THE INSTITUTE FOR SYSTEMS RESEARCH

ISRTECHNICAL REPORT 2010-14

Dynamic Thermal Management Considering
Accurate Temperature-Leakage Interdependency

Bing Shi, Ankur Srivastava

ISR develops, applies and teaches advanced methodologies of design and

IIlStltllte fOl' analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
Sys e I I I S lems of engineering technology and systems for industry and government.
RebedrCh ISR is a permanent institute of the University of Maryland, within the
o A. James Clark School of Engineering. It is a graduated National Science
3.0
N » A.JAMES CLARK Foundation Engineering Research Center.

SCHOOL OF ENGINEERING

TRYLY .
h www.isr.umd.edu

Dynamic Thermal Management Considering Accurate
Temperature-Leakage Interdependency

Bing Shi and Ankur Srivastava
Department of Electrical and Computer Engineering
University of Maryland, College Park, USA

Abstract

In this paper, we develop an accurate dynamic thermal man-
agement DTM approach considering the interdependency of
temperature and leakage. By modeling the leakage-thermal in-
terdependence as a quadratic polynomial, we develop accurate
analytical equations that capture the thermal transient. We
also identify all the situations in which thermal runaway would
occur, which should be avoided by DTM. We then present a dis-
crete dynamic programming algorithm that performs thermal-
aware task and speed scheduling using the model we derived.
Compared to a linear leakage-thermal model [1], owing to our
more accurate model, our scheme resulted in 18.2% better per-
formance while maintaining the temperature below constraint.

1 INTRODUCTION

Dynamic thermal management is the process of runtime con-
trol of the processor control knobs such as Vyq, frequency,
task scheduling etc for curtailing excessive chip temperature.
With growing transistor densities dynamic thermal manage-
ment DTM has become a very active topic of research [1], [2],
3], [4], [5]-

With continued scaling, the impact of leakage power is grow-
ing as well. It has been shown that leakage and temperature
are highly interdependent: higher temperature increases the
leakage power which in-turn further increases the temperature.
This interdependence has been known for years and several
attempts have been made during design time to better esti-
mate/control the leakage and temperature through various de-
sign decisions. For example [6] estimates the chip thermal and
leakage profile while accounting for their interdependence. [7]
estimates the chip leakage profile while accounting for thermal
variability. Such approaches are mostly interested in analyzing
the steady state behavior and use a combination of numeri-
cal and analytical techniques to capture this thermal-leakage
relationship.

DTM on the other hand is a dynamic approach where we
need to be able to predict the fashion in which temperature
changes in time for a set of processor control knob options. For
example, for a given choice of frequency and initial tempera-
ture, we would like to know the time at which the temperature
will violate the thermal constraint. The complex relationship
between leakage and temperature can result in two different
dynamic behavior of temperature. Either the temperature in-
creases or decreases and eventually settles to a steady state

value. Or, the temperature increases uncontrollably, thereby
leading to thermal runaway. We would like to capture both
transient behaviors. A steady state analysis approach will not
suffice in such scenario. Recent work presented in [1], [8] cap-
tures the leakage, thermal dependence using a linear model.
Although their approach is interesting, the linear model has
limited accuracy and may mispredict thermal runaway. The
approach in [3] uses a piecewise linear approximation which is
an improvement over the pure linear model. But, they use ap-
proximation schemes to solve the thermal differential equations
thereby leading to limited accuracy estimates.

In this paper, we develop an accurate approach by model-
ing the leakage-thermal interdependence as a quadratic poly-
nomial. Existing work presented in [7] [9] has verified the
accuracy of the quadratic model. We develop accurate ana-
lytical equations that capture the thermal transient. We also
identify the situations in which thermal runaway would oc-
cur. Using our approach, any DTM scheme can estimate the
temperature dynamics over time as a function of processor fre-
quency and also if a specific choice of frequency will lead to
thermal runaway. Our model is generic and can be applied in
any DTM scheme regardless of whether a discrete or continu-
ous mathematical optimization framework is used. We demon-
strate the applicability of our model in a dynamic programming
based DTM scheme for performing task speed assignment and
scheduling. Specifically, the following contributions have been
made. 1) An analytical model for the temperature dynamics in
time parameterized w.r.t the initial temperature and the pro-
cessor speed. 2) The model can predict the thermal behavior
in time for any choice of initial temperature and frequency. 3)
The model enumerates all cases where thermal runaway will
definitely occur. These cases have been tabulated and could
be used by any DTM scheme as system states that must be
avoided. It is important to note that we have identified all
the cases of thermal runaway. 4) Incorporated the model in a
dynamic programming based DTM scheme for allocating task
schedules and speed. Experimental results indicate that com-
pared to a linear leakage-thermal model [1], owing to our more
accurate model, our scheme resulted in 18.2% better perfor-
mance while maintaining the temperature below constraint.
We also show that using the model which does not consider
the leakage-thermal interdependence in DTM results in under-
estimate of the real temperature and the solution will consid-
erably violate the thermal constraint.

