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Abstract

In this paper the fixed step Gauss-Jackson method is compared to two variable step inte-
grators. The first is the variable step, variable order Shampine-Gordon method. The second is
s-integration, which may be considered an analytical step regulation. Speed tests are performed
for orbit propagation with the integrators set to give equivalent accuracy. The integrators are
also tested for orbit determination, to determine the speed benefit of the variable step methods.
The tests give an indication of the types of orbits where variable step methods are more efficient
than fixed step methods.

INTRODUCTION

Performing orbit propagation and orbit determination with a numerical integrator gives a significant
accuracy improvement over analytic techniques. Numerical methods take a great deal more com-
putation time than analytic methods, but are becoming increasingly popular as computer speeds
increase. Many different numerical integration methods exist, and the choice of integration method
is made either to give the quickest calculation for a given accuracy requirement, or the most accurate
calculation for an alloted computation time. The best method may be dependent on the type of
orbit, so applications which process a wide variety of orbit types need to have the flexibility to use
different integrators for different orbits.

In this paper, we analyze the speed and accuracy effect of variable step integration. The fixed
step Gauss-Jackson method is compared to two variable step methods. The first is the variable
step, variable order Shampine-Gordon method(Ref. 1). The Shampine-Gordon integrator uses local
error control to adjust the step size and the order of the method. The second is an implementation
of a generalized Sundman transformation, or s-integration (Ref. 2), which may be considered an
analytical step regulation. In s-integration the independent variable is changed from time, t, to an
angle s, which spreads the integration steps more evenly about an elliptical orbit.

Speed and accuracy tests are performed for both orbit propagation and orbit determination.
Comparing these three integration methods for orbit determination and propagation for a wide
variety of orbits indicates when variable step methods are preferable to fixed step methods.
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TEST CASES

In this paper the integrators are tested for orbit propagation on test case orbits with varying eccen-
tricity and perigee heights. The test cases all have an inclination of 40◦ and a ballistic coefficient of
0.01 m2

/kg. The epoch of the test cases is 1999-10-01 00:00:00 UTC. At epoch the test cases are at
perigee, which is on the X axis. When perturbations are considered, they are lunar and solar forces,
the Jacchia 70 drag model, and the 36 × 36 WGS-84 geopotential. In the orbit determination tests
later in this paper, real satellite data is used. The orbit propagation and determination tests are
performed using the SPeCIAL-K software suite (Ref. 3), developed by the Naval Research Labo-
ratory, which is used operationally by Naval Network and Space Operations Command (NNSOC,
formerly Naval Space Command). The version of SPeCIAL-K used in this paper has been modified
to use additional numerical integrators.

EVALUATIONS

When comparing the computation time of integrators, the main factor determining the execution
time is the number of force model evaluations performed. For instance, a 400km circular orbit inte-
grated with an eighth order Gauss-Jackson with a 30 second step size for 30 days with perturbations
takes 35.0 seconds of user time on an SGI Origin 200. Without perturbations, the computation time
is 3.33 seconds. So 90.5% of the run-time is spent evaluating the perturbations. For one integrator
to be advantageous over another, it must have fewer evaluations per orbit, either by taking fewer
steps per orbit, or by having fewer evaluations per step.

GAUSS-JACKSON INTEGRATION

The eighth order Gauss-Jackson (Ref. 4) is an integration method commonly used in space surveil-
lance. Gauss-Jackson is a fixed-step predictor-corrector multistep method, with no control over the
local error. In Ref. 4, a procedure for Gauss-Jackson integration is given in which the integrator
predicts the state (P), evaluates at the predicted state (E), and corrects the state (C). The integra-
tor then tests for convergence of the predicted and corrected state, and performs more evaluate and
correct cycles (EC. . . ), if the convergence criteria is not met. This is a PECEC. . . cycle, in which
there are normally two or more evaluations per step.

Herrick (Ref. 5) claims that the corrector is not usually required in Gauss-Jackson integration.
This saves computation time, because only one evaluation is required (PE) per step. A slight
improvement over the PE method can be made by applying the corrector once (PEC), which does
not significantly affect the computation time. Table 1 shows the maximum position difference over
three days between using Gauss-Jackson with the PEC method and the PECEC. . .method for
various orbits. Both integrations use a 30 second step size, and perturbations are included. Though
the PECEC. . . method takes at least twice as long as the PEC method, it gives an improvement of
less than a meter, and less than a centimeter for most cases.

