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Weather forecasting consists of two processes, model integration and analysis

(data assimilation). During the model integration, the state estimate produced by

the analysis evolves to the next cycle time according to the atmospheric model to

become the background estimate. The analysis then produces a new state estimate

by combining the background state estimate with new observations, and the cycle

repeats. In an ensemble Kalman filter, the probability distribution of the state

estimate is represented by an ensemble of sample states, and the covariance matrix

is calculated using the ensemble of sample states. We perform numerical experiments

on toy atmospheric models introduced by Lorenz in 2005 to study the information

flow in an atmospheric model in conjunction with ensemble Kalman filtering for

data assimilation. This dissertation consists of two parts.

The first part of this dissertation is about the propagation of information

and the use of localization in ensemble Kalman filtering. If we can perform data

assimilation locally by considering the observations and the state variables only near



each grid point, then we can reduce the number of ensemble members necessary to

cover the probability distribution of the state estimate, reducing the computational

cost for the data assimilation and the model integration. Several localized versions

of the ensemble Kalman filter have been proposed. Although tests applying such

schemes have proven them to be extremely promising, a full basic understanding of

the rationale and limitations of localization is currently lacking. We address these

issues and elucidate the role played by chaotic wave dynamics in the propagation of

information and the resulting impact on forecasts.

The second part of this dissertation is about ensemble regional data assimila-

tion using joint states. Assuming that we have a global model and a regional model

of higher accuracy defined in a subregion inside the global region, we propose a data

assimilation scheme that produces the analyses for the global and the regional model

simultaneously, considering forecast information from both models. We show that

our new data assimilation scheme produces better results both in the subregion and

the global region than the data assimilation scheme that produces the analyses for

the global and the regional model separately.
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Chapter 1

Introduction

1.1 Weather forecast cycle

Weather forecasting employs two cyclically repeated processes, model inte-

gration and analysis (data assimilation). During the forecast phase by the model

integration [nT ≤ t ≤ (n+1)T ], the state estimate produced by the analysis at time

t = nT evolves to the next cycle time t = (n + 1)T according to the atmospheric

model to become the ‘background’ estimate at time t = (n + 1)T . The analysis at

time t = (n+1)T then produces a new state estimate by combining the background

state estimate with new observations, and the cycle repeats. The analysis state es-

timate is more accurate than a state estimate that could be obtained by considering

only the new observations, because the observations in a real setting have uncer-

tainties, and observations of all relevant variables are not taken everywhere. This

dissertation focuses on the application of the ensemble Kalman filtering method to

data assimilation.

1.2 Kalman filter

In Kalman filters and probabilistic weather forecasting, in general, one deals

with distribution functions of the system state, rather than with a single estimate of
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the system state. Consider a state vector x that evolves according to the equation

dx

dt
= F(x). (1.1)

We assume that we have a background probability distribution of the state estimate

fb(x) and the new observations y = H(x) + (noise) at a certain analysis time.

We further assume that we know the probability distribution of the observation

fo(y|x) when the true state is x. We want to find a new probability distribution

fa(x) that takes into account both the known background distribution fb(x) and

the information from the new observations. First, we identify the sample space to

be (x,y). We denote the joint probability distribution, the marginal probability

distribution of x, the conditional probability distribution of x conditioned on y,

and the conditional probability distribution of y conditioned on x by f(x,y), f(x),

f(x|y), and f(y|x), respectively. Then, we have

fb(x) = f(x), (1.2)

fa(x) = f(x|y), (1.3)

fo(y|x) = f(y|x). (1.4)

The analysis probability distribution fa(x) can be calculated using Bayes’ theorem

as

fa(x) = f(x|y) =
f(x,y)

∫

f(x,y) dx
=

f(x)f(y|x)
∫

f(x,y) dx
=

fb(x)fo(y|x)
∫

f(x,y) dx
. (1.5)

Thus, if we fix y and take x as a variable, then we have

fa(x) ∝ fb(x)fo(y|x). (1.6)
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If the observation operator is linear such that H(x) = Hx and all the probability

distributions are Gaussian such that

fb(x) ∝ exp
[

−(1/2)(x− x̄b)
TP−1

b (x− x̄b)
]

, (1.7)

fo(y|x) ∝ exp
[

−(1/2)(y −Hx)TR−1(y −Hx)
]

, (1.8)

where the covariance matrix of the background distribution is denoted by Pb, and

the covariance matrix of the observation noise is denoted by R, then from Eq. (1.6),

we have

fa(x) ∝ exp
[

−(1/2)(x− x̄b)
TP−1

b (x− x̄b)
]

× exp
[

−(1/2)(y −Hx)TR−1(y −Hx)
]

(1.9)

∝ exp
[

−(1/2)
{

(x− x̄b)
TP−1

b (x− x̄b)

+(y −Hx)TR−1(y −Hx)
}]

(1.10)

∝ exp
[

−(1/2)(x− x̄a)
TP−1

a (x− x̄a)
]

(1.11)

with

Pa = (P−1
b +HTR−1H)−1, (1.12)

x̄a = Pa (P
−1
b x̄b +HTR−1y). (1.13)

If the time evolution is linear such that

xn+1 = Mnxn, (1.14)

where xn and xn+1 are the state vectors at the cycle time n and n + 1, and Mn is

time evolution operator that maps xn and xn+1, then once we know the mean of the
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analysis state estimate x̄n,a and the analysis error covariance matrix Pn,a at the cycle

time n, the background at time n + 1 is again Gaussian, and we can calculate the

mean of the background state estimate x̄n+1,b and the background error covariance

matrix Pn+1,b at the next cycle time n+ 1 as

x̄n+1,b = Mnx̄n,a, (1.15)

Pn+1,b = MnPn,aM
T
n . (1.16)

1.3 Ensemble Kalman filter

In real situations, the evolution is nonlinear. Even if we wanted to approximate

the evolution over a cycle time as linear, a suitable linear approximation Mn for use

in Eq. (1.14) is hard to obtain. In this case, an ensemble Kalman filter provides an

attractive alternative. In an ensemble Kalman filter, the probability distribution of

the state estimate is represented by an ensemble of sample states, and the covariance

matrix is calculated using the ensemble of sample states. In principle, the number

of sample states must be large enough to yield a good representation of the state

distribution function. At the analysis time, a new analysis ensemble of samples is

calculated incorporating the information from the new observations and assuming

the probability distribution of the estimate is Gaussian. During the forecast phase,

each ensemble member is integrated forward in time using the atmospheric model.

At the next analysis time, this yields a new set of sample system states, which can

then be used to obtain new estimates of Pb and x̄b for use in Eq. (1.7). Note that this

procedure essentially supposes that assuming Gaussianity provides useful results, in
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spite of the fact that nonlinearity of the state evolution (and also possibly of the

observation operator H(x)) will cause this not to be strictly true. Nevertheless,

the effectiveness of this assumption seems to be substantial, as can be assessed by

seeing how well it works in practice; e.g., by seeing if reasonably good forecasts are

produced.

1.4 Localization

While the ensemble Kalman filter approach (Sec. 1.3) provides a useful frame-

work, its direct application to weather forecasting using current global atmospheric

models is computationally impossible. This is because such a model evolves a state

consisting of the atmospheric variables (fluid velocity, temperature, etc.) evaluated

on all the grid points. Thus, the state vector can typically have a dimensionality of

more than 106. Moreover, a very large number of sample states would be necessary

to effectively span all the significant covariances necessary for making an effective

estimate of the global state distribution function. Thus, we require some way of

circumventing this problem. To do this, workers in the field have suggested and

implemented the idea of ‘localization’, which is explained in Chapter 2.

