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We propose to study computer network traffic as a dynamical system, with

the intent of determining how predictable the traffic is over short time scales. We

will use passive measurements from high capacity links, so that we may investigate

traffic that consists of many diverse component flows. To study network traffic

as a dynamical system one must first have a concept of what variables compose

the state space. Transmission Control Protocol (TCP) regulates the dynamics of

flows through two primary variables, the round-trip time and congestion window.

These are obvious choices for the state variables, but they are not recorded in

the passive measurements. Our main contributions in this dissertation are two

algorithms that estimate round-trip times and congestion windows, and an auxiliary

algorithm that determines flow orientation. We provide several validation tests for

the algorithms, and use the results of the algorithms to infer the level of congestion

in the measurements we use.
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Chapter 1

Introduction

TCP is the protocol responsible for controlling the transmission rate of the

majority of Internet connections. There are many mathematical models, both de-

terministic and stochastic, that describe how this rate changes. In order to use these

models to predict the rate of real-world network traffic over short time scales, one

must estimate the current state of the network. Considering a model as a dynamical

system, the state estimate provides the initial condition. The key state variables

in most models are the round-trip time and the congestion window, which are the

main rate-controlling variables in TCP.

Analyzing actual network traffic data is difficult because the rate-controlling

variables are not directly recorded and, hence, must be inferred. Therefore, es-

timating the network state is a necessary prerequisite to studying network traffic

dynamics. We present two novel methods for reconstructing TCP state variables

from passive network measurements. We then discuss the predictability of network

flows in the context of dynamical systems and time series analysis.

The dynamics of network traffic have been studied from the theoretical point

of view, resulting in mathematical models of TCP [15, 17, 30]. However, some of

these models are limited by specific assumptions about the nature of TCP and the

underlying network. The algorithms we have developed are quite flexible, and they
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are able to handle a very wide variety of traffic conditions.

Previous studies of the statistics and dynamics of real network traffic have

mainly focused on the burstiness [46, 23, 22], or self-similar properties [27, 39] of ag-

gregate traffic. Studies that attempt to predict properties of individual connections

[16, 43] have focused on coarse-grained characteristics like flow size and average rate.

Our study will be concerned with the dynamical properties of individual flows and

sets of flows.

By considering network traffic as a dynamical system, we can ascertain how

deterministic it is; that is, given the current state of the system, we can determine

the future state. Network traffic is a mixture of deterministic and stochastic com-

ponents. There is no clearly defined boundary between what is deterministic and

what is stochastic, but, in general, we can say that the deterministic components are

large, long-lived flows, and the stochastic components are short-lived and sporadic

flows. Brownlee and Claffy [7] have termed these flows elephants and mice. They

found that the largest flows make up a very significant portion of the aggregate traf-

fic. Therefore, in order to track overall network traffic conditions, it is reasonable

to just track the state of the largest flows.

Our two state estimation algorithms use different yet complementary methods

to approximate congestion windows and round-trip times. The first algorithm clus-

ters packets together into coherent groups that approximate the congestion window,

from which the round-trip time is then estimated. The second algorithm uses an

array of approximations based on the frequency of packet spacing to estimate the

minimum round-trip time, then estimate the congestion window using knowledge of
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the minimum round-trip time.

We use the ns2 network simulator [33] and publicly available packet-level traf-

fic traces from NLANR [37] to validate and test our algorithms. With the NLANR

traffic traces we encounter an interesting side problem of determining flow orien-

tation. Before attempting to predict individual flows we set out to determine the

prevalence of congestion in the flows we study.

In Chapter 2, we discuss the dynamics of TCP, define relevant terms, and

introduce technical details that reappear throughout the paper. In Chapter 3, we

describe the data sets and certain difficulties encountered with them. In Chapter

4, we provide a solution to the side problem of determining flow orientation. In

Chapter 5, we detail two of the main contributions of this paper, the clustering and

frequency algorithms for estimating round-trip times and congestion windows. In

Chapter 6, we present a validation test of our algorithms, study the prevalence of

congestion, and discuss prediction of individual flows.
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Chapter 2

TCP Dynamics

TCP is one protocol in a layered stack of protocols, see Figure 2.1. When

one uses a software application, like FTP, to send data between two computers, the

application layer hands data off to the transport layer. There a protocol, usually

TCP, breaks the data into segments and places a header at the beginning of each

segment. The header contains information that allows the receiver to reconstruct

the data in the proper order. The segment is then handed off to the network layer,

where an IP (Internet Protocol) header is added. The IP header contains address

information that allows routers to forward the data to the receiver. However, IP is

unreliable; that is, a router is not required to pass on data packets if it becomes over-

whelmed by other packets. When this happens a router may simply drop incoming

data packets. At the network layer the data segment is called a packet. Below the

network layer are the link and physical layers where other headers are added and

the data is encoded before transmission.

TCP is the dominant transport level protocol on the Internet. According to

MAWI [29] about 85% of the packets and 93% of the bytes on the Internet are TCP.

In the traces we used, TCP comprises 86% of packets and 92% of bytes. These

percentages can vary, but it is safe to assume that TCP carries the majority of the

traffic on a given network. The main purpose of TCP is to guarantee the reliability
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Figure 2.1: TCP is one layer in a protocol stack. TCP provides reliability and

controls the transmission rate. IP controls routing and end-to-end delivery. Proto-

cols on the data link layer further encode the packet for error correction. Bits are

transferred as pulses of electrons on the physical layer.

of the connection – since IP does not – and ensure that packets are reassembled in

the proper order. The secondary function of TCP is to control the rate at which

data is transferred.

To illustrate the logic of TCP’s reliability and rate control algorithms consider

what we call the “postcard analogy.” If one wanted to send a book to a friend in a

far away country that has an unreliable mail system, then sending the whole book

at once would likely fail due to the unreliable mail system. Instead one could have

an arrangement whereby one would send the first few pages of the book in separate

envelopes and wait for the friend to reply with a postcard for each envelope. Upon

receipt of all expected postcards one would then mail more pages, increasing by

one the number of pages sent each time until an envelope is not delivered. One

can deduce that this is the level at which the unreliable mail system fails, and

accordingly one should decrease the rate at which pages are sent. We now describe
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the specifics of how TCP implements these ideas.

2.1 Reliability

In long-lived flows, such as file transfers, most of the data is going from one

host, the sender, to the other host, the receiver. Reliability is achieved by requiring

the receiver to acknowledge the successful receipt of each data packet. Acknowledg-

ments (ACKs) are 40 bytes and consist of only IP and TCP headers. Data packets

usually are 1500 bytes, which is the maximum transmission unit on most networks.

However, that includes the header length, so packets typically contain only 1460

bytes of data. In Chapter 3 we discuss the header fields and the format of the trace

files.

The TCP header also contains sequence and acknowledgment numbers, which

are unique to each packet in a flow. Every connection starts with a 32-bit sequence

number, chosen essentially at random. After each data packet is sent, the sender

increments the sequence number (mod 232) by the number of data bytes in that

packet. The receiver can deduce when a packet has arrived out of order or a packet

has been dropped by checking for gaps in the sequence numbers. The acknowledg-

ment number is the value of the next sequence number that the receiver expects to

see. For example, if a data packet with sequence number S is dropped, the receiver

will continue to send ACKs with acknowledgment number S. Upon receiving three

duplicate ACKs with the same acknowledgment number, the sender infers that the

data packet with sequence number S was dropped and retransmits it. The sender

6



may also infer that a packet has been dropped if it fails to receive an ACK within

a given time limit, this is known as a timeout.

As a general rule the acknowledgment numbers always form a nondecreas-

ing sequence. The sequence numbers form an increasing sequence except when a

dropped packet is retransmitted. An extremely helpful tool for understanding the

dynamics of TCP is the seq-ack plot, which shows the progression sequence and

acknowledgment numbers over time, see Figure 2.2.

21.4 21.45 21.5 21.55 21.6 21.65 21.7 21.75 21.8 21.85
Time (seconds)

S
eq

/A
ck

 #
 (

by
te

s)

ack
data

Figure 2.2: Seq-ack plot for an ssh flow from July 17, 2003 taken at the MRA

monitor. A packet is dropped just before 21.5 seconds, and the acknowledgment

number starts repeating soon after. The dropped packet is retransmitted at 21.6

seconds and the window is halved. The vertical axis is not labeled, since the actual

values are irrelevant.
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2.2 TCP Connection Rate

The transmission rate of a TCP connection is controlled by a congestion avoid-

ance algorithm, that uses a sliding window known as the congestion window (cwnd).

The sender is constrained to have no more than cwnd unacknowledged data bytes,

not including header length, on the network at one time. This constraint means

that under the usual regime the sender transmits packets in flights that total cwnd

bytes.

Before discussing how cwnd changes, we mention two restrictions on it. Since

most data packets carry 1460 bytes of data, one often finds that cwnd is a multiple

of 1460. Hence the sender can transmit a window of packets without breaking the

data into segments smaller than 1460 bytes. Because of this we may consider the

window to be measured in packets instead of bytes. The second restriction on cwnd

is that it is bounded above be the window advertised by the receiver. We will refer

to this advertised window as the receiver’s buffer to avoid confusion. The receiver

communicates this value to the sender via the TCP header in acknowledgments.

We feel the term buffer is more appropriate since the receiver maintains a buffer of

newly arrived packets. The size of the receiver’s buffer depends on the operating

system, and can change with time if the receiver becomes to busy to process all of

the incoming packets. In this way it acts as a upper bound on cwnd, so that the

receiver is not overwhelmed by data.

The purpose of the sliding window algorithm is to find the right balance be-

tween transmitting data as fast as possible and not overwhelming the network or
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Figure 2.3: Flow rate of the same ssh flow in Figure 2.2. Note that the rate does

not exceed 600 KBps.

the receiver. The network is more likely to be the bottleneck than the receiver.

In fact, the receiver’s buffer is artificially low in many cases. The process begins

with the slow start algorithm, which finds the proper value of cwnd as quickly as

possible. At the start of a connection cwnd is usually set to two packets. The value

of cwnd doubles after each successful transmission of an entire window of packets.

This doubling continues until a packet is dropped or cwnd reaches the value of the

receiver’s buffer. If a packet is dropped it is surmised that the connection has ex-

ceeded the available bandwidth, and the value of cwnd is halved. TCP then enters

the congestion avoidance phase.

The objective of the congestion avoidance (CA) algorithm is to use as much

of the available bandwidth as possible without congesting the network. The CA

algorithm increments the window by one packet after all packets in the previous

window have been acknowledged. The window grows linearly until it reaches the

receiver’s buffer or a packet is dropped. If cwnd reaches the receiver’s buffer size,
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then it is capped at that value. If a packet is dropped and the sender receives three

duplicate ACKs, then cwnd is cut in half, see Figure 2.2. If a packet is dropped and

the sender receives no ACKs at all, then a timeout occurs and cwnd is reset to two

packets. This arithmetic increase, multiplicative decrease (AIMD) algorithm results

in characteristic sawtooth behavior, see Figure 2.3. It is this behavior that we will

locate, quantify and, if possible, predict in real network traffic.

Returning to the postcard analogy, we note that the pages of the books rep-

resent the data segments and the envelopes represent the TCP and IP headers.

Acknowledgments are represented by postcards. One could think of the receiver’s

buffer as the friend’s mailbox and routers as akin to unreliable mail carriers.

2.3 Routers and TCP Modifications

Another important element governing TCP dynamics are routers along the

path of a connection. We define the fixed delay as the time from the departure of

a data packet to the return of its corresponding acknowledgment, in the absence of

cross traffic and queuing at routers. The reason for defining it this way is because

larger packets take longer to transmit and the forward and backward paths of the

connection might differ. The round-trip time (RTT) is defined as the fixed delay

plus any queuing delay incurred; thus, most variation in the RTT is due to queuing.

Routers have various queue management schemes that use different criteria

to drop packets. Droptail is the simplest; it prescribes that all incoming packets

be dropped when the queue is full. Random Early Detection (RED) [14] uses an

10



exponentially weighted average queue and drops packets randomly with a probabil-

ity that is roughly proportional to this weighted average. There are other queue

management schemes, but the exact scheme used will not matter for most of our

analysis. In fact, it is difficult to ascertain what queue management schemes are

used in practice since that information is often considered proprietary.

Routers’ queues play a large role in the dynamics of TCP connections, but

it is difficult to obtain fine-grained traces of routers’ queues. The reason is that

recording the queue length every time it changes would put an undue burden on

the router, taking away resources needed to process incoming packets. This would

decrease the router’s performance, perhaps affecting the flows passing through the

router [18]. This is one reason we prefer passive measurements over active ones.

We note two optional TCP modifications that have practical impacts on our

work. First is the use of delayed acknowledgments as described in RFC 2581 [5].

When using delayed acknowledgments the receiver acknowledges every other data

packet. In practice this results in a sequence of cwnd values that does not increase

by one packet per RTT. Instead, cwnd typically increases by one packet every two

RTTs. The second modification of concern to us is the window scale option described

in RFC 1323 [19]. The receiver’s buffer is normally limited to 64 KB, or about 44

packets, because a 16-bit field in the header is used to represent the bytes available

in the buffer. For flows on very high bandwidth networks or flows with very long

fixed delays this limit on the receiver’s buffer can be quite a hindrance. The window

scale option allows the receiver to increase the value of its advertised window to 1

GB.
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In the usual regime under which TCP operates, in the absence of packet loss,

the sender transmits a window of cwnd bytes once per RTT. Since cwnd is normally

limited to the artificially small value of 64 KB, one often finds that the data packets

are not evenly spaced over a round-trip time interval, but are bunched together

with a pause on the order of a round-trip time until the acknowledgments return.

This shows that the flow is not close to using the available bandwidth. However, if

cross traffic becomes interspersed with the flow, then the spacing between packets

can increase and remain that way even after the cross traffic has subsided. This

illustrates what is referred to as the self-clocking nature of TCP.
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Chapter 3

Passive Monitoring

3.1 Data Sets

We use data sets from the Passive Measurement and Analysis archive at

NLANR [37]. These 90 second traces are taken by monitors on OC3 (155 Mbps),

OC12 (622 Mbps) and OC48(2.4Gbps) links at points around the United States.

The monitors positioned as shown in Figure 3.1. Many other kinds of measure-

ments are taken at the endpoints of a connection, but these traces are taken on

links from university networks to the Abilene Backbone Network [1]. See Table 3.1

for a description of the monitoring points.

We define a connection, or flow, as the exchange of packets involving a unique

combination of source and destination addresses and ports. It is also possible to use

the less restrictive definition of a unique pair of addresses, but we found this to be

confusing because some applications distribute the transfer of data across multiple

Monitor

Link

Internet (Remote)Campus Network (Local)

Routers

Figure 3.1: Schematic network diagram. Hosts on the local side of the network are

likely to be closer to the monitor, both in physical distance and in time.
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Name Link Traces Dates Packets Flows Top 0%

PSC OC48 54 1/05 - 3/05 6185000 88000 45

UFL OC12 90 5/04 - 3/05 7407000 147000 215

FRG OC12 107 1/04 - 3/05 5279000 55000 30

MRA OC12 126 3/03 - 3/05 6667000 201000 75

AMP OC12 87 9/04 - 3/05 6489000 38000 30

COS OC3 160 1/04 - 3/05 1322000 93000 150

MEM OC3 97 1/03 - 3/05 320000 16000 10

ODU OC3 96 1/03 - 3/05 1614000 45000 100

BWY OC3 30 3/03 - 9/04 1583000 105000 25

BUF OC3 21 1/03 - 9/03 1220000 7000 30

TXG OC12 15 3/03 - 1/04 1412000 24000 40

Table 3.1: Monitoring Points: PSC is Pittsburgh Supercomputing Center, UFL is

University of Florida, FRG is Front Range GigaPOP in Colorado, MRA is MERIT at

Michigan State University, AMP is AMPath in Miami, COS is Colorado State, MEM

is University of Memphis, ODU is Old Dominion University, BWY is NYSERNet at

Columbia University BUF is University of Buffalo, TXG is Texas GigaPop at Rice

University Packets and flows are averages per 90 second trace. The last column is

the average number of bulk TCP flows that make up the top 50% of the aggregate

bytes.

14



ports. Splitting the transfer across several connections is one way to overcome the

limit placed on the connection rate by the receiver’s buffer. There are a few unusual

types of TCP flows that appear in the traces due to distributed download and file-

sharing applications that use TCP in creative ways; these flows make up a nontrivial

portion of the aggregate traffic.

As Table 3.1 shows there are many thousands of flows per trace. Most of these

flows are very small, in fact, the median flow size is only a few hundred bytes. We

are only interested in a small subset of the flows, the large “bulk” TCP flows. One

could define a bulk flow as a flow that has an average throughput above a certain

threshold, say, 10 Mbps over a minimum sustained period, say, 10 seconds. However,

we use a different definition that is relative to the total amount of traffic on a link.

We first sort flows based on their total size, and only consider the top 50%, that is,

the minimal subset of flows that compose at least 50% of the total bytes in the trace.

The top 50% may contain both UDP and TCP flows. We define bulk TCP flows

as those in the top 50%. The reason for using this definition is that, in addition to

predicting individual flows, we are concerned with predicting the aggregate traffic

on a link. Although 50% is an arbitrary cutoff, one can think of the top 50% as

mostly deterministic and the bottom 50% as mostly stochastic.

