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This thesis explores the physics of low-dimensional electronic conductors 

using two materials systems, carbon nanotubes (CNTs) and lithographically-defined 

silver nanowires.  

 In order to understand the intrinsic electronic properties of CNTs, it is 

important to eliminate the contact effects from the measurements. Here, this is 

accomplished by using a conductive-tip atomic force microscope cantilever as a local 

electrode in order to obtain length dependent transport properties. The CNT-movable 

electrode contact is fully characterized, and is largely independent of voltage bias 

conditions, and independent of the contact force beyond a certain threshold. The 

contact is affected by the fine positioning of the cantilever relative to the CNT due to 

parasitic lateral motion of the cantilever during the loading cycle, which, if not 

controlled, can lead to non-monotonic behavior of contact resistance vs. force. 



  

 Length dependent transport measurements are reported for several metallic 

and semiconducting CNTs. The resistance versus length R(L) of semiconducting 

CNTs is linear in the on state. For the depleted state R(L) is linear for long channel 

lengths, but non-linear for short channel lengths due to the long depletion lengths in 

one-dimensional semiconductors. Transport remains diffusive under all depletion 

conditions, due to both low disorder and high temperature. 

 The study of quantum corrections to classical conductivity in mesoscopic 

conductors is an essential tool for understanding phase coherence in these systems. A 

long standing discrepancy between theory and experiment regards the phase 

coherence time, which is expected theoretically to grow as a power law at low 

temperatures, but is experimentally found to saturate. The origins of this saturation 

have been debated for the last decade, with the main contenders being intrinsic 

decoherence by zero-point fluctuations of the electrons, and decoherence by dilute 

magnetic impurities. 

 Here, the phase coherence time in quasi-one-dimensional silver wires is 

measured. The phase coherence times obtained from the weak localization correction 

to the conductivity at low magnetic field show saturation, while those obtained from 

universal conductance fluctuations at high field do not. This indicates that, for these 

samples, the origin of phase coherence time saturation obtained from weak 

localization is extrinsic, due to the presence of dilute magnetic impurities. 
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Chapter 1: Background 

 

 Carbon nanotubes are tubular forms of carbon discovered nearly two decades 

ago by Iijima [1] which have attracted a great deal of attention ever since. The interest 

in carbon nanotubes is two-fold. On one hand, their nature as one-dimensional 

conductors and semiconductors makes them a test bed for exploring electrical, 

thermal, optical, and other physical properties in such reduced dimensionality. On the 

other hand, their unique combination of good electrical, thermal, and mechanical 

properties made them candidates for many applications. 

Electronic transport properties of carbon nanotube devices, which are the 

main topic in this thesis, have attracted a lot of theoretical and experimental attention 

over the last decade. Various works have studied the contributions from contacts [2-

7], defects and impurities [8-10], electron-phonon interaction [5, 11-14], and electron-

electron interaction [15, 16]. 

 A usual problem in interpreting transport data in carbon nanotube devices is 

separating the intrinsic response of the nanotube channel from the contact effects. 

Obtaining the intrinsic response of the nanotube channel is important in revealing the 

scattering mechanisms in nanotube devices, and in studying physical phenomena 

associated with the nanotube channel, such as localization in one dimension.  

Carbon nanotubes can be thought of as strips of single sheets of graphite 

(graphene) which are rolled and connected seamlessly thus forming a tubular 

structure. A carbon nanotube can have either single or multiple walls, as is revealed 

by high resolution transmission electron microscopy (TEM). Single walled carbon 
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nanotubes, which are the main concern in this thesis, can be metallic, or 

semiconducting (with small or large bandgap), depending on their band structure. In 

the next section I will review the band structure of carbon nanotubes. 

 

1.1 The band structure of carbon nanotubes 

 

The starting point for understanding the band structure of carbon nanotubes is 

that the band structure of graphene, first studied by Wallace in 1947 [17], and 

revisited in many recent reviews [18-21]. The electronic configuration of the carbon 

atom is 1s22s22p2. The s orbital may hybridize with the three p orbitals to form four 

sp3 orbitals pointing to the heads of a tetrahedron like in diamond or methane. It may 

also hybridize with only two of the p orbitals to form three sp2 orbitals. These orbitals 

are oriented in one plane at 120° from each other (i.e. they are pointing to the heads 

of an equilateral triangle), while the remaining p orbital (conventionally designated as 

pz) is normal to that plane, this is the situation in graphene, which consequently has a 

hexagonal lattice, as is schematically shown in Fig. 1-1 below. 
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Figure 1-1: Structure of graphene sheet. (a) Illustration of the bonds in graphene 
sheet, the in-plane sp2 orbitals formσ bonds, while the pz orbitals perpendicular to the 
sheet form π bonds. (b) Basis vectors of the lattice of graphene. (c) Reciprocal lattice 
basis vectors, b1= )2/3,2/1(b  and b2= )2/3,2/1( −b , where CCab −= 3/4π . (a) is 
from Reference [21], (b) and (c) are from Reference [20]. 
 

As can be seen, the three hybridized sp2 orbitals form in-plane ‘head on’ σ 

bonds, while the pz orbitals normal to the plane form ‘side by side’ π bonds. The 

energy spectrum corresponding to the bonding σ and antibonding σ* states has a wide 

gap ~8 eV, while that of the π and π* states forms a continuous energy band with a 

vanishing gap (see below). Therefore, the low energy electronic properties (< 4 eV) 

around the Fermi level, which exists in the gap of the σσ* states, are rather governed 

by the ππ* states. The σ bonds however, are the ones responsible for cohesive 

properties, and result in the high mechanical strength of carbon nanotubes. 

Considering only π electrons, the tight binding model yields a dispersion relation:  
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where k is a reciprocal lattice vector, γ0 ≈ 3 eV is the nearest neighbor overlap 

integral, CCaa −= 3 is the lattice constant of the hexagonal lattice, where aC-C = 0.142 

is the carbon-carbon inter-atomic distance  in graphene. The electronic band structure 

of graphene, and dispersion relation (1-1) are shown in Fig. 1-2 below. 

 

 
Figure 1-2: Electronic band structure of graphene. (a) Both σ and π bands along the 
symmetry directions M-Γ-K, notice the large gap between the σ and σ* bands, and the 
crossing of the π and π∗ bands at the K point. (b) Tight binding dispersion relation 
(Equation. (1-1)), notice the conical shape of the dispersion relation near the six K 
points. (a) is from Reference [21], and (b) is courtesy of M. S. Fuhrer. 

 

The π and π* bands touch at the corners of the Brillouin zone, these are 

usually labeled by their momentum vector as ‘K points’. Therefore, graphene is a 

metal with vanishing density of states, or a zero-gap semiconductor. Near these high 

symmetry points, the dispersion relation takes the shape of a cone, and can be 

approximated as linear. 
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In order for a graphene sheet to be rolled seamlessly, the circumference of the 

resulting nanotube must correspond to a lattice vector, usually called the chiral vector 

Ch. If the basis vectors of the hexagonal lattice are a1 and a2 , then Ch = na1+ma2 , 

where n, m are integers, and the convention nm ≤≤0  ensures Ch is unique. As a 

shorthand, the nanotube specified by a chiral vector Ch = na1+ma2 is called an ‘(n,m) 

nanotube’. The diameter for an (n,m) nanotube is given by: 

 

 nmmnaC
d h ++== 22

ππ
      (1-2) 

 

Nanotubes whose two indices are equal (n,n) are called armchair nanotubes, 

while those whose second index is zero (n,0) are called zigzag nanotubes, the rest are 

called chiral nanotubes. An example of this rolling process is shown below in Fig. 1-3 

for the case of a (5,3) nanotube. 
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Figure 1-3: Derivation of nanotubes from graphene sheet. (a) An illustration for the 
case of a (5,3) nanotube, showing the chiral vector Ch=5a1+3a2 , the nanotube axis is 
normal to Ch , the resulting nanotube is shown on the right. (b) An illustration of 
(12,0) zigzag, (6,6) armchair, and (6,4) chiral nanotubes. (a) and (b) are from 
Reference [20]. 

 

The continuity of the wavefunction around the circumference of the nanotube 

imposes the periodic boundary condition: 

 

k·Ch = 2πq       (1-3) 

 

where q is an integer. This defines a set of allowed k vectors which are parallel to Ch. 

Each one of these vectors defines a vertical plane in the E(kx,ky) space perpendicular 

to Ch (i.e. parallel to the axis of the nanotube), and the intersection of each plane with 

the 2-D dispersion relation shown in Fig. 1-2 above yields a 1-D dispersion relation 

for one of the nanotube subbands.  
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As mentioned before, the dispersion relation near the K points takes the form 

of a cone. Generally, a plane that is parallel to the axis of a cone would intersect it in 

a hyperbola. Thus all the dispersion relations for the second subband and up take a 

hyperbolic shape. For the first subband, if the allowed k vector does not pass through 

a K point (i.e. the head of the cone), then it will be hyperbolic too, and a gap exists 

between the conduction and valence bands, and the resulting nanotube would be 

semiconducting. However, in the special case when an allowed k vector passes 

through the K point, the dispersion relation becomes linear, with the conduction and 

valence bands meeting at the Fermi point at the head of the cone, thus creating a zero 

gap band structure, and the resulting nanotube would be metallic. These cases are 

schematically shown schematically in Fig. 1-4 below.  

 

 
Figure 1-4: Deduction of the 1-D nanotube band structure from the band structure of 
graphene by application of the quantization condition (1-2) above. (a) The allowed k 
vectors do not pass by any K point, the slices through the cones are all hyperbolic, 
and the resulting nanotube is semiconducting. (b) One allowed k vector passes by a K 
point, the first subband is linear, and the nanotube is metallic. Δ is one half the 
bandgap defined in Equation (1-4) below. Courtesy of M. S. Fuhrer  
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The condition for an allowed k vector to pass by a K point is, from Equation. 

(1-3), K·Ch = 2πq.  This can be reduced to pmn 3=− , where p is an integer, all 

other nanotubes not satisfying that condition are semiconducting. However, because 

of the curvature of the nanotube upon rolling, a small gap opens in nanotubes 

satisfying the above condition except for p = 0, i.e. except for nanotubes where n = m 

. These (n,n) nanotubes are the only truly metallic nanotubes. Therefore, single walled 

carbon nanotubes can be classified into three types, metallic nanotubes, 

semiconducting nanotubes, and small gap semiconducting nanotubes (i.e. nominally 

metallic nanotubes with , in which curvature induces a gap).  The gap in the latter is 

very small though, therefore they still act as essentially metallic at room temperature. 

For a semiconducting nanotube, the band gap is given by: 

 

 
d

nmeV
d
aE CC

g
.7.02 0 ≈= −γ      (1-4) 

 

thus the bandgap is inversely proportional to the diameter. For small bandgap 

semiconductors, the gap is 2/1 d∝ , and is in the order of a few meV. 

 Within the tight binding model, it can be shown that the density of states 

exhibits Van Hove singularities at the onset of each subband, which is generally 

expected for a one dimensional conductor. In metallic nanotubes, the density of states 

is finite and constant between the top valence subband, and the bottom conduction 

subband. In semiconducting nanotubes, that density of states is zero as should be 

expected in the bandgap. This was also verified experimentally using scanning 

tunneling spectroscopy (STS). Fig. 1-5 below shows the calculated density of states 
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for an (11,0) semiconducting nanotube, and (12,0) metallic nanotube, which display 

Van Hove singularities. 

 

 
Figure 1-5: Density of states for a (11,0) semiconducting  and a (12,0) metallic CNTs 
computed from tight binding show van Hove singularities. From Reference [22]. 

 

Typically, electrical transport in carbon nanotube devices is tested in a field 

effect transistor (FET) configuration, with two electrical contacts (the source and the 

drain) defining the channel, and a third terminal (the gate) which capacitively couples 

to it. The two types of carbon nanotubes can be differentiated easily in these transport 

measurements by the response of the current passing though the device to the gate 

voltage. Typically, semiconducting nanotubes show a FET like behavior, turning off 

completely at some gate voltage. Metallic nanotubes might show some mild gate 

modulation, but never turn off completely. Examples for both types of behavior are 

shown in Fig. 1-6 below. 
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Figure 1-6: Drain current versus gate voltage for (a) metallic and (b) semiconducting 
carbon nanotubes.  

 

In the next section, I will briefly review some aspects of electrical transport in 

one-dimensional conductors. 

 

1.2 Some concepts of electrical transport in one dimension 

 

 As seen in the previous section, carbon nanotubes are essentially described as 

one-dimensional electrical conductors, which makes them a suitable test bed for 

exploring electrical transport in one dimension. However, the experimentally 

measured properties of a carbon nanotube device will depend on the properties of 

both the contacts and the channel. 

 An ideal carbon nanotube device consists of a disorder-free nanotube channel 

with reflectionless contacts, and low voltage applied across the contacts (source-drain 

voltage) at low temperatures. The conductance of such a device would simply be 

he /4 2  ≈ 155 μS, corresponding to the contact resistance of a ballistic conductor with 

two conductance channels (see below). This picture closely corresponds with the 
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experimental measurements for short channel (~ 1 μm) devices, with ohmic contacts, 

and metallic carbon nanotube channels, or semiconducting nanotube channels in their 

on state, even at room temperature.   

However, this picture significantly changes upon deviation from the 

conditions above. For example, Schottky barriers [2-4, 7] can exist for contacts to 

semiconducting nanotubes. Long nanotube channels are diffusive rather than ballistic 

conductors [23, 24]. A high bias across the contacts can induce current saturation in 

metallic carbon nanotubes [14], or velocity saturation in semiconducting nanotubes 

[25, 26]. Contacts can cause long range charge transfer doping in semiconducting 

nanotube channels under depletion conditions [27-29]. Disorder in the nanotube 

channel can cause phenomena like Coulomb blockade [10, 30-32], or localization [24, 

33].  

The above effects can mostly be divided into ‘contact effects’ and ‘channel 

effects’. It is important to separate these two in order to obtain the true intrinsic 

response of the nanotube channel. Achieving this separation constitutes a significant 

portion of this thesis. The previous experimental efforts attempting to separate these 

effects would be the subject of the next section, and contact phenomena will be 

discussed further in Chapter 4.   

The channel response depends on several factors, mainly the type of the 

nanotube (semiconducting or metallic), presence of disorder (structural defects or 

charged impurities from the substrate), temperature, and bias conditions (the latter 

two determine the electron-phonon interaction).  
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For the rest of this section, I will briefly review the basic concepts of 

electronic transport in a one dimensional channel within the Landauer formalism. The 

treatment below mostly follows References [18, 34-37]. 

 

1.2.1 Quantization of conductance and the Landauer formula  

 

 The basic model here is that of a ballistic conductor of length L with 

reflectionless contacts (reservoirs) on both sides which are kept at two different 

chemical potentials μ1 and μ2 , and both at zero temperature. The current in the 

conductor is carried by different transverse modes (subbands), each mode has a 

dispersion relation E(N, k) with a cutoff energy )0,( == kNENε , as sketched in Fig. 

1-7 below.  

 

 
Figure 1-7: A schematic of a ballistic conductor sandwiched between two 
reflectionless contacts, and dispersion relations of the different transverse modes in 
the conductor. The reflectionless contacts (reservoirs) have quasi-Fermi levels of μ1 
and μ2 . Adapted from Reference [34]. 
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First, considering only a single mode, and assuming the +k states are occupied 

according to a distribution function )(Ef + . For a uniform electron gas with electron 

density of n electrons per unit length, moving with velocity v, the current is env . 

Each k state has an electron density of 1/L, and kEv ∂∂= − /1h , therefore the current 

becomes 

 

 ∑ ++

∂
∂

=
k

Ef
k
E

L
eI )(1

h
      (1-5) 

 

the sum over k states can be converted into an integral using ∫∑ ×→ dkL
k π2

2  , 

where the factor 2 accounts for spin degeneracy, thus the current becomes: 

 

 dEEf
h
eI ∫

∞
++ =

ε

)(2        (1-6) 

 

where ε is the cutoff energy for the mode. Because the contacts are reflectionless, 

then the +k states are occupied only by electrons originating at contact 1, and the –k 

states are occupied only by electrons originating at contact 2. However, since all the 

states below μ2 in contact 1 are occupied, the –k states will not carry a current at zero 

temperature, and the current is entirely carried by the +k states. In the case of a multi-

mode wire Equation (1-6) can be generalized to the form: 

 

 dEEMEf
h
eI )()(2

∫
∞

∞−

++ =      (1-7) 

 

where M(E) is the number of modes at an energy E (the number of modes for 

which EN <ε ). If we assume M(E) is constant over the energy range μ1 > E > μ2 , 

then Equation (1-7) can be written as: 
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e

M
h
eI )(2 21

2 μμ −
=       (1-8) 

 

thus the conductance can now be identified as: 

 

 M
h
eGC

22
=        (1-9) 

 

therefore the conductance of a ballistic wire having M transverse modes is quantized 

in the amount of he /2 2 . This corresponds to a contact resistance of: 

 

 
M

heRC
1)/2( 12 −=       (1-10) 

 

For single walled carbon nanotubes with only the 1st subband occupied, M = 2 

, leading to an ideal contact resistance of about 6.5 KΩ 

 The treatment above considers no scattering in the channel i.e. the probability 

that an electron transmitted at contact 1 reaches contact 2 is unity. If this probability 

is T < 1, then this causes part of the current I+ to be reflected back into contact 1. This 

current is ))(1()/2( 21 μμ −−=− TMheI , and the net current becomes 

)()/2( 21 μμ −= MTheI , thus the conductance now becomes: 

 

MT
h
eG

22
=        (1-11) 

 

which is the Landauer formula. This can be written as a sum of two resistances, a 

contact resistance, and a channel resistance, which are in series, as is shown below: 

 

T
T

M
he

M
heG −

+= −−− 11)/2(1)/2( 12121    (1-12) 
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where the first term can now be identified as the contact resistance given by Equation 

(1-10), and the second term is the actual channel resistance 
T

T
M

heG −
= −− 11)/2( 121 . 

 

1.2.2 Ohm’s law versus localization 

 

 An important question regards the situation when one or more conductors are 

joined in series. As will be shown below, their behavior depends on whether they are 

added incoherently or coherently i.e. whether phase information of the wave function 

propagating between them is destroyed or preserved (phase coherence will be 

discussed in detail in Chapter 5). 

Consider two conductors with transmission probabilities T1 and T2 which are 

joined in series, as is shown in Fig. 1-8 below.  

 

 
Figure 1-8: Two resistors connected in series having transmission probabilities T1 and 
T2 . If phase coherence is lost during the round trip, the overall transmission can be 
calculated as the sum of the probabilities of transmission with no reflection, with two 
reflections, with four reflections etc. Adapted from Reference [34]. 

 

In order to get the total transmission probability T12 across these two 

conductors, one needs not only to consider the directly transmitted portion of the 

wave function T1T2 , but also the multiply reflected portions between the conductors. 
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If the reflected portions do not have definite phase relationships, then the wave 

functions add incoherently, and the interference terms can be neglected. Thus T12 

would be given by: 

 

21

212
2

2
12121212112 1

...
RR

TTRRTTRRTTTTT
−

=+++=   (1-13) 

 

where R=(1-T) is the reflection coefficient. This can be written as: 

 

 
2

2

1

1

12

12 111
T

T
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T
T
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+

−
=

−      (1-14) 

 

Since the quantity (1-T)/T was found to define the resistance of a conductor 

with a transmission coefficient T,  
T

T
M

heG −
= −− 11)/2( 121  in Equation (1-12), then 

Equation (1-14) can now be interpreted as equivalent to a series addition of two 

resistors. To illustrate that Equation (1-14) leads to Ohm’s law, consider the simple 

case of N identical scatterers with transmission coefficient T, equally distributed over 

a length of L, the total resistance can be written as (assuming M=1): 

 

T
TNhe

T
TheG
N

N
N

−
=

−
= −−− 1)/2(1)/2( 12121     (1-15) 

 

and using lLN /= , where l is the distance between scatterers, then Equation (1-15) 

can be written as: 
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 L
lT

TheLG ⎟
⎠
⎞

⎜
⎝
⎛ −

= −− 11)/2()( 121      (1-16) 

 

which can be seen to be the 1-D version of Ohm’s law LLR λ=)( , where λ is the 1-D 

resistivity, i.e. the resistance per unit length. Defining )1/(0 TlTl −= , we can write 

Equation (1-16) as: 

 

 
0

121 )/2()(
l
LheLG −− =        (1-17) 

 

Now considering the case where quantum interference effects are taken into account 

in the problem above (Fig. 1-8), in this case the transmission coefficient T12 becomes: 

 

 
2121

21
12 cos21 RRRR

TTT
+−

=
θ

     (1-18) 

 

where θ is the phase shift acquired in one round trip between the scatterers. To obtain 

the scaling behavior, we need to obtain the ensemble average the resistance for all the 

possible arrangements of the two scatterers, i.e. for all the values of θ , defining the 

dimensionless resistance 12 )/2( −= Gheρ , we get: 
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where T12 is given by Equation (1-18), this can be seen to be different from Equation 

(1-13). This can be understood if Equation (1-19) is written as: 

 

 212112 2 ρρρρρ ++=        (1-20) 

 

we can see the presence of an extra term in addition to the classical sum of the two 

resistors, this is the interference term. Now considering a conductor of length L, 

where a small segment ΔL is added to it, and letting ρρρρ ≡<<Δ≡ 12 , and 

assuming the small segment ΔL can be treated classically thus from Equation (1-17) 

0/ lLΔ=Δρ , then Equation (1-20) yields: 

 

 
0

21)()(
lL

LLL
dL
d ρρρρ +

=
Δ

−Δ+
≈      (1-21) 

 

and for 1>>ρ  the solution would be: 

 

 [ ]1
2
1)( 0/2 −= lLeLρ        (1-22) 

 

therefore, a single mode conductor with  12 )/2( −>> heR  has an exponential 

dependence on length that scales by 2/l0 , which is the localized regime. This result 

applies to multimode conductors as well.  
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Thus whether one obtains R(L) that is linear (Ohmic), or exponential 

(localized), depends on the preservation of phase coherence between scattering 

events. This will be discussed again in Chapter 4 in the context of my experimental 

results in carbon nanotubes. 