Although, the quadratic polynomial model is an approxima-
tion as well, using more accurate models (such as [10]) would
force us to use numerical schemes for estimating the thermal
dynamics. Such an approach would not be amenable to effi-

cient optimization during DTM. Also existing work presented
in [7] [9] has already verified the accuracy of the quadratic
model.

Rest of the paper is organized as follows. Section 2 de-
velops the thermal model considering leakage-thermal inter-
dependence. We then explore a dynamic programming based
thermal-aware task speed scheduling problem using our model
in section 3. The experimental result is given in section 4.

2 RC THERMAL MODEL CON-
SIDERING LEAKAGE

2.1 Single core RC thermal model

The thermal behavior of a processor can be modeled by an
RC pair. Here we adopt the lumped RC thermal model sim-
ilar to the one used in [4] [11]. As shown in figure 1, voltage
represents the temperature, and current represents the power
consumption in the processor. The resistance represents a po-
tential heat transfer path through the packaging, while the
capacitance indicates the ability of the processor to store heat.

According to the RC thermal model in figure 1, the thermal
behavior of the processor can be described as the following
differential equation:

dT T— Tamb Ptotal
@~ RrRC ' C &

where T'(K) is the chip temperature, Toms(K) is the am-
bient temperature, P(W) is the total power consumption of
the chip, R(K/W) is the thermal resistance, and C(J/K) is
the thermal capacitance. By assuming that the power does
not change in time (just for the time being) and solving dif-
ferential equation 1, the chip temperature T is formulated as
equation 2, assuming the initial temperature is Tp.

T = (To — Tumb — RPiotat)e” "% + RPiotar + Tamp ~ (2)

()

R
AVAYAY
Talmb
L

Figure 1: RC Thermal Model

2.2 Leakage and Temperature Depen-
dency

As the IC technology scales down to deep sub-micron domain,
leakage becomes a large component of power consumption. To-
day, up to 50% (or even more) of the total power consumption
is leakage power [12]. Therefore, simply approximating the to-
tal power consumption by dynamic power [13] [14] will lead to
an underestimation of the real temperature.

There are three components of leakage power: Band-To-
Band-Tunneling (BTBT) leakage, sub-threshold leakage and

gate leakage. The BTBT leakage and sub-threshold leakage
increases with temperature while the gate leakage is rather in-
sensitive to temperature.

The works in [7] [9] model the thermal dependence of leakage
as a polynomial function of temperature:

P=a-T°—b-T+d (3)

where a, b and d are technology dependent parameters and

could be generated by polynomial approximation of the accu-
rate leakage model in [10].

From equation 2 and 3, we can see that temperature and
leakage power consumption influence each other. That is,
higher leakage power leads to higher temperature while higher
temperature will further increase the leakage power. Because of
this dynamic cross coupling of temperature and leakage power,
simply assuming that leakage power P, does not change in time
and substituting Piotar = Pq + P, into equation 2 cannot cap-
ture the dynamic nature of the interdependence between tem-
perature and leakage.

In this paper, we first develop a thermal model that take
leakage power and its dynamic interdependence with temper-
ature into consideration. Here we assume that dynamic power
is linearly dependent on frequency, that is Py = kf, where f is
the frequency and k is a constant (although our method is triv-
ially generalizable to more accurate models where P; = kf%).
We get the expression of total power consumption as shown in
equation 4.