1.5 Organization of the thesis

This dissertation consists of two parts, chapter 2: “On the propagation of

information and the use of localization in ensemble Kalman filtering”, and chapter

3: “Ensemble regional data assimilation using joint states”. In chapter 2, we show
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how localization in data assimilation is justified by studying the correlation length of

the background ensemble and how the information obtained from new observations

propagates in time and space. In chapter 3, we propose a new data assimilation

scheme for situations in which we have access to a global model and a regional

model of higher accuracy defined in a subregion within the global domain. Using

numerical experiments on toy models, we show that our proposed new scheme can

be substantially more accurate than schemes currently in use.
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Chapter 2

On the propagation of information and the use of localization in

ensemble Kalman filtering

2.1 Introduction

In an ensemble Kalman filter (EnKF), at any given analysis time t = nT , the

estimated state of the atmosphere and the corresponding error covariance reflecting

uncertainty in the state estimation are represented by a finite ensemble of global

system states, e.g., [8, 5, 10]. Each ensemble member is then integrated forward in

time using a physical model of the atmosphere, thus creating an ensemble of forecasts

at the next analysis time, t = (n+ 1)T . By suitable incorporation (assimilation) of

new measurements, the data assimilation process creates a new ensemble of system

states that reflects the most probable atmospheric state and its uncertainty based on

the available combined knowledge contained in the forecast ensemble at time (n+1)T

and the new measurement data. The process then repeats at the t = (n+2)T cycle,

and so on.

Several localized versions of EnKF have been proposed, e.g., [11, 9, 1, 3, 21, 14].

In this chapter, we concentrate on one localization scheme called the local ensemble

Kalman filter (LEKF) [21] and a subsequent computationally more efficient version,

the local ensemble transform Kalman filter (LETKF) [14]. We expect that simi-
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lar results would be obtained using any other of the available EnKF localization

schemes. In LEKF and LETKF, local regions surrounding each gridpoint location

are defined, the analysis is performed in each local region, and the results are com-

bined to form a global analysis ensemble. The motivation for using localization is

that it is expected to work well with drastically fewer ensemble members than would

be the case if localization were not employed. In fact, without localization, the com-

putational requirements for a meaningful EnKF analysis are so vast that they make

the approach completely infeasible in typical weather forecasting settings. On the

other hand, the use of localization has been shown to be successful and eminently

feasible for both toy models and real atmospheric models, e.g., [12, 13, 27, 25].

One goal of this chapter is to study the basic properties and rationale for local-

ization. To do this, we will employ numerical experiments on a simple model system

of equations introduced by Lorenz [18]. The model is simple and small enough that

(unlike a real operational model) we can employ an EnKF without localization. We

will compare the results obtained with the localized LETKF scheme with those ob-

tained without localization (henceforth referred to as ensemble transform Kalman

filter (ETKF); ETKF was introduced in Bishop et al. 2001 [4]). By doing this, we

will be able to study some aspects relevant to the issues of localization, such as what

determines a good size of the localization region, what dynamics justifies (or not)

localization, and so on.

The second goal of this chapter is to study the propagation of information in a

spatiotemporally chaotic system with wave-like dynamics that are similar to that of

weather. In particular, we use the traditional approach of discussing the propagation
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of information based on the study of phase and group velocities of the waves in the

model, e.g., [6, 22, 26, 29]. An alternative approach that has recently been gaining

increasing attention is based on using tools of probability theory—most important,

measures based on relative entropy of information, e.g., [16]. The relation between

localization and the advection of information from the observation location by the

model dynamics has been studied using the hierarchical ensemble filter by Anderson

2007 [3].

The organization of this chapter is as follows: In section 2.2, we introduce the

model system [18] that we employ, and we investigate some of its salient properties.

In section 2.3, we investigate correlations of the model. In section 2.4, we explain

the forecast and localization procedures used in the ETKF and LETKF schemes.

In section 2.5, we study correlations of the background ensemble of an ETKF as a

function of spatial distance. In section 2.6, we compare covariance matrices obtained

using an ETKF and an LETKF. In section 2.7, we show how observations taken in a

small region at a certain time affect the forecast at other spatial points in the future.

Section 2.8 provides further discussions and summarizes our main conclusions.

2.2 Model

Lorenz 2005[18] discusses three one-dimensional toy models that incorporate

many features shown in real atmospheric dynamics and in global numerical weather

prediction models. The first model (Lorenz model 1) was originally introduced in

Lorenz 1996 [17] and Lorenz and Emanuel 1998 [19]. This model has become the
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standard model of choice for the initial testing of EnKF schemes. The popularity of

the model is in part due to the similarity between the propagation of uncertainties

(forecast errors) in Lorenz model 1 and global models in the midlatitude storm-

track regions. In particular, the errors are propagated by dispersive waves whose

behavior is similar to that of synoptic-scale Rossby waves, and the magnitude of

the errors has a doubling time of about 1.5 days (where the dimensionless model

time has been converted to dimensional time by assuming that the characteristic

dissipation time scale in the real atmosphere is 5 days; see Lorenz 1996 [17]). Lorenz

model 2 adds the feature of a smooth spatial variation of the model variables that

resembles the smooth variation of the geopotential height (streamfunction) at the

synoptic and large scales in the atmosphere. Lorenz model 3, the most refined

and “realistic” of the three models in Lorenz 2005 [18], adds a rapidly varying

small-amplitude component to the smooth large-scale flow, mimicking the effects

of small-scale atmospheric processes. In our following simulations, we use Lorenz

model 3.

The equation of evolution of the scalar state variable Zn at position n is the

following:

dZn/dt = [X,X]K,n + b2[Y, Y ]1,n + c[Y,X]1,n −Xn − bYn + F, (2.1)

where n is a spatial variable (n = 0, 1, . . . , N − 1), periodic boundary conditions are
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employed (ZN = Z0), and the X and Y vectors are defined as

Xn =
I

∑

i=−I

′(α− β|i|)Zn+i, (2.2)

Yn = Zn −Xn, (2.3)

α = (3I2 + 3)/(2I3 + 4I), (2.4)

β = (2I2 + 1)/(I4 + 2I2), (2.5)

The prime notation on Σ′ signifies that the first and the last terms in the summation

are divided by 2. The bracket of any two vectors X and Y is defined as

[X, Y ]K,n =
J
∑

j=−J

′

J
∑

i=−J

′(−Xn−2K−iYn−K−j +Xn−K+j−iYn+K+j)/K
2 (2.6)

when K is even, and Σ′ is replaced by Σ when K is odd; J = K/2 when K is

even, and J = (K − 1)/2 when K is odd. The parameter values used throughout

this chapter are N = 960, K = 32, b = 10, c = 2.5, F = 15, and I = 12. We

solve Eqs. (2.1)–(2.6) using a Runge-Kutta scheme with a time step sufficiently

small to resolve the fast time scale of the model. We find that these equations

lead to a state profile that shows small-scale activity Yn superposed on a large-scale

smooth component Xn, thus crudely mimicking the multiscale dynamics of a real

atmospheric system.