 

1.2.3 Coulomb blockade 

 

 Coulomb blockade oscillations of conductance is a single electron charging 

phenomenon that happens when a small volume of a conductor or semiconductor 

(usually called ‘island’) is confined between two low transmittance tunnel junctions. 

This situation often happens in nanotube devices at low temperature, where a pair of 

defects might cause such confinement for a small segment of the nanotube channel or 

even for the whole nanotube channel if it is confined between low transmittance 

electrodes. A schematic for such a structure is shown in Fig. 1-9 below. 

 

 

 

 



 

 20 
 

 
Figure 1-9: (a) Schematic of a confined region (island) connected through tunnel 
barriers to leads, and equivalent circuit. (b) Coulomb blockade oscillations observed 
in a semiconducting nanotube device at low temperature (from Reference [10]).   
 

Since number of electrons N on the island can change only by discrete 

amounts, then for current to flow across the structure, the number of electrons must 

fluctuate between N and N+1. However, adding an electron to the island requires a 

charging energy 

 

ICeNNENE /)2/1()()1( 2+=−+     (1-23) 

 

where CI is the capacitance between the island and the rest of the structure (leads and 

gate). If both temperature and bias voltage are smaller than the typical charging 

energy IC CeE 2/2= , then tunneling of that additional electron is energetically 

forbidden and no current flows. Thus one conditions to observe Coulomb blockade is 

CB ETK <<  . Another condition comes from the requirement that the time for the 

electron to tunnel off the island be large enough, such that its energy uncertainty is 

much smaller than the charging energy, i.e. EC>δE > h/δt. The time scale δt for 

tunneling off the island could be estimated as the time constant RCI where R is the 
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smaller of the resistances of the two tunnel barriers between the island and the leads. 

From that we get the condition 2/2 ehR > . 

If the potential on the gate electrode is Vg, there would also be a change in the 

potential energy of the island due to the additional electron, which is given by: 

 

 g
I

g
g

I

g
g

I

g V
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eV
C
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eNV
C
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NeU −=−−+−=Δ )()1(    (1-24) 

 

where Cg is the capacitance between the island and gate only. This contribution is 

negative, i.e. the island with N+1 electrons has a lower potential energy than when it 

has N electrons. Therefore, the two contributions might balance out, equating (1-23) 

with (1-24), then the Vg values at which this occurs are: 
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2
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C
eV

g
g        (1-25) 

 

at these Vg values, the N and N+1 situations are degenerate, and tunneling is 

permitted. Thus Coulomb blockade appears as periodic oscillations of conductance as 

a function of gate voltage, with a period of gCe / .  

 The above ‘classical’ Coulomb blockade picture mainly applies to metallic 

islands where the energy level separation ΔE is much lower than KBT and can be 

considered a continuum. However, in cases where the density of states is low, as in a 

2-D electron gas or carbon nanotubes, ΔE might exceed KBT and can be comparable 

to EC. This adds an additional constraint on tunneling since now it has to happen 
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through single levels. Therefore the energy levels in the island need to be aligned 

with the Fermi level in the leads. In this case, the energy for adding an electron 

becomes the sum of ΔE and EC . 

 

1.3 Basics of atomic force microscopy 

 

 Since its introduction in 1986 by Binnig, Quate, and Gerber [38], the atomic 

force microscope (AFM) have been extensively used for imaging and characterizing 

surfaces. An AFM has five essential elements: (1) the force sensor which usually 

consists of a sharp tip (with typical tip size between 10-40 nm), this is attached to the 

end of a micro-cantilever (with typical force constant of 1-50 N/m), the force between 

the surface and tip is reflected as a deflection of the cantilever; (2) a method to detect 

the deflection of the cantilever, the most popular method being the optical lever 

configuration [39], in which a position sensitive photodetector (PSPD) is used to 

monitor the reflection of a laser beam off the end of the cantilever; (3) a feedback 

loop, to keep the selected control parameter (which depends on the operation mode, 

see below) constant; (4) positioning elements, these are used to change the lateral 

(XY) sample position in order to scan a specific area, or change the vertical (Z) 

position in response to the feedback loop such that the feedback control parameter is 

kept constant, these elements are usually constructed from piezoelectric materials; (5) 

a data acquisition and signal processing unit, in order to reconstruct the surface 

image. These units are schematically shown in Fig. 1-10 below. 
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Figure 1-10: Basic components of an atomic force microscope (see text). ΔZ is the 
change in tip-surface distance needed to keep the control parameter equal to the 
setpoint. The image is constructed from ΔZ(X,Y).  
 

In the absence of external electric or magnetic fields, and if the sample surface 

has no adsorbed meniscus layer, the tip-surface interaction force is dominated by the 

attractive Van der Waals force for small tip-surface distances, and by the repulsive 

contact force as the tip begins to touch the surface. The tip-surface interaction force 

as a function of the tip-surface distance is sketched in Fig. 1-11 below. This allows 

for three modes of operation. 
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Figure 1-11: Tip-surface interaction force as a function of tip-sample distance. The 
operation regions for the three basic AFM modes are indicated (see below). 

 

In contact mode, the tip is always touching the surface i.e. operation is always 

in the repulsive regime. The feedback control parameter is usually taken to be the 

deflection of the cantilever. As the tip encounters changes in the topography, the 

deflection consequently changes, and the feedback loop changes the Z position of the 

sample such that the deflection is kept at a predetermined setpoint. Contact mode 

enables the measurement of parameters that require an intimate contact between the 

tip and the surface, like local friction or conductivity. However it has the 

disadvantage of applying a large force to the surface which could result in damage to 

the tip or sample.  

In non-contact mode the tip is vibrated with a small amplitude near its 

resonant frequency (usually at the first harmonic) while hovering above the surface, 

therefore this mode works exclusively in the attractive Van der Waals regime. The 

feedback control parameter is usually taken to be either the amplitude of the 

vibrations or the resonant frequency of the cantilever.  The presence of the force 

gradient changes the effective force constant of the cantilever and therefore its 
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resonant frequency, amplitude, and phase. As the tip encounters changes in 

topography, these parameters consequently change, and the feedback loop changes 

the Z position of the sample such that either the amplitude or resonant frequency are 

kept at a predetermined setpoint. Non-contact mode has the advantage of applying a 

very small force to the sample surface, and its high resolution. However, it is hard to 

implement under ambient conditions due to the effects of the adsorbed water 

meniscus (which I will discuss shortly), it also works best only for relatively flat 

samples. 

The last mode is the intermittent contact mode (also called AC mode or 

tapping mode). This mode is generally similar in implementation to non-contact 

mode. However, here the amplitude of cantilever vibrations is large, such that the tip 

actually contacts the surface in each vibration cycle, and the force gradient affecting 

the cantilever is mainly due to the repulsive part of the tip-sample force. This is the 

most versatile of the three modes. It can be readily operated under ambient 

conditions, and can be used to scan large area samples with diverse topography, while 

still applying a small force to the surface of the sample. 

Under ambient conditions, an adsorbed film consisting of several monolayers 

of water is usually present on hydrophilic surfaces like quartz or SiO2. Due to 

capillary effects, this meniscus layer causes an adhesion force between the tip and the 

surface. The magnitude of this adhesion force mainly depends on the ambient 

humidity [40]. In contact mode, this adhesion force increases the tip-surface force 

during scanning, thus increasing the possibility of wear or damage to the tip or 

surface. In non-contact mode, the meniscus layer can create blurriness and imaging 
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artifacts [41], since now the tip mainly interacts with the surface of the meniscus 

rather the real surface of the sample. AC mode however is not affected much by the 

meniscus layer as long as the amplitude of the cantilever is large enough to penetrate 

the layer and break free off it [42].  

Other than scanning, some local properties like elasticity, adhesion, or 

hardness, might be explored at a specific point using force-distance curves (often 

called ‘force curves’). In this procedure the deflection of the cantilever is monitored 

while it is moved in the direction normal to the surface (Z direction).  

In the absence of a meniscus layer or any long range attractive force like 

electrostatic forces, the behavior is simple. Assuming the tip starts from a position 

where it is not in touch with the surface and is gradually lowered, the force curve 

behaves according to the following steps: (1) the deflection remains almost zero (it 

experiences the attractive Van der Waals force, however this is usually very small for 

distances beyond ~0.5 nm); (2) The tip contacts the surface (assumed to be a hard 

surface), it experiences a large repulsive contact force, the force is related to distance 

ΔZ by ZkF Δ= , where k is the cantilever force constant, and ΔZ is measured from 

the contact point (since the deflection is proportional to force as is known from beam 

bending theory, the deflection too would be proportional to distance); (3) upon 

retraction of the tip during unloading, the deflection gradually decreases; (4) the 

deflection becomes constant again as the tip no longer contacts the surface. These 

steps are shown in Fig. 1-12 below. 
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Figure 1-12: (a) Force curve in the absence of adhesion. (b) Schematic of the tip-
sample positions corresponding to the regions of the force curve shown in (a), see the 
text above for details. 

 

If a meniscus layer is present (which is usually the case for operation under 

ambient conditions), the behavior becomes more complex, this can be summarized in 

the following steps (assuming again the start position where the tip does not contact 

the surface): (1) tip approaches the surface, no deflection; (2) tip contacts the 

meniscus layer, the capillary force pulls down the tip into contact with the surface, 

and the cantilever bends downward causing a small negative deflection; (3) as the tip 

is lowered further, it experiences the repulsive contact force, the cantilever starts to 

bend upwards and deflection increases from the initial negative value to a positive 

value; (4) as the tip is moved up during unloading, the deflection decreases till the 

contact force becomes in equilibrium with the capillary force, and the deflection 

becomes zero; (5) as the tip keeps on retracting, the capillary force holds onto the tip, 

the cantilever bends downwards and the deflection is negative; (6) with further 
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retraction, the tip finally breaks free form the meniscus layer and sharply rebounds 

upwards, and deflection goes back to zero; (7) tip moves away, deflection remains 

zero. These steps are illustrated in Fig. 1-13 below. 

 

 
Figure 1-13: (a) Force curve in the presence of a meniscus layer. (b) Schematic of the 
tip-sample positions corresponding to the regions of the force curve shown in (a), the 
cyan rectangle above the sample surface represents the meniscus layer. See the text 
above for details.  

 

I used force curves extensively in order to establish contact with carbon 

nanotubes using a conductive AFM cantilever. This will be discussed in detail in 

Chapter 3. 
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1.4 Review of previous experimental work 

 

In carbon nanotube devices, the standard four-probe measurement technique 

to eliminate contact effects usually fails, mostly because of the invasiveness of the 

metallic voltage probes [43]. Many other techniques have been devised to study the 

intrinsic response of the nanotube channel. Some of these techniques involve using a 

conductive AFM cantilever as a local electrical contact, for instance to record 

resistance versus length measurements in contact mode [44], injecting current locally 

in AC mode [45, 46], or establishing a contact at selected positions in two [8, 33, 47], 

and three-probe [13, 48] configurations. AFM has also been employed in electrostatic 

force microscopy (EFM) to reveal the potential drop across nanotube devices [49], 

and in scanning gate microscopy to reveal the distribution of defects in the channel 

[49-52]. Other techniques include using non-invasive multiwalled carbon nanotubes 

voltage probes in a four probe configuration [53], studying multiple devices of 

various lengths all patterned on one long nanotube [24], studying telescopically 

extended multiwalled nanotubes [54], and studying a large number of devices that 

have different channel lengths built using different nanotubes [11, 55]. I will briefly 

discuss each of these techniques below.  

For scanned probe techniques like conductive contact mode [44] and pulsed 

current injection in AC mode [45, 46], the main advantage is obtaining a quick image 

of the position-dependent conductance within the scanning range. However, the 

contact with the nanotubes is only transient and, as I established previously in 

Chapter 3, the current most likely does not reach the force-independent regime. 
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Attempting to solve this problem by using a larger force while scanning is potentially 

damaging to the nanotube and/or probe especially in the contact mode method. 

Additionally, because the technique relies on measurement of fast transient current 

pulses, the data may be influenced by the changing impedance as the nanotube 

channel length changes, and correcting for this effect may be difficult, since this 

impedance is not known independently. Therefore, I believe the data obtained from 

these methods should be viewed as qualitative. Such qualitative methods might be 

useful in studying large-area heterogeneous conductive networks like nanotube mats, 

where obtaining the overall conductance map is more important than transport 

measurements at specific points. An example of data obtained using the AC current 

injection method is shown in Fig. 1-14 below. 

 

 
Figure 1-14: Conductance map and the corresponding conductance versus length data 
obtained using the AC current injection method, from Reference [46]. 
 

Multiwalled CNTs have been demonstrated to make minimally invasive 

voltage probes to single-walled CNTs [53]. However, this technique requires AFM 

manipulation in order to change the channel length, making this technique rather 

difficult and limited only to short (1-2 μm) channel lengths. For telescopic extension 
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of multiwalled nanotubes [54] the obtained data reflects both channel transport 

properties and tunneling between the walls which may also depend on length and it 

can be hard to separate the two. 

The study of ensembles of nanotube devices can reveal important trends [11, 

55], but the absence of detailed knowledge about contact resistance, and individual 

defects in each device makes the data useful only in a statistical sense, while 

explaining any deviation from the general trend becomes only a subject of 

speculation. Some of these disadvantages can be lifted by using other techniques 

alongside, like SGM or EFM [11]. The technique of building many devices of various 

lengths on one long nanotube [24] is quite similar, with the added advantage of 

having the same nanotube (i.e. same chirality) in all the devices; however it can still 

be subject to variations in contact resistance. Also, while it is reasonable to assume 

that the distribution of the more common point-like defects should be similar in the 

various segments, there is still the possibility of a rare strong defect occurring in at 

least one of the segments, thus altering the obtained trend. These two methods in 

general have one big advantage over AFM-based techniques, that they easily allow a 

larger range of manipulations to be performed on the samples like studying 

temperature dependence, or applying a large gate voltage. An example of the data 

obtained from many devices built on one long CNT is shown in Fig. 1-15 below. 
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Figure 1-15: Resistance versus length data obtained from different length devices all 
patterned on one long nanotube.  Inset is the same data on a linear scale.  From 
Reference [24]. 

 

EFM reveals the potential distribution in the channel of a nanotube device by 

monitoring the amplitude of the cantilever oscillations as a small AC voltage is 

applied across the sample. SGM reveals the defect distribution in the channel of a 

nanotube device by observing the sensitivity of the current flow across the channel to 

local gating by an AFM cantilever [49]. This technique is rather qualitative, though 

some efforts [51, 56] have been made to extract quantitative data about the size of the 

defect potential barriers. Because of its local nature, it might be hard to reconcile the 

data obtained using this method with global transport properties across the channel 

determined by all the defects together. Examples of data obtained using these two 

methods are shown in Fig. 1-16 below. 
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Figure 1-16: (a) EFM image and the corresponding EFM signal as a function of 
nanotube length, from Reference [49]. (b) Nanotube device and the corresponding 
SGM signal revealing the defect sites in the device, from Reference [52].  Scale bar in 
(b) is 2 μm.   

 

Local contact to a CNT at select positions using a conductive AFM cantilever 

has been employed in two geometries. In the three-terminal mode [13, 48], two fixed 

electrodes are used to pass a current along the device, while a conductive AFM 

cantilever is used to sense the potential at each point. The advantage of this method is 

its insensitivity to the details of the probe-nanotube contact resistance; as long as it is 

much lower than the input impedance of the device used to record the potential. 

However if the contact with the cantilever causes some permanent change in the 

nanotube at the contact point, possibly in the form of contamination or by creating a 

defect, then this would affect any subsequent measurement. Also, it is unclear 

whether localization (evidenced by a non-linear dependence of resistance on length) 

can be detected using this method since localization is a property of the conductance 

of the whole system rather than a property of the potential distribution across the 

system. An example of the data obtained using this method is shown in Fig. 1-17 

below. 
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Figure 1-17: Profile of voltage drop along a nanotube device at two different gate 
voltages obtained using the three-terminal method, from Reference [48].  
 

In the two-terminal mode [8, 33, 47], a single static electrode is used while the 

conductive AFM cantilever serves as a second movable electrode to obtain the current 

response of the channel at various distances away from the static electrode. This is the 

method I have adapted in the current work; in the next section I will explain the 

details of my measurement technique. The main advantage of this method is the 

straightforward interpretation of the data, and the main disadvantage is that the 

contact resistance between the nanotube and the cantilever might change every time 

the contact is established. As I demonstrated in Chapter 3, if the contact resistance is 

not taken properly into account, it could result in smearing out or even creating a false 

trend in the data. This may have been a problem in earlier studies [8, 33, 47, 57] ; 

hence the protocols for establishing a reproducible contact to the CNT discussed in 

Chapter 3 prompt a re-examination of the length-dependent resistance of CNTs.  An 

example of the data obtained using this method is shown in Fig. 1-18 below. 
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Figure 1-18: Resistance versus length along a carbon nanotube device obtained using 
the two-terminal method, from Reference [33]. 
 

 There is some inconsistency in the previous work regarding the dependence of 

resistance on length in carbon nanotubes. While some work indicates a linear 

dependence [24, 48], others indicate a non-linear dependence [33, 46, 47, 54]. 

Understanding this is one of the main motivations of the current work.  

   

In Chapter 2, I will describe the preparation of the carbon nanotube samples 

used in the current study, along with the AFM nanolithography procedure to perform 

length-dependent electrical transport measurements in a two-terminal configuration. 

In Chapter 3, I will show experimental measurements concerning the 

characterization of the contact between a metal-coated AFM cantilever and carbon 

nanotubes. I will discuss the parameters controlling that problem, and a model that 

explains the observed behavior.  I will use the results to establish a protocol for 

contact carbon nanotubes with a conducting AFM tip in order to produce a contact 

whose resistance is fairly reproducible and independent of contact force or bias 

voltage. 
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In Chapter 4, I will report length dependent electrical transport measurements 

for several semiconducting and metallic carbon nanotubes. I will discuss the observed 

behavior in terms of the interplay between contact effects, doping, disorder, and 

phonon scattering. 

Chapter 5 is a separate unit from the first four chapters. There, I treat the 

problem of phase coherence time saturation in quasi one-dimensional metallic 

conductors at low temperatures.  I begin by reviewing the problem, and this is 

followed by a description of the experimental setup. After that I will show my 

experimental results for the phase coherence time in quasi one-dimensional silver 

wires measured using both weak localization and universal conductance fluctuations, 

and comment on the observed behavior. 
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Chapter 2: Sample preparation and setup for performing local 

transport measurements on carbon nanotubes 

 

This chapter describes various experimental aspects for performing local 

transport measurements on carbon nanotubes. I begin with a description of carbon 

nanotube sample preparation, followed by a description of the atomic force 

microscope (AFM) cantilevers used in the measurement. Finally I will describe the 

measurement setup employing an AFM, including the AFM nanolithography program 

used to obtain the measurements described in Chapters 3 and 4. 

 

2.1 Sample preparation 

 

Sample preparation involves first preparing carbon nanotubes on a SiO2/Si 

substrate via chemical vapor deposition, and second preparation a fixed gold 

electrode by shadow evaporation.  These two steps are described in detail below. 

 

2.1.1 Chemical vapor deposition (CVD) of carbon nanotubes 

 

 The first step in fabricating the samples is growth of carbon nanotubes using 

chemical vapor deposition (CVD) [58-60]. In this method, metallic nanoparticles 

dispersed on the surface of the substrate catalyze the dissociation of carbon 
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containing gases (feedstock gases) at high temperatures; the resulting carbon 

dissolves into the nanoparticles and is extruded as carbon nanotubes. 

 The substrate used is heavily-doped Si with a 500 nm oxide layer. CVD is 

performed in a quartz tube oven, as is shown schematically in Fig. 2-1 below. More 

details of this CVD setup can be found in References [61, 62]. 

