Bubble trap (d) Catheter (e) Waste (B) Lock treatment with 

PlyGRCS removes S. aureus NRS-14 biofilms formed in a catheter under flow conditions 

as measured by the amount of bacteria recovered from the catheter after a 24-hour 

incubation. Error bars represent the standard deviation, and all experiments were done in 

triplicate. Statistical analysis was performed by unpaired t test. 
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Figure 3-6.  Biofilm behavior in the presence of sub-inhibitory concentrations of 

antimicrobials.  Biofilm formation was induced in the presence of low concentrations of 

typical antibiotics, such as oxacillin (top left), penicillin (top right), and vancomycin 

(bottom left), while PlyGRCS (bottom right) prevents the formation of S. aureus NRS-14 

biofilms, as shown by crystal violet staining. Error bars represent the standard deviation, 

and all experiments were done in triplicate.    
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PlyGRCS Interaction with MAC-T Cells and Removal of Biofilms 

In addition to formation of biofilms on abiotic material, the ability of S. aureus to 

form biofilms directly on the epithelium led us to question whether PlyGRCS could also 

be an effective treatment in this scenario. First, to ensure the safety of PlyGRCS on 

eukaryotic cells, we incubated the endolysin and MAC-T bovine epithelial cells and 

assessed the membrane integrity. PlyGRCS-treated MAC-T cells did not show any 

propidium iodide staining, indicating that their membranes had not been compromised by  

the addition of the enzyme (Fig. 3-7). Finally, we determined the ability of PlyGRCS to 

eliminate S. aureus biofilms that had been formed on MAC-T cells.  As visualized by 

confocal microscopy, there was a marked reduction in the amount of green fluorescence, 

indicating that the bacteria expressing GFP were being lysed (Fig. 3-8). Quantification of 

S. aureus from the PlyGRCS-treated samples showed an approximately 1 log reduction 

as compared to the untreated biofilms.             

 

Discussion 

In the age of increasing resistance to traditional antibiotics, identifying the next 

generation of antimicrobial agents, such as endolysins, is a crucial and pressing matter. 

Furthermore, the inability of antibiotics to be effective against bacteria in biofilms 

highlights the importance of finding alternative therapeutics. Even more alarming, is that 

the recommended treatment for infections caused by implant-mediated S. aureus biofilms 

is removal of the device, which is clearly not an acceptable solution.   

 In this study, the endolysin PlyGRCS successfully demonstrated biofilm 

dispersing and killing activity against S. aureus. While activity against biofilms seems to  
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Figure 3-7. PlyGRCS interaction with eukaryotic cells. PlyGRCS-treated MAC-T 

bovine epithelial cells (nuclei stained with DAPI) do not show membrane 

permeabilization (bottom left panel), while the Triton X 100-treated control shows 

compromised cell membranes, as evidenced by red propidium iodide staining (bottom 

right panel).  Brightfield images are shown in the top panels. Images were obtained at 

200X magnification.  
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Figure 3-8. PlyGRCS treatment of S. aureus biofilms on MAC-T cells. (A) Confocal 

microscopy (maximum intensity projections) showing the reduction of biofilm bacteria 

(S. aureus AH1350-GFP) after treatment with PlyGRCS. MAC-T nuclei are stained with 

DAPI (blue). Images were obtained at 200X magnification. (B) Quantification of S. 

aureus recovered after treatment with PlyGRCS vs. PBS. Bacteria were taken from the 

supernatant (sup), after two washes (wash), and still adhered to the MAC-T cells 

(adherent).  Error bars represent the standard deviation, and all experiments were done in 

triplicate.   
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be a property shared by other endolysins, the endolysin dosage used in this study 

demonstrates that the efficacy of PlyGRCS is comparable to or better than other 

published staphylococcal endolysins (Drilling et al., 2016; Fenton et al., 2013; Gilmer et 

al., 2013; Gutierrez et al., 2014; Jun et al., 2013).  As of yet, the only in vivo applications 

of endolysins against staphylococcal biofilm related infections are Ply187, which reduced 

the intravitreal bacterial load and attenuated symptoms of endophthalmitis,  and chimeric 

endolysins λSA2-E-Lyso-SH3b and λSA2-E-LysK-SH3b, which reduced bacterial counts 

in a mouse model of mastitis (Schmelcher et al., 2012c; Singh et al., 2014); our initial in 

vitro work shows that PlyGRCS has promise to succeed in utilization in a biofilm 

infection model.   

Importantly, PlyGRCS was able to efficiently remove staphylococcal biofilms 

formed in a catheter under dynamic conditions representative of a medically relevant 

scenario. During attempts to remove implant mediated non-S. aureus biofilms from 

infected patients, healthcare practitioners may utilize antimicrobial lock therapy, in which 

the affected device is filled with highly concentrated antibiotic and closed off for up to 48 

hours, after which the solution is removed, hopefully removing the biofilm along with it; 

however it is not always effective (40-70% catheter salvage rate, depending on the 

organism), and as mentioned the first line of action against implants containing S. aureus 

biofilms is to bypass ALT and just remove the implant (Justo and Bookstaver, 2014; 

Poole et al., 2004). The ability of lock therapy using PlyGRCS to remove dynamically 

formed S. aureus biofilms from a catheter represents a major breakthrough in treatment 

of implant mediated biofilm infections. 
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 As S. aureus can form biofilms in the absence of a medical device, and these 

biofilms are implicated in both human and animal infections such as mastitis, having a 

safe and efficacious treatment for such infections is necessary. PlyGRCS activity was 

displayed not only against biofilms grown on abiotic surfaces, but also on a monolayer of 

bovine epithelial cells. Importantly, this activity was specific against the bacteria and did 

not harm the eukaryotic cells. While no adverse effects have been observed in animal 

models so far, the rapid bacteriolytic activity of endolysins may require some fine-tuning 

of dosage before use in the clinic, especially in bloodstream related infections, as a 

sudden influx of proinflammatory cellular debris (teichoic acids, lipoteichoic acids, 

toxins, and peptidoglycan) could lead to life-threatening complications, such as septic 

shock and multiple organ failure (Nau and Eiffert, 2002). However, for decolonization of 

the skin as a prophylactic measure before surgery or on a cow’s udder before milking, the 

fallout from a lytic therapy may be less severe. As one of the four major causative agents 

of bovine mastitis, S. aureus biofilms play a major role in chronic intramammary 

infections that result in significant losses for the dairy industry, and as a result, a viable 

anti-biofilm agent is critically needed (Oliveira et al., 2007).     

While biofilms are clearly a problem in the medical field, the formation of 

biofilms on food and food processing equipment represents a major safety issue in the 

food industry. Food-borne illness caused by S. aureus results in hundreds of thousands of 

emergency room visits per year and economic losses in the billions of dollars from recalls 

and healthcare related costs (Kadariya et al., 2014). Additionally, biofilms on food 

processing equipment can interfere with proper function by impeding liquid flow and 

heat transfer, damaging the equipment by corrosion, and thereby leading to economic 
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losses due to machine repairs and downtime. The current chemical cleaners and 

disinfectants are not 100% effective, need to be completely removed from surfaces after 

use, and furthermore, a shift toward “green” biological products is underway. In fact, 

bacteriophage preparations against Listeria, E. coli, and Salmonella are already labelled 

GRAS (do not need to be removed from equipment and food after use and can be 

consumed by humans) and are being utilized in food processing facilities (Sharma, 2013). 

The fact that endolysins, including PlyGRCS, can remove bacterial biofilms from 

surfaces indicates that they too can find an application in this industry.        

PlyGRCS is a robust enzyme and has many beneficial properties that warrant 

further investigation into development of this enzyme as a potential antimicrobial agent 

against staphylococcal biofilms. Future studies should be performed to determine the 

synergistic ability of PlyGRCS with other endolysins and antibiotics. Engineering 

approaches to enhance PlyGRCS activity should also be performed to increase 

thermostability properties for long-term storage, augment catalytic activity, or modulate 

binding to allow for a greater turnover rate. Finally, in vivo activity analysis of PlyGRCS 

in animal models of (implant-mediated) biofilm formation should be conducted. 