Figure 2.1 obtained from a numerical solution of Eq. (2.1) shows how states

evolve in time. The horizontal axis is the spatial location, and the vertical axis

is the time. We define 6 h to be 0.05 time units in the time evolution equation

following Lorenz 2005 [Lorenz justifies this correspondence between t in Eq. (2.1) and

pseudohours by considering the damping time of the model]. The colors in Fig. 2.1
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Figure 2.1: Time evolution of state Zn of Lorenz model 3. In this figure, 6 h are

defined to be 0.05 time units in the model equations considering the damping time

of the model.

represent the values of the state variables Zn. Red corresponds to high values, and

blue corresponds to low values. The figure shows that waves of approximately 7

spatial periods propagate to the left. This observed structure mimics what is seen

at large scale in the atmosphere where Rossby waves play a prominent role.

The structure found in Fig. 2.1 also suggests that an insight can be gained by

representing the field as a modulated sinusoidal wave. For this purpose, modulating

envelopes were extracted from the states at each time using the method introduced in

the paper by Zimin et al. 2003 [29]. The method of [29] for extracting modulating

envelopes is explained briefly in appendix A. Based on the observed structure in

Fig. 2.1, we computed envelopes using wavenumbers of only 7 and 8 to show smooth

flow of the envelope (see appendix A). Figure 2.2 depicts the envelope amplitude in
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Figure 2.2: Time evolution of the wave packet envelopes extracted by the envelope

extraction method introduced in Zimin et al. 2003 [29]. Wave numbers of only 7

and 8 were used to smooth out the envelopes.

time and space for the same numerical run as in Fig. 2.1. From Fig. 2.2, we see that

wave packets propagate to the right, in contrast to the leftward propagation of the

individual troughs and ridges seen in Fig. 2.1. That is, in some appropriate sense,

the wave turbulent state consists of waves that have phase velocities that move to

the left (as in Fig. 2.1) and group velocities that move to the right (as in Fig. 2.2).

This situation is similar to that of Rossby waves in the atmosphere, whose phase

velocity is always westward relative to the mean zonal flow and whose group velocity

can be either eastward or westward. [24, 23, 7]
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2.3 Correlation structure of the model

We calculated the correlations Cm(τ) between values at two different locations

separated by m grid points in space and by τ in time as follows:

Cm(τ) =
〈 [Zn(t)− 〈Zn(t)〉 ] [Zn+m(t+ τ)− 〈Zn(t)〉 ] 〉

〈 [Zn(t)− 〈Zn(t)〉 ]
2 〉

, (2.7)

where angle brackets denote an average over n and t. The resulting plots, Cm(τ)

(Fig. 2.3) and Cm(0) (Fig. 2.4), show that wave dynamics plays a central role in the

spatiotemporal evolution of the correlation, as demonstrated through three prop-

erties: (1) the spatial correlation has the structure of a wave packet with carrier

wavenumber 7 and a packet envelope that decreases monotonically with increasing

|m| (Fig. 2.4), (2) the wave structure shifts to the left with a phase velocity of about

-0.77 grid points per hour (Fig. 2.3), and (3) the packet envelope shifts to the right

at a rate that we identify as a group velocity (e.g., see the bright yellow spots along

the red troughs in Fig. 2.3). Under the assumption of ergodicity, the correlation in

Eq. (2.7) can be regarded as describing an ensemble drawn from the distribution

that defines the climate of the model. In section 2.5, we will consider another type

of correlation function that can be regarded as describing an ensemble drawn from

a distribution of short-term forecast uncertainties associated with a fairly dense

observational network.

To make property (3) more transparent, we extracted the envelopes at each

temporal distance τ from Fig. 2.3 using the envelope extraction method in [29] with

wavenumbers of 6, 7, and 8. We obtained the results depicted in Fig. 2.5. It is seen

from Fig. 2.5 that, similar to Fig. 2.2, the envelope in m-τ space propagates to the
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Figure 2.3: Correlations Cm(τ) between state variables at two different points, (n, t)

and (n +m, t + τ) in Fig. 2.1. The values were averaged over all of the space-time

locations (n, t).
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Figure 2.4: Correlations Cm(0); i.e., the correlation values of Fig. 2.3 with time

difference τ set to 0.
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Figure 2.5: Envelopes extracted from correlations in Fig. 2.3 at each time τ using

wave numbers only from 6 to 8 to smooth out the result.

right at a group velocity of about 1.37 grid points per hour.

2.4 Forecasting and localization

In our numerical assimilation experiments, we will employ “perfect model”

simulations of forecast/analysis cycles. That is, we carry out a time evolution run

of our model, Eqs. (2.1)–(2.6), which we regard as simulating a “true” atmospheric

state evolution that we wish to analyze and forecast. We then take simulated mea-

surements of this true state Zn by adding uncorrelated noise of Gaussian distribution

to the true state variable Zn at each grid point and at each analysis time. The mean

of the noise is 0 and the standard deviation is 0.3, which is about the size of the

small-scale activity Y in the model. The standard deviation of the noise can be
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also compared with the climatological standard deviation of the state variable Zn,

which is 4.67. Using these simulated measurements, we do analyses employing the

same model, Eqs. (2.1)–(2.6), as we use to generate the true state evolutions [i.e.,

Eqs. (2.1)–(2.6)].

In our ETKF implementation, we use the same technique as described in

Hunt et al. 2007 [14], but without employing localization. To faithfully represent

the full system state and its covariance in the absence of localization, the number of

ensemble members K that we use in the ETKF must be at least on the order of the

number of growing local Lyapunov exponents, which increases as the number of grid

points of the model increases in general. Thus, we need many ensemble members

when there are many grid points in the model. We integrate each ensemble member

during the evolution phase of the forecast cycle, and the required computing power

to do this scales like K. In carrying out our ETKF procedure, it is also necessary

to invert a K ×K matrix, which requires a number of computer operations on the

order of K3. Hence, if we can do computations in local regions with much fewer

grid points than in the global region, and thus with correspondingly much fewer

ensemble members, then the required computational power is greatly reduced. For

a more detailed discussion of the computational cost of LETKF, see Hunt et al. 2007

[14] and Szunyogh et al. 2008 [25].

If the errors in the state estimates at two different grid points that are far from

each other are independent, then we might be able to compute analysis ensembles

for each location while ignoring the other. This qualitative type of consideration is

what motivates localization of the analysis. A brief description of the localization

17



process used in LETKF and implemented on our one-dimensional model, Eq. (2.1),

is the following: First, choose an appropriate spatial size L for the localization. At

each grid point i, a local patch is assigned as consisting of the 2L + 1 grid points

(i− L, i− L+ 1, . . . , i+ L− 1, i+ L) for i = 0, 1, . . . , N − 1. We then compute the

analysis ensemble in each local patch using observations in the local patch. Then,

we construct the global analysis ensemble that combines all of the local analysis

ensembles by taking weighted averages of analysis values from each local patch. Ott

et al. 2004 [21], Hunt et al. 2007 [14], and appendix B explain how to do the steps in

this procedure in detail. How accurate is this localization procedure? The supposed

main requirement is that observations outside the local patch should not affect the

information from the local patch that is used in the evolution of the ensemble to

the next analysis cycle. We discuss this issue for Lorenz model 3 in what follows.