Piota =P+ Pi=a-T° —b-T+d+kf (4)

By substituting the power model in equation 4 into the ther-
mal differential equation 1, we get the new thermal differential
equation as shown in equation 5.

gi_T_Tamb_’_Pl"rPd
dt RC C
7_T—Tamb+a-T2—b~T+d+kf
- RC C (5)
_ g 2 2 L ka“l‘Rd“FTamb
_CT (C’+RC)T+ RC
=A-T>+B-T+ D(f)
where
a b 1 Rkf + Rd + Tump
= — = —|—= —_— = 6
A=3 B=—(G+pg) DU o (6)

Assuming the frequency f does not change in time (for the
time being), we would like to solve the differential equation to
derive the underlying equation governing the thermal transient.
The temperature profile described in differential equation 5 can
be derived by solving the following integration:

T dT t
= dt
/To AT? + BT + D(f) /0

(7)

The solution of equation 7 depends on the values of param-
eters A, B, D(f) and initial temperature Tp.

2.3 Thermal Model with Leakage Power

In this section we present our analytical model that captures
the temperature dynamic w.r.t time parameterized using ini-
tial temperature Ty and processor frequency f. This model
is created by solving differential equation 5 and is a complete
model that captures all combinations of input parameters 7o
and f. Using our model, we also enumerate all the cases for
which thermal runaway occurs. Our analytical model could be
used by any DTM scheme. We first define the following:

_1,(Rb+1)° Tams

f’"_k(4aR2 R —d)
—B+ /B2 —4AD(Y) —B— /B2 —4AD(J)

Tsl = 24 5 TS2 =

2A
(8)

Since the model is rather complex, we first enumerate the
model and then prove its correctness by presenting the deriva-
tion. The different input parameter combinations Ty, f have
been partitioned into the following cases.

1. Case 1:

(a) Case la: f < fm and To < Ts1
(b) Case 1b: f < fmm and To > T

2. Case 2:
(a) Case 2a: f = fn and To < —B/2A
(b) Case 2b: f = f,, and Tp > —B/2A

3. Case 3: f > fn,

Note that these cases enumerate all possible input combi-
nations. Now we highlight the model for each of these cases.

Case 1a:
Ty = YBZZAAD{) wo + 1+ (w0 = NeVPTHAPOY B
2A 2o+ 1 — (20 — 1)6,/32—4AD(f)t 2A
9)
where
2AT, B
B2 — 4AD(f)

Case 1b: The temperature will subject to thermal runaway.

Case 2a:

2ATy) + B B

T®) = —i@ar, + By t24 24

(11)

Case 2b: The temperature will subject to thermal runaway.

Case 3:The temperature will subject to thermal run-
away.

We will derive all these cases subsequently. It is important
to note that our analytical model has the following benefits.

a. Based on the initial temperature, one can choose the
frequency such that thermal runaway will not occur;

b. One can choose the frequency such that the desired tem-
perature profile can be achieved;

c. The equations of temperature profile are purely analyti-
cal;

d. These are optimal rules that consider all possible cases
for the temperature profile. If we develop thermal-aware fre-
quency policies based on these rules, we are guaranteed that
the temperature will never violate the constraints and/or the
runaway condition will never occur.

This model can be easily incorporated in many DTM
schemes. For example a DTM scheme can use it to evaluate
a set of possible frequency choices for a given initial tempera-
ture. This model can be used to estimate the amount of time
it will take to reach a desired temperature for a given f,7Tp
assignment. It can also be incorporated in a non-linear pro-
gramming based optimization framework. Next we present the
derivation.

2.3.1 Case 1:

Note that in this case f < fm, that means B®> —4AD(f) > 0.
So function AT2+BT+D(f) = 0 has two real roots Ts1 and Tso
(described in equation 8) under this scenario. The integration
in equation 7 can be solved as follows:

e dT t
A 1y (T = Ts1)(T — Ts2) :/0 dt (12)
We define:
__eatwen
we get
2 ‘ 1 t
\/WAD(J”)/M (@~ 1)(x+1)dl’*/o dt
= mn? J‘i :0 - /B~ 4AD(f)t‘; "
= zt) =2 +1 4 (w0 — 1)eVB? 14Dt

zo+ 1 — (zo — 1)eV B> 44Dt

By substituting equation 14 into the expression of z(t) in
equation 13, we can get the expression for the temperature as
shown in equation 9. Here z¢ is an initial condition which is
a function of both the initial temperature 7o and frequency f.
It will decide the temperature profile.

There are two subcases associated with different initial con-
dition Tp. We describe Case 1b first and then Case 1la.

