
Abstract

Title of Dissertation: Planetesimal Evolution and the

Formation of Terrestrial Planets

Zoë Malka Leinhardt, Doctor of Philosophy, 2005

Dissertation directed by: Dr. Derek C. Richardson

Department of Astronomy

To create an accurate numerical model of solar system formation it is necessary

to understand how planetesimals, the planetary building blocks, evolve and grow

into larger bodies. Traditionally, numerical simulations of planet formation have

used extrapolations of impact experiments in the strength regime to model the ef-

fects of fragmentation in planetesimal collisions (e.g. Greenberg et al. 1978; Beaugé

& Aarseth 1990; Wetherill & Stewart 1993). However, planetesimals, which are large

enough to decouple from the gaseous nebula, are dominated by self-gravity not mate-

rial strength (Holsapple 1994). As a result, such extrapolations may give misleading

results since much more energy is needed to disperse than to disrupt a planetesimal

in the gravity regime. Moreover, the effects of impact angle, spin, and impactor

mass ratio are often not taken into account. In order to determine the effects of

various collision parameters, I have completed several parameter-space studies of

collisions between kilometer-sized planetesimals. The planetesimals are modeled as

“rubble piles”—gravitational aggregates of indestructible particles bound together

purely by gravity. These rubble pile planetesimals have no tensile strength.

I find that as the ratio of projectile to target mass departs from unity the impact

angle has less effect on the collision outcome. At the same time, the probability

of planetesimal growth increases. Conversely, for a fixed impact energy, collisions

between impactors with mass ratio near unity are more dispersive than those with

mass ratio far from unity. Net accretion dominates the outcome in slow head-on

collisions while net erosion dominates for fast off-axis collisions. The dependence

on impact parameter is almost as important as the dependence on impact speed.

Off-axis collisions can result in fast-spinning elongated remnants or contact binaries

while fast collisions result in smaller fragments overall. Clumping of debris escaping

from the post-collision remnant can occur, leading to the formation of smaller rubble

piles. In the cases tested, less than 2% of the system mass ends up orbiting the

remnant. Initial spin can reduce or enhance collision outcomes, depending on the

relative orientation of the spin and orbital angular momenta. For an average mass

ratio of 1:5, the accretion probability is ∼ 60% over all impact parameters.

Results are presented from a dozen direct N -body simulations of terrestrial

planet formation with various initial conditions. In order to increase the realism

of the simulations and investigate the effect of fragmentation on protoplanetary

growth, a self-consistent planetesimal collision model was developed that includes

fragmentation and accretion of debris. The collision model is based on the rubble-

pile planetesimal model developed and investigated in the parameter space studies

summarized above. The results are compared to the best numerical simulations of

planet formation in the literature (Kokubo & Ida 2002) in which no fragmentation

is allowed—perfect merging is the only collision outcome. After 400,000 years of

integration our results are virtually indistinguishable from those of Kokubo & Ida

(2002). We find that the number and masses of protoplanets, and time required

to grow a protoplanet, depends strongly on the initial conditions of the disk and is

consistent with oligarchic theory. The elasticity of the collisions, which is controlled

by the normal component of the coefficient of restitution, does not significantly af-

fect planetesimal growth over a long timescale. In contrast to the suggestion by

Goldreich et al. (2004), it appears that there is negligible debris remaining at the

end of oligarchic growth, where “debris” is defined to be those particles smaller than

our resolution that are modeled semi-analytically.

I have also looked to the small bodies currently in our solar system to help

constrain its evolution. Asteroids and comets are the closest remnants in our solar

system to the original building blocks of planets. Understanding the dynamics and

evolution of these objects will also place constraints on the initial conditions of planet

formation models. The most can be learned from binary and multiple systems since

they provide mass and density information. High-resolution simulations of binary

asteroid formation produce a tremendous amount of data, making it difficult to look

for binary and multiple systems. I present a new code (companion) that identifies

bound systems of particles in O(N log N) time. In comparison, brute-force binary

search methods scale as O(N2) while full hierarchy searches can be as expensive as

O(N3), making analysis highly inefficient for multiple data sets with N > 103. A

simple test case is provided to illustrate the method. Timing tests demonstrating

O(N log N) scaling with the new code on real data are presented. The method is

applied to data from asteroid satellite simulations (Durda et al. 2004) and previously

unknown multi-particle configurations are noted.

Planetesimal Evolution and the

Formation of Terrestrial Planets

by

Zoë Malka Leinhardt

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland at College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2005

Advisory Committee:

Dr. Derek C. Richardson, advisor
Dr. Michael A’Hearn

Dr. Phil Armitage
Dr. Daniel Lathrop

Dr. M. Coleman Miller
Dr. Eve Ostriker

c© Zoë Malka Leinhardt 2005

Acknowledgements

I want to thank the Chair of my dissertation committee, Derek Richard-

son. Ours has been a long and productive collaboration, one that I am

enormously grateful for and one that I hope will continue. Cole Miller

has been a helpful and caring colleague over the last four years. Eve

Ostriker has stood and continues to stand as a significant role model.

Mike AHearn, Phil Armitage, and Daniel Lathrop brought unique and

important insights to the discussion of this work.

I also want to acknowledge the immense debt that I owe to the Carleton

College Physics Department especially William Titus, Cynthia Blaha,

and Joel Weisberg for the superb grounding in physics, and the rich in-

troduction to the study of science. I doubt that I would have even begun

such an arduous endeavor without the wonderful summer experience at

the Pennsylvania Governors School for Science.

I would also like to thank Jim Greeno, whose timely advice encouraged

me to go to the Institute for Theoretical Physics. Douglas N. C. Lin,

ii

whom I met at ITP, has continued to press me to think outside the

box. Makiko Nagasawa and Eiichiro Kokubo have been wonderful and

generous colleagues, offering important and valuable criticism.

Finally, I would like to thank my family for their loving support and

encouragement. My mother, Gaea Leinhardt, both challenged and in-

spired me. My father, Sam Leinhardt, rescued me more than once. My

husband, Andrew James Young, kept me calm and collected even long

distance.

iii

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Observational Constrains . 1

1.1.1 Our Solar System . 2

1.1.2 Extrasolar Planets and Detection Techniques 3

1.2 Planet Formation . 7

1.2.1 Gravitational Instability . 8

1.2.2 Core Accretion Model . 10

1.3 Thesis Approach and Organization 13

2 Direct N-body Simulations of Rubble Pile Collisions 18

2.1 Introduction . 19

2.1.1 Definitions . 20

2.1.2 Motivation . 21

2.1.3 Laboratory Experiments: Strength vs Gravity 23

2.1.4 Numerical Simulations of Collisions and Tidal Disruptions . . 24

2.1.5 Implications for Planet Formation 27

2.2 Method . 28

2.2.1 Rubble Pile Model . 28

2.2.2 Numerical Code . 30

2.2.3 Hardware . 31

2.2.4 Initial Conditions . 32

2.2.5 Coordinate System and Units 33

2.2.6 Run Parameters . 34

2.2.7 Analysis Method . 35

2.3 Results . 38

2.3.1 Parameter Space . 38

2.3.2 Coefficient of Restitution Test 51

iv

2.3.3 High-Resolution Models . 52

2.4 Discussion . 55

2.4.1 Critical Dispersal Threshold 55

2.4.2 Debris Size Distributions . 57

2.4.3 Debris Spatial Distributions 57

2.4.4 Outcome Probability . 60

2.4.5 Comparison with Previous Work (Gravity Regime) 61

2.5 Conclusions . 62

2.5.1 Future Work . 64

3 N-body simulations of planetesimal evolution: Effect of varying

impactor mass ratio 66

3.1 Introduction . 67

3.2 Method . 69

3.2.1 Planetesimal Model . 69

3.2.2 Numerical Code . 71

3.2.3 Hardware . 73

3.3 Accretion/Erosion Simulations . 73

3.3.1 Accretion/Erosion: Method 73

3.3.2 Accretion/Erosion: Results . 75

3.3.3 Accretion/Erosion: Discussion 76

3.4 Critical Dispersal Simulations . 80

3.4.1 Critical Dispersal: Method . 80

3.4.2 Critical Dispersal: Results . 81

3.4.3 Critical Dispersal: Discussion 84

3.5 Conclusions . 85

3.5.1 Future Work . 86

4 Planetesimals to Protoplanets I: Effect of fragmentation on terres-

trial planet formation 87

4.1 Introduction . 88

4.1.1 Previous Work on Planet Formation 90

4.2 Numerical Method . 92

4.2.1 Planetesimal Structure Model 93

4.2.2 Planetesimal Collision Model 94

4.2.3 Unresolved Debris . 100

4.2.4 Planetesimal Disk Model . 102

4.2.5 Numerical Algorithm . 103

4.3 Results . 105

4.3.1 Comparison with Kokubo & Ida (2002) 105

4.3.2 Collision Rates and Statistics 114

v

4.3.3 Unresolved Debris . 118

4.3.4 Coefficient of Restitution . 122

4.4 Conclusions . 125

4.5 Future Work . 127

5 A fast method for finding bound systems in numerical simulations:

results from the formation of asteroid binaries 129

5.1 Introduction . 130

5.1.1 Binaries in the Solar System 130

5.1.2 Numerical Simulations of Binary Formation 131

5.1.3 Previous Work on Binary Detection in Numerical Simulations 132

5.2 Numerical Method . 133

5.2.1 Hierarchical Spatial Tree . 134

5.2.2 Binary Detection . 136

5.2.3 System Detection . 136

5.2.4 Usage Options . 137

5.3 Tests . 138

5.3.1 Illustrative Test . 138

5.3.2 Performance Tests . 142

5.4 Results . 143

5.5 Conclusions . 146

6 Conclusions 149

6.1 Future Work . 154

A Derivation of Isolation Mass 157

B companion.c 159

Bibliography 213

vi

List of Tables

2.1 Summary of Model A . 43

2.2 Comparison of runs with extreme P and e 48

2.3 Effect of varying dissipation . 51

vii

List of Figures

2.1 Snapshots of rubble pile collisions . 39

2.2 Shapes of largest remnants from Model A 46

2.3 Illustration of the spin sense for Model B 47

2.4 Remnant shapes for Models B and C 50

2.5 Effect of varying εn . 52

2.6 Comparison between low and high resolution runs 54

2.7 Best fits for critical disruption . 56

2.8 Debris size distributions . 58

2.9 Debris spatial distributions . 59

3.1 Visualization of a simulation . 69

3.2 Parameter space of accretion/erosion simulations 74

3.3 Accretion/erosion curve for a variety of mass ratios 75

3.4 Probability of an accretion event . 78

3.5 Largest post-collision remnants vs impact energy 80

3.6 Critical dispersal speed vs projectile radius 82

3.7 Critical dispersal energy vs projectile radius 83

4.1 Lookup table for planetesimal collision model 95

4.2 Lookup table in units of initial target mass 96

4.3 Visual example of collision model . 97

4.4 The ratio of vcrit to vesc as a function of µ 98

4.5 Standard model: a versus e and a versus m 105

4.6 Standard model: m versus e . 107

4.7 Standard model: Cumulative number of particles by mass bin for five

different stages in the simulation . 108

4.8 e versus a for three different surface density distrubutions 112

4.9 Protoplanet mass versus a for simulations of three different surface

densities . 113

4.10 Protoplanet mass versus a for three initial surface density power law

indices . 115

viii

4.11 Total number of collisions, interpolated collisions, and interpolated

collisions that resulted in accretion 116

4.12 Summary of collision parameters . 117

4.13 Total mass versus time—tracking unresolved debris 119

4.14 a versus e for all simulations . 121

4.15 a versus m for all simulations . 122

4.16 Time evolution of the total number of particles for all simulations . . 123

4.17 Mass and velocity dispersion as a function of time for four values of

coefficient of restitution . 126

5.1 Simple two dimensional spatial tree 134

5.2 A graphical depiction of the opening angle test 135

5.3 Visual representation of the output from companion 141

5.4 Timing results for the default and hierarchical versions of companion 143

5.5 An example of a hierarchical system found by companion 144

5.6 A histogram of the number of systems found using the hierarchy

option of companion . 145

ix

Chapter 1

Introduction

A fundamental question in planetary science is how solar systems form and more

specifically what initial conditions lead to the formation of planets like our own.

In this thesis I pursue answers to these questions using newly developed numerical

models of the nonlinear evolution of planetesimals as they collide with one another

and grow into planets.

1.1 Observational Constrains

Any planet formation model must be flexible enough to produce a range of solar sys-

tems consistent with all observational evidence. Therefore, I begin with a summary

of observational characteristics of known solar systems.

1

1.1.1 Our Solar System

The Solar System contains nine planets: four terrestrial rocky planets (Mercury,

Venus, Earth, and Mars) in the inner Solar System, with semi-major axes (a) be-

tween 0.4-1.5 Astronomical Unit (AU, defined to be the average distance between

the Earth and the Sun) and masses (m) between 0.06-1 Earth masses (M⊕); four

gas giants (Jupiter, Saturn, Uranus, and Neptune) in the outer Solar System, with a

between 5-30 AU and m between 14 and 300 M⊕; and one large Kuiper Belt Object,

Pluto, that is somewhere in between an asteroid and a terrestrial planet, with a =

40 AU and m = 2× 10−2 M⊕. The Solar System also contains three main reservoirs

of smaller objects: the Asteroid Belt between Mars and Jupiter, the Kuiper Belt

between 30 and 50 AU, and the Oort Cloud, a spherical distribution of comets with

semi-major axes between thousands and tens of thousands of AU. All of the planets

are effectively coplanar with the equator of the Sun—all but Pluto (i ∼ 17◦) have

orbital inclination i < 7◦ with respect to the ecliptic (the path that the Sun appears

to follow in the sky over the course of a year due to the Earth’s motion around

the Sun). Most of the planets have low eccentricities, making their orbits close to

circular—Earth and Venus have eccentricities e ∼ 0.01, and the gas giants are all

e ≤ 0.05; only Mercury and Pluto have large eccentricities (0.20 < e < 0.25).

The coplanarity of the planets in our Solar System is consistent with our under-

standing of star formation: a molecular cloud with a small amount of spin collapses

while conserving angular momentum. As the protostar collapses the angular mo-

mentum of the cloud prohibits mass from simply falling radially onto the star, so an

accretion disk forms. The accretion disk contains most of the angular momentum

from the initial molecular cloud. The planets, asteroids, and comets in our Solar

System form out of this accretion disk and thus most share similar inclinations with

2

each other and the equator of the Sun.

The eccentricities in our Solar System are much harder to explain. Except for

Mercury, Mars, and Pluto, the eccentricities in our Solar System are exceptionally

low. Mercury and Pluto are locked in resonances with much more massive objects

protecting their orbits—Mercury is in a spin-orbit resonance with the Sun, Pluto is

in a 3:2 mean-motion resonance with Neptune. But it is not at all obvious why the

rest of the planets are on such circular orbits. Numerical simulations of terrestrial

planet formation find terrestrial planets end up with eccentricities that are an order

of magnitude larger than that of the Earth (e ∼ 0.1).

1.1.2 Extrasolar Planets and Detection Techniques

Over 136 planets have been detected outside our own Solar System in the past

decade. These systems are diverse and unlike our own. Most of the detected ex-

trasolar planets fall into one or more of the following catagories: 1) hot Jupiters—

Jupiter-mass planets within 0.1 AU of their parent star on circular orbits; 2) warm

Jupiters—Jupiter-mass planets outside of 0.25 AU with average eccentricities of

∼ 0.3; 3) multiple systems—two or more Jupiter mass planets; 4) pulsar planets—

terrestrial-mass planets orbiting pulsars. Selection effects significantly bias the plan-

ets that are detectable with current techniques. The planets that have been detected

thus far may just be the tip of the iceberg. The large majority of planets known

to date have been discovered using the radial velocity doppler shift technique which

detects planets by the wobble they induce in the star.

In a star-planet system the center of mass is not quite aligned with the center of

the star. Both the star and the planet orbit the center of mass. From our perspective

as long as the system is not face-on the star moves toward and away from us as it

orbits the center of mass and as a result the light from the star is blue- and red-

3

shifted. The more massive the planet, the farther the center of mass is from the

center of the star and the larger the amplitude of the doppler shift. The closer

the planet is to the star the shorter the period of the wobble. The radial velocity

technique can detect wobbles in a star down to ∼ 3 m s−1.

Our Solar System would be outside detectibility limits using this method. Jupiter

produces a stellar wobble of 12.5 m s−1 over a period of 12 years which is longer

than the current detectable period (∼ 10 yr). The smallest planet detected using the

radial velocity technique is one of Neptune mass. The largest is at least 13 Jupiter

masses, just on the border between what is considered a planet and a brown dwarf.

Terrestrial planets induce wobbles ≤ 0.5 m s−1 which is currently undetectable. In

addition, at fractions of a m s−1 the siesmology of the star becomes a significant fac-

tor. However, terrestrial planets can be detected using pulsar timing which works on

the same principle as the radial velocity technique but instead of detecting doppler

shifts in light it is sensitive to changes in pulse period.

The pulsar timing technique was used in detecting the first planets (planets

B and C around millisecond PSR B1257+12; Wolszczan & Frail 1992; Wolszczan

1994). Pulsars emit a beam of radiation with a period that is predictable to high

precision. As a result, they are accurate clocks, therefore, good places to look for

perturbations in the expected period due to an orbiting planet. Just as described

above the emission from a pulsar wobbles if another object is also in the system

causing the center of mass to be offset from the pulsar center. Because pulsars

are such good clocks, terrestrial- and lunar-mass objects are detectable using this

technique. Timing of PSR B1257+12 reached a precision of 10−6 s in time delay

or a velocity precision of ∼ mm s−1 (Wolszczan 1994). Even though the precision

available with the pulsar timing technique is so high only one other pulsar has a

planet candidate (PSR B1620-26; Thorsett et al. 1999). The low number of planet

4

candidates around pulsars may be a result of the pulsar planet formation process.

PSR B1257+12 is an isolated millisecond pulsar. Planets B and C have similar

orbital inclinations of 47◦ and 53◦, suggesting that the planets formed from a disk

of material that surrounded the pulsar. Generally, it is thought that millisecond

pulsars are created by spinning up an old neutron star that has spun down and has

a relatively weak magnetic field. The old neutron star accretes mass and angular

momentum from a companion star that has overflowed its Roche Lobe. Since the

magnetic field is weak there is little magnetic braking and the pulsar period be-

comes short (ms). In the case of PSR B1257+12 it seems that the companion was

destroyed—potentially tidally disrupted. The planets could have formed out of the

disk of material that was left over (for an alternate theory see Miller & Hamilton

2001). If this is the mechanism, pulsar planets should be rare since the number of

isolated millisecond pulsars is so small (∼ 10; Konacki & Wolszczan 2003).

However, the planet detected around PSR B1620-26 did not form this way. This

pulsar is in a low metallicity globular cluster, M4 (Sigurdsson et al. 2003). It has

a white dwarf companion (m = 0.34 M�) with an orbital period of ∼ 0.5 year.

The planet has a mass of ∼ 2.5 MJ and an orbital period of ∼ 100 years (Thorsett

et al. 1999) and is seemingly orbiting the binary system. This planet was most

likely captured from a passing system (Sigurdsson et al. 2003). Although these

pulsar planets are certainly different in composition from the planets in our own

Solar System, the planet formation process is robust and occurs in a variety of

environments.

Although the radial velocity technique has been the most successful to date,

there are many other techniques that show promise for detecting terrestrial planets

around main-sequence stars. There are four main techniques: 1) Astrometry—

measures the change in position of a star as it orbits around the center of mass of the

5

star-planet system. There are several ground-based (ALMA, Keck Interferometer,

VLTI) and satellite-based (HST, GAIA, SIM) surveys that will use astrometry.

SIM will have the sensitivity to detect terrestrial planets (micro arcsecond relative

stellar positions). Currently, only HST is up and running. HST has confirmed

one planet detection (Pravdo et al. 2004) but no new discoveries have been made.

Astrometry is technically difficult because it requires determining stars’ positions

to high accuracy. HST fine guidance sensors can measure relative stellar positions

to 0.001 arc seconds. Such accuracy is not possible on the ground where seeing

can be ∼ 1 arc second. Adaptive optics and speckle interferometry can improve

the seeing by at least an order of magnitude but still cannot touch what can be

attained with satellites; 2) Transits—detects the small drop in the intensity of star

light as the planet crosses in front of the star. All transit surveys are currently

ground based but that will change with the launch of KEPLER, which should be

sensitive enough to detect terrestrial planets (2 × 10−5 relative phototmetry). The

transit technique has successfully discovered one planet (Alonso et al. 2004) that

was confirmed using the radial velocity technique at Keck. The advantage of this

technique is that many stars can be studied at one time but the star-planet orbit

orientation must be close to edge-on. Also detections need to be confirmed using

another technique since the mass of the transiting objects is not observed directly;

3) Microlensing—detect perturbations in Einstein rings from planets orbiting the

lensing star. Several searches using this technique are in progress but have yet to

find any planets (OGLE III, MPS, MOA, University of St. Andrews Planet Search).

Microlensing is difficult—a terrestrial planet will create a 1-2% deviation in the

ring, and the chance of catching an event is small, however, the number of potential

events is high; 4) Direct detection—observe the planet directly using photometery

of reflected light, infrared observations, and/or spectroscopy. The biggest problem

6

with direct detection is getting enough contrast between the star and planet to

detect the planet—detecting a terrestrial planet requires a sensitivity of 1 part in

1010. The planet is faint and close to the star. Often the star light is blocked by

a coronagraph or a nulling interferometer (MOST, SIM, TPF) but it is a tricky

balance to block out as much star light as possible without blocking out the planet.

Direct detection has found one planet (2M1207), a wide companion to a brown dwarf

(Chauvin et al. 2004).

In the next decade the number of known extrasolar planets will increase signifi-

cantly as a result of the many surveys that are currently in the pipeline. The variety

of planetary systems found will undoubtedly also increase and may eventually in-

clude systems like our own. The observed extrasolar planets do not provide many

constraints on planet formation, instead the diversity of planets detected emphasizes

how flexible a complete model of planet formation must be.

1.2 Planet Formation

Developing a complete theory of planet formation is a challenging problem because

planet formation takes a long time (107 − 108 years) and most of the process is

observationally undetectable using current techniques. The most observable stages

of planet formation are the initial conditions—a young star encircled by a dusty

gaseous disk, and the end result—planets. However, observations cannot tell us

which stars will produce planets and which will not. There is some evidence of

a correlation between metallicity and percentage of stars with detectable planets.

However, it is not clear if the higher metallicity stars had a higher metallicity before

planet formation began and, as a result, more metals condensed out of their nebula,

creating a more massive protoplanetary disk, or if the metallicity was increased dur-

7

ing the planet formation process. In addition, there is currently little observational

evidence to link young stars with stars that have planets because the intermediate

phases of planet formation are hard to observe directly. To connect the snapshots

from observations and determine what initial conditions lead to planet formation re-

quires a detailed theoretical model and numerical simulations to show the evolution

from dust grains to planets.

There are two main theories of planet formation: gravitational instability, in

which planets form directly from gravitational collapse in the gas disk; and the

core accretion model, in which dust grains condense out of the gas disk, grow into

planetesimals (this stage is not particularly well understood), and then grow into

planets via collisions. Both models have problems and neither has been shown in

a numerical simulation to create a solar system with all the elements of our own:

terrestrial planets close to the Sun, giant gas planets further from the Sun, all on

roughly circular orbits.

1.2.1 Gravitational Instability

A gaseous disk of a given surface density has a temperature at which it becomes

unstable to gravitational collapse (conversely, a gaseous disk of a given temperature

has a surface density at which it becomes unstable). A stable disk is one in which

rotation and thermal pressure dominate over the self-gravity of the disk. The critical

balance between gravitational, rotational, and thermal forces is characterized by the

Toomre Q stability criterion,

Q ≡ vsκ

πGΣ
> 1 (1.1)

where vs is the sound speed in the gas (vs =
√

γRT
M

, where γ is the adaibatic constant,

R is the gas constant, T is the temperature, and M is the molecular mass of the gas),

κ is the epicyclic frequency equal to the mean angular speed in a Keplerian disk,

8

G is the gravitational constant, and Σ is the surface density of the disk (Binney &

Tremaine 1987). In a protoplanetary disk there are constraints on the temperature

and mass of the disk. The disk must be massive enough to create all the planets

and other small bodies in our Solar System (assuming that the disk was all at

solar metallicity, the minimum-mass solar nebula is 0.01-0.02 M�; Weidenschilling

1977). In addition, the disk must have a temperature gradient to explain the lack of

volatiles in the inner Solar System while the outer Solar System is rich in volatiles.

Using a starting mass of ten times the minimum mass solar nebula and temperature

profiles based on grain growth models numerical simulations suggest that gas giants

may be able to form quickly (less than 1000 years) if the gaseous disk becomes

gravitationally unstable (Boss 1998; Mayer et al. 2002).

The condensations or planetary embryos (protoplanets) formed in the outer re-

gions of the disk where T < 60 K. The gravitational instability model did produce

massive eccentric planets, some of which migrated close to the star (similar to the ex-

trasolar planets detected). However, these simulations used very simple equations of

state for the gas disk (isothermal and adiabatic) neither of which is realistic. Other

simulations using more realistic cooling models have also found that gravitationally

unstable disks fragment (Johnson & Gammie 2003; Rice et al. 2003). Protoplanets

formed this way have solar metallicity—Jupiter and Saturn are significantly more

metal rich than the Sun (Jupiter is 90% H and He by mass, Saturn is 77%, the

Sun is ∼ 98%; Lissauer 1993). Mayer et al. (2002) argue that a core formed after

the initial coagulation by accretion or absorption of metal-rich planetesimals (that

formed through some other mechanism).

The temperature in the inner solar system was never cool enough to allow the

disk to become gravitationally unstable, so the formation of terrestrial planets can-

not be explained by gravitational instability and direct collapse to protoplanets. It

9

is also unlikely that Uranus and Neptune formed via gravitational instability since

their composition varies significantly from solar (5-25 % H and He by mass; Lis-

sauer 1993; Lodders & Fegley 1998) unless they lost a significant amount of their

hydrogen-rich atmosphere and the present-day Uranus and Neptune are the cores

of the original planets. This would require that both Uranus and Neptune were

significantly larger than Jupiter initially and an OB star photoevaporated their at-

mospheres with extreme ultraviolet radiation Boss et al. (2002).

1.2.2 Core Accretion Model

In contrast to the gravitational instability model, the core accretion model assumes

that dust grains grow into planetesimals and planetesimals grow into planets by

accretion-dominated collisions. This model is much slower than gravitational in-

stability, requiring ∼ 106 years to form protoplanets and up to 108 years to form

a full-fledged solar system. However, the core accretion model can explain the

formation of both terrestrial and gas giant planets. The process begins when re-

fractory elements with high sublimation temperatures condense from the cooling

protoplanetary nebula and form metal-dominated dust grains. The dust grows into

planetesimals, objects that are large enough (∼ 1 to 10 km for a planetesimal bulk

density of 2 g cm−3 and a gas mass density of 10−9 g cm−3; Lissauer 1993) that

their dynamics are dominated by the tidal field of the Sun and gravitational inter-

actions with each other, as opposed to turbulence and drag forces from the gas that

dominate the dynamics of dust grains.

The mechanism for planetesimal formation is an open question—there are three

main models: 1) pair-wise accretion—dust grains collide with one another and

“stick”. In theory the dust grains grow slowly from µm to km sizes while em-

bedded in a gaseous primordial disk. However, experiments of colliding dust par-

10

ticles have failed to get them to “stick” to one another at the speeds predicted

to occur in the solar nebula (> 1 m s−1; Blum & Wurm 2000; Blum & Muench

1993; Weidenschilling & Cuzzi 1993). In addition, meter-sized objects should mi-

grate quickly into the central star as the result of efficient gas drag; 2) gravitational

instability—planetesimals form through gravitational instability of the dust layer

that has condensed in the midplane of the nebula (Goldreich & Ward 1973; Youdin

& Shu 2002; Youdin & Chiang 2004). This model avoids the problems of pair-wise

accretion because planetesimals form almost instantaneously. But, as is the case

with gravitational instability in the gas disk, the dust disk must be cool and dense,

yet, vertical shear may prevent the dust disk from settling (Weidenschilling 1995); 3)

vortices—dust particles gather within vortices that have formed in the gaseous disk

(Tanga et al. 1996). In theory vortices form from random motions in the Keplerian

shear flow or instabilities (baroclinic instability) that lead to the growth of vorticity

perturbations into full-fledged vorticies. If vortices do form within the protoplan-

etary disk they could successfully gather dust in the protected “eye” allowing the

planetesimals to grow.

Despite the theoretical uncertainties there is significant observational evidence

that planetesimals do form. Our Solar System has remnants of them, namely, comets

and asteroids in the asteroid belt, Kuiper Belt, and Oort Cloud which formed early

in the history of the Solar System.

Once planetesimals have formed they enter into a new phase of evolution. It is

generally assumed that planetesimals begin on effectively circular orbits having just

decoupled from the gaseous disk. Numerical and semi-analytic simulations show that

planetesimals go through two phases of growth: runaway growth—dynamical fric-

tion, the gravitational scattering of smaller planetesimals by larger planetesimals,

causes equipartition of kinetic energy between the small and large planetesimals.

11

This means that the velocity dispersion of the smaller planetesimals increases while

the velocity dispersion of the larger planetesimals decreases. The larger planetesi-

mals have a larger geometric cross section, significant gravitational focusing, and low

eccentricity, whereas the smaller planetesimals have a small geometric cross-section,

little gravitational focusing, and high eccentricities. Therefore, most collisions con-

sist of a large planetesimal accreting a smaller planetesimal. The larger planetesi-

mals exponentially runaway in size and separate from the background population.

Once large planetesimals can significantly alter the velocity dispersion of the back-

ground population of smaller planetesimals, the growth of the larger planetesimals,

now considered protoplanets, slows and the growth of the planetesimals enters the

next phase—oligarchic growth. All the protoplanets grow in an orderly fashion, ap-

proaching a similar mass (Kokubo & Ida 1998, 2002). All of the protoplanets are

separated by ≥ 5rH , where rH ≡ ((m1 + m2)/3M∗)
1/3a is the mutual Hill radius

(m1 and m2 are the masses of two neighboring protoplanets, M∗ is the mass of the

central star, and a is the semi-major axis of the protoplanets). This organization

evolves through “gravitational repulsion” (Kokubo & Ida 1995) where protoplanets

approaching crossing orbits strongly scatter each other, increasing their eccentricies.

The large eccentricities of the protoplanets are quickly damped via dynamical fric-

tion provided by the small planetesimal background. Gravitational repulsion con-

tinues gradually until all of the protoplanets are outside the gravitational influence

of one another (∼ 5rH). Oligarchic growth ends when there are not enough plan-

etesimals to continue the growth process. Over the following ten million years the

protoplanets grow into planets by infrequent collisions with each other.

The core accretion model also has problems and is potentially incomplete. In

the outer solar system this model may be too slow to form a core massive enough to

accrete gas. In the terrestrial region simulations using this model produce eccentric-

12

ities for the protoplanets that are an order of magnitude larger than the eccentricity

of the Earth. Since this is the only model that qualitatively explains the formation

of terrestrial planets, we focus on solving its shortcomings with respect to terres-

trial planet formation by making the numerical implementation of the core accretion

model more realistic.

1.3 Thesis Approach and Organization

In order to create an accurate numerical model of solar system formation it is nec-

essary to understand how the planetary building blocks, namely, kilometer-sized

planetesimals, evolve and grow into larger bodies. Traditionally, numerical simula-

tions of planet formation use extrapolations of impact experiments in the strength

regime to model the effects of fragmentation in planetesimal collisions (e.g. Green-

berg et al. 1978; Beaugé & Aarseth 1990; Wetherill & Stewart 1993). However,

planetesimals that are large enough to decouple from the gaseous nebula are dom-

inated by self-gravity not material strength. As a result, such extrapolations may

give misleading results since generally much more energy is needed to disperse than

to disrupt a planetesimal in the gravity regime. Moreover, effects of impact angle,

spin, and impactor mass ratio are not usually taken into account. In this thesis

these issues are addressed in chapters 2-4 through a series of increasingly specific

and realistic simulations. Chapter 5 takes a different tack in an attempt to put fur-

ther constraints on the initial conditions of planet formation scenarios by learning

more about the small bodies currently in our Solar System.

Chapter 2 focuses on the effect of impact parameter, speed, spin, and coefficient

of restitution on the collision outcome. This chapter was published as Leinhardt

et al. (2000). In these simulations, planetesimals are modeled as rubble piles—

13

gravitationally bound objects with no tensile strength. The rubble pile model was

chosen based on evidence that a significant fraction of small bodies in our Solar

System, asteroids and comets, may be gravitational aggregates. In addition, plan-

etesimals in the middle stage of planet formation are large and their self-gravity far

dominates over their material strength. In all of the simulations, the positions and

velocities of the rubble pile particles are evolved using a direct numerical method

under the constraints of gravity and physical collisions. Speeds are kept low (< 10

m s−1, appropriate for dynamically cool systems such as the primordial disk during

early planet formation) so that the maximum strain on the component material

does not exceed the crushing strength. The purpose of this study is to begin to

understand what the necessary parameters are for planetesimals to grow in a pro-

toplanetary disk.

Chapter 3 is an expansion of the parameter space study presented in chapter 2.

This chapter was published as Leinhardt & Richardson (2002). Results are presented

from direct N -body simulations of collisions between gravitational aggregates of

varying size over a range of impact parameter and speed as part of a study to further

parameterize planetesimal growth in the Solar System. The goal is to provide a

recipe for planetesimal evolution that can be used in solar system formation models.

In this chapter the study of planetesimal evolution is split into two experiments. The

first experiment quantifies which collisions cause planetesimal growth or erosion.

Growth occurs when the largest post-collision remnant exceeds the initial mass of

the target (the more massive of the initial planetesimals). Similarly, erosion occurs

when the largest post-collision remnant is less massive than the initial mass of the

target. Accretion/erosion probabilities are derived based on the results of these

simulations. The second experiment determines the critical dispersal energy (Q?
D,

the energy per unit mass necessary to create a post-collision remnant of 50% the

14

mass of the system) as a function of the mass ratio of the larger rubble pile to the

smaller rubble pile. This allows a comparison of the rubble pile collision results

directly with those of other groups that use different collision models and numerical

methods.

The results of chapters 2 and 3 are used in chapter 4 to create a more realistic

planetesimal collision model for planet formation simulations. This chapter is cur-

rently in press as Leinhardt & Richardson (2005b). In contrast to extrapolations

from laboratory experiments in the strength regime the model is appropriate for

the gravity regime and includes both fragmentation of planetesimals and accretion

of debris onto planetesimals. A dozen simulations of terrestrial planet formation

were conducted in order to investigate how initial conditions and fragmentation of

planetesimals affect planetesimal evolution and planet formation. The results are

compared to the best numerical simulations of planet formation in the literature

(Kokubo & Ida 2002) in which no fragmentation is allowed—perfect merging is the

only collision outcome. In other words in the comparison work all planetesimal col-

lisions are assumed to result in growth—there is no loss of mass as the result of a

planetesimal collision.

The planetesimal collision model used in the planet formation simulations con-

sists of two phases. When a collision is predicted, the first-order outcome is looked

up in a database of collision outcomes based on the speed, impact parameter, and

mass ratio of the two colliding planetesimals. The simulations used to produce the

database are similar to the simulations presented in chapters 2 & 3: two rubble

piles built up of identical, indestructible spheres are collided with one another over

a range of collision parameters. If the largest post-collision remnant contains most

of the mass of the initial system, the mass of the largest post-collision remnant from

the lookup table is used and the planet formation simulation continues as before.

15

If the second-largest post-collision remnant is close in mass to the largest remnant,

the collision model moves into the second phase: the collision is resolved in detail

by substituting rubble-pile planetesimals for the single particle planetesimals and

evolving them using the same technique that was used to create the look up table

within the protoplanetary disk. The purpose of this collision model is to create a

realistic scenario for planetesimal evolution that allows both accretion and erosion

of planetesimals but assumes neither.

In addition to working from the beginning and creating a more detailed model

of planet formation in an attempt to understand how our Solar System came to

be, we can also learn about the conditions in the early Solar System by looking at

the current Solar System. Asteroids and comets are present-day analogs to plan-

etesimals. Understanding the dynamics of these objects will also help constrain

planet formation models. We can learn the most from binary and multiple systems

of small objects since these systems provide mass and density information. There

are many models of binary asteroid formation, but in the Main Belt it is thought

that they form via catastrophic impacts (so-called family-forming events, where an

asteroid family is a group of asteroids that have similar colors and orbital elements).

High-resolution simulations of these events produce a tremendous amount of data,

making it computationally difficult to look for binary and multiple systems.

To help address this problem, in chapter 5 I present companion, a hierarchical

tree code that detects binaries, multiple, and complex hierarchical systems in the

output from numerical simulations in O(N log N) time. This chapter is in press as

Leinhardt & Richardson (2005a). In comparison, brute force binary search methods

scale as O(N2) while full hierarchy searches can be as expensive as O(N3), making

analysis highly inefficient for multiple data sets with N > 103. The code is also used

to reanalyze published data from Durda et al. (2004), highlighting newly detected

16

hierarchical systems.

Chapter 6 summarizes the findings of chapters 2-5 and presents future work.

17

Chapter 2

Direct N-body Simulations of

Rubble Pile Collisions

This chapter has been published: Leinhardt, Z. M., Richardson, D. C., & Quinn, T.