Table 2 shows the maximum position difference over 3 days between Gauss-Jackson with a
30 second step size, and Gauss-Jackson with a 15 second step size. Both use the PEC method.
Comparing Table 1 to Table 2, we see that a much larger improvement is given by cutting the
step size than by performing additional evaluations, though both double the run time. This shows
that the additional evaluations are not necessary; it is better to decrease the step size. The results
presented later in this paper use the PEC method for Gauss-Jackson.

GENERALIZED SUNDMAN TRANSFORMATION

For elliptical orbits, fixed step integrators are less efficient than variable step methods, because
many steps have to be taken at apogee in order to get the desired accuracy at perigee. One way
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Table 1: Effect of additional evaluations in Gauss-Jackson.
perigee height (km) e position difference (mm)

300 0.0 8.8
300 0.25 26
300 0.75 160
500 0.0 1.8
500 0.25 5.9
500 0.75 38
1000 0.0 0.1
1000 0.25 0.3
1000 0.75 4.6

Table 2: Effect of step-size halving in Gauss-Jackson.
perigee height (km) e position difference (mm)

300 0.0 1800
300 0.25 1200
300 0.75 1400
500 0.0 110
500 0.25 63
500 0.75 94
1000 0.0 0.3
1000 0.25 2.2
1000 0.75 45

of increasing the efficiency of numerically integrating elliptical orbits is to change the independent
variable using a generalized Sundman transformation (Ref. 2). This is known as s-integration, while
conventional integration with time as the independent variable is known as t-integration.

Sundman (Ref. 6) and Levi-Civita (Ref. 7), in attempting to solve the restricted problem of three
bodies, introduced the transformation of the independent variable

dt = cr ds, (1)

with c constant for the two-body orbit, because this transformation regularizes, and in fact linearizes,
the equations of motion. Later investigators raised r to different powers in the transformation,

dt = crn ds, (2)

known as the generalized Sundman transformation. If n = 1 and c =
√

a/µ, s is the eccentric
anomaly. This was Sundman’s original transformation. If n = 2 and c = [µa(1 − e2)]−1/2, s is the
true anomaly. Merson (Ref. 8) gave analysis showing that n = 3/2 equally distributes the integration
error around an orbit, even with high eccentricity. Nacozy (Ref. 9), expressed s in terms of an elliptic
integral of the true anomaly for n = 3/2 and c = 1/

√
µ, and dubbed this angle the intermediate

anomaly. Our implementation of s-integration is in the same form as Merson and Nacozy, with
n = 3/2 and c = 1/

√
µ.

Integration steps equally spaced by s are spread more evenly about an elliptical orbit than steps
equally spaced by time, so fewer steps are needed about the orbit to achieve the same integration
accuracy as t-integration at perigee. As an example, Figure 1 shows the distribution of integration
points for a 0.75 eccentricity orbit using both t- and s-integration. Both have the same step size at
perigee, of ∆ν ≈ 1.0.
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(a) t-integration (n=0) with 58 steps. (b) s-integration (n=3/2) with 10 steps.

Figure 1: Distribution of integration points for t- and s-integration, e = 0.75.

One disadvantage of s-integration is that a seventh differential equation (2) must be solved to
find time. This makes time subject to integration error, which can significantly contribute to in-
track error. In Ref. 2, we observed that s-integration seemed to be affected by round-off error. An
improvement was made to s-integration to reduce the round-off error in the time equation. In the
previous paper, we were storing time in units of minutes since 1950. We have changed the code to
store time as minutes from epoch, so that the round-off error in the integration of time is at a less
significant digit. The s-integration results given in this paper are improved over Ref. 2 due to this
code modification.

Another disadvantage of s-integration is that there is still no control over the local error. Though
s-integration provides analytic step regulation by varying the steps through the orbit as shown in
Figure 1, it is still a fixed step method. The steps are equally spaced by s, instead of equally spaced
by time, t. This means that there is still a user defined step size, ∆s, measured in radians. Because
s is not a physical characteristic of the orbit, we choose a step size in time at perigee, and convert
that to ∆s,

∆s =
√

µr
3
2
p ∆t. (3)

In this paper we refer to step sizes for s-integration in units of time; these are actually the step sizes
at perigee which must be converted to s-steps with (3).