Since the traces are only 90 seconds most of the bulk TCP flows are not

complete flows. The median number of packets for flows in the top 50% varies

appreciably from monitor to monitor. For most of the monitors the median number

of data packets was between 1600 and 6000, the outlier was the FRG monitor, for

which the median was 28000. The lowest of the seven was the COS monitor, its
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relatively small flows can be at least partially attributed to traffic shaping. The

relatively large size of the FRG flows might be due to the prevalence of transfers of

large files of meteorological data. The main application used to transfer this data

is Unidata-LDM [48], which uses port 388, and about 40% of the FRG bulk TCP

flows use port 388.

The monitors themselves consist of optical splitters for each direction of the

link, connected to a fairly recent server with two DAG network cards specially de-

signed by by the WAND group at the University of Waikato in New Zealand [49].

Since the splitters take a fraction of the light from the optical fiber the measure-

ments are completely passive. None of the monitored links use wavelength division

multiplexing (WDM). If they did, then two packets traveling in the same direction

might have the same timestamp.

There is, however, the possibility of traffic shaping on some of the monitored

networks. Since the monitored networks are universities, the traffic comes from a mix

of scientific and recreational applications. Universities may restrict the bandwidth

available to traffic on ports associated with file sharing applications like KaZaA,

BitTorrent and Gnutella. Traffic shaping may be implemented by placing packets

associated with those applications in a separate, lower priority queue. We make no

assumptions about traffic shaping in our analysis.

The monitor records the header of every packet into the trace file. The format

for each record in the trace consists of a timestamp with microsecond precision

along with the IP and TCP headers, see Figure 3.2. The first timestamp field

is 32 bits, because the timestamp is measured in seconds since the Unix epoch,
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Figure 3.2: Header format diagram. Each row is 4 bytes for a total of 44 bytes per

record. Note that the checksum, urgent pointer and options of the TCP header are

not included in the trace record.

00:00:00 UTC January 1, 1970. In order to guarantee privacy, the IP addresses are

renumbered so that the true IP addresses are anonymized, while the new addresses

remain consistent throughout the course of the trace. Other fields of interest in the

headers are the IP version, time to live (TTL), and the flags field of the TCP header.

Almost all traffic on the Internet is IP version 4, but IP version 6 is increasing in

prevalence. The TTL field has an initial value that depends on the operating system,

but it is usually close to a power of two, either 64, 128, or 255 [32]. When a packet

passes through a router, the TTL value is decreased by one. When a router receives

a packet with a TTL of 0, that packet is discarded to prevent packets from getting

stuck in routing loops. The flags field of the TCP header contains six one-bit flags

including the ACK flag to denote an acknowledgment, as well the SYN and FIN

flags, which signal the beginning and end of a connection, respectively.

The traces also contain UDP, ICMP, and other traffic. These other protocols
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can interact unfavorably with TCP; many denial of service attacks flood the victim

host with UDP or ICMP packets. Even though UDP usually composes less than

10 percent of the aggregate traffic, it is possible that percentage could increase in

coming years with the growth of online gaming, streaming video, and new technolo-

gies like Voice over IP (VoIP). Some UDP flows are not aware of congestion, and

continue to send data at a constant rate even when routers are overburdened.

We also note that even though the monitored link might not be the only

gateway in and out of the university network, it is probably safe to assume that for

each connection one host will be inside the university network and the other host

will be outside. It is rare that a connection between two remote hosts would follow

a path that leads into the university network on the monitored link and out of the

network on another link. This is not a key assumption for our purposes, but just

an indication of the nature of the traffic with which we will be dealing.

Both directions of traffic on the link are recorded to the same file without

indicating the direction in which packets were traveling. This poses a problem,

because we would like to separate inbound flows to the university network from

outbound flows. It is possible to do this even though we do not know the real IP

addresses. We have developed novel techniques that use only network trace data, to

deal with this problem. We will discuss these techniques in Chapter 4. We do not

circumvent the privacy given by the anonymization of the IP addresses.

There are various methods of passive and active monitoring, but we chose to

use passive monitoring data despite some of its drawbacks. If one were monitoring

a connection at one of the end hosts, then the problem of estimating the RTT
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and congestion window becomes trivial since they could be directly measured. The

trade-off is that one could only monitor the connections emanating from a single host

and thus would have no information regarding cross traffic. One could conceivably

coordinate many host-based monitors across an entire network to gain the same

information as a single link-based monitor, but that would require synchronization

of timestamps and a central collection point for the individual traces, and this seems

impractical. Interesting alternatives include using a distributed approach [10] or a

peer-to-peer application [35] to collect and share congestion information. By using

the traces from NLANR in which all traffic on a link is measured we gain insight

into how different flows interact on the network.

Active measurement involves sending probe packets into the network to infer

network characteristics. Some examples of active measurement tools are skitter,

scamper and Beluga from CAIDA [8], the IP Measurement Protocol from NLANR

[2], Van Jacobson’s pathchar tool [31], and the more advanced pathrate tool devel-

oped by Dovrolis et al. [38]. The probe packets do not transport any data from

one host to another, and therefore decrease the bandwidth available to applications

that do. If enough probe packets are sent it is possible that they could change the

network characteristics they are being used to measure, resulting in a kind of un-

certainty principle [36]. For these reasons we favor passive monitoring over active

monitoring.
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3.2 Timestamp Errors

There are several different kinds of timestamp errors that occur in the traces,

which we describe in this section. Some errors might be hardware errors associ-

ated with the DAG network cards used in the monitor, while other errors could be

introduced in the post-processing phase that anonymizes the traces. Most of the

monitoring points have some form of timestamp errors. Almost all of the errors can

be discovered and handled rather easily as the trace file is read in linear order.

The first type of error is the completely erroneous timestamp: the timestamps

in the offending records differ from the preceding and following timestamps by thou-

sands of seconds. When this error occurs in the first few packets of the trace file it

can safely be ignored and the rest of the file can be processed as usual. However, if

this error occurs after the first 100 packets or so, then it is likely to be the first in a

long stretch of completely erroneous timestamps, lasting for most of the trace, see

Figure 3.3(a). More than one stretch can appear in a trace file. To detect completely

erroneous timestamps, we check that timestamp n + 1 and timestamp n differ by

less than 90 seconds; if they do not, then we ignore the rest of the trace file, as it is

unlikely to contain much accurate data.

Another type of error is the randomly repeated packet. When this occurs, an

exact copy of the record of a packet is repeated later in the trace file. This can

happen dozens of times in one trace file, and the duplicate packets almost always

occur after the originals, see Figure 3.3(b) and (c). A related error is an entire

sequence of repeated packets, consisting of anywhere from hundreds to millions of
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packets. Typically only one direction of traffic will be repeated, see Figure 3.3(b). A

rarer type of error is the non-interspersed error, wherein packets from both directions

are not interspersed in the trace file for a short time, usually consisting of hundreds

or thousands of packets, see Figure 3.3(d). For a lone repeated packet or a sequence

of repeated packets the solution is the same. If timestamp n is strictly greater than

timestamp n + 1, then we continue to read from the trace file without saving the

records in memory, until we encounter a timestamp that is greater than or equal to

timestamp n. For the non-interspersed error this means we will skip several hundred

packets from one direction of the trace, but this will not have a large impact on our

analysis.

The most difficult error to correct is the time shift error, wherein the times-

tamps from two directions of the link are not synchronized. Timestamps from one

direction are shifted with respect to the other direction; the shift is almost always

exactly one second, see Figure 3.3(e) and (f). This error could be globally corrected

by adding one second to all the timestamps traveling in the appropriate direction,

if we knew the direction that each packet was traveling along the monitored link.

We can infer the flow orientation, as discussed in Chapter 4, but we still can not

be sure of the orientation of every packet. Instead we opt to correct timestamps

on a flow-by-flow basis. We will be able to make the necessary adjustment to the

timestamps by examining the time from a data packet to its corresponding acknowl-

edgment; if that time is approximately negative one second then we subtract one

second from timestamp of the data packets, otherwise we subtract one second from

the acknowledgments.
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Figure 3.3: Observed timestamp errors. (a) After 2 million packets the timestamps

become flawed. (b) The crosses are single repeated packets, there are also two

sequential repeats. (c) The cross off the diagonal is a lone repeat, but the cross on

the diagonal is actually the non-interspersed region in (d). (e,f) Although the same

time period was recorded, the timestamps overhang for the first second (e) and the

last second (f). The trace appears 92 seconds long, but the timestamps are shifted.
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Chapter 4

Flow Orientation

Trace files do not record the direction each packet traveled on the monitored

link. In this chapter, our goal is to determine flow orientation, that is, the direction

each packet was traveling as it passed through the monitoring point. Considering

the topology of the network around the monitoring point, another way of stating

the problem is: Of the two hosts involved in each flow, which is inside the univer-

sity network, and which is outside? This assumes that there is a notion of inside

and outside the university network. The monitors are positioned at the edge of the

university networks on links connecting the networks to the Abilene Backbone Net-

work. It is very unlikely that a flow passing through the monitor would involve two

hosts inside the network or two hosts outside the network. Therefore, the monitor

itself acts as a boundary between hosts inside and outside of the campus network.

We will present two novel algorithms for inferring flow orientation. We call

these methods the bootstrap and overlap algorithms. We will also describe how to

combine the two algorithms for maximum coverage, and discuss possible extensions

and improvements to the algorithms.
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4.1 Bootstrap Algorithm

Consider the graph where the vertices are all hosts (IP addresses) in a given

trace file and two vertices are connected with an edge if there is a flow involving

the hosts in the trace file. We call this the IP connection graph. Depending on the

size of the trace file, this graph may be quite large, with hundreds of thousands of

vertices and edges. The graph will also have many connected components. The goal

of the the bootstrap algorithm is to identify the largest connected component (the

one with the most vertices) of the IP connection graph. It is possible to weight the

edges of the graph by the number of bytes exchanged between hosts, and in this case

the largest component would be the one with the most bytes transferred. In the

process of finding the largest connected component, the bootstrap algorithm also

identifies a bipartite subgraph of the component. A graph is bipartite if its vertices

can be partitioned into two non-empty subsets such that no edges join vertices in

the same subset.

The algorithm is based on the assumption that for each flow one host is in-

side the university network and the other is outside. Suppose host A is inside the

university network and connects to a host B outside. Suppose host B also connects

to a host C, and this flow passes through the monitor. By our assumption it fol-

lows that host C is inside the university network. The bootstrap algorithm uses this

method to assemble a list of hosts labeled as either inside or outside of the university

network.

We must first posit that one host, called a seed host, is either inside or outside
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the university network. We chose the name bootstrap because the algorithm works

from the assumption about the seed host and uses no a priori knowledge of the real

IP addresses. The bootstrap algorithm starts with a list of hosts in the trace, all

of them initially unlabeled. If we posit that the seed host is on the local side of

the monitor (inside the university network), then in the first step of the algorithm

we label it L (local). In the second step we label as R (remote) all of the hosts

connecting to the seed host. We label as L the hosts connecting to those in the

second step, and so on. The algorithm usually takes 5-25 steps to label all the hosts

in the component of the graph containing the seed host. As is shown in Figure

4.1, the bootstrap algorithm essentially makes a breadth-first traversal of the IP

connection graph while alternating labels in order to identify a bipartite subgraph.

The choice of the seed host is critical because the output of the algorithm

is very sensitive to it. We choose the seed host to be the host with the greatest

Host 2

Local Remote

Host 7

Host 6

Host 5

Host 4

Host 3

Host 1 (seed)

Figure 4.1: With the assumption that host 1 is on the local side of the monitor, the

bootstrap algorithm traverses the IP connection graph in a breadth-first manner.

Hosts are labeled local and remote on alternating steps.
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number of connections to distinct hosts; in the graph, this is the node with the

largest degree. There will be many hosts that the algorithm does not label, because

they are in other connected components of the graph. Many of these connected

components have only two nodes, where the hosts connect only to each other.

It could be the case the seed host connects to 1000 different hosts, but those

hosts connect to only the seed host and no other, so the algorithm could not proceed

beyond the second step. Although that is a possibility, we have generally found

that choosing the seed host by degree as described above finds the largest connected

component. If not, then choosing another host with a large degree often works. If

we rank the hosts in terms of the number of distinct connections they make, then,

on average, 8 out of the top 10 will result in the largest connected component when

chosen as the seed host. One problem with initializing the algorithm this way is

that it requires an extra pass through the trace file to first identify the hosts with

the greatest number of distinct connections. The problem of initialization is solved

by combining the bootstrap and overlap algorithms as detailed in Section 4.3.

Suppose we have a situation where, among three hosts, A, B and C, A connects

to B, B connects to C and C connects to A. Also suppose that A and C are local

and B is remote. Given the position of the monitor we would not expect to see

any packets of the flow involving A and C in the trace file, since that would require

packets to leave and reenter the university network. A similar possibility exists when

A and C are outside the university network. To deal with such situations, we keep

a list of host pairs, called an inconsistency list, where the hosts have a connection

between them, but they are labeled as being on the same side of the monitor. Note
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that these inconsistencies can be attributed to several factors, although we can not

be absolutely certain that these factors explain all inconsistencies. Routing errors

and address spoofing are two possibilities. Address spoofing – where a host uses the

IP address of another host in place of it own – is the most likely candidate. Whatever

the cause of inconsistencies, there is a way to correct them. Upon completion of

the bootstrap algorithm, we run the algorithm a second time, this time discounting

flows involving hosts on the inconsistency list, thus forming a bipartite subgraph of

the largest connected component. We do not claim that this is a maximal bipartite

subgraph; for a rigorous approach to finding bipartite subgraphs see Erdös et al.

[12, 13].

Recall that the algorithm must be initialized by choosing a seed host that we

posit to be on the local or remote side of the monitor. If that initial assumption was

incorrect, say we assigned the seed to be on the local side when it was actually on the

remote side, then all the hosts labeled by the algorithm would be labeled incorrectly.

Once we realize the initial imposition was incorrect we can simply reverse all of the

labels, but how do we recognize that the initial assumption was wrong? In general,

more hosts should be labeled as remote than local if the output is correct, but that

is not always guaranteed. A better approach is the use the Time to Live (TTL)

values of the labeled hosts.

The TTL is found in the IP header and prevents packets from getting stuck

in routing loops. At the source host the TTL is set to a value between 1 and

255, depending on the operating system. Each router the packet passes through

decrements the TTL by one. If a router receives a packet with a TTL of zero the
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packet is discarded. Common starting values for the TTL are often powers of two,

usually 32, 64,128, or 255. Therefore, it is appropriate to assume that the TTL of a

packet from a source host inside the university network will be closer to a power of

two than a packet from a source host outside the network, since the packet coming

from outside will likely travel through more routers. Since packets only contain the

TTL for the source address, we need to examine bidirectional flows to exploit TTL

values. For example, a common type of flow is a web download from a Linux server

with a TTL of 64 to a Windows PC with a TTL of 128. If data packets from the

server have a TTL of 61 and acknowledgments from the PC have a TTL of 112 by

the time they reach the monitor, then we may conclude that the server is 3 hops

away from the monitor, and the PC is 16 hops away. In this case, one can infer that

the server is inside the university. By examining a few bidirectional flows in this

way, one can determine if the initial assumption was correct.

Using TTL values has some drawbacks since some hosts might not use the

default TTL, and some operating systems use a starting TTL of 60. There are

many large unidirectional UDP flows, and bidirectional TCP flows in which only

one direction of the flow passes through the monitor. For these flows we will only

know the TTL of the sender and not the receiver. Because of these flows and the

uncertain nature of TTLs, it does not seem feasible to determine flow orientation

from TTLs alone, although using them as a check on the output of the algorithm is

appropriate. We check the results of our algorithms against TTL values in Section

4.4.
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4.2 Overlap Algorithm

We say that two packets in the trace file overlap if one packet arrives at the

monitor before the end of the transmission of the previous packet. Suppose the first

packet in the trace file, call it P1, has a timestamp of t1 and the second packet,

P2, has timestamp t2. To see if the two packets overlap, we need to first calculate

the transmission duration of the first packet as seen by the monitor. We call this

the Nominal Interpacket Time (NIT), because if two packets traveling in the same

direction arrive, back-to-back the NIT is the time from the head of the first packet

to the head of the second packet. The NIT, which we denote by τ , is the size of the

packet divided by the capacity of the link. For example, with a 155 Mbps OC3 link

and a 1500 byte packet the NIT is:

τOC3 =
12000 bits

155 Mbps
= 0.000077 sec = 77 µs.

In general, we say that packets P1 and P2 overlap if the following inequality holds:

t1 + τ > t2. (4.1)

If two packets overlap, then as a consequence they must have necessarily been

traveling in opposite directions on the link so as not to interfere with each other.

Upon discovering overlaps in the trace file, one might ask whether there could be

another possible explanation. In particular, the overlaps could be due to the parallel

transmission of packets on different wavelength channels, as is done in wavelength

division multiplexing (WDM). If this were the case, we would expect many more

overlaps than actually occur. In fact, the links used in the NLANR traces are
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not utilizing WDM and the overlaps are due solely to packets traveling in opposite

directions.