Case 1b f < fm and To > Ts1: It can be shown that for
this case xo > 1. If we plot equation 9 with this as xo, we find
that the temperature 7T'(t) quickly diverges to infinity. This
case is shown in figure 2(c). As we can see from the figure,
the temperature will diverge and increase to infinity in a very
short time, which results in thermal runaway. So we should
avoid this case.

Case 1la f < fm and To < Ts1: It can be shown that for
this case zo < 1. When z equals exactly to 1, the temperature
will stay at T = Ts1 (this can be illustrated by simply substi-
tuting the appropriate values in equation 9). But the problem
with this case is, as long as there is a tiny fluctuation which

make the temperature increase a very small value, the proces-
sor will jump out of steady state and enter case 1b, which is
thermal runaway. So in practical implementation, we should
avoid this case as well.

When zo < 1 (which happens when To < Ts1), equation 9
governs the thermal dynamics. In fact, it can be proved that
temperature must always converge to Ts2 as t — oo. For the
sake of illustration, this case is plotted in figure 2(a) and 2(b).
For the same thermal equation 9, the actual thermal behavior
is different for Ts2 < To < Ts1 (plotted in figure 2(a)) than for
To < Ts2 (plotted in figure 2(b)). Both cases converge to Tso.

2.3.2 Case 2:

Here f = f, therefore B® — 4AD(f) = 0. So the function
AT? + BT + D(f) = 0 has one real root —B/2A. By solving
equation 7, we obtain the following:

1 [T dr ¢
A e
To (T+ﬂ) 0
1 1 T t
_1 - (15
A T+% To 0)
T = 2AT, + B B

T —AQAT, + B)t+2A 24

There are two subcases in this situation depending on the ini-
tial temperature Tp.

Case 2a Ty < —B/2A: 1) If the initial temperature Tp
is lower than the value —B/2A, the temperature will slowly
increase to —B/2A as in figure 3(a). 2) If the initial temper-
ature equals exactly to —B/2A, the temperature will stay at
the initial temperature —B/2A. So —B/2A is the steady state
temperature when f = f,,. Hence in this situation the thermal
dynamics is governed by equation 15 (or equation 11).

Case 2b Ty > —B/2A: When we incorporate this case
in equation 15, we find that the temperature quickly diverges
to infinity (as shown in figure 3(b)), which results in thermal
runaway. We should also avoid this case.

2.3.3 Case 3:

In this case, B? —4AD(f) < 0 since f > fm. We can solve
the integration in equation 7 and get the temperature profile
by following steps:

T dT t
/TD AT? 4 BT + D(J) :/0 dt
4A T dT ¢
TN By (e T)P 1 -y
= ;arctaHL(Tﬂ- E) ’ *tt
VAAD(f) — B? VAAD(f) — B2 247, o
= T(t) = V4AD(f) - B? tan(y(t)) — B
2A 2A
(16)
_ \J4AD(f) - B? 24 B
y(t) = ft —+ arCtan(W(TO —+ ﬂ))

(17)

T AT AT

Tsi Tsp To
Ty L Tq Tsi
T T
2 Ty /_/' s2
0 t 0 t 0 t

(a) (b) (c)

Figure 2: (a)(b) represent case la, (c) represents case 1b

AT AT

-B/2A|
Ty

Figure 3: (a): Case 2a, (b): Case 2b, (c): Case 3

As we can see from equation 16 and figure 3(c), the temper-
ature profile in this case follows a tangent function tan(y(t))
which increases very rapidly towards infinity when y(t) ap-
proaches 7/2. This happens regardless of the initial tempera-
ture Tp. So we should avoid this situation as well. As a result,
we set the maximum frequency fiaez = fm, and the frequency
should never exceed finaz.

3 THERMAL AWARE SPEED
AND TASK SCHEDULING

Following the discussion of previous section, we can use the
rules derived there in any dynamic thermal management
scheme to constraint the frequency so that thermal runaway
condition does not occur. Also we can create temperature pro-
files such that thermal constraints are never violated. Our rules
can be used in both continuous (mathematical) and discrete
optimization frameworks.

In this section, we present a discrete dynamic programming
algorithm that performs thermal-aware task and speed schedul-
ing using the model we derived in the previous section, which
accounts for the non-linear leakage and temperature depen-
dence. Our primary objective is not to approach the DTM
problem with a new algorithmic technique, but to empower a
large class of DTM algorithms with a better way of predicting
the thermal impact of their decisions.