Two CVD recipes have been employed; the first follows closely that of 

Reference [58], the source of iron nanoparticles is a solution of ferritin (a biological 

protein complex containing ~4500 Fe atoms; commercially obtained from Atomate 

corporation) in DI water at a concentration of 200 μg/ml. The details of this recipe are 

as follows:   

 

• Soak samples in ferritin solution at 4 oC overnight 

• Rinse in DI water and blow dry 

• Calcine in air for 5 min. at 800 oC (this removes the organic shell of 

ferritin, leaving Fe2O3 nanoparticles on the surface) 

• Heat in oven to 900 oC 

• Pass mixture of methane (200 sccm) and hydrogen (200 sccm) for 10 

minutes (hydrogen reduces Fe2O3 nanoparticles into Fe nanoparticles, 

and methane is the feedstock gas) 

• Cool down to room temperature in a flow of argon 
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Figure 2-1: Details of the quartz tube furnace used for CVD growth of carbon 
nanotubes. The heater and the thermocouple are connected to a temperature controller 
(not shown). 
 

The second recipe follows the catalyst preparation procedure of Reference 

[59] where the source of iron nanoparticles is a solution of ferric nitrate Fe(NO3)3 in 

isopropanol (typically a 20-10 μg/ml solution is used to get well dispersed 

nanotubes), the details of the recipe are as follows: 

 

• Dip samples into ferric nitrate solution for about a minute 

• Dip samples into hexanes for a few seconds (this deposits Fe(NO3)3 

nanoparticles on the surface) 

• Heat samples in oven to 850 oC under a flow of argon 

• Turn off argon flow, and pass a mixture of 1900 sccm hydrogen, 1300 

sccm methane, and 18 sccm ethylene for 10 minutes (hydrogen 

reduces Fe(NO3)3 nanoparticles into Fe nanoparticles, methane and 

ethylene are the feedstock gases) 

• Cool down to room temperature in a flow of argon 
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After growth, the samples were characterized by taking a few AFM scans at 

random positions to determine the degree of dispersion of the nanotubes produced, 

and only samples with well separated nanotubes are selected. The typical diameter of 

the nanotubes grown using both recipes was around 2 nm. 

  

2.1.2 Evaporation of fixed electrode 

 

 The metal selected for the contacts is gold. As will be discussed in detail in 

Chapter 4, gold has a high work function (5.1 eV), and has been reported before to 

form ohmic contacts to nanotubes [33, 48]. 

 I used shadow masking and thermal evaporation to define a fixed gold 

electrode on the surface of the samples after nanotube growth. The second (movable) 

electrode is a gold-coated AFM cantilever as will be explained shortly. Shadow 

evaporation offers several advantages: (1) it is rather simple compared to lithography-

based methods, it only requires coarse alignment of the mask such that the produced 

edge is normal to the direction of gas flow during nanotube growth, because the 

nanotubes tend to be oriented along that direction; (2) it keeps the nanotubes in their 

pristine as-grown state, the nanotubes never get coated with resist or exposed to 

chemicals during development or liftoff (however it have been recently shown [63], 

that acrylic-based resists which are commonly used in e-beam lithography can be 

completely cleaned off the surface of carbon nanotubes); (3) with the proper areal 

density of grown nanotubes (which is controlled by the dispersion of the catalyst), 

many devices can be obtained at once (however their positions are unknown, and they 
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need to be located using an AFM or an SEM); (4) because there is no liftoff step, gold 

can be evaporated directly onto the surface without a sticking layer (usually Cr or Ti) 

therefore there is no need for the annealing step [48] required in that case in order to 

improve the contact resistance. 

 I usually used either a thin glass slide (thickness ~ 0.25 mm), or the cleaved 

edge of a silicon wafer (thickness ~0.37 mm) as shadow masks. Both of these offered 

relatively straight, sharp edges (they had microscopic non-uniformities though). The 

selected mask was then directly held against the sample surface using a metallic 

clamp, this was done in order to reduce penumbra effects and therefore improve the 

sharpness of the edge of the evaporated film. The masked sample was then installed 

in a thermal evaporator and the desired thickness of gold (99.999 % pure) is 

deposited. After that the mask is gently removed.   To prevent electrical shorts to the 

silicon backgate, the gold close to the edges of the sample is mechanically removed 

using a sharp wooden tip (with no sticking layer, the gold film easily peels off the 

SiO2 surface). The sample is then fixed to a suitable holder and wire bonded, Fig. 2-2 

below illustrates the various steps of sample fabrication. 
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Figure 2-2: Illustrations of sample preparation steps. (a) CVD of carbon nanotubes; 
(b) shadow evaporation of fixed gold electrode; (c) mechanical removal of excess 
gold; (d) fixing to a suitable holder and wire bonding. A photograph of two finished 
samples bonded to a holder is shown in (e). The purple rectangles are the SiO2/Si 
substrates, the small gold rectangles within purple rectangles are the fixed gold 
electrodes.  The holder is about 20x20 mm. 
 

The main disadvantage I found about the shadow-mask evaporation technique 

is the lack of sharpness of the gold edge produced. Close examination of the AFM 

scans near the fixed electrode revealed that while the electrode edge is sharply 

defined, it is followed by a thin long-decaying profile on the surface of SiO2. Fig. 2-3 
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below shows the typical height profile obtained using the shadow mask evaporation 

method compared with an edge defined by e-beam lithography. 

 

 
Figure 2-3: Comparison of shadow-evaporated edges and an edge defined by e-beam 
lithography; (a) and (b) show shadow-evaporated gold edges, images are 11.8x11.8 
μm and 13.8x13.8 μm respectively; (c) shows gold lines defined by e-beam 
lithography (device courtesy of Y. F. Chen), images is 7.2x7.2 μm; (d)  height profile 
across the shadow-evaporated edge shown in (a); (e) comparison of three sections 
(indicated by the white vertical lines) across the edges in (a), (b), and (c) the heights 
are normalized by the total thickness of the evaporated gold films.  
 

The thickness of this long tail ranges roughly from 5 nm in the immediate 

vicinity of the electrode and decays into a thickness of less than 0.5 nm typically 

within a distance of 1.5-2 μm. This range of thickness is lower than the electrical 

percolation threshold for gold on SiO2 which is about 16 nm [64] and therefore the 

gold film is not electrically conductive in the tail region, and consists of isolated 
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grains, or islands of metal. However, the presence of this extended tail of gold islands 

somewhat affects the transport properties of carbon nanotubes as will discussed in 

Chapter 4. For the rest of this work, this extended tail of gold islands will be referred 

to as the ‘gold island band’. 

 

2.2 Cantilever preparation 

 

 Two types of cantilevers have been used for measurements, FESP and LTESP 

(both from Veeco instruments). FESP cantilevers have a nominal force constant of 

2.8 N/m and will be referred to throughout this work as ‘soft cantilevers’. LTESP 

cantilevers have a nominal force constant of 48 N/m and will be referred to 

throughout this work as ‘hard cantilevers’. Both types have a nominal length of 225 

μm, a tip (cone) height of 10-15 μm and are made of silicon. 

In order to make the cantilevers conductive, the raw Si cantilevers are coated 

with gold using thermal evaporation. Because gold does not adhere well to silicon 

dioxide, a 50-60 nm thick layer of titanium was evaporated first on the cantilevers, 

followed by 60-90 nm of gold, this outer gold coating is what contacts the nanotubes. 

This composite metallic coating has proven to be quite durable, enduring hundreds of 

contacts to the sample surface before any significant erosion is observed (this will be 

discussed in detail in Chapters 3 and 4). 
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2.3 Measurement setup  

2.3.1 Variables of the problem 

 

The measurements are performed in a two-terminal field effect transistor 

(FET) configuration with one terminal being the fixed gold electrode, and the other 

being the movable metal coated cantilever. 

Positioning the movable electrode (cantilever) requires three inputs to the 

measurement system. X and Y positions of the cantilever determine the point on the 

nanotube where the contact is made, which determines the length L of the nanotube 

channel. The Z position determines the deflection of the cantilever hence the contact 

force. The deflection is recorded using a photodetector monitoring a laser beam 

reflecting off the free end of the cantilever. 

 Two voltages bias the nanotube device, the drain voltage Vd (considering the 

fixed electrode as the grounded source) is applied to the conductive cantilever, the 

gate voltage Vg determines the depletion state of the device and is applied to the Si 

backgate.  Both voltages determine the drain current Id flowing through the channel, 

which passes through a current preamplifier whose voltage output is monitored.  

 All the above amount to five inputs to the system (X, Y, Z, Vg, and Vd) and 

three outputs (L, Id and deflection).  This is shown schematically in Fig. 2-4 below. 
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Figure 2-4: Schematic of the measurement system, X and Y positions of the scanner 
determine the channel length L, Z position determines the deflection (contact force), 
Vd and Vg determine the current through the channel Id . 
 

2.3.2 Instrumentation 

 

 The AFM used is a model Dimension 5000 from Veeco instruments, which is 

also equipped with a closed loop scanner (model NPXYZ100B from nPoint, Inc.) 

which offers high linearity and low hysteresis for positioning applications. The 

positioning commands of the scanner are sent through a USB connection. A data 

acquisition card (PCI-MIO-16XE-10 from National Instruments) provides Vd and Vg 

from digital to analog converters. It also monitors the deflection signal from the 

Dimension 5000 photodetector, and the voltage output from the current preamplifier 

(model 1211 from DL Instruments) through analog to digital converters. All the 

input/output signals mentioned above have a range of ±10 V. Figure 2-6 below shows 

a view of the AFM with the sample installed. 
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Both the USB positioning signal and the data acquisition card are controlled 

by a LabVIEW based nanolithography program that I designed for the purpose of 

obtaining local transport measurements in carbon nanotubes; this will be explained in 

detail in the next section. 

 

2.3.3 Measurement procedure 

 

 As described before, the sample consists of nanotubes contacted on one end 

by the fixed gold electrode, and the other end by the gold coated cantilever which 

needs to be correctly positioned such that it contacts the nanotube somewhere 

between the free end and the fixed electrode. The first step is to perform AFM scans 

(in AC mode) near the edge of the fixed gold electrode (Fig. 2-5-c) at various 

positions, until a suitable nanotube is found. Then an AFM scan of suitable size 

(usually 35x35 μm) is recorded, which serves as a reference for the positions along 

the nanotube. At this point the nanolithography program can be started.  

 The measurement procedure begins by stopping the AFM scanning motion as 

well as stopping the AC vibrations of the cantilever, followed by moving the 

cantilever to the center of the frame, which serves as a reference for all consequent 

positioning commands.  The previously recorded AFM image of the surface is 

imported into the nanolithography program as a position reference. 

 The main functions of this nanolithography program can be divided into two 

groups, the contact control group, and the sweeping/measurement group. The 

function of the contact control group of commands is to achieve and fine-tune the 
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contact between the conductive AFM cantilever and the nanotube. The function of the 

sweeping/measurement group is to study the response of the outputs (Id and 

deflection) to a single input or a combination of inputs (Z position, Vg , Vd). 

 

 
Figure 2-5: Photographs of the measurement setup. (a) General view, with the sample 
installed and the AFM head not engaged. (b) Detailed view of the sample with the 
AFM scanning head engaged.  (c) View from the optical microscope of the AFM near 
the fixed gold electrode, the dark shadow to the right is the cantilever carrier, the 
cantilever itself is out of focus and hard to see.   
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The basic functions of the contact control group are detailed as follows: 

 

(a) Set XY position 

This function is used for coarse positioning of the cantilever in XY. These 

coarse contact positions are usually determined graphically using the imported 

AFM image of the surface mentioned above. Using this, the cantilever can be 

moved into the close proximity of the point along the nanotube where 

measurement is desired. The procedure is as follows: 

• Move from old X position to new X position 

• Wait for XY settling time 

• Move from old Y position to new Y position 

• Wait for XY settling time 

The XY settling time (20 ms) is determined by the gain setting of the 

scanner’s PID controller.  

 

(b) Lower cantilever 

This command lowers the cantilever until the deflection setpoint is achieved 

(the adjustment of the deflection setpoint will be discussed in Chapter 3). This 

is used to establish the contact between the cantilever and the carbon 

nanotubes.  The procedure is as follows: 

• Move cantilever down by increment δZ 

• Wait for Z settling time 

• Read deflection 
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• If deflection ≥ setpoint, then exit, else repeat 

The Z settling time (10 ms) is determined by the gain setting of the scanner’s 

PID controller; δZ is 2.5 nm by design; deflection and deflection setpoint are 

in volts, which can be converted into nanometers through the sensitivity of the 

AFM photodetector (10.85 V/μm in my system).  

 

(c) Raise cantilever 

This command is used to break the contact between the cantilever and the 

carbon nanotubes after the desired measurements have been taken.  The 

procedure is as follows: 

• Read old deflection 

• Move cantilever up by increment δZ 

• Wait for Z settling time 

• Read new deflection 

• If new deflection = old deflection, then go to next step, else repeat 

• Move cantilever up by distance Zup 

• Wait for Z settling time 

• Exit 

The condition that the deflection is equal before and after moving up by δZ 

means the cantilever has just broken free from the surface (see Chapter 1),  the 

additional distance Zup (usually selected as 30-50 nm) is an added insurance.  

 

(d) Search 
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The search function is used to find the exact position of contact; it starts with 

an initial guess for the contact site on the nanotube channel selected 

graphically on the previously recorded AFM image of the nanotube. The 

search radius (usually selected as 200-300 nm) is a neighborhood around the 

initial guess site. ΔXY is a suitable increment/decrement (usually 10-15 nm) 

in either X or Y depending on the orientation of the nanotube, drain current 

settling time is three times the rise time of the current preamplifier (3 or 10 ms 

were usually used). The procedure is as follows: 

• Set XY position to search position 

• Lower cantilever 

• Wait for drain current settling time 

• Read drain current 

• If drain current ≥ contact criteria, then declare search success and 

exit  

• New search position = current search position + ΔXY 

• If new search position is out of search radius, then declare search 

failure and exit 

• Raise cantilever, and repeat 

 

The basic functions of the sweep/measurement group are detailed as follows: 

 

(e) Sweep voltage 
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This generates a single sweep measurement of current vs. either Vd or Vg. The 

procedure is as follows: 

• Start with voltage sweep beginning value 

• Set voltage  

• Wait for drain current settling time 

• Record drain current  

• Increment voltage  

• If new voltage ≥ sweep end value, then display sweep, save 

data, and exit, else repeat from step #2 

Examples of the output from this function will appear in Chapter 3, Chapter 4, 

and Appendix A. 

 

(f) Sweep deflection 

This generates a measurement of current vs. deflection on approaching and 

retracting the cantilever.  Below is the procedure assuming the cantilever was 

initially raised above the surface; the opposite case requires some change in 

the order of commands but is more or less the same. The procedure is as 

follows: 

• Move cantilever down by increment δZ 

• Wait for Z settling time 

• Wait for drain current settling time 

• Read deflection and drain current 

• If deflection ≥ setpoint, then go to next step, else repeat 
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• Read old deflection 

• Move cantilever up by increment δZ 

• Wait for Z settling time 

• Wait for drain current settling time 

• Read drain current and new deflection  

• If new deflection = old deflection, then go to next step, else 

repeat from step #6 

• Move cantilever up by distance Zup 

• Wait for Z settling time 

• Exit 

Examples of the output from this function will appear in Chapter 3. 

 

(g) sweep deflection and voltage 

The output of this function is a 2-D map Id(V, D) where V is either Vd or Vg 

and D is the deflection (contact force). Again, the procedure below assumes 

the cantilever was initially raised above the surface. The procedure is as 

follows: 

• Move cantilever down by increment δZ 

• Wait for Z settling time 

• Sweep voltage 

• Read deflection 

• If deflection ≥ setpoint, then go to next step, else repeat 

• Read old deflection 
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• Move cantilever up by increment δZ 

• Wait for Z settling time 

• Sweep voltage 

• Read new deflection  

• If new deflection = old deflection, then go to next step, else 

repeat from step #6 

• Move cantilever up by distance Zup 

• Wait for Z settling time 

• Exit 

Examples of the output from this function will appear in Chapter 3  

 

(h) Sweep Vg and Vd 

The output of this function is a 2-D map Id(Vd, Vg), this type of map was rarely 

recorded since it requires a long time to record, i.e. a long time of contact 

between the cantilever and the nanotube, which increases the possibility of 

damage to either one or both of them. The procedure is as follows: 

• Start with Vg sweep beginning value 

• Set voltage (Vg) 

• Wait for drain current settling time 

•  Sweep Voltage (Vd) 

• Increment voltage (Vg) 

• If new Vg ≥ Vg sweep end value, then save data, and exit, else 

repeat from step #2 
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Fig. 2-6 below shows an example of such a dual Id(Vd, Vg) sweep (this is 

provided here since this data type does not appear in any other chapter). 

 

(i) Time series  

In time series data, both deflection and Id are recorded as a function of time, 

this type of data is useful in studying transient phenomena like charging or 

stability of the tip-nanotube contact. Examples of the output from this function 

will appear in Chapter 3 and Chapter 4. 

 

 
Figure 2-6: Constant current contour map of Id as a function of both Vd and Vg on 
nanotube D2 (see Table (2-1)), about 22 μm away from the fixed electrode. 
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I used this nanolithography program to record local transport measurements 

on seven different nanotubes, Table (2-1) below summarizes their properties, a more 

detailed description of these will be presented in Chapter 4 and Appendix A. 

 

Nanotube Name Type Diameter (nm) 

D1 Semiconducting 2.1 

D2 Metallic 2.2 

D3 Semiconducting 3.0 

D4 Metallic 4.1 

D5 Semiconducting 1.9 

D6 Metallic 4.1 

D7 Metallic 2.0 

Table (2-1): Brief description of the nanotubes measured in Chapters 3 and 4. 
 

In Chapter 3 I will discuss the characterization of the electrical contact between metal 

coated AFM cantilevers and carbon nanotubes, and in Chapter 4 I will discuss the 

local transport measurements obtained for some of these nanotubes.   
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Chapter 3: Characterization of the electrical contact between a 

conductive AFM cantilever and a carbon nanotube  

 

In order to successfully interpret local electrical transport data obtained using 

the moving electrode technique, it is important to characterize the contact between the 

conductive AFM cantilever and the CNT. While the moving electrode technique was 

used by several authors [8, 13, 33, 47, 48, 57], only a few attempts of characterization 

exist in the literature [57, 65]. In this chapter, I present a detailed study of the AFM 

cantilever-CNT electrical contact. I will show results for the behavior of the contact 

under different loading and positioning conditions, and an interpretation of these 

results in terms of electro-mechanical switching caused by lateral movement of the 

cantilever during loading, which explains well the major features observed 

experimentally. 

 

3.1 Parameters of the contact 

 

By performing resistance measurements in a two terminal configuration, one 

faces the usual problem of separating the desired resistance from any parasitic 

resistance in series with it. In the case of a carbon nanotube device, the desired 

resistance is that of the nanotube, and the parasitic resistance mainly comes from the 

contact resistance between the nanotube and the metallic electrodes. Other 

contributions possibly come from the input resistance of the current preamplifier used 
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and the resistance of the leads. In my measurement system the input resistance of the 

current preamplifier varied between 2-200 Ω for the current scales usually used, and 

the leads resistance was about 50 Ω, this was measured through contacting the 

cantilever to the fixed gold electrode (see Chapter 2). Thus the overall contribution of 

these two parasitic resistances amounts to about 50-250 Ω, which is much lower than 

the ideal contact resistance ( 5.64/ 2 ≈eh  kΩ) of a metal-single walled CNT-metal 

structure. For the moving electrode technique, while the contact resistance between 

the nanotube and the static gold electrode is fixed, the contact resistance between the 

nanotube and the metal coated AFM cantilever will change every time the contact is 

established, which would cause an undesirable scatter in length-dependent transport 

data. Therefore, it is important to understand how to obtain the contact in a controlled 

and reproducible manner, and the variables that affect it.  

I expect the cantilever-CNT contact resistance to depend on the parameters of 

both the nanotube and the cantilever.  The parameters related to the metal coated 

AFM cantilever are its force constant, which determines the force exerted by the 

cantilever on the surface for a given deflection setpoint, and the coating metal which, 

in the case of semiconducting nanotubes, determines whether the electrical contact is 

of the ohmic or Schottky barrier type [2-4, 6, 7, 66]. The relevant parameters for the 

nanotube are its type, i.e. whether metallic or semiconducting, its diameter (which 

determines bandgap for a semiconducting nanotube), and its geometric orientation 

relative to the cantilever. From general considerations, I also expect the contact to 

depend on the lateral position of the tip apex relative to the nanotube. I will discuss 

the experimental evidence that these are the relevant parameters in the next section. 
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3.2 Conductance vs. load behavior 

 

To investigate the behavior of the contact as a function of loading force, I 

used the search function of my nanolithography program (see Chapter 2) to locate a 

CNT, and then changed the lateral position of the cantilever by small steps of 2-6 nm. 