Note that, because we investigate a univariate model, the issue of balance does not

arise. The issue of balance and its interaction with localization has been discussed

by Kepert 2009 [15].

2.5 Spatial correlations of the background ensemble

As we have pointed out, Fig. 2.4 shows a long-range correlation essentially

extending over the entire length of the simulation region. Thus, one might think

that we will lose a lot of information that comes through correlations from obser-

vations outside the local patch when we localize the analysis scheme. As we shall

subsequently argue, this is not the case. In particular, we emphasize that it is the
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covariance matrix of the background ensemble around the ensemble mean that is

used in the analysis, not the covariance matrix of the climatological distribution of

true states themselves.

To formulate a correlation relevant to what is used in our analyses, we first

carry out a perfect-model simulation of a forecasting situation. In particular, we

begin by preparing a background ensemble Z
(k)
n (t), k = 1, 2, . . . , 960, by running

1000 forecast cycles (we use k and t to denote an ensemble member and cycle

time, respectively). During each cycle, we saved the background ensemble Z
(k)
n (t)

and took simulated observations with noise of uncorrelated Gaussian distribution at

each grid point at the analysis time, and then we updated the ensemble with ETKF

using a multiplicative covariance inflation factor of 1.13 [see step 5 of appendix B;

the factor 1.13 gives the minimum rms error of the resulting state estimate—see

Anderson and Anderson 1999 [2] for a general explanation of covariance inflation],

and we then evolved the true state and the ensemble from t to t + 6 h (except

where otherwise stated, a 6-h cycle time and 1.13 multiplicative covariance inflation

factor are used throughout this chapter). Using these parameters, we calculated the

following ensemble-based spatial correlation in the background:

Ce
m =

〈

〈 [Z
(k)
n (t)− Z̄n(t) ] [Z

(k)
n+m(t)− Z̄n+m(t) ] 〉k

√

〈 [Z
(k)
n (t)− Z̄n(t) ]2 〉k

√

〈 [Z
(k)
n+m(t)− Z̄n+m(t) ]2 〉k

〉

n,t

, (2.8)

where 〈·〉k denotes an average over ensemble members k, 〈·〉n,t denotes an average

over space n and time t, and Z̄n = 〈Z
(k)
n 〉k. Figure 2.6 shows the result. As can be

seen, the magnitude of the correlation is less than 3% of its peak value for |m| > 46,

and the half-width of the strong peak around zero distance is roughly on the order
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Figure 2.6: Correlation Ce
m of the background ensemble of ETKF with 6-h cycle

time vs spatial distance m. The values were averaged over 1000 forecast cycles.

of 10 for 6-h cycle time simulation. Thus, the correlations of deviations of ensemble

members from the ensemble mean will be negligible when 2 grid points are separated

by more than 46 grid points.

To analyze further the result shown in Fig. 2.6, we note that the background

correlation is determined by the structure (correlation) of the analysis error and

the model dynamics that spreads the effects of the analysis error in space and

time. The shape of the analysis correlation function is very similar to that of the

background correlation function and is only weakly dependent on the magnitude of

the observation noise (Figs. 2.7a,b). A reasonable assumption is that the spatial

expansion of the correlation pattern of the analysis ensemble during the model

integration is controlled by the group velocity of the waves that compose the envelope
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Figure 2.7: Correlations Ce
m (a) of the background ensembles and (b) of the analysis

ensembles of ETKF with several different noise sizes. The values were averaged

over 1000 forecast cycles. The red, blue, brown, and black lines are for standard

deviations of the noise: 1.0, 0.1, 0.01, and 0.001, respectively.
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of the analysis error pattern. Although the group velocity associated with these

waves is not necessarily identical to the group velocity of the waves observed in

the free run of the model, the group velocity observed for the free run can be

considered to be an estimate of the maximum group velocity for the given dynamical

system. Thus, the comparatively short range of the correlations is natural if one

assumes that the expansion of the observed half-width of the correlation pattern

of the analysis ensemble during the model integration cannot be larger than the

maximum group velocity multiplied by the forecast time used in calculating the

values Z
(k)
n (t) in Eq. (2.8) and identifies the maximum group velocity (maximum

information propagation speed) to be on the order of the speeds found in Figs. 2.1–

2.5 (i.e., ∼1 grid point per hour).

In Fig. 2.8, we show results for the same quantity as plotted in Fig. 2.6, but

for the cases in which the assimilation cycle times are 6 (as in Fig. 2.6), 24, and 48

h. The observations were taken only at analysis times with corresponding intervals

of 6, 24, and 48 h. Consistent with the above interpretation, we observe that the

correlation function spreads as the cycle time is increased.

2.6 ETKF and LETKF covariance matrices

Now we compare the covariance matrices obtained from ETKF analyses with

those obtained from LETKF analyses. We ran forecast cycles keeping two sets of

ensembles, one for ETKF and one for LETKF. The number of ensemble members

used in our ETKF implementation was 960, which is the total number of grid points
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Figure 2.8: Correlation Ce
m of the background ensembles of ETKF with various

cycle times vs spatial distance m. The values were averaged over 1000 forecast

cycles. The solid, dash-dotted, and dotted lines are for 6-, 24-, and 48-h cycle times,

respectively.

of the model. Our LETKF implementation used a local patch size of 2× 50+1 and

number of ensemble members equal to 101, the same as the number of grid points

in the local patch. The multiplicative covariance inflation factor was 1.13 for both

ETKF and LETKF, which gives the minimum rms state estimate errors for both. We

computed the covariance matrix of the ETKF analysis ensemble and the covariance

matrix of the LETKF analysis ensemble at several analysis times. Because they

have nonnegligible values only near the diagonal, we chose the elements Pi,j of the

covariance matrices with |j − i| ≤ 7 and stacked them row by row so that elements

with the same separation of indices j − i are aligned vertically. Figures 2.9a,b
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show the ETKF and LETKF covariance matrices at a representative analysis time.

The vertical axis is index i, the horizontal axis is j − i, and the color represents

the covariance values between grid points i and j: Pi,j . Red corresponds to high

values, and blue corresponds to low values. These figures show similar patterns for

ETKF and LETKF. Figure 2.10 is a plot of P̄i versus i, where P̄i is the average

of Pi+l,i+l over the 11 values of l for −5 ≤ l ≤ 5. The red color is for ETKF, and

the blue color is for LETKF. This figure also shows remarkably similar patterns

for ETKF and LETKF. The mean rms errors of the state estimates [defined as

〈
√

〈 (Z̄a
n − Zn)2 〉n 〉cycle, where Z̄a

n is the mean of the analysis ensemble and 〈· · · 〉n

and 〈· · · 〉cycle are averages over grid points and over forecast cycles, respectively]

obtained from ETKF and LETKF are 0.0979 and 0.0997.

We also studied the patch size and cycle time dependence of two global mea-

sures of the goodness of LETKF assimilations for 6-, 12-, 24-, and 48-h cycle times.