2000, Icarus, 146, 133

ABSTRACT

There is increasing evidence that many kilometer-sized bodies in the Solar System

are piles of rubble bound together by gravity. We present results from a project

to map the parameter space of collisions between kilometer-sized spherical rubble

piles. The results will assist in parameterization of collision outcomes for Solar Sys-

tem formation models and give insight into disruption scaling laws. We use a direct

numerical method to evolve the positions and velocities of the rubble pile particles

under the constraints of gravity and physical collisions. We test the dependence of

the collision outcomes on impact parameter and speed, impactor spin, mass ratio,

and coefficient of restitution. Speeds are kept low (< 10 m s−1, appropriate for dy-

namically cool systems such as the primordial disk during early planet formation)

18

so that the maximum strain on the component material does not exceed the crush-

ing strength, assuming sufficient granularity. We compare our results with analytic

estimates and hydrocode simulations. We find that net accretion dominates the

outcome in slow head-on collisions while net erosion dominates for fast off-axis col-

lisions. The dependence on impact parameter is almost equally as important as the

dependence on impact speed. Off-axis collisions can result in fast-spinning elongated

remnants or contact binaries while fast collisions result in smaller fragments overall.

Clumping of debris escaping from the remnant can occur, leading to the formation

of smaller rubble piles. In the cases we tested, less than 2% of the system mass

ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes,

depending on the relative orientation of the spin and orbital angular momenta. We

derive a relationship between impact speed and angle for critical dispersal of mass

in the system. We find that our rubble piles are relatively easy to disperse, even at

low impact speed. This may provide a way of constraining the energy dissipation

parameter and related properties of the initial planetesimal population.

2.1 Introduction

There is growing interest in understanding the dynamics of collisions between small

bodies in the Solar System. Typically such collisions are divided into two regimes:

those dominated by material strength and those dominated by self-gravity (Holsap-

ple 1994). The transition from the strength to the gravity regime may occur at body

sizes as small as a few kilometers for basalt (Ryan & Melosh 1998; Benz & Asphaug

1999) or as small as 250 m for silicates (Love & Ahrens 1996). In this paper we

present numerical results from simulations of collisions in the gravity regime. Our

experiments are primarily concerned with low-speed collisions between equal-mass,

19

kilometer-sized rubble piles, gravitationally bound aggregates of loose material. We

believe that these experiments will shed light on the collisional dynamics of the pro-

toplanetary disk when typical encounter speeds are comparable to the surface escape

speed (about 1 m s−1 for kilometer-sized planetesimals of 2 g cm−3 bulk density).

2.1.1 Definitions

We begin with definitions of terms frequently encountered in the context of binary

collision experiments. Typically in the literature one impactor (the larger one) is

stationary and is considered to be the target, while the other (the smaller one) is

moving and is called the projectile. In our experiments, the impactors are compa-

rable in size and are both in motion, so we generally do not distinguish between

a target and a projectile. Most laboratory experiments involve solid targets that

possess tensile strength, so the outcome is measured in terms of the extent of dis-

ruption or shattering of the target. A critical or catastrophic shattering event is

one in which the largest post-impact fragment (the remnant) has 50% of the target

mass. Following a recently adopted convention in the literature (Durda et al. 1998),

we use Q?
S to denote the kinetic energy per unit target mass to achieve critical shat-

tering. A rubble pile, by definition, has no tensile strength, so Q?
S is effectively zero.

However, a rubble pile can still be disrupted in the sense that one or more of the

component particles becomes separated from the rest for at least an instant.

For collisions in free space, fragments or particles are said to be dispersed if

they attain positive orbital energy with respect to the remnant. Hence, a critical

or catastrophic dispersal is one in which the largest remnant is left with 50% of

the original target mass after the remaining material has dispersed to infinity. The

energy per unit target mass to achieve this is denoted by Q?
D. In our experiments,

since we do not distinguish between a target and a projectile, Q?
D refers to the

20

energy per unit total mass, in the center-of-mass frame, needed to critically disperse

the entire system. Finally, we define erosion to mean permanent removal of mass

from a body, and accretion to mean permanent retention of mass. In the context

of our experiments, net erosion means that one body (the largest if the impactors

are of unequal mass) had less mass at the end of the run than it started with. Net

accretion means it had more mass at the end.

2.1.2 Motivation

Many asteroid characteristics are inconsistent with monolithic configurations. Re-

cent observations by the Near Earth Asteroid Rendezvous spacecraft of Mathilde, a

53-km C-class asteroid, are particularly suggestive. First, Mathilde’s largest crater

is enormous: it has a diameter of 33.4 km, almost 7 km larger than the asteroid’s

mean radius (Veverka et al. 1997). Numerical hydrocode simulations and laboratory

experiments strongly suggest that in order for Mathilde to have survived the impact

that formed such a substantial crater, the asteroid must be made of some material

that does not efficiently transmit energy throughout the body (Love et al. 1993;

Asphaug et al. 1998; Housen et al. 1999).

Second, Mathilde has a remarkably low density of 1.3 g cm−3 (Yeomans et al.

1997), about one-third the average value for the chondritic meteorites that are

thought to originate from C-class asteroids (Wasson 1985). Such a low density

suggests that Mathilde is highly porous. If true, the voids in the material could

impede the transmission of energy from a collisional shock wave and allow a rather

weak body to survive an otherwise catastrophic impact event. We also note the

recent discovery of the asteroid satellite S/1998 (45) 1, which implies a density of ∼

1.2 g cm−3 for the main body Eugenia (Merline et al. 1999).

In addition to Mathilde, the surfaces of 243 Ida, 951 Gaspra, and Phobos show

21

several sizable craters that have diameters on the order of the mean radius of the

body (for references, see Richardson et al. 1998, hereafter Paper I). As in the case

of Mathilde, the energy necessary to create craters of this size would disperse or

disrupt the original body if it were solid Asphaug & Melosh (1993).

Further evidence for the prevalence of rubble piles comes from asteroid spins. In

a sample of 107 asteroids smaller than 10 km in diameter, Harris (1996) found that

the spin period distribution truncates at fast spin rates, where rubble piles would

start to fly apart1.

One explanation for the observed characteristics of these asteroids and their

craters is that they are rubble piles. Although rubble pile configurations are more

susceptible to disruption by tidal forces than monolithic configurations (Paper I),

there is increasing evidence that rubble piles have a higher impact strength (Ryan

et al. 1991; Love & Ahrens 1996; Asphaug et al. 1998). There are two scenarios for

creating a rubble-pile asteroid: (1) the asteroid is initially one solid body of material

and is rubblized over time by multiple impacts; (2) the rubble-pile configuration

of the asteroid is primordial. Regardless of how rubble-pile asteroids are formed

it is interesting to investigate how they interact and evolve in the Solar System.

In addition to asteroids there is a considerable amount of evidence that a large

percentage of comet nuclei are rubble piles, for example, the tidal disruption of

Comet D/Shoemaker Levy 9 (Richardson et al. 1995; Asphaug & Benz 1996).

1At least one asteroid spinning faster than this limit has since been discovered (Ostro et al.

1999), but its small size (∼ 30 m) puts it comfortably in the strength regime.

22

2.1.3 Laboratory Experiments: Strength vs Gravity

Ryan et al. (1991) presented results from a laboratory study of impacts into weak

inhomogeneous targets. Due to practical limitations they used ∼ 0.5-cm targets of

gravel and glue. As a result, their specific experimental results are firmly rooted in

the strength regime. However, the most general conclusion that the group arrived

at from dropping, crashing, and shooting at the gravel aggregates was that the

relatively weak targets have a surprisingly high impact strength. In other words,

it took a large amount of energy (at least Q?
S = 40 J kg−1) to critically disrupt

or shatter the target such that the largest remnant was one-half the mass of the

original object. The nonuniformity of the target causes a greater fraction of the

impact energy to dissipate thermally; therefore, the collisional shock wave is more

efficiently absorbed by the target.

Laboratory experiments on Earth to investigate directly the collisional dynamics

of the gravity regime are difficult to conduct since the target size necessary to reach

this regime is impractically large. Instead, overpressure and centrifuge techniques

have been used to artificially simulate the gravity regime in the laboratory. In an

overpressure experiment, Housen et al. (1991) used nitrogen gas at various pressures

to mimic the lithostatic stress felt inside a large target. At these pressures they

were unable to carry out true impact tests, so they used a buried charge instead

of a projectile. As the pressure was increased, the size of the largest remnant after

each explosion also increased, indicating a transition from the strength-dominated

regime to the pressure dominated regime. Housen et al. (1991) argued that the

pressure regime was analogous to the gravity regime and extrapolated a scaling law

for the gravity regime from the overpressure data. This laboratory study has two

important drawbacks: (1) by using a buried charge the experiment does not model

23

the actual surface dynamics of an asteroid during an impact; (2) the gas overpressure

is not an r−2 force law. They were able to reach a regime in the laboratory that

was not dominated by the strength of the material, but it is unclear whether the

gravity-regime scaling law derived from the overpressure data is valid.

In a centrifuge experiment, Housen et al. (1999) were able to conduct true impact

tests by firing a small projectile (a polyethylene cylinder 0.65 cm in diameter) from

a gas gun strapped to the arm of a centrifuge. They positioned a porous target

(composed of quartz sand, perlite, fly ash, and water) at the end of the arm. The

centrifuge was used to mimic the gravitational force at the surface of a much larger

body. The use of the centrifuge introduces second-order complexities due to the

Coriolis force and the field orientation in general at the surface of the cylindrical

target (though this is only really a problem in the event of high ejecta trajectories).

In addition, the flat surface of the target may subtly affect crater morphology.

Nonetheless, this experiment showed that porous targets in the gravity regime are

efficient at absorbing impact energy at the surface by compacting the underlying

material.

2.1.4 Numerical Simulations of Collisions and Tidal Disrup-

tions

Extrapolations of laboratory experiments have resulted in rough strength and grav-

ity scaling laws. In order to truly understand the collisional dynamics and evolution

of large bodies, numerical simulations are a necessity. For example, Love & Ahrens

(1996) used a three-dimensional smoothed particle hydrodynamics (SPH) code to

simulate high-speed catastrophic collisions. They used various impact speeds (3-7

km s−1), impact angles (5-75◦), target diameters (10-1000 km), and projectile di-

ameters (0.8-460 km) in order to explore a large region of parameter space. The

24

big targets placed the experiments securely in the gravity regime, allowing the re-

searchers to treat gravity carefully and neglect the strength and fracturing of the

target completely. Their extrapolated scaling law for the gravity regime placed the

transition from the strength to the gravity regime at a target diameter of 250± 150

m, much smaller than that predicted by laboratory experiments (Holsapple 1994).

Love & Ahrens (1996) argue that since smaller asteroids are more common than

larger ones, a given asteroid is more likely to suffer a shattering impact before a dis-

persing impact. Thus, it seems plausible that many asteroids in our Solar System

are at least partial rubble piles.

More recent simulations have had similar results. Asphaug et al. (1998) con-

ducted three high-speed (5 km s−1) impact experiments using a solid target, a par-

tially rubblized contact binary, and a totally rubblized target. In each case the

researchers used a small projectile six orders of magnitude less massive than the

target. There are three major conclusions from this study: (1) it is much easier

to disrupt a solid target than it is to disperse it—this conclusion is evidence that

it is possible to change a solid body into a rubble pile with impacts; (2) rubble

regions can insulate and block energy from traveling through a body—in a contact

binary, for example, one end could be critically disrupted while the other remains

undamaged; (3) the fully rubblized targets efficiently localize the energy transmitted

during a collision which in turn minimizes the damage outside the collision region

and allows weak bodies to survive high-energy impacts with much less damage than

solid targets. This again implies that many small bodies in the Solar System may

be rubble piles. Other similar numerical experiments include Ryan & Melosh (1998)

and Benz & Asphaug (1999).

Watanabe & Miyama (1992) used 3D SPH code to investigate the effects of

tidal distortion and shock compression from collisional impacts in the process of

25

planetary accumulation. They used two equal-sized spherical bodies and assumed

a perfect Newtonian fluid. It is important to note that their code did not model an

incompressible fluid (their adopted polytropic indices were always greater than zero).

As a result of experimenting with impact angle, speed, and density gradients, they

found that tidal forces can enlarge the coalescence rate of planetesimals by almost a

factor of 2. In addition, when the initial speed of the impactor is significantly lower

than the escape speed of the system, less than a few percent of the total mass is lost

from the system in the collision. They did not attempt any simulations with initial

speeds in excess of 50% of the escape speed.

In Paper I, Richardson et al. numerically simulated the effects of Earth’s tidal

force on rubble-pile asteroids. Unlike Watanabe & Miyama (1992), they simulated

the Earth-crossing asteroids as incompressible fluids using a hard-sphere model.

They varied the asteroids speed, spin, shape, and close-approach distance. Gen-

erally, slow-moving, close-approaching, prograde-rotating, elongated asteroids were

the most susceptible to tidal disruption. They found several distinct classes of out-

come: in the most violent disruption cases, the asteroid was stretched into a line

and recollapsed into a string of pearls reminiscent of Comet D/Shoemaker Levy 9

at Jupiter; for moderate disruptions, large pieces of the asteroid were stripped off in

many cases, forming satellites or contact binaries; the mildest disruptions resulted

in little mass loss but significant shape changes. These various outcomes could lead

to the formation of crater chains (Bottke et al. 1997) asteroid satellites and doublet

craters (Bottke & Melosh 1996b,a), and unusually shaped asteroids (Bottke et al.

1999).

Durda (1996) carried out simulations to study how readily satellites form as a

result of mutual gravitational attraction after the catastrophic disruption of the

progenitor. Durda (1996) came to three major conclusions: (1) satellites do form

26

immediately after a catastrophic collision; (2) contact binaries form more easily than

true binary systems; (3) the binary systems form in a wide range of size ratios. It is

important to realize that Durda (1996) assumed a power-law mass distribution for

the catastrophically fragmented asteroid. The slope index used (1.833) was taken

from extrapolations of laboratory experiments.

2.1.5 Implications for Planet Formation

Traditionally, numerical simulations of planet formation use extrapolations of im-

pact experiments in the strength regime to model the effects of fragmentation in

planetesimal collisions (e.g. Greenberg et al. 1978; Beaugé & Aarseth 1990; Wether-

ill & Stewart 1993). From what we have already seen, such extrapolations may give

misleading results since generally much more energy is needed to disperse than to

disrupt a planetesimal in the gravity regime. Moreover, effects of impact angle, spin,

and impactor mass ratio are often not taken into account. In the case of rubble piles,

no empirical model actually exists. For example, we might expect reaccumulation

like that seen in the tidal disruption models to also occur after the catastrophic im-

pact of two rubble-pile planetesimals. In this paper we aim to explore these issues

by simulating collisions between rubble-pile bodies over a wide range of parameter

space and determining the implications of the results for planet formation. In Sec-

tion 2.2 we describe our numerical method and analysis technique. Our results are

presented in Section 2.3, followed by a general discussion in Section 2.4. We give

our conclusions in Section 2.5.

27

2.2 Method

The simulation and analysis of the collisions presented here combine numerical meth-

ods introduced in Paper I and Richardson et al. (2000, hereafter Paper II). The

rubble pile model is an extension of the model used for studying the tidal disruption

of asteroids (Paper I). The integration engine is an extension of the parallel tree

code used for planetesimal evolution simulations (Paper II).

2.2.1 Rubble Pile Model

Each rubble pile in our simulations consists, at least initially, of a fixed number of

equal-size hard spheres arranged in hexagonal close-packed (HCP) form. The rubble

piles are typically generated by specifying the bulk semi-axes, bulk density, and

approximate number of particles (alternatively, the particle radius and/or density

can be used as independent parameters). The generator attempts to match the

requested properties on the basis of the estimated HCP efficiency of a sphere as a

function of bulk radius or number of particles (derived from power-law fits to our

own numerical experiments). Once the rubble pile is constructed, the constituent

particles are reduced in size by a fixed factor (usually 1%) and given a small random

velocity kick (no more than 10% of the particle surface escape speed in magnitude).

This is to facilitate attaining the initial equilibrium (cf. Section 2.2.4). Finally, the

rubble pile is tagged with a unique color so that mixing can be studied visually and

statistically.

The collisional properties of the constituent particles are specified prior to each

simulation. These include the normal and tangential coefficients of restitution, εn

and εt (cf. Richardson 1994). Except for certain explicit test models, these values

generally were fixed at εn = 0.8 (mostly elastic collisions with some dissipation) and

28

εt = 1.0 (no surface friction). Bouncing was the only possible collision outcome: no

mergers or fragmentations of particles were allowed. The value of εn was chosen to

be consistent with Paper I and is similar to experimentally determined values used

in the literature (e.g. Beaugé & Aarseth 1990). Note that in the perfectly elastic

case, particles cannot recollapse into condensed rubble piles after a disruption event

but instead completely disperse or at best end up in centrally concentrated swarms.

In the case of tidal disruption (Paper I) the outcome is relatively insensitive to the

choice of εn, so long as εn < 1. For the present study, however, varying εn has a

stronger effect, an issue we explore in Section 2.3.2. We did not include surface

friction in the present study, in order to keep the number of test cases manageable.

There are two circumstances under which εn is allowed to change. First, if the

relative speed of two colliding particles is less than 10% of their mutual escape speed

(i.e., typically ∼1 cm s−1), εn is set to unity (no dissipation). This is to prevent

computationally expensive “sliding motions” (Petit & Hénon 1987). Second, if the

collision speed exceeds 10 m s−1, εn is set to 0.2 (highly dissipative). This is to

crudely model damping through internal fracture as the impact stress ρvc (ρ =

internal density, c = sound speed ∼ 103 m s−1) exceeds the rock strength (∼ 107 N

m−2). This is not intended to be a physically rigorous model but rather a simple

mechanism to prevent unrealistically high collision speeds. Initial encounter speeds

between rubble piles were generally kept closer to 1 m s−1 in any case. Also, particle

sizes were kept roughly comparable across rubble piles in order to minimize any

strength-versus-size biases.

It is important to note that neither rolling nor true sliding motions are modeled

in our code. Moreover, particles cannot remain mutually at rest in contact (i.e.,

there are no surface normal forces). Instead, the constituent particles of an other-

wise quiescent rubble pile are in a constant state of low-energy collisional vibration

29

(dictated by the minimum sliding condition described above). Nevertheless, such

small bounces can mimic transverse motions in an approximate sense in the presence

of shear flow, giving realistic bulk properties to the material. To test this we have

simulated the formation of sand piles using our collision code (with surface friction)

that give reasonable values for the angle of repose when compared with laboratory

experiments.

2.2.2 Numerical Code

Our simulations were performed using a modified version of a cosmological N -body

code, pkdgrav (Richardson et al. 2000; Stadel 2001)2. This is a scalable, parallel

tree code designed for ease of portability and extensibility. For the parameter space

study, the parallel capability was not exploited owing to the modest number of

particles in each run (a few thousand). However, even in serial mode, pkdgrav

is arguably more efficient than any other existing code with similar capability. In

particular, it is superior to box tree, the code used in Paper I, which could handle

only a few hundred particles in practical fashion.

A low-order leapfrog scheme is used as the pkdgrav integrator. The compara-

tive simplicity of this scheme is a big advantage for collision prediction since particle

position updates are linear in the velocity term. This means that every possible col-

lision within the time step can be determined in advance and in the correct sequence.

Time steps are smaller than in higher-order schemes for the same accuracy, but the

cost of each gravity calculation is far outweighed by the collision search once the rub-

ble piles are in contact and is comparable otherwise. Moreover, away from collision,

particle trajectories are integrated symplectically, eliminating spurious numerical

dissipation. For further detail and references, refer to Paper II.

2These references have been updated since publication of this chapter.

30

Although the collision search is relatively expensive, the scaling is modest: O(N log N)

with particle number and linear with the number of collisions per interval. A typical

encounter between thousand-particle rubble piles can generate ∼ 108 collisions over

the course of a run! A balanced k-d tree (Bentley & Friedman 1979) is used to search

for possible collisions at the beginning of each time step, giving the O(N log N) de-

pendence. Once a collision is performed, only particles that might be affected by

the event in the remaining interval (numbering typically � N) are reconsidered via

the neighbor search, giving the near linear dependence on the number of collisions.

This latter enhancement is an improvement to the Paper II code, which did not

require as much sophistication given the low collision frequency per step. Note that

the collision search can also be performed in parallel, which proved necessary for

the large-N models presented in Section 2.3.3 below.

2.2.3 Hardware

The parameter space models were run on a local cluster of 16 300-MHz Intel Pen-

tium IIs using the High Throughput Computing (HTC) environment condor (cf.

http://www.cs.wisc.edu/condor/) under RedHat Linux. The condor system

supports automatic scheduling, submission, and restarting of jobs on shared re-

sources, greatly simplifying management. A typical run required between 12 and

72 wallclock hours to complete and each generated ∼ 25 − 50MB of data. Models

requiring parallel resources were run either on a local cluster of four 433-MHz DEC

Alpha PCs connected with a fast ethernet switch, or on a local SGI Origin 200 with

four 180-MHz processors running IRIX. Both platforms typically achieved sustained

performances of several hundred megaflops.

31

2.2.4 Initial Conditions

Generation of initial conditions and analysis of results were performed using code

auxiliary to pkdgrav. The rubble pile generator has already been described (Section

2.2.1). Each new rubble pile was first run in isolation (with or without spin) using

pkdgrav until the velocity dispersion of the constituent particles achieved a stable

equilibrium. Next a new “world” was created by using a small program to position

and orient any number of equilibrated rubble piles (always two in the present study)

prior to simulation. Spherical bodies were usually given a random orientation in

order to reduce the effect of HCP planes of symmetry. Bulk velocities were then

applied to each rubble pile. Other rubble pile properties that could be changed at

this point included the total mass, bulk radius, bulk density, and color. For the

exploration of parameter space, usually only the positions (in the form of y offsets),

velocities, spins, and colors were modified. Once all the rubble piles were in place,

the world was adjusted so that the center of mass coincided with the origin and

the velocity of the center of mass was zero. The output world was then read in by

pkdgrav and the simulation would begin.

To facilitate the exploration of parameter space, a series of Unix scripts were

written to generate and monitor each run. Starting with a given pair of rubble piles

and a list of desired initial impact parameters, speeds, and spins, the world generator

was run automatically to create the necessary initial conditions and support files in

separate run directories. The scheduler condor was then invoked to farm the jobs

out to all available machines. Analysis was performed on the fly using a machine

outside the condor pool for maximum efficiency.

The choice of initial conditions was governed largely by prior test simulations.

For the parameter space exploration, 10 values of impact parameter b and 10 values

32

of initial relative speed v were chosen for each set of runs, where a set consisted of a

fixed choice of spin and/or offset direction (see Section 2.3 for a complete description

of each model). From the test simulations it was clear that only about half of the

possible 100 runs for each model were needed to find the representative cases and

the Q?
D boundary. In a plot of b vs v, the important region is the lower left triangle

(see Fig. 2.2 for an example). The b and v values were therefore chosen to sample

this region as finely as possible in a practical amount of time. Models with spin were

chosen to sample representative combinations of spin and orbital angular momentum

at a fixed rotation period.

2.2.5 Coordinate System and Units

We use an inertial Cartesian coordinate system in free space for our simulations, with

the origin at the center of mass. In the parameter space studies, the initial motion of

the colliding bodies is in the ±x direction. Any initial impact parameter is measured

in the ±y direction. Most debris actually travels in directions perpendicular to the

original axis of motion (cf. Section 2.4.3).

A natural unit for the impact parameter b is the sum of the radii R1 + R2

of the two (spherical) impactors. Hence b = 0 implies a head-on collision while

b = 1 is a grazing encounter. Note, however, the true trajectories will generally be

hyperbolae; no allowance is made for this in the definition. Since tidal effects may

play an unpredictable role anyway, we adopt the simpler definition. In the absence

of trajectory deflection, the impact angle is then φ = sin−1 b, for b ≤ 1.

The unit for the initial relative speed v is more complicated. We chose a system

in which v = 0 indicates no relative motion and v = 1 is the estimated critical speed

for dispersal. The critical speed is found by equating the initial total kinetic energy

with the gravitational binding energy of a rubble pile made up of a spherical and

33

homogeneous mixture of both colliders,

vcrit = M

√

6G

5µR
, (2.1)

where M is the combined mass, G is the gravitational constant, µ is the reduced

mass M1M2/M , and R is the radius of the sphere that contains the combined mass,

assuming the same bulk density:

R = (R3
1 + R3

2)
1/3. (2.2)

Note that the actual speed at impact will slightly exceed v due to gravitational

acceleration.

In the parameter space models, the initial separation in x for all cases was ∼ 6R,

effectively 2.5 Roche radii for the combined mass, i.e., far enough apart that initial

tidal effects were negligible. The total energy of the system was positive in all cases.

For completeness, the speed at infinity is given by

v∞ =

(

v2v2
crit −

GM cos φ

3R

)1/2

, (2.3)

and the speed at impact is

vimpact =
(

v2
∞

+
2GM

R1 + R2

)1/2

. (2.4)

2.2.6 Run Parameters

Most pkdgrav run parameters assumed default values for these simulations (cf.

Paper II). However, in addition to the collision parameters described in Section

2.2.4, the run time, time step, and output frequency were specified explicitly for

each model. The run time (tr) was initially 10 times the characteristic time,

tc ∼
√

x3

GM
, (2.5)

34

where x is the initial separation. Typically tr is ∼ 36 h. In most cases this is

sufficient time for the post-collision system to reach a steady state. Some cases were

run longer (typically a factor of 2) if necessary, on the basis of visual inspection of

animations.

The time step for each run was set to a small value t0 times a heuristic scale

factor of 1/(2v + 1), arrived at by trial and error from our test runs (recall that v

is the initial speed, so t0 is a simple constant). The scaling ensures finer intervals

for neighbor searches in higher-speed impacts (this is necessary to avoid missing

any potential collisions). For our runs, t0 = 10−5 year/2π, or roughly 50 s. Note

that for objects with bulk density a few g cm−3 the dynamical time 1/
√

Gρ ∼1

h, comfortably large compared to the maximum adopted time step. Generally our

simulations are limited by the time needed to deal with particle collisions, so the

gravity calculations can be of higher accuracy with little additional cost.

Finally, the output frequency was chosen so that there would be about 200

outputs per run, suitable for smooth animations and analysis.

2.2.7 Analysis Method

Much of our analysis method is similar to that presented in Paper I; the reader is

referred to that work for additional details. The basic strategy is to identify the

largest post-collision remnant, compute its various properties, and generate statis-

tics for the relative distribution of the smaller fragments. We use a slightly different

clump-finding algorithm (Section 2.2.7.1) and now employ a shape drawing tech-

nique (Section 2.2.7.2). We have made other refinements that should improve the

accuracy of the analysis.

35

2.2.7.1 Clump finding.

The clump-finding algorithm iteratively refines guesses as to what constitutes a

rubble pile by merging groups of particles together in bottom-up fashion. The first

guess is that every particle in the system is its own rubble pile. On each pass

basic properties are computed for each clump: mass, position, axis lengths, and

orientation. Clumps are then compared in pairwise fashion. In order for two clumps

to be merged (i.e., to be considered one clump), spheres of diameter equal to the

major axes times a fixed linking scale (a dimensionless number > 1, typically 1.1)

and centered on each clump must overlap. If the scaled minor axes also overlap,

then the clumps are merged. Failing that, if either body has its center of mass in the

other’s scaled ellipsoid, the bodies are merged. Otherwise, no merge occurs. This

process iterates until there are no more mergers during an iteration.

This method is purely geometrical: gravitational groupings are not considered.

This was done mostly because there is no natural gravitational length scale in the

present context, unlike in Paper I where the Hill radius could be used. However,

osculating elements of groups measured with respect to the largest fragment are still

calculated and give a good indication of the future evolution of the system. The

present method also differs from Paper I in that it treats each clump as an ellipsoid

rather than a sphere, allowing more refined boundaries to be drawn. The linking

scale of 1.1 was adopted through trial and error (visual inspection).

36

2.2.7.2 Shape drawing.

During the course of the present investigation we came across some unusual, often

asymmetrical shapes following collision events. In order to characterize these forms,

a shape-drawing algorithm was devised. The algorithm attempts to trace the outer

surface of a given rubble pile (either in cross section or by projection to the x − y

plane). The resulting shape is equivalent to what would be measured by laser beams

aimed at the surface in the direction of the center of mass. Note that this means

that any outcroppings can conceal underlying structure. Generally such complex

surfaces are not seen in our models, however (as confirmed by 3D VRML viewing).

The projection method is used in the parameter space plots of Section 2.3.

2.2.7.3 Mixing.

The unique color assigned to each rubble pile makes it easy to assess visually the

degree of mixing following a collision. In order to make a more quantitative assess-

ment, we have constructed the following statistic,

fmix = 1 − 1√
Nv

∑

c





∑

v

(

mc,v
∑

′

c mc′,v
− mc,world
∑

c′ mc′,world

)2




1/2

, (2.6)

where subscript c denotes a color, subscript v denotes a subvolume of the rubble

pile, Nv is the number of subvolumes, and “world” refers to the entire population of

particles in the system. Note that particle number is conserved so that
∑

c mc,world =

M , the total mass of the system. This formula is generalized for any number of

components (colors); in the present study only two populations were considered. A

mixing fraction of unity implies the rubble pile contains a perfectly homogeneous

mixture of the world colors. A value of zero means no mixing has taken place at all.

Spherical subvolumes are used to sample different regions of the rubble pile

(which itself need not be spherical). The size of the sample region is set so that it

37

contains
√

N particles on average. The center of a subvolume is chosen randomly

within a rectangular prism enclosing the rubble pile. A new subvolume is chosen if

the region is found to contain fewer than N1/4 particles. Otherwise, the argument

of the
∑

v in Eq. 2.6 is computed and added to the running sum. This is repeated

until
√

N subvolumes are successfully sampled.

2.3 Results

We now present the results of our simulations. First we describe the parameter space

exploration which consisted of numerous runs of modest size. Highlights are shown

in Fig. 2.1, where we have endeavored to illustrate the various classes of outcomes.

Second we show the dependence on the coefficient of restitution εn for a particular

high-energy run. Finally we present the results of two high-resolution cases and

compare with the corresponding moderate-resolution runs.

2.3.1 Parameter Space

We divided our exploration of parameter space into three models: a generic case as a

baseline, a case with spinning impactors, and a case with unequal-mass impactors.

Graphical summaries of these models are given in Figs. 2.2 and 2.4, which are

discussed in detail below.

2.3.1.1 Model A: Equal size, no spin.

Model A, our generic case, consisted of two equal-size rubble piles of 1 km radius and

2 g cm−3 bulk density. The rubble piles were generated and equilibrated using the

process described in Section 2.2.4. Each rubble pile contained 955 identical spherical

38

(e)

(d)

(c)

(b)

(a)

Figure 2.1: Snapshots of rubble pile collisions from representative runs as seen

in the center-of-mass frame. The models and runs are: (a) Model A, b = 0.00,

v = 1.00; (b) Model A, b = 0.15, v = 2.00; (c) Model A, b = 0.904, v = 0.52; (d)

Model B1, b = 0.30, v = 1.10; and (e) Model C, b = 0.50, v = 1.25. The arrow

of time is to the right. The interval between frames is not regular: the snapshots

were chosen to highlight distinct stages in the evolution of each run. In run (b),

the final two frames have been brightened for clarity.

39

particles of 83 m radius, so the packing efficiency was 55%.3 The parameter space

extends from 0.00-1.25 in b and 0.52-2.50 in v (the units of b and v are defined

in Section 2.2.5; vcrit = 2.06 m s−1 for this model). The impact parameter values

were chosen to encompass a range of dynamic interactions from head-on collisions

to glancing distortions. The lowest value of v is twice the value corresponding to

v∞ = 0 (cf. Eq. 2.3; smaller v leads to strong trajectory deflections). The largest

value of v was chosen to be a moderately high-speed impact to ensure that the

catastrophic dispersal regime was entered.

Figure 2.2 summarizes the results of this model (Figs. 2.1(a)-2.1(c) give snapshots

of three distinct outcomes). The shapes in Fig. 2.2 trace the projected silhouettes

of the largest post-encounter fragment at the end of each run. We have used nested

squares of different line styles to divide our results into three mass regimes. A solid-

line inner square indicates that the largest fragment contains 90% or more of the

total mass of the system, i.e., nearly perfect accretion. A dashed-line inner square

indicates that the largest fragment contains at least 50% but less than 90% of the

total mass. The remaining cases contain less than 50% of the total mass in the

largest fragment, i.e., net erosion. Note if there is no mass loss or exchange during

the encounter the largest fragment will contain 50% of the total mass of the system

by definition. We see in this model that 18 of 55 runs (33%) result in net mass loss,

although we caution that several cases are just on the border of 50%.

The general trends in Fig. 2.2 are twofold, namely, as the encounter speed in-

creases, the size of the largest fragment decreases, and as the impact parameter

increases, the axis ratio increases, up to a certain point. Higher encounter speeds

imply larger kinetic energy so it is more likely for the system to become unbound.

3The effective packing efficiency is less than the maximum close-packed efficiency of 74% due

to finite-size effects (Paper I).

40

Larger impact parameters imply larger angular momentum which results in an in-

crease in the axis ratio until the critical spin value of the combined rubble pile is

reached (cf. Eq. 2.7). In addition to the general trends, the middle-mass group

has two distinct populations that reflect their formation history. The small b, large

v group (top left in the figure) represents a net loss of mass of 10-50% from the

system. The large b, small v group (lower right) represents grazing collisions with

little mass loss or exchange.

We note that for the head-on case our definition of vcrit does not correspond to

critical dispersal, rather, critical dispersal seems to occur at ∼ 1.9vcrit (∼ 4 times the

binding energy of the rubble pile). This probably reflects the fact that the energy of

the collision is not immediately transported to all of the particles and that the voids

in between the particles decrease the efficiency of energy propagation. Moreover, we

did not take into account εn in the definition of vcrit. Regardless, vcrit is intended

as an approximate scaling only.

More detailed results for this model are given in Table 2.1. In the table, b

and v have the usual definitions; Mrem is the mass fraction of the largest post-

encounter remnant; P is its instantaneous spin period in hours; ε is the remnant’s

“ellipticity”: ε ≡ 1 − 1
2
(q2 + q3), where q2 ≡ a2/a1, q3 = a3/a1, and a1 ≥ a2 ≥

a3 are the semi-axes (ε = 0 is a sphere); fmix is given by Eq. 2.6; Macc, Morb,

and Mesc are the mass fractions that are accreting, orbiting, and escaping from

the largest remnant, respectively4; and n1, n2, and n are the number of single

particles, two-particle groups, and discrete rubble piles (i.e., groups with three or

more particles), respectively, at the end of the run. The Mrem column of Table 2.1

4To be considered accreting, a clump must have q < r + R, where q is the close-approach

distance to the remnant, and r and R are the radii of minimal spheres enclosing the clump and

remnant, respectively. This differs somewhat from Paper I.

41

compliments Fig. 2.2 by providing a finer gradation of the remnant mass. Note that

Mrem + Macc + Morb + Mesc ≡ 1.

Table 2.1 shows how the remnant spin P is coupled to the angular momentum in

each run. Since there are no external torques in the system, angular momentum is

conserved. In the case of head-on collisions (b = 0), there is exactly zero total angular

momentum, which accounts for the large remnant P values (i.e., low spin). P is never

infinite in these cases because some particles escape and carry angular momentum

away from the remnant, even in the slowest collision case (v = 0.52). At higher

collision speeds, more mass is carried away from the system, generally resulting in

smaller P values. As b increases, so does the net angular momentum, resulting in

faster spins (smaller P). This trend continues until b ∼ 1 which corresponds to a

grazing collision. In this case, the encounter generally does not result in a merger so

the remnant is effectively one of the initial bodies plus or minus some mass exchange.

Mass exchange and/or tidal torquing following deformation converts orbital angular

momentum into spin angular momentum. As b increases further, there is little spin-

up, since torquing becomes less effective. All of these trends can be seen in the

table.