When s-integration is implemented as a predict, evaluate, correct cycle, the integration becomes
unstable. Additional evaluations make the integration stable, for instance a PECEC implementation
is stable. This doubles the computation time, reducing the benefit of s-integration over t-integration.
However, it is not necessary for the second evaluation to be a full evaluation to maintain stability.
Because the difference between the predicted and corrected states is small, the difference in pertur-
bation forces at the two states is small. This means that computation time can be saved by simply
re-evaluating the two-body force during the second evaluation, and adding it to the perturbation
force from the first evaluation. We call this second evaluation a pseudo-evaluation and denote it Ẽ,
so it is a PECẼC method.

Table 3 shows the maximum position difference over three days between using s-integration with
the PECEC method and the PECẼC method for a variety of orbits. Each integration was performed
with perturbations, with a 30 second step size at perigee. Though the PECEC method takes twice
as long, it changes the result by less than 10 mm. The s-integration results presented in this paper
are obtained using the PECẼC method.
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Table 3: Effect of pseudo-evaluation in s-integration.
perigee height (km) e position difference (mm)

300 0.25 1.96
300 0.50 2.12
300 0.75 2.30
500 0.25 1.91
500 0.50 2.17
500 0.75 2.27
1000 0.25 1.85
1000 0.50 2.05
1000 0.75 8.79

SHAMPINE-GORDON INTEGRATION

Another way to more efficiently integrate elliptical orbits is to use a variable step integrator. The
Shampine-Gordon integrator is a variable order, variable step multistep integrator (Ref. 1). It is
based on the Adams-Bashforth and Adams-Moulton multistep integrators, and uses a PECE scheme.
The main advantage of the Shampine-Gordon method is that it provides control over the local error,
and adjusts the step size and the order of the method appropriately if the local error is outside
user-defined bounds. Because the step size needed to meet a given accuracy is dependent on the
orbit type, local error control is particularly useful in applications which process a wide variety of
orbit types, since the integrator automatically finds the best step size for each orbit instead of the
user providing step size values. Local error control is also useful for elliptical orbits because it allows
larger steps to be taken at apogee.

The Shampine-Gordon integrator allows the user to specify a relative error tolerance, εr and an
absolute error tolerance, εa, for local error, ξ. The code performs a test at each step, on each state
variable X to see that the local error is below the tolerance,

ξ ≤ εrX + εa. (4)

In the orbit propagation and determination tests the absolute tolerance is εa = 1× 10−31, while the
relative tolerance εr is set to meet a specified accuracy requirement.

The main disadvantage of Shampine-Gordon integration is that there are two evaluations per
step. In order to have an advantage over the fixed step method, Shampine-Gordon needs to have
half or fewer the number of steps per orbit.

ORBIT PROPAGATION TESTS

Our goal is to identify when variable step methods give a speed advantage over fixed step methods,
given that the two methods are of equivalent accuracy. To do this we perform speed tests for
orbit propagation with the integrators set to give approximately the same accuracy. A metric
for integration accuracy is defined using an error ratio defined in terms of the RMS error of the
integration (Ref. 8). First define position errors as

∆r = |rcomputed − rreference|, (5)
(6)

The RMS position error can be calculated,

∆rRMS =

√√√√ 1
N

N∑
i=1

(∆ri)2. (7)
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The RMS position error is normalized by the apogee distance and the number of orbits to find the
position error ratio,

ρr =
∆rRMS

rANorbits
. (8)

In Ref. 10, several techniques are described to assess the accuracy of numerical integrators. In
each of these techniques a different reference value is used in (5). In the step-size halving method,
the reference values are found by integrating with the same integrator, but with half the step size.
This method gives a good indication of the accuracy of a numerical integrator. Another method is
the two-body test, in which the numerical integrator being tested is used with only the two-body
force, and compared to the analytic solution from Kepler’s equation. This method gives an exact
indication of integration error when no perturbations are present, but does not indicate how well an
integrator handles perturbations. Some integrators can integrate the two-body force very accurately,
but are less accurate in the presence of perturbations, especially drag.

For Gauss-Jackson, the step size is found which gives an error ratio of approximately 1× 10−9 in
the step-size halving test, for both t- and s-integration. For Shampine-Gordon, the step-size halving
test cannot be used, because it is a variable step method. Instead, the relative error tolerance is
found which gives an error ratio of 1× 10−9 in the two-body test. By using the two-body test, we
are assuming that a tolerance that gives a certain error ratio without perturbations gives a similar
error ratio in the presence of perturbations. Because the tolerance is a control over the local error,
this is a reasonable assumption. Table 4 shows the error ratio over 3 days between t-integration
and Shampine-Gordon with perturbations using the step-size or tolerance specified by the tests for
a sample of orbits. These error ratios are all within range of 1× 10−9, indicating that tolerance
specified by the two-body test for Shampine-Gordon is also valid with perturbations. To compare
computation time, the time to propagate 30 days with the step size or tolerance specified by the
tests is found.

