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1 Background

1.1 Defining our process

A Weiner process is a Gaussian random process which has the following prop-
erties:

1. E(Wt) = 0, t ≥ 0
2. E(WtWs) = min(s, t)
3. Wt(ω) is continuous in t a.s.

That such a process exists can be proven (cf, for example, Koralov and Sinai
2007). The Weiner process has several important properties. Of particular in-
terest are that the Weiner process is a.s. nowhere differentiable, has infinite
total variation, and the increments of the Weiner process are independent of
each other. In addition it can be shown that E(Wt −Ws)

2 = t − s (cf for
example Karatzas and Shreve 1991).

So let Wt be a real Weiner process. It can be shown that the Weiner pro-
cess is a suitable “white noise process” to add to a differential equation (see
Oksendal 2007 pp. 21-22). Let us then consider the two differential equations:

ẋt = b(xt) + σ(xt)Ẇt, x0 = x0 (1)

ẋSt = b(xSt ) + σ(xSt ) ◦ Ẇt, xS0 = x0 (2)

Where equation 1 is understood in the Ito sense and equation 2 is understood in
the Stratonovich sense. These equations find significance in a variety of appli-
cations. However, the solution to these equations, xt and xSt , are not smooth.
They are in fact nowhere differentiable.

Because the Weiner process is a.s. nowhere differentiable, Ẇt is non-existent
and we are left to consider weak solutions to the above equations. The exact

nature of
∫ t

0 σ(xs)dWs is unclear, however, due to the Weiner process being of
unbounded (infinite) total variation.

When considering how the stochastic integral should be defined we would want
to define the integral for simple functions and then extend the definition to
some class of measurable functions. This approach, however, leads to prob-

lems since it can be shown that when trying to approximate
∫ t
s WsdWs in this

manner we can find two simple approximations φ1(t, ω, n) and φ2(t, ω, n) such
that as n goes to infinity both functions converge to the Weiner process but

E[
∫ t

0 φ1(s, ω)dWs(ω)] = 0 for all n and E[
∫ t

0 φ2(s, ω)dWs(ω)] = t for all n
(See Oksendal 2007 p.23). We therefore need to limit the class of functions we
can use as approximating functions for the integral.

In 1944 Kiyoshi Ito suggested we use the value at the left hand end point of the
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interval to make this approximation. This suggestion has led to what is now
known as the Ito integral. In 1963 Donald Fisk and in 1966 Ruslan Stratonovich
independently suggested a different definition that used the value at the mid-
point of the interval as an approximating value. This suggestion has led to the
definition of what is now known as the Stratonovich integral.

1.2 The Ito Integral

To solve the problem of different approximations leading to different integrals
we need to restrict the class of simple functions in some way. Ito suggested we
look at functions f(t, ω) which are Ft adapted. This would restrict us to using
the value of our function at the left end point as an approximation. This seems
like a reasonable criterion since it leads to a property of not “looking ahead.”
For a full description of Ito’s definition see Oksendal 2007 pp.25-30. Essentially
once we restrict ourselves to Ft adapted functions we can define the integral
naturally for a simple function φ(t, ω) =

∑
j ej(ω)χ[tj ,tj+1] as∫ t

r
φ(s, ω)dWs =

∑
j

ej(ω)[Wtj+1
−Wtj ](ω) (3)

and expand the definition by using simple approximations to more complex
functions.

The Ito integral has many useful properties (see Oksendal 2007):

1. E[(
∫ t
r f(s, ω)dWs)

2] = E[
∫ t
r f

2(s, ω)ds] (The Ito Isometry)

2.
∫ t
r fdWs =

∫ u
r fdWs +

∫ t
u fdWs (Separability)

3.
∫ t
r (cf + g)dWs = c

∫ t
r fdWs +

∫ t
r gdWs (Linearity)

4. E(
∫ t
r fdWs) = 0

5.
∫ t
r fdWs is Ft measurable

6. The Ito integral is a Martingale w.r.t. Ft

However, change of variables is difficult under the Ito integral. For a one di-
mensional function we get the following theorem:

Theorem 1 (The One Dimensional Ito Formula) Let xt be defined

as above. Let g(t, x) ∈ C2([0,∞XR). Then Yt = g(t,Xt) is an Ito process

and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2

And for multidimensional functions
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Theorem 2 (The Multidimensional Ito Formula) Let Xt be an n

dimensional Ito process. Let g(t, x) = (g1(t, x), ..., gp(t, x)) be a C2 map

from ([0,∞)XRn) to Rp. Then Yt = g(t,Xt) is an Ito process and Yk is

given by

dYt,k =
∂gk
∂t

(t,Xt)dt+
∑
i

∂gk
∂xi

(t,Xt)dXi,t+
1

2

∑
i,j

∂2gk
∂xi∂xj

(t,Xt)dXi,tdXj,t

For a proof of these theorems see Oksendal 2007 p 46.