Similarly, ε depends on the total angular momentum of the system. Larger an-

gular momentum allows the remnant to support a more elongated shape as long as

most of the system mass ends up in the remnant (∼ 75%, from the table). Conse-

quently there is also a relationship between ε and P : smaller P values correspond

to larger ε values, in general. The smallest P in the table is 4.1 h with ε = 0.26;

the largest ε is 0.45 with P = 4.3 h. These values are within the classical limit for

mass retention at the surface:

Pcrit '
1

1 − ε

√

3π

Gρ
, (2.7)

where ρ is the bulk density and we have assumed a2 = a3. In this expression

42

Table 2.1: Summary of Model A Results (Section 2.3.1.1)

b v Mrem P ε fmix(%) Macc Morb Mesc n1 n2 n

0.00 0.52 0.992 641.2 0.09 26± 4 0.001 0.000 0.007 15 0 1

0.00 0.61 0.989 281.7 0.08 29± 3 0.001 0.000 0.010 21 0 1

0.00 0.75 0.971 220.8 0.06 33± 4 0.004 0.000 0.025 55 0 1

0.00 0.90 0.936 181.6 0.05 38± 5 0.007 0.000 0.057 114 4 1

0.00 1.00 0.928 110.8 0.05 50± 4 0.007 0.000 0.065 134 2 1

0.00 1.10 0.903 114.3 0.04 52± 4 0.007 0.000 0.090 182 2 1

0.00 1.25 0.843 116.2 0.08 64± 4 0.013 0.000 0.145 285 4 3

0.00 1.50 0.699 20.7 0.07 73± 3 0.022 0.000 0.279 531 11 7

0.00 2.00 0.374 19.1 0.04 80± 4 0.046 0.016 0.564 938 39 27

0.00 2.50 0.098 5.1 0.31 71± 4 0.004 0.007 0.891 1328 34 38

0.15 0.52 0.992 11.9 0.07 25± 3 0.002 0.000 0.006 16 0 1

0.15 0.61 0.984 11.0 0.14 28± 3 0.002 0.000 0.014 30 0 1

0.15 0.75 0.965 9.1 0.12 30± 4 0.005 0.000 0.030 66 0 1

0.15 0.90 0.944 7.4 0.14 37± 4 0.006 0.000 0.050 105 1 1

0.15 1.00 0.924 6.9 0.12 40± 4 0.004 0.000 0.072 142 2 1

0.15 1.10 0.885 6.1 0.13 47± 4 0.016 0.000 0.099 197 4 4

0.15 1.25 0.818 5.7 0.07 59± 3 0.012 0.001 0.169 324 8 2

0.15 1.50 0.695 5.6 0.09 59± 3 0.017 0.008 0.280 529 12 6

0.15 2.00 0.275 8.4 0.04 52± 5 0.009 0.005 0.710 939 24 30

0.30 0.52 0.994 6.9 0.20 21± 3 0.001 0.000 0.005 11 0 1

0.30 0.61 0.988 6.0 0.20 28± 3 0.002 0.000 0.010 23 0 1

0.30 0.75 0.974 5.3 0.22 34± 3 0.002 0.000 0.025 50 0 1

0.30 0.90 0.946 4.6 0.20 37± 3 0.006 0.001 0.047 103 0 1

0.30 1.00 0.901 4.4 0.24 37± 4 0.009 0.010 0.081 184 3 1

0.30 1.10 0.887 4.5 0.41 40± 4 0.018 0.010 0.085 202 5 2

0.30 1.25 0.786 4.5 0.42 42± 4 0.013 0.020 0.182 366 10 7

0.30 1.50 0.408 7.6 0.09 32± 4 0.029 0.007 0.555 481 17 12

0.45 0.52 0.995 5.2 0.33 23± 3 0.000 0.000 0.005 10 0 1

0.45 0.61 0.986 4.8 0.39 24± 4 0.002 0.000 0.012 26 0 1

0.45 0.75 0.982 4.3 0.40 26± 4 0.002 0.001 0.015 35 0 1

0.45 0.90 0.490 9.2 0.13 25± 4 0.457 0.009 0.043 105 0 2

0.45 1.00 0.469 7.9 0.15 25± 4 0.003 0.006 0.523 140 2 2

0.45 1.10 0.442 9.6 0.11 23± 4 0.008 0.006 0.545 191 4 4

0.45 1.25 0.416 9.2 0.06 20± 3 0.008 0.004 0.572 295 6 7

0.60 0.52 0.997 4.5 0.40 21± 3 0.000 0.000 0.003 6 0 1

0.60 0.61 0.989 4.2 0.38 24± 3 0.002 0.003 0.007 19 1 1

0.60 0.75 0.512 8.1 0.09 20± 4 0.468 0.003 0.018 41 0 2

0.60 0.90 0.499 8.1 0.13 18± 3 0.005 0.005 0.491 93 3 2

0.60 1.00 0.460 12.1 0.11 14± 2 0.003 0.003 0.535 134 3 4

0.60 1.10 0.454 10.9 0.05 11± 2 0.013 0.003 0.530 150 5 6

43

Table 1.1: Summary of Model A Results (continued)
b v Mrem P ε fmix(%) Macc Morb Mesc n1 n2 n

0.75 0.52 0.998 4.1 0.26 23± 4 0.000 0.001 0.001 4 0 1

0.75 0.61 0.996 4.9 0.39 23± 3 0.002 0.001 0.001 8 0 1

0.75 0.75 0.493 10.1 0.12 9± 2 0.001 0.001 0.506 32 0 2

0.75 0.90 0.484 10.0 0.14 7± 2 0.003 0.004 0.510 68 2 2

0.75 1.00 0.470 20.0 0.13 6± 2 0.003 0.002 0.525 111 3 3

0.90 0.52 0.999 4.3 0.45 16± 3 0.000 0.001 0.000 2 0 1

0.90 0.61 0.504 10.0 0.14 8± 2 0.000 0.002 0.494 10 1 2

0.90 0.75 0.496 13.9 0.16 4± 1 0.002 0.000 0.502 23 0 3

0.90 0.90 0.492 14.5 0.12 3± 1 0.001 0.000 0.507 42 0 4

1.00 0.52 0.502 9.6 0.12 6± 2 0.000 0.001 0.498 5 0 2

1.00 0.61 0.502 13.8 0.11 5± 1 0.002 0.001 0.495 13 0 2

1.00 0.75 0.499 16.6 0.20 3± 1 0.001 0.000 0.499 16 1 2

1.10 0.52 0.501 12.6 0.09 4± 1 0.000 0.001 0.498 4 0 2

1.10 0.61 0.499 17.2 0.12 2± 1 0.001 0.000 0.500 5 0 2

1.25 0.52 0.501 48.4 0.07 1± 1 0.000 0.000 0.499 2 0 2

Pcrit = 2.3 h for a spherical rubble pile with ρ = 2 g cm−3, and increases to infinity

as ε → 1.

The sixth column in Table 2.1, labeled fmix, gives the mean percent mixing

fraction and standard deviation after 100 repeated measurements (recall the mixing

calculation subvolumes are chosen randomly—cf. Section 2.2.7.3). The errors are a

small fraction of the mean except when the mixing fraction itself is small. In the

head-on case, fmix shows a simple trend of generally increasing with impact energy

with a dip at the highest energy probably due to increased statistical fluctuation

(the remnants are smaller). For most b values the situation is more complicated

depending on whether the impactors accrete into a single body or exchange mass

while remaining two separate bodies. For the largest b, little mass is exchanged, so

the bodies remain essentially unmixed.

The next three columns give dynamical information about the remaining mass

of the system, i.e. the material not incorporated in the largest remnant. Generally

most of this mass is escaping from the largest remnant (Mesc). Typically only

44

small amounts (< 10%) of mass are accreting (Macc) and/or orbiting (Morb). In two

cases, however, Macc is close to 50%; these are instances of near escape that were too

computationally expensive to run until final accretion and represent the transition

from a high- to medium-mass remnant.

The final three columns contain information about the particle groupings at the

end of each run. The number of free particles (n1) increases dramatically with v,

but decreases with b. This trend is also seen in the number of two-particle groups

(n2) and discrete rubble piles (n). Groups can form either from accretion among the

free particles due to gravitational instability or from being stripped off as a clump

during the collision event. Note that n is always at least 1 because the remnant is

included.

In summary, the outcomes of this model depend in a natural way on the total

angular momentum and impact energy of the system (both related to b and v).

Larger b results in more elongated remnants with higher spins and reduced mixing.

Larger v results in greater mass loss and increased mixing. In the remaining sections

we explore how these trends are modified for non-identical or spinning bodies.

2.3.1.2 Model B: Equal size, spin.

In Model B we added a spin component to the impactors. The spin vectors are

oriented perpendicular to the orbital plane (i.e. along the ±z axis). The rotation

period of the impactors is 6 h, the median rotation period of Near Earth Asteroids

(Bottke et al. 1997). We investigated three cases: in Model B1 the spins of the

impactors have opposite orientation; in Model B2 and B3 the spins have the same

orientation but the impactors have opposite y offsets (Fig. 2.3). By symmetry, these

cases test all the unique z angular momentum combinations (spin + orbital). The

remaining parameters are identical to those in Model A.

45

Figure 2.2: Projected shape of the largest remnant at the end of each Model A

run as a function of b and v. At this scale each grid square measures 4 km on a

side. Solid inner squares indicate remnants that retain at least 90% of the system

mass; dashed squares indicate remnants with at least 50%. Critical dispersal

generally corresponds to the transition from solid to dashed, although in some

cases a sizeable fragment may be about to accrete with the remnant. Table 2.1

gives additional data for this model.

46

Model B3

Model B2

Model B1

Figure 2.3: Illustration of the spin sense for the Model B impactors. In Model

B1, the impactors have opposite spin; in B2 they have the same spin, oppositely

aligned with the orbital angular momentum; in B3 the spins are aligned with the

orbital angular momentum.

Figures 2.4(a)–(c) summarize the results for Models B1, B2, and B3, respectively

(Fig. 2.1(d) is a snapshot sequence of a Model B1 run). The general trends seen

in Fig. 2.4 are similar to those seen in Fig. 2.2. The head-on cases tend to result

in spherical remnants of decreasing mass with increasing v. The elongation of the

remnants tends to increase with an increase in b, up to a point. Of the three models

note that Model B1 is the most similar to Model A. This is because Model B1 has

the same amount of net angular momentum in the system since the spin components

of the impactors cancel. Model B2 and Model B3, however, have smaller and larger

net angular momentum in the system, respectively, than Model A or B1. This is

reflected in the number of runs with fast-rotating and/or elongated remnants (Table

2.2). Models A and B1 have an intermediate number of runs with extreme P and/or

47

Table 2.2: Comparison of runs with extreme P and e values (Section

2.3.1.2)

Model No. with P ≤ 5 h No. with e ≥ 0.35

A 11 8

B1 10 8

B2 10 2

B3 15 10

C 0 0

ε values compared with Model B2 or B3 (Model C is a special case discussed in the

next section).

Model B1 does differ from Model A in one important respect. As seen in

Fig. 2.4(a), some of the remnants in this model (e.g. b = 0.30, v = 1.10; b = 0.60,

v = 0.61) have unique asymmetries (i.e. broken eight-fold symmetry). This is be-

cause before the encounter one of the bodies is spinning prograde while the other

body is spinning retrograde with respect to the orbit. The prograde rotator has

larger angular momentum with respect to the center of mass of the system than its

retrograde counterpart, consequently, it suffers more mass loss. This is analogous

to the resistance of retrograde rotators to tidal disruption (Richardson et al. 1998).

To summarize other quantitative results, 24% of the Model B1 runs resulted

in net erosion, while this value was 29% for B2, and 40% for B3. The mixing

statistics are generally similar to those for Model A, namely that larger disruption

resulted in more mixing. As for ejecta statistics, again no more than about 2% by

mass remains in orbit around the remnant in all cases, while a somewhat larger

percentage is destined to reaccrete (no more than ∼ 6%, except for a few cases

where components of a future contact binary were on slow-return trajectories). The

distribution of fragments (n1, n2, and n) followed similar trends to those of Model

A.

48

2.3.1.3 Model C: Unequal size, no spin.

In Model C we used two different-sized impactors with no initial spin: one large

sphere of 1357 particles and 1 km radius, and one small sphere of 717 particles and

0.46 km radius, keeping the bulk densities the same (2 g cm−3) and the total number

of particles similar to the previous models. Hence the larger sphere is ten times the

mass of the smaller sphere and the particles in the two impactors are different sizes

(the smaller body has smaller particles, to ensure adequate resolution). We caution

that the difference in particle sizes implies different packing efficiencies (porosities)

which may affect the outcome (cf. Section 2.3.3). Both impactors were equilibrated

using the same process as before. Note that the parameter space investigated is

different from the previous models, primarily for better sampling of the tidal regime

(large b, small v). For this model, vcrit = 2.9 m s−1. As for the previous models, the

minimum v is twice the value corresponding to v∞ = 0.

In Fig. 2.4(d) it is evident that most collisions result in net growth of the larger

body (only 9 cases, or 16%, result in net erosion e.g. remnants with less than 90% of

the total mass of the system). None of the encounters resulted in critical dispersal

and only the highest-speed cases resulted in violent disruption of the combined

system (i.e. b = 0, v = 2.5). Also the remnants are all roughly spherical (the largest

ε = 0.26). Fig. 2.1(e) shows a typical encounter: the small body is pulverized and

in this case planes off a chunk of the larger body (so n1 is typically a few hundred

in all runs except the most grazing, while n2 and n remain small, ≤ 10). Most of

the smaller fragments escape the system, a tiny fraction (< 1% by mass) go into

orbit around the remnant, while the remaining fragments return and blanket the

remnant in the equatorial plane. The largest concentration of smaller particles is at

the impact site. The rotation periods of the remnants in this model are typically

long compared to those of the previous models due to the larger rotational inertia

49

B3 C

B1 B2

Figure 2.4: Remnant shapes for the remaining parameter space models. The

model is indicated in the top left of each plot. Compare with Fig. 2.2.

of the bigger impactor. Finally, there was little tidal interaction seen in any of the

cases, suggesting even the minimum v was too large. Unfortunately, smaller v would

result in stronger path deflections, making interpretation more difficult.

50

Table 2.3: Effect of varying dissipation in Model A run b = 0.15, v =

2.00 (Section 2.3.2)

εn Mrem Macc Morb Mesc n1 n2 n

0.2 0.196 0.177 0.028 0.598 420 29 44

0.5 0.364 0.006 0.004 0.626 483 31 33

0.6 0.301 0.007 0.007 0.685 597 31 41

0.7 0.284 0.029 0.006 0.682 746 32 39

0.8 0.275 0.009 0.005 0.710 939 24 30

0.9 0.040 0.006 0.005 0.949 1484 63 26

1.0 0.001 0.000 0.000 0.999 1904 3 0

2.3.2 Coefficient of Restitution Test

The energy change in the center-of-mass frame of a system of two smooth, colliding

spheres is given by (e.g. Araki & Tremaine 1986):

∆E = −1

2
µ(1 − ε2

n)v2
n, (2.8)

where vn is the component of relative velocity normal to the mutual surfaces at the

point of contact, and µ and εn have the usual definitions. Hence as εn → 0, all the

impact energy—less a geometric factor that depends on b—is dissipated. Although

a collision between two rubble piles consists of many individual particle collisions,

the dependence of ∆E on εn suggests that Q?
D will depend on εn in a similar way,

namely that smaller εn implies larger Q?
D.

A simple test bears this out. Table 2.3 and Fig. 2.5 summarize the effect of

varying εn for one of the Model A runs (b = 0.15, v = 2.00; cf. Fig. 2.1(b)). The

general trend is clear: as εn decreases, the size of the largest remnant increases

(note the large Macc value for the εn = 0.2 case, indicating that a big fragment is

about to merge with the remnant, giving it the largest mass of all the runs). Runs

with smaller εn form discrete rubble piles out of the collision debris faster and more

efficiently than those with larger εn. For εn = 1, no rubble piles actually form. The

51

0.7 (2x) 1.0 (4x)0.9 (4x)

0.2 (1x) 0.6 (2x)0.5 (2x)

Figure 2.5: Snapshots showing the effect of varying εn for the Model A run with

b = 0.15, v = 2.00 (cf. Fig. 2.1b). Each snapshot was taken about 6.5 h after

impact. The chosen εn value and camera zoom-out factor are shown in the top

left of each frame. For clarity, no color or shading distinction is made between

the particles of the original impactors, and the εn = 0.9 and εn = 1.0 frames have

been brightened. From these snapshots and the statistics in Table 2.3 it can be

seen that rubble pile formation favors smaller εn values. The differences at the

extremes are dramatic.

strong dependence on εn suggests that further study is needed to determine the

value most representative of true rubble pile collisions.

2.3.3 High-Resolution Models

In order to test the degree to which particle resolution affects the collision outcome,

we performed two high-resolution runs using parameters drawn from Model A. Each

impactor for this test consisted of 4,995 identical particles, more than 5 times the

number used in the parameter space runs (Section 2.3.1). The progenitor needed 1

52

CPU day to equilibrate using 2 processors on the SGI Origin 200. At equilibrium,

the code was performing ∼ 4 × 104 collisions per step, with each step requiring

∼ 140 s wallclock time. The enhanced packing efficiency of the high-resolution

impactors plus their randomized orientations makes detailed comparison with the

low-resolution runs difficult. However, we would expect the general trends to be

similar (i.e. outcome class, etc.). Figure 2.6(a) shows snapshots shortly after the

initial impact comparing the low- and high-resolution Model A runs with b = 0.30,

v = 1.25. Figure 2.6(b) shows post-reaccretion snapshots for b = 0.60, v = 0.61.

These runs were chosen because they are moderately well separated in b-v space while

still being representative of the complex intermediate-energy regime (cf. Fig. 2.2).

The expense of these calculations precluded a more thorough sampling.

Both high-resolution runs in this test show evolution similar to that of their

low-resolution counterparts. In Fig. 2.6(a), the impactors mutually penetrate and

lose most of their relative orbital energy (the bodies will eventually accrete into a

single massive remnant). Note the presence of the “mass bridge” between the two

bodies in both cases. The rotational phase and penetration distance differ somewhat,

perhaps indicating that higher resolution (and hence lower porosity) gives rise to

more efficient dissipation, by increasing the degrees of freedom. In Fig. 2.6(b), the

final shape of the reaccreted body at low and high resolution is similar, but there

is more structural detail in the high-resolution remnant, e.g. the depression on the

upper surface. The remnant mass and rotation period are comparable at this instant:

0.985 and 4.2 h respectively at low resolution; 0.987 and 4.1 h at high resolution.

We conclude that higher resolution may give insight into the more detailed aspects

of reaccumulation, but low resolution is sufficient for a broad sampling of parameter

space.

53

(a)
Low Resolution High Resolution

(b)

Figure 2.6: Comparison of two Model A runs performed at low resolution (955

particles per rubble pile; left column) and high resolution (4995 particles per

rubble pile; right column). The run parameters are: (a) b = 0.30, v = 1.25; (b) b =

0.60, v = 0.61. The evolution is similar in both cases, with differences attributable

to packing efficiency, initial orientation, and possibly enhanced dissipation at

higher resolution.

54

2.4 Discussion

2.4.1 Critical Dispersal Threshold

Despite the large number of runs carried out for this investigation, the data are still

too sparse in each model to reliably derive a generalized expression for the retained

mass (remnant plus accreting and orbiting material) as a function of b and v, i.e.

1 − Mesc = f(b, v). However, we can solve for the critical contour f(b, v) = 0.5,

which is well sampled by our choice of parameter space (for Model C, we solve for

f(b, v) = 0.9, the point of net erosion for the larger impactor). Our method is to

perform bi-linear interpolation of our b-versus-v results onto a regular grid, root

solve using Newton’s method for the v value that gives a remnant mass of 0.5 at

each grid line in b (we chose 20 lines for smooth sampling), and fit the resulting

values to a functional form. After some experimentation, we found the contour is

best represented by a Gaussian:

v|f=0.5 ≡ v? = α exp

[

−(b − β)2

γ

]

+ δ, (2.9)

where α, β, γ, and δ are parameters to be determined by non-linear least-squares

fitting.

Figure 2.7 gives the best-fit values of the Gaussian parameters along with their

1-σ uncertainties for each of the parameter space models. Note that the fits are

marginally consistent with β = 0, i.e. no b offset, except for Model C. The differences

between the fits (except Model C) are slight, but they follow the trend mentioned

in Section 2.3.1.2, namely that Model B2 has a higher disruption threshold than

Model B3, with Models A and B1 having intermediate thresholds. Model C has a

broader distribution that is somewhat offset in b, but inspection of the other models

shows similar trends for the 0.9 contour.

55

0 0.5 1

0

0.5

1

1.5

2

0 0.2 0.4

1.2

1.4

Figure 2.7: Best fits to Eq. 2.9 for Mrem = 0.5 contours, b ≤ 1: Model A (solid

line; α = 1.10± 0.03, β = 0.02± 0.01, γ = 0.17± 0.01, δ = 0.74± 0.02), B1 (short

dashed; α = 0.98±0.01, β = −0.024±0.005, γ = 0.190±0.005, δ = 0.846±0.006),

B2 (dotted; α = 1.2± 0.1, β = −0.02± 0.04, γ = 0.27± 0.05, δ = 0.67± 0.06), B3

(dot-short dashed α = 0.89±0.03, β = 0.00±0.02, γ = 0.17±0.02, δ = 0.70±0.02),

and C (inset; α = 0.10± 0.03, β = 0.12± 0.04, γ = 0.010± 0.009, δ = 1.25± 0.02,

for the Mrem = 0.9 contour, b ≤ 0.5). The v◦ curve is the v∞ = 0 contour. The

value of vcrit is given by Eq. 2.1.

56

2.4.2 Debris Size Distributions

Combining all 275 runs of Models A, B, and C, we find the largest primary (remnant)

mass is 0.999 (so there were no perfect mergers), the largest secondary mass is 0.498

(there was always some grazing mass exchange, at least in Models A and B), and

the largest tertiary mass is 0.073. The smallest primary mass is 0.038. In Models A

and B, the most common outcome was an even split in mass between the primary

and secondary, since most runs at moderate to large b resulted in little to no mass

exchange between the impactors. For b ≤ 0.30 (φ ≤ 17◦), the normalized primary

mass function is well approximated by a curve of the form n(m) ∝ 1/(1 − m2),

m < 1 (Fig. 2.8).

2.4.3 Debris Spatial Distributions

In cases where debris escapes the central remnant, the ejected material is invariably

concentrated in a plane normal to the orbital (z = 0) plane, although in some cases

material can be spread out in the orbital plane as two returning fragments coalesce.

For our head-on collisions (b = 0), the dispersal plane is normal to the x axis.

For b > 0, the plane is initially normal to the impact angle φ, but rotational inertia

from the orbital motion causes the dispersal plane to overshoot this value. As usual,

initial spin may help or hinder this process (note for Model B3, φ ∼ − sin−1 b).

Figure 2.9 illustrates the anisotropic distribution of ejecta as projected to the

orbital plane for 4 of the 5 runs shown in Fig. 2.1. In the equal-mass cases the

angular distribution is bi-modal, with the peaks roughly 180◦ apart. For the plot

representing Fig. 2.1(b), the peaks are of unequal amplitude since the remnant is

relatively small and displaced from the system center of mass. The one unequal-mass

case is uni-modal, indicating that debris was scattered preferentially in one direction

57

Figure 2.8: Primary (solid line), secondary (dotted), and tertiary (short dashed)

mass fractions of every Model A and B run with b ≤ 0.30, sorted by primary mass.

The long-dashed line was obtained by integrating a rough fit to the primary mass

function of the form 1/(1 − m2).

58

1(e)1(d)

1(b)1(a)

Figure 2.9: Debris dispersal patterns in the initial orbital plane relative to the

largest remnant for the runs labeled (a), (b), (d), and (e) in Fig. 2.1. The θ

histograms are binned in 5◦ increments. Only particles with projected distances

in the z plane exceeding twice the remnant radius were included.

(roughly 30◦ measured counterclockwise from the x axis), as seen in Fig. 2.1(e).

Generally the z distributions are sharply peaked near the largest remnant but

some particles end up many hundreds of km away. Recall that the tidal field of

the Sun is not included in our simulations. If it were, these particles would be well

59

outside the remnant’s Hill sphere at 1 AU (for example):

rH = (210 km)
[

a

1 AU

] [

R

1 km

]

[

ρ

2 g cm−3

]1/3

, (2.10)

where a is the distance to the sun, R is the radius of the remnant, and ρ is its bulk

density. Regardless, most of these particles would escape the remnant, even without

the solar tides.

2.4.4 Outcome Probability

For a given impact parameter and speed distribution, the probability of a net ac-

cretional (as opposed to net erosional) outcome can be estimated from Eq. 2.9.

Suppose we set b = 0.7, which corresponds to φ = 45◦, the most probable impact

angle for randomly flying projectiles striking a spherical target (Love & Ahrens

1996). A monodispersive population of bodies with a Maxwellian distribution of

speeds whose rms equals the escape speed ve from a particle’s surface has the fol-

lowing normalized distribution function in relative speed (e.g. Binney & Tremaine

1987, Problem 7-3):

g(v)dv =
1

2
√

πv3
e

exp

(

− v2

4v2
e

)

v2dv. (2.11)

The probability of a net accretional impact for hyperbolic encounters with b = 0.7

is then:

P [f(b = 0.7, v) ≥ 0.5] =

∫ v?

v◦ g(v)dv
∫

∞

v◦ g(v)dv
, (2.12)

where v◦ is the initial speed corresponding to v∞ = 0 from Eq. 2.3 and v? is obtained

from Eq. 2.9. For Model A, we have ve = 0.51, v◦ = 0.22, and v? = 0.81. Solving

Eq. 2.12 numerically we find the probability of an accretional impact in this case is

26%. The probability of erosion is 1 − P (f ≥ 0.5) = 74%.

The full accretional cross section is obtained by integrating Eq. 2.12 over all

impact parameters. The net accretion probability is then the ratio of this value to

60

the geometrical cross section:

P [f(b, v) ≥ 0.5] =
1

π
∫ 1
0 bdb

π
∫ 1

0
bdb

∫ v?(b)
v◦(b) g(v)dv
∫

∞

v◦(b) g(v)dv
, (2.13)

where the dependence of v◦ and v? on b has been made explicit. Solving this equation

we find the accretion probability increases to 35% only, since head-on collisions are

relatively rare. Such a low value implies that this population of rubble piles would

not go on to form planets but would instead grind itself down to dust. If rubble piles

were common during the early stages of planet formation then perhaps collisions

were more dissipative than modeled here. Alternatively, the accretion probability

may be enhanced when there is a distribution of masses, a possibility that can only

be tested with more simulations using impactors of varying size.

2.4.5 Comparison with Previous Work (Gravity Regime)

Using the fits to Eq. 2.9 we can estimate the value of Q?
D (recall this is for εn = 0.8;

further runs are needed to determine the dependence on dissipation). Restricting

ourselves to Model A with b = 0, we find Q?
D ∼ 1.9 J kg−1. This lies very close to

the Holsapple (1994); Durda et al. (1998), and gravitational binding energy curves

described in Love & Ahrens (1996, see in particular their Eq. (2) and Fig. 7). It

lies well off the extrapolation of their SPH results. In their paper they suggest that

the discrepancy between their results and analytic or experimental results may arise

from: 1) the local rather than global deposition of impact energy at the surface

of the target; 2) the difference between the role of gravity in self-compression and

ejecta retention; and 3) the finite size of the projectile. The present work however is

similar to Love & Ahrens (1996) in all these respects, which suggests the difference

may be attributable to the adopted equation of state (an incompressible fluid in

our case, compared with the Tillotson equation of state for granite in theirs) or a

61

possible reolution problem in their simulations. Note that the SPH curve plotted in

Fig. 7 of Love & Ahrens (1996) was for an impact angle of φ = 45◦, but this would

amount to less than an order of magnitude difference in Q?
D.

If the outcome truly depends solely on the gravitational binding energy (ignoring

the effect of dissipation for now as this requires further study), then we would expect

Q?
D ∝ M/R ∝ R2 ∝ M2/3. From our Model A point we can estimate the constant

of proportionality: Q?
D ∼ 1.2 × 10−6R2 ∼ 2.9 × 10−9M2/3. Further models with

different M are needed to confirm this result (our Model C case failed to sample the

critical dispersal regime, so we cannot use it here).

Watanabe & Miyama (1992) found Mesc ∝ v3 for their low-speed, head-on SPH

models (see Eq. (3.5.1) in their paper). We find a similar trend. For the b = 0

outcomes of Model A, a least-squares fit to the form

Mesc = αvβ (2.14)

yields α = 0.06 ± 0.02 and β = 3.2 ± 0.1. Evidently this relation must break down

at large v, otherwise Mesc would exceed unity. Indeed our only significant outlier is

for our highest v value (2.50), with Mesc in this case ∼ 20% below the curve.

2.5 Conclusions

In summary, we have conducted a series of numerical simulations to create a partial

map of the parameter space of rubble pile collisions at low impact speeds. The

general trends can be summarized as follows: 1) larger impact angles result in more

elongated, faster-spinning remnants; 2) larger impact speeds result in greater mass

loss and increased mixing of the remnant; and 3) initial impactor spin can increase

or reduce the rotation period and elongation of the remnant. It is also possible to

create asymmetric shapes if the impactors have oppositely oriented spins. These

62

general trends are directly related to the total energy and angular momentum of the

system. In cases where one impactor is significantly larger than the other (Model

C), the smaller body generally disrupts completely on impact, sometimes removing

a modest fraction of the surface of the target body and sometimes redepositing

material along the remnant’s z = 0 equator.

We have been able to generate a wide variety of remnant shapes, including

spheroids, ellipsoids, contact binaries (peanut shaped and S shaped), and shapes

with broken eight-fold symmetry. It proved difficult to get a significant amount of

material to orbit the remnant; most debris (98%) either accreted onto the remnant

or escaped from the system. We found no detached binaries of significant size, but

∼ 10% of the remnants in Model A and B are contact binaries. The coefficient of

restitution appears to play a more important role in collisions than in tidal disruption

and can strongly affect the number and size of post-impact rubble-pile fragments.

Increased particle resolution (or reduced porosity) appears to augment dissipation

and give rise to more complex shapes, but the effects are modest over a factor of 5

in particle number.

We found that the impact speed needed for critical dispersal is well represented

by a Gaussian function of impact parameter. Given a velocity distribution it is

possible to estimate the probability of either impactor gaining or losing mass as a

result of the collision. At low impact angles with equal-size impactors the remnant

mass function is roughly proportional to 1/(1−m2). Secondary and tertiary masses

are typically finite but small, except for near-grazing encounters. Most material is

ejected in a plane perpendicular to the axis of the initial motion and in some cases

the debris can coalesce into smaller rubble piles.

We found Q?
D ∼ 2 J kg−1 for the head-on collisions in Model A and that Mesc ∝

v3.2. The former result is in rough agreement with the theoretical gravity-regime

63

model of Holsapple (1994). The latter relation agrees with Watanabe and Miyama

(1992). We find that km-sized rubble piles in general are much easier to disperse

than previously thought. This may be due in part to our conservative choice for

εn (0.8). Although more work needs to be done, we believe our simulations may

provide a numerical basis for parameterizing collisions during the early stage of

planet formation, when the planetesimals are dynamically cool and the dominant

sizes are still ≤ 10 km.

2.5.1 Future Work

In this study we were restricted to investigating the dependence of collision outcome

primarily on impact parameter and impact speed. We also examined a few spin

combinations, a model with unequal masses, and a single run with various values

of the restitution coefficient. But the parameter space is truly vast. Naturally we

would like to test more values for the parameters we have already investigated,

particularly the coefficient of restitution and the dependence on porosity. We also

need a finer grid at small speed and near-grazing separation to fully investigate

the tidal regime (this would also provide better data for comparison with stellar

system collision models, e.g. Davies et al. 1991). However there are many other new

parameters to explore. We would like to test the effect of changing the spin-axis

orientations (beyond pure prograde or retrograde). We suspect this would result in

even more unusual shapes. Non-spherical impactors with a variety of sizes would

improve realism and provide better estimates of Q?
D. A spectrum of particle sizes

could alter the effective dissipation as smaller particles fill the voids between larger

ones. Adding surface friction could lead to steeper slopes and the possibility of

simulating crater formation in large targets. We plan to add a simple model for

compaction to allow higher impact speeds and compare with the porous models of

64

Housen et al. (1999). We would like to track the movement of particles near the cores

of our rubble piles and compare with the surface particles to study “scrambling” in

a single rubble pile. There are so many possibilities that likely the only practical

approach would be to randomly sample points in this vast parameter space to get

a feel for the overall trends and then concentrate on the most interesting aspects in

detail. We will carry out such work in the future.

Acknowledgements

We are indebted to E. Asphaug and D. Durda for extensive comments. We also

thank W. Bottke, C. Dominik, K. Holsapple, G. Lake, C. Reschke, J. Stadel, B.

Titus, and F. van den Bosch. This work was supported in part by the NASA

HPCC-ESS and Intel Technology 2000 Programs and a NASA Innovative Research

grant. Ray-traced images were rendered using the Persistence of Vision Raytracer

(POV-Ray version 3.02).

65

Chapter 3

N-body simulations of

planetesimal evolution: Effect of

varying impactor mass ratio

This chapter has been published: Leinhardt, Z. M., Richardson, D. C. 2002, Icarus,

159, 306

ABSTRACT

We present results from direct N -body simulations of collisions between gravitational

aggregates of varying size as part of a study to parameterize planetesimal growth

in the solar system. We find that as the ratio of projectile to target mass departs

from unity the impact angle has less effect on the outcome. At the same time, the

probability of planetesimal growth increases. Conversely, for a fixed impact energy,

collisions between impactors with mass ratio near unity are more dispersive than

those with impactor mass ratio far from unity. We derive an expression for the

accretion probability as a function of mass ratio. For an average mass ratio of 1:5

66

we find an accretion probability of ∼ 60% over all impact parameters. We also

compute the critical specific dispersal energy Q?
D as a function of projectile size.

Extrapolating to a projectile size of 1 m with a 1 km target we find Q?
D = 103–104

J kg−1, in agreement with several other collision models that use fundamentally

different techniques. Our model assumes that the components of each gravitational

aggregate are identical and indestructible over the range of sampled impact speeds.

In future work we hope to incorporate a simple fracture model to extend the range of

applicable speeds and plan to implement our results into a large-scale planetesimal

evolution code.

3.1 Introduction

This paper is part of a larger project to investigate planetesimal evolution in the

context of solar system formation (Leinhardt et al. 2000). In order to create an

accurate numerical model of solar system formation it is necessary to understand

how the planetary building blocks, namely, kilometer-sized planetesimals, evolve and

grow into larger bodies. In the research presented here we find conditions necessary

for planetesimal growth. Our goal is to provide a recipe for planetesimal evolution

that can be used in solar system formation models.

Over the past decade evidence has been mounting that small bodies several hun-

dreds of meters to tens of kilometers in size are gravitational aggregates (Leinhardt

et al. 2000; Richardson et al. 2002, and references therein). Accordingly, we model

our planetesimals as 0.25 to 1 km rubble piles—gravitational aggregates with no

tensile strength (Richardson et al. 2002). We assume that planetesimal evolution

in the early solar system is dominated by slow (a few m s−1) orbit-crossing colli-

sions between planetesimals. Thus, our simulations focus on slow collisions between

67

rubble-pile planetesimals.

In this paper the study of planetesimal evolution is split into two experiments.

In the first experiment we quantify which collisions cause planetesimal growth or

erosion (Sections 3.3.1 and 3.3.2). We consider collisions between planetesimals of

different masses over a range of impact parameters and speeds. We derive accre-

tion/erosion probabilities on the basis of these experiements (Section 3.3.3). In the

second experiment we determine the critical dispersal energy (Q?
D)1 as a function

of the mass ratio of the larger rubble pile to the smaller rubble pile (Sections 3.4.1

and 3.4.2). This allows us to compare our results directly with those of other groups

(Section 3.4.3).

It is useful to define accretion and erosion as they pertain to this paper. Accretion

is the permanent retention of new mass, whereas erosion is the permanent loss of

mass. In our simulations the largest initial rubble pile is said to have accreted

material if it has gained mass at the end of the simulation and to have eroded if it

has lost mass. A simulation is ended when the collision event has terminated. In

our simulations termination of the collision event is reached when less than 10% of

the system mass is accreting or orbiting the largest post-collision remnant (Section

3.2.2).

The remainder of this paper is divided into three sections. In Section 3.2 we

summarize our numerical method. In Sections 3.3 and 3.4 we present the results of

the accretion/erosion and critical dispersal simulations, respectively, and we com-

pare these results to previous experiments. In Section 3.5 we discuss the limitations

of our method and plans for future work.

1Q?

D
is the energy per unit mass necessary to create a post-collision remnant of 50% the mass

of the system (see Section 3.4.1).

68

Figure 3.1: Visualization of a simulation. The yellow object is one third the mass

of the red object. The impact parameter in this example is 0.75 and the initial

relative speed is 1vcrit = v2 + v1.

3.2 Method

A detailed description of the numerical method used in these simulations is given

in Leinhardt et al. (2000). In this section we present a summary of the numerical

method and identify differences in the methodology.

3.2.1 Planetesimal Model

Typical initial conditions used in the collision simulations are illustrated in Figure

3.1. A Cartesian coordinate system is used with the origin at the center of mass.

Initially, each simulation begins with two rubble piles set 2.5 Roche radii apart

(in the ±x direction) to ensure that tidal forces are small. In most simulations

presented here one rubble pile is significantly smaller than the other (less than half

the mass of the larger rubble pile). In these cases we consider the smaller rubble pile

the projectile (yellow rubble pile in Fig. 3.1) and the larger rubble pile the target

(red rubble pile in Fig. 3.1). However, it should be noted that, unlike laboratory

collision experiments, the projectile is a significant fraction of the target’s mass. We

define mass ratio as MP /MT , the mass of the projectile to the mass of the target.

In all cases presented here MP /MT ≤ 1.0.

69

Each rubble pile is built with identical spherical particles of 3.5 g cm−3 bulk

density using hexagonal close-packed form (Leinhardt et al. 2000). The target has

either ∼ 1000 particles (Sections 3.3.1 and 3.3.2) or ∼ 2000 particles (Sections 3.4.1

and 3.4.2). The projectiles have between 27 and 955 particles depending on mass

ratio (1:64 to 1:1) and experiment type (accretion/erosion, Section 3.3.1, or critical

dispersal, Section 3.4.1). Our rubble piles have a packing efficiency of ∼ 55% yielding

a bulk density of ∼ 2 g cm−3. The impact parameter b is defined at impact in units

of the sum of the radii RP +RT , so b = 0 is a head-on collision and b = 1 is a glancing

collision. Although the trajectories of the projectile and target will be affected by

gravitational focusing, for simplicity we assume that trajectory deflection is zero,

therefore,

b = sin φ, (3.1)

where φ is the impact angle in the absence of deflection (between the line of centers

and the x-component of the line of centers). In the simulations presented here b

ranges from 0 to 0.75. For b > 0.75 there is little or no mass exchange between

the projectile and the target (Leinhardt et al. 2000) thus, we do not investigate

scenarios in this regime. Both the projectile and the target are given initial speeds

between 1 and 20 m s−1 in the direction of the other body (Fig. 3.1) such that the

center of mass is stationary. The speed of the encounter is limited on the low end

by the assumption that both objects are initially on hyperbolic orbits. The largest

initial speeds are limited in magnitude by requiring that they not greatly exceed the

threshold for significant fracturing of rock (Leinhardt et al. 2000).