As in the bootstrap algorithm, we initially posit that the seed host is inside

the university network. If we choose this seed host at random, then there is no

assurance that the host’s packets form any overlaps at all. We have found that a

good way to initialize the algorithm is to process the trace file until 100 overlaps

have occurred. Out of these overlaps, we choose the host that appears most often.

We do not know a priori whether this seed host is inside the university network (it

does not matter whether we correctly label the host as such). All the labels can be

reversed after the completion of the algorithm if our initial assumption was wrong.

However, we can make an educated guess about the location of the seed host based

on the TTL, as described in the previous section.

The goal of the overlap algorithm is to label as many hosts as possible as

either local (L) or remote (R). Starting from the beginning of the trace file and

reading sequentially, we compare every two neighboring packets. If they overlap,

then we try to label the four hosts (possibly fewer than 4 distinct hosts) in the two

packets. If one or more hosts out of the four are already labeled, then we can orient

the unlabeled hosts in the group. To illustrate this, call the four hosts involved in

an overlap A, B, C and D, with A as the source address and B as the destination

address in the first packet, and C and D as the source and destination in the second

packet, respectively. If A is labeled L and no other packets are initially labeled,

then the algorithm proceeds in labeling B as R. Since the orientation of the second

packet is the opposite of the first, we label C as R and D as L, see Figure 4.2.
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Figure 4.2: We can determine if two packets overlap from their timestamps, sizes

and the link capacity. If two packets overlap, then they must have been traveling in

opposite directions.

4.2.1 Practical Considerations

There are uncertainties in the timestamps and packet sizes that lead us to make

a slight modification of the overlap algorithm. As noted in the introduction, the

trace file includes a timestamp of the packet arrival that has microsecond precision,

but not necessarily microsecond accuracy. Although the individual timestamps are

likely very accurate, we have found the timestamps for one direction of the link

can fail to be perfectly synchronized with the other direction. Because the monitor

has different clocks for each direction. In the worst cases, the timestamps can be

desynchronized by as much as one second. In these cases, by examining bidirectional

flows, it appears that the timestamps have been corrupted in the trace file. The

overlap algorithm does not work correctly for these traces, although the bootstrap

algorithm does.

As stated above, the NIT for an OC3 link and a 1500 byte packet is 77 µs, while
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for a 40 byte acknowledgment the NIT is 2 µs. For an OC12 link, the corresponding

NITs are 19 µs and 0.5 µs. We need to take into account the fact that the smallest

NITs are on the order of the timestamp precision, and given the many different kinds

of timestamp errors that occur we are uncertain if the timestamp accuracy is the

same as the timestamp precision. Therefore, the algorithm needs to be modified to

avoid using overlaps involving small packets. Since we are sure of the packet size and

the link capacity, but not the timestamp, the modification should be independent

of the packet size and link capacity. To that end, we introduce a minimum overlap

threshold, t∗, that represents how long two packets must overlap before we use them

to determine flow orientation. The overlap condition given in Equation 4.1 now

becomes:

t1 + τ − t∗ > t2 (4.2)

In practice, we choose t∗ to be 10 µs for OC3 and OC12 links, and 2 µs for

OC48 links. This choice is a balance between the need to find as many overlaps as

possible and the need to avoid spurious overlaps. We are not able to detect spurious

overlaps directly, but spurious overlaps will lead to inconsistencies in the way hosts

are labeled, as described in Section 4.1. Increasing t∗ decreases the number of the

inconsistencies, but also decreases the number of the overlaps. The inconsistencies

are handled in the same manner as the bootstrap algorithm.

Before a packet is actually transmitted at the physical layer extra bytes are

added to the packet in the link layer. The overhead in the link layer is due to frame

or cell headers that are added on top of IP and TCP headers. The exact nature of
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these headers are not important for our purposes, but note that in the traces we

use the frames were either Packet-over-SONET (PoS) or ATM-AAL5. These extra

bytes are not accounted for in the calculation of the NIT, and the inclusion of the

extra bytes decreases the bandwidth available to the network layer and increases the

value of the NIT, in effect increasing the potential for more overlaps. For example,

with ATM-AAL5 frames the overhead is approximately 15%, increasing the NIT of

an OC3 link from 77 µs to 89 µs.

Cavanaugh [9] found that most of the protocol overhead was due to ATM-

AAL5. We investigated protocol overhead by computing the instantaneous band-
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Figure 4.3: (a) The instantaneous bandwidth at the COS monitoring point is about

132 Mbps, for an overhead of 15%. ATM-AAL5 frames are used on this OC3 link.

(b) The instantaneous bandwidth at the FRG monitoring point is about 600 Mbps,

for an overhead of 3.5%. PoS frames are used on this OC12 link.
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width for each packet, that is, packet size divided by interpacket time. By computing

a histogram we able to discern the most common value for the instantaneous band-

width, which coincides with the bandwidth available to IP packets at the network

layer of the monitored link, see Figure 4.3. We found that PoS frames are far more

efficient than ATM-AAL5, with an overhead of only 3.5%. By using the instan-

taneous bandwidth to compute the NIT, instead of the total capacity of the link,

we discover more overlaps, and as a consequence the overlap algorithm labels more

hosts.

4.2.2 Algorithm Performance

As the algorithm progresses and the list of labeled hosts grows, we have a

greater likelihood of labeling even more hosts, since with each new overlap there is

a greater probability of having at least one of the four hosts already labeled. Hosts

that are only active at the very beginning of the trace have a lesser likelihood of

being labeled since the list is not as full. This can be addressed by running the

algorithm a second time from the beginning while using the list of labeled hosts

accumulated from the first run as a starting point. In fact, it may be even more

advantageous to process the trace file in reverse chronological order the second time.

The algorithm can be run multiple times until the list saturates and stabilizes.

We find that running the algorithm once is enough. The list of labeled hosts

saturates fairly quickly once the hosts involved in the largest flows are labeled,

since these flows have the most packets and, therefore, the most potential overlaps.
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The key to optimizing the performance of the algorithm is the initialization step

as described above. Choosing the host with the most overlaps among the first 100

overlaps processed allows the number of labeled hosts to grow rapidly.

An interesting point about the performance of the algorithm is that it works

better on larger trace files. Since all traces files are about 90 seconds long, the larger

the trace file (in terms of bytes), the more congested the traffic is. This results in

packets being spaced closer together, and hence more overlaps.

4.3 Combined Algorithm

The result of the overlap algorithm is quite different from the bootstrap al-

gorithm. The final list is not a single connected component of the IP connection

graph. Instead it spans multiple components, but the list does not label every host

in each component it covers. This suggests a way to combine the algorithms for

maximum performance.

By running the overlap algorithm first, we orient flows from different connected

components, thus orienting the components relative to each other. Second, we run

the bootstrap algorithm to fill out each component reached by the overlap algorithm.

Note that the relationship between the algorithms is non-commutative; running the

bootstrap first followed by the overlap would give different results.

The algorithms perform differently on traces from different monitors. Typi-

cally, the bootstrap algorithm performs better on traces from OC12 links, and the

overlap algorithm does better on OC3 links. OC12 links handle traffic from larger
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networks like Merit and Colorado State, and therefore there are more flows and more

distinct hosts in the trace files. This means the bootstrap algorithm has a larger,

more connected IP connection graph with which to work. The overlap algorithm

does not work as well on OC12 traces because we require that packets overlap by

at least 10 µs, therefore packets involved in an overlap must be at least 778 bytes.

In practice, most overlaps are between two 1500 byte packets. We can relax this

requirement by reducing the parameter t∗, but we have found that the combined

algorithm still works well with t∗ = 10µs. Conversely, the overlap algorithm works

better on traces from OC3 links since these links have less capacity and are more

likely to be saturated, leading to more overlaps.

Despite the differences in the performance of the individual algorithms, the

combined algorithm performs well on almost all traces. The most obvious measure of

the success of the algorithms is the number of hosts labeled. An alternative measure

is the total number of bytes transferred by the labeled hosts. This is perhaps a better

measure, since most of the hosts that remain unlabeled are involved in very few flows

and do not transfer many bytes. See Table 4.1 for a summary of the results.

4.4 Validation Tests

We can not absolutely confirm that the results of the combined overlap/bootstrap

algorithm are correct. However, we are confident that the results are highly accurate.

In this section, we describe three methods of validating the combined algorithm,

multiple traces, time to live, and non-interspersed traffic.
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Monitor MRA TXG COS BUF BWY

Overlap 14 (94) 23 (99) 14 (98) 69 (98) 40 (98)

Bootstrap 64 (60) 67 (25) 90 (81) 20 (20) 69 (40)

Combined 90 (99.1) 92 (99.9) 93 (99.9) 93 (98.5) 99 (99.9)

Table 4.1: The first number in each column denotes the percentage of hosts oriented

by the algorithm in that row. The number in parentheses denotes the percentage of

bytes oriented. MRA and TXG are OC12 links, the rest are OC3.

4.4.1 Time To Live

As stated in Section 4.1, it is possible to use TTL values to infer flow orienta-

tion. We choose not to do so because of the drawbacks associated with it. However,

a suitable application of TTL values is to use them as part of a validation test for

the combined algorithm. We consider only bidirectional flows, so that we see both

the sender and receiver TTL. We also require that both the sender and receiver TTL

be greater than 16. We impose this condition since most operating systems start

with a TTL greater than or equal to 32, and therefore, TTL less than or equal to

16 are unusually low. It is possible, but unlikely, for the TTL to change over the

course of a flow, because the route taken by packets may change.

OS Windows Linux OpenBSD* Solaris Cisco AIX

TTL 32 or 128 64 64 64 or 255 60 or 255 60

Table 4.2: These values depend on the version of the operating system see [32]. (*)

FreeBSD and Mac OS X should also have a default initial TTL of 64.
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To determine if the TTL values are consistent with the orientation of a flow as

given by the combined algorithm, we must estimate the most likely initial TTL value

for the sender and receiver. See Table 4.2 for a list of default initial TTL values for

several common operating systems. In light these values, we estimate the initial TTL

as the next power of two greater than the TTL observed at the monitor. Figure 4.4

shows the distribution of observed TTL values across all monitoring points (except

for MRA) for the month of December 2004.

We use the estimate of initial TTL to determine the number of hops from the

monitor to both the sender and receiver. Consider a bidirectional flow for which the

combined algorithm has labeled one host as remote (R) and the other as local (L).

Let T i
R and T i

L be the estimates of the initial TTL values for the remote and local
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Figure 4.4: The distribution of observed TTL values across all monitoring points.

The spike at 241 was caused by a denial of service attack at the AMP monitor on

December 10, 2004.
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hosts, respectively. Also, let T o
R and T o

L be the TTL values observed by the monitor.

Set HR = T i
R − T o

R and HL = T i
L − T o

L. Define Γ and ∆ as:

Γ = HR + HL (4.3)

∆ = HR − HL. (4.4)

Γ is an estimate of the path length from sender to receiver in hops. When the

algorithm has worked correctly in labeling hosts as either remote or local, ∆ should

be greater than zero for the vast majority of hosts, since the remote host will be

further from the monitor in most cases. Figures 4.5 and 4.6 show the distributions

of Γ and ∆ for all monitoring points.
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Figure 4.5: (a) Individual Γ distributions for six monitoring points. (b) The distri-

bution of observed Γ values across all monitoring points. Γ is less than or equal to

30 for 99.5% of flows.

39



−10 0 10 20 30
0

0.05

0.1

0.15

0.2

∆

P
ro

ba
bi

lit
y

amp

cos

frg

mem

odu

ufl

−10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

∆

P
ro

ba
bi

lit
y

(a) (b)

Figure 4.6: (a) Individual ∆ distributions for six monitoring points. (b) The distri-

bution of observed ∆ values across all monitoring points. Only 3% of flows have a

negative value of ∆.

4.4.2 Multiple Traces

The 90 second NLANR traces are taken eight times per day; most of the

monitors begin recording traffic at the same time. This introduces the possibility

that the same flow will be observed at two different monitoring points. For example,

such a flow could involve one host inside the Colorado State network and another

inside the Texas GigaPOP network. To identify flows common to two trace files,

we make summaries of all flows in each trace and check for flows that have the

same source and address ports, similar start times and durations, and very similar

number of packets and bytes transferred. The reason we do not require the number

of packets and bytes to be identical is because we want to allow for the possibility
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that packets might be dropped between the monitors, and the possibility that one

trace starts or ends slightly out of synchronization with the other. Note that IP

addresses will be of no help, since they are renumbered differently in each trace.

Once we have identified the flows common to two trace files, we run the com-

bined overlap/bootstrap algorithm on both traces. If the labels for the common

flows are the same in both traces, then exactly one of the traces is mislabeled. This

is because what is local relative to one monitor is remote to the other. If we check

the TTL values of one trace to ensure it is labeled properly, as we describe in the

previous section, then we can make a table to check the consistency of labels for the

other traces. Table 4.3 shows a case where the results of the algorithm have been

checked for the MRA trace. Boxes marked with “C” mean that the host labels for

the traces in that row and column are consistent, “I” means they are inconsistent.

We may conclude that the labels for the TXG and COS traces are also correct, since

their host labels are compatible with those from the MRA trace. It follows that the

labels in the BWY and BUF traces need to be reversed.

This method of cross checking labels from flows that appear in different traces

at least ensures the consistency of the labels. We can definitively ascertain the

orientation of the flows that pass through two monitoring points. The accuracy of

all other flow orientations can be based upon this.
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MRA TXG BUF BWY COS

MRA -

TXG C -

BUF I I -

BWY I I C -

COS C C I I -

Table 4.3: C denotes that the traces in that row and column are labeled consistently,

I means they are labeled inconsistently. The orientation for the BUF and BWY

traces must be reversed in order for all of the labels to be consistent.

4.4.3 Non-interspersed Traffic

A fortuitous side-effect of the timestamp errors discussed in Section 3.2 is

that occasionally instead of having repeated packets from one direction, the traffic

from the two directions of the link is not interspersed at all in the trace file. This

allows us to definitively ascertain the orientation of every flow. Data from the FRG

monitoring point taken on December 20, 2004 exhibited non-interspersed traffic, see

Figure 4.7.

After eliminating the repeated packets, we break the packets into two sets

corresponding to the two directions of the link. Let set A be packets number 1

to 2266504, and define set B as packets number 2266505 to 4518217. There are

no overlaps within set A or set B, confirming that each set contains unidirectional

traffic. Since there are many more hosts outside the university network than inside

it, we expect there to be more unique addresses on the remote side of the monitor.
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Figure 4.7: This plot shows that packets from the two direction of the link are not

interspersed. There are also 19 repeated packets.

Packets in set A have 22245 unique source addresses and 9590 unique destination

addresses, whereas packets in set B have 6469 unique source addresses and 27347

unique destination addresses. The imbalance of addresses leads us to conclude that

set A contains inbound traffic, and set B contains outbound traffic.

Let Si be the set of unique source addresses in set A, and let Di be the

set of unique destination addresses in set A. Also, let So and Do be the unique

source and destination addresses, respectively, in set B. Let R = Si ∪ Do and

L = So ∪Di. Set R should contain only addresses on the remote side of the monitor

(outside the university network), set L should contain only addresses on the local

side, and the intersection R ∩ L should be empty. However, there is one address in

R ∩ L. All flows involving this address use Protocol Independent Multicast (PIM),

an alternative transport layer protocol to TCP and UDP. Since these flows are
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multicast the address could actually represent many different hosts. Therefore, this

does not contradict our assumptions about the network and the bipartite nature of

the IP connection graph.

To use the combined overlap/bootstrap algorithm on this particular trace we

first had to intersperse the packets by sorting them according to their timestamps.

The results of the combined algorithm of this particular trace were rather atypical,

labeling only 93.8% of the hosts and 95.2% of the bytes. This leads us to believe

that there is something unusual about this trace file that hinders the performance of

the combined algorithm. The monitor started recording traffic from the outbound

direction of the link 91.2 milliseconds before the inbound direction, perhaps leading

to errors in the overlap algorithm. Also, the presence of the single address using

PIM should cause many inconsistencies in the bootstrap algorithm, which do not

occur in other traces.

In spite of the poorer than average performance of the combined algorithm on

this trace, we found that the results largely agree with the sets L and R. Let L′ and

R′ equal the set of hosts labeled as local and remote, respectively, by the combined

algorithm. The number of incorrectly labeled hosts is |R ∩ L′| + |L ∩ R′| = 4895,

leaving only 34759 correctly labeled hosts out of 42276 total hosts. This may seem

like a rather negative result at first, but upon consideration of the size of the flows

of incorrectly labeled hosts, the results are still quite good. The incorrectly labeled

hosts accounted for only 4681100 bytes of traffic, meaning that of bytes labeled by

the combined algorithm, only 0.16% of them were wrongly labeled in this particular

trace.
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In conclusion we note that orienting flows relative to each other is potentially

useful when using real world data to model network traffic. For example, one would

expect that two flows will only affect each other if the flows are oriented in the same

way. In this case, the packets are more likely to pass through the same routers, and

thus, they mutually increase congestion along the shared part of their paths. The

algorithms can be used in conjunction with round-trip time estimates and congestion

sharing algorithms as a way of characterizing network traffic and the overall flow of

data in and out of a local network.

The methods discussed in this chapter could have broader impact. For in-

stance, consider the related problem of detecting flows that share common links.