The purpose was to investigate whether there is an optimal combination of load and 

lateral position that would minimize the contact resistance between the cantilever and 

the nanotube. In the most common measurement geometry, the CNT orientation was 

normal to the long axis of the cantilever, and therefore the lateral position was 

adjusted in the X direction. This geometry, which I will term “horizontal profile”, is 

shown in Fig. 3-1-a below.  
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Figure 3-1: Illustration of the two measurement geometries. (a) “Horizontal profile” 
measurement geometry.  The nanotube is oriented normal to the long axis of the 
cantilever thus the lateral position is adjusted in the X direction, (b) “Vertical profile” 
measurement geometry.  The nanotube is oriented parallel to the long axis of the 
cantilever thus the lateral position is adjusted in the Y direction. Cantilever drawing is 
not to scale. 
 

At the selected positions, I started a number of loading cycles. I recorded 

simultaneous readings of the Z displacement of the scanner, deflection of the 

cantilever, and current passing through the CNT device. In this geometry, I was able 

to observe three distinct types of behavior for these current-force curves; these are 

shown in Figs. 3-2-a through 3-2-c below, and deflection for the same loading cycles 

is shown in Fig. 3-2-e.  Fig. 3-2-e indicates that after the mechanical contact between 

the cantilever and the surface is established (beyond 06.0≈ΔZ  μm), the deflection is 
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proportional to the Z-displacement, so ΔZ measures the tip-surface force.  Therefore I 

refer to these curves as “current-force curves” though they are, strictly speaking, 

current-displacement curves. 

 

 
Figure 3-2: (a) to (d) Current-force curves of Types I, II, III, IV respectively. (e) 
Deflection corresponding to the four loading cycles. Data in (a-c) are taken at nearly 
the same point on nanotube D2 with different lateral positions (along the X axis) with 
Imax = 0.887 μA.  Data in (d) are also taken on D2 at a different position with Imax =  
0.816 μA. All Figures have Vd = 0.1 V, and Vg = 0.0 V. 
 

In the current-force curves of Type I represented by Fig. 3-2-a; conduction 

through the CNT starts simultaneously with the mechanical contact ( 06.0≈ΔZ  μm), 

and the current rises quickly with more loading, finally reaching a load independent 

value.  In current-force curves of Type II, represented by Fig. 3-2-b, the contact starts 

similar to the Type I curves, but the current rises and then goes down quickly to zero 
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with more loading; the current may or may not reach its maximum value in the 

middle part. In current-force curves of Type III, represented by Fig 3-2-c, electrical 

conduction is delayed from mechanical contact, and then starts to behave like Type I 

with more loading.  

Another extreme for the measurement geometry occurred when the CNT 

orientation was parallel to the long axis of the cantilever; in this case the lateral 

position was changed in the Y direction as is shown in Fig. 3-1-b. For this geometry, 

which I will term “vertical profile”, current-force curves of Types II and III were 

mostly absent, and current-force curves of Type IV, represented by Fig. 3-2-d, 

emerged alongside Type I curves. In Type IV the electrical and mechanical contacts 

are simultaneous; however the contact resistance is high and the current generally 

fluctuates with further loading, and does not reach a saturation value.  

The unloading portion of all these force sweeps is generally similar to the 

loading portion, with hysteresis caused by adhesion. I have observed these four types 

of behavior on all the nanotubes I studied, whether metallic or semiconducting, and 

independent of the cantilever force constant (typically 2.8 N/m for soft cantilevers, 

and 48 N/m for hard cantilevers), and contact type (Ohmic vs. Schottky). The type of 

behavior observed depended only on the geometry and lateral position of the 

cantilever. For example, Fig. 3-3 shows current-force curves of the Type I measured 

on nanotube D2 using both a hard and a soft cantilever, and Fig. 3-4 shows current-

force curves of Type I measured using two different soft cantilevers on tube D3. One 

of these cantilevers was showing diode-like conduction through the CNT device, 

indicating a Schottky barrier contact between the tip and the nanotube [67]. This 
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probably happened due to poor gold coverage at the apex, leading to the contact being 

established by the titanium sticking layer underneath (see Chapter 2).  Figs. 3-3 and 

3-4 thus show that current-force curves of the Type I are independent of the cantilever 

type (hard vs. soft) and contact type (Ohmic vs. Schottky). 

 

 
Figure 3-3: (a) Current response and (b) deflection response, for force curves of Type 
I measured on nanotube D2 (at two different positions) using a hard cantilever (black 
line) and a soft cantilever (red line).  Imax =  0.89 μA for the hard cantilever case, and 
0.587 μA for the soft cantilever case, Vd = 0.1 V, and Vg  = 0.0 V for both. 
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Figure 3-4:  (a) Current response and (b) deflection response for force curves of Type 
I measured on nanotube D3 (at two different positions along the nanotube) under 
ohmic (black line) and Schottky barrier (red line) contact conditions. (c) and (d) show 
typical Vd sweeps for the two different contacts. Soft cantilevers have been used for 
both measurements, with Vd = 0.5 V, and Vg = -5.0 V. Imax = 0.353 μA for the ohmic 
case, and 0.416 μA for the Schottky case. 
 

Of these four types, current-force curves of the Type I are the most 

operationally desirable for local transport measurements. The phase space for local 

transport results is a function of four parameters which are the drain voltage Vd, the 

gate voltage Vg, the length of the nanotube channel L, and the cantilever-CNT contact 

force F. By selecting a deflection setpoint that is higher than the threshold where 

current becomes independent of deflection (force), we can effectively reduce the 

phase space of the local transport results, from four dimensional, G(Vd,Vg,L,F), into 
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three dimensional G(Vd,Vg,L). Fig. 3-5 shows current-force curves of the Type I for 

seven different nanotubes, indicating that current-force curves Type I are generically 

obtainable, and are highly reproducible at least in the regime beyond the threshold. 

 

 
Figure 3-5: Current-force curves of Type I measured on seven different nanotubes; 
D1, D3, and D5 are semiconducting, the rest are metallic; D4 and D6 were measured 
using hard cantilevers, the rest using soft cantilevers. All the curves show three 
consecutive loading cycles except for that of D4 which shows two cycles only. 
 

3.3 Conductance vs. both load and lateral position 

 

In order to systematically study the occurrence of the four types of current-force 

curve behavior, I systematically collected current-force curves as a function of lateral 
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position (X position for horizontal profiles and Y position for vertical profiles). 

Initially I located the desired nanotube, and then moved the cantilever laterally in one 

direction, till the contact was entirely lost; then I started to move the cantilever back 

towards the nanotube in uniform increments of 2-6 nm, performing a single loading 

cycle at every point, till the contact is lost again.  Note that the cantilever is moved 

uniformly in one direction, in order to avoid any effects from scanner hysteresis, or 

XY drift. I represent these curves as a 2-D map of the current passing through the 

device as a function of lateral position (X or Y position) and Z displacement of the 

scanner; these are shown in Fig. 3-6 below for nanotubes D2, D3, and D7.  Current-

force curves are vertical slices through these 2-D maps. 

 
Figure 3-6: Two-dimensional plots of current vs. both horizontal position ΔX and 
loading ΔZ taken in the “horizontal profile” configuration using soft cantilevers 
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All these measurements were taken using soft cantilevers, and all were 

oriented such that the nanotubes were normal to the long axis of the cantilever, 

therefore the lateral displacement was in the X direction, i.e. a “ horizontal profile” 

(see Fig. 3-1-a). 

The main features observed in horizontal profiles are: (1) the occurrence of 

the different types of current-force curves is not random, starting from low X values, 

initially we get curves of Type III, followed by Type I and then Type II respectively; 

(2) the maps consist of fast rising edges that surround a wide plateau, where the 

current through the contact is almost independent of the loading force; (3) this 

behavior is independent of the type of the nanotube, since these profiles look the 

same for D3 which is semiconducting, and both D6 and D2 which are metallic. I 

performed a similar measurement using hard cantilevers on tubes D2 and D6 as 

shown in Fig. 3-7 below. In general, the behavior in Fig. 3-7 can be seen to be similar 

around the edges of the pattern to that in Fig. 3-6, with two additional features, the 

presence of low conductance (i.e. high contact resistance) spots around the edges of 

the patterns (for example, at ΔX ~ 0.01 μm in Fig. 3-7-a, and ΔX ~ 0.27 μm in Fig. 3-

7-b), and the presence of regions in the middle of the conductance plateau where the 

cantilever-CNT contact ceases to conduct altogether (at ΔX ~ 0.05 μm in Fig. 3-7-a, 

and ΔX ~ 0.15 μm in Fig. 3-7-b). 
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Figure 3-7: Two-dimensional plots of current vs. both horizontal position ΔX and 
loading ΔZ taken in the “horizontal profile” configuration of Fig. 3-1-a on nanotubes 
D2 (a), and D6 (b) using hard cantilevers; the horizontal red lines indicate the 
beginning of the contact, while the others indicate the profiles boundaries, slope for 
D2 is 3.7, and for D6 is 3.9 corresponding to inverse slopes of 0.27 and 0.26 
respectively. 
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Looking at both Figures 3-6 and 3-7, we can see that the left edges of the 

plateaus, which correspond to Type III current-force curves, have almost the same 

slope as the right edges which correspond to Type II current-force curves, this 

possibly indicates a common origin for both, also the slopes of the edges of horizontal 

profiles taken on different nanotubes seem to be similar even for soft and hard 

cantilevers. The inverse of these slopes which I will name β, ranges roughly between 

0.25 and 0.3; this implies a simple linear relation between Z displacement and X 

lateral displacement at the boundaries of the profile. 

 

ZX Δ=Δ β         (3-1) 

 

 To study the orientation dependence of these profiles, I used nanotube D6 

because it had a loop as is shown in Fig. 3-1-b; therefore it had different portions 

where the nanotube was parallel or perpendicular to the long axis of the cantilever. At 

these points, I collected force curves, with lateral motion being in the Y rather than X 

directions, i.e. a “vertical profile” (see Fig. 3-1-b). Fig. 3-8 shows two such profiles 

performed on D6 using two different hard cantilevers. While these maps also show 

wide plateaus with conductance mostly independent of loading force, the boundary 

shape is significantly different, with the beginning and the end of the plateau having 

almost vertical edges.  

A model for the nanotube-tip contact which explains the behavior observed in 

horizontal profiles (Eqn. 3-1) and vertical profiles (nearly vertical edges of current 

maps) is presented below in section 3.5.  For now, I note that for both types of 
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profiles, the presence of wide plateaus where the conductance is independent of load 

means that a correctly positioned cantilever would mostly produce force curves of 

Type I, which is most desirable.  

 

 
Figure 3-8: Two-dimensional plots of current vs. both vertical position ΔY and 
loading ΔZ taken in the “vertical profile” configuration of Fig. 3-1-b on nanotube D6 
using two different hard cantilevers; notice the almost vertical boundaries. 
3.4 Conductance vs. both load and bias conditions 
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Before I can justify the assertion in Section 3.1, that the four dimensional 

phase space of the local transport problem G(Vd,Vg,L,F) can be reduced into a three 

dimensional one G(Vd,Vg,L), I need to investigate the possibility of the presence of 

any hidden parametric relations between F (the contact force) and both Vd and Vg. To 

do so, first I contacted the nanotube; then I tuned the lateral position such that I got 

force curves of Type I, and then used the dual sweeping capability of my 

nanolithography program (see Chapter 2), the results are presented in the form of 2-D 

contour maps of constant drain current as a function of Z displacement and either Vd 

or Vg.  I will first discuss the results for Vg; one remark is that, since both Vg sweeps 

and force curves are hysteretic, a full loading/sweeping cycle would produce four 

current maps; Figs. 3-9 and 3-10 show such maps for points on nanotubes D7 and D5 

respectively.  

The main feature I would like to emphasize in these maps is the shape of the 

constant current contours, which consist mainly of vertical and horizontal lines, with 

some fluctuations around the threshold region; this mostly indicates the absence of a 

hidden parametric relation between F and Vg, except maybe around the threshold. 

This behavior can be seen to be the same for the semiconducting nanotube D5, and 

the metallic nanotube D7.  

Turing now to the relation between Z displacement and Vd. In most cases, 

unless Vd was swept to a high value beyond about ±(7-8) Volts, I did not observe 

much hysteresis in the current, therefore the dual sweep splits into only two maps 

corresponding to the loading and unloading portions of the force curve. Figs. 3-11 

and 3-12 show such maps on tubes D3 and D7 respectively using soft cantilevers. For 
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these maps, we can see that while a well formed contact shows horizontal contour 

lines, therefore indicating the absence of a hidden relation between F and Vd , the 

contours near the threshold are not exactly vertical, they have some slope which could 

indicate the presence of a contact barrier. 
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Figure 3-9: (a) Constant drain current contours as a function of both Vg and 
displacement ΔZ for metallic nanotube D7. (b) Deflection during the loading cycle. 
(c) A typical Id versus Vg sweep beyond the contact threshold (ΔZ > 0.06 μm for 
unloading, and ΔZ > 0.04 μm for loading, below these the current is essentially zero). 
Imax = 0.288 μA, and Vd = 0.1 V for all maps. 
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Figure 3-10: (a) Constant drain current contours as a function of both Vg and 
displacement ΔZ for semiconducting nanotube D5. (b) Deflection during the loading 
cycle. (c) A typical Id versus Vg sweep beyond the contact threshold (ΔZ > 0.04 μm 
for unloading, and ΔZ > 0.07 μm for loading). Imax = 0.283 μA, and Vd = 0.1 V for all 
maps. 
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Figure 3-11: (a) Constant drain current contours as a function of both Vd and 
displacement ΔZ for semiconducting nanotube D3. (b) Deflection during the loading 
cycle. (c) A typical Id versus Vd sweep beyond the contact threshold (ΔZ > 0.045 μm 
for both loading and unloading). Imax = 0.754 μA, and Vg = -2.5 V for all maps. 
 

An important operational issue in these maps is, since sweeping the voltage 

was performed relatively slowly, the Z drift of the scanner contributed a little to the Z 

movement rate, thus creating some asymmetry between the loading and unloading 

portions of the force curve, in this case we can not calculate the loading force simply 

from the scanner displacement and need to use the deflection for that. 
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Figure 3-12: (a) Constant drain current contours as a function of both Vd and 
displacement ΔZ for metallic nanotube D7. (b) Deflection during the loading cycle. 
(c) A typical Id versus Vd sweep beyond the contact threshold (ΔZ > 0.05 μm for 
loading and ΔZ > 0.07 μm for unloading). Imax = 5.47 μA, and Vg = 0.0 V for all 
maps. 
 

3.4 Discussion 

 

Recalling the basic difference between a movable and a fixed electrode, 

namely that a movable electrode exerts a variable force on the metal-nanotube 

contact; while a static electrode exerts a constant force on the nanotube due to van der 
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Waals interaction or chemical bonding between the electrode atoms and the nanotube, 

the question becomes whether the variation of the local stress at the tip-nanotube 

contact can actually explain the diverse switching behavior observed in the different 

types of current-force curves as reported in the previous section. It has been suggested 

[57] that contacting a carbon nanotube by a conductive AFM cantilever can cause 

radial deformation in the nanotube, which couples into the electronic properties of the 

nanotube at the contact spot, and this idea was used by the authors of Reference [57] 

to explain their experimental observation of non-monotonic force-current curves 

(which are mostly similar to Type II current-force curves reported here). 

The coupling of radial deformation and electronic properties of nanotubes has 

been addressed in several theoretical works [68-72], where calculations show that 

semiconducting and metallic nanotubes respond in a different way to radial 

deformation, which should open a gap in metallic nanotubes, while it should narrow 

down the gap for semiconducting nanotubes [68-71]. In one work [72] it is also 

predicted that for metallic nanotubes beyond extreme pressures (800 GPa – 2 TPa), 

the nanotubes would collapse, causing the gap that initially opened to be closed again. 

Other calculations [73] predict that the radial deformation is not continuous, but there 

is a certain pressure threshold for a circular-to-oval transition which is diameter 

dependent. Also most of these works consider only radial deformation effects, while 

the combined effects of both radial deformation and contact to a metal (which is the 

case for nanotubes contacted by a metal-coated cantilever) have been rarely addressed 

[74, 75].   
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A primary observation from the data I presented in the previous section is that 

the behavior of contacts to the semiconducting nanotubes D1, D3, and D5, and that of 

contacts to the metallic nanotubes D2, D4, D6, and D7 was found to be similar in 

terms of their parametric dependence on contact force, lateral position, Vg, and Vd. 

This suggests that the proposed tip-induced radial deformation of the nanotubes can 

not be the factor modulating the current through the contacts, since they are expected 

theoretically to respond in very different ways to stress.   

Of all the parameters initially expected to affect the electrical conduction 

through the CNT-cantilever contact, only the orientation of the nanotube and the 

lateral position of the cantilever seem to be relevant. In addition, I can make the 

following observations: First, the maximum value of current is highly reproducible 

for consecutive loading cycles as is evident from Fig. 3-5, this indicates that there is 

no permanent change in the nanotube at the contact area.  Second, force curves of 

Type I seem to dominate the middle of both horizontal and vertical profiles, and the 

middle of the profiles is where one could expect the cantilever to be applying the 

maximum force to the nanotube. The other three current force curve types occur only 

as ‘edge’ situations, which occur when the lateral position of the cantilever is largely 

mismatched with the nanotube position. Therefore, if the assertion of the authors of 

Reference [57] that non-monotonic current-force curves (similar to Type II) are 

caused by the cantilever deforming the nanotube, then curves of Type II should have 

dominated the middle of the profiles rather than appearing only at the edge.  Third, by 

comparing the shapes of the edges of horizontal profiles (which are dominated by 

Type II and Type III current-force curves) to those of vertical profiles (which are 
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dominated by Type IV current-force curves), one can see that this different behavior 

at the edges of the two geometries can not be induced through radial deformation, 

since the force at the edges can be expected to be nearly the same for both 

orientations, and this should have produced similar behavior.  Fourth, the lack of a 

parametric correlation between the loading force and bias conditions discussed in 

section 3.4, and the indifference of this behavior to nanotube type also argue against a 

force-induced change in the local electronic structure at the contact. 

In order to gain a deeper insight into the behavior of the contact as a function 

of contact force, I calculated the dimensionless quantity 
)(
)(

)(
)(

)(
1

ZI
ZdIZ

Zd
ZdI

ZI Δ
Δ

=
Δ
Δ

Δ
δ  

for current-force curves of Type I (δZ is the constant increment in ΔZ during 

loading/unloading, δZ = 2.5 nm in my system by design, also notice that ZZd δ=Δ )(  

since the data is stored in a discrete form). This quantity is not affected by the 

constant resistances in series with the tip-nanotube contact, which mainly come from 

the resistance of the nanotube channel and the contact resistance to the fixed 

electrode. In Fig. 3-13 below, I plot )(/)( ZIZdI ΔΔ  as a function of ΔZ for current-

force curves of five different nanotubes. Notice that ΔZ in Fig. 3-13 is measured from 

the point of onset of conduction. Since this point corresponds also to the onset of 

mechanical contact (for Type I); then ΔZ becomes a measure of force applied by the 

cantilever to the nanotube. The consistency observed among the different nanotubes, 

indicates that there is no dependence on nanotube type (metallic vs. semiconducting) 

and that this behavior of )(/)( ZIZdI ΔΔ is a general property of the tip-nanotube 

contact.  
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Figure 3-13: dI(ΔZ)/I(ΔZ) calculated from force curves of Type I for five different 
nanotubes during loading.  The data is taken from Fig. 3-5 with the zero of ΔZ shifted 
to the onset of conduction (about 0.03 μm). The data shown is for loading only, 
unloading generally shows similar behavior. The thick blue curve is a guide to the eye 
in the form of Eq. (3-2), using B = 10, 4108 −×=A , and Z0= 0.0028 μm. 
 

Despite the large scatter in data, there is an obvious trend of an exponential 

decay that flattens near the end into the noise floor of the measurement (this mainly 

comes from the nanotube channel; I will discuss that in the next section). This 

behavior can be described by the phenomenological equation: 

 

0/)(/)( ZZBeAZIZdI Δ−+=ΔΔ       (3-2) 

 

where A and B are dimensionless constants, and Z0 is some characteristic Z 

displacement, this should actually be interpreted as a characteristic contact force, 
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since in this regime ΔZ is directly proportional to the contact force, A represents the 

current-normalized noise floor of the measurement. This exponential variation of 

)(/)( ZIZdI ΔΔ  versus ΔZ possibly indicates the presence of some barrier at the 

cantilever-CNT contact, whose transparency is modulated by the contact force.  

One last feature of the data in Fig 3-13 is that both soft cantilevers used on 

nanotubes D1, D7, and D3, and hard cantilevers used on nanotubes D4, and D6, seem 

to produce similar behavior in terms of the characteristic modulation displacement Z0. 