The use of endolysins provides a more effective treatment for bacterial biofilm 

infections than antibiotics. The usage of sub-inhibitory concentrations of many antibiotics 

has been shown to enhance staphylococcal biofilm formation, thought to be mediated by 

an overall stress response, whereas the quick acting lytic activity of endolysins does not 

allow time for such a response to be mounted (Poole, 2012). We have shown here that 

PlyGRCS is actually inhibitory to biofilm formation. Endolysins also have a potential 

longer lifespan than antibiotics, with properties such as engineering and synergy to 
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prolong the use of these enzymes. Additionally, they may breathe new life into dying 

antibiotics, in a combinatorial therapy approach, where the endolysin would provide the 

initial disturbance to the biofilm structure, providing the antibiotic access to now 

susceptible target bacteria (Schuch et al., 2014). Most importantly, no research has been 

able to demonstrate the development of bacterial resistance; PlyGRCS may be even more 

refractory to resistance as it has two catalytic activities despite its single catalytic domain 

(Linden et al., 2015). Additionally, as antibiotics can only be utilized during an active 

infection (and are ineffective against biofilms anyway) and not for decontamination of an 

abiotic surface, having an agent such as an endolysin that can have a two-pronged 

application as a medical therapeutic and a surface disinfectant represents a superior 

antimicrobial option.   

In conclusion we show that PlyGRCS displays specific bacteriolytic activity 

against S. aureus biofilms, indicating that this endolysin has the potential to be utilized as 

a skin decolonizing agent to prevent nosocomial and livestock-associated infections, a 

treatment for (implant-mediated) biofilm infections, and decontamination of food and 

food processing equipment 
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Chapter IV: Unpublished Dissertation-Related Data  

Introduction 

The previous two chapters represent our current understanding of the biochemical 

and biophysical characteristics of PlyGRCS, as well as its anti-biofilm behavior. 

However, this is only the beginning in our comprehensive knowledge of and 

experimentation on this endolysin. Toward our ultimate goal of utilizing PlyGRCS as a 

therapeutic against S. aureus infection, we have begun in vivo testing, as well as 

engineering experiments aimed at optimizing its activity. The unpublished, preliminary 

results from these studies are presented in this chapter.   

The dearth of new traditional antibiotics, along with rising antimicrobial 

resistance rates highlights the application of endolysins as alternative antibacterial 

therapeutics. Because of the approximately 150,000 cases of S. aureus bacteremia per 

year in the U.S. alone, resulting in a 20% morbidity rate, this type of infection represents 

an opportunity to benefit from endolysin treatment (van Hal et al., 2012). However, to 

date, there have been few in vivo studies on endolysin treatment of S. aureus bacteremia 

(Gilmer et al., 2013; Gu et al., 2011a; Jun et al., 2013; Schmelcher et al., 2015; Schuch et 

al., 2014) . Importantly, the only endolysin that has attempted and completed Phase I 

clinical trials in the U.S. is CF-301 (Gilmer et al., 2013; Schuch et al., 2014). ContraFect 

Corporation intends to utilize this endolysin as a treatment against S. aureus bloodstream 

infections. However, all of the mouse experiments on this endolysin (and all other S. 

aureus endolysins, except for Sal-1) utilize an intraperitoneal infusion of both the 

bacterial load and the endolysin treatment. While some of the ip infused components 

eventually make their way to the bloodstream, we feel as though this is an artificial 
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model, as the peritoneal cavity provides a buffer of protection, not allowing the rapidly 

lysed components to quickly circulate in the bloodstream and cause a massive cytokine 

storm (Nau and Eiffert, 2002). In the clinic, the endolysin treatment would be 

administered intravenously, and therefore the dosage has to be completely verified using 

the same method in the mouse model. In fact, during the phase I clinical trial, human 

patients were given CF-301 over a single 2- hour intravenous (iv) infusion, and no major 

adverse events were observed (Cassino et al., 2016). However, as this was in the absence 

of an active S. aureus infection and there have been no mouse studies conducted on iv 

infusion of both CF-301 and S. aureus, so it is unknown what may happen when bacteria 

and this endolysin meet in the bloodstream. Alarmingly, the planned dose of CF-301 for 

phase II trials is 0.25 mg/kg, which resulted in a 100% death rate of mice within 18 hours 

when S. aureus and CF-301 were infused ip. To more accurately represent the real world 

application of an endolysin treatment against S. aureus septicemia, we have decided to 

use a mouse model in which both bacteria and endolysin are administered intravenously.               

While we felt that the potent activity of PlyGRCS warranted pursuing in vivo 

studies utilizing the native enzyme, we also wanted to subject PlyGRCS to 

chimeragenesis to see if we could create an endolysin with improved efficacy. 

Engineering endolysins through chimeragenesis has proved to be an easy (due to the 

modular architecture of these enzymes) and effective technique of modification 

(Schmelcher et al., 2012a). Chimeric endolysins have been constructed to display 

characteristics such as increased catalytic activity, modified cleavage specificity, altered 

binding (strength and target), enhanced solubility and thermostability, and other desirable 

properties (Becker et al., 2009b; Donovan et al., 2006a; Manoharadas et al., 2009; 
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Schmelcher et al., 2011). Because the PlyGRCS CHAP domain already displayed such 

potency due to its dual catalytic activities, the SH3b CBD was chosen for replacement. 

All other staphylococcal endolysins possess SH3b domains, except for the ΦNM3 

endolysin; thus, the ΦNM3 CBD was chosen as the desired replacement domain (Bae et 

al., 2006). The ΦNM3 CBD lacks homology to any annotated domains in the database, 

but has been shown to specifically bind S. aureus and has been successful in previous 

chimeragenesis experiments (Daniel et al., 2010; Pastagia et al., 2011; Yang et al., 2014a; 

Yang et al., 2014b). Furthermore, the substrate for the staphylococcal SH3b binding 

domain is predicted to be the pentaglycine crossbridge of the S. aureus peptidoglycan, 

and exposure of S. aureus to the SH3b containing lysostaphin has been shown to select 

for lysostaphin-resistant mutants with altered crossbridges  (Grundling and Schneewind, 

2006; Stranden et al., 1997). While the ΦNM3 CBD epitope is unknown, desire to steer 

away from a binding domain that may induce resistance prompted us to investigate this 

alternative CBD. We felt that these engineering efforts might result in an endolysin with 

enhanced activity or other improved characteristics. 

 

Materials and Methods 

Murine Bacteremia Model 

 PlyGRCS was purified as previously described (Linden et al., 2015), with an 

added 0.1% Triton X-114 purification step after application of lysate to the column for 

removal of endotoxin (Reichelt et al., 2006). Therapeutic treatment after septicemia 

induced by S. aureus infection was performed by TICRO at Trudeau Institute (Saranac 
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Lake, NY). As per the protocol, 8 week-old C57Bl6 female mice were obtained from 

Jackson Laboratories (Bar Harbor, ME) and acclimatized to the facility for two weeks. 

Mice were handled according to all applicable institutional, state, and Federal animal care 

guidelines under animal care protocols approved by the Institutional Animal Care and 

Use Committee (IACUC). Mice were injected intravenously with approximately 5x10
7
 

CFU of S. aureus (ATCC 27217), an LD90, which induced septicemia and death in mice 

after 2 to 3 days. Thirty minutes after infection the first group of mice was injected 

intravenously with 200 µl of the control vehicle (PBS) and the second group was injected 

with 200 µl of the therapeutic compound (PlyGRCS 200 µg/ml).  Mice were monitored 

twice daily for weight loss and clinical signs defined as follows: 

0 = no visible signs of disease 

1 = slight ruffling of fur 

2 = ruffled fur, reduced mobility 

3 = ruffled fur, reduced mobility, rapid breathing 

4 = ruffled fur, minimal mobility, huddled appearance, rapid and/or labored breathing 

5 = death/euthanize 

Animals displaying moribund signs were humanely euthanized and recorded as dead on 

that particular day. All animals found dead in the cage were recorded as dead on that day. 