Katabi et al. [25, 26] discuss a method to detect flows that pass through shared

bottleneck links. Knowledge of flow orientation could also be useful in network to-

mography [42, 47]. If one wanted to use the publicly available traces from NLANR to

test hypotheses about network topology and traffic characteristics, then determining

flow orientation would be an important first step.
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Chapter 5

Measurement of Network State

In this chapter we discuss methods of inferring flow characteristics and deter-

mining network state. The congestion window and round-trip time are the most

important rate-controlling variables. We present two methods of estimating these

variables: the clustering algorithm and the frequency algorithm. Interpacket times

play a key role in these algorithms, and can also be used to infer the amount of

queuing delay experienced by each flow. The round-trip times and congestion win-

dows of all bulk TCP flows may be considered as the state of the network at any

given time. Considered as a whole, these measurements may allow us to detect and

predict congestion.

5.1 Interpacket Time Distribution

The RTT is the time, measured at the sender, between a data packet and

its acknowledgment. However, our vantage point at the monitor can be anywhere

along the path between the sender and receiver, so we will not be able to use this

definition, see Figure 5.1. The interpacket time is defined as the time from the

beginning of one data packet to the beginning of the next data packet in the same

connection. Due to the dynamics of TCP and the nature of networks, interpacket

times vary greatly. In fact, it is common for interpacket times for a single connection
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Figure 5.1: Time line diagram showing the RTT, NIT and the position of the

monitor.

to vary over three or more orders of magnitude. Therefore, we mainly work with

the logarithm of the interpacket time.

To illustrate why interpacket times span several orders of magnitude, consider

two successive 1500 byte packets from the same connection traversing an OC3 link.

If the packets arrive at the router adjacent to the monitored link without any cross

traffic packets intervening, the router will send them out on the link one after the

other. In this case the two packets will have as small an interpacket time as possible

(for 1500 byte packets and an OC3 link). Define this interpacket time to be the

Nominal Interpacket Time (NIT). For an OC3 link the NIT is:

12000 bits/packet

155 Mbps
= 0.077 ms.

At the opposite end of the spectrum, two data packets will have a long interpacket

time if they are in different windows, these data packets can have an interpacket time

that is about one RTT. Common RTTs can be anywhere from a few milliseconds

to a few hundred milliseconds, depending on the distance from the sender to the
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receiver and how much congestion there is in the network.

Katabi et al. [25, 26] noted that a bottleneck link along a connection will

impose a certain structure on the distribution of the interpacket times. This struc-

ture can be used to estimate the NIT. For example, consider a flow that passes

through an uncongested link to a slightly congested OC3 link, whereupon the flow

is then measured. Suppose that most packets from this flow go through the OC3

link back-to-back and thus be spaced by one NIT of the OC3 link. But sometimes

cross traffic will arrive between two packets from the flow. If the cross traffic consists

of, say, one 40 byte packet, then there would be little difference in the interpacket

time. However, if the cross traffic consisted of multiple 1500 byte packets, then the

interpacket time would be that multiple of the NIT. In this situation we would ex-

pect the distribution of interpacket times to have a mode at the NIT and a train of

decreasing spikes at integer multiples of the NIT. Other more complicated scenarios

are possible and are discussed fully in [26]. For our purposes we just need the fact

that the interpacket time distribution will have spikes or spike trains around the

NIT of the congested links in the path.

Now consider a histogram of the logarithm of the interpacket times. For many

flows, the standard operating regime of TCP is to have a flight of cwnd data packets

followed by a pause roughly equal to one RTT before another flight of packets.

Therefore, we should expect the distribution of interpacket times to have its mode at

the NIT of the most congested link along the path and another peak approximately

at the average RTT for the connection. However, such a histogram would be poorly

scaled. The peak at the NIT would dwarf the peak at the RTT since many more
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Figure 5.2: Log-log scaled histogram of interpacket times for a KaZaA file-sharing

flow from Jan. 9, 2003 taken at the BUF monitor. The two peaks to the left are at

the NITs for OC3 and 100 Mbps Ethernet. The peak at about 60 ms is close to the

RTT.

packets will be separated by the NIT than the RTT. To visualize the statistics of

the interpacket times, we plot the logarithm of the probability (or in this case the

number of occurrences, leaving the histogram unnormalized) on the vertical axis,

creating a log-log histogram of interpacket times. An example of such a plot is

shown in Figure 5.2.

If the logarithm interpacket time histogram has the bimodal form as described,

then it is possible to determine a cutoff value between the NIT and the RTT. For

example, in Figure 5.2, one might choose 4 ms. We then group packets into flights;

if two consecutive packets have an interpacket time that is less than the cutoff value,

then they are part of the same flight, otherwise they are in different flights. By com-

puting flight sizes for an entire connection we will have approximately reconstructed

the dynamics of the congestion window, as shown in Figure 5.3. Unfortunately, very
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few TCP flows have an interpacket time distribution with a bimodal structure as

this example. In Section 5.2 we discuss more sophisticated algorithms to estimate

the RTT and cwnd.
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Figure 5.3: Reconstructed flight sizes of the flow in Figure 5.2. The gray background

is added for clarity. The flight sizes are consistent with the dynamics of cwnd. The

gaps around 35 seconds are due to the receiver’s buffer being zero for a short period.

5.1.1 Bandwidth Delay Product

This analysis is predicated upon the common modeling assumption that the

RTT is much larger than the time it takes to transmit a full congestion window’s

worth of packets. See Barakat [6] for an analysis of the dependence between the

RTT and congestion window when this assumption does not hold. Another way to

state this assumption is that the most congested link along the path should have a

NIT that is significantly smaller than the RTT, otherwise it will be impossible to

discriminate between the two. When this assumption holds it is usually due to the
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fact that the receiver’s buffer is limited to 64 KB or less.

One way to measure how efficiently a TCP flow uses available bandwidth

is to compare the receiver’s buffer to bandwidth delay product (BDP) [40]. The

bandwidth delay product is defined as the product of the capacity of the slowest

link along the path and fixed delay in the absence of any queuing. For example, if

100 Mbps Ethernet is the slowest link encountered by a flow that has a delay of 50

ms, then that flow has a BDP of 625000 bytes. This is nearly ten times the 64 KB

limit on the receiver’s buffer. The BDP in this example is not that large; for some

TCP bulk transfers, the BDP can exceed 10 MB. Weigle and Feng [50] found that

most TCP connections have a bandwidth-delay product that is much larger than

the receiver’s buffer size.

It is often recommended that the receiver’s buffer be set to the BDP to achieve

maximum throughput; this has necessitated some clever ways of overcoming the 64

KB limit. One way to achieve this is to split the file into several chunks of equal

size and then simultaneously transfer the chunks over different ports. An interesting

twist on this is that if an exact copy of a file exists on multiple hosts then different

chunks of the file may be transferred in parallel from all hosts at once; the file

sharing application BitTorrent uses this method. The TCP window scale option

defined in RFC 1323 [19], allows the receiver to advertise a window larger than 64

KB, but the sending host will also have to accommodate this change by increasing

its send buffer to twice the size of the receiver’s buffer. Setting the receiver’s buffer

to the BDP does not guarantee that the throughput will ever attain this maximal

level, most of the time cross traffic will limit the available bandwidth. Determining
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the optimal size of TCP buffers in high performance grid computing is known as

dynamic right-sizing [45, 50]. Although the window scale option is used by some of

the monitored flows, it is likely that very few are using dynamic right-sizing.

5.1.2 Cross Traffic, Queuing, and Delayed ACKs

Even though many of the flows we study have a BDP that is much greater

than 64 KB, it is still uncommon to see a flow with an interpacket time distribution

that has a bimodal structure as distinct as Figure 5.2. This is due to cross traffic,

queuing, and delayed ACKs, as well as the sequence of links along the path. These

influences can either diffuse the distribution of interpacket times, or concentrate its

mass around certain characteristic values.

Rather that simply referring to bottleneck links we will instead use the terms

narrow link and tight link [11]. The link with the lowest capacity along a path is

known as the narrow link. Let C be the capacity of a link, and let U(t) be the

fraction of that capacity that is utilized at time t. Then C(1−U(t)) is the available

bandwidth. The tight link is defined as the link along the path with the lowest

available bandwidth. The narrow link and the tight link are not necessarily the

same, but they will coincide for many flows.

The narrow link for bulk TCP flows is usually 10 or 100 Mbps Ethernet, given

the ubiquity of Ethernet in LANs. T3 links (45 Mbps) and fractional T3 links are

also common narrow links, and cable modems (usually 3 Mbps) are increasingly

common as well. Even though the narrow link along the path is usually considered
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Figure 5.4: Interpacket time histogram (a) and seq-ack plot (b) under ideal condi-

tions. In (a) the mode to the left is at 0.12 ms, the NIT of 100 Mbps Ethernet,

and the mode to the right is at 45 ms, just less than the RTT. In (b) note that the

available bandwidth is only about 10% utilized.

as the bottleneck, congestion, queuing, and dropped packets can occur anywhere

along the network path [4]. However, the monitored links are rarely the source of

congestion for the flows we study; they are rarely more than 66% utilized over any

1 millisecond span.

Consider again the example of a flow with a 100 Mbps narrow link and a RTT

of 50 ms, call this flow A. The BDP for this flow is 625000 bytes, so if there was no

cross traffic, then we would expect the available bandwidth to be about one tenth

utilized. Figure 5.4 shows what the histogram of interpacket times and the seq-ack

plot of flow A would look like under these ideal circumstances.

Figure 5.5 shows cross traffic from flows B and C interspersed with flow A at
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Figure 5.5: (a) When only one Ethernet link feeds into an OC3 link there is no

queue and the pacing of packets stays fixed. (b) With traffic from two Ethernet

links there is a queue at the router and the packets are now spaced at multiples of

0.077 ms.

two different points in the network. For the situation shown in Figure 5.5(a), where

there is no queue at the router adjacent to the monitored OC3 link, the spacing

between packets remains the same as it was on the Ethernet link. We illustrate this

in the figure by drawing shorter packets on the OC3 link than on the Ethernet link.

The packets are not actually shorter they just occupy less of the capacity on the

OC3 link; about one third less in this example. The interpacket times on the OC3

remain the same as they were on the Ethernet link, multiples of 0.12 ms. Figure

5.5(b) shows another situation where additional cross traffic from host C creates a

queue at the router. When there is a queue the capacity of the monitored link will

be fully utilized and flow A will have interpacket times that are multiples of the
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OC3 NIT, 0.077 ms.

If flow A experiences a mix of cross traffic, some from B alone, some from

B and C together, then the resulting interpacket time histogram and seq-ack plot

might look like Figure 5.6. This scenario explains the distribution of interpacket

times seen in Figure 5.2, except that the RTT is greater in that case, and there is

additional diffusion around the local modes due to cross traffic packets smaller than

1500 bytes. There are many other possible arrangements of links and cross traffic,

but the point is that queuing not only increases interpacket times, it can decrease

them as well. Also note that queuing need not increase the RTT, especially if the

queuing occurs on a link with higher capacity than the narrow link.
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Figure 5.6: (a) Local modes in the interpacket time distribution are at multiples of

0.12 ms and 0.077 ms. Some interpacket times are now smaller than when there was

no congestion. (b) The flights now last about 10 ms as compared to 5 ms in Figure

5.4(b), but the RTT has not appreciably increased due to queuing.
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Most of the time the forward and backward paths traverse the same sequence

of links, although that is not always the case. Therefore, it is possible for the monitor

to see one direction of the traffic, but not the other. In a sample of 33000 bulk TCP

flows from seven monitoring points taken over 30 days the monitor did not see ACKs

for 20% of the flows. As such, we place more importance on the data packets than

the ACKs when estimating the RTT and congestion window.

There is, however, much useful information in the acknowledgments and the

time between ACKs, which we will refer to, as the interack time, so as to avoid

confusion with the interpacket time. We mainly use interpacket and interack times,

instead of instantaneous bandwidth, because the two quantities are directly compa-

rable, and we are not expressly concerned with estimating the bandwidth of con-

gested links. In the bulk TCP flows we are studying, over 70% of data packets are

between 1420 and 1500 bytes and 94% of ACKs are between 40 and 52 bytes, so

most interpacket and interack time distributions have modes within a certain set of

values corresponding to the NITs of common links.

The capacity of links along a network path can vary greatly, and the inter-

packet time distribution depends heavily on sequence of link capacities. Consider

the following example, for a given flow the path from sender to receiver might first

pass through a 100 Mbps Ethernet link, followed by an OC3 link and several high

capacity backbone links before traversing another OC3 link, and finally a 10 Mbps

Ethernet link. The forward and backward paths might have very different levels of

congestion, and the congestion could be on the local side, remote side, or both sides

of the monitor. This highlights the importance of knowing flow orientation, as the
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monitored link could be either OC3 link listed in the example. Knowledge of the

flow orientation allows us to analyze the path from the sender to the monitor and

the path from the monitor to the receiver.

Continuing with this example, suppose the monitor is on the OC3 link closest

to the sender. Even though the narrow link between the sender and the monitor is

a 100 Mbps Ethernet link, one would still expect the interpacket time distribution

to closely mirror the interack distribution. Specifically, one would expect to see the

mode of both distributions to be at the NIT of 10 Mbps Ethernet, since that is the

tight link overall. This occurs because each ACK frees the sender to transmit one

data packet, and the ACKs should arrive at the sender spaced apart by about the

NIT of 10 Mbps Ethernet. The ACKs traverse many potentially congested links

before they arrive at the sender, and as we have seen this can cause the interack

time to increase or decrease, but the interack time should remain relatively stable

from receiver to sender.

The use of delayed acknowledgments can change the interpacket time distribu-

tion dramatically. In this example, instead of having its mode at the 10 Mbps NIT

the distribution will now have its mode at the 100 Mbps NIT. When using delayed

ACKs the receiver acknowledges every other packet, and the sender transmits two

packets as soon as an ACK is received. In this case, since the sender is close to the

monitoring point, pairs of data packets are likely to arrive at the monitor back-to-

back with an interpacket of the 100 Mbps NIT. Consequently, the interpacket times

will alternate between the 100 Mbps NIT and the 10 Mbps NIT.

We have found delayed acknowledgments to be very common. While acknowl-
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edging every other packet is the most common implementation, there are others

where every third, fourth or fifth packet is acknowledged. Another common imple-

mentation acknowledges two out of every three packets. In a sample of 22000 bulk

TCP transfers with at least 100 ACKs, 80% of the flows had an ACK to data packet

ratio of 0.75 or less, indicating delayed ACKs. Only about 10% had an ACK to data

packet ratio greater than 0.9.

Consider the following two flows that exhibit much of the same network path

characteristics in the example described above. The first flow is a HTTP transfer

from the COS monitor taken May 18, 2004. The second flow is connection on port

1450 from the FRG monitor taken May 19, 2004. Figure 5.7 shows the interpacket

and interack time histograms, and Figure 5.8 shows a seq-ack plot from each flow.

In both flows the narrow link between the sender and the monitor is 100 Mbps

Ethernet and 10 Mbps Ethernet between the monitor and receiver, and both flows

use delayed ACKs. The COS flow has a RTT of about 270 ms, whereas the FRG

flow has a RTT of about 45 ms.

The distributions in Figure 5.7 look different, despite have similar underlying

path characteristics, because the monitor is closer to the receiver in the COS flow,

whereas the monitor is closer to the sender in FRG flow. The interack time distri-

butions are partially obscured by the overlying interpacket time distributions, but

this shows that the right half of the distributions match as one would expect due to

the self-clocking nature of TCP. In Figure 5.7(a) the mode of the interack times is

slightly greater than 2 ms, which is about twice the NIT of 10 Mbps Ethernet. This

is due to delayed ACKs; since the monitor is closer to the receiver, we are more likely
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Figure 5.7: Interpacket and interack time histograms for a COS flow (a) and a FRG

flow (b).

to see the ACKs spaced as the receiver initially sent them. In contrast, the FRG

interack time distribution in Figure 5.7(b) is very diffuse, since the ACKs traverse

a wide variety of congested links that compress or expand their spacing before they

are measured.

The modes of the interpacket time distributions are both equal to the NIT

of 100 Mbps Ethernet, 0.12 ms. The COS flow exhibits local modes at multiples

of that NIT, but no interpacket times less than 0.12 ms, whereas the distribution

for the FRG flow is symmetrically diffused in small region around 0.12 ms. This

implies that most of the congestion between the sender and the COS monitor occurs

on the 100 Mbps Ethernet link, while the congestion between the sender and the

FRG monitor is partially due to faster links. The oscillations in the FRG interpacket

time histogram around 1 ms have period 0.24 ms, which is twice the 100 Mpbs NIT.
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Figure 5.8: Seq-ack plots for the COS flow (a) and the FRG flow (b).

This is due to other flows on the Ethernet link between the sender and the monitor

sending pairs of packets back-to-back, because of delayed ACKs. If the monitoring

point for the FRG flow was closer to the receiver, then these oscillations might be

damped, as is the case in the COS flow.

The position of the hosts in relation to the monitors is made clear by the seq-

ack plots in Figure 5.8. Soon after a data packet from the COS flow is recorded at

the monitor its corresponding ACK is recorded, indicating that the receiver is closer

to the monitor. From this perspective the pacing of the data packets determines

the pacing of the ACKs. The opposite is true of the FRG flow. Here the ACKs

arrive at the monitor well after their corresponding data packets and the pacing of

the ACKs determines the pacing of the next flight of packets.