If the modulation of the contact barrier depends on the local mechanical stress around 

the nanotube, then it must be that both types of cantilevers produce the same average 

level of stress despite the large difference between their nominal force constants (2.8 

N/m for soft cantilevers, and 48 N/m for the hard ones). We can understand the 

reason for this, by recalling that the size of a metal coated tip apex is much larger than 

the typical diameter of a single walled carbon nanotube, and that due to the 

deformation of the metal at the apex when a force is applied, the apex does not have 

the usually assumed spheroid shape, it rather has a flat profile as is shown by the 

SEM images of used cantilevers in Fig. 3-14 below. Therefore as the tip lands on the 

nanotube, it is also touching the surface of the substrate, and this causes most of the 

force to be transferred directly to the substrate and very little is transmitted through 

the nanotube. Using this ‘flat apex model’ we can estimate the ratio between the 

average stresses around the nanotube for both types of cantilevers as: 

 

22 /// HSSSHHHSSSHHSH DkZDkZAkZAkZPP ΔΔ=ΔΔ=    (3-3) 
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where P, k, A, D, and ΔZ correspond to stress, force constant, area, average diameter, 

and typically used Z displacement (i.e. deflection setpoint) respectively (as can be 

seen from Fig. 3-14, the cross sectional area of the apex is not circular, however 

assigning a diameter is a common way to estimate the size of the apex from AFM 

images). The diameter of a used hard cantilever is about 110 nm on the average as 

can be estimated from the width of the profiles in Figs. 3-7 and 3-8, and that of a soft 

cantilever is about 35 nm on the average as can be seen from Fig. 3-6. The typically 

used Z displacement was about 30 nm for hard cantilevers and 50 nm for soft 

cantilevers. Using these values in Equation (3-3) gives 1~/ SH PP ; therefore the 

stresses caused by both soft and hard cantilevers around a nanotube are almost equal, 

consistent with the predictions above. This may not be accidental; it is possible that 

deformation of the cantilever metallization occurs above a critical stress, thus 

producing a tip shape which reduces the stress to a maximum stress value which 

depends only on the tip metallization material. Using the parameters above that stress 

can be estimated to be ~ 150 MPa which is comparable to the values of yield strength 

between 65 to 220 MPa found for thin gold films [76] (these values were measured 

for tension stress though; shear stress is more relevant in the case of compression).  

This flat apex model is in contrast with the often used Hertz contact model 

[57, 65] where the contact is modeled as that between a cylinder representing the 

nanotube and a sphere representing the tip apex, while assuming that the force is 

transmitted from the tip to the substrate entirely across the nanotube. Using this 

model ignores the yielding mechanics of the composite metallic coating covering the 

apex, and the details of the mechanical motion of the cantilever as it contacts the 



 

 84 
 

surface (which will be discussed shortly). Also, asymmetries in cantilever 

manufacturing and installation, or the presence microscopic roughness of the 

apex/substrate, can activate the cantilever’s twisting degree of freedom. All of these 

factors invalidate the assumption that the force is transmitted from the tip to the 

substrate entirely across the nanotube as is assumed in the Hertz model. 
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Figure 3-14: (a) to (c) SEM images of a hard cantilever at different magnifications 
showing the cantilever, cone, and apex; (d) to (f) the same for a soft cantilever. 
 

The origin of the contact barrier which produces the exponential behavior in 

Fig. 3-13 is not clear. In my system the data is taken under ambient conditions, 

therefore the sample had an adsorbed water meniscus layer [6]. Also, before the 

(a) (d)

(b) (e)

(c) (f)
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contacts to the nanotubes were made, the cantilever was used to image the surface in 

tapping mode, and therefore could have been contaminated by any residue on the 

surface. Both of these could cause the presence of a thin dielectric between the metal 

at the apex and the nanotube. However it is not clear that these mechanisms could 

produce the level of consistency seen in Figs. 3-13 and 3-3 for example, because the 

thickness and/or composition of such contamination layers can be expected to be 

highly variable between measurements even at different contact points along the same 

nanotube. 

This barrier could also be associated with deformation of the gold film at the 

apex, with some stress needed to bring a certain number of gold grains into contact 

with the nanotube [77]. Also some theoretical calculations predict the presence of a 

tunnel barrier in the case of gold contacts to carbon nanotubes [74, 78], and a 

dependence of this barrier on the electrode-nanotube separation within atomic-scale 

distances [78, 79], where this tunnel barrier becomes smaller with a smaller metal-

nanotube distance, which establishes a possible route for the modulation of the 

contact resistance through contact stress. 

A final remark here is that, Fig. 3-13 shows only smooth, reversible changes; 

and as can be seen from Figs. 3-2 through 3-5 that electrical conduction (for force 

curves of Type I) starts simultaneously with the mechanical contact. Therefore there 

is no clear point that can be labeled as formation of a contact, or threshold. These 

should be understood only as figures of speech, with formation of contact meaning 

)(/)( ZIZdI Δ  reaching its noise-limited value; and threshold meaning the point 
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where the contact resistance becomes comparable to that of the nanotube device, thus 

resulting in a fast rise of the drain current. 

One remaining task is to understand the reason for the switching behavior (i.e. 

current-force curves of Types II to IV) observed at the edges of profiles. Initially we 

should notice that the cantilever does not apply force to the surface like a piston. 

Depending of the local friction, the apex can acquire a parasitic lateral motion and 

slide on the surface [80-82], and also the cone (the pyramid at the end of the 

cantilever whose tip is the apex, see Fig. 3-14) rotates due to the change of the local 

slope at the end of the cantilever as known from beam bending theory [83]. These 

mechanical degrees of freedom could be responsible for the observed switching 

behavior through the tip sliding/rotating away, or towards the nanotube. I have 

considered two models corresponding to the two limits of strong and weak friction. In 

the first model, I considered that the static friction was strong enough to pin the apex 

on the surface. In that case the only allowed movement would be the rotation of the 

cone, and the switching behavior would come about from the apex rotating towards or 

away from the nanotube as is shown in Fig. 3-15 below.  
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Figure 3-15: (a) Schematic of the pinned cantilever model. The qualitative 
explanations for force curves of Types II, I, and III are illustrated in (b-d) 
respectively.  
 

This model predicts the relation between the Z displacement of the scanner 

and the lateral position as 
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where Rtip is the radius of curvature of the apex (again this is to obtain a rough 

numerical value only, not that the apex is a spheroid), which can be roughly taken as 

about 17 nm for soft cantilevers and 55 nm for hard cantilevers; and θ is the mounting 

angle of the cantilever (about 12 degrees in my setup); LV is the length of the 

cantilever, this is about 210 μm for both soft and hard cantilevers. It must be noticed 

that Eq. (3-4) is an upper limit, because the presence of friction actually modifies the 

above calculation for α, however the correction is always negative [81]. Comparing 

this to Eq. (3-1) we can easily see that the term between brackets is the profile 

boundary inverse slope β.  

While this model can qualitatively describe the occurrence of the various 

types of force curves, it does not produce a correct quantitative description. The 

values of β predicted by Equation (3-4) are of order 0.001 at most for the typical 

values shown above. These are too small compared to the experimentally found 

values of 0.25-0.3 as I discussed in section 3.3 above. In addition, this model 

produces the wrong sign for the slope. Also according to Equation (3-4), there should 

be a noticeable difference in the slopes of profiles created by soft and hard cantilevers 

due to their different apex sizes, and this is not experimentally observed. 

In the second model I considered, the static friction is not enough to hold the 

cantilever in place; therefore it slides freely on the surface. This model was initially 

developed in Reference [81] to account for this parasitic lateral motion in 
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nanoindentation experiments. In this case the switching is caused by the apex sliding 

toward/away from the nanotube as is shown in Fig. 3-16. 

 

 
Figure 3-16: (a) Schematic of the sliding cantilever model (after Ref. [81]).  The 
qualitative explanations for force curves of Types II, I, and III are illustrated in (b-d) 
respectively.  
 

Following Reference [81] the relation between Z displacement and the lateral 

displacement is provided as: 

Current

                       ΔZ 

1 2
3 

4 

Current

                       ΔZ 

1
2

3 4 

Current

                       ΔZ 

1
2 3 

4 1 2 3 4

(b) 

(c) 

(d) 

1 2 3 4

1 2 3 4

(a) 

θ 

α 

ΔZ LV 

ΔX 

ΔX1

LC 

α 
θ 

ΔX2

ΔZ 

LC 

ΔX = ΔX1 + ΔX2 

ΔX1 = ΔZ tanθ   ,   ΔX2 = αLCcosθ 



 

 91 
 

Z
L
L

X
V

C Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Δ

2
3tanθ        (3-5) 

where LC is the height of the cone, which is about 12 μm for both soft and hard 

cantilevers. Again, the term between brackets in Eq.(3-5) represents β, for typical 

parameters this would yield a value of about 0.3 in good agreement with the 

experimental values.  Eqn. 3-5 also produces the correct sign for the slope, and is 

obviously dependent only on geometric parameters, which explains why both soft and 

hard cantilevers produce almost the same slopes. 

This model also explains the boundary shapes of vertical profiles, in this case 

the cantilever slides along the nanotube, and the boundaries are defined by the edges 

of the apex as they begin to curve up, at these points the stress at the contact remains 

below the threshold stress, therefore the contact resistance remains high, thus 

producing force curves of Type IV. 

The last comment concerns the comparison of the shapes of the horizontal 

profiles produced by soft and hard cantilevers as presented in Figs. 3-6, and 3-7; we 

saw there that hard cantilevers produced extra features in the form of weak 

conductance spots around the edges of the patterns, and there were regions in the 

middle of the conductance plateau where the cantilever-CNT contact ceased to 

conduct. These can be understood by comparing the SEM images (Figs. 3-14-c and 3-

14-f) of the apexes of soft and hard cantilevers. Aside from the size, the metallization 

at the apex of the hard cantilever seems non-uniform with dangling edges. The non-

uniformity explains the presence of regions where there is no conduction in the 

middle of the profiles as regions with poor or no metallization.  The dangling edges 
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explain the weak conductance spots at the edges, as spurious contacts between these 

dangling edges and the nanotube. Similar features can also be observed in Fig. 3-8 of 

the vertical profiles since these were recorded using a hard cantilever as well. 

 

3.5 Temporal stability of the contact 

 

In addition to the force independence of the cantilever-nanotube contact, 

another important operational aspect is its temporal stability. In order to successfully 

perform local transport measurements, the contact should be stable for at least the 

typical drain or gate voltage sweeping time of 10-20 seconds. This is a system-

dependent property, and can vary for the same system depending on many conditions 

such as electronic drift, or thermal expansion. These factors effectively appear as a 

drift in the position of the nanotube relative to the cantilever, which can possibly 

change a contact of Type I into one of the other less favorable edge types. This could 

happen either directly in the case of XY drift, or through the parasitic lateral motion 

in the case of Z drift. 

In order to characterize the temporal stability of my system, I first located the 

desired nanotube, then fine tuned the lateral position to get a force curve of Type I, 

then I simultaneously recorded the deflection of the cantilever and the current through 

nanotube device using the time series capability of my nanolithography program. 

Two modes of operation are possible, for the first mode the deflection is actively kept 

constant, therefore eliminating the effect of Z drift. Because this deflection 

stabilization procedure was optimized to have a rather gentle, underdamped response, 
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it was rather slow, and only sparse data points could be taken with intervals 5≥  

seconds. For the second mode the deflection is not controlled, and Z drift causes the 

deflection setpoint to change, in my system this drift was almost always in the 

direction that would increase the deflection, and had a typical value of 1-2 nm/s after 

several hours of operation. In this mode however, much smaller time intervals are 

possible.  

Fig. 3-17 below shows the temporal stability of the current through several 

nanotubes taken under the constant deflection mode; we can notice that: (1) the 

current is stable within roughly 4% for times up to several minutes which is much 

longer than the typical voltage sweeping time of 10-20 seconds; (2) the major part of 

the variation has a relatively low frequency, therefore it is expected to have less effect 

on the relatively short voltage sweeps; (3) the deflection fluctuations are of order 0.01 

V around the setpoint, and do not seem to correlate with the fluctuations of the 

current. 

Fig. 3-18 below shows the temporal stability of the current through several 

nanotubes taken under the mode where the deflection is not stabilized. Other than the 

linear variation of the deflection due to Z drift, the behavior of the current and 

deflection fluctuations is similar to that of the constant deflection mode. Additionally, 

the fluctuations in current and deflection are uncorrelated.  This is a direct 

consequence of the current independence of deflection well beyond the stress 

threshold as discussed in the previous section. 
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Figure 3-17: (a-c) Current (top) and deflection (bottom) versus time for tip-nanotube 
contacts to nanotube D1 (a), nanotube D3 (b), and nanotube D2 (c).  Data are taken 
under constant deflection mode. 
 

 
Figure 3-18: (a-c) Current (top), deflection (middle), and deflection fluctuations 
(bottom) for a tip-nanotube contact with nanotube D3 (a), nanotube D5 (b), and 
nanotube D6 (c).  Data are taken without deflection stabilization; deflection 
fluctuations are the difference between the actual deflection and the linear fit. 
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In the above, the current is sensitive to resistance of the nanotube device as a 

whole, not just the tip-nanotube contact.  Therefore the observed current fluctuations 

do not necessarily originate from the contact. In Fig. 3-19 below, I show the 

normalized noise power spectrum for the current through nanotube D2, which 

displays an obvious 1/f like behavior. This 1/f like character is not an artifact of the 

measurement system as is evident from Fig. 3-19-d showing the normalized noise 

power spectrum for current going through a 100 KΩ metal film resistor obtained 

using the same measurement setup, which exhibits much lower and only white noise 

for the same frequency range. Nanotubes are known to exhibit 1/f noise and telegraph 

noise [84-89]. Considering this along with the lack of correlation between the current 

and deflection fluctuations, I conclude that it is more likely that these current 

fluctuations were caused by the nanotube channel rather than the cantilever-nanotube 

contact. 
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Figure 3-19: (a) to (c) Normalized noise power versus frequency of current measured 
in nanotube D2 at three gate voltages, the red lines are curve fits of the form γfA / , 
(d) Normalized noise power versus frequency of current measured through a dummy 
100 KΩ resistor (notice the different vertical scale), the red line is a constant. 

 

The exponent for the frequency dependence was found to be larger than one 

for this metallic nanotube (D2) and seems to be gate voltage dependent as well. This 

is in contrast with the exponent of approximately one usually found for 

semiconducting nanotubes [88, 89], however there are some reports in literature 

indicating exponents larger than one in metallic nanotubes [87], this also can be 

caused by the presence of a small component of telegraph noise [88]. 

The noise power of the deflection shows a different character as in shown in 

Fig. 3-20 below, for the cantilever in contact with the substrate surface and when it is 

free; in both cases the noise starts as 1/f until about 3 Hz and then flattens out into 
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white noise; it must be noticed here that these fluctuations are produced by the whole 

optical lever configuration including mainly the laser, the cantilever, and the 

photodetector with its associated electronic components. The initial 1/f behavior is 

likely coming from the laser and the rest of the electronics, as the cantilever should 

exhibit only white noise in the frequency range studied, i.e. much lower than the 

cantilever resonant frequency. This different character of deflection noise from 

current noise is another confirmation of the lack of correlation between the two, 

which is consistent with the discussion above. There is some difference between the 

noise spectrum of the free and surface bound cantilevers in the form of additional 

peaks which could be associated with ambient mechanical noise coupled through the 

air table. 

 

 
Figure 3-20: (a) Noise power versus frequency of deflection with the cantilever bound 
to the surface of the substrate. (b) Noise power versus frequency of deflection for a 
free cantilever. 
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3.6 Conclusions 

 

It is possible to establish a good reproducible electrical contact between a 

conductive AFM cantilever and a carbon nanotube. For an optimized placement of 

the cantilever tip relative to the nanotube, the contact resistance is independent of the 

bias conditions, and independent of the contact force beyond a certain threshold force. 

Under certain conditions of tip placement relative to the nanotube, the contact 

resistance is a non-monotonic function of force.  This “switching” behavior results 

from the parasitic lateral motion of the cantilever during loading, and is not, as has 

been assumed previously in the literature, due to radial deformation of the nanotube at 

the contact point.  

My setup exhibits a good temporal stability of the contact, with contact times 

significantly longer than the typical drain or gate voltage sweeping times. The contact 

is stable in time to within the measurement limit imposed by 1/f  noise from the 

carbon nanotube channel itself. 
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Chapter 4: Length dependent transport measurements of carbon 

nanotubes 

 

 This chapter describes the experimentally obtained resistance versus length 

results for one metallic and three semiconducting nanotubes. I begin with the 

experimental aspects and discuss the effects of contact resistance and charging on my 

measurements. This is followed by a detailed description of each of the nanotubes 

measured. I interpret the obtained R(L) behavior in semiconducting nanotubes in 

terms of the long depletion lengths expected in one-dimensional conductors. The 

charge carriers remain delocalized in my measurement under all depletion conditions, 

and this is used to infer the relative roles of scattering by disorder and electron-

phonon interaction. 

 

4.1 Experimental procedure 

 

As described previously in Chapter 2, my samples consist of sparse carbon 

nanotubes grown using chemical vapor deposition (CVD) on the surface of an 

oxidized silicon wafer, followed by the deposition of a single gold electrode using 

shadow evaporation. The fixed electrode is connected to the input of a current 

preamplifier and therefore is nearly at ground potential all the time.  As in the usual 

FET terminology, I will consider the grounded fixed electrode as the source, the 
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metal-coated cantilever contacting the nanotube the drain, and the silicon under the 

oxide is the back gate.  

Since the nanotubes grow randomly, their positions are not known before 

hand, thus the procedure starts with performing AFM scans (in AC mode) on the 

exposed silicon dioxide near the edge of the fixed electrode until a suitable nanotube 

that is in contact with the electrode is found. 

The resistance measurements are performed starting at the free end of the 

nanotube and going towards the fixed electrode, this is done to account for the 

possibility that the cantilever contact with the nanotube can possibly cause 

contamination, defects, or even breaks at the contact point, thus affecting any 

subsequent measurement. When the free end is found, a scan of suitable size is 

recorded to serve as a reference for the positions along the nanotube, and then the 

nanolithography program used for measurements (see Chapter 2) is started. 

For each measurement session, it is necessary to determine three parameters 

that are usually kept constant throughout the session. The first is the deflection 

setpoint, this should be set high enough for the current to reach a force independent 

value (for a Type I current-force curve) as mentioned previously in Chapter 3, so it 

should be a little higher than the contact force threshold, but not much higher in order 

to minimize the possibility of damage to the nanotube or the cantilever.  The second 

parameter is a steady-state gate voltage, the gate voltage at which the drain voltage 

sweeps are recorded.  For metallic nanotubes the steady-state gate voltage is usually 

set to zero since they are in an on-state for all gate voltages. For semiconducting 

nanotubes the steady-state gate voltage is usually set to a value sufficiently more 
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negative than their voltage threshold (I usually used a value between -3 to -5 Volts). 

The last parameter is a steady-state drain voltage; this is the drain voltage at which 

the gate sweeps are performed. The steady-state drain voltage should be high enough 

to obtain a good signal to noise ratio in the gate sweeps, but not so high to cause a 

nonlinear response at small channel lengths. This is checked by performing a drain 

voltage sweep that encompasses the desired steady state drain voltage and making 

sure the resulting drain current is within the linear response regime. The steady-state 

drain voltage was usually set between 0.1 and 0.5 Volts. 

In the beginning of the run, the three parameters above are set to primary test 

values (usually 0.1 V for the drain voltage, -5 V for the gate voltage, and 0.5 V for the 

deflection setpoint). Then contact is attempted a few hundred nanometers beyond the 

free end of the nanotube using the search function of my nanolithography program. 

The test values are changed for each attempt until a primary contact is established. At 

this point it is possible to start recording current-force, gate voltage, and drain voltage 

sweeps, and the final values of the three parameters are selected according to the 

criteria above. 

Now I will discuss the problem of the contact resistance. As my analysis in 

Chapter 3 indicates, when the deflection setpoint is set beyond the contact force 

threshold, the contact resistance becomes a function only of the lateral position of the 

cantilever relative to the nanotube, which controls the type of the current-force curve 

obtained. Therefore, a primary step to optimize the contact resistance is to adjust the 

lateral position of the cantilever such that Type I current-force curves are obtained 

(see Fig. 3-5). However this alone does not guarantee that the lowest possible contact 
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resistance has been obtained, since an eroded or contaminated cantilever can still 

show current-force curves of Type I, even while the contact resistance is quite high. 

The condition of the cantilever continuously changes in terms of both erosion and 

contamination throughout the measurement session, and a detailed study of the 

contact properties in the form of horizontal or vertical profiles (see Chapter 3) at each 

contact point is rather impractical. The practical solution is to sample the contact 

resistance at each point along the channel by changing the lateral position several 

times (usually 5-10 times) with a small step of 2-10 nm (This is of course done such 

that one remains mostly within the Type I plateau, confirmed by monitoring the 

current-force curve in real time on an oscilloscope). At each lateral position the 

desired gate and drain voltage sweeps are performed. The result is a set of transport 

data for each position along the CNT. The resistance values extracted from these data 

have scatter due to variations in contact resistance and also charging effects discussed 

below, therefore the resistance data is multiple-valued at each channel length. I 

assume that the lower envelope of the resistance best represents R(L) of the CNT 

under a constant contact resistance. When the data is taken according to the recipe 

described above, the lower envelope usually has a low scatter and well bounded 

behavior. This is illustrated in Fig. 4-1 below, where I show the full resistance dataset 

for a 20 μm segment of nanotube D5. The smooth lower envelope is evident 

compared to the large scatter of the overall dataset. For the rest of this chapter, I will 

show only the lower envelopes of the datasets, unless otherwise is stated. 