Mice, once infected, were monitored twice daily for weight changes and euthanized 

immediately if they became recumbent, failed to move upon stimulation, exhibited an 

inability to eat or drink, or if they lost >20% of their initial body weight as stipulated and 

approved in the IACUC application 15-002. All surviving animals from the study were 

euthanized on Day 7 after the infection, by the administration of CO2 asphyxiation and 
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cervical dislocation in strict accordance with the recommendations in the Guide for the 

Care and Use of Laboratory Animals of the National Institute of Health.  

 

Chimeragenesis of PlyGRCS 

 The ΦNM3 CBD was cloned into pBAD24 from pET21-CBDΦNM3 using the 

primers CBDΦNM3-F (5’GGGTCTAGAATCGGCAAATCAGCAAGC3’) and CBDΦNM3-

R (5’GGGAAGCTTTTAATGATGATGATGATGATGAAAAACTTCTTTCAC3’), and 

thus named pBAD-CBDΦNM3. The PlyGRCS CHAP domain with a linker region was 

then cloned from pBAD24-PlyGRCS using the primers CHAP-F 

(5’GGGGAATTCATTATGAAATCACAACAACAAGCAAAAGAATGGATATA3’) 

and CHAPlink-R (5’TCTAGAGTTTTGTTTCCAATTTCC3’), and subcloned into 

pBAD24-CBDΦNM3 using the restriction enzymes EcoRI and XbaI, making the final 

chimeric construct (pBAD24-CHAPGRCS-CBDΦNM3. All clones were confirmed by 

sequence analysis (Macrogen, Rockville, MD). Protein was expressed, purified, and 

tested for activity via the turbidity reduction assay and bactericidal assay, as previously 

described (Linden et al., 2015).  

 

Results 

In vivo Efficacy of PlyGRCS 

 Having validated the antimicrobial activity of PlyGRCS in vitro, we wished to 

determine if this endolysin would provide protection against an active infection in an 

animal model. First, to verify the safety of PlyGRCS, healthy uninfected mice were 
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injected with an intravenous bolus of enzyme and monitored for adverse effects over 

several days. Mice did not display any outwardly visible intolerance towards PlyGRCS. 

Next, mice were challenged in a model of S. aureus septicemia (Fig. 4-1). After 60 hours, 

90% of the mice that were left untreated had died, while PlyGRCS treatment resulted in 

rescuing 30% of the mice. While these results were non-significant, these initial 

experiments are encouraging for the further development of PlyGRCS as a therapeutic 

against S. aureus infections.      

       

Lytic Activity of PlyGRCS Chimera  

 The activity of the PlyGRCS chimera (CHAPGRCS-CBDΦNM3) was first compared 

to that of the WT endolysin via the turbidity reduction assay. On all S. aureus strains 

tested, CHAPGRCS-CBDΦNM3 displayed lytic activity; however, somewhat 

disappointingly, it did not perform as successfully as WT PlyGRCS (Fig. 4-2A-B). 

Interestingly, both enzymes displayed preferences for the same strains, indicating that it 

is in fact the change in binding domains that caused the difference in activity.        

 Next, the bactericidal capability of CHAPGRCS-CBDΦNM3 was assessed.  It was 

determined that 32 µg/ml of endolysin reduced the bacterial count of VISA NRS-14 by 1 

log in 1 hour (Fig. 4-2C). In comparison, only 2 µg/ml PlyGRCS resulted in the same 

bactericidal activity and increasing the dosage to 32 µg/ml caused a ~3.5 log reduction in 

CFU. As experimental conditions were optimized for the WT enzyme, the weaker 

activity of the chimera could be attributed to necessitating variable buffer components for 

enhanced activity. Further optimization of both conditions and enzyme are ongoing, as 

well as understanding the ideal binding for enhanced activity.                  
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Figure 4-1. In vivo efficacy of PlyGRCS. Mice were injected intravenously with S. 

aureus (ATCC 27217), followed by PlyGRCS or control (PBS), and evaluated for 

survival (n=10 per group).  PlyGRCS was effective at rescuing 30% of the mice from 

death induced by S. aureus bacteremia after 3.5 days. Data was analyzed using Kaplan-

Meier survival estimator log-rank test.      
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Figure 4-2. Comparison of PlyGRCS WT and chimera. (A) Turbidity reduction assay 

analysis of PlyGRCS WT and chimera (16 µg/ml) against multiple strains of S. aureus. 

(B) Turbidity reduction assay showing dose response of PlyGRCS WT and chimera 

against S. aureus NRS-14 (C) Bactericidal activity of both endolysins against S. aureus 

NRS-14 Error bars represent the standard deviation, and all experiments were done in 

triplicate. 
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Discussion 

 The experiments in this chapter represent an initial foray into further 

understanding PlyGRCS and important first steps into implementing PlyGRCS as a 

therapeutic option. However, there are many more experiments to perform, 

troubleshooting to undertake, and challenges to overcome before getting to this next 

level.  

Although endolysin therapy possesses many attributes that make it preferred over 

treatment with traditional antibiotics, it also could have some potential drawbacks. The 

first is the nature of endolysin therapy. The fact that this treatment is a lytic therapy may 

prove to be a challenge, especially if we wish to use it directly in the bloodstream to 

combat S. aureus-induced bacteremia. Indeed, the lower success rate of our mouse model 

when compared to other models may be due to the more real-world application of 

intravenous infusion (Schmelcher et al., 2015; Schuch et al., 2014). To study if death was 

caused by the bacteremia or the fallout from the immense amount of bacterial lysis, 

future experiments will include pathology analysis of the organs, as well as an 

investigation of the immune response. If these results show that mice are dying from the 

massive release of bacterial cell components, a lower dose or interval dosing of endolysin 

may need to be used in order to avoid such a robust response. Intravenous infusion of 

PlyGRCS also paves the way for future pre-investigational new drug enabling studies, 

such as safety, tolerability, and pharmacokinetics/pharmacodynamics (Cassino et al., 

2016). Alternatively, targeting other S. aureus-associated diseases may prove to be a 

better route than attempting to pursue a treatment for bloodstream infections. Endolysins 

against S. aureus have shown great efficacy in decolonizing the nasal passage, topically 
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treating wounds, and decreasing the bacterial load in mastitis infections, and PlyGRCS 

may perform better in one of these models (Pastagia et al., 2011; Rashel et al., 2007; 

Schmelcher et al., 2012c).                     

 Another potential problem with using endolysins is the emergence of resistant 

mutants. While several studies have compared the abilities of both antibiotics and 

endolysins to select for resistant bacteria and results have shown a lack of endolysin-

resistant mutants, this does not mean it is impossible for endolysins to induce resistance 

(Gilmer et al., 2013; Pastagia et al., 2011). Futhermore, the use of lysostaphin, which 

contains a similar SH3b binding domain, has been shown to select for lysostaphin-

resistant mutants, arising from modification of the pentaglycine crossbridge (Climo et al., 

1998). While we have not shown that the SH3b binding domain of PlyGRCS interacts 

with the pentaglycine crossbridge, the possibility that this potential target could be 

modified is cause for concern.        

 In contrast to antibiotics, the ability of endolysins to elicit an immune response 

along with their short half-lives could be additional downsides. Although endolysins have 

been shown to generate antibodies, these antibodies are non-neutralizing and therefore do 

not affect the efficacy of the endolysins (Loeffler et al., 2003). Additionally, these 

antibodies did not cause anaphylaxis or other adverse effects in healthy subjects. 

However, the production of a hyperimmune response in some individuals could result in 

a potentially deadly scenario, so patients will have to be carefully screened to ensure the 

safety of using endolysins in their treatment. The short half-life of endolysins (about 20 

minutes, comparable to other proteins) means that multiple doses would need to be used 

to totally eradicate the bacterial infection (Loeffler et al., 2003). It has also been 
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suggested that PEGylation, which has been used to increase the half-life of other 

biological molecules, be applied to endolysins; however, addition of PEG severely 

reduced the activity of Cpl-1 (Resch et al., 2011a).  Excitingly, dimerization of Cpl-1 

both increased its activity and half-life, indicating that this approach may be successful 

for overcoming fast clearance of other endolysins (Resch et al., 2011b).         