One measure is the time-averaged rms error of the state estimate by averaged en-

semble as defined above. The other measure is

δ =

〈
〈

|P̄LETKF
i − P̄ETKF

i |
〉

i
〈

P̄ETKF
i

〉

i

〉

cycle

, (2.9)

where 〈· · · 〉i denotes an average over all of the grid points. We used the same

number of ensemble members as the number of grid points in a local patch for

LETKF. Figures 2.11 and 2.12 show that the rms error and the quantity δ become

smaller as we increase the local patch size. Using the rms error as our figure of

merit, we see that there is relatively little benefit to increasing the patch size past

about 15, although there is more substantial improvement in δ as the patch size
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Figure 2.9: Covariance matrix values of analysis ensemble at a certain forecast time

of (a) ETKF and (b) LETKF. The y axis is the row index i, and the x axis is the

difference between the column indices j and i.
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Figure 2.10: Variance values of analysis ensemble at a certain forecast time. The

values were averaged over 11 neighboring grid points. Red plot is for ETKF, and

the blue plot is for LETKF.

is increased past 15. Thus, we see that the improvement in the estimate of the

mean of the ensemble saturates more quickly with increase in patch size than the

improvement in the estimate of the variance of the ensemble. From Fig. 2.12, we can

also see that longer forecast cycle time makes δ larger when the local patch size is

smaller than about 20. However, we cannot see a clear pattern when the local patch

size is large. Figure 2.13 shows the difference between the rms errors of LETKF and

ETKF divided by the rms error of ETKF, a normalized rms error difference.
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Figure 2.11: Averaged rms errors of the state estimates by the means of the analysis

ensembles vs local patch size. The values were averaged over 2000 forecast cycles.

The lines with the circles, squares, triangles, and times signs correspond to 6-, 12-,

24-, and 48-h cycle times.

2.7 Demonstration of the localized influence of observations

If the local patch size is large enough to encompass most of the correlation

seen in Fig. 2.6, then it is to be expected that the analysis at grid points around the

middle of the patch does not lose too much information by ignoring observations

outside the local patch. In what follows, we report evidence supporting this intuition.

We now examine how observations taken at time t and in a small region around

spatial location i affect a forecast at space-time point (t+ τ, i+m). To do this, we

first ran 100 forecast cycles using the ETKF and noisy observations at all the grid

points (as done in section 2.5), thus bringing the ensemble members close to the true
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Figure 2.12: Values of δ (normalized difference between variances of analysis ensem-

bles of ETKF and LETKF) vs local patch size. The values were averaged over 2000

forecast cycles. The black, red, cyan, and blue colors correspond to 6-, 12-, 24-, and

48-h cycle times.
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and LETKF vs local patch size. The values were averaged over 2000 forecast cycles.
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times.
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state. Then, at current time t, we took observations at only five fixed contiguous

locations, i− 2, i− 1, i, i+1, and i+2 (taking observations at only one location did

not produce a clear result, possibly because the impact of one observation was not

strong enough). We then used these observations to calculate an analysis ensemble.

Then, we calculated the mean of the background ensemble and the mean of the

analysis ensemble and evolved the two means from the current time t to the time

t + τ . We denote the values of these two evolved means at each grid point n by

Z̄b
n(τ) and Z̄a

n(τ) (b and a denote background and analysis, respectively). We did

this for values of τ ranging from τ = 0 h to τ = 150 h in 6-h intervals, calculating

and saving the quantities

Dm(τ) = ( Z̄a
i+m(τ)− Z̄b

i+m(τ) )
2. (2.10)

We then proceed to the next time cycle t → t + 6 h and repeat this process: i.e.,

at time t we now take observations at all the grid points, calculate the analysis

ensemble, evolve it and the true state forward to create a new background ensemble

at the new time t → t + 6 h, and repeat the previously described five-observation-

point calculation of Dm(τ). Figure 2.14a shows a plot of 〈Dm(τ)〉cycle, the average

of Dm(τ) over 4000 cycles. The horizontal axis is m, and the vertical axis is τ . The

color represents 〈Dm(τ)〉cycle. Red corresponds to high values, and blue corresponds

to low values. The white color represents values higher than the upper limit of the

color bar. The figure shows that observations do not affect points that are far from

the observation points within up to about 30 h. However, all of the points become

affected by the observations after about 30 h.
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Figure 2.14: Values of 〈Dm(τ)〉cycle (evolution of the perturbation to the ensemble

mean caused by five localized observations). The values were averaged over 4000

cycles, (a) with ETKF and (b) with LETKF. The white line shows the group velocity

of Lorenz model 3, and the two red lines show the boundaries of the wedgelike region

of the perturbations.
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To investigate why all of the points eventually become affected after some

time, we plotted the time evolution of the differences between the two means,

dm(τi) = Z̄a
i+m(τi)− Z̄b

i+m(τi), (2.11)

at τi = i× 6 h (i = 0, 1, . . . , 7) at a certain cycle time (see Fig. 2.15a). Figure 2.15a

shows dm(τi) plotted versus m at 6-h intervals from τ = 0 h to τ = 42 h. It is seen

that small differences at points far from the observation points at τ = 0 h become

amplified and dominate the dm values at later times. At small τ , these differences

are close to zero but are not exactly zero. We computed the rms values of dm(0)

averaged over grid points m and cycles varying the number of ensemble members,

where the average over m is taken only for m < −300 and m > 300. Figure 2.16

shows that the impact of the localized observation on points far from the observation

point decreases as the ensemble size increases. So, these small impacts are likely to

be caused by the finite size of the ensemble (see Hamill et al. 2001 [9] and Anderson

2007 [3] for detailed discussions of noisy covariance values). As τ increases, the small

perturbations far from the observation points are chaotically amplified and become

large. We repeated this experiment using LETKF in place of ETKF. The use of

localization in LETKF has the effect of eliminating the randomlike small initial

differences dm(0) at large |m|. Figures 2.14b and 2.15b show the results. It is seen

that the effect of the localized observations spreads to other points linearly, creating

a wedgelike region in our τ -versus-m diagram indicated by two red lines in Fig. 2.14b

and two dotted lines in Fig. 2.15b. The propagation speed corresponding to the right

boundary of the wedge is roughly 3 grid points per hour, and the propagation speed
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Figure 2.15: Evolution of the perturbation to the ensemble mean caused by five

localized observations, dm(τi), in 6-h time intervals from τ = 0 h to τ = 42 h, at a

certain cycle time, (a) with ETKF and (b) with LETKF. The solid line shows the

group velocity of Lorenz model 3, and the two dotted lines show the same boundaries

in Fig. 2.14b.
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Figure 2.16: The rms values of dm(0) divided by the size of the noise of observations

vs ensemble size of ETKF. The values were averaged over 2000 cycles and over grid

points that are more than 300 grid points away from the middle of the observation

points.

corresponding to the left boundary of the wedge is roughly 1 grid point per hour.

Thus, it appears that, during a 6-h cycle time, the effect of an observation will, on

average, reach up to about 18 grid points to the right and up to about 6 grid points

to the left. The maximum difference between the background mean and the analysis

mean propagates at a speed that is close to the group velocity of wave packets (1.37

grid points per hour, shown by the white line in Fig. 2.14b and the solid line in

Fig. 2.15b) determined from Fig. 2.5.