 



 

 103 
 

 
Figure 4-1: The full set of resistance values obtained for channel lengths between 65 
and 85 μm on nanotube D5 illustrating a smooth lower envelope.  The slope of the 
linear fit to the lower envelope is 65.54 KΩ/μm. 
 

Other than the contact resistance, an important factor that contributes to 

scatter in the data is trapped charge. Sweeping the gate voltage can cause some of the 

charge traps either in the silicon dioxide [90, 91] or the water meniscus [92] to 

become populated. The trapped charges decay with a rather long time constant. Fig. 

4-2 below shows the current through nanotubes D3 as a function of time right after 

performing a gate sweep. The similarity between the cases with the contact stabilized 

(i.e. deflection kept constant, see Chapter 3) and not stabilized (i.e. deflection 

changing due to Z drift, see Chapter 2) excludes this time dependence as a contact 

effect. 
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Figure 4-2: Two time series of the drain current of nanotube D3 at fixed gate and 
drain voltages directly after a gate sweep (-5 V to 10V, then 10 V to -10 V, and then -
10 V to 5 V).  Both time series are at the same point along the nanotube. The time 
constant for recovery of the current is about 16.8 seconds in both cases.  
 

Trapped charge results in hysteresis in the gate-voltage dependence of the 

CNT conductance and this causes a shift in the threshold voltage between the various 

sweeps. The effect of hysteresis is minimized by considering gate-voltage sweeps 

with the same gate-voltage history, i.e. same sweep rate and sweep direction.  In 

general, for a well behaved cantilever the combined effect of contact resistance and 

trapped charge on the overall measured resistance (when the nanotube is in the on-

state) is about 5%, but it can get much larger for an eroded/contaminated cantilever 

(due to large variations in contact resistance) or near the threshold (where a threshold 

shift has a proportionally larger effect on conductance).  Fig. 4-3 below shows several 

gate sweeps performed on nanotubes D1 and D5 at the same point. The cantilever 

used on D5 was well behaved as can be seen from the small variation in the on-state 

current, charging effects can be seen in the small shifts in the threshold and the 
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disconnection at -5 V after the cyclic sweeps. In contrast, the cantilever used on D1 is 

not well behaved (i.e. eroded or contaminated) as is evident from the large variation 

in the on-state current, the sweeps also show charging effects (this was a re-

measurement of D1, the data pertaining to D1 in the results section below was taken 

using a well behaved cantilever). 

 

 
Figure 4-3: Effects of trapped charge and contact resistance on the measured drain 
current. (a) Several sequential drain current-gate voltage measurements of nanotube 
D5. The arrows indicate the gate sweeping direction; here the cantilever is well 
behaved (see text). (b) Several sequential drain current-gate voltage measurements of 
nanotube D1.  Here the cantilever shows signs of erosion or contamination. The 
contact was broken and remade between the sweeps.  
 

After the desired measurements are taken at the first point, another point is 

selected (usually 0.5 to 2 μm away) and the procedure is repeated, until the last point 

within the scan range is reached. Some of the long nanotubes did not fit in one scan 

(for resolution purposes, I usually used a scan size of 35 μm x 35 μm or lower). For 

such long nanotubes it was necessary to use several slightly overlapping scans. Then 

the data is stitched together with the guidance of common features in the overlapping 

regions of the images. 
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4.2 Results 

 

I have used my setup to perform local transport measurements on seven 

different nanotubes, in this chapter I will discuss the results for a metallic nanotube 

D7, and three semiconducting nanotubes D1, D3, and D5. The results for nanotubes 

D2, D4, and D6 are briefly reported in Appendix A. I will first discuss the geometry 

and characteristics of each nanotube, then draw general conclusions from the data. 

 

4.2.1 Nanotube D7 

 

D7 is a metallic nanotube, the diameter is 2.0 ± 0.1 nm and the total length is 

20.4 μm. The extension of the gold islands band at the edge of the macroscopic gold 

electrode (see Chapter 2) is about 1.3 μm. A full view of D7 is shown in Fig. 4-4 

below. 
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Figure 4-4: An AFM topography scan of nanotube D7, the scan is 22x22 μm. 

 

The resistance R versus length L results obtained at gate voltages from -10 V 

to 10 V are shown in Fig. 4-5-a, and for the three select gate voltages of -10 V, 0 V, 

and 10 V in Fig. 4-5-b below (notice the logarithmic scale in Fig. 4-5-a, and the linear 

scale in Fig. 4-5-b). 
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Figure 4-5: (a) Resistance versus channel length of nanotube D7 at various gate 
voltages between -10 V and 10 V in steps of 1 V, the thin black line is a proportional 
relationship (power-law slope of unity), (b) the same data at gate voltages of 0 V, -10 
V, and 10 V only with linear fitting (excluding points below 2 μm), the inset shows 
the details for short channel lengths (the line fits here are not extensions of the lines in 
the main panel),Vd = 0.1 V for all the points. 
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The main features that could be observed are: (1) the overall behavior of R(L) 

is linear or close to linear, (2) for lengths roughly below 3 μm, R(L) has a somewhat 

lower slope than that of the overall linear trend for most gate voltages, with some 

other deviations developing near the free end of the nanotube for gate voltages near 

10 V, (3) there is an observable kink in the data at about 1.4 μm, this is roughly the 

same as the border of the gold island band, (4) the contact resistance (as estimated 

from the zero length intercept) is about 10 KΩ, and has a rather weak dependence on 

the gate voltage; this is comparable to the theoretical limit of )/4/(1 2 he  ≈ 6.5 KΩ 

expected for a 1-D conductor with four conductance channels. 

The generally linear behavior indicates diffusive transport. This has been 

reported in literature before for both metallic and semiconducting carbon nanotubes 

in their on-state [24]. Deviations from linearity could be phenomenologically related 

to qualitative changes in the behavior of the drain current versus gate voltage at 

various lengths as is shown in Fig. 4-6 below. 

 



 

 110 
 

 
Figure 4-6: Drain current versus gate voltage sweeps at various lengths of nanotube 
D7.  The top trace is at 0.35 μm, and the bottom one is at 20.4 μm away from the 
fixed electrode, Vd = 0.1 V for all the curves, average length step is 1 μm. 

 

Metallic carbon nanotubes are expected to show current saturation at high 

drain voltages due to scattering by zone-boundary phonons, with the saturation value 

around 25 μA [14]. D7 does show such a tendency for current saturation at high bias 

as is shown in Fig. 4-7 below, however the current saturation value is about 70 μA. It 

is unclear if this indicates that D7 is possibly multiple walled rather than a single 

walled CNT. 
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Figure 4-7: Current saturation in nanotube D7, (a) drain voltage sweep 2.8 μm away 
from the fixed electrode (Vg = 0 V), showing the tendency to saturation at high drain 
voltage values, (b) shows Vd/Id , the red lines are linear fits for 5.2≥dV V, the 
inverse slope of these lines [14] gives a current saturation value of about 70 μA. 
 

4.2.2 Nanotube D1 

 

D1 is a semiconducting nanotube, the diameter is 2.1 ± 0.1 nm, the total length 

is 26.1 μm. The extension of the gold islands band at the edge of the macroscopic 

gold electrode is about 2.7 μm. A full view of D1 is shown in Fig. 4-8 below. 

 

 
Figure 4-8: An AFM topography scan of nanotube D1, the scan is 30x30 μm. 
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The obtained R(L) at gate voltages from -10 V to 9 V, are shown in Fig. 4-9-a 

(notice the logarithmic scale), and at a gate voltage of -10 V in Fig. 4-9-b below 

(notice the linear scale).  The main features that could be observed are: (1) when the 

nanotube is in the on-state, R(L) behavior is linear for lengths greater than about 3.5 

μm, below that the resistance tends to be somewhat lower than the linear trend of the 

rest of the nanotube, (2) for the nanotube near its off-state, the linear behavior persists 

for lengths larger than roughly 8-9 μm, below that length there is a rapid decrease in 

resistance, there is also an observable kink in the trend at about 2.8 μm, (3) the 

contact resistance is about 10 KΩ, which is again close to the theoretical limit and is 

rather insensitive to the gate voltage. 

The kinks in the resistance versus length behavior for both the on and near 

off-states can again be associated with the boundary of the gold islands band. The 

rapid drop in resistance in the intermediate length regime, roughly between 9 and 4 

μm is associated with qualitative changes in the drain current versus gate voltage 

behavior as the channel length decreases. This is shown in Fig. 4-10 below, with the 

most pronounced features being a shift of the threshold voltage towards higher 

positive values, this results in  the nanotube not being fully depleted even for Vg = 

+10 V at the shorter channel lengths. 
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Figure 4-9: (a) Resistance versus length of nanotube D1 at various gate voltages 
between 9 V and -10 V in steps of 1 V, the thin black line is a proportional 
relationship (power-law slope of unity), (b) the same data at a gate voltage of -10 V, 
with linear fitting (excluding points below 4 μm), inset shows the details for short 
channel lengths (the line fit here is not an extension of the line in the main panel), Vd 
= 0.1 V for all curves. 
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Figure 4-10: Drain current versus gate voltage sweeps at various lengths of nanotube 
D1 on a linear scale (a) and logarithmic scale (b).  The drain voltage Vd = 0.1 V for all 
curves.   The average step in length is 0.75 μm.  In (a) the top trace is at 2.07 μm, and 
the bottom one is at 26.07 μm away from the fixed electrode.  In (b) notice the top 
three traces (at channel lengths of 0.37, 0.57, and 1.32 μm top to bottom) not shown 
in (a).  The inset shows the threshold voltage as a function of length.  
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4.2.3 Nanotube D5 

 

D5 is a semiconducting nanotube, the diameter is 1.9 ± 0.2 nm, the total length 

is 130 μm, and the extension of the gold islands band at the edge of the macroscopic 

gold electrode is about 8 μm (this however can be divided into two regions of ‘light 

coverage’ roughly between 3 μm and 8 μm away from the electrode, and ‘heavy 

coverage’ for lengths less than 3 μm). Between 32.6-39.5 μm and 91.6-103.8 μm the 

nanotube had some contamination (this was an occasional problem with nanotubes 

grown from Ferritin catalyst), and therefore no measurements were taken there to 

prevent the contamination of the probe. A view showing most of D5 is shown in Fig. 

4-11 below. 

 

 
Figure 4-11: An AFM phase scan of nanotube D5, the scan is 100x100 μm, -4 V was 
applied to the gate in order to create a large phase contrast with the grounded 
nanotube, one of the contamination regions is clearly visible near the bottom.  
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The obtained resistance versus length results at gate voltages from -10 V to 9 

V, are shown in Fig. 4-12-a (notice the logarithmic scale), and at the gate voltages of 

-10 V in Fig. 4-12-b below (notice the linear scale). 
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Figure 4-12: (a) Resistance versus length of nanotube D5 at various gate voltages 
between 9 V and -10 V in steps of 1 V.  The thin black line is a proportional 
relationship (power-law slope of unity), (b) the same data at a gate voltage of -10 V, 
with linear fitting, the inset shows the details for short channel lengths, Vd = 0.1 V for 
all curves. 
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The presence of the contamination regions does not seem to affect the 

resistance since there is an apparent continuity across the gaps in the measurement. In 

general, the behavior can be seen to be qualitatively similar to that of D1, the length 

scales however are slightly different. For example, the region of rapid decrease in 

resistance when the nanotube approaches the off-state extends between about 20 μm 

down to 3 μm, below 3 μm (the beginning of the ‘heavy coverage’ zone in the gold 

islands band) the resistance tends to be less sensitive to the gate voltage. The drain 

current versus gate voltage for D5 is shown in Fig. 4-13 below, and it shows similar 

features to D1 in terms of the threshold shift and lack of full depletion at Vg = + 10 V 

at the short length scales. 
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Figure 4-13: Drain current versus gate voltage sweeps at various lengths of nanotube 
D5 on a linear scale (a) and logarithmic scale (b).  The drain voltage Vd = 0.1 V for all 
curves.   The average step in length is 1.5 μm.  The top trace in (a) is at 1.87 μm, and 
the bottom one is at 129.74 μm away from the fixed electrode.  In (b) notice the top 
three traces (at channel lengths of 0.01, 0.27, and 0.82 μm top to bottom) not shown 
in (a).  The inset in (b) shows the threshold voltage as a function of length.  
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4.2.4 Nanotube D3 

 

D3 is a semiconducting nanotube. As I will show shortly, this nanotube 

contains two different segments separated by a junction. The diameter is 2.1 ± 0.1 nm 

near the end, and 3.0 ± 0.3 near the electrode side (this however was estimated from 

low resolution scans), the total length is about 104 μm, the last 17 μm at the free end 

were not measured due to the presence of contamination, the position of the suspected 

junction is about 34 μm away from the gold electrode, the extension of the gold 

islands band at the edge of the macroscopic gold electrode is 0.6 μm at most. A 

partial view of D3 is shown in Fig. 4-14 below. 

 

 
Figure 4-14: An AFM topography scan of nanotube D3, the scan is 35x35 μm, the 
position of the junction (34 μm from the electrode) is indicated by the green circle.  
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Fig. 4-15 below shows the on-state resistance for the whole nanotube, it can 

be clearly seen that there is a sharp change in the slope around 34 μm away from the 

fixed electrode, in the AFM scan this position corresponds to a small kink that is 

indicated by the circle in Fig. 4-14 above.  

 

 
Figure 4-15: Resistance versus length for nanotube D3 at a gate voltage of -10 V (in 
this case all data points are shown, not just the lower envelope), Vd = 0.5 V.  Red 
lines are linear fits to data point less than and greater than 34 μm; slopes correspond 
to resistivity of 8.3 KΩ/μm and 11.2 kΩ/μm, respectively. 
 

By closely examining the drain current versus gate voltage response around 

that site, one can see a large reproducible change in the threshold voltage as is shown 

in Fig. 4-16-a below, this change causes the post-junction segment (relative to the 

fixed electrode) to turn off much faster than the pre-junction segment for gate 

voltages roughly between 1.5-4.5 V, this is shown in Fig. 4-16-b for a gate voltage of 

3 V.  
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Figure 4-16: Change in behavior of nanotube D3 at 34 μm.  (a) Id vs. Vg sweeps for 
lengths smaller than 34 μm (red dotted traces) and larger than 34 μm (solid black 
traces) showing a large change in the threshold voltage.  The curves correspond to 
data taken at points 1 μm apart. (b) R(L) at Vg = 3 V showing the disconnection 
caused by the extraneous gate voltage dependence of the junction.  Vd = 0.5 V for all 
data in (a) and (b).  In (b) all data points are shown, not just the lower envelope. 

 

All the above indicates a different nature of the pre- and post-junction 

segments. This junction can be an interface between two nanotubes of different 

chirality; another possibility is that the smaller diameter nanotube is actually 

continuous all the way with an extra wall added in the pre-junction segment. The 

resistivity ratio of the two segments is about 0.74 which is almost equal to the ratio of 

their diameters which is 0.7 ± 0.08. Such an inverse proportionality between the 

resistivity and the diameter is expected [11, 93] and observed for single walled carbon 

nanotubes [11].  The observation of this inverse relationship here supports the first 

model (that the junction is an interface between two nanotubes of different chirality), 

or indicates that the current is mostly carried by the outer shell in the second model 

(the smaller diameter nanotube is continuous with an extra wall added in the pre-

junction segment), and thus this portion of the nanotube can still be treated as single 

walled.   
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Due to the extraneous gate dependence introduced by this junction in the post-

junction region, I will analyze the length-dependent resistance of D3 only for the pre-

junction segment in the following parts of this chapter. The resistance versus length 

as a function of gate voltage from -10 V to 9 V for the pre-defect segment is shown in 

Fig. 4-17 below.  

 
Figure 4-17: Resistance versus length of nanotube D3 at various gate voltages 
between 9 V and -10 V in steps of 1 V.  The dotted black line is a proportional 
relationship (power-law slope of unity), Vd = 0.5 V for all curves. 

 

The behavior can be seen to generally exhibit similar characteristics to those 

of D1, and D5. One significant difference though is that after some positive gate 

voltage (roughly between Vg = 7 V and Vg = 8 V), the resistance starts to drop. This 

can be seen in Fig. 4-17 above, where the trace for Vg = 8 V shows lower resistance 

than that for Vg = 7 V. This behavior can be understood from the drain current versus 

gate voltage shown in Fig. 4-18 below, as the onset of n-type conduction; that this is 

observable only for D3 and not D1 or D5, and is probably due to the fact that D3 has 

the largest diameter, and therefore the smallest bandgap [94]. 
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Figure 4-18: Drain current versus gate voltage sweeps at various lengths of nanotube 
D3 on a linear scale (a) and logarithmic scale (b).  The drain voltage Vd = 0.5 V for all 
curves.   The average step in length is 1 μm.  In (a) the top trace is at 1.7 μm, and the 
bottom one is at 30.8 μm away from the fixed electrode.  In (b) notice the top two 
traces (at channel lengths of 0.1, and 0.7 μm top to bottom) not shown in (a).  The 
inset shows the threshold voltage at various lengths.   
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4.3 Discussion 

 

The main features of the data presented above can be summarized as follows: 

(1) when a nanotube is on, the resistance versus length is linear for almost all the 

length; (2) when a nanotube is near the off state i.e. it is in an advanced depletion 

state, there exist two regions with different qualitative behavior, for channel lengths 

less than about 10 μm, the resistance rises quickly with increasing channel length in 

an almost exponential manner, then for longer channel lengths the resistance is linear; 

(3) this behavior at the advanced depletion state of the nanotube can be qualitatively 

associated with a shift in the threshold voltage which becomes more positive for 

shorter channel lengths; (4) for both the on and depleted cases, the resistance versus 

length is mostly continuous across the island band region with only a mild kink at the 

boundary of that region, followed by a trend of slightly lower resistance than the 

trend extrapolated from the rest of the nanotube unaffected by the islands band; (5) 

the contact resistance is higher than but close (within a factor of 2) to the theoretical 

limit expected for a single walled carbon nanotube, and is mostly insensitive to the 

gate voltage. In the following sections I will discuss the possible explanations of these 

features, and the conclusions that can be drawn about electronic transport in the 

nanotubes. 

 

4.3.1 Contact resistance and contact type: Ohmic vs. Schottky 
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In my measurements nanotubes are contacted on one side by the fixed gold 

electrode (the source), and on the other side of the channel by the gold coated 

cantilever (the drain), therefore the contacting metal is gold on both sides. In general, 

a nanotube-metal junction can either be of the ohmic [6, 66] or Schottky barrier [2-4, 

7] types. The type of contact depends on the work function of the contacting metal, 

since Fermi level pinning is thought to either be nonexistent or play an insignificant 

role in nanotube-metal junctions [95, 96]. The junction type also depends on the 

nanotube bandgap, and hence diameter of the contacted nanotube. Both experimental 

[6] and theoretical [96, 97] works show that for the same contacting metal, there 

exists a critical diameter below which the contact is of the Schottky barrier type, and 

above which the contact is of the ohmic type. These works indicate this critical 

diameter to be about 1.8 nm for nanotubes contacted by palladium. 

For all three semiconducting CNTs studied (D1, D3, D5), I observed a low 

(within a factor of 2 from the theoretical limit) and gate voltage independent contact 

resistance.  These observations are consistent with an ohmic contact, where the 

Schottky barrier model predicts a large modulation of the barrier by the gate voltage 

[2, 7]. Given that the work function of gold is similar to that of Palladium (about 5.1 

eV), it is reasonable to expect an ohmic contact for these large diameter (d > 1.9 nm) 

nanotubes, whose diameters are larger than the critical diameter for an ohmic contact 

with palladium. Gold has also been reported before to form ohmic contacts to 

nanotubes [33, 48].  The high saturation drain current of 25 μA for short channel 

lengths at high negative drain voltages for D5 (which has the smallest diameter), is 

also indicative of the absence of a Schottky barrier [66]. 
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Another measure that has been used [4, 6, 7, 23] to judge the type of the 

nanotube-metal junction is the subthreshold swing 1
10 )/log( −= gd dVIdS  where Id is 

the drain current in the subthreshold region (this is roughly the region below Id = 10-8 

A for D1 and D5, and Id = 10-7 A for D3, as shown in Figures 4-10-b, 4-13-b, and 4-

18-b respectively). The determination of the threshold and subthreshold swing are 

illustrated in Fig. 4-19 below. 

 

 
Figure 4-19: Determination of the threshold voltage Vth and the subthreshold swing S.  
The triangles and the circles represent the same Id versus Vg data on linear (triangles) 
and logarithmic (circles) scales respectively. The threshold voltage is the point of 
linear extrapolation of Id(Vg) to zero (red line).  The subthreshold swing is the inverse 
of the logarithmic slope of Id(Vg) in the subthreshold region (blue line). 
 