 Lastly, the extreme specificity of endolysins as compared to antibiotics could be 

viewed as a negative. In many cases, there is not enough time to identify a pathogen, so a 

broad-spectrum antibiotic is necessarily utilized. While many researchers are currently 

devising methods to more quickly identify bacteria, the current turn-around time of 1-2 

days could mean life or death for some individuals. Having to wait to identify the species 

that is causing an infection to determine which endolysin to use for treatment could lead 

to a preference for antibiotics over endolysins.         

In our efforts to create an endolysin against S. aureus with an atypical binding 

domain, we unfortunately resulted in producing a chimera with less activity than the 

wild-type. However, this does not mean that this chimeric derivative has no future 

application. In fact, endolysins with varying levels of in vitro activity have shown equal 

levels of in vivo activity (Schmelcher et al., 2015). Furthermore, the chimeric endolysins 

ClyS and ClyH, which share the ΦNM3 binding domain, have shown great efficacy in 

multiple in vivo applications (Daniel et al., 2010; Pastagia et al., 2011; Yang et al., 

2014b). Similar doses of ClyH and the chimeric PlyGRCS showed similar results in the 

turbidity reduction assay, and ClyH protected 100% of mice in a MRSA model of 

infection, indicating the same could be achieved with our endolysin. ClyS, at a dose of 

250 µg reduced cell counts by 3 logs in vitro, whereas we utilized a much lower dose (3.2 
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µg) to reduce CFU counts by 1 log. Even so, ClyS went on to perform quite well in vivo, 

eliminating nasal colonization, protecting 85% of mice from death caused by a systemic 

MRSA infection, and reducing the bacterial counts on infected skin. In all, this indicates 

that the chimeric PlyGRCS, despite lower in vitro activity than the wild-type endolysin, 

could potentially still be an in vivo success.      
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Chapter V: Discussion 

Summary of Dissertation 

S. aureus is a significant pathogen, with an arsenal of virulence factors, including 

the propensity to form biofilms. Currently, the emergence of antibiotic-resistant strains 

represents a major pharmaceutical challenge and societal burden, causing millions of 

deaths and illnesses. Thus, the urgent need for alternative antimicrobial approaches 

prompted us to investigate the use of a bacteriophage-encoded endolysin against S. 

aureus.  

PlyGRCS was derived from the bacteriophage GRCS, which had already shown 

activity against S. aureus in a mouse model of infection. We found that this endolysin 

was active under physiological conditions (pH and NaCl).  Activity was greatly enhanced 

by the addition of calcium, and sequence analysis showed the presence of three critical 

aspartic acid residues shown in other endolysins to complex this cation. PlyGRCS 

displayed lytic activity against all strains of S. aureus tested, including MRSA and VISA, 

and also against S. epidermidis. Assays were performed using stationary phase bacteria, 

indicating the potent activity of this enzyme; 16 µg/ml reduced the OD600 of VISA NRS-

14 by ~90% in 20 minutes and caused a 3 log decrease in CFU in 1 hour. PlyGRCS 

enzymatic activity was stable at temperatures up to 37°C; thermodynamic stability 

experiments showed cooperative unfolding of PlyGRCS with a Tm of 43.5°C. 

Several techniques were utilized to understand the mechanistic behavior of 

PlyGRCS. Fluorescence microscopy showed that the C-terminal SH3_5 domain 

specifically bound staphylococci, while the N-terminal domain was confirmed to be 

catalytically active and possessed an active-site cysteine and histidine, defining it as a 
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CHAP domain. Biochemical assays detected free amine release (indicative of 

amidase/endopeptidase activity) upon PlyGRCS treatment; mass spectrometry analysis 

determined that, despite the single catalytic domain, PlyGRCS was able to cleave two 

distinct sites in the peptidoglycan (between the N-acetylmuramic acid and L-alanine and 

between the D-alanine in the peptide stem and the glycine in the interpeptide bridge). 

As alternatives to traditional antibiotics, endolysins display the added benefit of 

activity against biofilms. PlyGRCS was able to disrupt static biofilms at concentrations 

much lower than the MIC, while antibiotics at 1000X MIC had no effect on biofilms. 

PlyGRCS not only disrupted these biofilms, but killed the bacteria within them as well. 

Additionally, PlyGRCS removed dynamic biofilms from medical grade catheters. 

Furthermore, unlike antibiotics, which were shown to promote biofilm formation, 

PlyGRCS prevented the formation of biofilms.    

To study the effects of PlyGRCS treatment in the presence of a eukaryotic system, 

we first established S. aureus biofilms on bovine mammary epithelial cells. PlyGRCS 

was able to remove and kill biofilms grown on these epithelial cells.  Importantly, 

PlyGRCS was non-toxic toward MAC-T cells. Our preclinical evaluation of PlyGRCS in 

a mouse model showed that intravenous application did not result in any adverse effects. 

A single treatment of PlyGRCS (200 µg/ml) was able to protect 30% of mice from death 

induced by S. aureus septicemia until day 3.5 post-infection.           

Lastly, we have begun subjecting PlyGRCS to chimeragenesis to create the most 

ideal endolysin. Engineering efforts showed that replacing the native SH3_5 domain with 

the ΦNM3 CBD resulted in an endolysin that was less active as measured by turbidity 

reduction and CFU counts. The WT PlyGRCS caused a 1 log decrease at only 2 µg/ml, 
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while 32 µg/ml of the chimeric CHAPGRCS-CBDΦNM3 was necessary to achieve the same 

effect.  However, it is well documented that in vivo efficacy of staphylococcal endolysins 

does not necessarily correlate with in vivo efficacy. Indeed, the endolysin 2638A 

performed poorly in several in vitro lytic and anti-biofilm assays, yet protected all mice 

in a lethal septicemia assay (Schmelcher et al., 2015). Thus, future in vivo testing will be 

needed to fully evaluate the chimeric CHAPGRCS-CBDΦNM3. 

In conclusion, we have shown that PlyGRCS has potent antimicrobial activity 

against planktonic and biofilm antibiotic resistant S. aureus. Our initial work on tissue 

cultured cells and in mice, along with the low likelihood of developing resistance due to 

its dual catalytic activities, specific binding, and the possibility of future engineering 

indicate that PlyGRCS is a promising alternative antibacterial agent for both human and 

animal uses.   

 

Discussion and Future Directions 

Therapeutic Potential 

The ultimate goal of this project was to investigate an endolysin against S. aureus 

that could eventually be used translationally as a new antimicrobial therapy. All in vitro 

experiments performed suggested that PlyGRCS would be a good candidate for in vivo 

testing. The preclinical trial in our mouse model of treatment against S. aureus septicemia 

indicated that PlyGRCS provides some protection; however, there is still obviously a 

long way to go before proceeding to human subjects.     

Despite this, we have already made some progress toward understanding how to 

use PlyGRCS in vivo. In an earlier experiment, 1 mg/ml of PlyGRCS was used, and 
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surprisingly, mice that received endolysin treatment fared worse than mice that were left 

untreated; 8/10 mice died within the first 24 hours and the remaining two were moribund 

and had to be euthanized within the next 24 hours. Interestingly, the mice that received 

PlyGRCS displayed hind leg paralysis, an indication that they died due to septic shock.  

Our theory was that the PlyGRCS dosage used was too high, causing rapid lysis of 

bacteria too quickly, releasing cellular debris and triggering a massive inflammatory 

response ultimately resulting in death of the animals. The initial dosage we used was 

based on several other models of S. aureus bacteremia; however, the typical model for 

MRSA septicemia utilizes ip infusion of both bacteria and endolysin, thus providing a 

cavity of protection, preventing the majority of lysed components from entering the 

bloodstream and thereby not promoting as robust of a response. When we lowered the 

dose to 200 µg/ml, we were able to save 40% of the mice until day 3.5, supporting our 

theory. Therefore, more experiments need to be performed to optimize dosage of 

PlyGRCS. The dosage may need to be lowered even more or perhaps we could give 

multiple injections of a very low dose over an extended period to minimize the amount of 

bacterial lysis at one time. Another possibility is utilizing less bacteria to establish 

infection (LD50 instead of LD90), as there will be a lower amount of bacterial contents 

upon lysis. In fact, the only other example of intravenous endolysin treatment (Sal-1) of 

S. aureus septicemia utilized an amount of bacteria to give a lower mortality rate than 

what we used in our study (Jun et al., 2013). Alternatively, as S. aureus causes a wide 

variety of infections, PlyGRCS may perform better in a different model, such as in a 

topical application against a skin infection or in a nasal decolonization model. 
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 Based on our finding that PlyGRCS can remove dynamic biofilms from medical 

grade devices, an implant-associated biofilm model is also worth investigating. As of yet, 

there have been no in vivo studies on the use of endolysins to treat staphylococcal 

biofilms mediated by medical implants and only recently has a staphylococcal endolysin 

been tested and found effective against an in vitro dynamic biofilm (Becker et al., 2016). 