In this section, we have described properties of interpacket times and interack
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times. We must consider cross traffic, queuing, and delayed ACKs when inferring

flow properties from the interpacket time distribution. In the next two sections, we

use these properties to estimate the RTT and congestion window.

5.2 RTT and Congestion Window Estimation

RTT estimation and cwnd estimation are equivalent problems. One can esti-

mate the RTT first and then estimate the sequence of congestion windows, or one

can estimate the sequence of congestion windows first and then estimate the RTT.

If one chooses to estimate the RTT first, then cwnd can be estimated by grouping

packets into flights that are about one RTT in duration. We use flight and window

somewhat interchangeably, since a window of packets are transmitted in a flight. If

one estimates the sequence of cwnd values first, then the time from the beginning

of one window of packets to the next is approximately one RTT. The first algorithm

we developed, called the clustering algorithm, is a cwnd -first algorithm. Our second

algorithm, called the frequency algorithm, is a RTT-first algorithm.

There are a variety of simple techniques to estimate the RTT, perhaps the

simplest of which is to use the time from the SYN to the SYN/ACK during the

three-way handshake at the set-up of the TCP connection. Another simple method

is to use the time between the first two flights during slow start [21]. These are

not very reliable methods since the RTT will change throughout the course of a

flow, and these measurements are based on the beginning of the connections. We

cannot use these techniques since most of the bulk TCP flows we are interested in
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will already be in progress once the trace is started and continue after the trace

stopped. Therefore, we will not see the connection set up with the initial SYN and

slow start phase.

The alternate approach of grouping packet together is used by Zhang et al.

[51], who assume that the number of packets per flight should follow certain patterns.

They start with a pool of exponentially spaced candidate RTT values, which they use

to partition the packets into groups. The best candidate RTT is the one that results

in a sequence of groups that best fits standard TCP window behavior. Jaiswal et al.

[20] use a finite state machine that “replicates” the TCP sender’s state. The state

of the machine is updated based on observed ACKs and depends on TCP flavor.

The algorithms we describe require only one direction of a flow and assume very

little about the underlying traffic. Our methods have the flexibility to deal with any

flavor of TCP, varying RTTs, and nonstandard TCP connections.

5.3 The Clustering Algorithm

For many large flows there is not always a clear distinction between the NIT

and the RTT, hence the interpacket time histogram looks like Figure 5.9 rather than

Figure 5.2. In this case the only characteristic time scale that is discernible is the

NIT. Even though this seems like a setback we can use it to our advantage. Our

clustering strategy is to identify long stretches of packets with interpacket times

that are approximately equal to the NIT. The time between these stretches will

give an estimate of the RTT. The subtlety of the algorithm is determining what
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constitutes a “long stretch of packets,” and what is meant by “approximately equal

to the NIT”.

To address the latter issue, note that distribution around the NIT has some

width due to cross traffic. There can even be two dominant NIT values corresponding

to links with different capacities as in Figure 5.2. If we simply take the NIT to be

the mode of the distribution and look for stretches of packets with interpacket times

less than or equal to that NIT, we would overlook many potential flights in which

there is an interpacket time slightly larger than our chosen NIT. To ensure that we

do not undershoot the range of NIT values, we need to develop a simple way of

bounding that range from above.

The structure of the interpacket time distribution around the NIT will nor-

mally consist of equally spaced local modes. Thus, one might choose an integer
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Figure 5.9: Log-log scaled histogram of interpacket times for the same ssh flow in

Figures 2.2 and 2.3. The single peak is at the NIT of 10 Mbps Ethernet, but there

is no clear peak corresponding to the RTT. The dotted line is at the mean of the

distribution and the dashed line is at the mean plus one standard deviation (NUB).
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multiple of the mode as an upper bound for the NIT, but this has the disadvantage

of introducing a parameter into the algorithm, namely, which integer multiple of the

mode to choose. For almost all flows the mean of the distribution will be slightly

greater than the mode, since the region around the mode makes up a large portion

of the mass of the distribution. To take into account that there may be more than

one dominant NIT value, we add one standard deviation of the logarithm of the

interpacket times to the mean to yield a parameterless upper bound on the range

of NIT values. This is, in some sense, an arbitrary value, but for the majority of

distributions it is a value midway between the largest NIT and the smallest RTT.

We will refer to this value, the mean plus one standard deviation of the logarithm

of the interpacket times, as the NIT upper bound, or NUB, see Figure 5.9.

Once we have computed the NUB, we group packets into clusters with inter-

packet times less than the NUB. Clusters can be as small as two packets, and they

can be very large if the flow saturates the available bandwidth on the tight link.

This brings us to the second subtlety of the algorithm, determining what constitutes

a large cluster of packets. We will refer to a cluster that is deemed to be the appro-

priate size as a valid cluster; valid clusters should be on the order of cwnd. Since

cwnd changes due to drops, and the packets in one flight can be dispersed over time

by queuing, we need to have a flexible concept of what comprises a valid cluster.

To achieve this flexibility, we use a weighted moving average of cluster sizes.

Let R be the number of bytes that is considered to compose a valid cluster. We

initially set R equal the median of the receiver’s buffer. Let M be the maximum of

the receiver’s buffer. If the monitor sees only the data packet and not the ACKs,
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then we initially set both R and M to 65536 bytes. Let C be the current cluster

size. We update R as follows:

R =





R if C > M

0.02R + 0.98C, if 0.8R < C < M

0.98R + 0.02C, if C < 0.8R

(5.1)

In the second case we that the current cluster is big enough to be considered valid,

yet not too big, i.e., 0.8R < C < M . The weighted average used to update R heavily

favors the current cluster, C. In the third case, when the cluster is not big enough

to be considered valid, we still want to factor it in to the update of R, but not very

heavily, so we reverse the weights in the average.

In Figure 5.10, the first two flights have very tight interpacket spacing, but that

spacing becomes relaxed in the last four flights. The algorithm did not identify a

valid cluster in the group of packets at 62.1 seconds, because there were interpacket

times greater than the NUB within that group. The last two valid clusters are
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Figure 5.10: Seq-ack plot for the same ssh flow in Figures 2.2, 2.3, and 5.9. This

plot shows that valid clusters are spaced about one RTT apart.
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smaller than the first two; this is due to the weighted averaging of clusters. The

trade-off for the flexibility of this algorithm is that when a drop occurs, it will take a

few round-trip times for the weighted average to adjust to the smaller cluster sizes.

Once valid clusters have been determined, we estimate the RTT by taking

the time from the beginning of one valid cluster to the beginning of the next. To

determine the appropriate range of RTTs we create a histogram of the logarithm of

the prospective RTTs, as in Figure 5.11. We use 75 equally spaced (on a log-scale)

bins between 1 ms and 1000 ms. Any prospective RTTs less than 1 ms or greater

than 1000 ms are not included. Outliers are eliminated by finding the number

of occurrences of the mode (160 in Figure 5.11) and taking the full width of the

distribution at half of this value. This width is indicated in Figure 5.11 by the two

vertical dashed lines. We take this interval to be the range of allowable RTT values.
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Figure 5.11: Histogram of prospective RTT values for the ssh flow. The best estimate

of the RTT is 110 ms.
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Figure 5.12: Reconstructed flight sizes for the ssh flow (compare to Figure 2.3).

Note that flight sizes are reduced by both timeouts and triple duplicate ACKs. The

64 KB receiver’s buffer limits the floght size around 60 seconds and 90 seconds.

5.3.1 Congestion Window Estimation

Having calculated a satisfactory range of RTTs, we can more carefully group

packets together to estimate the congestion window. Zhang et al. [51] have a

similar method, but it relies heavily on the choice of parameters. To begin, we

find the start of first discernible flight in the flow by taking the first packet after

the largest interpacket time in the first 50 packets. Suppose this first packet has

a timestamp of S, and suppose the range of round-trip times is [T1, T2]. Consider

the collection of packets with timestamps between [S + T1, S + T2], along with the

last packet with a timestamp less than S +T1. Within this collection, we again find

the first packet after the largest interpacket gap; this packet will be the start of the

next flight. Figure 5.12 shows that the flight sizes are consistent with the dynamics

of the congestion window. We found that these algorithms give reliable results for

more than 70% of the most active TCP flows from the NLANR data.
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Figure 5.13: Histogram of prospective RTT values for a flow on port 3560 from

March 4, 2004 taken at the MRA monitor. The best estimate of the RTT is 25 ms,

but the range of RTTs, [T1, T2], is 20 to 65 ms.

5.3.2 Real-time State Estimation

These algorithms result in a global estimate of the RTT, since all of the data

are used to make the estimate. To estimate the RTT in real-time, the algorithm

would have to be modified to make use of the data in a sequential manner. In fact,

this will make the algorithm more flexible, as it allows for variations in RTT over

the course of the flow. Not all flows will have small variance in their prospective

RTT distribution as in Figure 5.11. As an example of a flow with large variations in

its RTT, consider Figure 5.13. For this flow, the range of possible RTTs estimated

by the algorithm is 20 to 65 ms. If we were to use such a large RTT range, then

we would risk greatly overestimating cwnd. Thus it is important to modify the

algorithm so that it works in real-time and results in a range that accurately tracks

the RTT as it changes.

Instead of a fixed NUB value, we will use a moving average that changes with
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the interpacket spacing. Let Li be the sequence of the logarithm of the interpacket

times and let Ai and Si be the moving average and moving standard deviation of

Li. We compute the moving NUB value as follows:

Ai+1 = (1 − w)Ai + wLi (5.2)

Si+1 =
√

(1 − w)S2
i + w(Ai − Li)2 (5.3)

NUBi+1 = Ai+1 + Si+1 (5.4)

The weight, w, should be small enough to give the moving averages a long memory;

we choose w = 0.01.

The clusters and prospective RTTs are computed as before, except using

NUBi+1 instead of a fixed value. To track fluctuations in the RTT, we use a his-

togram of the 30 most recent prospective RTTs. The mode of this histogram will

be the best estimate of the RTT at a given time. It is computationally easy to

keep track of the mode, M ; however, it is not feasible to compute the width of the

histogram, [T1, T2], as we did before. A simple method for calculating the range

of round-trip times is to set [T1, T2] = [0.7M, 1.3M ]. This range is narrow enough

so that it will encompass only one window of packets. With this RTT range we

compute flight sizes as before, then we can reestimate the RTT as the time from the

beginning of one flight to the beginning of the next. This final estimate of the RTT

is shown in Figure 5.14 along with the moving mode, M .
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Figure 5.14: Estimate RTT time series for the flow from Figure 5.13. Both the

moving mode and the final RTT estimates are plotted.

5.4 Frequency Algorithm

The frequency algorithm uses the self-clocking nature of TCP to determine

the RTT by observing the approximate period of interpacket times. We use four

separate methods to estimate the RTT, then combine the results to estimate a lower

bound on the RTT. This estimate should be the greatest lower bound, that is, it

should closely approximate the fixed delay. Once the RTT has been estimated we

can reconstruct the sequence of flights.

The four components of the frequency algorithm are a sliding window estimate,

the autocorrelation function of the interpacket times, the data-to-ACK-to-data time,

and the Lomb periodogram. The four components are combined in a nonlinear way

that first identifies the most likely group of RTT values, then finds the smallest of

those values to generate a lower bound.

The frequency algorithm was designed to work in real-time. To generate the

initial estimate of the RTT, we restrict the algorithm to use only the first 256
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interpacket times (257 packets). This is because the Lomb periodogram is based

on the FFT and it is most efficient on sequences that are powers of two in length.

Also, 257 packets will comprise at least five complete flights, whereas 128 packets

would only guarantee two complete flights in most cases. We want to use enough

data to obtain a good initial estimate of the RTT, but not so much that it becomes

computationally expensive.

5.4.1 Sliding Window Upper Bound

The purpose of the sliding window estimate is to obtain an upper bound on

the fixed delay. Let M be the maximum receiver’s buffer. We let M = 65536 if

ACKs are not seen by the monitor. Let ti be the timestamps of the data packets,

and let bi be the number of data bytes in the payload of the packets. For each i, let

ni be the smallest integer such that

ni∑

k=i

bk > M.

As i increases, packets i to ni will form a sliding window of at least M bytes.

The sender is required to send no more than M bytes per RTT. Therefore, packet i

and packet ni must necessarily be in different flights, and hence they are separated

by at least one RTT. Let i∗ be the largest integer such that ni∗ < 257, and for each

i ≤ i∗ let

ui = tni
− ti (5.5)

be a RTT upper bound.

If the sender is transmitting less than M bytes per RTT, then ui might grossly
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overestimate the RTT. On the other hand, if the congestion window is equal to

M , then it is possible for ui to actually underestimate the RTT. To see how this is

possible consider the following simplified scenario where the receiver’s buffer is two

packets and delayed ACKs are used. Suppose the RTT is 5 ms and the three links

from sender to receiver are 100 Mbps, 155 Mbps and 10 Mbps, with the monitor on

the middle link. This situation is illustrated by a seq-ack plot in Figure 5.15. In the

absence of cross traffic the interpacket time between two packets in the same flight

will be 0.12 ms at the monitor, and 1.2 ms at the receiver. Suppose that in one flight

the first packet experiences no queuing, but when the second packet arrives at the

OC3 link, it is queued after nine other 1500 byte packets from a faster link. This will

cause the interpacket time between the first and second packet to be about 0.7 ms.

Since the narrow link is 10 Mbps the receiver will still detect the same interpacket
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Figure 5.15: This seq-ack plot shows how the sliding window method can underes-

timate the RTT. Packets 1, 3 and 4 are not queued, but packet 2 is queued for 0.7

ms before passing through the monitor. The time between packets 2 and 4 is 4.4

ms, which is less than the true RTT of 5 ms.
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time of 1.2 ms, as if there had been no queuing. The delayed ACK would be sent

after the receipt of the second packet, and the sender would receive that ACK at

the same time it would have had there been no queuing. Now suppose that the next

flight experiences no queuing at all. Then the time between the second packets in

each flight will be about 4.4 ms, which underestimates the RTT.

Even though it is unlikely to underestimate the RTT in such a way, we intend

for ui to be a strict upper bound on the fixed delay. We would like to obtain the

least upper bound for the RTT from the values ui. Therefore, instead of taking

mini≤i∗ ui as the least upper bound we use the more conservative estimate of the

fifth percentile of ui. Since i∗ will be greater than 200 in most cases, Choosing the

fifth percentile equates to ignoring the lowest ten values. More formally, let ûi be

the values ui sorted in increasing order. The conservative estimate of the least upper

bound is

u = û⌊i∗/20⌋. (5.6)

5.4.2 Autocorrelation Function

One technique to estimate the period of an almost periodic time series is

the autocorrelation function. Let xi, i = 1 . . . n be a normalized time series. The

autocorrelation function is defined as

A(k) =
1

n − k

n−k∑

i=1

xixi+k (5.7)

for lags k = 0 . . . n−1. Note that the autocorrelation function as defined is unbiased,

that is, the normalizing coefficient 1

n−k
takes into account the lag. If a time series
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has an approximate period of T , then one would expect A(k) to have its largest

local maximum at k = T .

We expect the interpacket times to be approximately periodic because of

the self-clocking nature of TCP. Unfortunately, the interpacket times are unevenly

spaced in time. One could ignore this fact and treat the them as if they were an

evenly spaced time series. But if the flow is in the linear increase phase of con-

gestion avoidance or a drop occurs, then the sequence of interpacket times will be

misaligned.

We handle these issues by linearly interpolating the logarithm of the inter-

packet times on an evenly spaced grid. We choose the step size of the grid, s, to be

1 ms. This is a trade-off between accuracy and computational workload. If we made

the step size smaller, then we would more closely approximate interpacket times less

than 1 ms, but then the grid would be larger and computing A(k) would take longer.

Figure 5.16 shows the sequence of interpacket times, their linear interpolation, and

A(k) for the interpolated sequence.

One can choose the step size adaptively according to the average of the in-

terpacket time or the average of their logarithms. This introduces more complexity

than is necessary, but we describe one adaptive step size here. Let m1 be the mean

of the first 256 interpacket times and let m2 be the mean of their logarithms. We
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Figure 5.16: (a) The first 256 interpacket times of an FTP flow from the UFL mon-

itor taken November 30, 2004. The smaller dots are the linearly interpolated values

on a grid with step size 1 ms. (b) The autocorrelation function of the interpolated

data. Based on this plot one can estimate the RTT to be about 32 ms.

define m3 = 1

2

√
m1m2 and choose the step size, s, to be:

s =





10ms if 10ms < m3

m3 if 1ms < m3 < 10ms

1ms if m3 < 1ms

(5.8)

This choice of s reduces the amount of computation for flows with longer interpacket

times, but does not significantly alter the final estimate of the RTT. Depending on

the RTT and congestion window the first 257 packets generally require between 0.1

and 4 seconds to transmit. Therefore, the grid size, g = (t257 − t1)/s, can be up to

4000 points. If the sender has no data to transmit for a brief period or a timeout

75



occurs, then the grid can potentially be larger than 4000 points.