Typical values of S ~ 1000-2000 mV/decade are obtained for nanotubes with a 

Schottky barrier contact on thick dielectrics at room temperature [4, 7], and S ~ 160 

mV/decade for ohmic contacts under the same conditions [66] which is close to the 

theoretically expected value of 60 mV/decade for MOSFETs at room temperature. In 
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the three semiconducting nanotubes I measured, S is of order 1000 mV/decade on the 

average which is consistent with expectations for a Schottky barrier contact.  

It must be noticed however, that in most of the previous work cited above, the 

subthreshold swing was characterized for relatively short nanotubes ~ 1 μm. In one 

work on long nanotubes [23] the subthreshold swing was large (~800 mV/decade) at 

room temperature despite an ohmic contact. This was revealed by the temperature 

dependence of S, which did not become temperature independent upon cooling down 

as expected for Schottky barrier contacts [7]. This suggests that a study of the 

subthreshold swing as a function of channel length S(L) may shed light on some of 

the variability observed in the literature. Fig. 4-20 below shows S(L) for the three 

semiconducting nanotubes D1, D3, and D5.  Surprisingly the subthreshold swing 

shows a trend of increasing linearly with channel length. This behavior is at odds with 

what is expected from the Schottky barrier model, which predicts a subthreshold 

swing that is independent of channel length [7]. It is also at odds with the 

conventional MOSFET model, where the subthreshold swing increases for shorter 

channel lengths due to the increase in depletion capacitance relative to the gate 

capacitance [98].   
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Figure 4-20: Subthreshold swing S versus channel length L for nanotubes D5, D1, and 
D3.  Red lines are linear fits with slopes 7.3, 5.0, and 14.4 mV/decade/μm for D5, 
D1, and D3 respectively, the zero channel length intercepts are 730, 1250, 900 
mV/decade for D5, D1, and D3 respectively. 
 

However, here I can examine the length-dependent resistivity directly to 

determine whether the resistance in the subthreshold regime is in the bulk of the 

nanotube or in the contacts.  As shown below in section 4.3.5, the nanotube channel 

resistivity itself is diverging in the subthreshold regime, and shows a similar 

subthreshold swing as that found by measuring Id versus Vg at a single point.  Hence I 

conclude that the semiconducting nanotubes studied here are bulk-switching devices 

i.e. channel resistance dominates over contact resistance for all Vg.  This indicates that 

subthreshold swing alone is not a definitive indicator of Schottky barrier behavior.   

While the length dependence of the subthreshold swing is not fully 

understood, I qualitatively attribute this behavior to an increasing role of charge traps 

(which have an associated interface capacitance) in the switching of nanotubes at 

longer channel lengths, i.e. the observed large subthreshold swing behavior is 

associated with a ‘bulk switching’ mechanism which is more significant in long 

channel nanotube devices in contrast to ‘barrier switching’ of the Schottky barrier 

model. 
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To conclude, the low contact resistance and near-independence of contact 

resistance on gate voltage are consistent with an ohmic contact between gold and the 

large diameter nanotubes studied here, which is consistent with previous theoretical 

and experimental studies.  The CNTs studied here exhibit large subthreshold swings, 

normally associated with Schottky barrier contacts. However, the length-dependent 

resistance data indicate bulk-switching behavior, i.e. dominance of channel resistance 

over contact resistance in the subthreshold regime, consistent with ohmic contacts and 

in contrast with the Schottky-barrier model.  The length dependence of the 

subthreshold swing is anomalous and not yet understood. 

 

4.3.2 The effect of the islands band 

 

As described in Chapter 2, the gold islands band at the edge of the shadow 

evaporated fixed electrode typically has a thickness of ~1 nm, and becomes slightly 

thicker (2-4 nm) for the last ~ 500 nm of nanotube length in the immediate vicinity of 

the electrode. These thicknesses are much smaller than the percolation threshold for 

electric conduction in gold films which is about ~16 nm [64], therefore this band is 

not conductive (I also verified this by directly contacting it with the cantilever a small 

distance ~ 50 nm sideways from the nanotubes, therefore these islands are not short-

circuiting the nanotubes). The trend of having a slightly lower resistance in the 

portion of the nanotubes within the islands band region might be explained as a 

doping effect induced by charge transfer between the islands in touch with the 

nanotubes and the nanotubes themselves.  This is consistent with the ohmic contact 
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between gold and nanotubes as discussed above. Gold has a higher work function (5.1 

eV) than the nanotubes whose work function is about 4.66 eV independent of 

chirality for diameters larger than 1 nm [99, 100]. Therefore these gold islands should 

cause p-type doping of carbon nanotubes. Such p-type doping of carbon nanotubes by 

palladium (which has a similar work function to gold) clusters has been 

experimentally observed before [101]. It also must be noticed that the short channel 

lengths of a few microns that are affected by the presence of the islands band, are also 

influenced by electrostatic effects, which I will discuss in the next sections. 

4.3.3 Electrostatic effects 

 

The controlling action of the backgate on the electrochemical potential of the 

channel of a nanotube device depends on the capacitive coupling between the gate 

and the channel. This can be divided into three parts which are: the geometrical 

electrostatic capacitance, the quantum capacitance, and the depletion capacitance. 

These capacitances should be considered as capacitors in series (i.e. added in inverse) 

[102, 103].  

For the geometrical electrostatic capacitance the nanotube is commonly 

considered as an infinite cylindrical conductor separated from the planar gate 

electrode by a dielectric slab, with vacuum above.  In this case the capacitance per 

unit length is well approximated by the expression [104]: 

 

)/4ln(/2 0 dtCg πεε=         (4-1) 
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where Cg is the capacitance per unit length, ε is the average of the dielectric constants 

of the gate insulator and vacuum, t is the thickness of the gate insulator, and d is the 

diameter of the nanotube; in my measurements t = 500 nm and ε = (3.9 + 1)/2 = 2.45. 

For a typical nanotube diameter of 2 nm this expression yields Cg of 2.0x10-11 F/m.  

In my measurements the channel length varies by at least two orders of 

magnitude. This raises a concern about the length scale at which Cg begins to deviate 

from the description above as an infinite cylinder. Qualitatively, this length scale 

should be largely determined by the spatial extension of the fringe fields from the 

electrodes. In other words, as the channel length becomes smaller more field lines 

from the gate end up at the source or drain instead of the channel, which effectively 

reduces the capacitive coupling between the gate and the channel. 

It is important to understand the length scale at which this reduction of gate 

control begins to occur since this could provide an explanation for the change in the Id 

versus Vg behavior between the long and short channel lengths (Figures 4-9, 4-12, and 

4-18). In these terms, the gate begins to lose control at the short channel lengths and 

therefore a higher positive gate voltage is required to turn the nanotubes off which 

causes the threshold to shift. Numerical studies of electrostatics of nanowire 

transistors [105, 106] indicate that the effective range of parasitic capacitance 

between the gate and the electrodes is largely determined by the gate dielectric 

thickness and not by the dielectric constant. Therefore the range where the parasitic 

capacitance between the gate and the electrodes begins to affect the gate control of 

the channel should be of order oxt2 = 1 μm. This length scale is significantly lower 

than the length scale of ~10 μm below which there is a rapid drop in the resistance of 
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the nanotubes in a depleted state associated with the threshold shifting to higher 

positive values, therefore this effect of parasitic capacitance can not explain this 

phenomenon. 

For a single walled carbon nanotube with one subband occupied, the quantum 

capacitance per unit length is of order 102 104/4~ −×=FQ veC hπ  F/m [102] which is 

much larger than the geometrical electrostatic capacitance, and since these two 

capacitances are in series, the quantum capacitance can be ignored. In general, the 

quantum capacitance is a function of the Fermi level position since 

)(2 EgeCQ = where g(E) is the density of states. Therefore it should grow even bigger 

as the gate moves the Fermi level towards the Van Hove singularity at the valence 

band edge which corresponds to the high depletion state of the nanotube [107]. The 

depletion capacitance is due to the charge transfer process at the nanotube-metal 

junction which is discussed in the next section. 

 

4.3.4 Depletion and charge transfer  

 

In contrast to planar semiconductor-metal junctions where the depletion 

charge is confined to a limited depletion region of a few nanometers that is adjacent 

to the metal, the one dimensional depletion region at the nanotube-metal junction 

decays slowly with a long logarithmic charge transfer tail following the region of full 

depletion [27, 28]. The characteristic length of decay for this charge tail is 

exponentially dependent on the reciprocal of the doping fraction and therefore can 
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reach several microns under conditions of high depletion [27]. This behavior is 

phenomenologically consistent with the observed shift in the threshold voltage at 

short channel lengths. For channel lengths longer than twice the depletion region 

(once for each electrode), the threshold voltage would be determined by the position 

of the valence band in the middle region, which is unaffected by charge transfer from 

the electrodes. Thus the threshold remains constant at long lengths.  As the channel 

length becomes shorter, the middle region becomes increasingly affected by the holes 

transferred from the electrodes, which cause the bands to bend down, and therefore a 

more positive gate voltage is needed to bring the Fermi level down to the edge of the 

valence band. Quantitatively, the characteristic length of the charge decay is given by 

[27]: 

  

RWLD /2=          (4-2-a) 

 

and 

 

)/exp( 2
0 RNfeERW gεε=  W>>R      (4-2-b) 

  

where W can be taken as the distance from the junction where the Fermi level comes 

within TkB2  from the band edge, R is the radius of the nanotube, ε is the dielectric 

constant of the gate insulator, Eg is the bandgap of the nanotube, N = 38.17 atom/nm2 

is the atomic areal density, and f is the doping fraction. The bandgap is related to the 

radius by [18]: 
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REg /eV.nm]  [0.35= .       (4-3) 

 

Combining these equations we obtain the doping fraction as: 

 

)/ln(/]nm10486.2[ 223 RLRf D
−×=      (4-4) 

 

where the gate dielectric constant ε was taken as 2.45 to account for the absence of 

the dielectric above the nanotube (see the discussion above). The characteristic length 

LD can experimentally be obtained from the threshold versus length data shown in the 

insets of Figures 4-10-b, 4-13-b, and 4-18-b, I empirically used an exponential fitting 

function )/exp( thth LLBAV += in order to extract the characteristic length scale Lth 

of the variation in the threshold voltage with channel length (these values are shown 

in Table (4-1) below).  Lth should be equal to 2LD since there is a depletion region for 

each electrode.  Using Equation (4-4) the doping fraction can be calculated. If this 

doping fraction extracted from the voltage threshold versus channel length truly 

corresponds to the Fermi level approaching 2kBT from the valence band, as is 

assumed above, then it should correlate with the thermal population of holes above 

the Fermi level in the same limit. This could be estimated from: 

 

)2()()(1 kFD RNfedEEEfEDe πσ =−= ∫      (4-5) 

 

where σ1D is the linear charge density, D(E) is the 1-D density of states, f(E-Ef) is the 

Fermi function, and fk is an equivalent doping fraction of the thermal population, the 
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integral is to be evaluated within 2kBT from the valence band edge. The nanotube 1-D 

density of states (for one band) is given by [108]: 
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where 5
, 108×=mFv  m/s is the Fermi velocity for a metallic nanotube, and the energy 

is measured relative to mid-gap. Substituting (4-6) into (4-5) we get the equivalent 

doping fraction fk as: 
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making the substitutions TkE B/=Λ , and TkE Bg 2/=Ψ , this could be written as: 
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using Equation (4-3), we get: 

 

R
nm]731.6[

=Ψ         (4-9) 
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at room temperature kBT = 0.026 eV. Inserting the numerical values into Equation (4-

8) we get: 
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using Equations (4-9) and (4-10), fk can be numerically evaluated for a given 

nanotube radius R, the obtained values are shown in Table (4-1) below, and are 

compared with the values of f calculated from Equation (4-4). 

 

Nanotube R (nm) Lth = 2LD (μm) f  fk f/fk 

D5 0.95 4.320 3.564 x 10-4 5.543 x 10-4 0.643 

D1 1.05 2.376 3.207 x 10-4 4.793 x 10-4 0.669 

D3 1.50 1.374 1.803 x 10-4 2.866 x 10-4 0.629 

Table (4-1): Comparison of charge transfer and thermal doping fractions, Lth is 
determined from fitting the threshold versus length data in Figures 4-9-b, 4-12-b, and 
4-18-b to an exponential form (see text), f is determined from both R and Lth using 
Equation (4-4) and fk is determined from R using Equations (4-9) and (4-10). 

 

In essence, Table (4-1) compares the experimental doping fraction f, 

determined from the experimental variation of the threshold voltage with length, with 

the theoretical estimate fk determined using the nanotube radius.  We can see that f 

and fk are very comparable in magnitude, and differ by a constant multiplicative 

factor of ~0.65. This could come about because the 2kBT criterion is actually for W, 

which is shorter than LD as can be seen from Equation (4-2-a). Therefore the charge 

transfer induced band bending is smaller at LD than it is at W, and as the Fermi level 
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approaches 2kBT from the valence band edge at W it should be within a smaller 

energy span from the valence band edge at LD. This corresponds to a smaller upper 

limit of the integral in Equation (4-8) and therefore a smaller value of f.  

I conclude that charge transfer from the electrode and the associated long 

depletion length in 1-D provides a reasonable explanation for the observed shift in 

threshold voltage with length.  This length-dependent threshold voltage also explains 

the fast non-linear change in resistance versus length at shorter channel lengths under 

depletion conditions, now understood as a finite size effect of the depletion region.  

 The above results provide the first quantitative, transport-based evidence, for 

the extremely long depletion lengths that are predicted to be characteristic of one-

dimensional semiconductors.  These have also been recently observed qualitatively 

[29] using scanning photovoltage microscopy. In addition, my measurements point 

out that length-dependent resistance measurements of semiconducting carbon 

nanotubes require extremely long samples in order to observe the intrinsic behavior in 

a portion of the sample where the charge density is not varying i.e. a portion that is 

unaffected by charge transfer from the contacts. 

  

4.3.5 Mean free path 

 

As my results above show, the resistance versus length in the on-state is linear 

for most of the length of the nanotubes, and it remains linear for channel lengths 

larger than ~ 10 μm under depletion conditions. The resistivity at these length scales 

should be an intrinsic property of the nanotubes which is unaffected by contact 
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resistance or depletion. For a single walled nanotube the resistivity (resistance per 

unit length) ρ and the mean free path lm are related by [10, 24]: 
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elm         (4-11) 

 

Fig. 4-21 below shows the resistivity versus gate voltage obtained from the 

linear portions of resistance versus length for nanotubes D1, D5, and D3 (these 

correspond to channel lengths larger than about 8 μm in Fig. 4-8 for D1, 20 μm in 

Fig. 4-11 for D5, and 7 μm in Fig. 4-17 for D3) along with the corresponding mean 

free paths calculated from Equation (4-11). 
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Figure 4-21: (a) Resistivity ρ and (b) mean free path l as a function of Vg for the three 
semiconducting nanotubes D5, D1, and D3. The dashed green lines in (b) are 
exponential fits to l in the subthreshold region corresponding to subthreshold swings 
of 700, 1020, and 650 mV/decade for D5, D1, and D3 respectively. Only p-type data 
is shown for D3. 
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We can observe that the resistivity increases with gate voltage, remaining 

within a factor of 10 from the minimum resistivity at -10 V for most of the range, 

however near the threshold it starts to diverge, reaching values that exceed 107 Ω/μm 

before the limit of my measurement sensitivity is reached.  Notably, R(L) is still linear 

at these high resistivity values, i.e. resistivity remains a meaningful concept.  The 

corresponding mean free paths become very small (~ 0.46 nm for D1, 0.23 nm for 

D5, and 0.17 nm for D3) approaching the Ioffe-Regel limit l ~ a where a is the inter-

atomic spacing [109] (this is 0.144 nm for carbon-carbon bonds in graphite) . 

 For l near the threshold, one could assign a subthreshold swing 

1
10 )/log( −= gl dVldS . Sl should be an intrinsic property of the nanotube channel. The 

values obtained for Sl are 700, 1020, and 650 mV/decade for D5, D1, and D3 

respectively. These can now be compared to the S(L) values obtained from individual 

Id versus Vg  sweeps shown in Fig. 4-20 above (this can be done since dIl ∝  for 

constant L and Vd). In particular, the above Sl values are similar to the values of S 

linearly extrapolated (from long channel lengths) to zero channel length, these are 

730, 1250, 900 mV/decade for D5, D1, and D3 respectively. This indicates that the 

large observed values of the subthreshold swing are intrinsic to the nanotube channel, 

rather than an effect of the contacts, which confirms the conclusions in Section 4.3.1 

that the contacts in my measurements are ohmic, and that switching in my devices is 

caused by the bulk of the nanotubes rather than at the contacts. 

The persistence of diffusive transport near the off state of semiconducting 

carbon nanotubes at room temperature is rather different from their behavior at low 

temperatures, where electrostatic potential fluctuations due to disorder (structural 
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defects or charged impurities in the substrate), cause the nanotube to breakup into 

several segments with conduction caused by charge hopping between them, as 

evidenced by the observation of Coulomb blockade oscillations at low temperatures 

[10, 30-32, 110]. The same defects that cause such break up could still be active at 

room temperature as is inferred from scanning gate microscopy (SGM) 

measurements. However, it is clear from the linear R(L) that the charge carriers in my 

measurements remained delocalized. This experimental fact can help reveal the 

different roles of scattering mechanisms near the band edge as I will discuss below.  

At room temperature the dominant scattering mechanisms in carbon 

nanotubes are scattering by disorder and by phonons. In the low bias regime studied 

here, the main contribution to electron-phonon interaction comes from acoustic 

phonons [5, 12-14], with a possible contribution from optical phonons [111]. Both of 

these mechanisms are gate voltage dependent. The gate voltage dependence of 

disorder is revealed by both SGM [51] and scanning photovoltage microscopy [29]. 

The disorder sites usually have a stronger signature in these measurements under 

depletion conditions. This could come about because of the changes in the density of 

states caused by structural defects, or the generation of local depletion regions by 

charged impurities. A simple physical picture for this is the gate voltage modulating 

the height and width of local potential barriers at the disorder sites and therefore their 

transmission coefficients. The result would be a gate modulation of the elastic mean 

free path, becoming smaller upon approaching the threshold. For phonon scattering, 

the rate of scattering is proportional to the density of states by Fermi’s golden rule 

[112], therefore as the Fermi level approaches the van Hove singularity at the edge of 
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the valence band (which is associated with the threshold as established in the previous 

section), both the electron-phonon scattering time and mean free path should quickly 

drop, which is confirmed by theoretical calculations [25, 113, 114]. Using 

Matthiessen's rule, the amplitude of the overall mean free path would be dominated 

by the shorter of the disorder scattering and phonon scattering mean free 

paths: phdisorder lll /1/1/1 +=  where ldisorder is the disorder scattering mean free path, 

and lph is the phonon scattering mean free path.   

The interplay between these two mechanisms depends on the spatial 

distribution and strength of defects, and I consider two cases of strong and weak 

disorder. The first case is when the disorder generates strong enough barriers that 

transport is dominated by thermionic emission or thermally assisted tunneling [115] 

through these barriers. Then as the sample is cooled down the resistance should 

increase, being ultimately dominated by the heterogeneous localization caused by 

Coulomb blockade, with charges hopping between the segments defined by the 

barriers [10, 110]. For the second case, that is weak disorder, the transport would be 

dominated by phonon scattering, and upon cooling down the resistance should 

decrease, finally reaching a saturation value determined by disorder. In this case one 

might expect to observe Anderson-type homogeneous localization effects. Both of 

these types of temperature dependence have been reported for carbon nanotubes [24, 

110]. However the localization effects observed in Reference [24] were anomalous 

and not of the Anderson type in terms of both the magnitude and temperature 

dependence of the presumed localization length. Both of these types of localization 

effects should lead to an exponential R(L) behavior at sufficiently low temperature. 
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Like temperature, changing the gate voltage should also change the relative 

magnitudes of disorder and phonon scattering mean free paths. However in my 

measurements the transport seems to remain diffusive for all measurable resistances. 

The absence of any localization effects can then be used to understand the relative 

importance of the two scattering mechanisms near the threshold voltage. 

Considering the strong disorder model, the absence of Coulomb blockade 

oscillations in Id versus Vg data means that the thermal energy at room temperature 

kBT = 26 meV is larger than the sum of the charging energy SegC CeE 2/2=  and the 

single particle level spacing ΔE (see Chapter 1) of any segment that could form under 

depletion conditions. The capacitance of the segment CSeg can be estimated as the 

sum of the capacitance to the gate and the capacitance between the segment and the 

leads (in this case the rest of the nanotube). The capacitance to the gate can be 

estimated from Equation (4-1), however this might not be very accurate if the 

segment length is much less than the oxide thickness (500 nm) as discussed before. 