1.3 The Stratonvich Integral

Because of its “no look ahead” property, the Ito integral’s approximations have
to use the left end points of intervals for the approximating functions. In 1966
Stratonovich proposed a different approach. For random processes Xt and Yt
we define ∫ t

s
YsdXs = l.i.p∆→0

N−1∑
j=1

Ytj + Ytj+1

2
, tj)[Xtj+1

−Xtj ]

(See Stratonovich 1966, Ikeda and Watanabe 1989). Effectively this changes
from using the left end point of the interval to using the midpoint of the inter-
val in the approximation. Despite this seemingly minor change, the properties
of the integrals vary significantly.

Although the two integrals disagree, the Stratonovich integral can be written
as a function of the Ito integral. While it can be shown using integration by
parts that for smooth functions the Ito and Stratonovich integrals agree, if the
function is non-differentiable, like xt, then the Ito integral and Stratonovich
integrals are not the same. Specifically, in one dimension, xSt can be related to
the Ito integral by the equation:

xSt − x0 =

∫ t

0
b(xSs )ds+

∫ t

0
σ(xSs )dWs +

1

2

∫ t

0
σ̇(xSs )σ(xSs )ds (4)

where the stochastic integral above is interpreted in the Ito sense (see Stratonovich
1966). More generally, we can define a new operation “symetric Q multiplica-
tion:”

Y ◦ dX = Y dX +
1

2
dXdY (5)
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And show that this definition leads to an integral defined as above(see Ikeda
and Watanabe 1989). This would mean that if xSt is defined as above:∫ t

0
xSt ◦ dWt =

∫ t

0
xSs dWs +

1

2
< xSs ,Ws >t

=

∫ t

0
xSt dWs +

1

4

∫ t

0

∂σ(xSt )2

∂x
· dt

See Ikeda and Watanabe, 1989 and Karatzas and Shreve, 1991 for more details.

It can be proven (cf example Ikeda and Watanabe 1989) that the Stratonovich
integral is separable and linear. However we lose the property that the integral
is a Martingale (Oksendal 2007) and we also lose the fact that the average of

the integral is 0 (specifically from the above relation we get E(
∫ t

0 f ◦ dWs) =
1
4E[

∫ t
0
∂f2

∂x ds] which is in general not zero).

We do, however, get a very nice property when doing change of variables. Un-
like the Ito formula, the Stratonovich analogue does not have any second order
terms, which makes it so that the chain rule functions similarly to what would
be expected for the normal integral. Specifically we get

Theorem 3 (The Multidimensional Ito Formula for Stratonovich

Integrals) Let Xt be an n dimensional Stratonvich process. Let g(t, x) ∈
C2([0,∞)XRn). Then Yt = g(t,Xt) is an Stratonovich process and Y is

given by

dYt =
∂g

∂t
(t,Xt)dt+

∑
i

∂g

∂xi
(t,Xt) ◦ dXi,t

(see Ikeda and Watanabe 1989). Because of these different properties, both
definitions of the integral are desirable in different situations.

1.4 Choosing which interpretation to use

Which interpretation is appropriate depends on how we choose our approxi-
mating process. In “On the Convergence of Ordinary Integrals to Stocastic
Integrals,” Eugene Wong and Moshe Zakai proved that if we approximate the
Weiner process with a process, yn, which has the following proerties:

1. yn is continuous and of bounded variation a.s.
2. yn converges a.s. to Wt as n→∞
3. For almost all ω there exists n0(ω) and k(ω), both finite such that for all n > n0 and all t in

[a,b], yn(t, ω) ≤ k(ω)
4. yn has a piecewise continuous derivative
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And if b and σ are both Lipshitz continuous, then the approximation

ẋnt = b(xnt ) + σ(xnt )ẏn,t (6)

converges as n → ∞ to xSt a.s. This would lead us to believe that the
Stratonovich integral is the more natural choice in certain situations. How-
ever the fact that the Ito integral is a Martingale w.r.t. Ft leads this choice to
be more desirable in many situations.