The collisional behavior of each particle is governed by normal and tangential

coefficients of restitution, εn and εt, respectively. For most particle collisions εn is set

to 0.8, which allows dissipation during a collision, and there is no surface friction,

ie. εt = 1.0. However, if the relative speed of two colliding particles is less than

70

10% of their mutual escape speed, εn is set to unity to prevent excessive bouncing

(Richardson 1994).

In (Leinhardt et al. 2000) collision outcome as a function of impactor spin was

explored. It was found that oppositely oriented spins reduced mass dispersal in

general while aligned spins, depending on the orbital angular momentum, enhanced

mass dispersal. In addition, asymmetries introduced by spin momenta often resulted

in asymmetric remnant shapes. These effects are not explored in the present study

which concentrates solely on the effect of varying impactor mass ratio. However,

we expect that the results would be analogous to the original findings if spin were

introduced, though presumably the smaller the projectile, the less effect its spin

would have on the outcome. Also, an experiment varying εn was performed in

Leinhardt et al. (2000), with the result that smaller values of εn (greater dissipation)

gave rise to larger, more numerous, reaccreted remnants. Similarly, we would expect

smaller values of εn to enhance remnant production in the present study, but do not

explore this here. We would note that since energy dissipation in an inelastic collision

goes as ∼ 1 − ε2
n, the effective binding energy could be adjusted by a similar factor

to take into account a different dissipation parameter. Testing this is deferred to

future work.

3.2.2 Numerical Code

Our simulations were performed using a modified version of the cosmological N–

body code pkdgrav which uses a low-order leap-frog integrator (see Richardson et al.

2000; Leinhardt et al. 2000, for details). In our implimentation of pkdgrav inelastic

bouncing is the only allowed outcome of particle collisions; there is no merging or

fracturing of particles.

71

The run time for our simulations was initially about 5 times the free-fall time,

tf ∼
√

x3

GM
, (3.2)

where x is the initial separation of the rubble piles along the x-axis, M is the

combined mass MP + MT , and G is the gravitational constant. Typically, tf ∼ 40

h. In most cases this is sufficient time for the post-collision system to reach steady

state. Simulations are run longer (by a factor of 2 to 4) if the mass accreting onto

and/or orbiting the largest post-collision remnant is greater than 10% of the total

mass of the system.

The time step for each run was set to t0 ∼ 50 s (' 10−5 year/2π) times a

speed-dependent scaling factor 1/(2v + 1), where v is in units of vcrit, a convenient

measure (Leinhardt et al. 2000) found by equating the initial total kinetic energy to

the binding energy of a rubble pile made up of a homogeneous mixture of both the

projectile and the target:

vcrit = M

√

6G

5µR
. (3.3)

Here µ is the reduced mass MP MT /M and R is the radius of a sphere of mass M ,

assuming the same bulk density:

R = (R3
P + R3

T)1/3. (3.4)

The scaling term results in smaller time steps for simulations at higher speed

which reduces the chance of missing a collision between particles that would other-

wise result in an error condition. Since v is of order unity, t0 is about two orders

of magnitude smaller than the dynamical time ∼ 1/
√

Gρ ∼ 1 h for an object with

a bulk density ρ ∼ 2 g cm−3. We have chosen an output frequency of 200 outputs

per simulation in order to produce enough data for analysis without taking up an

impractical amount of disk space.

72

3.2.3 Hardware

Most of the simulations were run on a local Beowulf cluster consisting of 24 ma-

chines with 1-GHz Athlon CPUs using the High Throughput Computing environ-

ment condor (Leinhardt et al. 2000http://www.cs.wisc.edu/condor) under Red-

Hat Linux 7.1. One set of simulations was run on a Beowulf cluster of 32 machines

with 1.2-GHz Athlon CPUs at the University of California Santa Cruz.

3.3 Accretion/Erosion Simulations

3.3.1 Accretion/Erosion: Method

In the first experiment we conducted four parameter-space studies, each with a

different mass ratio [1:1 from Leinhardt et al. (2000), 1:3, 1:6, and 1:9]. In all

of these studies the target had a mass of 8 × 1012 kg, a radius of ∼ 1 km, and

contained 955 particles. For each mass ratio we explored the parameter space of

b and v (impact parameter and speed, respectively) near the transition between

accretion and erosion. The range of b for each study was from 0 to 0.75 in steps

of 0.15. The range of velocity changed from study to study in order to follow the

accretion/erosion transition (Fig. 3.2) which depends on the mass ratio. The initial

speeds ranged from 2.1 to 3.4 m s−1 (1.00 to 1.60 vcrit), 2.5 to 3.8 m s−1 (1.00 to

1.50 vcrit), and 2.8 to 3.6 m s−1 (0.90 to 1.30 vcrit) in steps of 0.10 for mass ratios

1:3, 1:6, and 1:9, respectively.

For each mass ratio we ran between 24 and 28 simulations to resolve the transition

between accretion and erosion. The transition was deemed resolved at a given b if

there was at least one simulation that resulted in erosion and one simulation that

resulted in accretion. The collision speed at the transition, Vtrans, was determined by

73

Figure 3.2: Parameter space of accretion/erosion simulations. The mass ratios

are 1:3, 1:6, and 1:9 for the grids shown in the top left, top right, and bottom,

respectively. The results of the 1:1 simulations are shown in Leinhardt et al.

(2000). The x-axes are impact parameter b in units of the sum of the radii.

The y-axes are speed in units of vcrit. Each filled grid box with a cross section

represents one simulation. The cross section is a slice through the largest post-

collision remnant along its longest axis. The boxes with a dashed outline are

erosion events. Those with solid lines are accretion events. The transition between

them is the accretion/erosion curve.

74

Figure 3.3: The accretion/erosion curve plotted for four different mass ratios. The

y-axis is speed in units of vcrit. The x-axis is impact parameter in units of the

sum of the radii of the impactor and the projectile. The accretion/erosion curve

on the far left (mass ratio of 1:1) was fit by a Gaussian (Leinhardt et al. 2000).

All other mass ratios (1:3, 1:6, and 1:9) were fit with linear functions: the slopes

are −0.79 ± 0.08, −0.14 ± 0.08, and −0.08 ± 0.08, respectively.

a linear interpolation between the minimum collision speed that resulted in erosion

and the maximum collision speed that resulted in accretion.

3.3.2 Accretion/Erosion: Results

Fig. 3.2 summarizes the results of the accretion/erosion simulations (Fig. 3.1 gives

snapshots of one simulation). Each grid shows the parameter space explored in b

and v for a given mass ratio. The shape traced in each box is the cross section

of the largest post-collision remnant along its longest axis. The objects in dashed

bounded boxes have been eroded as a result of the collision. The objects in the

dotted bounded boxes have accreted mass. The accretion/erosion curve v∗(b) is

the function that describes the transition between the erosion and accretion events.

In order to resolve the accretion/erosion curve more clearly, Vtrans was determined

using the method described in Sec. 3.3.1 at each b for each mass ratio. Vtrans is shown

in Fig. 3.3 along with fits for the accretion/erosion curve. The error bars, which are

75

half of the difference between the speed of the simulation above the transition and

the speed below the transition, approximate the error in the linear interpolation used

to find Vtrans. The fit for the accretion/erosion curve for mass ratio 1:1 (Fig. 3.3) is

a Gaussian,

v∗(b; ξ) = α exp

[

−(b − β)2

γ

]

+ δ, (3.5)

where ξ = MP /MT is the mass ratio (1:1 in this case), and α, β, γ, and δ are

determined by a non-linear least-squares fit (Leinhardt et al. 2000). Mass ratios 1:3,

1:6, and 1:9 are well characterized by progressively shallower linear functions,

v∗(b; ξi) = mib + ci, (3.6)

where ξi = 1:3, 1:6, 1:9, and the slope and intercept, mi and ci respectively, are

determined using a weighted linear least-squares fit. From Fig. 3.3 it is clear that as

the mass ratio departs from unity, b becomes less and less important to the collision

outcome.

3.3.3 Accretion/Erosion: Discussion

Given the data presented above we can calculate the probability that for a given

mass ratio a collision will result in growth of the target. In order to do this we

need to assume both an impact parameter and velocity distribution. If we assume

that the velocity distribution is Maxwellian with vrms equaling the escape velocity

ve from the target and the impact parameter distribution is uniform, the probability

of planetesimal growth from a collision is,

P
[

f(b, v) ≥ MT

M

]

=
1

π
∫ 1
0 b db

π
∫ 1

0
b db

∫ v∗(b)
v0(b) g(v) dv
∫

∞

v0(b) g(v) dv
, (3.7)

where f(b, v) is the mass fraction of the largest post-collision remnant, v∗(b) is

the critical dispersal fit described above (we have dropped the ξi to simplify the

76

equation), g(v) is the normalized Maxwellian distribution of relative speed,

g(v) dv =
1

2
√

πv3
e

exp

(

− v2

4v2
e

)

v2 dv, (3.8)

and v0(b) is the minimum initial speed, in units of vcrit, for a hyperbolic encounter

(v∞ > 0). The expression for the speed at infinity is

v∞ =

(

v2 − 2GM cos φ

xvcrit

)
1

2

, (3.9)

where the second term is due to gravitational focusing (x is the initial separation

along the x-axis; cf. Eq. 3.2). If v∞ = 0 then v = v0 and

v0 =

√

2GM cos φ

xv2
crit

. (3.10)

Substituting for φ from Eq. (3.1) we find v0 as a function of b:

v0(b) =

√

√

√

√

2GM
√

1 − b2

xv2
crit

. (3.11)

From our simulations, we find the probability that a collision between two rubble-

pile planetesimals will result in the growth of one of the planetesimals is 37 ± 3%,

46± 1%, 73± 1%, and 76± 1% for mass ratios of 1:1, 1:3, 1:6, and 1:9, respectively.

Figure 3.4 shows the probability of an accretion event as a function of mass ratio fit

with a power law of slope −0.47 ± 0.05.

Next we find the probability of an accretion event for the mean mass ratio,

ξ =

∫ ξ2
ξ1

ξη(ξ) dξ
∫ ξ2
ξ1

η(ξ) dξ
(3.12)

where ξ1 is the mass ratio with the largest difference in mass between projectile

and target, ξ2 is the mass ratio with the smallest difference in mass, and η(ξ) is the

distribution of ξ. We assume that the planetesimals have a power law distribution

of size,

dN ∝ R−αdR, (3.13)

77

Figure 3.4: Probability of an accretion event as a function of mass fraction. The

solid line is a power-law fit to the data with a slope of −0.47± 0.05 and intercept

of −0.55 ± 0.04. The error bars represent the error in the v∗(b) fits.

78

where N is the number of planetesimals, R is the radius of a planetesimal, and α is

the power law index. Assuming constant bulk density we can express dN in terms

of mass,

dN ∝ M−(α+2)/3dM. (3.14)

The mass ratio distribution function then has the same form,

η(ξ) = ξ−(α+2)/3. (3.15)

Since η(ξ) is a power law it will diverge as ξ approches zero (that is, as the mass

ratio gets large) thus we define ξ1 to be the mass ratio where the probability of

an accretion event is unity. From the fit in Fig. 3.4, ξ1 ∼ 0.06. The upper limit

ξ = 1 since MP ≤ MT . If we take α = 3 then ξ = 0.22 or ∼ 1:5. From Fig. 3.4

the probability of an accretion event for MP /MT = ξ is then ∼ 57% which means

on average the target will grow. The more interesting question is how does the

mean mass ratio and its corresponding probability for an accretion event change

with time. This is complicated because the population changes after each collision

which means that ve and vrms will also eventually change. This coupling suggests

a numerical approach is needed to determine the evolution, a project we defer to

future work.

It is also interesting to examine how the size of the projectile affects the efficiency

of collision. Figure 3.5 shows the mass of the largest (primary) and second-largest

(secondary) post-collision remnant as a function of impact energy,

E =
µv2

2
, (3.16)

where v is the relative speed in m s−1. To identify the primary and secondary,

we used the clump-finding algorithm described in Leinhardt et al. (2000). Notice

that for the same impact energy the mass of the primary from the 1:3 simulations

(crosses) is less than that for 1:6 (filled hexagons) which is less than that for 1:9

79

Figure 3.5: Plots of the largest and second-largest post-collision remnants as a

function of impact energy. The crosses, filled hexagons, and open squares are

from mass ratios 1:3, 1:6, and 1:9, respectively. All data points are averaged over

b; the error bars are the rms.

(open squares). In addition, the secondary from the 1:3 simulations is significantly

larger than the secondaries from the 1:6 and 1:9 simulations. These results show

that for a given impact energy, a larger projectile will break a target into more

pieces with a shallower distribution of mass than a small projectile. Basically the

larger projectile hits more particles but imparts less energy to them than a smaller

projectile. Similar results were found by Benz & Asphaug (1999) and Benz (2000).

3.4 Critical Dispersal Simulations

3.4.1 Critical Dispersal: Method

In this experiment we computed the critical dispersal energy (Q?
D) as a function of

impactor mass ratio. Q?
D is defined as the minimum kinetic energy per unit total

mass necessary to create a post-collision remnant equal to 50% of the mass of the

80

total system while the rest of the mass is dispersed to infinity (Durda et al. 1998).

In these simulations we kept the impact parameter fixed at b = 0 (head-on collision)

and ran five mass-ratio models (1:8, 1:9, 1:16, 1:32, 1:64). Each model was run for

at least 10 collision speeds in order to bracket Q?
D. Because the mass ratios are far

from unity in these simulations we approximately doubled the resolution (number

of particles) by using a target of ∼ 2000 particles. However, the smallest projectiles

(1:32 and 1:64 the mass of the target) still had relatively few particles and were

therefore not very spherical. This meant that the orientation of the projectile had

a significant effect on the collision outcome. In order to take this into account

each mass-ratio system was run eight times at the same speeds with the projectile

in different orientations. The critical dispersal speed Vdis (the speed necessary for

critical dispersal) was found using linear interpolation with a similar method as that

used to find Vtrans (Section 3.3.1).

3.4.2 Critical Dispersal: Results

Figure 3.6 shows Vdis for each mass ratio averaged over all orientations. The error

bars are the rms of the distribution of Vdis at any given mass ratio. The solid line

is a least-squares power-law fit with a slope of −1.9 ± 0.1. Figure 3.7 shows the

critical dispersal energy necessary to disperse 50% of a 1 km target. For this figure

we converted the Vdis values to Q?
D using

Q?
D =

µV 2
dis

2M
. (3.17)

The error bars are propagated from the Vdis data. The fit is a power law of slope

−1.1±0.3 and intercept 3.5±0.7. For a 1 m projectile this fit gives Q?
D ∼ 102.8–104.2

J kg−1 which is consistent with Love & Ahrens (1996) and Benz & Asphaug (1999),

for example, but disagrees with that found by Ryan & Melosh (1998).

81

Figure 3.6: Critical dispersal speed Vdis as a function of projectile radius. The

solid line is a power-law fit with a slope of −1.9 ± 0.1. The error bars represent

spread in the critical speed as a result of orientation of the projectile.

82

Figure 3.7: Critical disruption energy (Q?
D) as a function of projectile radius (RP).

The solid line is a power law fit with a slope of −1.1 ± 0.3 and an intercept of

log(Q?
D) = 3.5 ± 0.7.

83

3.4.3 Critical Dispersal: Discussion

In many respects our simulations were conducted in a similar way to Love & Ahrens

(1996). Using a 3D smoothed particle hydrocode with a Tillotson equation of state

for granite without strength or fracturing they ran several simulations at various

target diameters (10–1000 km) and speeds (3, 5, and 7 km s−1) to find Q?
D as a

function of target diameter. For each target size they found Q?
D by changing the

projectile size and interpolating or extrapolating to find the energy necessary to

produce a primary of 50% the mass of the system. They placed their data on

the Q?
D vs. D plot first constructed by Holsapple (1994) without correction for

different projectile sizes. Our results from Section 3.3.2 suggest that projectile size

is important in determining Q?
D. However, although the projectile size changed by

two orders of magnitude, over half of their simulations used a projectile that was

< 1/100 the mass of the target—small enough that changes in the projectile size

may not be important. Benz & Asphaug (1999) found similar results to Love &

Ahrens (1996) but with a more sophisticated code that included an explicit model

of fracture.

Ryan & Melosh (1998) used a slightly different method. Using a 2D hydrocode

with three different equations of state and including strength and fracturing, they

ran a series of simulations to determine Q?
D vs. D from the strength through the

gravity regime by varying the target diameter from 10 cm–1000 km. They calibrated

their code with impact experiments in the strength regime. However, they did not

have a similar calibration for the gravity portion of their code. The impact speed was

kept constant at 2 km s−1 and the projectile size was varied to find Q?
D. However,

the mass ratio was consistently much more extreme than Love & Ahrens (1996),

thus the change in the projectile size may not be as important.

84

3.5 Conclusions

In this paper we presented results from two sets of direct N -body experiments in

order to investigate the collisional evolution of gravity-dominated planetesimals. In

these simulations we focused on understanding the effect of impactor mass ratio

on collision outcome. In our first set of simulations (Section 3.3.2) we presented

four parameter space studies each with a different mass ratio. In these studies we

found that as mass ratio increases the impact parameter becomes less important.

There was almost no change in Vtrans from b = 0 to b = 0.75 for mass ratio 1:6

and 1:9 (Fig. 3.3). As one might expect the probability of planetesimal growth

increases steadily with decreasing ξ = MP /MT . For the mean mass ratio ∼ 1/5

(assuming a size distribution ∝ R−3) the probability of an accretion event was

∼ 60%. In addition, we found that the size of the projectile is important to the

collision outcome. A larger projectile is more efficient at disrupting a target than a

smaller projectile for the same impact energy.

In the second series of experiments we conducted several head-on simulations at

mass ratios far from unity (1:8 to 1:64) in order to find Q?
D for a 1 km target. Based

on a power-law fit to the above results we found Q?
D = 102.8–104.2 J kg−1 for a 1 m

projectile.

There are two limitations to our numerical model that must be mentioned. First,

because our model does not include a fracture model we are limited to relatively slow

speeds. Although this does not affect our current results extensively we will need to

model particle damage in order to extend the speed distribution. Second, all of the

simulations presented here were done at relatively low resolution. In order to find

out how the detailed mass distribution of the smaller post-collision remnants varies

with speed, impact parameter, and mass ratio, higher resolution will be required.

85

3.5.1 Future Work

The present study had a fairly narrow focus so there are many avenues to explore

in future work. We previously mentioned that collision outcome will depend on

impactor spin and the choice of dissipation parameter εn—the latter effect in par-

ticular remains to be quantified. Ultimately our goal is to implement a planetesimal

collision outcome “recipe” in a large-scale planetesimal evolution (planet forma-

tion) code, without having to resolve each collision in detail. To achieve this, it

will be necessary to parameterize detailed collision simulations by the post-collision

fragment/remnant mass and velocity distributions and derive representative distri-

bution functions from these that can be sampled with random deviates. This would

not require much more work than the present study and therefore this objective is

definitely within reach.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Erik Asphaug (UCSC) for the use of his

Beowulf cluster. We would also like to thank the numerical group at the University

of Maryland for their helpful comments. ZML thanks John Ohlmacher and Chance

Reschke for the Borg.

86

Chapter 4

Planetesimals to Protoplanets I:

Effect of fragmentation on

terrestrial planet formation

This chapter is in press: Leinhardt, Z. M. & Richardson, D. C. 2005, ApJ, in press

ABSTRACT

We present results from a dozen direct N -body simulations of terrestrial planet

formation with various initial conditions. In order to increase the realism of our

simulations and investigate the effect of fragmentation on protoplanetary growth,

we have developed a self-consistent planetesimal collision model that includes frag-

mentation and accretion of debris. In our model we treat all planetesimals as grav-

itational aggregates so that gravity is the dominant mechanism determining the

collision outcome. We compare our results to those of Kokubo & Ida (2002) in

which no fragmentation is allowed—perfect merging is the only collision outcome.

After 400,000 yr of integration our results are virtually indistinguishable from those

87

of Kokubo & Ida (2002). We find that the number and masses of protoplanets, and

time required to grow a protoplanet, depends strongly on the initial conditions of

the disk and is consistent with oligarchic theory. We have found that the elasticity

of the collisions, which is controlled by the normal component of the coefficient of

restitution, does not significantly affect planetesimal growth over a long timescale.

In addition, it appears that there is a negligible amount of debris remaining at the

end of oligarchic growth where “debris” is defined as particles too small to be re-

solved in our method, though we caution that these results are for an initial debris

mass fraction of 1%. The debris component is not massive enough to alter the

dynamics of the protoplanets.

4.1 Introduction

Over the past decade more than 130 Jupiter-sized extrasolar planets have been dis-

covered. Innovations such as satellite interferometers and large ground-based sur-

veys will allow observers to detect Earth-sized planets and increase the extra-solar

planet inventory by orders of magnitude. At the same time the growing capabili-

ties of computers make large direct simulations of solar system formation possible.

Numerical simulations are essential to understanding how and under what condi-

tions terrestrial planets form, because simulations, unlike observations, can show

evolution of a single system over a large period of time. Observations, though indis-

pensable, can provide only instantaneous information about terrestrial planets and

their environment.

Due to computational limitations, previous numerical simulations have signif-

icantly simplified planetesimal collisions, the dominant growth mechanism in the

protoplanetary disk. Past simulations of terrestrial planet formation have either

88

assumed that two colliding planetesimals merge completely (perfect merging), thus

ignoring any erosion of the planetesimals, or have extrapolated the collision out-

come over many orders of magnitude from a model based on laboratory impact

experiments in which self-gravity is unimportant . In a real disk a range of collision

circumstances are expected, from slow collisions in which most of the mass of the

two colliding planetesimals ends up in the largest post-collision remnant, to fast col-

lisions in which most of the mass ends up in small fragments. For planetesimals large

enough not to be affected by nebular gas (R > 10 km), the most important force

involved in collisions is gravity. At these sizes the material strength of the planetes-

imals is negligible compared to their gravitational binding energy (Holsapple 1994;

Asphaug et al. 2002). The first simplification method, perfect merging, ignores the

range of collision possibilities. The second simplification method, extrapolation of

laboratory experiments, ignores the effect of gravity in the collision outcome. In

both cases the numerical simulations produce terrestrial planet systems with eccen-

tricities many times those of our own solar system suggesting that an important

mechanism is missing (Agnor & Ward 2002; Kokubo & Ida 2002). More detailed

modeling of the collisions between planetesimals is the next step toward making our

numerical models of planet formation more realistic and complete.

We have developed the most realistic planetesimal collision model to date, in

which gravity is the dominant mechanism in determining the collision outcome, and

have incorporated it into a planet formation model. We have completed a series

of high-resolution direct numerical simulations of terrestrial planet formation. We

have found that fragmentation has little effect on the growth of protoplanets after

several protoplanets have formed nor is there a sufficiently massive debris component

remaining to affect the dynamics of the protoplanets. This suggests that either a

different eccentricity damping mechanism is required, or more simulations are needed

89

to quantify the range of possible outcomes as a function of the initial conditions.

4.1.1 Previous Work on Planet Formation

Modern theories of terrestrial planet formation are divided into four stages (e.g.

Lissauer 1993): 1) initial stage: dust condenses out of the hot gaseous disk sur-

rounding the young star—significant growth of the grains is hindered by turbu-

lence; 2) early stage: dust grains grow from centimeter-sized particles to kilometer-

sized planetesimals by accretion—gas drag circularizes the orbits; 3) middle stage:

planetesimals grow into protoplanets, again by accretion, but gravitational forces

dominate—dynamical friction and the redistribution of energy via collisions causes

large objects to maintain nearly circular orbits (low eccentricity and inclination)

while the smaller bodies become excited (high eccentricity and inclination); 4) late

stage: runaway accretion terminates due to lack of smaller material within the

feeding zone of the protoplanets—the protoplanets grow into planets via long-term,

long-distance, cumulative gravitational interactions. The initial and early stages of

planet formation have proven the most difficult to model in a detailed way because

of complex, uncertain physics. The early stage of planet formation ends when the

masses of the largest planetesimals significantly exceed the mass in gas they inter-

cept over one orbit; for planetesimal internal density ρ ∼ 2 g cm−3 and gas density

ρg ∼ 2×10−9 g cm−3 at 1 AU this occurs at planetesimal sizes of 1-10 km in radius.

The middle and late stages are much more straightforward to model directly since

the planetesimals are large enough that gravity is the dominant force. Thus, most of

the numerical work on planet formation has focused on these later phases of planet

formation.

There are two complementary quantitative approaches that have been used to in-

vestigate the middle and late stages of planet formation: statistical methods (Green-

90

berg et al. 1978; Wetherill & Stewart 1989, 1993) and direct numerical methods

(Lecar & Aarseth 1986; Beaugé & Aarseth 1990; Kokubo & Ida 1996, 1998, 2000,

2002; Richardson et al. 2000). The statistical method treats planetesimals as analogs

to gas molecules and applies a method similar to the kinetic theory of gases to treat

the evolution of planetesimals (Safronov 1969; Greenberg et al. 1978). Statistical

methods are very powerful at the beginning of the middle stage of planet forma-

tion when the number of planetesimals is large and the planetesimal population

can be accurately described as a thermal distribution. In addition, the statistical

method can take into account any effect that can be described analytically such

as gas drag, dynamical friction, and fragmentation. Using this method Wetherill

& Stewart (1989) found that planetesimals go through a runaway growth phase in

which the largest planetesimals grow faster than any other planetesimal due to the

equipartition of energy from dynamical friction. This causes the larger planetesimals

to separate from the background population of smaller planetesimals. At this point

the gas dynamics treatment of the planetesimal population begins to break down

because the spatial distribution is no longer homogeneous (Wetherill & Stewart

1993).

Direct numerical simulations can be integrated through the runaway growth

phase and are limited only by computer capabilities, but they are much more com-

putationally expensive. The largest direct simulation published of planet formation

integrated through runaway growth uses 104 particles (Kokubo & Ida 2002). These

direct simulations show two phases of planetesimal growth: first, runaway growth

and second, oligarchic growth of protoplanets (planet embryos), in which large pro-

toplanets grow more slowly than smaller protoplanets but all protoplanets continue

growing faster than the background planetesimals. Kokubo & Ida (2002) simplify

planetesimal collisions by neglecting erosion thereby assuming planetesimal colli-

91

sions always result in growth. This simplification may have a complex effect on

the timescale of planet formation and the final outcome because the balance be-

tween growth and erosion of planetesimals is ignored. Other numerical simulations

(Beaugé & Aarseth 1990) took into account fragmentation of planetesimals (in a

very low resolution 2-D N -body simulation) using a semi-analytical prescription to

that employed in statistical simulations (Wetherill & Stewart 1993). The effects of

impact angle, spin, and the mass ratio of the colliding bodies are not taken into

account in either prescription. In order to insure that our simulations correctly in-

clude as many effects of planetesimal collisions as possible we model them directly

or interpolate from a table of our previous impact simulations.

The remainder of our paper is divided into four parts: §4.2 presents our numerical

method in detail; §4.3 discusses our results in the context of previous numerical

simulations; §4.4 summarizes our findings; §4.5 suggests future work.

4.2 Numerical Method

We use the highly efficient N -body gravity code pkdgrav for our simulations, which

has been modified to resolve collisions realistically and account for the accretion

of dust onto planetesimals. In this section we describe the numerical methods we

use for the planetesimals, the planetesimal collisions, the unresolved debris, the

planetesimal disk, and the integration.

92

4.2.1 Planetesimal Structure Model

There is significant observational evidence that small bodies—asteroids and comets—

in our solar system are gravitational aggregates or “rubble piles” (objects with little

or no tensile strength held together by gravity), not coherent objects (see Lein-

hardt et al. 2000; Richardson et al. 2002). For example, several asteroids have giant

craters, low bulk densities, and almost all are rotating slower that the rubble pile

break-up limit—of the 984 observed none with diameters larger than 150 m are

spinning faster than this limit (Pravec et al. 2002). The evidence suggests many

asteroids are likely made of loosely consolidated material and therefore contain a

large fraction of void space. The voids impede the transmission of energy from

collisional shocks and allow a rather weak body to survive what would otherwise

be a catastrophic impact event (Ryan et al. 1991; Love & Ahrens 1996; Asphaug

et al. 1998). However, it is unclear whether asteroids are a fair representation of

planetesimals since asteroids have been collisionally processed during their lifetime.

Nonetheless, even if planetesimals were originally coherent, the strength due to self-

gravity of the planetesimal is many orders of magnitude larger than the material

strength (Holsapple 1994).

Observations of comets suggest that they are also gravitational aggregates. The

most impressive example of this was the tidal disruption of Comet D/Shoemaker-

Levy 9 (SL9) by Jupiter in 1993. The disruption showed that SL9 was fragile, with

little or no tensile strength (Asphaug & Benz 1996). Comets are much more prestine

than asteroids and have not been as significantly altered by collisions as main belt

asteroids.

Thus, in light of the observational evidence that a large percentage of small

bodies in our solar system may be gravitational aggregates, and the understanding

93

that planetesimals are large enough that their gravitational strength is significantly

larger than their material strength, we have chosen to model planetesimals involved

in collisions in the nebular disk as “perfect” rubble piles (Richardson et al. 2005).

4.2.2 Planetesimal Collision Model

The growth of planetesimals into protoplanets is dominated by planetesimal-planetesimal

collisions. The solar system formation simulations presented here use a two-phase

process to determine the collision outcome. In the first phase the collision parameters—

relative speed, impact parameter, and mass ratio of the projectile to the target

(v, b, µ, respectively)—are used to interpolate/extrapolate the mass of the largest

post-collision remnant from a collision outcome database. Spin of individual plan-

etesimals is not a parameter in the database because the number of possible target-

projectile spin vector orientations is large and thus hard to parameterize. In addi-

tion, the direction of the spin vectors of the planetesimals should be randomized.

Therefore, on average the spin of the planetesimals should not affect the first-order

approximation of the collision outcome (see Leinhardt et al. 2000; Leinhardt &

Richardson 2002, for discussion of the effect of spin on collision outcome). The

collision database consists of the results of several hundred rubble-pile planetesimal

collisions over a wide range of parameter space (an extension of Leinhardt et al.

2000; Leinhardt & Richardson 2002).

Figure 4.1 shows the mass of the largest post-collision remnant, Mlrem, in units

of system mass (M , the sum of the projectile and target mass, Mproj +Mtarg) versus

impact speed. Figure 4.2 shows the same results with Mlrem in units of Mtarg . The

columns represent different normal coefficients of restitution (v′ = −εnvn + εtvt,

where the impact velocity v = vn + vt, vn is the component of the impact velocity

normal to the plane of impact, vt is the component tangent to the impact plane,

94

Figure 4.1: The interpolation/extrapolation table for the first phase of the colli-

sion model. Each plot in this table shows the mass of the largest post-collision

remnant in units of the total system mass versus impact speed in units of vcrit (see

text). The five columns correspond to different normal coefficients of restitution

(εn). No surface friction was included in any of these simulations (εt ≡ 1). The

rows correspond to different impact parameters, b, in units of the sum of the radii

of the impactors (b = 0 is a head-on collision, b = 1 is a glancing collision). The

color lines represent various mass ratios (µ): black 1
100 , red 1

20 , green 1
9 , blue 1

6 ,

cyan 1
5 , magenta 1

3 , yellow 1
2 , red dashed 1

1 . The red dots are actual data from

numerical simulations (similar to the one shown in Fig. 4.3). The black dots are

points in the database that are fixed at theoretical limits.

95

Figure 4.2: Same as Fig. 4.1 but the mass of the largest post-collision remnant

is measured with respect to the initial mass of the target separating the lines of

different mass ratio at low impact speed.

96

Figure 4.3: Snapshots of a collision, with time increasing to the right. The two

planetesimals have a mass ratio of 1
2 . The impact parameter is b = 0.89 and

the initial relative speed is 1.5 m s−1. The initial rubble piles consist of a large

number of hard spheres held together by their mutual gravity. Individual spheres

are indestructible and bounce off one another inelastically.

and v′ is the post-impact velocity). The rows represent various impact parameters

in units of the sum of the projectile and target radii, Rproj + Rtarg. The red points

on these figures are results from actual simulations (see Figure 4.3 for an example).

The black points are theoretical limits: Mlrem is fixed at 1 for v = 0 and to the mass

of the target for b = 1. The colored lines are interpolation or extrapolation from

these data points.

In order to increase the flexibility of the database the impact speed in the

database is in units of

vcrit ≡ M

√

6G

5µrRV
, (4.1)

where RV ≡ (R3
proj + R3

targ)
1/3 is the radius of a spherical body with the combined

volume of the projectile and target, assuming equal bulk density, and µr ≡ MprojMtarg

M

is the reduced mass. vcrit is found by equating the total kinetic energy to the gravita-

tional binding energy (vcrit = 1 is the approximate speed necessary for catastrophic

dispersal where the largest remnant is 50% of the original system mass; see Lein-

hardt et al. 2000). This means that when a collision is predicted the impact speed is

converted into vcrit units which scale with binding energy allowing the same database

to be used for planetesimals that have different bulk densities from those used to

create the database. vcrit is proportional to the mutual escape speed, vesc ≡
√

2GM
R

97

Figure 4.4: The ratio of vcrit to vesc as a function of the mass ratio (µ =
Mproj

Mtarg
),

assuming equal mass density.

98

except for cases of extreme mass ratio. Figure 4.4 shows how the ratio

vcrit

vesc
= (1 + µ)

√

√

√

√

3

5µ

1 + µ1/3

(1 + µ)1/3
(4.2)

varies with µ, the mass ratio of the projectile to the target and the mutual escape

speed.

Each planetesimal used in the database was made up of a fixed number of identi-

cal self-gravitating hard spheres (Fig. 4.3). Inelastic bouncing was the only possible

collision outcome between the spheres: no mergers or fragmentation of particles

were allowed. All simulations used a direct numerical method (§4.2.5) to evolve the

positions and velocities of the rubble pile particles under the constraints of gravity

and physical collisions.

If the collision outcome from the database is one large body with a small amount

of debris, this outcome is used in the simulations as the result of the planetesimal

collision. In other words the colliders are replaced with the largest post-collision

remnant from the database. The rest of the mass from the original planetesimals is

considered unresolved debris and is tracked in a semi-analytic way by the numerical

code (§4.2.3).

If the collision outcome predicted by the database consists of two or more massive

remnants, the planetesimals involved in the collision, which were modeled as single

particles up to this point, are substituted by actual rubble piles and the collision

is then integrated directly. The total mass, bulk density, and angular momentum

of the original planetesimals are preserved. The solar system formation simulation

proceeds as before except for the inclusion of the rubble-pile planetesimals (see §4.2.5

for rubble-pile timestep). The number of particles in each rubble pile is between

100 and 2500 depending on the size of the target. Each particle in the rubble pile is

constrained to be smaller than the initial size of the planetesimals at the beginning

of the simulation (the resolution limit of the simulation; §4.2.3). Initially, a rubble

99

pile is created with 100 particles. If the particles in the rubble pile are larger than

the resolution limit the number of particles is increased.

For ten dynamical times (τdyn ∼ 1/
√

Gρ, where G is the gravitational constant

and ρ is the bulk density of the planetesimal), rubble-pile particles bounce when they

collide with each other, allowing the collision remnants to reach equilibrium (many

remnants will be gravitational aggregates; cf. Leinhardt et al. 2000; Michel et al.

2001). After ten dynamical times the rubble-pile particles merge with each other.

This means that any gravitationally reaccreted remnants become single particles at

this point in the simulation. After twenty dynamical times any remaining collisional

debris that is smaller than the resolution limit is demoted to “unresolved debris” and

is no longer followed directly; the mass is incorporated into the unresolved debris

component.

4.2.3 Unresolved Debris

In order to handle debris either created by planetesimal collisions or existing initially

as part of the starting conditions, we divide the planetesimal disk into a configurable

number of cylindrical annuli. Any particles smaller than the resolution limit (usually

taken as the radius of the starting planetesimals) are binned in the annulus at that

radius. The debris particles are assumed to be on planar circular orbits. The larger

planetesimals sweep up the debris as they pass through the annuli, thereby growing

in mass, according to

M ′

p = Mp + δm, (4.3)

where Mp is the original mass and δm is the mass accreted given by

100

δm = eπR22πaρ
δt

P
, (4.4)

where e is the planetesimal’s eccentricity, R is its physical radius, a is the semi-major

axis of its orbit, ρ is it’s mass density, δt is the time since the last dust accretion

update, and P is the Keplerian period corresponding to a. The accretion of the

debris causes the orbits of the larger planetesimals to circularize; the accretion of

the dust by the planetesimal is assumed to conserve linear momentum and thus the

velocity components are updated according to

v′

x = vkx +
Mp

M ′
p

(vx − vkx),

v′

y = vky +
Mp

M ′
p

(vy − vky), (4.5)

v′

z =
Mp

M ′
p

vz,

where v ≡ (vx, vy, vz) is the initial velocity of the planetesimal, v′ ≡ (v′

x, v
′

y, v
′

z) is the

updated velocity, and vk is the instantaneous Kepler velocity at the planetesimal’s

location.

The planetesimals’ mass and velocity components are updated several times an

orbit. The mass accreted by a planetesimal in each update is equal to the product of

the mass density of debris in the annulus, the cross sectional area of the planetesimal,

and the fraction of the orbit the planetesimal has traveled since the last update (Eq.

4.4).