3.1 Problem Formulation

Given:

(1) a periodic sequence of n tasks J = {J1, Ja, ..., Jn }, whose
corresponding workload is W = {w1, w2, ..., w, }, respectively;

(2) m distinct frequency levels F = {f1, fz, ..., fm}, so the
execution time of the i’th task using frequency f; is wi/ f;;

(3) I sleep state where the frequency f = 0, and the length
of [sleep states are l1,l2,...,1;;

(4) the initial temperature is To,

We would like to assign a frequency for each task and a
potential sleep state after each task so that the total execu-
tion time of the n tasks is minimized. During the execution of
each task, the frequency does not change. Also the tempera-
ture should never exceed the maximum temperature constraint
Tmaz and after the execution of all tasks, the final temperature
decreases below 1.

This problem is NP-complete [11]. But we present a dy-
namic programming method to find solutions reasonably close
to optimal. Many versions of this problem have been studied
before [4] [11]. Note that this problem is a demonstrator of the
practicality of the model we developed in the previous section.

3.2 Dynamic Programming with Fixed
Task Order

We first explore the optimization problem assuming that the
task order is already given. In section 3.3, we will incorporate
task order rescheduling to this problem. The steps to solve
this speed scheduling optimization problem with dynamic pro-
gramming is as follows:

(1) Sort the frequency in ascending order so that fi < fo <
e < fm-

(2) Traverse the tasks from first to the last.

(3) For the first task, the initial processor temperature is
To. For each of the frequency states, use the model to predict
the thermal profile and/or potential runaway state. Note that
the task will take time wo/f; to execute for each frequency.
Prune out frequencies that result in runaway or violation of
thermal constraint. It is noteworthy that if frequency f; vio-
lates the constraints then frequencies fjt1...fn will violate as
well and do not need to be evaluated. This will give is a set
of solutions with varying latency and final temperature. Each
solution k is characterized by a latency and temperature tuple
(dk,Tw). Here latency dj is the time it takes to finish task 1
and final temperature T} is the temperature upon completion
of task 1 for this specific frequency assignment. Among these
solutions we can prune out those which are clearly sub-optimal
than others (higher latency and higher final temperature). This
pruning process results in a left-over set of co-optimal solutions
C ={(d1,Th), (d2,T3), ..., (dx,Tx)} as illustrated in figure 4.

(4) Now evaluate the possibility of adding a potential sleep
state. For each co-optimal solution from the previous set C,
incorporate the possibility of adding each of the [sleep states.
For a solution (dk,T%) € C, adding a sleep state [; would make
the overall latency become dj, + [;. The final temperature at
the end of the sleep state (I; time units) could be computed
using our model with T} as the initial temperature and f = 0.
Combining each co-optimal solution in C with each sleep state
in [will give us a set of new solutions with total latency and
final temperature as parameters. Once again we can generate

a new co-optimal set C of solutions using the pruning criteria
in figure 4.

Co-optimal
Delay 4 Solutions Pruned

SO T
‘\ O
B B

dp O

da A\\ C o (@)

de Q

0 Ta TcTs Temf)erature

Figure 4: Multi-objective optimization

(5) Now the set C represents the total latency vs final tem-
perature tradeoff for finishing task 1. Note that none of these
solutions violate the thermal constraint or result in thermal
runaway.

(6) Now pick the next task J2. For each solution (di, T%) € C,
use T}, as the initial temperature and compute the total latency
of running J> at each of the available frequencies, plus the
latency of previous task (and sleep states). Also compute the
thermal profile using our model. Prune out solution that result
in thermal runaway and also those that violate the thermal
constraint. Among the remaining set of solutions with total
latency and final temperature, prune out sub-optimal solutions
using the criteria of figure 4. This will give us a new set of co-
optimal solutions C = {(d1,T1), (d2,T%), ..., (dx, Tk)} where d
is the total latency of executing J; and J2 with potential sleep
states in between and T}, is the final temperature. Now repeat
step (4) for adding new sleep states.

(7) Repeat step (6) for all subsequent tasks.

(8) After the last task pick the solution with smallest latency
whose final temperature is less than 7.

With these steps, we are guaranteed to find the optimal so-
lution since during pruning, we only prune those solutions that
violate the temperature constraints and the suboptimal solu-
tions, and we did not prune any potential optimal solutions.
Although this method is not proved mathematically with poly-
nomial runtime, in practical implementation, as will be shown
in the simulation result, it does prune many solutions and the
runtime is fast. We can also use more strict pruning criteria
to prune more co-optimal solutions to gain runtime. However,
we will not explore it in this paper since it is not the focus of
this paper.