When we use an approximation which uses multiple parameters, we sometimes
get different behaviours depending on the order in which we take the limits. For
instance, if we consider the system:

µṗµ,δt = b(qµ,δt )− pµ,δt + σ(qµ,δt )
dV δ

t

dt
, q̇µ,δt = pµ,δt , qµ,δ0 = q, pµ,δ0 = p (7)

where V δ
t is an approximation to Wt and look at the behaviour as µ and δ

approach zero, then we will see different behaviours depending on how µ and δ

are related. M. Freidlin proved that if µ, δ ↓ 0 and lim(µe1/δ) = 0, then qµ,δt
converges to xt and, otherwise, the solution converges to xSt . More specifically,
if we let δ go to zero and then let µ go to zero, we will understand the integral
in the Ito sense, but if we let µ go to zero first and then let δ go to zero, we will
understand the integral in the Stratonovich sense. (Freidlin 2004)

In this paper I will consider a different method of smoothing out the process,
namely using a mollifier in the differential equation to smooth the solution out.
I will first show that if we only use the mollifier, then the solution should be
understood in the Ito sense. I will then show that if we use both an approxi-
mation to the Weiner process as Wong and Zakai did and a mollifier, then the
solution will converge to the Stratonvich integral provided we take the limit of
the mollifier first or take both limits at the same time. However, if we first let
the process converge to the Wt then let the mollifier converge to zero, the ran-
dom process will converge as though we were looking at the stochastic integral
as the Ito integral.
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2 Differential Equations with Mollifiers

First I will consider just the case where we apply a mollifier to our process to
smooth out the process. So let xδt be the solution to the equation

ẋδt = b(

∫ t

0
h(s− α)xδαdα) + σ(

∫ t

0
h(s− α)xδαdα)Ẇs (8)

and xt be the solution to the equation

ẋt = b(xt) + σ(xt)Ẇs (9)

where σẆs is understood in the Ito sense. If both b and σ are Lipsitz and h is
a mollifier with support between 0 and δ then we have the following theorem:

Theorem 4 For each T¿0, under the above assumptions xδt converges

uniformly on [0,T] in probability as δ ↓ 0 to xt

Proof: To prove this theorem we will need the following lemma:

Lemma 1 If b and σ are both Lipshitz then E|xδt − xδs|2 ≤ K|t− s|

Proof of Lemma: Using the boundedness of b and σ and the fact that s < t < T
so (t− s) < T we get that:

E|xδt − xδs|2 ≤ 2E|
∫ t

s
b(

∫ t

0
h(r − α)xδαdα)dr)|2

+ 2E|
∫ t

s
σ(

∫ t

0
h(r − α)xδαdα)dWr)|2

≤ 2(K2
1 (t− s)2) + 2(

∫ t

s
σ(

∫ t

0
h(r − α)xδαdα)2dr)

≤ 2(K2
1 (t− s)2) + 2(K2|t− s|)

≤ K|t− s|

Which proves our lemma.

To show convergence it will suffice to show limδ↓0E(Xδ
t − Xt)

2 = 0. But
using the properties of the Ito integral, the fact that b and σ are Lipshitz, and

6



lemma 1 we get:

E(Xδ
t −Xt)

2 ≤ 2E(

∫ t

0
b(

∫ t

0
h(s− α)xδαdα)− b(xs)ds)2

+ 2E(

∫ t

0
σ(

∫ t

0
h(s− α)xδαdα)− σ(xs)dWs)2

≤ 2E(

∫ t

0
K2

3 |
∫ t

0
h(s− α)xδαdα− xs|2ds)

+ 2E

∫ t

0
K2

4 |
∫ t

0
h(s− α)xδαdα− xs|2ds

≤ 2E(

∫ t

0
(K2

3 +K2
4 )|

∫ t

0
h(s− α)(xδs − xs + xδα − xδs)dα|2ds)

≤ 2K5E[

∫ t

0
2(

∫ t

0
h(s− α)(xδs − xs)dα)2

+ 2(

∫ t

0
h(s− α)(xδα − xδs)dα)2ds]

≤ 2K5[

∫ t

0
E2(

∫ t

0
h(s− α)(xδs − xs)dα)2

+ 2E(

∫ t

0
h(s− α)( max

s−δ≤r≤s
(xδr)− xδs)dα)2ds]

≤ 2K5[

∫ t

0
2E(xδs − xs)2 + 2(

∫ t

0
(K2δ)ds]

≤ 4K5

∫ t

0
E(xδs − xs)2 + 4K5T (K2δ)

At this point we use Gronwall’s inequality to getE(Xδ
t−Xt)

2 ≤ 4K5T (K2δ)e4TK5

which clearly goes to zero as δ ↓ 0.
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3 Approximations with mollifiers and a smooth
process

If we both use a smooth approximation to the Weiner process and add a molli-
fier to our process as we did before, then we will get behaviour similar to what

M. Freidlin found for qµ,δt . Specifically, we will find that what xµ,δt converges
to will depend on the order in which we take the limits.