To see the effect of observations at a space-time point (t, n) on a forecast at

(t + τ, n + m) when observations are taken at all of the grid points, we did an
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experiment similar to the one described above. This time, we took observations at

all of the grid points (instead of at 5 adjoining grid points) and calculated the value

C̃m(τ) instead of Dm(τ) defined in the above experiment:

C̃m(τ) =

〈

[Z̄a
n+m(τ)− Z̄b

n+m(τ)][Z̄
a
n(0)− Z̄b

n(0)]

σ2
noise

〉

n,cycle

, (2.12)

where σnoise denotes the standard deviation of the observation noise. Figure 2.17

shows C̃m(τ). The horizontal axis is m, and the vertical axis is τ . The color
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Figure 2.17: Values of C̃m(τ) [correlations between perturbations at (0, n) and at

(τ, n + m) caused by observations]. The observations were taken at all the grid

points. The values were averaged over grid points n and forecast cycles. The long

white line shows the group velocity of the Lorenz model 3, and the short white lines

show phase velocity of the model.

represents C̃m(τ). Red corresponds to high values, and blue corresponds to low

values. The white color represents values that are higher than the upper limit of the
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color bar. This plot also shows that the effect of observations propagates globally

to the right at a speed that is close to the group velocity of wave packets (shown

by a long white line). The orientation of major axes of the blue blobs slopes to the

left, and this slope is on the order of the phase velocity (-0.77 grid points per hour,

shown by short white lines) determined from Fig. 2.3.

2.8 Conclusions

The correlation function obtained from the time evolution of the state of

Lorenz model 3 and the envelopes extracted from it both show that there is pre-

dominant wave packet propagating to the right (sections 2.2 and 2.3). We found

that the correlation length of the deviations from the ensemble mean of the back-

ground ensemble of the ETKF at each forecast cycle with Lorenz model 3 is very

much shorter than the correlation length of the climatological distribution of model

states (section 2.5). Thus, we argued that we do not lose much information from

localization of the analysis if the size of the local patch is big enough to cover the

correlation length of the deviations of the background ensemble. The comparison

of the covariance matrices of the analysis ensembles with and without localization

shows that they have similar patterns (section 2.6), thus providing strong support

for the achievable accuracy of localization. The effect of an observation at space-

time point (t, n) on a forecast at (t+τ, n+m) was found to be local. In addition, the

information obtained from the observations propagates both forward (to the right)

and backward (Fig. 2.14b). However, the forward propagation, which is in the di-
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rection of the group velocity (to the right), is faster than the backward propagation

(to the left), and the maximum effect propagates at a speed that is close to the

group velocity (section 2.7).
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Chapter 3

Ensemble regional data assimilation using joint states

3.1 Introduction

Assuming that we have a global model and a regional model of higher accuracy

defined in a subregion inside the global region, we aim to produce a forecast which

is better than the one from each model by using information from both models.

We test two data assimilation methods. The first method is based on techniques

most commonly used in current practice and has recently been tested in Merkova

et al. 2011 [20]. In this method, the global and the regional data assimilations are

done separately, and the regional model receives information from the global model

through the boundaries during the integration phase, but the global model does not

receive information from the regional model. The second method, which we call

the joint state method, is proposed in this chapter. In this method, the global and

regional data assimilations are coupled simultaneously using information contained

in both the global and the regional forecast states, and the regional model receives

information from the global model through the boundaries during the integration

phase as in the separate analysis method. We use the Local Ensemble Transform

Kalman Filter (LETKF) algorithm for data assimilation. This algorithm allows

efficient implementation of the localization technique proposed by Ott et al. 2004

[21]. In order to test our global/regional assimilation techniques we use numerical
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experiments based on simple atmospheric ‘toy’ models proposed in Lorenz 2005 [18]

in conjunction with simulated observations. We compare results of our joint state

method and results of the separate analysis method. We find that better forecasts

are produced by using the joint state method than by using the separate analysis

method. We note that our proposed scheme would most likely be of potential interest

for centers, where both global and limited area forecasts and analyses are prepared.

The organization of the chapter is the following. Section 3.2 introduces the

atmospheric toy models that we use. Section 3.3 describes the data assimilation

schemes by the joint state method and by the separate analysis method. Section 3.4

describes how the regional model is coupled to the global model at the boundaries of

the subregion during the integration phases of forecast cycles. Section 3.5 compares

the results of our joint state method to those of the separate analysis method.

Section 3.6 gives further discussion and summarizes our conclusions.

3.2 True model, global model, and regional model

Lorenz 2005 [18] introduced three simple, spatially discrete, 1-dimensional

models that have been proven to be useful for testing weather data assimilation

methods. Here we will use Lorenz’s model 2 (which shows smooth propagating

waves) and the more refined Lorenz model 3 (which shows small scale activities on

top of smooth waves). Lorenz model 3 reduces to Lorenz model 2 when I = 1. In

particular, for I = 1, Eq. (2.2) yields Xn = Zn, which by Eq. (2.3) implies that
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Yn = 0. Thus, after changing notation, n→ m and Zn → Zm, we obtain

dZm/dt = [Z,Z]K,m − Zm + F, (3.1)

where m is used to denote a point on the coarser grid of the global model.

We use Lorenz model 3 with parameter values N = 960, K = 32, b = 10, c =

0.6, F = 15, I = 12 to generate our simulated true dynamics, and Lorenz model 2

with N = 240, K = 8, F = 15 for the global model defined at every fourth grid

point of the true model (n = 0, 4, 8, . . . , 956). Thus the grid points for Eq. (3.1)

occur at m = n/4, where n = 0, 4, 8, . . . , 956. We assume that, between analyses,

Eq. (3.1) for Zm gives an approximation of the dynamical evolution of Zn(t) at the

grid points n = 4m. When referring to locations or lengths of regions, we use the

coordinate system of the true model throughout this chapter (n = 0, 1, . . . , 959).

For the regional model, we define a subregion extending from n = n0 = 240 to

n = n1 = 720 grid, and use Lorenz model 3 with the same parameter values as

the true model. In order to integrate this regional model, we must evaluate the

bracket quantities on the right hand side of Eq. (2.1) defined by Eq. (2.6). For n

too close to n0 (n1) this involves X, Y , and Z values at grid points outside the

subregion, n < n0 (n > n1). Also, from Eq. (2.2), Xn in the regional model (and

hence also Yn) depends on Zn′ values in n′ < n0 (n′ > n1) if n is within a distance

I of n0 (n1). To evaluate these quantities, we use estimates of the required values

of Zn′ obtained from linear interpolation of the global values Zm onto the n-grid.

These interpolations essentially play the role of boundary conditions for the regional

model.
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3.3 Data assimilation

We selected 15 evenly spaced observation points starting from n = 0 (n =

0, 64, 128, . . . , 896). Notice that all the observation points are at grid points defined

in the global model. We construct simulated observations by adding random noise

drawn from independent Gaussian distributions of standard deviation 1 to the true

state values at the observation points.

We compare two data assimilation methods. The first method does data as-

similation for the global model and the regional model separately, while the second

method, which we call the joint state method, forms a combined state from the

global model and the regional model and does data assimilation on the combined

state. The intuition motivating our second method is that we expect the global and

the regional estimates will both benefit from information exchange between them.

We use LETKF for both methods. See Hunt et al. 2007 [14] for an explanation of

LETKF.

For the separate analysis method, we use LETKF without much modification.

For the global analysis, at each grid point n = 4m defined in the global model, we

define a local patch [n − s, n + s] of size 2s + 1 with s = 40, use the Ensemble

Transform Kalman Filter (ETKF) to obtain an analysis for the (2s/4 + 1) state

values in each patch. This yields local patch analyses for each ensemble member.