3.3 Considering Task Rescheduling

Rescheduling the task order may further decrease the task exe-
cution time. So here we combine task rescheduling with speed
scheduling in this problem to find better task order and the
corresponding frequency assignment for each task. Once again
our primary objective is to demonstrate the applicability of our
model in different DTM paradigms.

3.3.1 Dynamic Programming with Task Schedul-
ing

To consider task rescheduling, we also use the dynamic pro-
gramming method, but add one more dimension of choice to
the dynamic programming: task to be executed.

(1) Just as before, we start with initial temperature Tp. In-
stead of evaluating just the first task Ji, we evaluate the pos-
sibility of starting from any of the n tasks. For each of the
tasks as the first task, we get a set of co-optimal solutions with
(di,Tx) as parameters. Following this we can add potential
sleep states similar to the previous algorithm. This set of solu-
tions (for all tasks) represent that one task has been completed
(although the specific task may be different for each solution).

(2) This set of co-optimal solutions may be too many. We
can use several heuristic based pruning techniques to reduce
the potential solution space without potentially loosing out
on optimality. The pruning mechanism we used in this paper
quantifies each solution by the total workload that has been
completed by it. Hence now each solution (dk,T%) also has an
associated total workload executed parameter Wj. Now we can
perform pruning of these solutions based on a criteria similar
to the one in figure 4. Note that in this case higher workload
with small latency and temperature are desirable properties.

(3) Now we have n — 1 tasks left. Repeat the above steps
using the current set of co-optimal solutions and choosing the
next task from the left-over set of n — 1 tasks. Note that the
set of leftover tasks depends upon which tasks were scheduled
in the current solution being considered from the co-optimal
set.

(4) Repeat step (3) till all tasks are considered.

(5) Among all solutions pick the one with smallest latency
and final temperature less than Tp.

However, we found that even after our heuristic pruning,
there are still many co-optional solutions left. So in the next
section, we develop a heuristic method to further reduce the
number of co-optional solutions.

3.3.2 Heuristic to Improve the
Speed

Computation

The heuristic works as follows.

(1) Sort the tasks in ascending order of their workload.

(2) Divide the tasks from the previous sorted list G =
{91,92,...,9-} into z contiguous groups . Each group has n/z
tasks.

(3) When choosing the next task to be executed (see step
(4) of the previous algorithm), instead of considering all the
tasks that has not been executed, here we only consider one
task from each group. That is, we pick one task from each
group that has not been scheduled yet as candidates for the
next task to be executed (the task in each group is selected in
ascending order of workload). This guarantees that both tasks
with smaller and larger workload are in the candidate tasks
each time.

With this grouping, the number of choices can be greatly
reduced since the number of groups z is much smaller than
the number of tasks n. Besides, we can flexibility select the
number of groups z to make a tradeoff between the optimality,
i.e., total task execution time and the computation complexity,
i.e., total number of co-optimal solutions.

4 EXPERIMENTAL RESULTS

We obtained the thermal model parameters R, C' from [5]. The
initial temperature Tp = 50°C and the maximum tempera-
ture constraint Timez = 80°C. In our simulation, we use three
discrete frequency fi = 1 x 10°Hz, fo = 3 x 10°Hz, f3 =
5.5 x 10° Hz and two sleep states whose length are 20sec and
50sec, respectively.

4.1 Comparison 1: With existing leakage-
temperature models

We first compare the frequency schemes and corresponding
temperature profile generated by the dynamic programming
based algorithm when used in conjunction with 1) our leakage
aware thermal model, 2) the model which does not consider the
interdependence of leakage and temperature (assumes leakage
as a constant value calculated at room temperature) and 3)
linear leakage-temperature model [1], [8]. For this comparison,
we only focus on the fixed task order case.