In fact, the only application of endolysin treatment against an implant mediated biofilm 

appears to be PlyF307, which reduced the A. baumanii load of indwelling subcutaneous 

catheters by 2 logs and destroyed much of the EPS (Lood et al., 2015). This seminal 

experiment indicates that other endolysins, including PlyGRCS, could efficaciously treat 

infections associated with medical devices. Directly treating the implant with an 

endolysin would be much desired over the alternative removal method. Our laboratory 

has acquired a Perkin Elmer In vivo Imaging System (Lumina XR), which we can utilize 

to monitor the infection and treatment in real time, making this both the first investigation 

of an endolysin against an implant-associated S. aureus infection and the first use of the 

IVIS to observe endolysin treatment of an implant mediated infection (Fenton et al., 

2010a; Kadurugamuwa et al., 2003).  

 In addition to the above mentioned experimental variables, adjusting the chemical 

formulation of the PlyGRCS treatment may improve in vivo efficacy. Sal-1, which bears 

about 50% identity in both its CHAP and SH3b domains to PlyGRCS, successfully 

protected mice from intravenously induced MRSA septicemia (Jun et al., 2013). The  Sal-

1 formulation included 10 mM CaCl2 for enchancement of activity; we have already 

included calcium in our PlyGRCS formula. However, the presence of calcium can be 

associated with destabilization and aggregation of proteins, which may explain some of 
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the difficulties observed in the in vivo experiments. The final formulation of Sal-1 

included stabilizing components 0.01 M L-histidine (pH 6.0), 5% (w/v) sorbitol, and 

0.1% (w/v) Poloxamer 188, the major contributor to stabilization. Before addition of 

these components, Sal-1 aggregation occurred after five minutes of agitation or two hours 

in storage at 4°C; in the presence of these elements, four hours of agitation was required 

to induce aggregation and the formulation was stable for eight weeks at 4°C, while 

maintaining activity. In this formulation, the first Good Laboratory Practice compliant 

safety evaluation of an endolysin, including general toxicology and safety pharmacology 

tests, determined that Sal-1 did not cause any adverse effects in dogs or rats (Jun et al., 

2014). If PlyGRCS stability is not enhanced by the Sal-1 formulation, there are 

alternative ingredients that may allow for an improved in vivo outcome. Other amino 

acids, poloxamers, and polyols display stability enhancing abilities and are commonly 

acknowledged by the pharmaceutical industry as acceptable and safe (Kamerzell et al., 

2011). Additionally, salts, hydrophilic polymers (PEGs, polysaccharides and inert 

proteins), and surfactants are all currently used as stabilizing components in protein 

therapeutic formulations. 

Finally, as in vitro experiments are not always the best indicators of in vivo 

efficacy, CHAPGRCS-CBDΦNM3, despite its lower activity in the turbidity reduction and 

bactericidal assays, may actually prove to be a better enzyme when placed into a mouse 

(Henry et al., 2013; Schmelcher et al., 2015). Furthermore, an enzyme that is less active 

in vitro might be more desirable in vivo, since it may avoid the massive bacteriolytic 

fallout seen when using the high dose of PlyGRCS.  
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Structural Analysis 

Obtaining structural knowledge helps us to better understand the function of a 

protein and also may pave the way for future design of improved enzymes. As of yet, 

only two S. aureus endolysin crystal structures have been solved: the CHAP domain of 

LysK and all 3 domains of LysGH15 (Gu et al., 2014; Sanz-Gaitero et al., 2014). 

Excitingly, these endolysins are almost identical to each other (only differing by four 

amino acids), and their CHAP and SH3b domains share about 50% identity to PlyGRCS, 

which means they can give us important structural insight into our endolysin. 

 The crystal structures of the CHAP domains of LysK and LysGH15 were 

obtained at the same time and yielded similar results, in terms of overall structural layout, 

residues implicated in interaction and catalysis, and the importance of metal cations. The 

overall structure of the proteins consists of two alpha helices connected by a loop 

containing the catalytic cysteine and a 310-helix which connects to six beta-strands 

arranged in an anti-parallel beta-sheet (with another 310-helix between beta strands 2 and 

3 (Fig. 5-1A).  They both display a long and deep hydrophobic groove with conserved 

residues lining its surface, providing structural evidence for the catalytic center and its 

reaction mechanism of the cleavage of peptidoglycan (Figure 5-1B). The typical CHAP 

Cys-His-Glu-Asn quartet was found to be close to the cleft and is responsible for a 

proteolytic relay event, resulting in the nucleophilic attack of a peptide bond. Most 

importantly, in and around the active site cysteine lays a classical 12-residue 

(positions1D, 3D, 5Y, 7H, and 12D) calcium-binding site. Calcium was found to be 

essential for catalytic activity (as in the case of PlyGRCS), and the most important  
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Figure 5-1. Structural and functional analysis of LysGH15 CHAP. (A) Overall 

structure of the CHAP domain (residues 1–164) coordinating a Ca
2+

 ion, showing its 

secondary structure composition and the globular nature of endolysin domains. (B) An 

alignment of sequences showing sequence conservation and predicted surface rendering 

of the catalytic groove. Figure from (Gu et al., 2014) 

A 
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residues in coordination of the ion were the three aspartic acids, as determined by site 

directed mutagenesis. PlyGRCS contains these three aspartic acids, but has alanine and 

glycine in the 5
th

 and 7
th

 positions, respectively. The calcium ion is proposed to help 

maintain structure by assisting with positioning of the catalytic residues; additionally, the 

loop containing the calcium binding site contains residues that were shown to potentially 

interact with the peptidoglycan substrate, suggesting a role in determining substrate 

specificity. The importance of the calcium binding site was also demonstrated by an 

observed ∼2°C shift in Tm, in the presence of Ca
2+

, indicating its effect on 

thermostability. The approximately 50% identity and even higher level of homology 

between these two proteins and PlyGRCS means that information about the structures of 

the CHAP domains of these two enzymes can be applied to future engineering of 

PlyGRCS, discussed in detail in the next section.   

Before the crystal structure of CHAPK was experimentally resolved, in silico 

modeling using I-TASSER and visualized via PyMol were utilized to somewhat 

accurately predict its 3D structure based upon comparison to an already solved protein 

(Fenton et al., 2011a). In the event of our inability to obtain a crystal structure through X-

ray crystallography or NMR spectroscopy, this alternative technique could provide an 

approximation of the conformation of PlyGRCS and insight into interactions between its 

domains and their substrates.      

While it has been determined that the lysostaphin and ALE-1 CBD substrate is the 

pentaglycine crossbridge of S. aureus peptidoglycan, the PlyGRCS SH3b belongs to a 

variable SH3b subgroup (which includes LysGH15 and LysK), indicating that it may 

have a distinctly different substrate (Fig. 5-2) (Becker et al., 2009b). In fact, the binding 
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between LysGH15 SH3b and the peptide “AGGGGG” was shown to be quite weak at 

only 3 mM; additionally, this SH3b and pentaglycine were never co-crystallized, further 

suggesting that they may not interact (Gu et al., 2014). This may also explain why there 

is much discrepancy about the LysGH15 and ALE-1 residues involved in binding, as well 

as slight differences observed in structure of the CBDs from these two endolysins.  