101

4.2.4 Planetesimal Disk Model

In this paper we present two sets of simulations. The first set contains nine high-

resolution (N = 104) simulations of various initial disk masses and surface density

distributions to investigate the effect of fragmentation and environment on proto-

planet formation (see §4.3). The standard model for a planetesimal disk assumes a

“minimum-mass solar nebula” (Msolid = 0.01 M�), a surface density at 1 AU of Σ1 ∼

10 g cm−2, and a surface density distribution of solid material Σsolid = Σ1(
a

1AU
)−α,

with α = 1.5. We also simulated disks that are more and less massive than the

standard model (Σ1 = 100, 1 g cm−2) as well as disks where the mass is distributed

more and less steeply (α = 2.5, 0.5). Each of these simulations begins with a 1

AU-wide band of particles centered at 1 AU. The simulations are run for at least

5 × 105 yr—long enough to get through the runaway growth phase and show the

formation of multiple protoplanets. The initial conditions chosen for these simula-

tions are similar to those used by Kokubo & Ida (2002). This allows us to compare

our results to theirs and thus understand how different collision outcomes affect the

formation of planets in various environments.

The second set of simulations presented in this paper consist of three lower-

resolution runs (N = 4000), each employing a different coefficient of restitution to

investigate the effect of elasticity on planetesimal growth (§4.3.4). These simulations

begin with a 0.085 AU band of equal-sized planetesimals at 1 AU, and a standard

model surface density distribution with Σ1 = 10 g cm−2 and α = 1.5.

In all of these simulations the planetesimal collision model described in §4.2.2 is

used. All planetesimals have an initial bulk density of 2 g cm−3. Like Kokubo & Ida

(2002) we are forced to employ a radial expansion parameter in order to complete our

simulations in a reasonable amount of time. In order to stay consistent with previous

102

work we chose an expansion parameter of f = 6 for all simulations (see Kokubo &

Ida 2002, for a discussion of the numerical effects of using f > 1)1. As a result of

the expansion parameter all planetesimals actually have a bulk density of 0.00925

g cm−3. Initially the planetesimals are given random velocities with respect to the

Keplerian velocity in directions both in and out of the plane chosen from a Rayleigh

distribution. The peak of the distribution is set by the escape speed from the largest

starting planetesimal. The exact starting velocity distribution is not critical since

the relaxation timescale of the planetesimal disk is short (∼ 103 yr) compared to

the length of the simulation (Kokubo & Ida 1996). Each simulation presented here

was run on our local computer cluster2. Each high-resolution simulation took about

one month to complete while the lower-resolution simulations each took about one

week on single processors.

4.2.5 Numerical Algorithm

Our numerical simulations use a modified version of pkdgrav (Stadel 2001; Richard-

son et al. 2000), a parallelized, hierarchical-tree N -body code that calculates gravity

in O(N log N) time. The code has been modified to include the planetesimal colli-

sion model (§4.2.2) by adding a module that uses the collision outcome database to

determine whether a fully resolved collision is required. If a resolved collision is nec-

essary this module is responsible for substituting single-particle planetesimals with

rubble piles before the collision and substituting rubble piles with single particles

1Because of the expansion factor we do not test for excessive spin—the low density would force

almost all interpolated collision outcomes to be resolved. As a result, we can say nothing about

the spin of the protoplanets in the simulations presented here.

2The borg is owned and operated by the the Center for Theory and Computation

(http://www.astro.umd.edu/ctc/) in the Department of Astronomy at the University of Mary-

land, College Park.

103

and unresolved debris after the planetesimal collision is complete.

The equations of motion in our simulations are integrated using a second-order

leapfrog integrator with multi-stepping3. Collisions are predicted at the beginning of

each position (drift) step by keeping the particle velocities fixed and extrapolating

the particle positions. Once the collision outcome has been determined and new

velocities (kicks) have been calculated, the post-collision particles are traced back

to the start of the drift step so that they can be included in any remaining collision

checks. This ensures that all collisions are detected and treated in the correct order,

even if particles are involved in more than one collision during the drift step.

Since the dynamical time of a rubble pile (hours) and the orbital time of the

planetesimal around the Sun (∼ one year) differ by orders of magnitude, we use a

two-phase timestep to increase the efficiency of our simulations. Initially all plan-

etesimals are on the major timestep (0.01 yr). Once a collision is predicted, the

timestep of the two planetesimals involved is reduced by a factor of 64. This means

that gravity is calculated 64 times for the colliding particles while gravity is calcu-

lated once for the rest of the particles. All particles are drifted consistently through

the major step but the colliding particles also have their kicks recalculated on the

minor steps. In addition, the radius of the planetesimals is increased by a factor of

2.5 during the collision search to reduce the number of missed collisions and increase

the accuracy of close approaches.

3For the two-body problem, without multi-stepping or collisions pkdgrav is symplectic—for a

planetesimal at 1 AU, eccentricity of 0.01, and timestep of 0.01 years the energy error is bounded

and never exceeding 2×10−3% during an orbit and never increasing in time; for the same timestep

at 0.5 AU the energy error ≤ 2 × 10−2%.

104

Figure 4.5: (a) Semi-major axis versus eccentricity for all particles in the standard

model after 50,000, 100,000, 200,000, and 400,000 yr. The radius of each circle is

proportional to the radius of the particles in the simulation. The filled circles are

those protoplanets that have reached masses greater than 100 times the starting

planetesimal mass (1.5 × 1024 g). The horizontal errorbars are 10 Hill radii in

length. (b) Same as (a) but for semi-major axis versus mass in units of starting

mass.

4.3 Results

4.3.1 Comparison with Kokubo & Ida (2002)

In this section we present a direct comparison of our global simulations of protoplan-

etary growth for different initial environments with that of Kokubo & Ida (2002).

They used a simple perfect merging prescription to determine the collision outcome

from planetesimal collisions. In order to determine the effect of our gravity dom-

inated collision model we have completed a series of simulations similar to theirs.

We begin the comparison of our results with the standard model.

105

4.3.1.1 The Standard Model

In our global standard model we integrated 10,000 equal-sized planetesimals for

500,000 yr. Recall, the planetesimals were placed between 0.5 and 1.5 AU with

Σ = Σ1(
a

1AU
)−α, where Σ1 = 10 g cm−2 and α = 3/2. Figure 4.5 shows the location

of the planetesimals and protoplanets on the semi-major axis–eccentricity and semi-

major axis–mass planes at four times during the simulation. The filled circles in

Figure 4.5a are those planetesimals that have grown larger than 100 times their

initial mass (these are the protoplanets). The errorbars are 10 Hill radii (rH) wide,

the approximate separation expected due to orbital repulsion (Kokubo & Ida 1995),

where

rH ≡
(

2M

3M∗

)1/3

a, (4.6)

M is the mass of the protoplanet, M∗ is the mass of the central star (always 1M�),

and a is the semi-major axis of the protoplanet.

In each stage of the simulation shown in Figure 4.5 we found roughly the same

number of protoplanets as Kokubo & Ida (2002) but we had ∼ 1
2

to 2
3

as many plan-

etesimals. By 400,000 years (the last frame of Figure 4.5) we had 12 protoplanets

and 236 planetesimals which is similar to Kokubo & Ida (2002) result of 12 proto-

planets and 333 planetesimals. The protoplanets have relatively low eccentricity due

to the dynamical friction from the planetesimals. The largest protoplanet is ∼ 1500

times the initial planetesimal mass after 400,000 years. Figure 4.5b shows that the

twelve protoplanets that have grown by this time are separated by at least two or-

ders of magnitude in mass from the background planetesimal population. Note that

all of the times that are used here apply to the “real” time growth of the artificially

expanded planetesimals (f = 6). The growth timescale for uninflated planetesimals

∝ 1/f 2 until gravitational focusing becomes effective at which point the growth

106

Figure 4.6: Shows the positions of all particles in the standard model simulation

in mass-vs-eccentricity space at four different times during the simulation. The

mass is in units of the initial mass.

timescale ∝ 1/f (Kokubo & Ida 1996).

Figure 4.6 shows the eccentricity of all particles in the simulation at four times

during the simulation as a function of mass. By 400,000 yr the protoplanets have low

eccentricity and have begun to stir up the eccentricities of the small planetesimals

to e > 0.1 (bottom panel of Figure 4.5 and 4.6) via viscous stirring. The highest

eccentricity of the planetesimals is ∼ 0.27, about three times the “escape eccentric-

ity” from the largest protoplanet (the escape speed divided by the Keplerian speed

107

Figure 4.7: Cumulative number of particles by mass bin for five different stages

in the simulation. Each line represents a different radial bin of the disk: the solid

line is the innermost region of the disk (a < 0.75 AU), the dotted line represents

particles between 0.75 AU and 1.00 AU, the short-dashed line represents particles

between 1.00 AU and 1.25 AU, and the long-dashed line particles with a > 1.25

AU.

at the semi-major axis of the protoplanet; cf. §4.3 and Eq. 21 of Kokubo & Ida

2002). Both the escape eccentricity and the largest eccentricity of the planetesimals

are consistent with the values found by Kokubo & Ida (2002).

Figure 4.7 shows the cumulative number of particles in a given mass bin at five

stages of evolution in the simulation. The planetesimal disk is also divided into

108

four radial bins in this figure. Comparison of this plot with that of Kokubo & Ida

(2002, their Fig. 4) reveals that our simulations initially evolve more quickly than

theirs. By 50,000 years all regions of our disk are flattening in mass distribution.

Kokubo & Ida (2002) still have quite steep distributions in the outer regions of the

planetesimal disk at this point. In addition, the most massive protoplanet in the

outermost radial bin is just under 200 times the initial mass at 50,000 yr; Kokubo

& Ida (2002) most massive protoplanet at this time is just 50 times the initial mass.

However, by 400,000 years the simulations appear virtually identical. Both show

flattening of the mass distribution in all radial bins with the most massive in each

radial bin clustering around 1000 times the initial mass.

Although the initial evolution is faster than that seen in Kokubo & Ida (2002) the

nature of the evolution is similar. Namely, the slope of the mass distribution early

in the simulations (shown in the top frame of Fig. 4.7) is characteristic of runaway

growth (Kokubo & Ida 2000; Makino et al. 1998), d log nc/d log m ' −1.5, where nc

is the cumulative number of planetesimals and m is the mass of the planetesimals in

units of 1024 g. As time increases the slope becomes less steep as the number

of small planetesimals drops. In Kokubo & Ida (2002) there was no source of

small planetesimals to replenish the low mass end of the mass distribution. Our

collision model allows for a resupply of small planetesimals via fragmentation events.

However, the resupply of small planetesimals is not significant and we observe similar

behavior as Kokubo & Ida (2002) in the reduction of the steep mass distribution

slope as runaway growth transitions into oligarchic growth.

There are several reasons that could explain why our simulation initially evolved

more quickly than that of Kokubo and Ida (2002): 1) the simulations are stochastic

in nature: the initial conditions are randomized, resulting in a significant diversity

of outcomes (see §4.3.4); 2) both our numerical integrator and our collision detec-

109

tion technique are quite different than those used by Kokubo & Ida (2002)—we

use a second-order integrator and small timesteps to handle close approaches and

collisions. Whereas Kokubo & Ida (2002) use a Hermite integrator with hierarchical

timesteps; 3) our model includes fragmentation. We have tested the resolution of our

timesteps by running the same initial condition with timesteps four times smaller.

The initial evolution is consistent with the results presented here. In addition, we

have investigated the effect of coefficient of restitution on the growth and evolution

of protoplanets (§4.3.4). We see no obvious trend with coefficient of restitution and

the mass of the most massive object. However, it is possible that the collision model

does affect the early stages of planetesimal growth.

4.3.1.2 Surface Density Simulations

We have investigated the effect of varying surface density by integrating three differ-

ent surface density distributions (Σ1 = 1, 10, 100) for 500,000 y. For the simulations

presented in this section, α = 3/2. All three simulations started with 10,000 plan-

etesimals distributed between 0.5 and 1.5 AU. The initial mass of the planetsimals

was 1.5 × 1023, 1.5 × 1024, and 1.5 × 1025 g respectively. Figure 4.8 shows the re-

sults of the simulations in semi-major axis vs eccentricity space. The filled circles

are the protoplanets that have grown larger than 100 times the initial mass of the

planetesimals. The horizontal lines are ten times the Hill radius. The times have

been chosen to roughly correspond to the growth timescale for the isolation mass.

The isolation mass is the mass that the protoplanet reaches at the end of oligarchic

growth when there are very few planetesimals left and the evolution enters the late

stage.

Kokubo & Ida (2002) derived the isolation mass of a power-law mass distribution

Miso = 0.16

(

b̃

10

)3/2 (
ficeΣ1

10

)3/2 (
a

1AU

)(3/2)(2−α)
(

M∗

M�

)−1/2

M⊕, (4.7)

110

4 where b̃ is the separation between protoplanets in units of rH and fice is the factor

that the solid mass is increased due to the condensation of ice. In all simulations

presented here, fice = 1. The isolation mass between 0.5 and 1 AU (assuming

α = 3/2) ranges from 3 × 10−3 – 6 × 10−3, 9.5 × 10−2 – 2.17 × 10−1, and 3.0 – 6.9

M⊕ for Σ1 = 1, 10, 100 g cm−2, respectively for the three simulations.

The time required to grow a protoplanet of a given mass (Kokubo & Ida 2002)

is

tgrow = 1.7 × 105f−1

(

〈ẽ2〉1/2

6

)2 (
M

1026g

)1/3 (
ficeΣ1

10

)−1 (
a

1AU

)α+1/2
(

M∗

M�

)−1/6

yr,

(4.8)

where f = 6, fice = 1 at 1 AU is the enhancement in mass due to condensation of

volatiles, 〈ẽ2〉1/2 ≡ 〈e2〉1/2/h is the rms eccentricity in units of the reduced Hill radius

of the protoplanet. Therefore, assuming 〈e2〉1/2 = eesc at 1 AU, it takes ∼ 2 × 104,

∼ 6 × 104, and ∼ 2 × 105 yr to grow a protoplanet with mass Miso for Σ1 = 100,

10, and 1, respectively. The protoplanets in Figure 4.8 are consistent with the Eq.

4.8 with masses 3 × 10−3 – 1.5 × 10−2, 6 × 10−2 – 4 × 10−1, and 1.6 – 7.8 M⊕ for

Σ1 = 1, 10, 100 g cm−2, respectively.

Figure 4.9 shows protoplanet mass as a function of semimajor axis for three sim-

ulations with α = 3/2 and Σ1 = 100, 10, and 1 g cm−2. The circles, squares, and

triangles represent the protoplanets in the Σ1 = 100, 10, and 1 simulations, respec-

tively. The lines represent the isolation masses (Eq. 4.7) for each of the simulations.

The solid line assumes a protoplanet separation of 10rH; the dashed line assumes

15rH . The simulations are consistent with the analytic predictions. The number of

protoplanets decreases with increasing surface density while the protoplanet masses

increase with surface density.

We have also run simulations of various mass distributions. Figure 4.10 shows the

4For derivation see Appendix A.

111

Figure 4.8: Eccentricity vs semi-major axis for three different surface density

distributions: (top to bottom) Σ1 = 100, 10, 1 g cm−2. The runs shown here

all have α = 3/2. The simulations are shown at 100,000, 400,000, and 600,000

yr, respectively (a few times the time required to grow isolation masses for the

respective initial surface density). The filled circles represent those protoplanets

that have grown 100 times the initial planetesimal mass (1.5 × 1025, 1.5 × 1024,

1.5 × 1023 g, respectively).

112

Figure 4.9: Protoplanet mass vs semi-major axis for simulations of three differ-

ent surface densities (as in Figure 4.8). The circles represent protoplanets after

100,000 yr with initial Σ1 = 100, the squares protoplanets after 400,000 yr with

initial Σ1 = 10, and the triangles protoplanets after 600,000 yr with initial Σ1 = 1.

The lines are the theoretical isolation masses for these cases. The solid lines are

the isolation masses assuming protoplanet separation of 10rH ; the dashed lines

are the isolation masses assuming separations of 15rH .

113

results of three simulations with α = 1/2, 3/2, and 5/2, after 400,000 yr, keeping

Σ1 = 10 g cm−2. The data points represent the protoplanets. The lines again

represent the isolation masses as a function of semi-major axis for each distribution.

Again the data are consistent with the theoretical predictions and with the results

of Kokubo and Ida (2002). Namely, the isolation mass increases with semi-major

axis for α < 2 and decreases with semi-major axis for α > 2.

In summary, we have found that including fragmentation does affect the early

evolution of protoplanets by altering the growth timescale. Our findings suggest

that the collision model is important until large planetesimals/protoplanets emerge,

at which point most collisions result in accretion events and the increase in velocity

dispersion, eccentricity, and inclination of the background planetesimal population

is dominated by the large bodies. The end results, however, are remarkably similar

to those found using perfect merging.

4.3.2 Collision Rates and Statistics

Figure 4.11 shows the number of planetesimal collisions, the number of collisions

that were interpolated, and the number of interpolated collisions that resulted in

accretion or growth for all nine high-resolution simulations. Only ∼ 10% of colli-

sions needed to be resolved using rubble piles. Almost all of the collisions that did

not require full resolution resulted in growth. These general characteristics are in-

dependent of the initial conditions. The evolution of planetesimal growth, indicated

by the shape of the collision curve, is slightly dependent on the initial surface mass

density and the power law of the surface density distribution. The more massive

the initial disk, the earlier growth starts and the earlier runaway growth plateaus.

Each disk initially has the same number of particles, so the more massive disks have

larger particles with larger effective cross sections and thus the collisional evolution

114

Figure 4.10: Protoplanet mass versus semi-major axis for three different initial

surface density distributions with power-law exponents α = 1/2, 3/2, and 5/2,

respectively. Σ1 = 10 g cm−2 for the runs shown here. The lines represent the

isolation masses for protoplanet separations of 10rH (solid lines) and 15rH (dashed

lines). The protoplanets masses are in units of Earth’s mass.

115

Figure 4.11: Cumulative plots of the number of collisions (solid black), the num-

ber of interpolated collisions (dashed-blue line), and the number of interpolated

collisions that resulted in accretion (dotted-red line). An accretion event is a col-

lision in which the mass of the largest post-collision remnant is larger than the

mass of either colliding body.

116

Figure 4.12: a) Average impact parameter (crosses) and mass ratio (solid dots)

in logarithmic time bins. b) Average impact speed for these collisions with the

same binning. The errorbars represent 50% of the most extreme values in that

bin. Σ1 and α same as Fig. 4.11.

is faster in these simulations.

Figure 4.12 shows the evolution of the collision parameters for the nine high-

resolution cases. Figure 4.12a shows the time evolution of the average impact pa-

rameter and mass ratio. As a size distribution develops with the onset of runaway

growth, the average impact mass ratio drops and the impact parameter remains

roughly constant at ∼ 0.6. The overall shape of the curves is similar for each run.

Figure 4.12b shows the evolution of impact speed. The average impact speed stays

low throughout the simulation, which is consistent with the ≥ 90% accretion rate

(Fig. 4.11). In most of the simulations the average impact speed grows as the plan-

etesimals in the disk grow. This is due to gravitational scattering of planetesimals

by the emerging protoplanets, increasing the eccentricities and the inclinations of

the background planetesimals. The low-mass disk (Σ1 = 1, first column in Figure

4.12b) shows a spike in impact speed starting at about ∼ 103 yr. This is due to the

117

initial excitement of background planetesimals when runaway growth begins in the

inner most region of the disk ∼ 0.5 AU. The increase in eccentricities of background

planetesimals also occurs in the more massive disks but the time resolution of the

simulations is not fine enough to detect in these faster-evolving cases. Since plan-

etesimal evolution takes the longest in Σ1 = 1 the initial increase in impact speed

at the beginning of runaway growth is detectable.

4.3.3 Unresolved Debris

As a result of our collision model, debris is created during most collisions. The debris

is not followed directly (§4.2). Instead we keep track of only global properties. Figure

4.135 shows the evolution of debris along with the first, fifth, and tenth most massive

protoplanets, and the average mass planetesimals, for comparison. All simulations

were started with 1% of the total mass in planetesimals in unresolved debris. When

the largest planetesimal (green line) reaches 50 to 100 times the initial mass of the

planetesimals, the debris mass (black line) drops quickly. The spikes are due to

individual collision events. By the end of the simulation the debris mass is at most

an order of magnitude less than the initial condition and in most cases the debris

mass has dropped to zero. In most simulations there is a negligible amount of debris

outside the initial protoplanetary disk (dotted line).

In almost all simulations the growth of the largest object went through two

phases. In the first phase—runaway growth—the slope (growth rate) for the largest

object in Figure 4.13 is close to one. In all of the simulations except Σ1 = 1, α = 0.5

this slope turns over and then drops below one (but remains positive). This turnover

5The dust mass and mass of the planetesimals are output at a slightly different frequency in

our simulations which results in noise of order of a few in the debris located outside of the original

disk bounds. This offset is responsible for the small dotted line spike in σ1 = 100, α = 5/2.

118

Figure 4.13: Evolution of the most massive planetesimals (solid green, dashed

blue, dashed red lines), the average planetesimals (dashed black line), the debris

(solid black line), and the debris located outside the original disk bounds (dotted

black line). The mass of the first, fifth, and tenth instantaneous largest planetesi-

mals are shown in green, blue, and red, respectively. All are in units of the initial

planetesimal mass mo for each simulation

119

is an indication of oligarchic growth. The Σ1 = 1, α = 0.5 simulation did not

reach oligarchic growth. This conclusion is supported by Figures 4.14 and 4.15,

which show snapshots of all high-resolution simulations at 500,000 yr (except for

Σ1 = 100, α = 0.5 shown at 110,000 yr and Σ1 = 100, α = 2.5 shown at 225,000 yr)

in a−e and a−m planes. Figure 4.14 shows that the isolation mass has been reached

for all Σ1 = 10 and 100 gm cm−2 simulations because the protoplanets shown in

red are at least 10rH from each other. Figure 4.15 shows that Σ1 simulations have

just begun forming a small distinct population of massive objects of which Σ1 = 1,

α = 0.5 is the most undeveloped.

For the simulation with Σ1 = 100 there is a noticeable amount of mass outside

the initial protoplanetary disk by 10,000 yr. This is because the protoplanets in

these simulations are more massive and viscous stirring is more effective (ie. e and i

are higher for the planetesimals). As a result, some collisions between planetesimals

occur outside the original protoplanetary disk. These collisions produce debris but

the debris in these outer regions is not swept up. Once the amount of mass in

debris outside the initial protoplanetary disk increases in cannot decrease. In these

simulations it is considered “trash” and we keep track of it only to check mass

conservation as a function of time. Regardless, as shown in Figure 4.16, by 500,000

yr the mass is always concentrated in a small number of massive protoplanets with

a small amount of mass in planetesimals and a negligible amount of mass in debris

for all runs.

120

Figure 4.14: Particle locations in semi-major axis-eccentricity space for all high-

resolution simulations. All simulations are shown at 500,000 yr except Σ1 = 100,

α = 1/2 which is shown at 110,000 yr and Σ1 = 100, α = 5/2 which is shown

at 225,000 yr. As in Fig. 4.5 and 4.8, the filled dots are protoplanets and the

horizontal error bars represent 10rH .

121

Figure 4.15: Mass of the planetesimals in units of mo shown in Fig. 4.14.

4.3.4 Coefficient of Restitution

It is unknown what material best describes planetesimals. In order to investigate

the effect of planetesimal composition in a simple way we conducted three sets of

simulations using different normal coefficients of restitution (εn = 0.1, 0.5, 0.8). As

a control we also ran one perfect merging simulation (εn = 0) with the same initial

conditions and no fragmentation. These simulations are lower resolution (N = 4000,

mo = 3 × 1023), and the initial disk is significantly narrower ∆a/a = 0.085 AU at

122

Figure 4.16: Evolution of the number of particles (ie. both planetesimals and

protoplanets; solid line) and total mass in planetesimals and protoplanets in units

of the initial mass (dotted line).

1 AU. As a result, planetesimals diffuse out of the initial annulus more quickly so

these simulations are run for a shorter period of time, 2 × 104 yr.

Figure 4.17 shows the mass versus time in the top panels and velocity dispersion

versus time in the bottom panels for these cases. The solid line in the top pan-

els is the maximum instantaneous mass and the dashed line is the average mass.

The coefficient of restitution appears to have less of an effect on the growth of the

planetesimals than including a fragmentation model. The simulations with εn > 0

123

have average planetesimal masses that are indistinguishable from each other and the

range in maximum mass is also similar between cases. The average mass, maximum

mass, and velocity dispersion of the εn = 0 case are slightly lower than for the other

simulations. However, the εn > 0 simulations do show significant spread in outcome

based on random changes in the initial conditions.

The second row in Figure 4.17 shows the velocity dispersion both weighted by

mass (dashed line) and unweighted (solid line). The unweighted velocity dispersion

is given by

σ =

√

√

√

√

∑N
i=1 |vi − vki|2

N − 1
, (4.9)

where vi is the instantaneous velocity of particle i, and vki is the Keplerian velocity

at the instantaneous position of particle i, and N is the instantaneous number of

particles. The unweighted velocity dispersion follows the velocity dispersion of the

most numerous particles, which in this case are the background planetesimals. The

mass weighted velocity dispersion is given by,

σvm =

√

√

√

√

∑N
i=1 mi |vi − vki|2

∑N
i=1 mi

, (4.10)

where mi is the mass of particle i. This quantity is dominated by the velocity

dispersion of the more massive planetesimals. As a result σvm is less than σ and

the difference between them grows as the largest planetesimals grow. The velocity

dispersions also show little dependence on εn.

The energy change in the center-of-mass frame of a system of two smooth, col-

liding spheres is given by (Araki and Tremaine 1986)

∆E = −1

2
µr(1 − ε2

n)v2
n, (4.11)

where µr is the reduced mass and vn is the normal component of relative impact

velocity. We have shown in past work that this relationship holds for rubble pile

124

collisions (Leinhardt et al. 2000). Thus, the lack of dependence of largest mass and

velocity dispersion with coefficient of restitution suggests that collisions, though the

primary growth mechanism, do not dominate the velocity field during most of pro-

toplanetary growth. The effects of planetesimal collisions could be important in the

early stage of terrestrial planet formation before the emergence of large planetesi-

mals and protoplanets. Viscous stirring by the protoplanets dominants any change

in the velocity field due to a collision by 104 yrs. As a result, we conclude that

fragmentation is also not particularly important during most of the runaway growth

and beyond.

4.4 Conclusions

We have completed a series of high-resolution direct N -body simulations of ter-

restrial planet formation. We have included a self-consistent planetesimal collision

model in which gravity is the dominant mechanism for determining the collision out-

come. We have determined that fragmentation is unimportant in determining the

final outcome of protoplanet formation in a gas-free environment. The fragmenta-

tion model that we employed did affect the rate of planetesimal evolution, suggesting

that fragmentation could be important in the early phase of runaway growth, but the

end result, after oligarchic growth, was consistent with perfect merging simulations.

We have also found that the coefficient of restitution does not affect the growth of

planetesimals over a timescale of 104 years. The largest planetesimals dominate the

growth through viscous stirring; the material properties are unimportant.

125

Figure 4.17: Mass as a function of time (top row) and velocity dispersion as a

function of time (bottom row) for εn = 0 (perfect merging), 0.1, 0.5, and 0.8. For

each εn > 0, three simulations were conducted. Each is represented by a separate

line in the plots. The solid lines in the top row are for the largest instantaneous

mass. The dashed line is the average mass. In the bottom row the solid line is

the velocity dispersion and the dashed line is the velocity dispersion weighted by

mass.

126

4.5 Future Work

It is possible that fragmentation could change the surface density distribution in

a gaseous disk. Smaller fragments could migrate radially within the disk and may

flatten or steepen the mass distribution and thus change the number, location, and

mass of the protoplanets. We will investigate this in future work. We also did not

fully investigate the debris initial condition. If the mass of debris is of the same

order as the larger planetesimals they could have a significant dynamical affect on

the larger planetesimals. Although this situation did not develop in any of the

environments that we investigated, we always started with a debris population that

was 1% the mass of the larger planetesimals. There may be some critical initial

mass that is required to cause a noticeable dynamical affect. In order to study

this in detail we would also need to include the effect of dynamical friction of the

debris component on the planetesimals and gravitational focusing of the debris by

the large planetesimals. In the simulations presented here we neglected gravitational

focusing of the debris component because we made simplifying assumptions about

the mass distribution and orbits of the debris—the debris was distributed smoothly

though out the annulus and all debris was assumed to be on circular orbits. Adding

gravitational focusing would not make the result more accurate in light of the above

assumptions. In addition, there was never enough debris to significantly change

the growth evolution of the protoplanets. In the next set of simulations in which

the mass of the initial debris component will be increased by orders of magnitude

gravitational focusing may become an important growth mechanism and must be

investigated. We would also like to complete a simulation without the expansion

parameter (ie. f = 1) to determine a true terrestrial planet formation timescale and

to determine the distribution and evolution of spin states.

127

Acknowledgments

This material is based on work supported by NASA under Grant Nos. NGT550454

and NAG511722 issued through OSS. The authors would like to thank Dr. Kokubo

for a careful and thoughtful review of this paper. ZML would also like to thank

KITP at UCSB where a significant amount of work for this paper was completed.

128

Chapter 5

A fast method for finding bound

systems in numerical simulations:

results from the formation of

asteroid binaries

This chapter is in press: Leinhardt, Z. M. & Richardson, D. C. 2005, Icarus, in press

ABSTRACT

We present a new code (companion) that identifies bound systems of particles in

O(N log N) time. Simple binaries consisting of pairs of mutually bound particles and

complex hierarchies consisting of collections of mutually bound particles are iden-

tifiable with this code. In comparison, brute force binary search methods scale as

O(N2) while full hierarchy searches can be as expensive as O(N3), making analysis

highly inefficient for multiple data sets with N > 103. A simple test case is provided

to illustrate the method. Timing tests demonstrating O(N log N) scaling with the

129

new code on real data are presented. We apply our method to data from asteroid

satellite simulations (Durda et al. 2004) and note interesting multi-particle config-

urations. The code is available at http://www.astro.umd.edu/~zoe/companion/

and is distributed under the terms and conditions of the GNU Public License. The

code listing is given in Appendix B.

5.1 Introduction

5.1.1 Binaries in the Solar System

Recent technical advances in observational techniques, specifically radar and adap-

tive optics (Merline 2001), have resulted in the detection of dozens of binaries among

the Near-Earth Asteroid (NEA), Main Belt Asteroid (MBA), and Jupiter Trojan

populations. Detailed lightcurve analysis (Pravec et al. 2002, 2000) and even a

spacecraft flyby (Belton & Carlson 1994; Belton et al. 1995) have also revealed bi-

naries among asteroids. Binaries also exist in the trans-Neptunian region (Margot

et al. 2002, Pluto and Charon represent the most extreme example). Binary aster-

oids appear to represent a significant fraction of the asteroid population (10-20%)

(Merline 2001). Given the relatively short lifetimes of MBAs and NEAs binaries

(Bottke personal communication; Chauvineau & Farinella 1995), the solar system

is evidently still dynamically active, continuously forming new binaries.

130

5.1.2 Numerical Simulations of Binary Formation

The diverse physical and dynamical properties of binary asteroids suggest at least

three distinct formation mechanisms: 1) NEA binaries may have been formed by

tidal disruption during close planetary encounters (Richardson 2001, Walsh et al.

in prep.) or by fission following thermal spin-up (Margot et al. 2002); 2) MBA

binaries may result from highly energetic collisions between asteroids, including

family forming events (e. g. Michel et al. 2001; Durda et al. 2004); and 3) Kuiper

Belt binaries, given their large separations, may have formed through three-body

encounters or capture following energy loss via dynamical friction from small bodies

(Goldreich et al. 2002; Weidenschilling 2002).

Simulations of MBA binary formation (e. g. Michel et al. 2001; Durda et al.

2004) are suitable for modest computer clusters, employing N ∼ 105 particles with

a two-phase numerical method. In the first phase, the physical collision and resulting

fracture propagation is modeled with smoothed particle hydrodynamics (SPH) code

(Benz & Asphaug 1999). In the second phase, after the collisional shock has propa-

gated through the bodies, the simulation is switched to an N -body code (Richardson

et al. 2000) which follows the debris for timescales of days under the mutual effects

of gravity. Typical projectile and target asteroids are between 1 and 100 km in size,

with impact speeds of kilometers per second. All simulations of this type require

N ∼ 105 in order to accurately model the collisional shock wave. Both groups found

that binary asteroids formed as the result of catastrophic collision. In addition,

(Richardson 2001) showed that NEA binaries could be formed via tidal disruption

of a “rubble pile” and (Walsh et al. in prep.) have begun a systematic study of

binary asteroid formation via tidal disruption.

These simulations raise an interesting problem for data analysis. In order to

131

understand the formation of binary asteroids fully, a fast, complete search method

is needed that can identify both simple binary and hierarchical systems for N �

103. Once binaries and/or systems have been identified, their properties can be

measured and compared to observed populations (with some assumptions on long-

term stability). A brute-force search would require O(N2) comparisons if each

particle is compared with every other particle. A more complete and complex search

would naively require O(N3) comparisons if in addition every particle is compared

with every system. Both searches are prohibitive for large N (> 104; less if multiple

data sets or time series are considered).

5.1.3 Previous Work on Binary Detection in Numerical Sim-

ulations

The problem of developing an efficient method for finding bound groups of asteroids

is related to searching for groups of galaxies in cosmological N -body simulations

that contain large numbers of particles. In this case a nearest neighbor algorithm

called “friend-of-friends” (FoF) (Davis et al. 1985) is often employed. FoF relies on

a linking length test of a particle’s nearest neighbors in order to determine what

particles should be considered members of the group. For example, if particle B is

within one linking length of particle A, particles A and B are in the same group. If

particle C is within one linking length of particle B, particles A, B and C are in the

same group, and so on. SKID (Governato et al. 1997) and the hierarchical clustering

method (Zappalà et al. 1990) are more complex algorithms, but the group search is

done in the same way.

We have developed our method along the lines of cosmological search methods,

which are quite efficient. Because we are not specifically interested in spatial groups,

we have replaced the linking length test with an escape speed test. The relative speed

132

of a particle and its possible companion is compared to their mutual escape speed

to see if the pair is bound (in the absence of all other perturbations). To improve

efficiency, we employ a Barnes & Hut (1986) hierarchical tree to limit the search

for possible companions to those that are nearby (in the sense of being contained

in a tree cell with a sufficiently large opening angle; cf. Section 5.2.1) or to those

contained in a small or distant tree cell whose center-of-mass speed fails the escape

speed test. It is possible that a small fraction of binaries may be missed with this

method (see Section 5.3.2 for a discussion; in particular note that our tests show

≥ 99% completeness in most cases, and it is always possible to set the tree criterion

so low that all pairs are considered, at the expense of computation time).

In this paper we present companion, a hierarchical tree code that detects bina-

ries, multiple, and complex hierarchical systems in the output from numerical sim-

ulations. Section 5.2 describes the numerical method in detail. Section 5.3 presents

diagnostic and performance tests. In section 5.4 we present analysis of published

data from (Durda et al. 2004), highlighting newly detected hierarchical systems. A

summary and conclusions are given in section 5.5.

5.2 Numerical Method

In general, the most stable binaries are those that are the most tightly bound. This

means that for a particle of a given mass the likelihood of having stable satellites

decreases with increasing distance and relative speed (between the particle and

potential satellite). The maximum distance at which a satellite can be bound to a

particle depends on the combined mass of the system. As a result, companion uses

a 3-D spatial tree code (Barnes & Hut 1986), augmented by a center of mass relative

speed test to insure that widely separated systems are found (cf. section 5.2.2).

133

C

B

A

C

A B

Figure 5.1: An example of a simple two dimensional spatial tree. On the right is

a dipiction of division of the root cell of the tree after three particles (A, B, and

C) have been placed into the tree. On the left is a “tree” diagram that describes

the level of each particle in the tree. Starting at the top is the root cell. The first

level below the root cell contains one cell with a particle C, two empty cells and

a cell that has four daughter cells. At the second level below the root cell there

are two cells each with one particle each (A and B) and two empty cells.

5.2.1 Hierarchical Spatial Tree

Our tree construction method closely follows the algorithm of (Barnes & Hut 1986).

Particles are placed one at a time, according to their spatial coordinates, inside

the “root cell,” a cubical volume large enough to contain the entire system. Any

time two particles end up in the same cell, the cell is divided in half along each

coordinate axis, resulting in 8 daughter cells. The two particles in question are then

placed into the respective daughter cell appropriate to their spatial coordinates. If

they still share the same cell, the daughter cell is itself subdivided, and the process

is repeated. The entire procedure continues recursively for all particles, until every

particle resides in its own unique cell. At this point the entire tree has been built

from the bottom up. Accessing any given particle requires “walking” the tree,

beginning at the root cell, opening every cell that contains the particle of interest,

and ending when the cell containing the particle has been reached. Figure 5.1 shows

an example of a simple two dimensional spatial tree with three particles.

The premise of a spatial tree code is that particles far from a given particle of

134

l

S

S

θ

S
P

Figure 5.2: A graphical depiction of the opening angle test for a particle P, where

θ = s/l, s is the length of one side of the cell being tested, l is the distance

between particle P and the center of the cell. The cell in question will be opened

if θ > θcrit.

interest (called particle P from now on) are generally not as important as those

that are nearby. As a result, only particles that exert the most influence on P are

considered in detail. In this case, such particles are those residing in cells that open

an angle θ > θcrit with respect to P, where θ = s/l, s is the length of one side of

the cell being tested, l is the distance between P and the center of the cell,1 and

θcrit is the “critical opening angle” (in radians), specified by the user. Figure 5.2

shows a diagram of the opening angle test. Tests show that θcrit = 0.5 rad is a good

compromise between speed and completeness (cf. section 5.3.2).