Let yµ be a continuous random process which has the following properties:

1. yµ is continuous and of bounded variation a.s.
2. yµ converges a.s. to Wt as µ→ 0
3. For almost all ω there exists µ0(ω) and k(ω), both finite such that for all

µ < µ0 and all t in [a,b], yµ(t, ω) ≤ k(ω)
4. yµ has a piecewise continuous derivative

then the following equation will asymptotically approximate either xt or xSt

ẋδ,µt = b(

∫ t

0
h(s− α)xδ,µα dα) + σ(

∫ t

0
h(s− α)xδ,µα dα)ẏµ(s), xδ,µ0 = x0

(10)
More specifically if we first take δ to be any function of µ which goes to zero as

µ goes to zero, then we get that xδ,µt → xSt from the following theorem:

Theorem 5 Let xδ,µt be defined as above. Let xSt be the solution of the

Stratonovich equation:

ẋSt = b(xSt ) + σ(xSt )Ẇs +
1

2
σ(xSt )

∂σ(xSt )

∂x
(11)

Then if δ is a function of µ such that when µ is zero then so is δ

and b(x), σ(x) and ∂σ2(x)/∂x are Lipshitz continuous

and ∂σ(x)/∂x is continuous

and further σ(x) ≥ β > 0 (or -σ(x) ≥ β > 0)

then xδ,µt converges to xSt almost surely.

Proof: I will prove this similarly to Wong and Zakai (1966) Theorem 2 with
some minor modifications. I will need the following lemma which Wong and
Zakai proved:

Lemma 2 Let f(t) be real, non-negative and continuous in −∞ < a ≤
t ≤ b < ∞. Let 0 < µ < ∞, ρ > 0 and let ε(t) ≥ 0 and

∫ b
a ε(t)ds <
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(ρµeµρ(b−a))−1 Suppose that

log(1 + f(t)/µ) ≤ log(1 + ε(t)) + ρ

∫ b

a
f(s)ds

Then

f(t) ≤ µ[ε(t) + ρµeρµ(a−b)
∫ b

a
ε(t)dt]/[1− ρµeρµ(a−b)

∫ b

a
ε(t)dt]

Let Φ(x) =
∫ x

0 σ(u)du, then using lemma 1:

Φ(xδ,µt ) =

∫ t

a

∂Φ(
∫ t

0 h(s− α)xδ,µα dα)

∂s
ds+

∫ t

a

dΦ(xδ,µs )

∂xδ,µs
dxδ,µs + Φ(xδ,µa )

=

∫ t

a

∂Φ(
∫ t

0 h(s− α)xδ,µα dα)

∂s
ds+

∫ t

a

b(
∫ t

0 h(s− α)xδ,µα dα)

σ(xδ,µs )
ds+

+

∫ t

a

σ(
∫ t

0 h(s− α)xδ,µα dα)

σ(xδ,µs )
dyµ + Φ(xδ,µa )

≤
∫ t

a

∂Φ(
∫ t

0 h(s− α)xδ,µα dα)

∂s
ds+

∫ t

a

b(xδ,µs ) +K1δ

σ(xδ,µs )
ds+

+ (1 + sign(yµ(t)− yµ(a))K2δ)(yµ(t)− yµ(a)) + Φ(xδ,µa )

But this also means that:

Φ(xδ,µt ) ≥
∫ t

a

∂Φ(
∫ t

0 h(s− α)xδ,µα dα)

∂s
ds+

∫ t

a

b(xδ,µs )−K1δ

σ(xδ,µs )
ds+

+ (1− sign(yµ(t)− yµ(a))K6δ)(yµ(t)− yµ(a)) + Φ(xδµa )

But thanks to a result from Wong and Zakai:

Φ(xSt ) =

∫ t

a

∂Φ(xSs )

∂s
ds+Wt −Wa +

∫ t

a

b(xSs )

σ(xSs )
ds+ Φ(xSa ) (12)

as a special case of equation 11 from their paper.
Since b(x) is Lipshitz, it follows that |b(x)| ≤ K(1+ |x|) for some K, therefore:

| b(x)

σ(x)
− b(y)

σ(y)
| ≤ | b(x)

σ(x)
− b(y)

σ(x)
|+ | b(y)

σ(x)
− b(y)

σ(y)
| (13)

≤ (K2/β)(1 + |y|)|x− y| (14)

Also, since σ−2(x) and ∂σ(x)/∂t are uniformly bounded we have:

|∂Φ(x)

∂t
− ∂Φ(y)