This raises the question of what the best method is to compute the autocor-

relation function. Let {xi}g
i=1

be the time series of linearly interpolated interpacket

times, and assume that the time series is normalized to have mean zero and standard

deviation one. The Wiener-Khinchin theorem [] states that the Fourier transform

of the autocorrelation function equals the power spectrum. Therefore, we can ap-

proximate the autocorrelation function by

Ã(k) = F−1
(
|F (x)|2

)
(5.9)

where F is the Fourier operator. Ã(k) is only an estimate of the autocorrelation

function because of the finite length of the time series.

Computing A(k) using the definition requires O(g2) operations, but by using

the FFT to compute the transforms in Equation 5.9 we reduce the complexity to

O(g log2 g). However, we do not need to compute A(k) for all lags k. Since we have

already computed u, the upper bound for the RTT, we only need to calculate A(k)

up to k = ⌈u/s⌉. Now using the definition will only require O(gu/s) operations.

Suppose that we use both methods to compute the autocorrelation function for a

flow with a RTT of 40 ms and receiver’s buffer equal to 12 packets. The grid size

will be g = 40 · 256/12 ≈ 850. Using the definition will take about 40g ≈ 34000

operations. When using the FFT it is best to have g equal to power of two, so x is

padded with zeros to make g exactly 1024. The order constant for the split-radix

FFT algorithm is 2, and there are 2 transforms in Equation 5.9. Therefore, using

Equation 5.9 instead of the definition requires about 4g log2 g ≈ 40000 operations.
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One can see that using the FFT is not necessarily faster due to the relatively small

size of g. One could use this type of analysis for each flow to determine whether it

is more efficient to use the definition or Equation 5.9. However, we always use the

definition since it is a better estimate of the autocorrelation function and it is not a

significant computational burden at this point.

We approximate the RTT by q = k∗s, where k∗ is the lag at which A(k)

attains its greatest local maximum on the interval (0, ⌈u/s⌉). A(k) can fail to have

its greatest local maximum at the value that corresponds to the true RTT. This

can happen in two basic ways. First, A(k) could be greater at the value that

corresponds to twice the RTT; we can encounter this if u greatly overestimates

the RTT. Secondly, there can be a spurious local maximum close to k = 0, which

corresponds to a fairly large interpacket time that is repeated at even intervals.

By filtering A(k) we have a better chance of finding the correct local maximum.

To correct for q being too small we use a simple low-pass filter by applying to A(k)

a moving average of the last β values. To correct for q being too large we multiply

A(k) by a linear envelope that equals 1 at k = 0, and α at k = ⌈u/s⌉. After

originally calculating the unbiased autocorrelation function, multiplying by a linear

envelope reintroduces bias, but is does so on the time scale of the RTT rather than

the time scale of the grid. In practice we use two filtered versions of A(k), along

with the A(k) itself. Let A1(k) = A(k). Let A2(k) be a filtered version of A with

β = 4 and α = 3/4. Let A3(k) be a filtered version of A with β = 8 and α = 1/2.
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From the three versions of Aj(k), we obtain three estimates of the RTT,

qj = k∗
j s, j = 1, 2, 3. (5.10)

If Aj(k) has no local maximum on the interval (0, ⌈u/s⌉), then qj = 0. In general,

these estimates should be decreasing order, q1 > q2 > q3.

5.4.3 Data-to-ACK-to-Data

The sliding window algorithm produces an upper bound, u, on the fixed delay.

To obtain a lower bound we estimate the time between data packets that occupy

the the same relative positions in two successive flights of packets. This method

assumes ACKs, so this method will not work if the monitor does not see the ACKs

for a particular flow (this happens for about 20% of flows. This method also assumes

the sender is closer to monitor. If this assumption does not hold, and the sender

is on the remote side of the monitor, then this method may result in an estimate

that is spuriously low. Since we intend for this method to produce a lower bound,

spuriously low values are not a fatal flaw.

We now describe the data-to-ACK-to-data method. Suppose we have a flow

that meets the requirements laid out above, and suppose the data packets have

timestamps ti and sequence numbers si and the ACKs have timestamps taj and

acknowledgment numbers aj . For data packet i find the next corresponding ACK,

that is, the first ACK such that taj > ti and aj > si. Call the index of this ACK j′.

Now find the first data packet that ACK j′ liberates, that is, the data packet with

index mi such that tmi
> taj′ and smi

> aj′. As in the sliding window algorithm,
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let i∗ be the largest integer such that mi∗ ≤ 257. Our overall estimate of the RTT

lower bound is defined as

ℓ = min
i≤i∗

(tmi
− ti). (5.11)

Figure 5.17 illustrates this method with two examples, one where the sender is closer

the monitor, and another where the receiver is closer to the monitor.
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Figure 5.17: The seq-ack plots in (a) and (b) are for two flows from the same UFL

trace. In (a) the monitor is closer to the sender, in (b) it is closer to the receiver.

By following each pair of arrows in (a) we find a valid RTT estimate. In (b) the first

pair of arrows gives a good estimate, but the result of the second pair is too small,

because the ACKs start arriving at the monitor before the end of the flight of data

packets.
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5.4.4 Lomb Periodogram

The Lomb periodogram [41] is a method for the spectral analysis of unevenly

spaced data, such as interpacket times. We could instead use the FFT on linearly

interpolated data, but the Lomb periodogram is more naturally suited to analyze

data in which the sampling is highly irregular. If there are long stretches without

data, as there would be after a timeout or when a sender has no data to transmit,

then the FFT can exhibit erroneously large power at low frequencies. This further

supports our choice of not using the FFT to estimate the autocorrelation function

in Section 5.4.2. Figure 5.18 shows a comparison of the Lomb periodogram versus

the FFT after interpolation.
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Figure 5.18: The Lomb periodogram and FFT have the same fundamental frequency

of about 16, corresponding to a RTT of 65 ms. The periodogram picks up the

harmonics, while the FFT leaks power to lower frequencies and decays rapidly. In

flows with RTT greater than 100 ms this can cause the fundemental frequency to be

distorted or obscured. This plot is based on data from the flow in Figure 5.17(b).
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Suppose we are given data xi measured at times ti, i = 1 . . . n and suppose the

data have mean x̄ and standard deviation σx. The Lomb periodogram is a measure

of spectral power at angular frequency ω = 2πf defined by:

L(ω) =
1

2σ2
x

[
(
∑

i(xi − x̄) cos ω(ti − τ))2

∑
i cos2 ω(ti − τ)

+
(
∑

i(xi − x̄) sin ω(ti − τ))2

∑
i sin

2 ω(ti − τ)

]
(5.12)

In this Equation τ causes L(ω) to be invariant under any shift of the measurement

times, which is a key property it shares with the Fourier transform. The value of τ

depends on ω as follows:

tan(2ωτ) =

∑n
i=1

sin 2ωti∑n
i=1

cos 2ωti
. (5.13)

Lomb [28] showed that for each fixed ω, Equation 5.12 is equivalent to solving the

least squares problem where the data are fit to the model

y(t) = a cos(ωt) + b sin(ωt).

This makes clear the difference between this method and the FFT on interpolated

data. The FFT weights each time interval equally, whereas the Lomb periodogram

weights each data point equally.

The algorithm we use to compute the Lomb periodogram makes indirect use

of the FFT and requires O(n log n) operations. Since we are dealing with such a

small data set it is not computationally expensive to use the definition directly. In

fact, one can maintain an estimate of L(ω) as new packets arrive by assuming that

τ is fixed and keeping track of the four summations in Equation 5.12.

Let ω∗ be the angular frequency that maximizes L(ω) on a suitable grid over

the interval Ω, where Ω = [2π/u, 2π/ℓ] if both u and ℓ are greater than 5 ms, and
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u > ℓ, otherwise let Ω = [2π/1.0, 2π/0.005]. See [41] for information on how to

compute the grid. We then define an estimate of the RTT by

θ =
2π

ω∗
. (5.14)

One might ask if a peak in L(ω) is truly significant. In this case the null

hypothesis is that data xi are independent samples from a Gaussian distribution.

Scargle [44] showed that if the null hypothesis is true, then for each fixed ω, L(ω)

follows an exponentially distribution with mean 1. If we compute the Lomb peri-

odogram for m independent frequencies, ω1 . . . ωm, then the probability that none of

the powers L(ω1) . . . L(ωm) are greater than z is (1− exp−z)m. The null hypothesis

will result in at least one power greater than z with probability

pz = 1 − ((1 − exp−z)m. (5.15)

One can view pz as a significance level of a peak of size z in the Lomb periodogram.

In practice we would like to use the significance level to ascertain when it

is appropriate to incorporate θ into the overall estimate of the RTT. However the

significance level comes with a caveat: it is only valid if the data is not clumped.

By clumped we mean there are several data points close to each other with nearly

equal spacing, with large spaces at regular intervals separating the clumps. This ac-

curately describes the interpacket times. Clumping effectively decreases the number

of independent frequencies, so the value pz should be viewed as lower bound for the

true significance of any peak. For instance, we might claim that only peaks with

pz < 0.2 should count toward the overall RTT estimate, but a value of pz equal to

0.2 might correspond to a true significance level much closer to 1. Therefore, we
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always use θ, but we combine it with the other RTT estimates in such a way that a

spurious value of θ is unlikely to affect the overall estimate of the RTT.

5.4.5 RTT Lower Bound

We have defined a set of six RTT estimates, u, q1, q2, q3, ℓ and θ; call this set

S. We now describe a way to combine the unreliable estimates in S into one reliable

RTT estimate, r
˜
. We say informally that two estimates agree if they are within 10%

of each other. The basic idea is to find the smallest value in S that agrees with at

least one other estimate.

We set 5 ms as the minimum feasible RTT; any estimate less than this value

is discounted. If u is less than 5 ms, then it is inferred that the flow must have been

using window scaling. Since the TCP options are not included in the trace format

this is the only way to infer the presence of window scaling. After determining

r
˜

based on the other five estimates we attempt to deduce the multiple used for

window scaling by increasing M , the maximum receiver’s buffer, by a factor of two

and reevaluating u until it agrees with r
˜
.

The meaning of agree is formalized by defining a relation ∼=, such that a ∼= b

if 0.9 < a/b < 1.1 or 0.9 < b/a < 1.1 or |a − b| < 3 ms. Let S ′ = {s ∈ S|s > 5ms}.

As an intermediate step toward defining r
˜

we define r′ as:

r′ = min{s ∈ S ′ | ∃t ∈ S ′, t ∼= s}. (5.16)

If none of the elements of S ′ agree, then r′ will be undefined. In such a case let

r′ = ℓ if the sender is on the local side of the monitor as determined by the over-
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lap/bootstrap algorithm, otherwise let r′ = u. Finally, we define r
˜
, the estimated

lower bound of the RTT, as

r
˜

= 0.95r′. (5.17)

The reason for multiplying by 0.95 is that r′ can potentially equal u, which is an

upper bound for the fixed delay.

It is also possible for the RTT to be elevated well above the fixed delay for

the entirety of the first 257 packets. If the congestion later subsides, then the initial

estimate of r
˜

will no longer be valid. It is fairly simple to continue evaluation of u and

ℓ in real time as new packets arrive. It is also possible to update the autocorrelation

function and the Lomb periodogram if one uses their definitions instead of FFT

approximations. We only estimate r
˜

based on the first 257 packets and do not

attempt to keep track of a real time estimate as conditions change.

5.4.6 Congestion Window Estimation

The method of congestion window estimation in the frequency algorithm is

similar to that of the clustering algorithm. The main difference is that we now have

a better estimate of minimum RTT, and place no restriction on the upper limit of

the RTT. The basic idea of the current cwnd estimation scheme is as follows: given

a past history of window sizes w1 . . . wk−1 and the first packet in the kth window,

increment wk by the number of data bytes in each packet that arrives until one

minimum RTT has elapsed, and then continue incrementing wk until it is greater

than wk−1 or it equals M , the maximum receiver’s buffer.
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As in the clustering algorithm, we start with the first packet after the largest

interpacket time among the first 50 packets. Assume that the congestion window is

initially equal to the receiver’s buffer and let w0 = M be a placeholder that allows

us to compare w1 to w0. This assumption is necessary since most of the flows are

already in progress once the trace starts, thus, we normally do not see the slow start

phase.

Two timers are needed for this algorithm, one limits the allowable time between

packets in the same flight, and the other is the expected time between flights. The

first timer, c1, is set at 0.75r. If two packets are separated by more than c1 seconds,

it is assumed a new window has begun and the second of the two packets is the

initial packet in the new window. Let b̄ be the median number of data bytes per

packet, and let p = 1− b̄/M . If the sender is transmitting M bytes per RTT and the

bandwidth delay product is much greater than M , then we expect flow to have M/b̄

packets per RTT, which leads to M/b̄ − 1 small interpacket times followed by one

large interpacket time. Thus, we define the second timer, c2, as the pth percentile

of the interpacket times. In practice we handle cases where almost all interpacket

times are the same by constraining c2 to the interval [0.05r, 0.5r], clipping it to the

endpoints if it is outside them.

As before, ti is the timestamp, si is the sequence number, and bi is the number

of data bytes of the ith packet. Define the ith interpacket time as δi = ti − ti−1.

Suppose the current (kth) window has wk bytes. Suppose that i is the index of the

first packet in current window, and current packet had index j ≥ i. We increment

the window size, wk → wk + bj , if and only if the following is true about conditions
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A-E listed below: condition A is satisfied, at least one of conditions B-D is met, and

condition E is not satisfied:

• A - Receive Window: wk + bj ≤ M

• B - Congestion Avoidance: wk < wk−1 + b̄

• C - Slow Start: wk < 2wk−1 < M and δi < c2

• D - Two Packet Increase: wk < wk−1 + 2b̄ < M and δi < c2

• E - Early Break: δj > c1 or (tj − ti > r and δj > c2)

If condition A is false, or conditions B-D all fail, or condition E is true, then packet

j is deemed to be part of the next flight, and we set wk+1 = bj . Note that this

algorithm takes care to determine flight boundaries, that is, the first and last packet

in each flight. There are simpler ways to obtain a crude estimate of the congestion

window, if that is all one cared about, but the flight boundaries are necessary to

compute per-flight statistics that are related to congestion.

A few of the inequalities in conditions A-E require further elucidation. The

inequality δi < c2 means that flights k and k − 1 were closer than expected, which

is a sign of congestion. The inclusion of δi < c2 in conditions C and D ensures those

conditions are only satisfied when there is some indication of congestion. Condition

D allows cwnd to increase by two packets per RTT; this is mainly due to delayed

ACKs and changes in the receiver’s buffer. For some flows, conditions C and D

will be true most of the time, and without condition E this would cause wk to

increase unduly. The first inequality in condition E allows the loop to terminate
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when tj < ti + r, that is, before one minimum RTT has elapsed. This allows for

realignment of flights to more natural boundaries, but can lead to spuriously small

cwnd or RTT values that will need to be filtered out in post-processing. The second

and third inequalities in condition E allow the loop to terminate once the minimum

RTT has elapsed, even if conditions A-D still hold.

We feel that the above rules apply to most bulk TCP flows without modifi-

cation. However, this method can be improved by utilizing ACKs. Doing so will

require knowledge of flow orientation. In cases where the monitor is closer to the

sender, one may use the data-to-ACK-to-data method, described in section 5.4.3,

to predict the first packet in flight k + 1 given the first packet in flight k. If the

monitor is closer to the receiver, then the first packet in a flight is often preceded

by an ACK with acknowledgment number equal to the sequence number of that

packet. This rule of thumb is not always necessary, due to delayed ACKs, and it is

far from sufficient. Although the congestion window algorithm might be improved

by using ACKs, the difficulties in doing so currently outweigh the possible benefits.
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Chapter 6

Validation and Prediction

In this chapter, we show that the clustering and frequency algorithms described

in the previous chapter are robust and accurate for data produced with the ns2

network simulator. We then present results of applying the clustering and frequency

algorithms to a large collection of NLANR trace data. Finally, we discuss the

predictability of network traffic using nonlinear time series analysis.

6.1 Validating The Clustering and Frequency Algorithms

The ns2 network simulator [33] is a widely-used tool to design and test net-

works and network protocols. We create a simulation to validate the clustering and

frequency algorithms. Although this simulation is highly simplified, it was designed

to reflect the key features of the university networks from which the trace data origi-

nated. We used two network configurations; in configuration S, the monitoring point

is positioned closer to the senders, in configuration R, it is closer to the receivers.

Figure 6.1 shows the network diagram of configuration S; configuration R is

similar, except the positions of the senders and receivers are reversed, as are the

cross traffic sources and sinks. We chose a 3 Mbps link with a one-way delay of 75

ms, as link 6 − 8 does, because it is easier to visualize congestion this way. A more

realistic scenario is to replace link 6− 8 with a 155 Mbps link with a one-way delay
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Figure 6.1: This network diagram illustrates configuration S. The pair of numbers

on each link are the link capacity in Mbps and the one way delay in milliseconds.

For example, the fixed delay for sender receiver pair (4,18) is 26 ms.

of 75 and combine links 8−12 and 8−13 into a single 3 Mbps bottleneck link. This

modification fits the paradigm of a high capacity backbone and a low capacity edge

link, but it would not drastically change the RTT or other statistics of the flow.