1Barnes and Hut (1986) used the center of mass instead of the geometric center of the cell for the

opening angle test in order to have the dipole term in the multipole expansion of the gravitational

potential vanish. Since companion does not use a multipole expansion, the geometric center is

sufficient.

135

5.2.2 Binary Detection

After the tree is built the search for binaries begins. Every particle P is considered

as a potential primary in turn and the opening angle test is used to determine

whether a cell needs to be opened to search for satellites of P within that cell. If

the open cell contains daughter cells, the same test is applied to them recursively.

This continues until a cell passes the opening angle test (θ ≤ θcrit) or has no more

daughters (i. e. the cell contains a single particle). In either case the speed v of the

center of mass of the cell relative to P is then compared to the mutual escape speed

vesc =
√

2GM/r, where G is the gravitational constant, M is the combined mass,

and r is the separation. If the cell still has daughters and v < vesc, the daughter

cells are forced open and the recursive procedure above resumes. This additional

test insures companion identifies widely separated systems with low relative speed.

Otherwise, if the cell contains a single particle and v < vesc, the particle is tagged

as a companion to P.

5.2.3 System Detection

At this point companion contains a list of particle-particle binaries. The user has

the option to use this list or to have companion go further and identify systems of

particles (hierarchies). In that case, starting from the initial binary list, companion

chooses the shortest-period system and replaces its two components with a single

particle located at the center of mass of the binary, with the same total mass and

linear momentum (angular momentum is ignored). The “radius” of the new particle

is set equal to the semimajor axis of the binary orbit, in order to take advantage

of filtering options described below (section 5.2.4; the collision cross section of the

binary depends on the size of the orbit). Any binary in the original list that con-

136

tained either of the two components of the binary that was replaced is removed from

the binary list. Companion then performs a binary test for the new center-of-mass

particle using the method outlined above (section 5.2.2). Any new binaries that

are detected are added to the binary list. This process is repeated until all bound

systems of particles have been reduced to single center-of-mass particles.

Once the hierarchy option of companion has run to completion only two types

of particles remain in the spatial tree—those particles that were never part of a

binary and thus are original, unbound, single particles, and composite, center-of-

mass particles. Each center-of-mass particle represents a separate system and each

contains information about the primary and satellite of the system that it replaced.

Thus the entire system represented by each composite particle can be reconstructed

in the output (see section 5.3.1).

5.2.4 Usage Options

Companion provides several options to refine and filter searches. The user can choose

to search for simple systems (section 5.2.2) or complex hierarchical systems (section

5.2.3). Companion accepts a variety of input and output units (cgs, mks, and “system

units” in which G ≡ 1). Allowable input formats include plain text and binary, with

one particle to a line and columns representing mass, radius, 3-D position vector,

and 3-D velocity vector, respectively.

Companion also contains several filter options so that only binaries and hierarchi-

cal systems that meet certain criteria are reported. The user can specify a maximum

eccentricity, minimum binding energy, maximum semimajor axis, and minimum pe-

riapse (including a criterion to reject binaries on re-impact trajectories). If a system

is particularly interesting, it can be extracted from the original data, with or with-

out the filtering options applied, and studied further in isolation. The user may also

137

change the critical opening angle θcrit used in the opening angle test—reducing θcrit

will improve completeness but increase the computation time, and vice versa.

5.3 Tests

5.3.1 Illustrative Test

To test companion and demonstrate its capabilities, we created a hierarchical system

based on our solar system that includes the Sun, the Earth and Moon, Jupiter, Io,

and Europa, all in the z = 0 plane. We chose this system because it contains

two subsystems (Earth-Moon and Jupiter-satellites) that companion should detect.

Below is the normal (non-hierarchy) output from companion for this system. Each

line of data output corresponds to a binary. In order, the columns are: mass ratio

of the primary to the total system mass; index number of the primary (an integer

assigned to each line of input data, starting at 0); radius of the primary; mass

ratio of the satellite to the primary; index of the satellite; radius of the satellite;

binary binding energy; semimajor axis; eccentricity; inclination; and orbital period.

In this example output units are mks (inclination is always in radians). In this

human-readable format, satellites sharing the same primary only show data from

the fourth column on to emphasize associations. Companion also outputs a text

machine-readable format for ease of interfacing with analysis routines.

M_p/M_t p_ind p_rad M_s/M_p s_ind s_rad bind_eng a e i per

-------- --------- -------- -------- --------- -------- --------- -------- ---- ---- --------

9.99e-01 0 6.82e+08 9.45e-04 3 7.08e+07 -1.42e+35 8.82e+11 0.12 0.00 4.51e+08

2.94e-06 1 6.24e+06 -2.73e+33 1.43e+11 0.05 0.00 2.93e+07

3.68e-08 2 1.72e+06 -3.42e+31 1.43e+11 0.06 0.00 2.94e+07

9.44e-04 3 7.08e+07 4.71e-05 4 1.80e+06 -1.31e+31 4.25e+08 0.01 0.00 1.55e+05

2.54e-05 5 1.54e+06 -4.41e+30 6.84e+08 0.02 0.00 3.17e+05

2.93e-06 1 6.24e+06 1.25e-02 2 1.72e+06 -5.86e+28 2.45e+08 0.55 0.00 1.21e+06

138

Summary: 3 systems, 6 binaries, total mass considered = 1.995755e+30

In this example companion has identified three systems: 1) the Sun (particle

0) with Jupiter (particle 3), the Earth (particle 1), and the Moon (particle 2) as

satellites; 2) Jupiter with Io (particle 4) and Europa (particle 5) as satellites; and

3) the Earth with the Moon as its satellite. The summary line at the end gives the

number of systems (i. e. number of primaries), the number of binaries (primary-

satellite pairs), and the total mass considered in the search. Note that since the

relative speed between Jupiter’s satellites and the Sun is greater than the escape

speed from the Sun at their distance, companion does not identify them as members

of the Sun system, even though they are members of the Jupiter system and Jupiter

is a member of the Sun system.

Below is companion output for the same system with the hierarchy option turned

on. The first column is the index number of the center-of-mass particle that has re-

placed the primary (third column) and satellite (sixth column). The other columns

have the same meaning as in the normal companion output. Note that index num-

bers in the third and sixth column that are above 5 are also center-of-mass particles

(recall numbering starts at 0 and there are 6 original particles in this test). Each

separate system is identified by a new header line; in this case there is only one

system identified (everything, including the Jovian satellites, is determined to be-

long to one system). The summary line for each system shows the total mass of

the system with respect to the total mass of all particles considered, the maximum

semimajor axis (a rough indication of the physical “size” of the system), and the to-

tal binding energy. After all systems have been listed, a global summary reports the

total number of systems found (broken down into two-particle and multiple-particle

systems), the total number of original particles, and the total mass considered in

139

the search.

c_ind M_p/M_t p_ind p_rad M_s/M_p s_ind s_rad bind_eng a e i per

--------- -------- --------- -------- -------- --------- -------- --------- -------- ---- ---- --------

10 9.99e-01 9 1.43e+11 9.45e-04 7 6.84e+08 -1.42e+35 8.82e+11 0.12 0.00 4.51e+08

9 9.99e-01 0 6.82e+08 2.97e-06 8 2.45e+08 -2.77e+33 1.43e+11 0.05 0.00 2.93e+07

8 2.93e-06 1 6.24e+06 1.25e-02 2 1.72e+06 -5.86e+28 2.45e+08 0.55 0.00 1.21e+06

7 9.45e-04 6 4.25e+08 2.54e-05 5 1.54e+06 -4.41e+30 6.84e+08 0.02 0.00 3.17e+05

6 9.44e-04 3 7.08e+07 4.71e-05 4 1.80e+06 -1.31e+31 4.25e+08 0.01 0.00 1.55e+05

System summary: mass = 2.00e+30, max semimajor axis = 8.82e+11, total binding energy = -1.45e+35

1 system found: 0 2-particle systems and 1 multi-particle system

Total number of original particles: 6

Total mass in original particles: 2.00e+30

Figure 5.3 shows a visual representation of the hierarchical output for this test2.

Jupiter (particle 3) and Io (particle 4) have the shortest period so they become

the first center-of-mass particle (particle 6, shown in Fig. 5.3 as the black dot one

level above Jupiter and Io). The next shortest period is the Jupiter-Io system with

Europa (particle 5 in Fig. 5.3). The Jupiter-Io system is combined with Europa

to form a new center-of-mass particle (7) that represents the entire Jupiter system.

The next shortest period is the Earth-Moon system, particles 1 and 2 at the bottom

of Fig. 5.3. They are combined to form another center-of-mass particle (8). The

period of the Earth-Moon system around the Sun is shorter than the period of the

Jupiter system around the Sun, thus the Earth-Moon system is combined with the

Sun (particle 0) to form center-of-mass particle 9. Finally, the Jupiter system is

combined with the Sun-Earth-Moon system to form particle 10. Ultimately the

system is reduced to one center-of-mass particle.

2The software used to create the diagram figure 5.3 is also publically available at

http://www.astro.umd.edu/~zoe/companion/. After companion has been run on the user’s data

with the hierarchy option run the plotting script with the index of the center of mass particle at

the top of the desired system. The plotting script will produce a super mongo script.

140

7

0

1

3

5

2

4

6

8

10

9

Figure 5.3: A visual representation of the output from the hierarchical option

in companion for a pseudo solar system that included six particles: the Sun, the

Earth, the Moon, Jupiter, Io, and Europa, all in a coplanar configuration. Particle

0 represents the Sun, 1 the Earth, 2 the Moon, 3 Jupiter, 4 Io, 5 Europa. All

particles with particle indicies above 5 are center-of-mass particles. The radius of

the dots corresponds to the mass of the particle with the most massive five times

the radius of the smallest. Similarly, the lengths of the vertical branches in the

tree correspond to the orbital period of each binary with the longest period four

times that of the shortest.

141

5.3.2 Performance Tests

The development goal for companion was to find binaries, including hierarchical sys-

tems, in better than O(N2) time. Figure 5.4 indicates this goal has been achieved:

shown is the time needed to run companion on six numerical simulations of catas-

trophic asteroid collisions with various N and initial conditions. The default value

θcrit = 0.5 rad was used and no filtering was performed. Fig. 5.4 shows that the

time it takes companion to complete the search for binary systems scales linearly

with N log N for both normal and hierarchical search options. The scatter in both

plots is due to the fact that several different simulations with different initial con-

ditions were used in these tests. The hierarchy version of companion takes longer

because each time a center-of-mass particle is replaced, a search for companions to

that new particle is performed. In general, the number of binaries in a simulation

is significantly less than the number of particles in the simulation.

To test the completeness of companion (the ability for it to identify all binaries

in the data set being tested), we used θcrit = 0, effectively forcing companion to

behave as an inefficient N2 code, without any chance of missing a binary. From this

test we found that for θcrit = 0.5 rad, companion is at least 99% complete for all

data sets tested (N -body simulations of catastrophic asteroid collision events which

have been run a few days past the collision) and two orders of magnitude faster

than a traditional N2 search method. For MBA collision simulations, θcrit = 0.5

rad optimizes completeness and speed. In other scenarios it is possible that a more

conservative opening angle is required.

142

Figure 5.4: (a) CPU time versus N log N in seconds for default companion analysis

of the results of catastrophic asteroid collision simulations (Durda et al. 2004, ;

Durda, personal communication). (b) Timing results for the same data using

the hierarchical search. The data sets contained between 2.6 × 104 and 9.4 × 104

particles. The solid lines are least-squares fits to each data set.

5.4 Results

An older version of companion without the hierarchy option was used for the anal-

ysis of satellite formation simulations in Durda et al. (2004). The updated version

produces similar results for the three data files from Durda et al. (2004) that we

used as test cases. For both versions, companion was used with two filters applied:

1) a maximum semimajor axis of one Hill radius (at 3 AU from the Sun); and 2)

a minimum periapse distance of twice the primary radius. Due to some improve-

ments in how the filters are applied in companion, we found a slight difference in

the number of satellites reported by the new version (< 0.5% difference). Thus, the

overall statistics reported in Durda et al. (2004) are consistent with our tests.

Since Durda et al. (2004) did not have the hierarchy option available, we have

143

Figure 5.5: An example of an interesting hierarchy found by companion in a

simulation from Durda et al. (2004), with no filtering applied.

done a preliminary analysis with it on the simulation that produced the most bi-

naries. The impact parameters of this simulation are as follows: impact speed ∼

3 km s−1, impact angle at collision of 30 degrees, diameter of projectile of 34 km,

diameter of target of 100 km. We have found a number of interesting hierarchical

configurations in their data (Fig. 5.5 gives an example, using companion without

any filtering). Most of the more interesting hierarchies occur between smaller parti-

cles (what Durda et al. 2004, call “EEBs”, or escaping ejecta binaries). These are

systems escaping the largest post-collision remnant and that consist of smaller frag-

ments with low relative speeds. We have also run companion on the same data with

144

Figure 5.6: A histogram of the number of systems found with N particles using

the hierarchy option in companion. Only original particles are counted, center of

mass particles are not included in the calculation of the number of particles in a

system.

the Hill sphere and pariapse cuts mentioned above. Companion found 1101 systems

with 129 multiple systems and 972 2-particles systems applying the above mentioned

cuts without the hierarchy option. With the hierarchy option turned on companion

found 1020 systems with 862 2-particle systems and 158 multiple systems. This

means that about 80 2-particle systems detected without the hierarchy option have

their center of mass bound to another system. Figure 5.6 shows a histogram of the

number of N-particle systems. As expected the majority of systems are binaries but

there are a significant number of trinary systems (∼ 10% the number of binaries)

and quarternary systems (∼ 3%) that passed the orbital restrictions.

We also found 30 multiparticle systems (mostly triples) that seemed to be rel-

atively stable in the sense that they survived for several days. These systems all

145

passed the periapse and semimajor axis filter options described above. In addition,

these systems did not contain any particles or binaries that pass within one semi-

major axis of any other binary in the system. As a test, some of these systems were

extracted from the data file and intergrated in isolation for several orbits. Three

configurations of particles were found to be most stable: 1) a large primary orbited

by two-to-three small particles; 2) a tight binary orbited by a smaller particle; 3)

a larger particle orbited by a tight binary. For the inner binary in configuration

2, both equal and unequal-size components worked well. The orbital parameters of

the configurations varied but the tight binaries in configurations 2 and 3 often had

relatively moderate-to-low eccentricity (≤ 0.4).

5.5 Conclusions

In this paper we presented companion, a publicly accessible, efficient code for find-

ing binaries and bound systems in output from numerical simulations. We found

that both simple and complex searches scale as O(N log N) with the new code. We

discussed the capabilities of this code in the context of binary asteroid formation,

showing that data from Durda et al. (2004) contains previously unreported hier-

archical systems. However, it should be noted that companion can in principle be

applied to any data set that includes particle mass, radius, position, and velocity.

The completeness of companion is dependent on the critical opening angle θcrit.

For the evolved asteroid collision simulations tested here, the default value of 0.5 rad

provided better than 99% completeness. Other configurations may exist for which

a more stringent value of θcrit is required, at the cost of computation time, such as

those with large numbers of barely bound, spatially far removed particles. It also

must be emphasized that all binaries and multiple systems reported by companion

146

are instantaneous, could very well be transient, and may only exist in the context

of surrounding particles (i. e. such systems may fly apart when extracted from their

broader context). Thus, it may be most useful to apply companion to dynamically

evolved data sets, as we have done, or to use companion to study the statistics and

evolution of transient systems.

147

Acknowledgments

This material is based upon work supported by the National Aeronautics and Space

Administration under Grant Nos. NAG511722 and NGT550454 issued through the

Office of Space Science and by the National Science Foundation under Grant No.

AST0307549. The analysis presented in this paper was carried out using the Beowulf

cluster administered by the Center for Theory and Computation of the Department

of Astronomy at the University of Maryland. ZML would like to thank the Kavli

Institute of Theoretical Physics at the University of California, Santa Barbara, as

well as D. Hamilton and A. J. Young.

148

Chapter 6

Conclusions

In this thesis I have investigated planetesimal evolution, the role of planetesimal col-

lisions in determining the outcome of terrestrial planet formation, and the prevalence

of hierarchical bound systems in numerical simulations of family-forming events. In

order to parameterize planetesimal collision outcomes and determine what condi-

tions are required for planetesimal growth, I investigated how impact parameter,

impact speed, spin, and mass ratio affect collision outcomes. Since the self-gravity

of a km-sized planetesimal is larger than its material strength I modeled the plan-

etesimals as pure rubble piles—gravitational aggregates with no tensile strength.

The parameter space studies produced a variety of shapes and spin states includ-

ing elongated, pear-shaped, contact-binaries, and spherical remnants. A number

of collision remnants were similar in physical characteristics to main belt asteroids

such as Eros, Geographos, Kleopatra, and Hektor. No stable large satellites were

produced in these studies. However, previous numerical simulations have found that

binary asteroids form following catastrophic impact events within the asteroid belt.

Upon analyzing this data I found that more complex hierarchical bound systems

also formed as a result of these impacts.

The results of the parameter space collision studies suggested that rubble-pile

149

planetesimals in an primordial disk should typically grow. However, the parame-

ter space studies were restricted to single isolated collisions. In order to determine

what would happen if a realistic self-consistent planetesimal model were included

in a global planet formation simulation I modified and expanded the planetesimal

model developed in the parameter space studies and incorporated it into planet for-

mation scenarios. I found that the initial conditions of the primordial disk were far

more important in determining the mass and number of the protoplanets than the

planetesimal collision model. In fact the work suggests that planetesimal composi-

tion is effectively unimportant in planet formation.

The first simulations of planetesimal collisions (chapter 2) concentrated on deter-

mining how collision parameters affected the collision outcome between equal-sized

planetesimals. The total amount of energy and angular momentum of the collisions

produced a variety of shapes and spin states for the largest post-collision remnant.

Large impact parameter (large orbital angular momentum) resulted in elongated,

fast spinning remnants. Large impact speed (large energy) resulted, as one might ex-

pect, in more mixing and a smaller largest remnant. The initial spin of the impactor

could increase or decrease the spin period and elongation of the largest remnant de-

pending on whether the spin angular momentum was parallel or anti-parallel to the

orbital angular momentum. Aligned spin and orbital angular momentum vectors

produced symmetric shapes, whereas anti-aligned angular momentum vectors pro-

duced triaxial shapes. Most of the debris from the collisions was distributed in a

plane perpendicular to the impact. When the collision was catastrophic debris often

coalesced into smaller rubble piles. In one set of simulations that were completed

with a mass ratio of 1 to 10, the projectile was always effectively destroyed. In

impacts with large impact parameter, a fraction of the target was sheared off. Col-

lisions with large orbital angular momentum could also result in debris from the

150

disrupted projectile being deposited onto the target along the equator.

Contact binaries formed easily about 10% of the time but true binaries of sig-

nificant size did not form from slow collisions—most of the post-collision debris

was either accreted onto the largest remnant or escaped from it. The coefficient of

restitution had a significant effect on the number and size of remnants. A lower

value (more dissipation) resulted in fewer larger remnants, a larger value (less dis-

sipation) produced a larger number of small remnants. Particle resolution had a

moderate effect—a larger number of particles gave rise to more complexities in a

given shape, such as cusps on S-shaped remnants. More particles, higher resolu-

tion, also increased dissipation slightly. I found that for equal-sized rubble piles, the

critical dispersal energy Q?
D ∼ 2 J kg−1 for a head-on collision which is orders of

magnitude below what other numerical simulations of asteroid impacts have found

(Love & Ahrens 1996; Ryan & Melosh 1998). This would suggest that rubble piles

are relatively easy to disrupt, however, these results are for equal-sized impactors

and, in addition, our coefficient of restitution was high (ε = 0.8).

In the second set of parameter space simulations the focus was to quantify the

effect of impactor mass ratio on collision outcome. The size of the projectile was

important in determining the degree of disruption. More massive projectiles were

more efficient at disrupting a target than a less massive projectile with the same

impact energy because a larger projectile has a bigger surface area. The larger

surface area means that more particles are directly involved in a collision with a

larger projectile than with a smaller projectile. This means that larger projectiles

are more efficient at distributing the impact energy evenly throughout the target,

and hence a large fraction of the impact energy is available to disrupt the target.

Smaller projectiles on the other hand tend to channel the impact energy into a

small number of particles that may escape the system at high speed carrying much

151

of the impact energy with them leaving only a fraction of the impact energy to

disrupt the rest of the target. Extrapolating from the results, the amount of energy

necessary to critically disrupt a target of radius 1 km using a projectile of radius

1 m is between 1000 and 10,000 J kg−1—three to four orders of magnitude greater

than what is necessary to critically disrupt the same target with an equal sized

projectile. Further, as mass ratio departs from unity, the impact parameter becomes

less important and the probability of planetesimal growth increases. For an average

encounter (assuming a power law size distribution with an index of −3—collisionally

relaxed) the target is likely to gain mass.

In order to determine how planetesimals evolve over time after suffering repeated

collisions I designed and integrated a rubble pile collision model into a planet for-

mation code. The collision model was based on the method used in chapters 2 and

3. For maximum efficiency the collision model was multi-phase and the planet for-

mation code used multi-stepping. Since the orbital time in these simulations ∼ 1

year and the dynamical time of a planetesimal ∼ 1 hour (τ ∼ 1/
√

Gρ) the planet

formation code used two timesteps: one to resolve the orbits (0.01 year) and one

to resolve collisions and close approaches between planetesimals (∼ 0.0001 year).

When a collision was predicted between two planetesimals in the the protoplantary

disk the timesteps were reduced by a factor of 64 for the planetesimals involved.

When a collision is confirmed between two planetesimals the collision parameters

were used to look up the predicted mass of the largest post-collision remnant in a

data table of previously integrated collisions. If the predicted largest post-collision

remnant contains most of system mass (> 80%) the predicted outcome was used

as the collision outcome. If the second largest remnant is large (> 20% the sys-

tem mass) the collision is fully resolved (that is, modeled as a rubble pile collision

directly) within the planet formation simulation. A resolution limit was employed

152

to keep the number of particles in the simulation from growing too large. After 20

planetesimal dynamical times any material remaining below the resolution limit was

followed in a semi-analytic manner as unresolved debris.

The results of the planet formation simulations, with a detailed, self-consistent

collision model, were compared to simulations with the same initial conditions but

with all collisions resulting in perfect merging. Planetesimals evolved more quickly

during runaway growth in my model but by the end of oligarchic growth the number,

mass, and separation of the protoplanets was very similar to the results that used

perfect merging. Different initial conditions (total mass in the protoplanetary disk

and distribution of the mass with semi-major axis) affected the number and mass

of the protoplanets more significantly than the collision model. Thus, according to

the collision model employed here, fragmentation is not important in determining

the final outcome of planet formation, nor, as I also found, is the coefficient of resti-

tution. As a result, the material composition of planetesimals seems unimportant

in the gravity dominated phase of planet formation. At the end of our simulations

the eccentricities of the protoplanets are about an order of magnitude above the

eccentricity of the Earth (consistent with Kokubo & Ida 2002). It is possible that

the gas-free initial condition is not entirely appropriate. Interactions between the

protoplanets and the gas disk could potentially damp the remnant eccentricities

(Agnor & Ward 2002).

Unlike the collisions of the planetesimal evolution presented in chapters 2 and

3 several numerical simulations have found that binary asteroids form easily as the

result of catastrophic, family-forming impacts in the main asteroid belt. Asteroids

are interesting because many are much less altered than planets from the original

planetesimals. Binary and multiple systems are particularly useful because masses

can be directly measured from binaries using Kepler’s law. Numerical simulations of

153

family-forming events require high resolution to model all of the necessary physics.

Large numbers of particles with large numbers of outputs present a problem for data

mining since it becomes prohibitive to search through all of the data for pairwise

correlations. I developed an efficient search code that finds simple bound and hier-

archical systems in O(N log N) time, compared to traditional brute force techniques

that scale as O(N2) and hierarchical searches that scale as O(N3).

I applied our search code to previously published numerical simulations of catas-

trophic impacts between asteroids. I found several hierarchical systems that were

relatively stable in the sense that they persisted for at least several hundred orbits.

These results suggest that higher order systems (N > 2) could form in the asteroid

belt. As observational techniques become more sensitive, observers should be on the

look out for triple systems.

6.1 Future Work

My work will continue along three paths. First, I plan to test the planetesimal

collision model further by running several high-resolution simulations with various

initial debris values. It is possible that debris, if sufficiently massive, can become

dynamically important if an equilibrium can be reached between the production and

the accretion of the debris onto the planetesimals. It may also help to reduce the

eccentricities of the protoplanets. In addition, I plan to confirm the results presented

here by running a standard model simulation with no expansion parameter. This

simulation will determine the timescale for planet formation and would also allow

for the evolution of spins of the protoplanets to be investigated.

Second, planetesimal formation is an open question—no model has been shown

to grow planetesimals—and yet planetesimals provide the initial conditions for most

154

planet formation simulations. At the moment these initial conditions are assumed

because it has not been possible to grow planetesimals from dust in numerical simu-

lations. I intend to begin developing a systematic program of study testing various

methods of planetesimal formation. Although turbulence in the gas disk surround-

ing a young star constrains dust particle motion and drives dust collisions at speeds

of ∼ m s−1, these dust particles are also in a tidal field and as a result their orbits

are also roughly circular and may collide many times an orbit. Each collision is

inelastic resulting in a loss of energy. As long as the loss in energy is larger than the

energy gain due to gas turbulence, the relative impact speeds of the dust particles

decrease with time. This may result in clumping of dust particles. In addition, the

fractal and porous nature of these clumps may help prevent future destruction. The

N -body code that I have used here can support the investigation of this model of

planetesimal formation. I will study the role of gravity, material properties of the

dust, and the effect of gas drag and turbulence.

Third, comets are the oldest and most pristine objects in the solar system. A

detailed understanding of their evolution will result in a very good constraint on

the material requirements of the early solar system. One of the most significant

modifications that comets have experienced are impacts. Modeling these impacts is

difficult because impacts are fast (∼ km s−1) and comets have a large percentage

of volatiles which can change phase as a result of the collision. I plan to hybridize

a hydrodynamic code—to model the initial impact and shock propagation—and an

N -body gravity code (pkdgrav)—to track the trajectories of the remnants under the

influence of gravity. I will build simplified numerical models of comets composed

of ice and basalt. Initially, I will ignore the effects of organics in order to keep the

number of model parameters practical. I will investigate the effect of micro- and

macro-porosity and the effect of varying internal structure (e.g. models in which

155

basalt and ice are uniformly interspersed, and in which ice surrounds a basalt core).

The results of these simulations will help determine the percentage of volatiles lost

as the result of each impact.

Together these simulations will further advance our understanding of our own

solar system by connecting present-day objects within the solar system with the

building blocks of our planet.

156

Appendix A

Derivation of Isolation Mass

Eq. 4.7 is derived by equating the isolation mass to the mass available for consump-

tion in the feeding zone.

Miso ≡ 2πabΣsolid, (A.1)

where a is the semi-major axis of the planetesimal/protoplanet, b is the character-

istic separation between protoplanets due to gravitational repulsion (Kokubo & Ida

1995), and Σsolid is the surface density of solid material in the protoplanetary disk.

The characteristic separation distance can be expressed in units of Hill radii (rH),

b̃ ≡ b

rH

(A.2)

rH ≡
(

2M

3M∗

)1/3

a (A.3)

hence

b =
(

2M

3M∗

)1/3

ab̃, (A.4)

where M is the mass of the protoplanet and M∗ is the mass of the central star.

Substituting b and Miso for M ,

Miso = a2b̃
(

2Miso

3M∗

)1/3

Σsolid (A.5)

157

or

Miso = Aa3b̃3/2Σ
3/2
solidM

−1/2
∗

, (A.6)

where all of the numerical constants have been consolidated into A. In the simu-

lations presented here the mass was initially distributed as a power-law with index

α,

Σsolid = ficeΣ1

(

a

1AU

)−α

(A.7)

therefore,

Miso = Aa3/2(2−α) b̃3/2 (ficeΣ1)
3/2 M−1/2

∗
, (A.8)

where fice is the fraction of solids in ice and Σ1 is the surface density of solids at 1

AU. Eq. 4.7 from Eq. A.8 by introducing standard unit normalizations.

158

Appendix B

companion.c

/*

** companion.c --- Version 1.0, 07.27.04 (ZML and DCR)

** searches for binaries

*/

/*

** This code is Copyright © 2004 by Z. M. Leinhardt and D. C.

** Richardson.

** Under the terms of the GNU Public License, you are free to

** redistribute, modify, or even sell this code, but we ask that all

** headers identifying the original authors of this code be left

** intact.

**

** This software comes with NO WARRANTY. The authors cannot be held

** responsible for any undesirable consequences of using this code.

*/

/*

** Memory storage for particles will be inflated by the following

** factor. This is needed because we cannot realloc() the particle

** storage (in order to add com particles) after the final data read;

** otherwise pointers in the tree and binary list to the particle data

** won’t work. A better method is to store particle array indices in

** the tree and binary list data fields and pass a pointer to the

** particle array to whatever routines need the particle data. This

** is annoying because the functions affected include recursive tree

** functions and the sorting comparison functions, so for the moment

** we stick with this crude buffer inflation and hope it’s enough

159

** storage (an assert() is used to make sure).

*/

#define EXTRA_STORE 2

/*

** Fraction of particles allowed to remain since last tree build

** before rebuilding the tree. Used for hierarchical system search.

** A large value forces more frequent tree rebuilds. A smaller value

** relies on older tree data for longer, with larger inefficiencies.

** More tests are needed to optimize this value, though it may vary

** depending on the specific problem.

*/

#define TREE_REBUILD_FRAC 0.9

/*

** If mass ratio between two components of a com particle is extreme

** force a tree rebuild.

*/

#define REBUILD_MASS_RATIO 1.0e6

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> /* for getopt() */

#include <string.h>

#include <math.h>

#include <limits.h> /* may or may not contain DBL_MAX (values.h */

/* obsolete?) */

#include <assert.h>

#ifndef MAXPATHLEN

#define MAXPATHLEN 256

#endif

#ifndef DBL_MAX

#define DBL_MAX 1.7976931348623157E+308

#endif

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

#define ANA_EXT ".ana"

#define PR_EXT ".pr"

#define HIER_EXT ".hier"

160

#define EXT_EXT ".ext"

#define HIER_EXT_EXT ".hext"

#define VEC_EXT ".vec"

#define BUF_SIZE_INIT 256

#define BUF_SIZE_MULT 2

#define BUF_NPART_INIT 10000

#define CHILD_PER_NODE 8 /* don’t change this! (oct-tree) */

#define FILE_TYPE_STR_MAX_LEN 4 /* 3 chars plus null char */

#ifdef SS_CORE

#include <rpu.h>

#include <ss.h>

#include <vector.h>

enum {FileTypeTxt,FileTypeBin,FileTypeSS};

const char FileTypeStr[][FILE_TYPE_STR_MAX_LEN] = {"txt","bin","ss"};

#define DFLT_FILE_TYPE FileTypeSS

#define DFLT_IN_SYS TRUE

#define DFLT_IN_CGS FALSE

#define DFLT_OUT_SYS TRUE

#define DFLT_OUT_CGS FALSE

#define DFLT_LENGTH_CONV (1.0) /* default in sys units if */

#define DFLT_MASS_CONV (1.0) /* ss_core defined */

#define DFLT_TIME_CONV (1.0)

#else /* define macros and types from ss_core */

#define N_DIM 3

#define TWO_PI (2*M_PI)

#define BOOLEAN int

#define FALSE 0

#define TRUE 1

/* Fundamental constants from 1998 Astronomical Almanac, in mks */

/* One A.U. in metres [1.4959787066e11] */

#define AU 1.49597870e11

#define M_SUN 1.9891e30 /* Solar mass in kilograms */

/* One sidereal year in seconds (1998.0) */

161

#define SID_YR 3.15581497632e7

typedef double VECTOR[N_DIM];

#define X 0

#define Y 1

#define Z 2

/* Vector function prototypes */

void SET_VEC(VECTOR,double,double,double);

void ZERO_VEC(VECTOR);

void COPY_VEC(VECTOR,VECTOR);

void ADD_VEC(VECTOR,VECTOR,VECTOR);

void SUB_VEC(VECTOR,VECTOR,VECTOR);

void SCALE_VEC(VECTOR,double);

void NORM_VEC(VECTOR,double);

double DOT(VECTOR,VECTOR);

void CROSS(VECTOR,VECTOR,VECTOR);

double MAG_SQ(VECTOR);

double MAG(VECTOR);

/* Assigns a value (x,y,z) to vector v */

#define SET_VEC(v,x,y,z) {\

(v)[X] = (x);\

(v)[Y] = (y);\

(v)[Z] = (z);\

}

/* Assigns zero to vector v */

#define ZERO_VEC(v) SET_VEC((v),0,0,0)

/* Copies vector v1 to vector v2 */

#define COPY_VEC(v1,v2) {\

(v2)[X] = (v1)[X];\

(v2)[Y] = (v1)[Y];\

(v2)[Z] = (v1)[Z];\

}

/* Adds vectors v1 & v2 and puts the result in vector v */

162

#define ADD_VEC(v1,v2,v) {\

(v)[X] = (v1)[X] + (v2)[X];\

(v)[Y] = (v1)[Y] + (v2)[Y];\

(v)[Z] = (v1)[Z] + (v2)[Z];\

}

/* Subtracts vector v2 from vector v1 and puts the result in vector v */

#define SUB_VEC(v1,v2,v) {\

(v)[X] = (v1)[X] - (v2)[X];\

(v)[Y] = (v1)[Y] - (v2)[Y];\

(v)[Z] = (v1)[Z] - (v2)[Z];\

}

/* Multiplies vector v by scalar a */

#define SCALE_VEC(v,a) {\

double _scalar = (a);\

(v)[X] *= _scalar;\

(v)[Y] *= _scalar;\

(v)[Z] *= _scalar;\

}

/* Divides vector v by scalar a */

#define NORM_VEC(v,a) SCALE_VEC((v),1.0/(a))

/* Returns dot product of vectors v1 & v2 */

#define DOT(v1,v2) ((v1)[X]*(v2)[X] + (v1)[Y]*(v2)[Y] + (v1)[Z]*(v2)[Z])

/* Returns cross product of vectors v1 & v2 in vector v */

#define CROSS(v1,v2,v) {\

(v)[X] = (v1)[Y]*(v2)[Z] - (v1)[Z]*(v2)[Y];\

(v)[Y] = (v1)[Z]*(v2)[X] - (v1)[X]*(v2)[Z];\

(v)[Z] = (v1)[X]*(v2)[Y] - (v1)[Y]*(v2)[X];\

}

/* Returns square magnitude of vector v */

#define MAG_SQ(v) (DOT((v),(v)))

/* Returns magnitude of vector v */

163

#define MAG(v) (sqrt(MAG_SQ(v)))

/* Struct for storing particle data */

typedef struct {

double mass;

double radius;

double pos[N_DIM];

double vel[N_DIM];

double spin[N_DIM];

int color;

int org_idx;

} SSDATA;

enum {FileTypeTxt,FileTypeBin};

const char FileTypeStr[][FILE_TYPE_STR_MAX_LEN] = {"txt","bin"};

#define DFLT_FILE_TYPE FileTypeTxt

#define DFLT_IN_SYS FALSE

#define DFLT_IN_CGS TRUE

#define DFLT_OUT_SYS FALSE

#define DFLT_OUT_CGS TRUE

#define DFLT_LENGTH_CONV (AU*1.0e2) /* default in cgs units */

#define DFLT_MASS_CONV (M_SUN*1.0e3)

#define DFLT_TIME_CONV (SID_YR/TWO_PI)

#define SQ(x) ((x)*(x))

#define CUBE(x) ((x)*(x)*(x))

#endif /* !SS_CORE */

#define SUPPORT_OLD_FORMAT

/* defaults */

#define DFLT_HIER FALSE

#define DFLT_TIPSY_FILE FALSE

#define DFLT_IN_MKS FALSE

#define DFLT_OUT_MKS FALSE

#define DFLT_DO_PERI_CUT FALSE

#define DFLT_DO_ORBIT_CUT FALSE

#define DFLT_APPLY_HIER_CUT FALSE

#define DFLT_ECC_CUT 1.0

#define DFLT_ENG_CUT 0.0

164

#define DFLT_HILL_CUT 0.0

#define DFLT_PERI_CUT 0.0

#define DFLT_ORBIT_CUT 0.0

#define DFLT_OPEN_ANGLE 0.5

#define DFLT_HIER_EXTRACT_INDEX (-1)

#define DFLT_EXTRACT_INDEX (-1)

typedef struct {

/* args */

BOOLEAN Hier,TipsyFile,InCgsUnits,InMksUnits,InSysUnits,OutCgsUnits,

OutMksUnits,OutSysUnits;

int FileType;

long ExtIdx,HierExtIdx;

double EccCut,EngCut,HillCut,PeriCut,OrbitCut,OpenAng;

/* prompted */

double avga,starmass;

/* derived */

BOOLEAN DoPeriCut,DoOrbitCut,ApplyHierCut;

double InLengthConv,InMassConv,InTimeConv,InEnergyConv/*NOT USED*/;

double OutLengthConv,OutMassConv,OutTimeConv,OutEnergyConv;

} PARAMS;

struct compdata { /* contains particle info and a pointer to parent */

/* and children */

struct compdata *prim;

struct compdata *sat;

struct compdata *com;

SSDATA data;

long index;

};

typedef struct compdata COMPDATA;

typedef struct { /* contains the primary and satellite of a bound pair */

COMPDATA *prim;