Because we cannot co-crystallize the PlyGRCS SH3b with its substrate if we aren’t sure 

what that substrate is, a computational modelling approach may help to determine this 

ligand. However, we must have some potential candidates for this method, so we have 

constructed a partial list of S. aureus-specific molecules that are accessible to binding by 

the PlyGRCS CBD (Table 5-1). These include teichoic acids, surface anchored proteins, 

carbohydrates, and components of the staphylococcal peptidoglycan. RosettaLigand has 

been successfully used to model small molecule interactions with a protein receptor. In 

fact, this program defined phosphatidylserine as the interacting partner for the binding 

domain of PlyCB that facilitates internalization of the PlyC holoenzyme (Shen et al., 

2016). Additionally, other ligand-receptor modeling programs have been utilized to study 

the interactions between CBDs and their binding targets, providing important structural 

insight and mechanistic understanding (Hirakawa et al., 2009; Perez-Dorado et al., 2007).  

 

Engineering: Next Generation PlyGRCS  

Despite the potent antimicrobial activity of PlyGRCS, we would like to alter some 

of its properties to make it a better enzyme. As mentioned, the modular domains of 

endolysins makes them highly amenable to chimeragenesis engineering efforts to 
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Figure 5-2. Analysis of SH3b domains.  Sequence alignment of SH3b domains from 11 

staphylococcal endolysins representing five homology groups and 6 stand-alone proteins, 

shows conserved residues that allow for the clustering into two subgroups. (A) Weakly 

conserved subgroup. (B) Highly conserved subgroup. Overlined residues constitute the 

formal SH3b_5 domain (Pfam database). * perfectly conserved residue, : highly 

conserved residue, . weakly conserved residue Figure from (Becker et al., 2009b) 
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Table 5-1. Candidates for PlyGRCS SH3b binding partners. 

Molecule Function Ref. 

Polyribitolphosphate wall teichoic 

acid 

 

shape determination, regulation 

of cell division 

(Vinogradov et 

al., 2006) 

Polyglycerolphosphate lipotechoic 

acid 

 

antigenicity, regulator of 

autolysis 

(Endl et al., 

1983) 

Peptidoglycan components 

(GlcNac, MurNac, Peptide stem, 

5Gly interpeptide bridge 

structural integrity 
(Tipper and 

Berman, 1969) 

   

MSCRAMMs (microbial surface 

components recognizing adhesive 

matrix molecules) (i.e. FnBPA, 

FnBPB, Cna, ClfA, ClfB, SdrC, 

SdrD, SdrE) 

adhesion, immune evasion 
(Foster and 

Hook, 1998) 

   

NEAT motif family proteins (IsdA, 

IsdB, IsdH) 
iron acquisition 

(Grigg et al., 

2007) 

   

SasB, C, D, F, G, J, K, L, X adhesion, biofilm formation 
(Roche et al., 

2003) 

   

Protein A immune evasion, antigenicity 
(Forsgren and 

Sjoquist, 1966) 

   

AdsA immune evasion 
(Thammavongsa 

et al., 2011) 

   

Bap biofilm formation, invasion 
(Cucarella et al., 

2001) 

   

SraP adhesion 
(Siboo et al., 

2005) 

   

  

Select molecules present in only S. aureus that could be potential substrates for the 

PlyGRCS SH3b binding domain.  
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improve efficacy, change host range, or vary other characteristics. Additionally, rational 

design though structure guided site directed mutagenesis, along with random mutagenesis 

techniques including directed evolution, have all proven effective ways of modifying 

endolysins.   

 One possibility, which we have already started to investigate through our ΦNM3 

CBD experiments, is replacing the native SH3b with other CBDs. This can be 

approached in two ways. The first requires changing the CBD but keeping the S. aureus 

species specifity. Staphylococcal endolysins containing SH3b domains are classified into 

five homology groups and 6 stand-alone proteins, leading us to believe that there might 

be 11 different SH3b domains that could be paired with the PlyGRCS CHAP (Becker et 

al., 2009b). However, most of the sequence conservation appears to be within the C-

terminal SH3b domain, and a comprehensive bioinformatic analysis revealed there to be 

only 2 distinct SH3b subgroups (Fig. 5-2). As the native PlyGRCS SH3b domain belongs 

in the “weakly conserved subgroup,” future studies would involve replacing it with an 

SH3b domain from the “highly conserved subgroup,” one of whose members is the 

lysostaphin SH3b. It has already been determined that the λSa2 endopeptidase catalytic 

domain paired with the lysostaphin SH3b displayed approximately 2x greater activity 

than when paired with the LysK SH3b (from the weakly conserved group). As the λSa2 

endopeptidase domain only has one catalytic activity, the dual catalytic activity of 

PlyGRCS CHAP combined with the improved binding of lysostaphin SH3b may create a 

super enzyme. An important note is that increased binding does not necessarily mean 

increased catalysis. In theory, a CBD that binds too tightly and does not release its target 

quickly or at all would make a worse enzyme than a CBD that displays weaker binding 
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and can rapidly move between substrates. While affinities of listerial CBDs were 

determined to be in the nanomolar range, there is currently no understanding of the “best” 

binding for optimal endolysin activity and few data are available on the Kd of 

staphylococcal CBDs (Gu et al., 2014; Schmelcher et al., 2010). In this vein, we would 

like to determine the affinities of the highly conserved SH3b, the weakly conserved 

SH3b, and the ΦNM3 CBD, and how the strength of their binding contributes to activity. 

Our facility has recently acquired the Octet RED96 system, which can determine kinetic 

binding constants in real time. These data, combined with information obtained from the 

crystal structure and the role of ionic interaction by way of charge, may help us to define 

an ideal binding domain, as well as identify future points of modification to modulate 

binding.      

In addition to changing the S. aureus-specific CBD for another S. aureus-specific 

CBD, a non-S. aureus CBD could be fused to the PlyGRCS catalytic domain to change 

the target organism. As noted, the catalytic domain is highly active due to its dual 

activities; however, while one of the bonds cleaved by the PlyGRCS CHAP domain is 

present in all bacteria (the linkage between the N-acetylmuramic acid and the L-alanine 

of the peptide stem), the other bond is only present in staphylococcal species (between L-

alanine and a glycine in the crossbridge). We could replace the PlyGRCS SH3b domain 

with a CBD from an endolysin against any other species, but the activity may be 

weakened with only one catalytic activity. Based on this, S. epidermidis, which is a 

causative agent of opportunistic nosocomial infections, may be a good target for modified 

PlyGRCS. We have already determined that PlyGRCS displays weaker activity against S. 

epidermidis than the activity observed against S. aureus, which may be due to its inability 
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of the CBD to recognize a non-S. aureus target. While there are other endolysins reported 

in the literature to have activity on both S. aureus and S. epidermidis, there are no S. 

epidermidis-specific endolysins.  Additionally, there appear to only be 5 S. epidermidis 

bacteriophage genomes sequenced, leading to the identification of only 5 genes annotated 

as endolysins (with no data on their activity) (Aswani et al., 2014; Daniel et al., 2007; 

Melo et al., 2014a, b). Three of these endolysins have CBDs annotated as SH3b, while 

the other two have C-terminal regions that display no homology to any domains in the 

database. Creating a chimeric enzyme composed of the PlyGRCS CHAP domain and one 

of these predicted CBDs may prove to be extremely effective against S. epidermidis, due 

to dual catalytic activity combined with potential S. epidermidis-specific binding.                