We took a set of 20 tasks with workloads ranging from
1 x 10! to 2 x 10'? units. The tasks are scheduled in ascend-
ing order of their workload. The optimal frequency scheme
obtained by using our model is shown in figure 5(a). The first
three tasks run at the highest frequency fs3 so that the tem-
perature heats up to as high as possible (without violating the
temperature constraint), and then the frequency reduce to f2
since continue running at f3 at the fourth task will make the
temperature exceed Tiqee- From the fourth task, the processor
runs at f continuously until at the last task, the frequency
reduces to fi so that the final temperature goes back to Tp.
Besides, no sleep state is used between any two tasks. The
total task execution time is 8242sec. By applying this fre-
quency scheme to the accurate thermal-leakage model in [10],
the temperature profile is shown in figure 5(b). As we expect,
the temperature will never violate the temperature constraint
for this scheme (figure 5(b)). The total runtime is 0.2sec.

For comparison we use the model which does not consider
the interdependence between leakage and temperature (leakage
is assumed to be a constant value computed at room temper-
ature). This model under-estimate the actual temperature for
a given frequency assignment. Hence it over-clocks the system
thereby leading to higher temperature. Figure 6(a) shows the
frequency scheme and figure 6(b) highlights the real tempera-
ture profile of this speed assignment scheme when applied to
the accurate leakage model in [10]. It can be seen that the
solution considerably violates the thermal constraint.

Finally we also compare the results obtained by using the
linear leakage-thermal interdependency model [1] [8]. This lin-
ear model was generated by performing linear regression on the
real thermal-leakage model [10]. The frequency policy and the
associated real thermal profile is shown in figure 7. Although
this model did not violate the thermal constraint, the overall
execution latency of the tasks was 9742.4 seconds. This is
18.2% more than our model.

Hence it can be seen that our model captures the thermal

transient more accurately thereby leading to improved solu-
tions.

Table 1: Task latency and computational complexity comparison

Fix order Fully reschedule

Group (z=5) Group (z=10)

Latency Runtime(s) Latency Runtime(s) Gain(%) Latency Runtime(s) Gain(%) Latency Runtime(s) Gain(%)

Benchmark 1 1 0.20 0.8504 1055.22 14.96 0.8638 24.91 13.62 0.8561 121.86 14.39
Benchmark 2 1 0.07 0.8459 574.65 15.05 0.8713 11.15 12.87 0.8534 69.87 14.66
Benchmark 3 1 0.02 0.8495 150.41 15.05 0.8580 5.57 14.20 0.8504 16.42 14.96
Benchmark 4 1 0.01 0.8480 60.30 15.20 0.8448 1.97 15.52 0.8528 6.90 14.72
Benchmark 5 1 0.01 0.8480 42.77 15.20 0.8510 1.73 14.90 0.8510 6.03 14.90
Benchmark 6 1 <0.01 0.8480 15.86 15.20 0.8569 0.65 14.31 0.8412 2.99 15.88
Benchmark 7 1 <0.01 0.8480 6.75 15.20 0.8644 0.29 13.56 0.8406 1.30 13.94
Benchmark 8 1 <0.01 0.8480 6.63 15.20 0.8402 0.24 15.98 0.8375 1.29 15.95
leog 6x109
5 5
4
4
— -3
3
2
2 1
0 2000 4000 6000 8000 10000 % 1000 2000 3000 4000 5000
(a) (a)
355 390 0
350T\ Tmax 380l
345 T(t) 370}
340 3600 1
- - Tmax
335 350] 1
330 340
325 330
320 320
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000

(b)

Figure 5: (a) Optimal frequency scheme for fixed order
tasks using our model, (b) Real temperature profile for
this scheme

4.2 Comparison 2: Fixed order, full

rescheduling and grouping

Now we compare the results obtained with and without task
rescheduling. We generated a set of benchmarks with total task
workloads ranging from 2 x 102 to 1 x 10*®. We compared the
results obtained by 1) fixed task order assuming the task sched-
ule was increasing w.r.t. workloads, 2) full task rescheduling in
which no task grouping was done (see section 3.3) and 3) task
rescheduling when they are grouped into 5 and 10 clusters (see
section 3.3).