COMPDATA *sat;

double period; /* only used for hierarchical grouping */

} BINARY;

typedef struct { /* contains summary data for each hierarchical system */

const COMPDATA *com;

double sys_mass;

double max_a;

double bind_E;

165

} HIER_OUTPUT; /* only used in write_hier_output */

struct node {

VECTOR pos;

VECTOR vel;

double size,mass;

double half_size, eff_half_size,eff_size_sq;

struct node *child[CHILD_PER_NODE];

COMPDATA *leaf[CHILD_PER_NODE];

int n_part;

};

typedef struct node NODE;

#define BIN_ENERGY (1 << 0) /* do not change these! */

#define BIN_ANGMOM (1 << 1)

#define BIN_SEMI (1 << 2 | BIN_ENERGY)

#define BIN_PERIOD (1 << 3 | BIN_SEMI)

#define BIN_ECC (1 << 4 | BIN_ANGMOM | BIN_SEMI)

#define BIN_PERIAPSE (1 << 5 | BIN_SEMI | BIN_ECC)

#define BIN_INCL (1 << 6 | BIN_ANGMOM)

/* (BIN_SEMI for Hill cut) */

#define BIN_CUT (BIN_ENERGY|BIN_SEMI|BIN_ECC|BIN_PERIAPSE)

#define BIN_ALL (BIN_ENERGY|BIN_ANGMOM|BIN_SEMI|BIN_PERIOD|BIN_ECC|

BIN_PERIAPSE|BIN_INCL)

int BIT_ON(int,int);

#define BIT_ON(flag,mask) (((flag) & (mask)) == (mask))

typedef struct {

double E; /* total energy */

double a; /* semimajor axis */

double P; /* period */

double e; /* eccentricity */

double q; /* periapse */

double i; /* inclination */

} BIN_STATS;

/* handy macros for hierarchical system search */

BOOLEAN IS_COM_MBR(const COMPDATA *);

#define IS_COM_MBR(p) ((p)->com != NULL)

166

BOOLEAN HAS_COM_MBR(const COMPDATA *);

#define HAS_COM_MBR(p) ((p)->prim != NULL || (p)->sat != NULL)

BOOLEAN IS_SAME_BINARY(const BINARY *,const BINARY *);

#define IS_SAME_BINARY(b1,b2) ((b1)->prim == (b2)->prim &&

(b1)->sat == (b2)->sat)

void calc_bin_stats(const SSDATA *p1,const SSDATA *p2,int flag,

BIN_STATS *bs)

{

VECTOR r,v;

double M_inv;

assert(p1 && p2 && bs);

assert(flag > 0);

SUB_VEC(p1->pos,p2->pos,r);

SUB_VEC(p1->vel,p2->vel,v);

M_inv = p1->mass + p2->mass; /* not needed if just BIN_INCL */

assert(M_inv > 0.0);

M_inv = 1.0/M_inv;

if (BIT_ON(flag,BIN_ENERGY)) {

double mag_r_inv,v2overM;

mag_r_inv = MAG(r);

assert(mag_r_inv > 0.0);

mag_r_inv = 1.0/mag_r_inv;

v2overM = MAG_SQ(v)*M_inv;

bs->E = p1->mass*p2->mass*(0.5*v2overM - mag_r_inv);

assert(bs->E < 0.0); /* must be bound to be a binary! */

if (BIT_ON(flag,BIN_SEMI)) {

bs->a = 1.0/(2.0*mag_r_inv - v2overM);

assert(bs->a > 0.0);

}

if (BIT_ON(flag,BIN_PERIOD)) {

bs->P = TWO_PI*sqrt(CUBE(bs->a)*M_inv);

assert(bs->P > 0.0);

}

}

if (BIT_ON(flag,BIN_ANGMOM)) {

VECTOR h;

167

double h2;

CROSS(r,v,h); /* ang mom per unit reduced mass */

h2 = MAG_SQ(h);

if (BIT_ON(flag,BIN_ECC)) {

double x = h2*M_inv/bs->a;

assert(x <= 1.0);

bs->e = sqrt(1 - x);

/* allow e=1 for now, will be cut */

assert(bs->e >= 0.0 && bs->e <= 1.0);

}

if (BIT_ON(flag,BIN_INCL)) {

double mag_h = sqrt(h2);

assert(mag_h > 0.0);

bs->i = acos(h[Z]/mag_h);

}

}

if (BIT_ON(flag,BIN_PERIAPSE)) {

bs->q = bs->a*(1 - bs->e);

assert(bs->q >= 0.0); /* allow q=0 for now, will be cut */

}

}

int sort_bin(const void *a,const void *b)

{

/* sort function for "normal" output (not hierarchical) */

const BINARY *b1,*b2;

const SSDATA *p1,*p2;

b1 = (const BINARY *) a; /* pointers to binaries */

b2 = (const BINARY *) b;

p1 = &(b1->prim->data); /* pointers to primaries */

p2 = &(b2->prim->data);

/* largest primary masses first */

if (p1->mass < p2->mass) return 1;

if (p1->mass > p2->mass) return -1;

/* smallest indices first */

if (b1->prim->index < b2->prim->index) return -1;

if (b1->prim->index > b2->prim->index) return 1;

168

/* within each system, sort by binding energy */

{

/* satellite pointers */

const SSDATA *s1 = &(b1->sat->data),*s2 = &(b2->sat->data);

BIN_STATS bs1,bs2;

calc_bin_stats(p1,s1,BIN_ENERGY,&bs1);

calc_bin_stats(p2,s2,BIN_ENERGY,&bs2);

if (bs1.E < bs2.E) return -1; /* more bound first */

if (bs1.E > bs2.E) return 1;

/* smallest indices first */

if (b1->sat->index < b2->sat->index) return -1;

if (b1->sat->index > b2->sat->index) return 1;

}

assert(0); /* shouldn’t be here (duplicates not allowed) */

return 0;

}

double hill(const PARAMS *p,double mass_i,double mass_c)

{

/* Calculate and return value of Hill sphere */

return pow((mass_i + mass_c)/(3.0*(p->starmass + mass_i + mass_c)),

(1.0/3.0))*p->avga;

}

const char *myBasename(const char *path)

{

char *p;

assert(path);

p = strrchr(path,’/’);

if (p) return p + 1;

else return path;

}

int myNewExt(const char *infile,const char *inext,

char *outfile,const char *outext)

169

{

/* adds (or replaces) extension to filename */

const char *basename;

char *c;

size_t n;

assert(infile && inext && outfile && outext);

basename = myBasename(infile);

if ((c = strrchr(basename,’.’)) && strstr(c,inext))

n = c - basename;

else

n = strlen(basename);

if (n + strlen(outext) >= (size_t) MAXPATHLEN)

return 1;

(void) strncpy(outfile,basename,n); /* not null terminated */

(void) strcpy(outfile + n,outext);

return 0;

}

void add_to_list(COMPDATA *prim,COMPDATA *sat,BINARY **list,

long *list_size,long *list_posn)

{

/* Add bound system to list */

COMPDATA *temp;

if (*list_posn >= *list_size) {

(void) printf("Growing list space\n");

if (*list_size == 0) {

assert(*list == NULL);

*list_size = BUF_SIZE_INIT;

}

else {

assert(*list != NULL);

*list_size *= BUF_SIZE_MULT;

}

*list = (BINARY *) realloc((void *) (*list),

(*list_size)*sizeof(BINARY));

assert(*list != NULL);

(void) printf("New list size = %li\n",*list_size);

}

if ((HAS_COM_MBR(prim) || HAS_COM_MBR(sat)) &&

prim->data.mass < sat->data.mass) {

temp = prim;

170

prim = sat;

sat = temp;

} /*DEBUG*/

/* make sure that normal particle */

else if (!HAS_COM_MBR(prim) && !HAS_COM_MBR(sat)) {

/* binaries have prim > sat mass */

assert(prim->data.mass >= sat->data.mass);

}

(*list)[*list_posn].prim = prim;

(*list)[*list_posn].sat = sat;

++(*list_posn);

}

void find_companion(const PARAMS *p,const NODE *node,COMPDATA *part,

BINARY **list,long *list_size,long *list_posn)

{

/* Identifies particles with speeds less than the escape speed */

const SSDATA *pd,*ld;

VECTOR r,v;

double r2,v2;

int i;

pd = &part->data;

for (i=0;i<CHILD_PER_NODE;i++)

if (node->child[i] != NULL) {

SUB_VEC(node->child[i]->pos,pd->pos,r);

r2 = MAG_SQ(r);

assert(r2 > 0.0);

if (node->child[i]->eff_size_sq/r2 > p->OpenAng)

find_companion(p,node->child[i],part,list,list_size,

list_posn);

else {

SUB_VEC(node->child[i]->vel,pd->vel,v); /*v=rel vel*/

v2 = MAG_SQ(v);

/* do it this way to avoid sqrt()s... */

if (v2*v2 < 4.0*SQ(pd->mass + node->child[i]->mass)/r2)

find_companion(p,node->child[i],part,list,

list_size,list_posn);

}

}

else if (node->leaf[i] != NULL && node->leaf[i] != part &&

!IS_COM_MBR(node->leaf[i])) {

171

/* (note: member check in previous line only necessary */

/* for hierarchical search) */

ld = &node->leaf[i]->data;

if (!HAS_COM_MBR(part) && (ld->mass > pd->mass ||

(ld->mass == pd->mass && node->leaf[i]->index <

part->index))) {

continue; /* to prevent double counting, but only */

/* for non-hierarchical searching case */

}

SUB_VEC(pd->pos,ld->pos,r);

SUB_VEC(pd->vel,ld->vel,v);

r2 = MAG_SQ(r);

assert(r2 > 0.0);

v2 = MAG_SQ(v);

if (v2*v2 < 4.0*SQ(pd->mass + ld->mass)/r2)

add_to_list(part,node->leaf[i],list,list_size,

list_posn);

}

}

void get_com_vel(NODE *node)

{

/*gets vel moments, com vel of node, and total mass in node*/

VECTOR v;

double m;

int i;

node->mass = 0.0;

ZERO_VEC(node->vel);

node->n_part = 0;

for (i=0;i<CHILD_PER_NODE;i++){

if (node->child[i]) {

get_com_vel(node->child[i]);

m = node->child[i]->mass;

node->mass += m;

COPY_VEC(node->child[i]->vel,v);

SCALE_VEC(v,m);

ADD_VEC(node->vel,v,node->vel);

node->n_part += node->child[i]->n_part;

}

else if (node->leaf[i]) {

m = node->leaf[i]->data.mass;

node->mass += m;

172

COPY_VEC(node->leaf[i]->data.vel,v);

SCALE_VEC(v,m);

ADD_VEC(node->vel,v,node->vel);

++node->n_part;

}

}

assert(node->mass > 0.0);

NORM_VEC(node->vel,node->mass);

assert(node->n_part > 0);

}

void make_node(const VECTOR pos,double size,NODE **node)

{

/* creates new nodes for the tree */

int i;

assert(size > 0.0);

*node = (NODE *) malloc(sizeof(NODE)); /*make space for a node*/

assert(*node != NULL);

COPY_VEC(pos,(*node)->pos);

ZERO_VEC((*node)->vel);

(*node)->mass = 0.0;

(*node)->size = size;

(*node)->half_size = (*node)->eff_half_size = 0.5*size;

assert((*node)->size > 0.0); /* check for underflow */

(*node)->eff_size_sq = SQ(size);

assert((*node)->eff_size_sq > 0.0); /* ditto */

for (i=0;i<CHILD_PER_NODE;i++) {

/* set children and leaf pointers to null*/

(*node)->child[i] = NULL;

(*node)->leaf[i] = NULL;

}

}

void add_to_tree(NODE *node,COMPDATA *p)

{

/* adds particles to tree */

int i,idx,idy,idz;

/* locates the particle in one */

173

idx = (p->data.pos[X] < node->pos[X] ? -1 : 1);

/* of eight quadrants */

idy = (p->data.pos[Y] < node->pos[Y] ? -1 : 1);

idz = (p->data.pos[Z] < node->pos[Z] ? -1 : 1);

/* sets i=0-7 depending on quadrant*/

i = (idx + 1)/2 + (idy + 1 + 2*(idz + 1));

if (node->child[i]) /*if node contains children open the node*/

add_to_tree(node->child[i],p);

/* if node already contains a particle*/

else if (node->leaf[i]) {

VECTOR v; /*create children */

SET_VEC(v,idx,idy,idz);

SCALE_VEC(v,0.5*node->half_size);

ADD_VEC(v,node->pos,v);

make_node(v,node->half_size,&(node->child[i]));

add_to_tree(node->child[i],node->leaf[i]);

add_to_tree(node->child[i],p);

node->leaf[i] = NULL;

}

else {

/* if particle is in an empty node make it a leaf */

node->leaf[i] = p;

if (p->data.radius > node->eff_half_size) {

/*if particle is large make cell*/

/* large - scales with mass*/

node->eff_half_size = p->data.radius;

node->eff_size_sq = 4.0*SQ(p->data.radius);

}

}

}

void kill_node(NODE *node)

{

/* nodes are no longer needed: release memory used for nodes */

int i;

assert(node != NULL);

for (i=0;i<CHILD_PER_NODE;i++)

if (node->child[i])

kill_node(node->child[i]);

174

free((void *) node);

}

int read_data(const PARAMS *p,const char *file_in,COMPDATA **part,

long *n,double *m_tot,VECTOR root_center,

double *root_size)

{

/* read data from ss file */

SSDATA *d;

FILE *fp; /* for txt & bin file types only */

double xmin,ymin,zmin,xmax,ymax,zmax;

long i;

#ifdef SS_CORE

SSIO ssio; /* for ss file type only */

SSHEAD h;

#endif

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

if ((fp = fopen(file_in,"r")) == NULL) {

(void) fprintf(stderr,"Problem opening file %s\n",file_in);

return 1;

}

*n = BUF_NPART_INIT;

break;

#ifdef SS_CORE

case FileTypeSS:

if (ssioOpen(file_in,&ssio,SSIO_READ)) {

(void) fprintf(stderr,"Unable to open %s for reading\n",

file_in);

return 1;

}

if (ssioHead(&ssio,&h)){

(void) fprintf(stderr,"Corrupt header\n");

(void) ssioClose(&ssio);

return 1;

}

if (h.n_data <= 0) {

(void) fprintf(stderr,"Invalid file size\n");

(void) ssioClose(&ssio);

return 1;

175

}

*n = h.n_data;

break;

#endif

default:

(void) fprintf(stderr,"file type %i is invalid\n",p->FileType);

return 1;

}

/* allocate space for part */

*part = (COMPDATA *) malloc((*n)*sizeof(COMPDATA));

assert(*part != NULL); /*make sure space allocation worked*/

*m_tot = 0.0;

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

i=0;

while (feof(fp) == 0) {

if (i>=(*n)) {

(void) printf("Growing particle space\n");

*n *= BUF_SIZE_MULT;

*part = (COMPDATA *) realloc((void *) (*part),

(*n)*sizeof(COMPDATA));

assert(*part != NULL);

(void) printf("New data space = %li\n",*n);

}

d = &((*part)[i].data);

switch (p->FileType) {

case FileTypeTxt:

if (fscanf(fp,"%lf%lf%lf%lf%lf%lf%lf%lf\n",

&d->mass,&d->radius,

&d->pos[X],&d->pos[Y],&d->pos[Z],

&d->vel[X],&d->vel[Y],&d->vel[Z]) != 8)

goto error;

break;

case FileTypeBin:

if (fread(&d->mass,sizeof(double),1,fp) != 1)

goto error;

if (fread(&d->radius,sizeof(double),1,fp) != 1)

goto error;

if (fread(d->pos,sizeof(double),3,fp) != 3) goto error;

if (fread(d->vel,sizeof(double),3,fp) != 3) goto error;

176

break;

default:

assert(0); /* should never get here */

}

d->mass = d->mass/p->InMassConv;

d->radius = d->radius/p->InLengthConv;

NORM_VEC(d->pos,p->InLengthConv);

NORM_VEC(d->vel,p->InLengthConv);

d->org_idx = i;

*m_tot += d->mass;

++i;

}

*n=i;

/* release unused buffer space */

*part = (COMPDATA *) realloc((void *) (*part),

(*n)*sizeof(COMPDATA));

assert(*part != NULL);

(void) printf("Number of particles = %li\n",*n);

break;

#ifdef SS_CORE

case FileTypeSS:

for (i=0;i<*n;i++) {

d = &((*part)[i].data);

if (ssioData(&ssio,d) != 0) {

(void) fprintf(stderr,"Corrupt data\n");

(void) ssioClose(&ssio);

return 1;

}

#ifdef SUPPORT_OLD_FORMAT

if (d->org_idx == -1) /* assign index for each particle */

d->org_idx = i;

#endif

*m_tot += d->mass;

}

break;

#endif /* SS_CORE */

default:

assert(0); /* invalid file type */

}

/* pad storage -- see comment at top of file */

*part = (COMPDATA *) realloc((void *) (*part),

(*n)*EXTRA_STORE*sizeof(COMPDATA));

177

xmin = ymin = zmin = DBL_MAX;

xmax = ymax = zmax = - DBL_MAX;

for (i=0;i<*n;i++) {

(*part)[i].prim = (*part)[i].sat = NULL;

(*part)[i].com = NULL;

(*part)[i].index = i;

d = &((*part)[i].data);

/* find max extent of particles */

if (d->pos[X] < xmin) xmin = d->pos[X];

/* for size of root cell */

if (d->pos[Y] < ymin) ymin = d->pos[Y];

if (d->pos[Z] < zmin) zmin = d->pos[Z];

if (d->pos[X] > xmax) xmax = d->pos[X];

if (d->pos[Y] > ymax) ymax = d->pos[Y];

if (d->pos[Z] > zmax) zmax = d->pos[Z];

}

*root_size = xmax - xmin;

if (ymax - ymin > *root_size) *root_size = ymax - ymin;

if (zmax - zmin > *root_size) *root_size = zmax - zmin;

SET_VEC(root_center,(xmin + xmax)/2,(ymin + ymax)/2,

(zmin + zmax)/2);

(void) printf("root center = (%g,%g,%g), size = %g\n",

root_center[X],root_center[Y],root_center[Z],

*root_size);

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

fclose(fp);

break;

#ifdef SS_CORE

case FileTypeSS:

(void) ssioClose(&ssio);

break;

#endif

default:

assert(0);

}

(void) printf("%li particle%s read\n",*n,*n==1 ? "" : "s");

return 0;

178

error:

(void) fprintf(stderr,"Error during read.\n");

(void) fclose(fp);

return 1;

}

void make_com_part(BINARY *tightest,long *n_part,long *part_buf_size,

COMPDATA **part)

{

/*

** Creates com particle, adds it to the particle list, modifies

** primary and satellite structures so they will no longer be

** used in the search tree.

*/

const SSDATA *ptr_prim,*ptr_sat;

SSDATA *ptr_com;

COMPDATA *comp_prim,*comp_sat,*comp_com;

BIN_STATS bs;

VECTOR v1,v2;

/* check if buffer needs to grow */

if (*n_part == *part_buf_size) {

(void) printf("Growing particle list space\n");

/* for now, particle list not allowed to grow -- see comment */

/* at top */

assert(0); /* particle realloc() forbidden */

*part_buf_size *= BUF_SIZE_MULT;

*part = (COMPDATA *) realloc((void *) (*part),

(*part_buf_size)*sizeof(COMPDATA));

assert(*part != NULL);

(void) printf("New part list size = %li\n",*part_buf_size);

}

/* abbreviation for COMPDATA */

comp_prim = tightest->prim;

comp_sat = tightest->sat;

comp_com = &((*part)[*n_part]); /* new com particle */

/* abbreviation for SSDATA */

ptr_prim = &comp_prim->data;

179

ptr_sat = &comp_sat->data;

ptr_com = &comp_com->data;

/* store pointers */

comp_com->com = NULL;

comp_com->prim = comp_prim;

comp_com->sat = comp_sat;

comp_com->index = *n_part;

comp_prim->com = comp_com;

comp_sat->com = comp_com;

++(*n_part); /* particle list grows by one for com particle */

ptr_com->mass = ptr_prim->mass + ptr_sat->mass;

calc_bin_stats(ptr_prim,ptr_sat,BIN_SEMI,&bs);

/* com "radius" is semimajor axis of binary */

ptr_com->radius = bs.a;

/* com position */

COPY_VEC(ptr_prim->pos,v1);

SCALE_VEC(v1,ptr_prim->mass);

COPY_VEC(ptr_sat->pos,v2);

SCALE_VEC(v2,ptr_sat->mass);

ADD_VEC(v1,v2,ptr_com->pos);

NORM_VEC(ptr_com->pos,ptr_com->mass);

/* com velocity */

COPY_VEC(ptr_prim->vel,v1);

SCALE_VEC(v1,ptr_prim->mass);

COPY_VEC(ptr_sat->vel,v2);

SCALE_VEC(v2,ptr_sat->mass);

ADD_VEC(v1,v2,ptr_com->vel);

NORM_VEC(ptr_com->vel,ptr_com->mass);

/* com spin zeroed (could store orbital ang vel instead) */

ZERO_VEC(ptr_com->spin);

/* cycle colors */

180

ptr_com->color = 2 + (ptr_prim->color + ptr_sat->color - 2)%14;

/* assign index of primary */

ptr_com->org_idx = ptr_prim->org_idx;

}

BOOLEAN ok_to_cut(const PARAMS *p,const COMPDATA *prim,

const COMPDATA *sat,const BIN_STATS *bs)

{

/* returns 1 if any list cut criteria met, 0 otherwise */

if ((p->DoPeriCut && !HAS_COM_MBR(prim) &&

bs->q < (p->PeriCut < 0.0 ? - p->PeriCut*prim->data.radius :

p->PeriCut == 0.0 ? prim->data.radius +

sat->data.radius : p->PeriCut)) ||

(p->DoOrbitCut && HAS_COM_MBR(prim) &&

bs->q < (p->OrbitCut < 0.0 ? - p->OrbitCut*prim->data.radius :

p->OrbitCut == 0.0 ? prim->data.radius +

(HAS_COM_MBR(sat) ? sat->data.radius : 0.0) :

p->OrbitCut*prim->data.radius)) ||

bs->e >= p->EccCut || bs->E >= p->EngCut ||

(p->HillCut > 0.0 && bs->a >= p->HillCut*

hill(p,prim->data.mass,sat->data.mass)))

return 1;

else

return 0;

}

void cut_list(const PARAMS *p,BINARY *list,long *list_length)

{

/* cuts out all systems with q<, e>, a>, eng> params recursively */

SSDATA *pd,*sd;

BIN_STATS bs;

long i,n;

BOOLEAN *flag;

flag = (BOOLEAN *) malloc((*list_length)*sizeof(BOOLEAN));

/* removes binaries from list */

for (i=0;i<(*list_length);i++) {

pd = &list[i].prim->data;

sd = &list[i].sat->data;

181

calc_bin_stats(pd,sd,BIN_CUT,&bs);

flag[i] = ok_to_cut(p,list[i].prim,list[i].sat,&bs);

}

/* shrinks list and counts up total number of surviving binaries */

n = 0;

for (i=0;i<(*list_length);i++)

if (flag[i] == 0) {

if (n < i) list[n] = list[i];

n++;

}

(*list_length) = n;

free((void *) flag);

}

int extract(const PARAMS *p,const char *filename,const BINARY *list,

long nbin)

{

/* extracts system with index = primary index and creates new */

/* data file */

SSDATA *part;

FILE *fp; /* for txt & bin file types only */

#ifdef SS_CORE

SSHEAD head; /* for ss file type only */

SSIO ssio_out;

#endif

long n,i;

int primary_done;

(void) printf("Extracting system...\n");

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

if ((fp = fopen(filename,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",filename);

return 1;

}

break;

#ifdef SS_CORE

case FileTypeSS:

182

if (ssioOpen(filename,&ssio_out,SSIO_WRITE)) {

(void) fprintf(stderr,"Unable to open %s for writing\n",

filename);

return 1;

}

break;

#endif

default:

(void) fprintf(stderr,"file type %i is invalid\n",p->FileType);

return 1;

}

for (n=i=0;i<nbin;i++)

if (list[i].prim->index == p->ExtIdx)

++n;

if (n == 0) {

(void) fprintf(stderr,"Index number %li not found\n",

p->ExtIdx);

return 1;

}

#ifdef SS_CORE

if (p->FileType == FileTypeSS) {

head.time = 0.0;

head.n_data = n + 1; /* one primary plus n satellites */

head.pad = -1;

if (ssioHead(&ssio_out,&head)) {

(void) fprintf(stderr,"Unable to write header.\n");

return 1;

}

}

#endif

primary_done = 0;

for (i=0;i<nbin;i++)

if (list[i].prim->index == p->ExtIdx) {

if (!primary_done) {

part = &list[i].prim->data;

primary_done = 1;

--i; /* go back and do satellite */

}

else

183

part = &list[i].sat->data;

switch (p->FileType) {

case FileTypeTxt:

if (fprintf(fp,"%e %e %e %e %e %e %e %e\n",

part->mass,part->radius,

part->pos[0],part->pos[1],part->pos[2],

part->vel[0],part->vel[1],part->vel[2])

< 1)

goto error;

break;

case FileTypeBin:

if (fwrite(&part->mass,sizeof(double),1,fp) != 1)

goto error;

if (fwrite(&part->radius,sizeof(double),1,fp) != 1)

goto error;

if (fwrite(part->pos,sizeof(double),3,fp) != 3)

goto error;

if (fwrite(part->vel,sizeof(double),3,fp) != 3)

goto error;

break;

#ifdef SS_CORE

case FileTypeSS:

if (ssioData(&ssio_out,part) != 0) {

(void) fprintf(stderr,"Error writing particle %li.\n",

list[i].prim->index);

return 1;

}

break;

#endif

default:

(void) fprintf(stderr,"file type %i is invalid\n",

p->FileType);

return 1;

}

}

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

fclose(fp);

break;

#ifdef SS_CORE

case FileTypeSS:

(void) ssioClose(&ssio_out);

184

break;

#endif

default:

assert(0);

}

return 0;

error:

(void) fprintf(stderr,"Error during write.\n");

(void) fclose(fp);

return 1;

}

#ifdef SS_CORE

int find_real_part(const PARAMS *p,FILE *fp,SSIO *ssio_out,

COMPDATA *part,long *n)

#else

int find_real_part(const PARAMS *p,FILE *fp,COMPDATA *part,long *n)

#endif

{

if (part->prim == NULL) { /*reached bottom of tree*/

++*n;

switch (p->FileType) {

case FileTypeTxt:

if (fprintf(fp,"%e %e %e %e %e %e %e %e\n",

part->data.mass,part->data.radius,

part->data.pos[0],part->data.pos[1],

part->data.pos[2],part->data.vel[0],

part->data.vel[1],part->data.vel[2]) < 1)

goto error;

break;

case FileTypeBin:

if (fwrite(&part->data.mass,sizeof(double),1,fp) != 1)

goto error;

if (fwrite(&part->data.radius,sizeof(double),1,fp) != 1)

goto error;

if (fwrite(part->data.pos,sizeof(double),3,fp) != 3)

goto error;

if (fwrite(part->data.vel,sizeof(double),3,fp) != 3)

goto error;

break;

#ifdef SS_CORE

185

case FileTypeSS:

if (ssioData(ssio_out,&part->data) != 0) {

(void) fprintf(stderr,"Error writing particle %li.\n",part->index);

return 1;

}

break;

#endif

default:

(void) fprintf(stderr,"file type %i is invalid\n",

p->FileType);

return 1;

}

return 0;

}

if (p->ApplyHierCut) {

BIN_STATS bs;

const SSDATA *pd,*sd;

pd = &part->prim->data;

sd = &part->sat->data;

calc_bin_stats(pd,sd,BIN_CUT|BIN_INCL|BIN_PERIOD,&bs);

if (ok_to_cut(p,part->prim,part->sat,&bs))

return 0;

}

#ifdef SS_CORE

if (find_real_part(p,fp,ssio_out,part->prim,n) != 0) return 1;

if (find_real_part(p,fp,ssio_out,part->sat,n) != 0) return 1;

#else

if (find_real_part(p,fp,part->prim,n) != 0) return 1;

if (find_real_part(p,fp,part->sat,n) != 0) return 1;

#endif

return 0;

error:

(void) fprintf(stderr,"Error during write.\n");

(void) fclose(fp);

return 1;

}

int hier_extract(const PARAMS *p,const char *filename,COMPDATA *part)

{

186

/* extracts hierarchy system with top com particle index */

/* specified by user */

long n;

FILE *fp; /* for txt & bin file types only */

#ifdef SS_CORE

SSHEAD head; /* for ss file type only */

SSIO ssio_out;

#endif

/* check that particle past is top com part */

if (!HAS_COM_MBR(part) || IS_COM_MBR(part)) {

(void) fprintf(stderr,"Particle %ld is not a top center of mass

particle\n", part->index);

return 1;

}

(void) printf("Extracting hierarchy system...\n");

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

if ((fp = fopen(filename,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",filename);

return 1;

}

break;

#ifdef SS_CORE

case FileTypeSS:

if (ssioOpen(filename,&ssio_out,SSIO_WRITE)) {

(void) fprintf(stderr,"Unable to open %s for writing\n",

filename);

return 1;

}

break;

#endif

default:

(void) fprintf(stderr,"file type %i is invalid\n",p->FileType);

return 1;

}

#ifdef SS_CORE /* write a dummy header */

if (p->FileType == FileTypeSS) {

head.time = 0.0;

head.n_data = 1; /* one primary plus n satellites */

187

head.pad = -1;

if (ssioHead(&ssio_out,&head)) {

(void) fprintf(stderr,"Unable to write dummy header.\n");

return 1;

}

}

#endif

n = 0; /* number of real particles */

#ifndef SS_CORE

find_real_part(p,fp,part,&n);

#else

find_real_part(p,fp,&ssio_out,part,&n);

if (p->FileType == FileTypeSS) {

ssioRewind(&ssio_out);

head.time = 0.0;

head.n_data = n;

head.pad = -1;

if (ssioHead(&ssio_out,&head)) {

(void) fprintf(stderr,"Unable to write true header.\n");

return 1;

}

}

#endif

(void) printf("Found %ld real particles in extracted system\n",n);

switch (p->FileType) {

case FileTypeTxt:

case FileTypeBin:

fclose(fp);

break;

#ifdef SS_CORE

case FileTypeSS:

(void) ssioClose(&ssio_out);

break;

#endif

default:

assert(0);

}

return 0;

}

188

int write_tipsy(const char *filename,long npart,const BINARY *list,

long nbin)

{

/* creates a tipsy vector file of binary energy to use with tipsy */

/* software, NOTE: this function assumes list has been sorted */

/* properly! */

BIN_STATS bs;

FILE *fp;

long i,j;

if ((fp = fopen(filename,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",filename);

return 1;

}

(void) printf("Creating tipsy file\n");

if (fprintf(fp,"%li\n",npart) < 1) goto error;

for (i=0;i<npart;i++) {

bs.E = 0.0;

for (j=0;j<nbin;j++)

/* should be most bound if list sorted */

if (list[j].prim->index == i) {

calc_bin_stats(&list[j].prim->data,&list[j].sat->data,

BIN_ENERGY,&bs);

break;

}

if (fprintf(fp,"%e\n",bs.E) < 1) goto error;

}

(void) fclose(fp);

return 0;

error:

(void) fprintf(stderr,"Error during write.\n");

(void) fclose(fp);

return 1;

}

void usage(const char *progname)

{

/* explains usage of companion and flag options */

189

(void) printf("Usage: %s [-H [-z cutoff] [-g index[-a]]|-t]

[-c|-m|-s] [-C|-M|-S] [-f filetype]

[-e cutoff] [-E cutoff]\n",

progname);

(void) printf(" [-h cutoff] [-q cutoff] [-o angle]

[-x index] file [file ...]\n");

(void) printf("\n");

(void) printf("Options: -H = search for hierarchies\n");

(void) printf(" -z = close approach cutoff for center of

mass particles (0 to eliminate orbit crossers,\n");

(void) printf(" < 0 for semimajor axis\n");

(void) printf(" -g = extract hierarchy system\n");

(void) printf(" -a = apply cuts to extraction of hierachy

system\n");

(void) printf(" -t = create Tipsy vector file of binding

energy\n");

(void) printf(" -c | -m | -s = input in cgs, mks or system

units (default \"%s\")\n",

#ifdef SS_CORE

"system");

#else

"cgs");

#endif

(void) printf(" -C | -M | -S = output in cgs, mks or system

units (default \"%s\")\n",

#ifdef SS_CORE

"system");

(void) printf(" -f = file type: plain text (\"%s\"), binary

(\"%s\"), or \"%s\" (default\"%s\")\n",

FileTypeStr[FileTypeTxt],FileTypeStr[FileTypeBin],

FileTypeStr[FileTypeSS],FileTypeStr[DFLT_FILE_TYPE]);

#else

"cgs");

(void) printf(" -f = file type: plain text (\"%s\") or binary

(\"%s\") (default \"%s\")\n",

FileTypeStr[FileTypeTxt],FileTypeStr[FileTypeBin],

FileTypeStr[DFLT_FILE_TYPE]);

#endif

(void) printf(" -e = eccentricity cutoff\n");

(void) printf(" -E = binding energy cutoff\n");

(void) printf(" -h = Hill sphere cutoff, in Hill radii

(prompts for semimajor axis and star mass)\n");

(void) printf(" -q = close approach cutoff for normal

190

particles (0 to eliminate colliders, < 0 for\n");

(void) printf(" primary radii)\n");

(void) printf(" -o = opening angle (default %g rad)\n",

DFLT_OPEN_ANGLE);

(void) printf(" -x = extracts system of given primary

index\n");

(void) printf("\n");

(void) printf("NOTE: cutoff limits taken to be in output units

where applicable.\n");

exit(1);

}

void set_defaults(PARAMS *params)

{

/* parameters defaults */

params->Hier = DFLT_HIER;

params->TipsyFile = DFLT_TIPSY_FILE;

params->InCgsUnits = DFLT_IN_CGS;

params->InMksUnits = DFLT_IN_MKS;

params->InSysUnits = DFLT_IN_SYS;

params->OutCgsUnits = DFLT_OUT_CGS;

params->OutMksUnits = DFLT_OUT_MKS;

params->OutSysUnits = DFLT_OUT_SYS;

params->FileType = DFLT_FILE_TYPE;

params->EccCut = DFLT_ECC_CUT;

params->EngCut = DFLT_ENG_CUT;

params->HillCut = DFLT_HILL_CUT;

params->PeriCut = DFLT_PERI_CUT;

params->OrbitCut = DFLT_ORBIT_CUT;

params->OpenAng = DFLT_OPEN_ANGLE;

params->HierExtIdx = DFLT_HIER_EXTRACT_INDEX;

params->ExtIdx = DFLT_EXTRACT_INDEX;

/* derived parameters that need to be preset */

params->DoPeriCut = DFLT_DO_PERI_CUT;

params->DoOrbitCut = DFLT_DO_ORBIT_CUT;

/* default units -- conversions between sys units and default units */

params->InLengthConv = params->OutLengthConv = DFLT_LENGTH_CONV;

params->InMassConv = params->OutMassConv = DFLT_MASS_CONV;

191

params->InTimeConv = params->OutTimeConv = DFLT_TIME_CONV;

}

void parse_in(int argc,char *argv[],PARAMS *p)

{

/* in case unistd.h unavailable */

extern int getopt(int,char *const *,const char *);

extern int optind;

extern char *optarg;

char file_ext[FILE_TYPE_STR_MAX_LEN];

int c;

(void) strncpy(file_ext,FileTypeStr[DFLT_FILE_TYPE],

FILE_TYPE_STR_MAX_LEN);

while ((c = getopt(argc,argv,"HatcmsCMSz:g:f:e:E:h:q:o:x:")) !=

EOF)

switch (c) {

case ’H’:

p->Hier = TRUE;

break;

case ’a’:

p->ApplyHierCut = TRUE;

break;

case ’t’:

p->TipsyFile = TRUE;

break;

case ’c’:

p->InCgsUnits = TRUE;

#ifdef SS_CORE

if (p->InSysUnits)

p->InSysUnits = FALSE;

#endif

break;

case ’m’:

p->InMksUnits = TRUE;

#ifndef SS_CORE

if (p->InCgsUnits)

p->InCgsUnits = FALSE;

#else

if (p->InSysUnits)

p->InSysUnits = FALSE;

#endif

192

break;

case ’s’:

p->InSysUnits = TRUE;

#ifndef SS_CORE

if (p->InCgsUnits)

p->InCgsUnits = FALSE;

#endif

break;

case ’C’:

p->OutCgsUnits = TRUE;

#ifdef SS_CORE

if (p->OutSysUnits)

p->OutSysUnits = FALSE;

#endif

break;

case ’M’:

p->OutMksUnits = TRUE;

#ifndef SS_CORE

if (p->OutCgsUnits)

p->OutCgsUnits = FALSE;

#else

if (p->OutSysUnits)

p->OutSysUnits = FALSE;

#endif

break;

case ’S’:

p->OutSysUnits = TRUE;

#ifndef SS_CORE

if (p->OutCgsUnits)

p->OutCgsUnits = FALSE;

#endif

break;

case ’z’:

p->OrbitCut = atof(optarg);

p->DoOrbitCut = TRUE;

break;

case ’g’:

p->HierExtIdx = atoi(optarg);

break;

case ’f’:

strcpy(file_ext,optarg);

break;

case ’e’:

p->EccCut = atof(optarg);