Table 4: Error ratio between t-integration and Shampine-Gordon.
Perigee Height (km) e Error Ratio

300 0.0 3.6× 10−9

300 0.4 6.8× 10−10

400 0.7 7.9× 10−10

400 0.9 1.0× 10−9

500 0.0 2.9× 10−10

500 0.5 7.1× 10−10

Tables 5, 6, 7, and 8 show the results of the propagation tests at perigee heights of 300km,
400km, 500km, and 1000km, respectively. The tables show the step sizes needed for Gauss-Jackson
with t-integration and s-integration and the relative error tolerance needed for Shampine-Gordon to
achieve an error ratio of approximately 1× 10−9. The tables also show the user time to propagate
30 days with perturbations on an SGI Origin 200 with the listed step size or tolerance. The speed
ratio for the variable step methods, which is the time of the variable step methods divided by the
time of the fixed step t-integration, is also shown.

Figures 2, 3, 4, and 5 show plots of the speed ratio vs. eccentricity for perigee heights of 300km,
400km, 500km, and 1000km, respectively. Plots for both s-integration and Shampine-Gordon are
shown on each figure. The horizontal line on each figure represents an speed ratio of 1. The variable
step methods are more efficient than the fixed step method when the plots are above this line. The
figures show that s-integration is more efficient that t-integration at an eccentricity of approximately
0.15, and that Shampine-Gordon is more efficient than Gauss-Jackson with t-integration at an ec-
centricity of approximately 0.60. The eccentricity where the variable step methods are more efficient
is independent of the perigee height. The plots also show that s-integration is always more efficient
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Table 5: Comparisons for perigee height of 300 km.
Step Size / Tolerance Time for 30 Day Run (sec) Speed Ratio to t

e t s SG t s SG s SG
0 12 8 3× 10−11 57.6 89.6 107 0.64 0.54

0.10 30 20 2× 10−11 34.6 47.4 106 0.73 0.33
0.15 30 26 4× 10−11 34.5 33.7 81.3 1.0 0.42
0.20 20 15 2× 10−11 50.8 50.8 85.3 1.0 0.60
0.30 36 31 1× 10−11 27.9 21.2 69.6 1.3 0.40
0.40 37 20 1× 10−11 27.1 25.6 56.1 1.1 0.48
0.50 34 24 1× 10−11 29.3 16.7 45.1 1.8 0.65
0.60 30 26 1× 10−11 33.1 11.5 34.3 2.9 0.97
0.65 26 24 3× 10−11 38.2 10.3 25.1 3.7 1.5
0.70 28 24 1× 10−11 35.4 8.35 23.7 4.2 1.5
0.80 26 23 2× 10−11 38.1 5.11 13.7 7.5 2.8
0.90 24 19 1× 10−10 41.2 2.52 5.11 16 8.1
0.95 24 19 2× 10−10 41.2 1.06 2.10 39 20

Table 6: Comparisons for perigee height of 400 km.
Step Size / Tolerance Time for 30 Day Run (sec) Speed Ratio to t

e t s SG t s SG s SG
0 32 16 5× 10−11 32.5 69.3 141 0.47 0.23

0.10 45 40 3× 10−11 23.1 25.2 90.2 0.92 0.26
0.15 40 36 6× 10−11 25.7 25.1 69.4 1.0 0.37
0.20 38 34 2× 10−11 26.8 23.7 70.8 1.1 0.38
0.30 39 34 1× 10−11 25.8 19.6 63.6 1.3 0.41
0.40 35 32 2× 10−11 28.6 16.6 47.2 1.7 0.61
0.50 33 30 1× 10−11 30.2 13.6 41.6 2.2 0.73
0.55 35 26 2× 10−11 28.4 13.4 33.5 2.1 0.85
0.60 31 28 3× 10−11 32.1 10.7 27.7 3.0 1.2
0.70 29 26 5× 10−11 34.2 7.76 18.6 4.4 1.8
0.80 27 24 3× 10−11 37.4 4.93 12.4 7.6 3.0
0.90 25 22 1× 10−10 39.5 2.15 4.86 18 7.9
0.95 25 22 2× 10−10 39.5 0.95 2.01 42 20
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Table 7: Comparisons for perigee height of 500 km.
Step Size / Tolerance Time for 30 Day Run (sec) Speed Ratio to t