In table 1, we compare the total task execution time (la-

(b)

Figure 6: (a) Optimal frequency scheme for fixed order
tasks using model without leakage, (b) Real temperature
profile for this scheme

tency), which is normalized w.r.t. the latency of fixed task or-
der scheme, and the program running time for these schemes.
None of these schemes violate the thermal constraint. From the
table, we can see that when we fully consider task rescheduling
the task latency can reduce about 15.13%, however, the run-
time is about 239 sec on average which is 5000 more than the
fixed order method. But the grouping works quite well. For
example, when the number of group z = 5, computing the best
schedule needs only 5.8sec on average, while the average task
latency can still improve 14.37%.

x 10

0 2000 4000 6000

t
(a)

8000 10000

355

350l Tmax
345 T(®)
340
335
330

325

320 y
0 2000

4000 6000 8000

t
(b)

Figure 7: (a) Frequency scheme for fixed order tasks using
linear leakage model, (b) Real temperature profile for this
scheme

10000

5 CONCLUSION

In this paper, we developed an accurate dynamic thermal man-
agement approach considering the interdependency of temper-
ature and leakage power. We also present a discrete dynamic
programming algorithm that performs thermal-aware task and
speed scheduling using the model we derived. The experi-
mental result shows that compared to a linear leakage-thermal
model, owing to our more accurate model, our scheme resulted
in 18.2% better performance while maintaining the tempera-
ture below constraint.

6 Acknowledgments

We would like to thank NSF grant CCF 0937865 for supporting
part of this research.

References

[1] G. Quan and Y. Zhang, “Leakage aware feasibility anal-
ysis for temperature-constrained hard real-time periodic
tasks,” in 21st Euromicro Conference on Real-Time Sys-
tems (ECRTS ’09), pp. 207-216, 20009.

[2] R. Rao, S. Vrudhula, and N. Chang, “An optimal ana-
lytical solution for processor speed control with thermal

constraints,” in Proc. of Intl. Symp. on Low Power FElec-
tronics and Design (ISLPED’06).

[3] R. Rao and S. Vrudhula, “Performance optimal proces-
sor throttling under thermal constraints,” in Proc. of Intl.
Conf. on Compilers Architectures and Synthesis for Em-
bedded Systems (CASES’07).

[4] T. Chantem, X. S. Hu, and R. P. Dick, “Online work
maximization under a peak temperature constraint,” in
Proceedings of the 14th ACM/IEEE international sympo-
stum on Low power electronics and design (ISLPED 09),
pp. 105-110, 2009.

[5] K. Skadron, T. Abdelzahery, and M. R. Stan, “Control-
theoretic techniques and thermal-rc modeling for accurate
and localized dynamic thermal management,” in Proc. of
Intl. Symp. on High-Performance Computer Architecture
(HPCA’02).

[6] T.Sato, J. Ichimiya, N. Ono, and M. Hashimoto, “On-chip
thermal gradient analysis considering interdependence be-
tween leakage power and temperature,” in IEICE Trans-
actions on Fundamentals of Electronics, Communications
and Computer Sciences, pp. 3491-3499, 2006.

[7] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full
chip leakage estimation considering power supply and tem-
perature variations,” in Proceedings of the 2003 Interna-
tional Symposium on Low Power Electronics and Design
(ISLPED’03), pp. 78 — 83, 2003.

[8] Y. Liu, R. Dick, L. Shang, and H. Yang, “Accurate
temperature-dependent integrated circuit leakage power
estimation is easy,” in Proceedings of the conference on
Design, automation and test in Europe (DATE’07), pp. 1-
6, 2007.

[9] R. Ayoub and T. Rosing, “Predict and act: Dynamic ther-
mal management for multi-core processors,” in Proceed-
ings of the 2003 International Symposium on Low Power
Electronics and Design (ISLPED’09), pp. 99-104, 2009.

L. He, W. Liao, and M. R. Stan, “System level leak-
age reduction considering the interdependence of tem-
perature and leakage,” in Design Automation Conference

(DAC"04).

S. Zhang and K. S. Chatha, “Approximation algorithm for
the temperature-aware scheduling problem,” in Proceed-
ings of the 2007 IEEE/ACM international conference on
Computer-aided design (ICCAD 07), pp. 281-288, 2007.

N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner,
J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leak-
age current: Moores law meets static power,” IEEE Com-
puter Society, vol. 36, no. 12, pp. 68-75.

S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd,
and G. D. Micheli, “Temperature-aware processor fre-
quency assignment for mpsocs using convex optimiza-
tion,” in Proceedings of the 5th IEEE/ACM interna-
tional conference on Hardware/software codesign and sys-
tem synthesis (CODES’07), pp. 111-116, 2007.

S. Wang and R. Bettati, “Delay analysis in temperature-
constrained hard real-time systems with general task ar-
rivals,” in Proceedings of the 27th IEEE International
Real-Time Systems Symposium, pp. 323-334, 2006.

[11]

[13]

[14]