193

break;

case ’E’:

p->EngCut = atof(optarg);

break;

case ’h’:

p->HillCut = atof(optarg);

break;

case ’q’:

p->PeriCut = atof(optarg);

p->DoPeriCut = TRUE;

break;

case ’o’:

p->OpenAng = atof(optarg);

break;

case ’x’:

p->ExtIdx = atoi(optarg);

break;

case ’?’:

default:

usage(argv[0]);

}

if (optind >= argc)

usage(argv[0]);

if (strcmp(file_ext,FileTypeStr[FileTypeTxt]) == 0)

p->FileType = FileTypeTxt;

else if (strcmp(file_ext,FileTypeStr[FileTypeBin]) == 0)

p->FileType = FileTypeBin;

#ifdef SS_CORE

else if (strcmp(file_ext,FileTypeStr[FileTypeSS]) == 0)

p->FileType = FileTypeSS;

#endif

else

usage(argv[0]);

/* sanity checks */

if (p->Hier && p->TipsyFile)

usage(argv[0]);

if ((p->InCgsUnits == TRUE && p->InMksUnits == TRUE) ||

(p->InCgsUnits == TRUE && p->InSysUnits == TRUE) ||

(p->InMksUnits == TRUE && p->InSysUnits == TRUE) ||

194

(p->OutCgsUnits == TRUE && p->OutMksUnits == TRUE) ||

(p->OutCgsUnits == TRUE && p->OutSysUnits == TRUE) ||

(p->OutMksUnits == TRUE && p->OutSysUnits == TRUE))

usage(argv[0]);

if (p->EccCut < 0.0 || p->EccCut > 1.0) {

(void) fprintf(stderr,"Eccentricity cut must be between 0

and 1.\n");

exit(1);

}

if (p->HillCut < 0.0) {

(void) fprintf(stderr,"Hill sphere cut must be positive.\n");

exit(1);

}

if (p->EngCut > 0.0) {

(void) fprintf(stderr,"Energy cut must be negative.\n");

exit(1);

}

if (p->DoOrbitCut == TRUE && p->Hier == FALSE) {

(void) fprintf(stderr,"Close approach cut for center of mass

particles must be used with

hierarchy\n");

exit(1);

}

if (p->OpenAng < 0.0) {

(void) fprintf(stderr,"Opening angle must be positive or

zero.\n");

exit(1);

}

if (p->HierExtIdx >= 0 && p->Hier == FALSE) {

(void) fprintf(stderr,"Hierarchy extraction must be used with

hierarchy option\n");

exit(1);

}

if (p->ApplyHierCut == TRUE && p->HierExtIdx >= 0) {

(void) fprintf(stderr,"ApplyHierCut option must be used with

hierarchy extraction\n");

exit(1);

195

}

if (p->HierExtIdx < -1) { /* -1 is default, i.e., no extraction */

(void) fprintf(stderr,"Hierarchy extraction index must be

non-negative.\n");

exit(1);

}

if (p->ExtIdx < -1) { /* -1 is default, i.e., no extraction */

(void) fprintf(stderr,"Extraction index must be non-

negative.\n");

exit(1);

}

/* Default I/O in cgs units (sys if SS_CORE defined); data stored */

/* internally in system units */

if (p->InCgsUnits == TRUE) {

p->InLengthConv = AU*1.0e2;

p->InMassConv = M_SUN*1.0e3;

p->InTimeConv = SID_YR/TWO_PI;

(void) printf("Input in cgs units.\n");

} else if (p->InMksUnits == TRUE) {

p->InLengthConv = AU;

p->InMassConv = M_SUN;

p->InTimeConv = SID_YR/TWO_PI;

(void) printf("Input in mks units.\n");

} else if (p->InSysUnits == TRUE){

p->InLengthConv = 1.0;

p->InMassConv = 1.0;

p->InTimeConv = 1.0;

(void) printf("Input in system units.\n");

}

/* NOT USED */

p->InEnergyConv = p->InMassConv*SQ(p->InLengthConv/p->InTimeConv);

if (p->OutCgsUnits == TRUE) {

p->OutLengthConv = AU*1.0e2;

p->OutMassConv = M_SUN*1.0e3;

p->OutTimeConv = SID_YR/TWO_PI;

(void) printf("Output in cgs units.\n");

} else if (p->OutMksUnits == TRUE) {

p->OutLengthConv = AU;

p->OutMassConv = M_SUN;

196

p->OutTimeConv = SID_YR/TWO_PI;

(void) printf("Output in mks units.\n");

} else if (p->OutSysUnits == TRUE) {

p->OutLengthConv = 1.0;

p->OutMassConv = 1.0;

p->OutTimeConv = 1.0;

(void) printf("Output in sys units.\n");

}

p->OutEnergyConv = p->OutMassConv*SQ(p->OutLengthConv/

p->OutTimeConv);

p->OpenAng = SQ(p->OpenAng); /* store square of opening angle */

/* convert cuts to system units as needed */

p->EngCut /= p->OutEnergyConv;

if (p->HillCut > 0.0){

(void) printf("What is the average semimajor axis (in AU)?\n");

(void) scanf("%lf",&(p->avga));

if (p->avga <= 0.0) {

(void) fprintf(stderr,"Semimajor axis must be

positive.\n");

exit(1);

}

(void) printf("What is the mass of the star (in M_Sun)?\n");

(void) scanf("%lf",&(p->starmass));

if (p->starmass <= 0.0) {

(void) fprintf(stderr,"Star mass must be positive.\n");

exit(1);

}

}

if (p->PeriCut > 0.0)

p->PeriCut /= p->OutLengthConv;

if (p->OrbitCut > 0.0)

p->OrbitCut /= p->OutLengthConv;

}

int write_output(const PARAMS *p,const char *filename_in,

const BINARY *list,long nbin,double m_tot)

{

197

BIN_STATS bs;

const SSDATA *pd,*sd;

FILE *fp_pr,*fp_ana;

char pr_outfile[MAXPATHLEN],ana_outfile[MAXPATHLEN];

long nsys,i,last_index;

if (myNewExt(filename_in,FileTypeStr[p->FileType],pr_outfile,

PR_EXT)) {

(void) fprintf(stderr,"Unable to generate output filename for

%s.\n",filename_in);

return 1;

}

if (myNewExt(filename_in,FileTypeStr[p->FileType],ana_outfile,

ANA_EXT)) {

(void) fprintf(stderr,"Unable to generate output filename for

%s.\n",filename_in);

return 1;

}

if ((fp_pr = fopen(pr_outfile,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",pr_outfile);

return 1;

}

if ((fp_ana = fopen(ana_outfile,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",ana_outfile);

return 1;

}

(void) fprintf(fp_pr," M_p/M_t p_ind p_rad M_s/M_p

s_ind s_rad bind_eng a e i

per\n");

(void) fprintf(fp_pr,"-------- --------- -------- --------

--------- -------- --------- -------- ----

---- --------\n");

last_index = -1;

for (nsys=i=0;i<nbin;i++) {

pd = &list[i].prim->data;

sd = &list[i].sat->data;

calc_bin_stats(pd,sd,BIN_ENERGY|BIN_SEMI|BIN_ECC|BIN_INCL|

BIN_PERIOD,&bs);

/* "pretty" output */

if (list[i].prim->index != last_index) {

198

if (fprintf(fp_pr,"%8.2e %9li %8.2e ",pd->mass/m_tot,

list[i].prim->index,

pd->radius*p->OutLengthConv) < 1)

goto error;

last_index = list[i].prim->index;

++nsys;

}

else

(void) fprintf(fp_pr,"%28s",""); /* pad 28 spaces */

if (fprintf(fp_pr,"%8.2e %9li %8.2e %9.2e %8.2e %4.2f %4.2f

%8.2e\n",

sd->mass/pd->mass,list[i].sat->index,

sd->radius*p->OutLengthConv,

bs.E*p->OutEnergyConv,bs.a*p->OutLengthConv,

bs.e,bs.i,bs.P*p->OutTimeConv) < 1)

goto error;

/* machine output */

if (fprintf(fp_ana,"%e %li %e %e %li %e %e %e %e %e %e\n",

pd->mass/m_tot,list[i].prim->index,

pd->radius*p->OutLengthConv,sd->mass/pd->mass,

list[i].sat->index,sd->radius*p->OutLengthConv,

bs.E*p->OutEnergyConv,bs.a*p->OutLengthConv,

bs.e,bs.i,bs.P*p->OutTimeConv) < 1) goto error;

}

(void) fprintf(fp_pr,"Summary: %li system%s, %li binar%s, total

mass considered = %e\n",nsys,nsys==1?"":"s",

nbin,nbin==1?"y":"ies",m_tot*p->OutMassConv);

(void) fclose(fp_ana);

(void) fclose(fp_pr);

return 0;

error:

(void) fprintf(stderr,"Error during write.\n");

(void) fclose(fp_ana);

(void) fclose(fp_pr);

return 1;

}

int walk_system(const PARAMS *p,FILE *fp,const COMPDATA *part,

double m_tot,BOOLEAN write_header,int *n_layer)

{

199

BIN_STATS bs;

const SSDATA *pd,*sd;

const COMPDATA *primary,*satellite;

if (part->prim == NULL)

return 0;

primary = part->prim;

satellite = part->sat;

pd = &primary->data;

sd = &satellite->data;

calc_bin_stats(pd,sd,BIN_CUT|BIN_INCL|BIN_PERIOD,&bs);

if (ok_to_cut(p,primary,satellite,&bs))

return 0;

if (write_header) {

*n_layer = 0;

(void) fprintf(fp," c_ind M_p/M_t p_ind p_rad

M_s/M_p s_ind s_rad bind_eng

a e i per\n");

(void) fprintf(fp,"--------- -------- --------- --------

-------- --------- -------- ---------

-------- ---- ---- --------\n");

}

if (fprintf(fp,"%9li %8.2e %9li %8.2e %8.2e %9li %8.2e %9.2e %8.2e

%4.2f %4.2f %8.2e\n",

part->index,pd->mass/m_tot,part->prim->index,

pd->radius*p->OutLengthConv,sd->mass/pd->mass,

part->sat->index,sd->radius*p->OutLengthConv,

bs.E*p->OutEnergyConv,bs.a*p->OutLengthConv,

bs.e,bs.i,bs.P*p->OutTimeConv) < 1) return 1;

++(*n_layer);

if (walk_system(p,fp,part->prim,m_tot,FALSE,n_layer) != 0)

return 1;

if (walk_system(p,fp,part->sat,m_tot,FALSE,n_layer) != 0) return 1;

return 0;

}

void create_summary(const PARAMS *p,const COMPDATA *part,

HIER_OUTPUT *sum,double *max_a)

{

BIN_STATS bs;

200

const SSDATA *pd,*sd;

if (part->prim == NULL)

return;

pd = &part->prim->data;

sd = &part->sat->data;

calc_bin_stats(pd,sd,BIN_CUT,&bs);

if (ok_to_cut(p,part->prim,part->sat,&bs))

return;

if (bs.a > *max_a) {

sum->max_a = bs.a;

*max_a = bs.a;

}

sum->bind_E += bs.E;

create_summary(p,part->prim,sum,max_a);

create_summary(p,part->sat,sum,max_a);

}

int sort_mass(const void *a, const void *b)

{

const HIER_OUTPUT *s1,*s2;

/* pointers to systems that made the cut */

s1 = (const HIER_OUTPUT *) a;

s2 = (const HIER_OUTPUT *) b;

/* largest system first */

if (s1->sys_mass < s2->sys_mass) return 1;

if (s1->sys_mass > s2->sys_mass) return -1;

/* if total system masses are equal */

if (s1->com->index < s2->com->index) return -1;

/* smallest com indices first */

if (s1->com->index > s2->com->index) return 1;

/* can’t get here, top com particles can not have same indices */

assert(0);

return 0;

}

201

int write_hier_output(const PARAMS *p,const char *filename,

const COMPDATA *part,long n_part,

double m_tot,long n_orig)

{

BIN_STATS bs;

const SSDATA *pd,*sd;

HIER_OUTPUT *sum;

FILE *fp;

char outfile[MAXPATHLEN];

int n_layer;

long i,n_sys,n_true_hier,sum_buf_size;

if (myNewExt(filename,FileTypeStr[p->FileType],outfile,HIER_EXT)) {

(void) fprintf(stderr,"Unable to generate output filename for

%s.\n",filename);

return 1;

}

if ((fp = fopen(outfile,"w")) == NULL) {

(void) fprintf(stderr,"Can’t open %s\n",outfile);

return 1;

}

n_sys = 0;

sum_buf_size = BUF_SIZE_INIT;

sum = (HIER_OUTPUT *) malloc(sum_buf_size*sizeof(HIER_OUTPUT));

assert(sum != NULL);

for (i=0;i<n_part;i++) {

pd = &(part[i].prim->data);

sd = &(part[i].sat->data);

/* top of system tree */

if (part[i].com == NULL && part[i].prim != NULL) {

calc_bin_stats(pd,sd,BIN_CUT,&bs);

if (ok_to_cut(p,part[i].prim,part[i].sat,&bs)) {

/* if first layer of system does not make cut ignore system */

/* altogether */

continue;

}

sum[n_sys].sys_mass = pd->mass + sd->mass;

sum[n_sys].max_a = bs.a;

sum[n_sys].bind_E = bs.E;

sum[n_sys].com = &part[i];

202

create_summary(p,part[i].prim,&sum[n_sys],&(bs.a));

create_summary(p,part[i].sat,&sum[n_sys],&(bs.a));

if (++n_sys == sum_buf_size) {

sum_buf_size *= BUF_SIZE_MULT;

sum = (HIER_OUTPUT *) realloc((void *) sum,

sum_buf_size*sizeof(HIER_OUTPUT));

assert(sum != NULL);

}

}

}

/* sort systems with most massive first */

qsort((void *) sum,n_sys,sizeof(HIER_OUTPUT),sort_mass);

n_true_hier = 0;

for (i=0;i<n_sys;i++) {

if (walk_system(p,fp,sum[i].com,m_tot,TRUE,&n_layer) != 0) {

(void) fprintf(stderr,"Error during write.\n");

(void) fclose(fp);

return 1;

}

if (fprintf(fp,"System summary: mass = %8.2e, max semimajor

axis = %8.2e,

total binding energy = %9.2e\n",

sum[i].sys_mass*p->OutMassConv,

sum[i].max_a*p->OutLengthConv,

sum[i].bind_E*p->OutEnergyConv) < 1) return 1;

fprintf(fp,"\n");

if (n_layer > 1)

++n_true_hier;

}

if (fprintf(fp,"%ld system%s found: %ld 2-particle system%s and %ld

multi-particle system%s\n", n_sys,

n_sys==1?"":"s",n_sys-n_true_hier,

n_sys-n_true_hier==1?"":"s", n_true_hier,

n_true_hier==1?"":"s") < 1) return 1;

if (fprintf(fp,"Total number of original particle%s: %ld\n",

n_orig==1?"":"s",n_orig) < 1) return 1;

if (fprintf(fp,"Total mass in original particle%s: %8.2e\n",

n_orig==1?"":"s",m_tot*p->OutMassConv) < 1)

return 1;

(void) fclose(fp);

free((void *) sum);

203

return 0;

}

int sort_per(const void *a,const void *b)

{

const BINARY *b1,*b2;

const SSDATA *p1,*p2;

b1 = (const BINARY *) a; /* pointers to binaries */

b2 = (const BINARY *) b;

p1 = &(b1->prim->data); /* pointers to primaries */

p2 = &(b2->prim->data);

if (b1->period < b2->period) return 1; /* largest periods first */

if (b1->period > b2->period) return -1;

if (p1->mass < p2->mass) return 1; /* largest primary masses first */

if (p1->mass > p2->mass) return -1;

/* smallest indices first */

if (b1->prim->index < b2->prim->index) return -1;

if (b1->prim->index > b2->prim->index) return 1;

/* within each system, sort by binding energy, but check for */

/* duplicate first */

{

/* satellite pointers */

const SSDATA *s1 = &(b1->sat->data),*s2 = &(b2->sat->data);

if (b1->sat->index == b2->sat->index) return 0; /* oops! */

{

BIN_STATS bs1,bs2;

calc_bin_stats(p1,s1,BIN_ENERGY,&bs1);

calc_bin_stats(p2,s2,BIN_ENERGY,&bs2);

if (bs1.E < bs2.E) return -1; /* more bound first */

if (bs1.E > bs2.E) return 1;

/* smallest indices first */

if (b1->sat->index < b2->sat->index) return -1;

if (b1->sat->index > b2->sat->index) return 1;

204

}

}

assert(0); /* can’t get here */

return 0;

}

void calc_per(BINARY *list,long n)

{

BIN_STATS bs;

int i;

for (i=0;i<n;i++) {

calc_bin_stats(&list[i].prim->data,&list[i].sat->data,

BIN_PERIOD,&bs);

list[i].period = bs.P;

}

}

void find_systems(const PARAMS *p,COMPDATA **part,long *npart,

VECTOR root_center,double root_size,NODE **root,

BINARY **bin,long *bin_buf_size,long *nbin)

{

BINARY *binary,*add,*new,*ptr;

COMPDATA *com;

long *del;

long part_buf_size,del_buf_size,add_buf_size,new_buf_size,buf;

long nmax,nloops,ntree,ncmp,ncom,ndel,nadd,nnew,idel,ibin,iadd,n,i;

(void) printf("Starting hierarchical search for systems...\n");

/*

** Do the following just once: compute periods for each existing

** binary and sort the binaries in decreasing order of period.

** Subsequently binaries will be deleted and possibly added to

** the list while preserving the sort order.

*/

calc_per(*bin,*nbin);

qsort((void *) *bin,*nbin,sizeof(BINARY),sort_per);

/* initialize */

ntree = ncmp = *npart; /* used to monitor tree state */

205

ncom = 0; /* ditto */

/* see comment at top of file */

part_buf_size = (*npart)*EXTRA_STORE;

/* allocate space for maintenance lists */

del_buf_size = BUF_SIZE_INIT;

del = (long *) malloc(del_buf_size*sizeof(long));

assert(del != NULL);

add_buf_size = BUF_SIZE_INIT;

add = (BINARY *) malloc(add_buf_size*sizeof(BINARY));

assert(add != NULL);

new_buf_size = *bin_buf_size;

new = (BINARY *) malloc(new_buf_size*sizeof(BINARY));

assert(new != NULL);

/*

** Now loop, finding "tightest" (shortest period) binary each

** time, and updating the binary list as required, until no

** binaries remain. Periodically rebuild the tree to improve

** efficiency.

*/

/* worst-case scenario */

nmax = (*npart > 0xffff ? INT_MAX : (*npart - 1)*(*npart)/2);

nloops = 0;

while (*nbin > 0) {

--(*nbin); /* truncate list */

/* last binary in list had shortest period */

binary = &((*bin)[*nbin]);

make_com_part(binary,npart,&part_buf_size,part);

--ncmp; /* 2 particles replaced by 1 com particle */

assert(ncmp > 0); /* can’t run out of particles! */

/* last particle in list is new com particle */

com = &((*part)[*npart - 1]);

/*

** Check to see if tree should be rebuilt:

** 1) if the ratio of the number of original particles left

** to the number of particles in the tree since the last

** tree build is less than TREE_REBUILD_FRAC.

** 2) if the mass ratio of the two components of the new com

** particle exceed REBUILD_MASS_RATIO.

*/

206

if ((double) ncmp/ntree < TREE_REBUILD_FRAC ||

binary->prim->data.mass/binary->sat->data.mass >

REBUILD_MASS_RATIO) {

(void) printf("Rebuilding tree... (N = %li)\n",ncmp);

kill_node(*root);

/* note: recomputing center & size would improve efficiency */

make_node(root_center,root_size,root);

for (i=0;i<*npart;i++)

if (!IS_COM_MBR(&((*part)[i]))) /* no child particles */

add_to_tree(*root,&((*part)[i]));

get_com_vel(*root);

/* particle conservation check */

assert((*root)->n_part == ncmp);

/* number of particles in tree for this rebuild */

ntree = ncmp;

ncom = 0;

}

else {

add_to_tree(*root,com); /* add com particle to tree */

/* number of com particles added since last tree rebuild */

++ncom;

get_com_vel(*root);

assert((*root)->n_part == ntree + ncom);

}

/* create list of binaries to remove */

for (ndel=ibin=0;ibin<*nbin;ibin++) {

binary = &((*bin)[ibin]);

/*

** Record any binary whose primary or satellite was either

** of the children of the new com particle, and mark the

** members of that binary to be resent to

** find_companion().

*/

if (IS_COM_MBR(binary->prim) || IS_COM_MBR(binary->sat)) {

del[ndel] = ibin;

if (++ndel == del_buf_size) {

del_buf_size *= BUF_SIZE_MULT;

del = (long *) realloc((void *) del,

del_buf_size*sizeof(long));

assert(del != NULL);

}

207

}

}

/*

** Now call find_companion() for the new com particle, storing

** results in new list.

*/

nadd = 0; /* (reuse existing storage) */

find_companion(p,*root,com,&add,&add_buf_size,&nadd);

/* compute periods of binaries to add, then sort */

calc_per(add,nadd);

qsort((void *) add,nadd,sizeof(BINARY),sort_per);

/*

** Update binary list by deleting old binaries and adding

** new binaries all in a single pass, being careful to

** reject any duplicated entries in the new list.

*/

idel = ibin = iadd = nnew = 0;

while (ibin < *nbin || iadd < nadd) {

/* omit current binary from new list? */

if (ibin < *nbin) {

binary = &((*bin)[ibin]);

if (idel < ndel && del[idel] == ibin) {

++idel; /* increment and don’t copy */

++ibin;

continue;

}

}

/*

** Following "while" cascade does not consider binding

** energy, unlike sort_per() -- we’d rather avoid two

** calc_bin_stats() calls here. Normally only an

** artificial test should lead to this being a problem.

*/

while (iadd < nadd &&

(ibin == *nbin ||

(add[iadd].period > binary->period ||

(add[iadd].period == binary->period &&

(add[iadd].prim->data.mass >

208

binary->prim->data.mass ||

(add[iadd].prim->data.mass ==

binary->prim->data.mass &&

(add[iadd].prim->index < binary->prim->index ||

(add[iadd].prim->index ==

binary->prim->index &&

add[iadd].sat->index <

binary->sat->index)))))))) {

new[nnew] = add[iadd];

/* check for duplicate add -- they will always be

/* paired together */

if (++iadd < nadd && IS_SAME_BINARY(&add[iadd],

&new[nnew]))

++iadd; /* skip it */

/* increment and check for possible buffer overflow */

if (++nnew == new_buf_size) {

new_buf_size *= BUF_SIZE_MULT;

new = (BINARY *) realloc((void *) new,

new_buf_size*sizeof(BINARY));

assert(new != NULL);

}

}

/* copy current binary to new list? */

if (ibin < *nbin) {

new[nnew] = *binary;

++ibin;

/* increment and check for possible buffer overflow */

if (++nnew == new_buf_size) {

new_buf_size *= BUF_SIZE_MULT;

new = (BINARY *) realloc((void *) new,

new_buf_size*sizeof(BINARY));

assert(new != NULL);

}

}

}

/* swap new binary list with original list via pointers to */

/* save time */

ptr = *bin;

buf = *bin_buf_size;

n = *nbin;

*bin = new;

*bin_buf_size = new_buf_size;

209

*nbin = nnew;

new = ptr;

new_buf_size = buf;

nnew = n;

if (*nbin % 100 == 0) (void) printf("%li binaries remaining

(%li/%li active/total

particles)\n",

*nbin,ncmp,*npart);

if (++nloops == nmax) {

(void) fprintf(stderr,"Maximum number of loops

exceeded\n");

break;

}

}

free((void *) new);

free((void *) add);

free((void *) del);

}

int main(int argc,char *argv[])

{

extern int optind;

COMPDATA *part;

NODE *root;

BINARY *list;

PARAMS params;

VECTOR root_center;

double m_tot,root_size;

long list_size,list_posn;

long n_part,n_orig,i;

/*Defaults*/

set_defaults(¶ms);

/* Parse command line arguments */

parse_in(argc,argv,¶ms);

for(;optind<argc;optind++) {

(void) printf("Reading data...\n");

210

if (read_data(¶ms,argv[optind],&part,&n_part,&m_tot,

root_center,&root_size) != 0)

return 1;

(void) printf("Building tree...\n");

make_node(root_center,root_size,&root);

for (i=0;i<n_part;i++)

add_to_tree(root,&part[i]);

(void) printf("Computing center of mass...\n");

get_com_vel(root);

assert(root->n_part == n_part); /* particle conservation check */

(void) printf("Beginning satellite search...\n");

list = NULL;

list_size = list_posn = 0;

for (i=0;i<n_part;i++)

find_companion(¶ms,root,&part[i],&list,&list_size,

&list_posn);

(void) printf("%li binar%s found.\n",list_posn,

list_posn==1?"y":"ies");

if (list_posn == 0) goto done; /* no point in continuing */

if (params.ExtIdx >= 0 && params.ExtIdx < n_part) {

char ext_outfile[MAXPATHLEN];

if (myNewExt(argv[optind],FileTypeStr[params.FileType],

ext_outfile,EXT_EXT)) {

(void) fprintf(stderr,"Unable to generate output

filename for %s.\n",

argv[optind]);

return 1;

}

(void) extract(¶ms,ext_outfile,list,list_posn);

}

if (params.Hier == TRUE) {

n_orig = n_part;

find_systems(¶ms,&part,&n_part,root_center,root_size,

&root,&list,&list_size,&list_posn);

/*add hierarchy extraction here*/

if (params.HierExtIdx >= 0) {

211

if (params.HierExtIdx >= n_orig && params.HierExtIdx

< n_part) {

char hier_ext_outfile[MAXPATHLEN];

if (myNewExt(argv[optind],

FileTypeStr[params.FileType],

hier_ext_outfile,HIER_EXT_EXT)) {

(void) fprintf(stderr,"Unable to generate

output filename

for %s.\n",argv[optind]);

return 1;

}

if (hier_extract(¶ms,hier_ext_outfile,

&part[params.HierExtIdx])) {

(void) fprintf(stderr,"Unable to extract

hierarchy system

of particle %ld\n",

params.HierExtIdx);

return 1;

}

}

else {

(void) fprintf(stderr,"Hierarchy extraction index

must be a center of

mass particle\n");

(void) fprintf(stderr,"Index >= %ld\n",n_orig);

return 1;

}

}

/* cuts applied */

(void) write_hier_output(¶ms,argv[optind],part,n_part,

m_tot,n_orig);

}

else { /* do a normal cull */

(void) printf("Sorting...\n");

qsort((void *) list,list_posn,sizeof(BINARY),sort_bin);

/*applies any cuts stored in params*/

cut_list(¶ms,list,&list_posn);

(void) printf("%li binar%s survived the cut.\n",list_posn,

list_posn==1?"y":"ies");

212

/* output normally */

(void) write_output(¶ms,argv[optind],list,list_posn,

m_tot);

if (params.TipsyFile == TRUE) {

char tip_outfile[MAXPATHLEN];

if (myNewExt(argv[optind],FileTypeStr[params.FileType],

tip_outfile,VEC_EXT)) {

(void) fprintf(stderr,"Unable to generate output

filename for %s.\n",

argv[optind]);

return 1;

}

(void) write_tipsy(tip_outfile,n_part,list,list_posn);

}

}

done:

/* all done */

free((void *) list);

kill_node(root);

free((void *) part);

}

return 0;

}

213

Bibliography

Agnor, C. B. & Ward, W. R. 2002, ApJ, 567, 579

Alonso, R., Brown, T. M., Torres, G., Latham, D. W., Sozzetti, A., Mandushev,
G., Belmonte, J. A., Charbonneau, D., Deeg, H. J., Dunham, E. W., O’Donovan,
F. T., & Stefanik, R. P. 2004, ApJ, 613, L153

Araki, S. & Tremaine, S. 1986, Icarus, 65, 83

Asphaug, E. & Benz, W. 1996, Icarus, 121, 225

Asphaug, E. & Melosh, H. J. 1993, Icarus, 101, 144

Asphaug, E., Ostro, S. J., Hudson, R. S., Scheeres, D. J., & Benz, W. 1998, Nature,
393, 437

Asphaug, E., Ryan, E. V., & Zuber, M. T. 2002, in Asteroids III, ed. W. F. Bottke,
A. Cellino, P. Paolicchi, & R. P. Binzel (Univ. of Arizona Press, Tuscon AZ),
463–484

Barnes, J. & Hut, P. 1986, Nature, 324, 446

Beaugé, C. & Aarseth, S. J. 1990, MNRAS, 245, 30

Belton, M. & Carlson, R. 1994, IAU Circ., 5948, 2

Belton, M., Chapman, C., Thomas, P., Davies, M., Greenberg, R., Klaasen, K.,
Byrnes, D., D’Amario, L., Synnott, S., Merline, W., Petit, J.-M., Storrs, A., &
Zellner, B. 1995, Nature, 374, 785

Bentley, J. L. & Friedman, J. H. 1979, Comput. Surv., 11, 397

Benz, W. 2000, Space Science Reviews, 92, 279

Benz, W. & Asphaug, E. 1999, Icarus, 142, 5

Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton Univ. Press, Prince-
ton, NJ)

Blum, J. & Muench, M. 1993, Icarus, 106, 151

214

Blum, J. & Wurm, G. 2000, Icarus, 143, 138

Boss, A. P. 1998, ApJ, 503, 923

Boss, A. P., Wetherill, G. W., & Haghighipour, N. 2002, Icarus, 156, 291

Bottke, W. F. & Melosh, H. J. 1996a, Icarus, 124, 372

—. 1996b, Nature, 381, 51

Bottke, W. F., Richardson, D. C., & Love, S. G. 1997, Icarus, 126, 470

Bottke, W. F., Richardson, D. C., Michel, P., & Love, S. G. 1999, AJ, 117, 1921

Chauvin, G., Lagrange, A. M., Dumas, C., Zuckerman, B., Mouillet, D., Song, I.,
Beuzit, J. L., & Lowrance, P. 2004, A&A, 425, L29

Chauvineau, B. & Farinella, P. 1995, Icarus, 115, 36

Davies, M. B., Benz, W., & Hills, J. G. 1991, ApJ, 381, 449

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371

Durda, D. D. 1996, Icarus, 120, 212

Durda, D. D., Bottke, W. F., Enke, B. L., Merline, W. J., Asphaug, E., Richardson,
D. C., & Leinhardt, Z. M. 2004, Icarus, 170, 243

Durda, D. D., Greenberg, R., & Jedicke, R. 1998, Icarus, 135, 431

Goldreich, P., Lithwick, Y., & Sari, R. 2002, Nature, 420, 643

—. 2004, ARA&A, 42, 549

Goldreich, P. & Ward, W. R. 1973, ApJ, 183, 1051

Governato, F., Moore, B., Cen, R., Stadel, J., Lake, G., & Quinn, T. 1997, New
Astronomy, 2, 91

Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Icarus,
35, 1

Harris, A. W. 1996, in Lunar and Planetary Institute Conference Abstracts, 493–+

Holsapple, K. A. 1994, Planet. Space Sci., 42, 1067

Housen, K. R., Holsapple, K. A., & Voss, M. E. 1999, Nature, 402, 155

Housen, K. R., Schmidt, R. M., & Holsapple, K. A. 1991, Icarus, 94, 180

Johnson, B. M. & Gammie, C. F. 2003, ApJ, 597, 131

215

Kokubo, E. & Ida, S. 1995, Icarus, 114, 247

—. 1996, Icarus, 123, 180

—. 1998, Icarus, 131, 171

—. 2000, Icarus, 143, 15

—. 2002, ApJ, 581, 666

Konacki, M. & Wolszczan, A. 2003, ApJL, 591, L147

Lecar, M. & Aarseth, S. J. 1986, ApJ, 305, 564

Leinhardt, Z. M. & Richardson, D. C. 2002, Icarus, 159, 306

—. 2005a, Icarus, in press

—. 2005b, ApJ, in press

Leinhardt, Z. M., Richardson, D. C., & Quinn, T. 2000, Icarus, 146, 133

Lissauer, J. J. 1993, ARA&A, 31, 129

Lodders, K. & Fegley, B. 1998, The Planetary Scientist’s Companion (Oxford Uni-
versity Press, New York)

Love, S. G. & Ahrens, T. J. 1996, Icarus, 124, 141

Love, S. G., Hörz, F., & Brownlee, D. E. 1993, Icarus, 105, 216

Makino, J., Fukushige, T., Funato, Y., & Kokubo, E. 1998, New Astronomy, 3, 411

Margot, J. L., Nolan, M. C., Benner, L. A. M., Ostro, S. J., Jurgens, R. F., Giorgini,
J. D., Slade, M. A., & Campbell, D. B. 2002, Science, 296, 1445

Mayer, L., Quinn, T., Wadsley, J., & Stadel, J. 2002, Science, 298, 1756

Merline, W. J. 2001, Bull. Am. Astron. Soc., 33, 1133

Merline, W. J., Close, L. M., Dumas, C., Chapman, C. R., Roddier, F., Menard,
F., Colwell, W., Slater, D. C., Duvert, G., Shelton, C., & Morgan, T. 1999, Bull.
Am. Astron. Soc., 31, 1106

Michel, P., Benz, W., Tanga, P., & Richardson, D. C. 2001, Science, 294, 1696

Miller, M. C. & Hamilton, D. P. 2001, ApJ, 550, 863

Ostro, S. J., Pravec, P., Benner, L. A. M., Hudson, R. S., S̆arounová, L., Hicks,
M. D., Rabinowitz, D. L., Scotti, J., Tholen, D. J., Wolf, M., Jurgens, R. F.,
Thomas, M. L., Giorgini, J. D., Chodas, P. W., Yeomans, D. K., Rose, R., Frye,
R., Rosema, K. D., Winkler, R., & Slade, M. A. 1999, Science, 285, 557

216

Petit, J.-M. & Hénon, M. 1987, Astron. Astrophys., 188, 198

Pravdo, S. H., Shaklan, S. B., Henry, T., & Benedict, G. F. 2004, ApJ, 617, 1323

Pravec, P., Šarounová, L., Hicks, M. D., Rabinowitz, D. L., Wolf, M., Scheirich, P.,
& Krugly, Y. N. 2002, Icarus, 158, 276

Pravec, P., Šarounová, L., Rabinowitz, D. L., Hicks, M. D., Wolf, M., Krugly, Y. N.,
Velichko, F. P., Shevchenko, V. G., Chiorny, V. G., Gaftonyuk, N. M., & Genevier,
G. 2000, Icarus, 146, 190

Rice, W. K. M., Armitage, P. J., Bonnell, I. A., Bate, M. R., Jeffers, S. V., & Vine,
S. G. 2003, MNRAS, 346, L36

Richardson, D. C. 1994, MNRAS, 269, 493

—. 2001, Bull. of the Am. Astron. Soc., 33, 1351

Richardson, D. C., Asphaug, E., & Benner, L. 1995, Bull. Am. Astron. Soc., 27,
1114

Richardson, D. C., Bottke, W. F., & Love, S. G. 1998, Icarus, 134, 47

Richardson, D. C., Elankumaran, P., & Sanderson, R. E. 2005, Icarus (in press)

Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bot tke, W. F., & Asphaug, E.
2002, in Asteroids III, ed. W. F. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel
(Univ. of Arizona Press, Tuscon AZ), 501–515

Richardson, D. C., Quinn, T., Stadel, J., & Lake, G. 2000, Icarus, 143, 45

Ryan, E. V., Hartmann, W. K., & Davis, D. R. 1991, Icarus, 94, 283

Ryan, E. V. & Melosh, H. J. 1998, Icarus, 133, 1

Safronov, V. S. 1969, Evolution of the protoplanetary cloud and formation of the
Earth and planets (Nauka, Moscow), transl. 1972 NASA TT F-677

Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H., & Thorsett, S. E. 2003,
Science, 301, 193

Stadel, J. G. 2001, PhD thesis, University of Washington, Seattle, WA

Tanga, P., Babiano, A., Dubrulle, B., & Provenzale, A. 1996, Icarus, 121, 158

Thorsett, S. E., Arzoumanian, Z., Camilo, F., & Lyne, A. G. 1999, ApJ, 523, 763

Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, J. F., Carcich, B., Joseph, J.,
Chapman, C., Merline, W., Robinson, M., Malin, M., McFadden, L. A., Murchie,
S., Hawkins, S. E., Farquhar, R., Izenberg, N., & Cheng, A. 1997, Science, 278,
2109

217

Wasson, J. T. 1985, Meteorites–Their Record of Early Solar System History (Free-
man, New York)

Watanabe, S. & Miyama, S. M. 1992, ApJ, 391, 318

Weidenschilling, S. J. 1977, MNRAS, 180, 57

—. 1995, Icarus, 116, 433

—. 2002, Icarus, 160, 212

Weidenschilling, S. J. & Cuzzi, J. N. 1993, in Protostars and Planets III (University
of Arizona Press, Tuscon), 1031

Wetherill, G. W. & Stewart, G. R. 1989, Icarus, 77, 330

—. 1993, Icarus, 106, 190

Wolszczan, A. 1994, Science, 264, 538

Wolszczan, A. & Frail, D. A. 1992, Nature, 355, 145

Yeomans, D. K., Barriot, J.-P., Dunham, D. W., Farquhar, R. W., Giorgini, J. D.,
Helfrich, C. E., Konopliv, A. S., McAdams, J. V., Miller, J. K., Owen, W. M.,
Scheeres, D. J., Synnott, S. P., & Williams, B. G. 1997, Science, 278, 2106

Youdin, A. N. & Chiang, E. I. 2004, ApJ, 601, 1109

Youdin, A. N. & Shu, F. H. 2002, ApJ, 580, 494

Zappalà, V., Cellino, A., Farinella, P., & Knezevic, Z. 1990, AJ, 100, 2030

218