The chimeragenesis approach is just one method by which we could rationally 

design an improved endolysin. Additionally, information gleaned from obtaining the 

crystal structure of PlyGRCS, along with bioinformatic sequence analysis may help us 

understand how to modify the catalytic domain for enhanced activity (Fig. 5-3) (Di 

Tommaso et al., 2011; Notredame et al., 2000). A comparative analysis of Sal-1 and 

LysK found that Sal-1 was approximately twice as active as LysK, despite only differing 

from each other at 3 residues (Jun et al., 2011). It was determined that the Sal-1 

glutamine at position 113 contributed to this enhanced activity; LysK has a glutamic acid 

at this point in the CHAP domain. The LysGH15 CHAP domain also contains a 

glutamine at position 113, and only differs from Sal-1 by one amino acid in the SH3b 

domain (LysGH15 D469; Sal-1 N469). Crystal structures of both the CHAP domains 

from LysK and LysGH15 identify W115 and H117 from the loop between beta-strands B 

and C as two of the residues participitating at the surface of a long and deep hydrophobic 



 
 

146 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. Alignment of LysGH15, LysK, Sal-1, and PlyGRCS. An alignment by T-

COFFEE showing the CHAP domains of LysGH15, LysK, Sal-1 (residues 45-159)  and 

PlyGRCS (residues 20-133) and SH3b domains of LysGH15, LysK, Sal-1 (residues 412-

477) and PlyGRCS (residues 164-229). The three reference proteins contain an additional 

central Amidase_2 catalytic domain (residues 207-330).  * perfectly conserved residue, : 

highly conserved residue, . weakly conserved residue  
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groove that possibly accomodates the peptidoglycan substrate (Gu et al., 2014; Sanz-

Gaitero et al., 2014). The proximity of the 113
th

 amino acid to this site and its effect on 

activity indicates that it may contribute to the structure of the groove. While PlyGRCS 

contains a similarly hydrophobic tyrosine (corresponding to the W115), as well as the 

histidine as part of its active site, the alignment of PlyGRCS with LysK, LysGH15, and 

Sal-1 shows that there is a gap in homology corresponding to amino acids 111-113 of the 

three reference proteins (beween S88 and Q89  in PlyGRCS). Based upon this, inserting 

three residues (SYQ) to fill in this gap may modify the activity of PlyGRCS. Analysis 

ofthe crystal structures of the CHAP domains of LysK and LysGH15 additionally 

identified F36, D47, Y49, Y50, Q53, C54, D56, T59, R71, W73, N75, N136 and W137 

(for LysK) and  D47, Q53, C54, D56, G74, N75, H117, E134, and N136 (for LysGH15) 

as residues in the groove that might contact peptidoglycan (Gu et al., 2014; Sanz-Gaitero 

et al., 2014). The alignment shows that PlyGRCS only differs at these suggested 

peptidoglycan-contacting amino acids corresponding to positions 36, 49, and 59. 

Therefore, making point mutations to PlyGRCS at these corresponding positions may 

prove to alter its activity. Perhaps the most important mutation involves the PlyGRCS 

residue corresponding to position 49 (position 5 in the calcium binding site), as this 

region has been shown to contribute to structural stability, activity, and thermostability. 

PlyGRCS contains an alanine at this position; it was previously shown that LysGH15 

Y49A displayed ~80% of the bacteriolytic activity of the WT endolysin. Although not as 

critical as the residues in positions 1, 3, and 12 of the calcium binding site (which all 

displayed <5% activity when mutated), this 5
th

 position does seem to have some 

significance. Although the main chain oxygens are responsible for the coordination of the 
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calcium ion, there seems to be an additional factor, such as size of the amino acid, which 

affects activity. Therefore, changing this alanine to a tyrosine may enhance the activity of 

PlyGRCS. Additionally, although not one of the suggested peptidoglycan contacting 

residues, the slight reduction in activity when H51 was mutated to alanine in LysGH15 

and LysK indicates that the 7
th

 position in the calcium binding site may be more 

important than previously thought. In PlyGRCS, the amino acid at this position is 

glycine, so mutation to a much larger charged residue, such as histidine, may alter 

activity.         

In addition to rationale design to improve the efficacy of endolysins, random 

mutagensis has also proven to be a valuable technique in the development of better 

enzymes and could be utilized to create a better PlyGRCS. Two methods have already 

been efficacious in producing randomly engineered endolysins with improved activity or 

other desirable characteristics and could easily be adapted to improving PlyGRCS. The 

first utilized an E. coli mutator strain and error-prone PCR to create a GBS endolysin that 

lysed more bacteria at a faster rate (Cheng and Fischetti, 2007). The other was the use of 

directed evolution to increase the thermostability of the streptocococcal endolysin PlyC 

(Heselpoth and Nelson, 2012). In order to use directed evolution to improve the efficacy 

of PlyGRCS, a system would need to be created in which E. coli express and secrete 

PlyGRCS to kill S aureus in competitive growth. Models have been established to show 

that this scenario is theoretically possible (Bull et al., 2015). In the two proposed 

methods, mathematical and computational models show that the selective pressure could 

be achieved in order to force the E. coli host to produce a more efficient endolysin. 
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Catheter-associated urinary tract infection by Pseudomonas aeruginosa 

is mediated by exopolysaccharide independent biofilms. 

 
Stephanie J. Cole, Angela R. Records, Mona W. Orr, Sara B. Linden, Vincent T. Lee. 

Infect Immun. 2014 May; 82(5): 2048–2058. 

 

Abstract 

Pseudomonas aeruginosa is an opportunistic human pathogen that is especially 

adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated 

urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling 

catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and 

alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; 

however, the requirement of these polysaccharides during in vivo infections is not well 

understood. Here we show in a murine model of CAUTI that PAO1, a strain 

harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form 

biofilms on the implanted catheters. To determine the requirement of exopolysaccharide 

during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, 

and alg operons and showed that PA14 mutants lacking these operons can successfully 

form biofilms on catheters in the CAUTI model. To determine the host factor(s) that 

induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine 

and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing 

the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-

independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the 

release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced 

the biofilm, indicating that extracellular DNA supports biofilm formation. Our results 

indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form 

biofilms that are independent of exopolysaccharides during CAUTI. 
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A chimeolysin with robust bacteriolytic activity and extended-spectrum 

streptococcal host range found by an induced-lysis based rapid 

screening method.  
 

Hang Yang, Sara B. Linden, Jing Wang, Junping Yu, Daniel C. Nelson, Hongping Wei. 

Sci Rep. 2015 Nov; 5: 17257. 

 

Abstract 

The increasing emergence of multi-drug resistant streptococci poses a serious 

threat to public health worldwide. Bacteriophage lysins are promising alternatives to 

antibiotics; however, their narrow lytic spectrum restricted to closely related species is a 

central shortcoming to their translational development. Here, we describe an efficient 

method for rapid screening of engineered chimeric lysins and report a unique 

“chimeolysin”, ClyR, with robust activity and an extended-spectrum streptococcal host 

range against most streptococcal species, including S. pyogenes, S. agalactiae, S. 

dysgalactiae, S. equi, S. mutans, S. pneumoniae, S. suis and S. uberis, as well as 

representative enterococcal and staphylococcal species (including MRSA and VISA). 

ClyR is the first lysin that demonstrates activity against the dominant dental caries-

causing pathogen as well as the first lysin that kills all four of the bovine mastitis-causing 

pathogens. This study demonstrates the success of the screening method resulting in a 

powerful lysin with potential for treating most streptococcal associated infections. 
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A bacteriophage endolysin that eliminates intracellular streptococci. 
 

Yang Shen, Marilia Barros, Tarek Vennemann, D. Travis Gallagher, Yizhou Yin, Sara B. 

Linden, Ryan D. Heselpoth, Dennis J. Spencer, David M. Donovan, John Moult, Vincent 

A. Fischetti, Frank Heinrich, Mathias Lösche, Daniel C. Nelson. Elife. 2016 Mar; 5. pii: 

e13152.  

 

Abstract 

PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on 

contact. Here, we demonstrate that PlyC is a potent agent for controlling 

intracellular Spy that often underlies refractory infections. We show that 

the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes 

and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model 

membranes establish that PlyCB interacts strongly with phosphatidylserine (PS) whereas 

its interaction with other lipids is weak, suggesting specificity for PS as its cellular 

receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS 

threshold concentration. Crystallography and docking studies identify key residues that 

mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is 

the first report that a native endolysin can translocate epithelial membranes, thus 

substantiating the potential of PlyC as an antimicrobial for Spy in the extra- and 

intracellular milieu and as a scaffold for engineering other functionalities. 
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Enzybiotics: Endolysins and Bacteriocins.  
 

*In Press 

 

Ryan D. Heselpoth, Steven M. Swift, Sara B. Linden, Michael S. Mitchell, Daniel C. 

Nelson. Bacteriophages: Biology, Technology, Therapy. 2016. Springer Publishers. 