∂t
| ≤ K3|x− y| (15)
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By a special case of equation 14 from Wong and Zakai we know that:

|Φ(x)− Φ(y)| ≥ K4log(
(1 + |x− y|)

1 + |y|
) (16)

Let u = 1 + maxa≤t≤bx
S
t which is finite a.s. Then if we subtract |Φ(xδ,µt ) −

Φ(xSt )| we get the following bound:

log(1 +
|xδ,µt − xSt |

u
) ≥ K5||yµ(t)−Wt|+K6δ|+K5||yµ(a)−Wa|+K6δ|+

+K5u

∫ t

a
||xδ,µs − xSs |+K7δ|ds

At this point we apply lemma 2 with εµ(t)) = ε(t) = exp(K5||yµ(t)−Wt|+
K6δ|+K5||yµ(a)−Wa|+K6δ|+K8(t− a)uδ)− 1

Since δ goes to zero as µ goes to zero, εµ(t) goes to zero as µ goes to zero, and

therefore by dominated convergence so does
∫ b
a εµ(t)dt. Therefore xδ,µt → xSt

a.s.

However, if we take µ ↓ 0 first and assume that δ >> µ so that the limits
can be taken separately, then we get a different result. Namely we find that

xδ,µt → xt from the following theorem:

Theorem 6 If first µ ↓ 0 and then δ ↓ 0, and under the same conditions

as above, then xδ,µt converges to xt in probability.

Proof: Since both xδ,µt and xδt are smooth, we can use integration by parts to
prove this. So applying integration by parts:

xδ,µt − x0 =

∫ t

0
b(

∫ t

0
h(s− α)xδ,µα dα)ds+

∫ t

0
σ(

∫ t

0
h(s− α)xδ,µα dα)dyµ(s)

=

∫ t

0
b(

∫ t

0
h(s− α)xδ,µα dα)− ∂

∂t
(σ(

∫ t

0
h(s− α)xδ,µα dα))yµ(s)ds

− σ(o)yµ(0) + σ(

∫ t

0
h(s− α)xδ,µα dα)yµ(t)

And

xδt − x0 =

∫ t

0
b(

∫ t

0
h(s− α)xδαdα)ds+

∫ t

0
σ(

∫ t

0
h(s− α)xδαdα)dWs

=

∫ t

0
b(

∫ t

0
h(s− α)xδ,αdα)− ∂

∂t
(σ(

∫ t

0
h(s− α)xδαdα))Wsds− σ(o)W0

+ σ(

∫ t

0
h(s− α)xδαdα)Wt

10



So subtracting these two we get

|xδ,µt − xδt | ≤
∫ t

0
|b(

∫ t

0
h(s− α)xδ,µα dα)− b(

∫ t

0
h(s− α)xδαdα)|ds+

+

∫ t

0
| ∂
∂t

(σ(

∫ t

0
h(s− α)xδ,µα dα))yµ(s)−

− ∂

∂t
(σ(

∫ t

0
h(s− α)xδαdα))Ws|ds+ σ(0)|yµ(0)−W0|+

+ |σ(

∫ t

0
h(t− α)xδ,µα dα)yµ(t)− σ(

∫ t

0
h(t− α)xδαdα)Wt|

≤ K1

∫ t

0
|xδ,µs − xδs|ds+

∫ t

0
| ∂
∂t
σ(

∫ t

0
h(s− α)xδαdα)||yµ(s)−W (s)|+

+

∫ t

0
K2|xδ,µα − xδα|

∫ t

0
h(s− α)dyµ(s)dα+K3|yµ(0)−W (0)|+

+ σ(

∫ t

0
h(t− α)xδαdα)|yµ(t)−Wt|

≤ K1

∫ t

0
|xδ,µs − xδs|ds+K4|yµ(s)−W (s)|+K5

∫ t

0
|xδ,µα − xδα|dα+

+K3|yµ(0)−W (0)|+K6|yµ(t)−Wt|

≤ K7

∫ t

0
|xδ,µs − xδs|ds+K4|yµ(s)−W (s)|+K3|yµ(0)−W (0)|+

+K6|yµ(t)−Wt|

Then applying Gronwall’s inequality and the rules of expectation we getE|xδ,µt −
xδt | ≤ E[K4|yµ(s)−W (s)|dα+K3|yµ(0)−W (0)|+K6|yµ(t)−Wt|]eK7T

which clearly goes to zero as µ ↓ 0. We then apply Theorem 4 to obtain our
result.

So we see that if we take the limit as first µ ↓ 0 then δ ↓ 0 we need to
understand the stochastic integral in the Ito sense and if we take δ ↓ 0 then
µ ↓ 0 we should understand the integral in the Stratonovich sense.
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