We studied four main flows between sender-receiver pairs (1,12), (2,14), (3,16),

and (4,18). We will refer to these as flows 1, 2, 3 and 4. Each flow is a bulk

FTP transfer with the receiver’s buffer set to 22 packets for flows 1 and 2, and 44

packets for flows 3 and 4. The transfers were 90 seconds in duration, so that the

amount of traffic generated would be similar to that of real flows. Cross traffic was

also generated. All TCP flows used TCP Reno and delayed acknowledgments. All
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Figure 6.2: Interpacket time histograms for flow 2 of simulation S2 (a), and flow 3

of simulation R2 (b). They are qualitatively similar to interpacket time histograms

we have seen for real data.

routers used the RED queue management scheme with a maximum queue size of

45 packets. Limiting the queue to this low, potentially unrealistic value keeps the

round-trip times from from varying more than one order of magnitude. We note

that none of the queues ever reached more than 40 packets. The similarity between

the ns2 generated traffic and the real traffic is borne out by the close correspondence

of the interpacket time distributions, as is shown in Figure 6.2.

For each network configuration, two simulations were performed with different

cross traffic characteristics. In simulation 1, cross traffic does not travel across the

monitored link. For example, in configuration S simulation 1 (S1), cross traffic flows

between source host 7 and sink hosts 13, 15, 17, and 19. In simulation 2, cross traffic

travels on both the tight link and the monitored link. This makes it possible for
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R1 R2 S1 S2

Senders 12,14,16,18 12,14,16,18 1,2,3,4 1,2,3,4

Receivers 1,2,3,4 1,2,3,4 12,14,16,18 12,14,16,18

Source(s) 13,15,17,19 13,15,17,19 7 0

Sink(s) 7 0 13,15,17,19 13,15,17,19

Table 6.1: Each column summarizes the flow orientations for the simulation at the

top of the column. For example, in simulation R2 flow 3 has host 16 as sender and

host 3 as receiver. Note that the host numbering remains fixed in Figure 6.1, but

the role of each host can be either sender or receiver.

drops to occur before or after the monitoring point. Table 6.1 summarizes the flow

orientation for each simulation.

The cross traffic is a mix of TCP and constant bit rate UDP flows, as well as

exponential on-off (EOO) flows. An EOO flow is essentially a UDP flow that sends

bursts of traffic where the duration of the burst is a random variable sampled from

an exponential distribution with mean λon, and the idle time between bursts is also

exponentially distributed with mean λoff. In all simulations we let λon = λoff = 0.5

seconds. Simultaneous low bandwidth EOO flows were used to generate random

oscillations in the cross traffic. It is also easier to work with dozens of EOO flows

than hundreds or thousands of transient TCP flows. All packets were 1500 bytes,

except for the UDP traffic, which we made smaller to prevent interpacket times from

being integer multiples of each other. We made UDP packets 640 bytes long, since

that is a common packet size associated with Real Time Streaming Protocol (RTSP),
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which uses UDP. The amount of cross traffic was identical in all four simulations,

the only difference was the source and destination hosts, as detailed in Table 6.1.

The characteristics of the cross traffic are summarized in Table 6.2.

We tested the clustering and frequency algorithms on the four main flows.

We expect the algorithms to perform better on simulations using configuration S,

since the perspective of the monitor is closer to that of the sender. The simulator

records the true value of the following variables: congestion window, RTT, RED

drop probability, instantaneous and average queue length at each router, and the

timestamps of data packets and ACKs when they leave or enter (depending on the

network configuration) the queue for link 5 − 6 at host 5.

13 15 17 19

Traffic type Rate Flows Rate Flows Rate Flows Rate Flows

UDP 0.1 1 0.25 1 2.0 1 5.0 1

EOO 0.05 6 0.125 8 1.0 12 2.5 16

TCP 22 3 22 4 44 6 44 8

Table 6.2: The numbers at the top of each column refer to the cross traffic source

(configuration R), or sink (configuration S). The numbers in the flows columns are

the number of concurrent flows of that type. The rate columns for the UDP and

EOO rows are the constant rates (in Mbps) at which the flow(s) send. In the TCP

row, 22 and 44 denote the size of the receiver’s buffer.
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6.1.1 Clustering Algorithm Validation

We tested the real-time version of the clustering algorithm described in Sec-

tion 5.3.2, not the version that uses all data at once. The real-time version is more

appropriate for the simulated flows, since their round-trip times can vary apprecia-

bly. The real-time clustering algorithm requires an initialization period that is on

the order of 30 times the RTT. Therefore, we will be unable to compare the RTT

and cwnd estimates during the slow start phase.

We are not able to directly compare RTT estimates to the true values, since

they are recorded at different times. The simulator records the true RTT, but during

drop events it occasionally skips times when there should be a value recorded. For

these reasons, we linearly interpolate the real and estimated RTT values on a grid

with a step size equal to the fixed delay of the flow. This will allow us to compare

interpolated values directly, but there are still problems with this approach. We

determine an estimate of the RTT for a flight of packets when the first packet in the

next flight arrives at the monitor, while the simulator determines the RTT when

the ACK that liberated that packet arrives at the sender. If the monitor is closer

to the receiver, as it is in configuration R, then the times at which the real and

estimated RTT are recorded are likely to be shifted. Another problem is that the

simulator measures the RTT with millisecond precision, whereas we estimate it with

microsecond precision. Thus, we are not likely to approximate the true RTT to an

accuracy greater than 0.25 ms. Despite these problems the estimated RTT tracks

the qualitative behavior of the true RTT, as is evident in Figure 6.3.
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Figure 6.3: The RTT for flow 3 of simulation R2 is shown in (a), and flow 1 of

simulation S1 is shown in (b). In (a) one can see the true RTT is confined to integer

values in the simulator. Most importantly, the estimate tracks the true RTT as it

increases, this is clear in (b).

Let r̃i be the ith interpolated RTT estimate, let rT
i be the interpolated true

RTT, and let Ei = r̃i − rT
i . There is no statistically significant bias in the RTT

estimates, that is, Ei is equally likely to be greater than or less than 0. There

is some bias for individual flows, but there is no systematic bias across all flows.

There are occasionally very large deviations between the approximate RTT and the

true RTT; the maximum absolute error, maxi |Ei|, can be greater than the RTT

itself. The mean absolute error tends to be skewed upward by these larger errors.

Therefore, the median absolute error is a better measure of the accuracy of the

algorithm. Table 6.3 summarizes the errors for all simulated flows. The median
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R1 R2 S1 S2

Flow med mean med mean med mean med mean

1 4.8 13.3 9.9 39.9 1.1 8.8 2.9 10.0

2 1.2 2.7 1.1 3.5 0.4 1.4 0.5 2.0

3 0.5 1.4 0.4 1.0 0.4 1.3 0.4 0.7

4 0.3 0.9 0.3 0.7 0.3 0.7 0.4 0.8

Table 6.3: The first number in each box in the median absolute error, med |Ei|, of

the RTT estimate, and the second number is the mean absolute error, mean |Ei|.

All entries are in milliseconds.

absolute error of 9.9 ms for flow 1 in simulation R2 was by far the largest, but it is

still only a 5% relative error.

Due to the way in which the sender updates the congestion window the true

value of cwnd recorded by the simulator is not necessarily an integer. However, our

cwnd estimate is given by integer number of packets. This is, in a sense, the opposite

of the problem with the true RTTs, they were measured with low precision, whereas

cwnd is measured with an artificial precision that is higher than our estimate. We

fix this by replacing the nonintegral true congestion windows by the floor of their

values. With the congestion window we again encounter the problem of not being

able to directly compare the estimates to the true values. This is fixed the same

way as before, by interpolating on a grid.

The errors between the real and approximated congestion windows are similar

to that of the RTT errors with one important difference: the cwnd estimates are
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biased toward underestimating the true cwnd. The greatest median absolute error

is 1.0 packets; this is again for flow 1 of configuration R2. The mean absolute error

in this case was 3.0 packets. The median and mean errors for all other flows were

between 0.4 and 1.1 packets, which correspond to relative errors of about 3%.

The estimates are biased because the true value is greater than the estimate

about 80% of the time. The bias is caused by delayed ACKs, which prevent the

flight sizes from being equal to cwnd. With both of our cwnd estimation methods

we are in fact estimating the number of packets per flight and, in reality, this is a
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Figure 6.4: This plot is again for flow 3 of simulation R2. In (a) one sees that the

estimate closely shadows cwnd. Zooming in on the area around 18.6 seconds we get

plot (b), which shows how our estimate, the number of packets per flight oscillates

as it increases. The oscillations follow a pattern that is determined by the even-odd

parity of cwnd, but we are more concerned with tracking the flight boundaries.
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lower bound on the true value of the congestion window. Overall, the number of

packets per flight tracks the dynamics of cwnd very well, but at a small scale the

flight sizes oscillate instead of monotonically increasing as cwnd does; this oscillation

is illustrated in Figure 6.4.

The results of the real-time clustering algorithm are quite encouraging for

simulator data. There are inherent difficulties and biases, but the algorithm still

performs well. With simple nonlinear filtering the results should be even better.

A median filter with a symmetric window of 3 samples is appropriate for the RTT

estimate. As for the cwnd estimates a good choice is a max filter with a window

of the current and two previous samples, but this filter should not be applied for 3

samples after a drop is detected.

6.1.2 Frequency Algorithm Validation

The first test of the frequency algorithm was to validate its method of esti-

mating the RTT lower bound. We broke each flow into segments of 257 packets

and computed the estimate of the RTT (r
˜
) for each segment. The reason for test-

ing this way is that at the start of real traffic traces most of the flows are already

in progress, and may be in any stage of the congestion avoidance algorithm. The

resulting estimate from each segment is compared to the minimum true RTT over

the same segment. We consider the algorithm successful for a given segment if the

estimate was less than the minimum true RTT, but within 15% of that value. Figure

6.5 shows the estimate and the minimum true round-trip times for all segments in
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Figure 6.5: The interval [0,90] was broken into 53 segments of 257 packets each.

The lower curve is the RTT estimate, the upper curve is the minimum true RTT on

each interval, and the dashed line is the fixed delay, which we are trying to estimate

without exceeding. This plot is for flow 2 of simulation R2.

one flow. This particular flow was successful on 52 out of 53 segments for a success

rate of 98%. Four out of sixteen simulated flows had a success rate of 100%. The

median success rate was more than 98%, but the algorithm did perform better on

network configuration S, where the median success rate was over 99%, whereas the

rate was 95% for configuration R. For the purposes of estimating cwnd it is best for

r
˜

to be a slight underestimate, but it is not necessary since the congestion window

estimation algorithm is designed to handle situations where the true RTT is less

than the estimated value.

Upon obtaining an estimate of the RTT lower bound we proceed to estimate

the sequence of flights using the method outlined in Section 5.4.6. The sequence of

round-trip times are then estimated as the time from the start of one flight to the

98



start of the next flight. The results are nearly identical to the clustering algorithm,

although the frequency algorithm performed better on flow 1 and worse on flow 2.

All of the issues raised in the previous section still hold for the frequency algorithm

including the bias of the cwnd estimate. The fact that the results of two very

different algorithms agree so closely is validation in itself.

Our conclusion is that both algorithms work well on simulator data. But in

practice we have found the frequency algorithm to be marginally more robust. The

frequency algorithm also has an edge because it has a shorter initialization phase,

and it requires a fixed number of packets.

6.2 RTT and Congestion Window Statistics

In this section, we study statistics related to round-trip times and congestion

windows to determine how often congestion is present in the NLANR data. We also

discuss factors affecting the rate of TCP connections and gauge their prevalence in

real traffic.

The receiver’s buffer can change throughout the course of a flow. This is a

major concern in understanding the dynamics of the congestion window, since the

receiver’s buffer limits the window size. If the receiver is busy processing other data

and cannot accept as much data from the sender, then the receiver may decrease

the value of its buffer. The buffer may be set to 0 when the receiver can not accept

any data at all. This usually has the effect of suddenly decreasing the transmission

rate for a short period of time. This may resemble a decrease in the window size
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due to a timeout, but the mechanism causing this decrease has nothing to do with

network congestion.

We computed the maximum, median and minimum of the receiver’s buffer

from a sample of nearly 14000 bulk TCP flows from seven monitoring points in

the month of December 2004. Let xi, di, and ni represent the maximum, median,

and minimum receiver’s buffer in bytes, respectively. For many flows the receiver’s

buffer is fixed, so that xi = di = ni, but any change can alter the transmission rate.

If the median is less than the maximum, then the buffer changes often enough to

potentially impact the transmission rate. We have found that xi > di for 11% of

flows, but a more significant difference of one packet, xi − di ≥ 1460, occurs only

7% of the time. Additionally, ni = 0 for 16% of the flows. Nearly 70% have xi > ni,

meaning that the receiver’s buffer changes at least once during the flow. Of course,

many of these changes will not affect the rate at all.

Window scaling is another factor for the congestion window. We estimate that

nearly 4% of the flows we studied used window scaling. Most of these flows were

from the FRG and UFL monitors, where they accounted for up to 12% and 8%

of the flows, respectively. We also attempted to recover the factor by which the

windows were scaled. The most common scaling factor was 4, but most flows using

window scaling had a receiver buffer of about 6 KB, resulting in a scaled window

of only 24 KB, which could have been represented without window scaling. The

largest scaled window we encountered was about 250 KB.

Figure 6.6 shows the distribution of RTT lower bound estimates from the

frequency algorithm for the same sample of flows used above. It is perhaps slightly
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Figure 6.6: The main mode of the RTT distribution is at 45 ms, RTTs in this range

correspond to flows that remain in North America. The secondary mode at 150 ms

corresponds to flows that travel over transoceanic links.

misleading to accumulate all the monitoring points since they are geographically

diverse, and geography plays a large role in determining RTT. Consider the three

monitoring points that collect the most data, UFL at the University of Florida, FRG

in Colorado, and MRA at Michigan State University. The most common RTT for

these monitors are 33 at UFL, 50 at FRG, and 66 at MRA.

Because Figure 6.6 shows only the minimum RTT, we investigate how much

the RTT changes over time. Aikat et al. [3] have studied the variability of RTTs.

Depending on the amount of congestion, the RTT could fluctuate around its mean,

with deviation above and below being equally likely, in which case the standard

deviation is a better measure of variation. It could instead fluctuate around the

fixed delay, with only positive deviations, making the median deviation from r
˜

a

better choice. We tested both deviations. Outliers were eliminated by discarding
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samples greater than four times the median. Even then, the standard deviation was

strongly influenced by outliers. When the estimated lower bound, r
˜
, is considerably

less than the true fixed delay, it is often an integer fraction of the fixed delay, hence

the deviation from r
˜

can result in an integer greater than one. Let r̃i be the round-

trip times estimated by the frequency algorithm, let r̄ be their median, and define

ρ =
median(|r̃i − r̄|)

r̄
. (6.1)

This deviation avoids the problems with the standard deviation and the deviation

relative to r
˜
. Figure 6.7 shows the distribution of ρ for 4000 bulk TCP flows from

the UFL monitor. All remaining plots in this section use this data set.

Another measure of congestion for a given flow is how often the rate is below

its maximum. Assuming the RTT is approximately constant, the rate is entirely
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Figure 6.7: Distribution of observed RTT variation. The definition of ρ eliminates

much of the noise that would result from using the RTT lower bound estimate in

place of r̄ in Equation 6.1.
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determined by the congestion window. The maximum rate is achieved when cwnd

equals the receiver’s buffer. Let w̃i be the congestion window estimates from the

frequency algorithm, let w̄ be their median, and define

κ =
w̄

M
(6.2)

where M is the maximum receiver’s buffer. This quantity will always be in the

interval [0, 1], and it is close to 1 when the estimated window is nearly equal to

M for most of the flow’s duration. Figure 6.8 shows the distribution of κ. Recall

that w̃i actually estimates the size of a flight, which underestimates cwnd. So if we

plotted a histogram of the median value of cwnd over M , then the plot would look

similar to Figure 6.8, but more of the mass would be shifted toward 1.

Since w̃i is slightly biased, it is better to use the congestion window estimate
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Figure 6.8: κ = 1 means that the cwnd estimate is equal to M at least 50% of the

time, implying that the sender is often transmitting near the maximum rate, with

few dropped packets.
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Figure 6.9: This plot shows that even though cwnd is often close to the receiver’s

buffer, most flows can not maintain sending at the maximum achieved rate.

divided by the RTT estimate. If, at a given time, the RTT estimate is less than

the true RTT, then the cwnd estimate will also be less than the true value, and the

errors will cancel each other to some degree. Let z = maxi(w̃i/r̃i), and define

ν =
〈z − w̃i/r̃i〉

z
. (6.3)

Figure 6.9 shows the distribution of ν.

6.3 Predicting TCP

We would like to use time series analysis and mathematical models to predict

TCP flows over short time scales. This requires us to think of network traffic as a

dynamical system. We could consider every flow on a network as part of the system,

but for our purposes we will only consider the flows on one link. The rates of these

flows will be the main elements of the dynamical system, and they will be coupled,
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albeit weakly, by routers that the flows share.

We assume the state variables are the congestion window and round-trip time.

There are obviously many other quantities that could be included, like router queue

size, TCP timers and parameters, but the congestion window and round-trip time

are the most important. Router queue size is not appropriate, because the paths

of different flows pass through different routers. Instead, we propose more general

measures of congestion based on the round-trip time and congestion window, see

Appendix A.