As done by others, e.g., Hunt et al. 2007 [14], we then use these patch analyses to

form the global analysis states for each ensemble member by defining the value of

the global ensemble field at each point m = n/4 to be the analysis state value of
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that ensemble member in the center of patch n = 4m. For the regional analysis, at

each grid point n defined in the regional model, we define a local patch, limiting the

size near the two boundaries of the subregion so that the local patch is defined only

inside the subregion, use ETKF, and take the patch analysis value at grid point n.

Thus the global local patches always have size 2s+1, but the regional local patches

have variable sizes depending on n. For n located in the subregion and also far away

from the boundaries, the regional local patch has size 2s + 1, while for n near the

boundaries (n + s > n1 or n− s < n0), the regional local patch is the intersection,

[n− s, n+ s] ∩ [n0, n1], and has a size less than 2s+ 1.

For the joint state method, we use the same local patch size, s = 40. For each

grid point n defined either in the global model or in the regional model, we define a

global local patch and a regional local patch (where, as before, the regional patch is

the intersection, [n− s, n+ s]∩ [n0, n1], which for some n = 4m will be empty). For

each such grid point n, we define a vector x
(n)
g by taking state values of the global

local patch, and x
(n)
r by taking state values of the regional local patch, and we then

form a local joint state vector x(n) by concatenating x
(n)
g and x

(n)
r , i.e.,

x(n) =









x
(n)
g

x
(n)
r









. (3.2)

We also form a local observation vector y
(n)
o by taking observations in the local

patches (from grid point n− s to n+ s). We define a local cost function J (n)(x(n))

42



for grid point n as follows,

J (n)(x(n)) = (x(n) − x̄
(n)
b )T (P

(n)
b )−1(x(n) − x̄

(n)
b ) (3.3)

+
[

y(n)
o −H(n)(x(n))

]T
R
−1

[

y(n)
o −H(n)(x(n))

]

+ κ
[

G(n)
g (x(n)

g )−G(n)
r (x(n)

r )
]T [

G(n)
g (x(n)

g )−G(n)
r (x(n)

r )
]

,

where x̄
(n)
b and P

(n)
b are the local mean and the covariance matrix of the background

ensemble, respectively, and R is the covariance matrix of the observation noise.

H(n)(x(n)) is a local observation operator defined as

H
(n)
i (x(n)) =



















(1− λ) xg,j(i) + λxr,j(i), if n0 ≤ j(i) ≤ n1;

xg,j(i), otherwise,

(3.4)

where j(i) is the observation location of the ith observation in the local patch, xg,j(i)

is the global state value at location j(i), and xr,j(i) is the regional state value at

location j(i). G
(n)
g (x

(n)
g ) is a vector that consists of the state values of the global

state at the grid points defined both in the global and the regional local patches.

Similarly, G
(n)
r (x

(n)
r ) is a vector that consists of the state values of the regional state

at the grid points defined both in the global and the regional local patches. κ and λ

are parameters. The third term is a constraint term that penalizes large differences

between the estimates of the global and regional model states. We determine the

value of x that minimizes the cost function J (n)(x(n)) with the LETKF algorithm

Hunt et al. 2007 [14].

In general, if our technique were to be applied in an operational setting, the

grid points of the global and the regional models within the subregion will not
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coincide. In that case, to calculate the third term in J (n)(x(n)), an interpolation

from the grid points of the regional model to the grid points of the global model or

vice versa could be employed before the values of the regional and the global models

are subtracted. Similarly, in an operational setting the observations are not at grid

points, and H(n) would then include interpolation.

3.4 Model integration

We define a smoothed regional state for the initial condition of the regional

model for integration between analysis times as follows. After the analysis phase,

we define spatial transition intervals of length 10 starting from the boundaries and

ending inside the subregion. We then modify the regional analysis values in the

transition intervals by taking weighted linear averages of the global analysis values

and the regional analysis values. We do this in order to make the transition between

the global model and the regional model smooth at the boundaries. For n such that

0 ≤ n < 10, we modify the regional ensemble members by

Xr
k,n0+n ← (n/10)Xr

k,n0+n + (1− n/10)Xg
k,n0+n, (3.5)

Xr
k,n1−n ← (n/10)Xr

k,n1−n + (1− n/10)Xg
k,n1−n, (3.6)

where Xg
k,n and Xr

k,n are the values of the kth global and regional ensemble members

at grid point n, respectively, and the subregion for the regional model is [n0, n1] =

[240, 720].

After performing the above smoothing process, we integrate each global and

regional ensemble members for 6 hours using a fourth-order Runge-Kutta method,
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dividing 6 hours into 24 time steps. We integrate the global ensemble members

independent of the regional ensemble members. For the integration of the regional

ensemble members, we use the necessary interpolated values of the corresponding

global ensemble members outside the subregion at each Runge-Kutta time step to

synchronize the global and the regional model at the boundaries.

3.5 Results

Before we tested the joint state method and the separate analysis method,

we ran forecast cycles with 40 ensemble members using the global and the regional

models separately and found that multiplicative covariance inflation factors of 0.024

and 0.02 for the global and the regional analyses, respectively, produce the lowest

rms state estimate errors. We henceforth use these values in our data assimilations.

For the joint state method, we found that λ = 0.9 and κ = 0.04 in Eqs. (3.3) and

(3.4) give the lowest rms state estimate errors, and we use these values in all of our

subsequent applications of the joint state method.

We first tested the separate analysis method and the joint state method with-

out boundaries. That is, we used the whole region for both the global and regional

models. Thus, there is no coupling between the global model and the regional model

at the boundaries during the integration phases. In this setup, aside from the corre-

lations induced by common observations in their assimilations, the separate analysis

method corresponds to having independent global and regional forecasts. For the

joint state method, the coupling between the global and regional models occurs only
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Figure 3.1: Rms errors of the state estimates of the separate analysis and the joint

state analysis using the whole region for both the global and the regional models.

The rms-error values were averaged over 10000 forecast cycles, discarding the values

of 1000 initial cycles. The green and the black colors correspond to the global and

the regional values obtained using the separate analysis method. The blue and the

red colors correspond to the global and the regional values obtained using the joint

state method.

at the analysis phases. Figure 3.1 shows the rms errors of state estimates given by

the means of the ensemble members as a function of the grid point. The values

were averaged over 10000 forecast cycles, discarding the values of 1000 initial cycles.

The green and the black colors correspond to the global and the regional values ob-

tained from the separate analysis method. The blue and the red colors correspond

to the global and the regional values obtained from the joint state method. Error
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minima occur at the observation points. The figure shows that the two regional rms

errors are almost the same, while the global rms errors from the joint state method

are much lower than the global rms errors of the separate analysis case indicating

that, as one would expect, the information from the regional model substantially

improved the estimate of the global model.

Now, we take a subregion [n0, n1] = [240, 720], and introduce coupling between

the global model and the regional model at the two boundaries during the integration

phase. Figures 3.2(a) and 3.2(b) show the rms errors of the analysis and of a 1

day forecast, respectively, using the same color scheme as in Fig. 3.1. The two

vertical dashed lines at grid points 240 and 720 indicate the boundaries of the

subregion. The additional purple curves show the rms-error values in the perfect

model scenario in which the forecast model was the true model (Lorenz model 3)

which was used globally throughout the entire space. We view this as setting a

standard for the best that could ever be done. These figures show that the joint

state method performs better than the separate analysis method for both the global

prediction and the regional prediction. We note that the global forecast obtained

from the joint state method is better than the corresponding one from the separate

analysis method even outside the subregion. This can be explained by the fact

that the better global state estimates inside the subregion at the analysis phases

can make better forecasts outside the subregion during the integration phases, and

these better forecasts outside the subregion can make the regional forecasts better

inside the subregion by providing better information at the boundaries during the

integration phases. We also note that the global analysis improvements that result
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Figure 3.2: Rms errors of (a) the state estimates (b) 1 day forecasts of the separate

analysis and the joint state analysis. The color scheme is the same as in Fig. 3.1.