e t s SG t s SG s SG
0 45 40 5× 10−11 23.1 29.4 131 0.79 0.18

0.10 44 39 2× 10−11 23.6 25.5 88.1 0.93 0.27
0.15 42 37 6× 10−11 24.4 24.1 64.6 1.0 0.38
0.20 42 38 2× 10−11 24.2 21.5 65.9 1.1 0.37
0.30 40 35 7× 10−12 25.2 18.9 63.2 1.3 0.40
0.50 36 32 2× 10−11 27.7 12.8 36.0 2.2 0.77
0.55 34 30 1× 10−11 29.3 11.8 35.2 2.5 0.83
0.60 34 30 2× 10−11 29.3 10.1 27.7 2.9 1.1
0.70 32 28 1× 10−11 31.0 7.24 21.3 4.3 1.5
0.80 29 26 1× 10−11 34.2 4.55 13.7 7.5 2.5
0.90 27 24 1× 10−10 36.6 2.00 4.65 18 7.9
0.95 27 24 1× 10−10 36.6 0.89 2.17 41 17

Table 8: Comparisons for perigee height of 1000 km.
Step Size / Tolerance Time for 30 Day Run (sec) Speed Ratio to t

e t s SG t s SG s SG
0 70 60 4× 10−11 15.0 19.6 94.0 0.77 0.16

0.10 65 56 2× 10−11 15.9 17.7 62.9 0.90 0.25
0.15 62 55 5× 10−11 16.5 16.3 48.8 1.0 0.34
0.20 60 53 2× 10−11 16.9 15.3 50.1 1.1 0.34
0.30 57 50 1× 10−11 17.6 13.3 46.9 1.3 0.38
0.50 52 46 1× 10−11 19.2 9.00 32.3 2.1 0.59
0.60 50 44 5× 10−11 20.0 6.95 20.6 2.9 0.97
0.70 46 41 4× 10−11 21.6 5.05 15.2 4.3 1.4
0.90 38 34 1× 10−10 26.1 1.50 4.20 17 6.2
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than Shampine-Gordon, most likely due to the extra evaluation required by Shampine-Gordon.
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Figure 2: Speed ratios to t integration at 300 km perigee.
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Figure 3: Speed ratios to t integration at 400 km perigee.

ORBIT DETERMINATION TESTS

For orbit determination, testing is performed on a test set of cataloged satellites for 1999-09-29.
There are 8003 objects in the catalog, of which 1000 are randomly selected for testing. The goal of
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Figure 4: Speed ratios to t integration at 500 km perigee.
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Figure 5: Speed ratios to t integration at 1000 km perigee.
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the test is to find the improvement in computation time by using the variable step methods where
the orbit propagation tests show they are more efficient, as well to validate that the variable step
methods give comparable results to the fixed step Gauss-Jackson.

The initial vectors from the catalog are fit using differential correction with a fitspan between
1.5 and 10 days. The fitspan is determined by operational algorithms and depends on the mean
motion and rate of change of mean motion. The fit includes observations up to 1999-10-01 00:00:00,
going back through the length of the fitspan. Before the fit, the initial vector is propagated forward
to the time of the last observation. The fit solves for position and velocity at the time of the last
observation, and also solves for the ballistic coefficient when the perigee height is below 1200km.

To get a baseline for computation time, the time is found to fit the 1000 test objects using Gauss-
Jackson with t-integration. The test is performed on a 450 MHz Pentium II machine running Linux.
The total user time is 11.0 hours. Of the 1000 objects, 915 update, while 85 do not update because
they fail some criteria, such as a final RMS that is too large, or there are not enough observations.

To test s-integration, the objects with eccentricities above 0.15 are fit with Gauss-Jackson using
both t-integration and s-integration. The time using t-integration is 2.24 hrs, and the time using
s-integration is 0.65 hrs. There are 135 objects with eccentricities above 0.15, of which 103 update
and 32 do not. Comparing the final states given by t- and s-integration, 82 of the objects have a
final position difference of less than 1m. The remaining 21 objects are shown in Table 9, which gives
the final position difference in meters, and the difference in final weighted RMS. A negative value
for RMS difference in the table indicates that the s-integration has a lower final weighted RMS.