As was stated in the introduction, there are deterministic and stochastic com-

ponents of the network traffic. There is no clear line between the two, but as a

general principle if a TCP flow lasts long enough to enter the congestion avoidance

phase for a significant time, then it can be viewed as deterministic. The stochastic

components are the short-lived flows and the flows that do not continually have

data to transmit. Most web traffic is in this category, since most web pages and

images are fairly small. As there is no clear distinction between deterministic and

stochastic traffic, it is difficult to put a value on the proportion of the two types,

but in the NLANR traces at least 30% of the traffic, and possibly much more, is

deterministic. For that reason we study bulk TCP flows in the top 50%, as defined

in Section 3.1.
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6.3.1 Nonlinear Time Series Analysis

The concept of state space is fundamental to nonlinear time series analysis

[24]. In network traffic modeling, the state variables are quantities like round-trip

time, congestion window and router queue length. We have demonstrated novel

techniques to infer round-trip times and reconstruct congestion windows, but we

have no way to accurately estimate router queue lengths. The number of flows we

include in our state vector will depend on the capacity of the link and the overall

amount of traffic on the link. Consider OC3 with a moderate amount of traffic.

We have found that the largest 10 to 100 bulk TCP flows can account for up to

50 percent of the total bytes in the aggregate traffic. Therefore, we combine the

round-trip times and windows of the bulk TCP flows into a single state vector.

One of the remarkable successes of nonlinear time series analysis is its ability

to deal with noisy or even missing state variables. It is our hope that this capability

will allow us to predict flow rates without queue measurements. To understand why

nonlinear time series analysis can handle incomplete state information, consider a

frictionless pendulum. The state variables of this system are the angle and angular

velocity. If we only measured the angle of the pendulum at evenly spaced time

intervals, but not its velocity, then we would use the technique of time-delay em-

bedding to predict the behavior of the system.1 In the process of embedding, we

1The time intervals should be short enough so that the system state does not drastically change

in one interval. Time-delay refers to the opposite condition – the interval is so short that the state

barely changes. In this case we would use every, say, tenth measurement. We will assume that the

measurements are taken at appropriate intervals, so we will only discuss the embedding process.
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take as our alternative state vector, known as a delay vector, the angles at times t

and t + 1. This vector provides the necessary state information since the difference

between the angles is proportional to the velocity. In the same manner, it is likely

that router queue length is a function of the congestion windows.

Consider an m-dimensional discrete time dynamical system xi+1 = f(xi), and

a scalar measurement of the system si = g(xi). To approximate the true state of the

system, we construct a delay vector yi = (si, si−1, . . . si−n+1), where the length of the

vector, n, is the embedding dimension. The idea is to make the embedding dimension

large enough so that two different delay vectors correspond to different states of

the true system. If the dynamical system x has an attractor, then under what

circumstances does the reconstructed system y have an attractor that is equivalent

up to a change of coordinates? In general, if the attractor for the true system x

has dimension2 d, then an embedding dimension n > 2d is guaranteed to give an

equivalent attractor for the system y.

To better understand the embedding process and how to determine an appro-

priate embedding dimension, suppose we choose an embedding dimension n = 2.

Suppose we then plot the time series yi in the plane, and the attractor of the system

y is a curve shaped like a figure eight. If we choose two points yi and yj near the

intersection of the curve then it is possible that the forward images, yi+1 and yj+1,

of the points will be on different sides of the figure eight. That contradicts the basic

assumption of continuity of the dynamical system. If instead we choose n = 3 as

2By dimension we mean the box-counting dimension. If the attractor is fractal then this number

might not be an integer.
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Figure 6.10: Zeroth-order prediction errors for the example flows used in Figures

2.2 and 5.3.

the embedding dimension, then the self-intersection will almost surely be resolved,

and the curve will be a non-intersecting loop in three dimensions. Once the embed-

ding dimension is large enough, there will be no points where continuity fails, and

consequently, the system y will have the same information content as x.

Upon determining a proper embedding dimension we use the following predic-

tion algorithm known as zeroth-order prediction. Suppose we have a past history of

k vectors, y1 through yk, and we want to predict the next value, yk+1. Suppose that

the vectors have a measurement error of ǫ. Since the current vector is yk, we find

the vectors in the past history within ǫ of yk; call this collection of vectors A. This

collection of vectors will be measurements of the system x when the system was

close to its current state, and because of the determinism of the system we expect

yk+1 to be close to the forward images of A. Therefore, we use the average of the

forward images of A as a predictor of yk+1.

Under the assumption that the flows are weakly coupled we can treat them
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as separate dynamical systems. We have found that round-trip times usually vary

randomly, and therefore they add little state information; as such, we use only the

observed congestion windows in the delay vector. Figure 6.10 shows the results for

the two example flows used in this paper. These predictions are made in-sample,

meaning that predictions are made for all data points using the entire history, instead

of just the past history. Out-of-sample prediction is preferable, but in this case

we have a limited amount of data, and we only want to see if the time series is

predictable at any level. We used n = 2 as the embedding dimension for the scalar

time series. The plot shows the average prediction error for all points normalized

by the standard deviation of the time series. After one second the predictions are

little better than guessing the mean of the time series.

Our investigation using time series analysis indicates that network traffic, when

considered as a dynamical system, is not very predictable. This was to be expected

since dropped packets cause discontinuous changes in the dynamics of flows, and the

drops are determined by an inherently random process in routers using RED. This

implies that we need to incorporate mathematical models or develop new empirical

models in order to predict traffic.

6.3.2 Incorporating Models

Some mathematical models of TCP [15, 30, 34] start with the following as-

sumptions: (i) one sender, one router, one receiver; (ii) the congestion control al-

gorithm is RED; (iii) three state variables: sender’s congestion window, router’s
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instantaneous queue and exponentially weighted average queue. The models start

with this scenario, then increase in complexity until they simply mimic all the tech-

nical details of TCP [17]. It would be nearly impossible to directly use such a

complicated model to predict the state of the network, since there are so many

variables and parameters in the model.

A better approach is to use a simpler model with fewer variables. Assuming

one can reliably track a given sender’s congestion window, what more can one infer

from traffic measurements that will help to predict the dynamics of TCP? Mea-

suring the queues of all routers on the path would be best, but no such traces are

available. Inferring queue lengths at any routers other than the two at the ends of

the monitored link seems dubious. The best we can do is to find some variable that

indicates of the overall level of congestion experienced by each flow.

Even though network traffic is not amenable to the direct use of nonlinear time

series analysis, we believe more accurate prediction is still possible via a synthesis of

time series analysis and a simple mathematical model. The model would overcome

the inability of standard time series analysis techniques to cope with the inherent

discontinuities in the rate of TCP flows. The real difficulty is predicting when the

drops are likely to occur. We think the most promising way to do this is to find

and incorporate an appropriate measure of congestion, in absence of router queue

measurements. We discuss several possibilities in Appendix A.
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Chapter 7

Conclusion

Understanding the dynamics of network traffic is important for the design and

implementation of TCP and routers. We approach the issue from the perspective of

dynamical systems. Our initial goal was to predict the behavior of large, persistent

flows from network trace data. In order to do so we needed to infer round-trip

times and congestion windows. Our novel algorithms for estimating these rate-

controlling variables are quite flexible and robust. While we have explained why

simple nonlinear time series analysis methods are unsuited to the prediction of

network traffic, it is still beneficial to think of TCP traffic in terms of dynamical

systems.
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Appendix A

Drop Prediction

In this appendix, we introduce several statistics related to congestion, and use

them to predict drops. By congestion, we mean that the transmission rate for a

given flow is constrained by the network to be less than the maximum receiver’s

buffer over the fixed delay time. One might assume that since the RTT reflects the

total queuing time, it would be the best predictor of congestion. However, as the

example in Figure 5.15 shows, the RTT can remain unchanged even when queuing

occurs. Realistic situations will be more complicated, but the basic idea is that the

RTT will not vary significantly if the congested tight link has a much larger capacity

than the narrow link.

We define a collection of eight key statistics, each of which should correlate

with congestion to some degree. Although it is a precursor to dropped packets,

congestion does not necessarily lead to drops. Since we are concerned more about

drops than congestion, we test the statistics to determine which of them most closely

corresponds to actual drops. This is accomplished by finding the linear combination

of the eight statistics that best correlates with a drop indicator function.
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A.1 Congestion Statistics

The statistics are calculated once per flight. We denote the eight statistics for

flight i as χi,j, j = 1 . . . 8. Suppose we have n samples of the eight statistics, then

we can consider χ as an n × 8 matrix. We will sometimes drop the first index on

χ and simply refer to the jth statistic as χj , and by dropping the second index we

refer to the ith sample of the statistics as χi. The two most important statistics are

the estimated congestion window and RTT, so we set χi,1 = w̃i and χi,2 = r̃i. The

third quantity, χ3, is the normalized flight duration, which is defined as the time

from the first packet in a flight to the last packet in a flight divided by the estimated

RTT. The ratio of flight duration to RTT is a measure of how much of the available

bandwidth the flow is consuming. If two flights have the same RTT and the same

number of packets, but one has a longer duration, then that flight likely experienced

more congestion up to the monitoring point. How much the flight duration reflects

congestion depends on where the monitor is along the path. If the monitor is closer

to the sender, then we are less likely to see the effects of congestion on the spacing of

the data packets than when the monitor is closer to the receiver. However, the self-

clocking nature of the TCP congestion avoidance algorithm should impose similar

spacing on the data and acknowledgments no matter where congestion occurs.

The remaining five quantities are related to the logarithm of the interpacket

times for flight i. We only consider the interpacket times within the flight boundaries,

so for a flight with n packets we will use n− 1 interpacket times. When a flight has

only one packet the following quantities are zero by default. We let χ4 through χ6 be
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the mean, median and standard deviation of the logarithm of the interpacket times.

It is clear that the mean and median are proportional to the flight duration. As

bursts of cross traffic become interleaved with packets of a given flow, the interpacket

times will increase or decrease commensurately with the amount of cross traffic.

The cross traffic bursts are likely random in size, and this will increase the standard

deviation of the interpacket times.

The final two statistics expand on the idea that cross traffic disperses packets

and increases the randomness of interpacket times. We create a histogram of the

interpacket times with 100 exponentially spaced bins from 10−6 to 100 seconds. Let

hk be the fraction of interpacket times in the kth bin. Most bins will be empty, since

there is usually a maximum of 44 packets per flight. We let χi,7 equal the entropy

of the interpacket times in the ith flight, which is defined as

Hi = −
∑

hk>0

hk log2(hk). (A.1)

After the last packet in flight i, we compute a histogram of all interpacket times up

to that point, using the bins defined above. Let ĥk be the values of this histogram.

Suppose the current flight of n packets has interpacket times δm, which fall into bins

km. We then define

χi,8 =
1

n − 1

∑

m

log(ĥkm
). (A.2)

This statistic reflects the probability of a given sequence of interpacket times relative

to the global distribution. The reason for defining this statistic is that when there

is no congestion, the majority of interpacket times will be approximately equal to

the most common NIT, but when a flow is experiencing congestion the cross traffic
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will spread the interpacket times to less common values.

A.2 Drop Correlation

We test our hypothesis that the eight statistics should be correlated with

congestion by using data from our ns2 simulations. We focus on simulation S1,

because there is only one router at which packets are dropped in that simulation.

The simulator records the instantaneous queue length, average queue length, and

RED drop probability every time the queue changes. In order to compare these

variables to χi,j, we interpolate them at times corresponding to the end of each

flight. We denote interpolated average queue length and RED drop probability by

the variables AQi and DPi, respectively.

The correlation coefficient for two time series xi and yi, with means x̄ and ȳ,

and standard deviations σx and σy, is defined as

C(x, y) =
〈(xi − x̄)(yi − ȳ)〉

σxσy

. (A.3)

For a given statistic, χj , we define congestion correlation as the maximum of C(AQ, χj)

and C(DP, χj). Of the eight statistics, we found that RTT, flight size and flight du-

ration usually had the greatest congestion correlation – about 0.2 to 0.5. However,

each of the eight statistics had a congestion correlation greater than 0.1 for at least

one of the simulated flows. It is hard to say whether these correlation coefficients

are statistically significant, since the statistics we are studying are not normally dis-

tributed. For random time series of the same length and with the same distribution,

we found that the correlation coefficient was greater than 0.1 about 2% of the time.

115



We can not compare our statistics to the average queue length or drop prob-

ability for the the real data. Therefore, we compare them to the drops via a drop

indicator function. Let t∗k be the times at which the monitor learns of dropped

packets, that is, when the monitor sees three duplicate ACKs or a retransmitted

data packet. The drop indicator function is defined as

D(t) =






1 if ∃ i s.t. t∗k − 5r
˜

< t < t∗k − r
˜

0 otherwise

(A.4)

where r
˜

is the estimated minimum RTT. This function acts as an “oracle” that knows

when drops will occur. If a statistic correlates very well with the drop indicator

function, then we could accurately predict when drops will occur. Arguably, there

are better ways to define the drop indicator function, perhaps linearly increasing

from zero to one over an interval longer than (t∗k − 5r
˜
, t∗k − r

˜
). But as Figure A.1

shows, Equation A.4 suitably captures the precursors to drop events.

Let Di equal D(t) sampled at the end of flight i. We define drop correlation

for statistic χj as C(D, χj). As with the congestion correlation, we found that RTT,

flight size and flight duration usually had the largest drop correlations, although the

other statistics often had non-negligible drop correlations as well. Note that even if

the drop correlation is negative for a particular χj, that statistic can still be of use

in predicting drops, since −χj will be positively correlated.

Since the drop correlation for a statistic varies from flow to flow, the individual

statistics, χj , when considered by themselves, are not reliable predictors of drops.

Therefore, we propose to use a linear combination of χj as a more robust predictor

116



8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Times (seconds)

indicator

est. cwnd

ave. queue

drop prob.

Figure A.1: This plot shows congestion variables for flow 3 in simulation S1. The

gray bars mark where the drop indicator function equals 1. Note that these corre-

spond to times where AQ is increasing. However, AQ and DP can increase without

causing a drop in the flow. This happens at 8 and 18 seconds. At these times

packets are dropped in cross traffic flows, but not this flow.

of drops. More formally, we find c ∈ R
8 that maximizes

γ(c) = C(D,

8∑

j=1

cjχj). (A.5)

We frame this as a Lagrange multiplier problem by introducing the constraint

n∑

i=1

[c · (χi − χ̄)]2 = 1, (A.6)

where χ̄ is the mean of the n samples vectors, χi, i = 1 . . . n. We can impose this

constraint without loss of generality, since γ(c) is invariant under scalar dilations of

c. Based on our objective function in Equation A.5 and the constraint in Equation
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A.6, the Lagrange multiplier λ satisfies

n∑

i=1

(Di − D̄)(χi − χ̄) = λ
n∑

i=1

2(χi − χ̄) [c · (χi − χ̄)] , (A.7)

where D̄ is the mean of the scalar time series Di. To solve for c let

A =

n∑

i=1

(χi − χ̄)T (χi − χ̄) (A.8)

and let

b =
n∑

i=1

(Di − D̄)(χi − χ̄), (A.9)

so that Equation A.7 is equivalent to

b = 2λAc. (A.10)

Since the normalization of c does not matter let

c∗ = A−1b (A.11)

be the solution to the Lagrange multipliers problem. The optimal drop correlation,

γ(c∗), is compared to the maximum individual drop correlation in Table A.1.

flow 1 2 3 4

maxj C(D, χj) 0.25 0.49 0.26 0.21

argmaxjC(D, χj) 2 2 1 1

γ(c∗) 0.30 0.52 0.30 0.26

Table A.1: Drop correlations for four simulated flows. The third row is the index

j for which the maximum individual drop correlation is attained. Flight size is

denoted by 1, RTT is denoted by 2.
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To test the utility of the drop correlation for real traffic, we selected nearly

400 flows from the UFL monitor that were clearly experiencing congestion. Figure

A.2(a) shows the distribution of γ(c∗) for these flows. Figure A.2(b) shows the

number of times maxj C(D, χj) is attained by statistic j. On average γ(c∗) is 1.5

times greater than maxj C(D, χj). For 92% of flows γ(c∗) is statistically significant,

that is, it is greater than the correlation obtained by replacing the statistics χj with

random variables having the same distribution.

Unfortunately, this is not a feasible method for predicting drops. The coef-

ficients of γ(c∗) vary from flow to flow, and while the correlation coefficients are

statistically significant, they are not large enough to make accurate predictions.
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Figure A.2: (a) Distribution of the optimal drop correlation, γ(c∗). The mean

correlation coefficient is 0.29. (b) Histogram of argmaxjC(D, χj). The most common

value is j = 1, which corresponds to the flight size. Next is j = 5, corresponding

to the median interpacket time. This deviates from the simulated flows where the

RTT or flight duration often had the largest drop correlation. The least common

value is j = 6, corresponding to the standard deviation of the interpacket times.
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However, this method does indicate how certain statistics relate to congestion and

drops. One could improve this method by finding a single linear combination that

is optimal for a wide variety of flows. One could also include other statistics, such

as time since the last drop and quantities similar to interpacket time statistics com-

puted instead for interack times. A more promising approach is to derive a nonlinear

function using more sophisticated statistical techniques.
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