Edited by David Harper, Steve Abedon, Ben Burrowes, Malcolm McConville 

 

Abstract 

 

The growing prevalence within community and healthcare settings of antibiotic 

resistant Gram-positive and Gram-negative bacterial pathogens is alarming. Particularly 

concerning are reports of bacteria that are resistant to last-resort antibiotics such as 

carbapenems and vancomycin. Thus, novel concepts are needed to face the serious 

challenge posed by multidrug resistant bacterial infections. A promising alternative 

antimicrobial approach to conventional antibiotics involves the use of bacteriophage-

derived protein(s), generically known as “enzybiotics”. Endolysins, one type of 

enzybiotic, are cell-wall, i.e., peptidoglycan hydrolases that act on the host bacterium late 

in the phage replication cycle. These enzymes hydrolyze critical covalent bonds essential 

for maintaining cell wall structural integrity. Due to the absence of an outer membrane, 

extrinsically applied recombinant endolysins have direct access to the bacterial cell wall 

to lyse susceptible Gram-positive pathogens. Highlighting their therapeutic potential, the 

efficacy of endolysins has been validated in vitro and/or in vivo against a variety of 

Gram-positive pathogens, and in the less than 15 years since their first documented use as 

an antimicrobial in 2001, endolysins are now being commercially developed and 

undergoing clinical trials. Alternatively, phage-like or particulate bacteriocins comprise a 

second class of enzybiotics that can be used therapeutically. These multi-protein 

structures resemble bacteriophage tail-like assemblies and are produced by both Gram-

negative and Gram-positive bacteria. Unlike fully-functional bacteriophages, bacteriocins 

are incapable of replicating, though they nonetheless possess a pseudo-injection 

mechanism that results in loss of bacterial membrane integrity and subsequent bacterial 

death. 
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Anti-biofilm activities of a novel chimeolysin against S. mutans in 

physiological and cariogenic conditions. 
 

*Submitted 

 

Hang Yang, Yongli Bi, Xiaoran Shang, Mengyue Wang, Sara B. Linden, Yunpeng Li, 

Yuhong Li, Daniel C. Nelson, Hongping Wei. 

 

 

Abstract 

 

Streptococcus mutans, a common oral bacterium, often survives as a biofilm on 

the tooth surface and contributes to the development of dental caries. In this study, we 

investigated the efficacy of ClyR, a chimeolysin with an extended streptococcal host-

range, against S. mutans biofilms in physiological and cariogenic conditions. 

Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates 

tested as well as S. mutans biofilms that displayed resistance to penicillin. S. mutans 

biofilms formed on hydroxyapatite discs in physiological sugar conditions and cariogenic 

conditions were reduced ~2 logs and 3 logs after treatment with 100 μg/ml ClyR, 

respectively. In comparison, only 1 log reduction was observed in the chlorhexidine 

(ChX) treated group, and no killing effect was observed in the NaF treated group. A 

mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 

μg/day) reduced the number of colonized S. mutans in the dental plaques significantly 

(p<0.05), without harmful effects on the body weight and the vitality of mice. 

Furthermore, toxicity was not noted at concentrations exceeding those used for these 

studies and ClyR-specific antibodies could not be detected in mice saliva after repeated 

use of ClyR in the oral cavity. Our data collectively demonstrates that ClyR is active 

against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or 

therapeutic agent against dental caries. 
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Abstract 

 

Bovine mastitis is an inflammation of a cow’s mammary gland, usually due to a 

microbial infection originating from contaminated teats. Several bacterial species have 

the ability to cause bovine mastitis, but Streptococcus uberis is responsible for the 

majority of chronic cases. The current treatment of antibiotics is not only ineffective, but 

undesirable, due to concerns about the emergence of antibiotic resistant bacteria and the 

spillage of milk from cows until antibiotic clearance has occurred. As an alternative, we 

propose the use of the bacteriophage endolysin PlyC, which displays antimicrobial 

activity against select streptococcal species. This study investigates the use of PlyC as an 

antimicrobial enzyme against S. uberis. Our results show that PlyC possesses potent lytic 

activity against all strains of S. uberis tested, including 7 clinical isolates. Importantly, 

despite the ability of other endolysins to display activity against S. uberis, none have 

successfully functioned in raw cow’s milk, presumably due to inactivation by native 

proteins and lipids; however, PlyC at a concentration of just 2 times the MIC affects 3 

logs of killing in just 1 hour in raw milk from mastitic cows. We have also through 

fluorescent microscopy that the binding domain of PlyC selectively interacts with S. 

uberis in the presence of raw cow’s milk. Furthermore, the lack of neutralization by 

antibodies specifically targeted against PlyC bolsters the potential of this enzyme as an 

antimicrobial treatment. Significantly, PlyC is non-irritating as observed on rabbit 

epidermis and mucous membrane, and non-toxic as observed on a bovine mammary cell 

line. Taken together, these microbiological, biophysical, and immunological results 

indicate that PlyC has the potential to be used as a novel therapeutic against S. uberis-

associated bovine mastitis.     
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Abstract 

 

The crisis of increasing resistance of pathogenic bacteria to classical antibiotics 

has driven research towards identification of other means to fight infectious disease. One 

particularly attractive option is the use of bacteriophage-encoded peptidoglycan 

hydrolases (endolysins). These enzymes are able to lyse the bacterial cell wall upon direct 

contact when applied externally and lack the drawbacks of typical antimicrobials. 

Endolysins have already shown potential in the areas of food safety, human health, and 

veterinary science. One specific area that could benefit from endolysin application is the 

overwhelming problem of Streptococcus suis infections of pigs. While the economic toll 

on the swine industry can be devastating in the event of an outbreak, it is the zoonotic 

nature of S. suis that is particularly alarming. There are currently no effective approaches 

to eradicate S. suis from pig herds and preventing disease outbreaks has proven extremely 

difficult. Therefore, the overall objective of this proposal is to identify and evaluate novel 

S. suis-specific endolysins for antibacterial activity. 
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Abstract 

 

 As bacteria develop resistance to conventional antibiotics, it is relevant to explore 

alternate therapies to treat intramammary infections. A newly proposed treatment method 

utilizes endolysin PlyC, an enzyme produced by bacteriophages that causes targeted lysis 

of the plasma membrane of Streptococcus uberis. A relatively low concentration (1.0 

μg/mL) of recombinant PlyC (rPlyC) can induce lytic activity, suggesting that a low dose 

may successfully eliminate infection. We evaluated the dose effect of rPlyC on 

cytotoxicity and oxidative response of bovine blood neutrophils. We hypothesized that 

rPlyC would be non-toxic and not alter the inflammatory response of neutrophils in vitro. 

Cells were isolated from plasma obtained from healthy, mid-lactation primiparous dairy 

cows (n=12) and incubated with various concentrations of rPlyC (0, 1, 10, and 50 µg/mL) 

for 0.5 and 2 hours. Following incubation, cytotoxicity was measured by non-radioactive, 

colorimetric assay to quantify lactate dehydrogenase. Oxidative response was measured 

by chemiluminescence assay of reactive oxygen species (ROS) production in response to 

0 and 1.6 µg/mL phorbol 12-myristate-13-acetate (PMA) in addition to rPlyC during 

incubation. Data were analyzed as ANOVA using mixed model procedures in SAS 

(version 9.3). As expected, neutrophil cytotoxicity varied across incubation time with 

greater cell toxicity measured at 2 hours incubation as compared to 0.5 hours (P=0.01; 55 

vs. 45±3%) and is primarily attributed to the short half-life of neutrophils. Oxidative 

response was affected by incubation time (P=0.04) and PMA concentration (P<0.01) 

with the greatest ROS production at 0.5 hour incubation in the presence of 1.6 µg/mL 

PMA. Concentration of rPlyC did not affect oxidative response (P=0.73) nor neutrophil 

cytotoxicity (P=0.41). In summary, varying doses of rPlyC are non-toxic and do not alter 

ROS production in bovine neutrophils. The use of rPlyC as an alternative intramammary 

therapy for Streptococcus uberis mastitis is promising as our data indicate that rPlyC may 

not interfere with immune response during mastitis. 
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