The additional purple curves show the rms-error values when assimilations were

done globally using the true model (Lorenz model 3). The two vertical dashed lines

at grid points 240 and 720 indicate the boundaries of the subregion.
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from use of the joint state method are greater to the right of the subregion than to

its left. This is consistent with the fact (Lorenz 2005 [18], Yoon et al. 2010 [28])

that, for these models, waves (and hence the information they carry) have group

velocities that are predominantly rightward.

3.6 Discussion and conclusion

In this chapter we formulated a joint state method for regional forecasting.

Using simulations employing simple models, we have numerically tested our method

by comparing analysis and forecast results obtained using our method with results

obtained using a separate analysis method. We found that the global forecast in the

whole region and the regional forecast in the subregion are both noticeably improved

when the joint state method is used compared to when the separate analysis method

is used.

This work suggests several topics for future work. Most importantly, will the

encouraging results from experiments using our Lorenz model set-up continue to

apply when tests on real situations are done? What is the effect of regional model

error? What are the benefits of applying our coupled analysis scheme to situations

with multiple (perhaps overlapping) regional analyses?
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Appendix A

Extracting an envelope

See [29] for the original introduction of the method presented here. Let us say

that we have a function

f(n) = a(n) cos[φ(n) ], 0 ≤ n < N, (A.1)

where n is an integer, a(n) is an envelope, and cos[φ(n) ] is an oscillating part with

φ(n) monotonically increasing. We want to extract a(n) given f(n). First, f(n) can

be expressed as

f(n) =
1

2
a(n)eiφ(n) +

1

2
a(n)e−iφ(n). (A.2)

Define F (k), A(k), E+(k), and E−(k) to be discrete Fourier transforms (DFTs) of

f(n), a(n), eiφ(n), and e−iφ(n), respectively. Assuming each function is N-periodically

extended, we have the following:

F (k) =
1

2
DFT{a(n)eiφ(n)}+

1

2
DFT{a(n)e−iφ(n)} (A.3)

=
1

2N
A(k) ∗ E+(k) +

1

2N
A(k) ∗ E−(k) (A.4)

≡
1

2N

N−1
∑

l=0

A(l)E+(k − l) +
1

2N

N−1
∑

l=0

A(l)E−(k − l), (A.5)

where the asterisk denotes circular convolution. The term E+(k) is centered around

a positive frequency, and E−(k) is centered around a negative frequency. If we

assume that a(n) changes much more slowly than φ(n), then A(k) is well separated

from E+(k) and E−(k). See Fig. A.1, where the horizontal axis is the wavenumber
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k and the vertical axis is the amplitude of the DFT values. The red, blue, and black

plots are for DFTs of eiφ(n), e−iφ(n), and a(n), respectively. Therefore, A(k) ∗E+(k)

will be on the positive frequency side and A(k) ∗ E−(k) will be on the negative

frequency side. So, taking inverse discrete Fourier transform of F (k) only with

positive frequencies, DFT−1
+ {F (k)}, is equivalent to taking inverse discrete Fourier

transform of (2N)−1A(k) ∗ E+(k). Therefore, we have the following:

DFT−1
+ {F (k)} = DFT−1

{

1

2N
A(k) ∗ E+(k)

}

(A.6)

=
1

2
a(n)eiφ(n) (A.7)

Thus,

a(n)eiφ(n) = 2DFT−1
+ {F (k)} (A.8)

Taking the absolute values of both sides, we obtain

a(n) = 2 |DFT−1
+ {F (k)}|. (A.9)

In the above equation, only several frequencies that have large DFT values can be

used to approximate the envelope. This has the effect of smoothing out the envelope

by sacrificing accuracy. As more and more frequency components are added, more

and more wiggles are present in the envelope.
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Figure A.1: DFT of a(n), eiφ(n), and e−iφ(n). The terms A(k), E+(k), and E−(k) are

DFTs of a(n), eiφ(n), and e−iφ(n), respectively, and f(n) = a(n) cos[φ(n) ], 0 ≤ n <

N .
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Appendix B

LETKF algorithm

We present a summary of the LETKF algorithm of [14] used in our study with

Lorenz model 3. We assume a discrete model that has grid points. Each grid point

has a variable. A local region associated with grid point n is defined as a region

consisting of grid points i with n− L ≤ i ≤ n+ L for a certain integer L.

Input: a global background ensemble ofmg-dimensional model state vectors {x
b(i)
g , i =

1, 2, . . . , k}, an lg-dimensional vector yo
g of observations, a function H that maps the

mg-dimensional model space to the lg-dimensional observation space, and an lg × lg

observation error covariance matrix Rg. Here the subscript g denotes global.

Output: a global analysis ensemble ofmg-dimensional model state vectors {x
a(i)
g , i =

1, 2, . . . , k}

1. Apply H to each x
b(i)
g to form the global background observation ensemble {y

b(i)
g }

and average the latter vectors to get the lg-dimensional column vector ȳb
g. Subtract

this vector from each y
b(i)
g to form the columns of the lg × k matrix Y

b
g.

2. Average the vectors {x
b(i)
g } to get the mg-dimensional column vector x̄b

g and

subtract this vector from each x
b(i)
g to form the columns of the mg × k matrix X

b
g.

For each grid point, do the following steps 3–8.
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3. Select the rows of x̄b
g and X

b
g corresponding to the local region of m grid points

associated with the given grid point, forming the m-dimensional vector x̄b and the

m× k matrix X
b. Select the rows of ȳb

g and Y
b
g corresponding to the l observations

for the local region, forming the l-dimensional vector ȳb and the l × k matrix Y
b.

Select the corresponding rows of yo
g, forming the l-dimensional vector yo. Select the

corresponding rows and columns of Rg, forming the l × l matrix R.

4. Compute the k × l matrix C = (Yb)TR−1.

5. Compute the k× k matrix P̃
a = [(k− 1)I/ρ+CY

b]−1, where ρ > 1 is a covariance

inflation factor.

6. Compute the k × k matrix W
a = [(k − 1)P̃a]1/2, where the power 1/2 means the

symmetric square root.

7. Compute the k-dimensional vector w̄a = P̃
a
C(yo− ȳb) and add it to each column

of Wa, forming a k × k matrix whose columns are the analysis vectors {wa(i)}.

8. Multiply X
b by each wa(i) and add x̄b to get the local analysis ensemble members

{xa(i)} for the given grid point.

9. After performing steps 3–8 for each grid point, form the global analysis en-

semble {x
a(i)
g } by combining {xa(i)}’s from each local region by taking weighted

averages, x
a(i)
n,g =

∑n+L
j=n−L x

a(i)
n,l(j)f(n − j), where the subscript l(j) denotes the local

region associated with the grid point j and f(·) is a weighting function defined on

the integers from −L to L for a certain value L.
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