Table 9: Orbit Determination Differences for t- vs. s-integration.
Satellite Position RMS
Number Difference (m) Difference

3827 112.8 0.0007
10960 2.7 0.0000
13970 2.5 -0.0001
19622 378.8 -0.0912
19884 1.1 0.0000
19994 7.1 -0.0007
19998 1.1 -0.0004
21589 264.5 -0.0555
22020 14.0 0.0000
22238 7.4 0.0000
22274 1.0 -0.4953
22997 1.7 0.0007
23174 6.4 0.0000
23332 15.0 0.0000
23420 5.8 0.0000
23824 2.9 0.0002
24211 10.3 -0.0001
24655 14.9 0.0000
24764 17.3 -0.0001
25542 18.3 0.0000
25552 2.9 0.0000

The objects with the largest position difference in Table 9, 19622 and 21589, have a lower weighted
RMS with s-integration, indicating that s-integration gives a better fit. The object with the next
highest position difference, 3827, converged on a different iteration in the differential correction, and
accepted a different number of observations. Though this position difference is relatively large, it is
still within the accuracy of the observations and the force model. The remaining position differences
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are relatively minor, and well within the accuracy of the observations.
Using s-integration to perform the fits saves 1.59 hrs over t-integration. In the entire set of 1000

objects, if t-integration is used to fit the objects with eccentricities below 0.15 and s-integration is
used to fit objects with eccentricities above 0.15, the total computation time would be 9.41 hrs,
which is a 14.5% savings over using only t-integration.

To test Shampine-Gordon, the objects with eccentricities above 0.6 are fit with both Gauss-
Jackson using t-integration and Shampine-Gordon. Gauss-Jackson takes 1.58 hrs to process the 86
objects, while Shampine-Gordon takes 0.81 hrs. Both integrators update 68 of the objects. The
final position differences after the fit between the two integrators is less than 1 meter for 55 of the
objects, the remaining 13 are shown in Table 10. A negative RMS difference in the table indicates
that the weighted RMS is lower with Shampine-Gordon.

Table 10: Orbit Determination Differences for t-integration vs. Shampine-Gordon.
Satellite Position RMS
Number Difference (m) Difference

8195 1.8 -0.0001
9911 2.5 0.0000

12992 47.3 0.0001
17078 1.9 0.0000
19622 1.7 0.0003
19807 1.1 0.0000
19884 1.3 -0.0002
20649 1.8 0.0004
21589 259.7 -0.0545
22068 1.2 -0.0003
22274 11.8 -0.6430
22997 2.5 0.0014
24655 36.1 0.5816

Again the object with the largest position difference, 21589, has a lower weighted RMS with
Shampine-Gordon. The remaining objects have position differences that are relatively small, and
well within the accuracy of the observations.

Using Shampine-Gordon on eccentricities over 0.60 saves 0.77 hrs over t-integration. If the entire
set of 1000 objects is fit with Gauss-Jackson using t-integration for eccentricities below 0.60 and
with Shampine-Gordon for eccentricities above 0.60, the total computation time would be 10.23 hrs,
which is a 7.0% savings over using only Gauss-Jackson with t-integration.

CONCLUSION

In this paper we compare the fixed step Gauss-Jackson integrator using t-integration to the Gauss-
Jackson integrator using s-integration, as well as to the variable order variable step Shampine-Gordon
integrator. The Gauss-Jackson integrator with t-integration performs one force model evaluation per
step. With s-integration, the integrator performs one evaluation and one pseudo-evaluation, which
saves computation time. The Shampine-Gordon integrator performs two evaluations per step.

Orbit propagation tests in which the integrators are set to give equivalent accuracy show that
s-integration has an advantage over t-integration above an eccentricity of 0.15, and Shampine-
Gordon has an advantage over t-integration above an eccentricity of 0.60. These eccentricities
are independent of the perigee height. The Shampine-Gordon integrator is never more efficient
than s-integration, most likely because Shampine-Gordon performs two evaluations per step while
s-integration performs only one. It may be possible to make Shampine-Gordon faster by performing
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only one evaluation per step, or by using the pseudo-evaluation technique. This is a topic of further
study.

Orbit determination tests show that s-integration and Shampine-Gordon give comparable results
to t-integration when used at the eccentricities specified by the orbit propagation tests. A time
improvement of 14.5% is achieved by using s-integration at eccentricities above 0.15, and a time
improvement of 7.0% is achieved by using Shampine-Gordon at eccentricities above 0.60.
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