Capacitance to the leads is ~ 0.3 aF as given in Reference [32]. For a nanotube with 

diameter d ~ 2 nm, EC can be found to be: 

 

Seg
C L

nmeVE
+

≈
15

].4[         (4-12) 

 

where LSeg is the segment length. The level spacing can be evaluated from the density 

of states (4-6), SegLEDE )(/1=Δ  . Using the dispersion relation, this can be written in 

terms of the wave vector k as: 
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At the energy span of concern near the top of the valence band, k becomes small 

SegLk /2~ π , therefore (4-13) can be written as: 
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using TkEE BC =+Δ along with Equations (4-12) and (4-12), I estimated the lower 

bound for the mean distance between disorder sites in my devices. This yields LSeg ~ 

140 nm under high depletion conditions, which is not far from the segment size of a 

100 nm or more typically obtained from Coulomb blockade oscillations at low 

temperatures [10, 66]. It should be noticed here that this is mainly determined by the 

charging energy (4-12) and the contribution from the level spacing ΔE is almost 

negligible. 

For the weak disorder model, the system would remain delocalized if the 

thermal energy is larger than the level spacing of the localized states, which can be 

evaluated similar to Equation (4-14) as: 

  

22 /]eV.nm8.7[ ξ≈Δ LE        (4-15) 
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where ξ is the localization length. In one dimension the localization length is related 

to the mean free path as lNch≈ξ  where Nch is the number of spin-degenerate 

conductance channels [116]. Using Nch = 2 for single walled carbon nanotubes, we 

get a minimum mean distance between defects of about 9 nm. Both of these estimates 

are at least one order of magnitude higher than the experimentally observed mean free 

paths in the turn off regime. Thus, from the lack of observable localization, I 

conclude that scattering by disorder is not the mechanism responsible for the fast drop 

of the mean free path in the turn off regime. This can now be understood as being due 

to the electron-phonon scattering rate becoming higher near the Van Hove singularity 

at the valence band edge.  

For the on state it is hard to determine the relative contributions of these two 

mechanisms in the absence of data on temperature dependence. However we can 

notice a proportionality between the on state mean free paths and the diameters of the 

nanotubes (which is the same as the inverse proportionality between resistivity and 

diameters mentioned earlier in section 4.2.4), with (l)ON  ≈ 0.5 μm for D1 and D5 

whose diameters are  ~ 2 nm, and (l)ON ≈ 0.75 μm for D3 whose diameter is 3 nm (see 

Fig. 4-21). Such a proportionality is expected for the case of electron-phonon 

interaction [11, 93], but is unlikely for scattering by disorder. For point disorder 

(atomic defects) on the nanotube, one could argue that the mean free path should be 

inversely proportional to the diameter of the nanotube: if the probability per unit 

surface area for a certain type of structural defect to form is PD then for a nanotube of 

diameter d the linear density of defects would be dNPDπ  (assuming PD is 

independent of curvature), therefore the average distance between defects is 
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1)( −= dNPl Ddisorder π . This trend can somewhat be observed in the data of Reference 

[24] where the temperature dependence of the on-state mean free path for seven 

semiconducting nanotubes was studied. In that work the saturation mean free path at 

~ 50 K (which is mainly due to disorder) can be seen to be longer for smaller 

diameter nanotubes. Therefore the proportionality between the diameters and the on 

state mean free paths might be taken as an indication that the electron-phonon 

interaction probably dominates this regime as well. 

 

4.3.6 Mobility 

 

From the resistivity data for D5, D1, and D3 (Fig. 4-21) I calculated the field 

effect mobility μFE as [23]: 
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I evaluated Cg using Equation (4-1) using ε = 2.45 as discussed before. The field 

effect mobility data evaluated from Equation (4-16) are shown in Fig. 4-22 below. 

The values of the peak mobility are 3840, 2280, and 5940 cm2/V.s for D5, D1, 

and D3 respectively. These values are in general agreement with some previously 

published data for nanotubes with similar diameters [11] but much lower than others 

[23]. The oscillatory functional dependence of μFE on Vg for D5 and D1 is rather 

unusual compared with the reported dependence in References [11, 23], but seems to 
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carry some resemblance with the calculations in Reference [93] where the effects of 

intersubband scattering by phonons are considered.  

 

 
Figure 4-22: Field effect mobility for nanotubes D5, D1, and D3, calculated from the 
data in Fig. 4-21 and Equation (4-15), the average threshold voltages are 6.01, 5.63, 
and 4.16 V for D5, D1, and D3 respectively. 
 

4.3.7 Comments on nanotube D7 

 

As shown in Section 4.2.1 for the metallic nanotube D7, the behavior of the 

resistance versus length was linear in general, with only mild deviations from 

linearity at gate voltages close to 10 V. These deviations were traced back to the drain 

current versus gate voltage having some evolution with channel length (see Fig. 4-5). 

The origin of this evolution is not understood since in this case the nanotube always 

remains in the on state and therefore there is no depletion region (which was the 
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origin of the evolution in the drain current versus gate voltage in the semiconducting 

nanotubes D1, D3, and D5).  

Fig. 4-23 below shows the resistivity and the corresponding mean free path 

calculated from Equation (4-11). It can be seen that the mean free path is somewhat 

low compared to the typically obtained mean free paths (>1 μm) in metallic carbon 

nanotubes at room temperature [5, 13, 24, 49], which might indicate a large disorder 

in this nanotube. 

Due to the limited range of gate voltage available in my setup (-10 V to 10 V) 

it is hard to judge the nature of the plateau in drain current versus gate voltage which 

appears beyond Vg ~ 5 V for long channel lengths and gradually disappears for the 

short lengths (this is also reflected in Fig. 4-22).  

The large value ~ 70 μA of the saturation current compared to the value of 

saturation current ~ 25 μA in single walled carbon nanotubes which is due to 

scattering by zone-boundary phonons [14], might suggest the presence of inner shells 

which actively carries current at least in the high bias regime. Unfortunately the other 

metallic nanotubes I studied (D4 and D6 see Appendix A) have large diameters (> 4) 

nm and possibly had multiple walls and also a different topology (both have loops) 

therefore they might not be suitable for a comparison. Further study of straight small 

diameter metallic nanotubes is needed before having a conclusion about the above 

issues.  
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Figure 4-23: Resistivity and the corresponding mean free path as a function of gate 
voltage for the metallic nanotube D7, Vd = 0.1 V for all points. 
 

4.3.8 The D3 junction 

 

As discussed in section 4.2.4, nanotube D3 has two distinct segments of 

different diameter, which also show different resistivity and gate voltage dependence. 

I considered two models of this junction.  In the first model the two segments are two 

nanotubes of different chirality separated by a molecular junction, and in the second 

model the presumed junction marks the beginning of an extra nanotube wall. 

Assuming that the first model is correct, and then using the drain current versus gate 

voltage response shown in Fig. 4-16-a, I calculated the transmission coefficient of the 

junction as a function of gate voltage as: 

 

)1)/4/((1 2 += JJ RheT        (4-17-a) 
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And 

 

SegRJSJJ RRRR −−=         (4-17-b) 

 

where RSJ is the post-junction resistance, RRJ is the pre-junction resistance (both 

referenced to the fixed electrode), and RSeg is the resistance of the segment containing 

the defect (1 μm in this case) which is estimated locally from other adjacent 

measurements. The calculated transmission coefficient is shown in Fig. 4-24 below. 

This calculation however, assumes only two transmission channels (i.e. a single-

walled nanotube) and would need to be modified in the second model if current is 

carried by multiple nanotube shells.  The rather high value (close to unity) of the 

transmission coefficient near the gate voltage of -10 V might be an indication that this 

is the case.   

 
Figure 4-24: The transmission coefficient of the junction between the two segments 
of D3 calculated from the data in Fig. 4-16-a using Equations (4-16-a) and (4-16-b). 
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4.4 Conclusion 

 

I performed resistance versus length measurements on several long carbon 

nanotubes using a metal-coated AFM cantilever to realize a movable metal contact. 

The gold-nanotube contact resistance (both at the fixed electrode and the AFM tip) is 

low, within a factor of two of the theoretical lower limit.  The gold contact to the 

large diameter (≥ 1.9 nm) semiconducting nanotubes studied here is ohmic, and 

switching occurs in the bulk.  An apparent non-linear R(L) in semiconducting 

nanotubes observed at shorter lengths is explained by the very long depletion lengths 

in one-dimensional semiconducting channels, and points out the importance of 

studying R(L) in very long nanotubes.  All nanotubes show linear resistance versus 

length for long lengths (> 10 μm) at all measured resistivities.  I conclude that 

transport remains diffusive under all depletion conditions, which is attributed to both 

low disorder and high temperature. The dominant scattering mechanism is the 

electron-phonon interaction under all depletion conditions.   
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 Chapter 5: Transport measurements in mesoscopic silver wires 

at low temperatures 

 

5.1 Background 

 

 Mesoscopic physics is a subject that has been extensively studied for the last 

quarter century [117].  Among the various topics of mesoscopic physics, the subject 

of quantum corrections to conductivity occupies a special position, for it offers not 

only an elegant manifestation of quantum interference phenomena in solid state 

systems, but also a readily accessible experimental tool for measuring the phase 

coherence time and other scattering times governing the quantum transport in these 

systems [118, 119]. 

 In a disordered conductor, the electron motion is basically diffusive with the 

electron being scattered along its path, mostly elastically by the static disorder 

potential.  Occasionally, it suffers inelastic scattering through interaction with 

phonons, other electrons, and the energy or spin degrees of freedom of any dynamic 

defects or impurities.  These represent an effective position- and time-dependent 

environment to which the electron is coupled.   

 The electron can move form one point to another along several paths with 

corresponding partial wave-functions.  If for simplicity we consider only two paths, 

the appearance of a non-vanishing interference term in the superposition of these two 

partial wave-functions depends on the environment not being able to distinguish 
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between these two paths, i.e. there should be some degree of overlap between the 

environmental degrees of freedom coupled to these two paths, or equivalently, the 

probability distribution function of the relative phase between the two paths should be 

sufficiently narrow compared to 2π [120].  This leads to the conclusion that elastic 

scattering by the static disorder potential does not cause a loss of coherence between 

the paths, while most of the inelastic processes like electron-electron or electron-

phonon scattering do cause such decoherence [119].  The effect of interactions on the 

evolution of the electron wave function therefore sets an average time scale and a 

corresponding average length scale over which an electron wave function keeps some 

degree of coherence. These are called the phase coherence time τφ and the phase 

coherence length Lφ. For a diffusive conductor these are related by φφ τDL = where 

D is the diffusion constant. 

 As the temperature approaches zero, the dephasing rate is expected to vanish 

since both the phase space available for scattering and the density of excitations 

become smaller with lower temperature, thus causing τφ and Lφ to grow without limit.  

Assuming no magnetic scattering or dynamic defects exist, only the electron-electron 

and electron-phonon interactions would participate in dephasing.  The electron-

phonon interaction tends to be negligible below about 1-2 Kelvin in one- and two-

dimensional samples, thus leaving the electron-electron interaction as the dominant 

decoherence mechanism.  In these low-dimensional systems, the dephasing rate due 

to the electron-electron interaction is dominated by quasi-elastic scattering i.e. 

scattering with small energy transfers (ΔE<<KT), sometimes called Nyquist 

dephasing since it is equivalent to the scattering of an electron by the fluctuating 
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electric field (Nyquist noise) created by all the other electrons.  The theoretically 

expected behavior of τφ  as a function of temperature for a one dimensional wire due 

to this mechanism is [121, 122] 
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where NF is the density of states at the Fermi surface (for silver,  NF = 

3147 .1003.1 −−× mJ ), VW is the volume of the wire, and R is the resistance of the wire. 

 

5.2 The problem of τφ saturation  

 

 Measurements of τφ and Lφ by various experimental groups in various 

materials over the past twenty years have shown that they do not actually diverge as 

the temperature gets lower in the region where electron-electron interaction is 

dominant, but they tend to saturate at some temperature [123].  This phenomenon was 

not systematically studied until 1997 when it was extensively investigated by 

Mohanty and coworkers [124], and their work induced further theoretical and 

experimental investigations to find the origin of this contradiction with conventional 

theory.  Three main lines of explanation have been proposed, as we will detail below. 
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5.2.1 Intrinsic decoherence  

 

 Intrinsic decoherence was first proposed by Mohanty, Jariwala and Webb 

(MJW) [124, 125] to explain their experimental results.  Their basic idea was that 

even at zero temperature the zero-point fluctuations of the electron gas would cause a 

fluctuating electromagnetic field that couples to the electron being observed thus 

causing decoherence.  The spectral density of this electromagnetic field is both 

temperature and frequency independent.  Therefore, in order to get any physically 

meaningful quantities phenomenological frequency cutoffs have to be imposed.  The 

lower cutoff was taken to be 2/ φLDh  because frequencies less than 1/τφ do not 

contribute to dephasing and the upper limit was taken to be the classical electron 

energy 2/2
DmV , where VD is the diffusion velocity.   This leads to a finite value for τφ 

at zero temperature that is almost material independent and depends mainly on 

classical transport parameters.  The temperature dependence of τφ was also obtained 

which they found to fit well to a large volume of experimental data [124, 125], and is 

given by 
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in the above, d is the classical dimensionality of the sample, m* is the effective mass 

of the electron, and α is a constant of order unity.  These formulae were also 

demonstrated to be usable for designing samples that have a specific saturation 

temperature [126].  Figure 5-1 below shows the typical saturation behavior of τφ 

reported by MJW in their gold samples.  The parameters for these samples are shown 

in Table (5-1). 

 
Figure 5-1: Temperature dependence of τφ for four gold wires, the solid lines are fits 
to Equation (5-2) with the addition of phonon scattering (adapted from Reference 
[124]). 
 

 This idea of intrinsic decoherence was further supported by more rigorous 

calculations by Golubev and Zaikin [127-131] who employed a non-perturbative 

approach that included the effect of zero-point fluctuations.  This idea of intrinsic 

decoherence came under severe criticism conceptually [132, 133] with the main 

argument being that zero-point fluctuations of the electromagnetic field can not cause 

energy exchange and therefore can not cause decoherence.  In addition, the non-

perturbative approach of Golubev and Zaikin was also criticized [122, 134] as being 

mathematically erroneous.  However, this controversy has not been settled [135] and 
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intrinsic decoherence cannot be ruled out as a possible explanation of the saturation 

of τφ on either theoretical or experimental grounds. 

 

5.2.2 Decoherence by dilute magnetic impurities 

 

 A nominally 'pure' metallic sample still contains impurities at the PPM or sub 

PPM level and some of these could be magnetic.  Magnetic impurities can cause 

dephasing through spin-flip scattering, whose rate is usually calculated from the Suhl-

Nagaoka approximation for the Kondo effect [136, 137]: 
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 Where c is impurity concentration, S is impurity spin, and TK is the Kondo 

temperature corresponding to the particular host-impurity system.  

 It has been suggested,  mainly by the Saclay and MSU groups [138-141], that 

magnetic impurities having a low Kondo temperature are the cause of saturation.  

This was inferred by comparing the phase coherence times in Au and Ag samples of 

similar classical transport parameters with different impurity levels ranging from 1 to 

10 PPM.  They found that in samples with nominal purity 6N (99.9999%) the phase 

coherence times were long and had a temperature dependence that is close to the 

theoretical estimate down to about 40 mK.  In contrast, their samples with nominal 

purity 5N (99.999%), have shown a saturation of the phase coherence time below 
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roughly 1 K.  This contrasting behavior is shown in Figure 5-2 with the sample 

parameters shown in Table (5-1).  By using Suhl-Nagaoka approximation to calculate 

the spin flip scattering rate due to magnetic impurities, and assuming that the main 

impurity in their samples was Mn which has a Kondo temperature of about 40 mK in 

bulk Au and Ag, they estimated that a concentration level of about 0.13 PPM of Mn 

was sufficient to cause the observed saturation in the 5N samples. 

 

 
Figure 5-2: Phase coherence time versus temperature for samples made of  5N Ag, 
6N Ag, and 6N Au, the solid lines are fits to Equation (5-1) with the addition of 
phonon scattering (adapted from Reference [138]). 
  

 The fact that magnetic impurities can cause dephasing through spin-flip 

scattering has been known for a long time.  The question is whether this explanation 

can account for all the experimental observations concerning τφ saturation, and 

whether the Suhl-Nagaoka approximation employed by the Saclay and MSU groups 

does describe the reality about the behavior of magnetic impurities in mesoscopic 

devices.  The answer to the first question is that this mechanism cannot be universal 

since saturation has been observed in systems where magnetic impurities do not 

usually play a role in transport such as semiconductors and 2-D electron gas 
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heterostructures [123].  In addition, saturation has also been observed in disordered 

Au wires placed in a magnetic field high enough to quench spin-flip scattering [142]. 

 

Sample R(KΩ) L(μm) w(nm) t(nm) ρ(Ω.nm) D(cm2/s) le(nm) Ref. 
Au-2 0.30 207 110 60 9.6 612 87.5 [124] 
Au-3 1.44 155 100 35 32.6 120 25.8 [124] 
Au-4 1.81 57.9 60 25 46.9 83.7 17.9 [124] 
Au-5 3.62 18.9 190 40 1456 2.7 0.6 [124] 

Ag(6N)c 1.44 400 105 55 20.8 185 38.9 [138] 
Au(6N) 1.08 175 90 45 36.1 135 23.3 [138] 
Ag(5N)b 1.31 270 90 65 28.4 135 28.5 [138] 
Table (5-1): Parameters of the samples in Figure 5-1 and Figure 5-2 (adapted from 
Reference [124] and Reference [138]). 
 

 The second question is rather subtle.  The problem of magnetic impurities in 

non-magnetic hosts involves a number of diverse phenomena such as the Kondo 

effect, the RKKY interaction, local spin fluctuations (LSF), and others.  This problem 

is thought to be well understood in bulk systems [136, 143, 144], however some 

controversy arises when it comes to low dimensional systems [145].  These 

controversies have been a subject of extensive studies in the last two decades.  The 

main topics that have been studied are the existence and possible explanations of a 

Kondo size effect, Kondo impurity-mediated energy exchange between electrons, and 

the interplay between the Kondo and the RKKY interaction. 

 Experimental and theoretical debates about the presence of a Kondo size 

effect [146-150], and its possible association with at least one of  the sample 

dimensions being smaller than the size of the Kondo screening cloud (which was not 

found to be the case), led to the study of the behavior of Kondo impurities in a finite 

medium by Zawadowski and coworkers [151-155].  They theoretically predicted that 
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a spin-orbit induced magnetic anisotropy near the surfaces can effectively 'freeze' the 

spin S of impurities into a singlet if S is an integer or into a doublet of lowest energy 

if S is half an integer.  This freezing is a function of both the distance from the surface 

and temperature, therefore making both the effective impurity spin and concentration 

a function of temperature.   It must be noticed that the existence of the spin-orbit 

scattering by itself does not modify the Kondo effect [156], it is the combination of 

both spin-orbit and the finiteness of the medium that causes this freezing.  This theory 

seems to be in good agreement with some of the experimental data [157-159], but is 

at odds with others [160].  The presence of surface roughness was found to enhance 

the surface-induced anisotropy and the splitting of the impurity spin energy levels 

[161, 162].  This makes the situation even more complex in realistic samples because 

of their granular structure.  

 An additional aspect that has been investigated in Kondo systems is the 

magnetic impurity mediated electron-electron interaction.  Experiments measuring 

the non-equilibrium electron energy distribution function in disordered metallic wires 

using tunnel junctions [141, 163-165] have revealed an anomalous electron-electron 

interaction in some samples.  This interaction was observed to be a function of the 

magnetic field leading to the assumption that the cause is dilute magnetic impurities.  

Theoretical calculations for S=1/2 impurities [166-168] have provided some 

quantitative agreement with these experiments.  The concentrations of magnetic 

impurities inferred from these calculations, however, are about two orders of 

magnitude higher than the concentrations inferred from the weak localization 

measurements on samples with similar purity [163].  Similar calculations have been 
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done for higher S values, but this does not lift the aforementioned disagreement [169].  

Another theoretically expected effect of medium finiteness is the Kondo temperature 

TK and the exchange energy J becoming functions of position due to their dependence 

on the local density of states [170]. 

 A consequence of the interaction between the conduction electrons and the 

local magnetic moment of an impurity is the existence of an oscillatory spin 

polarization cloud that decays rather slowly in distance, and therefore is able to 

mediate an indirect spin-spin interaction between impurities.  This interaction is 

known as the Ruderman-Kittel-Kasyua-Yoshida (RKKY) interaction, this is the 

interaction responsible for the formation of a spin glass state.  The RKKY interaction 

is always a factor that complicates the interpretation of experimental observations in 

dilute magnetic alloys using isolated impurity models [143].  Even samples which 

have a low concentration of magnetic impurities, and therefore a low spin glass 

temperature, can still show behavior that is reminiscent of this interaction.  Part of the 

reason is that the average inter-impurity distance changes as the cube root of the 

impurity concentration, which is a rather slow function.  Calculations have shown that 

the RKKY interaction is enhanced in low dimensional systems [171], and could 

create non-uniform magnetic states in thin films [172].  This could also cause the 

electron phase relaxation rate to be a non-monotonic function of temperature [173].   

Experiments on Mg quench-condensed thin films with Fe impurities, and at 

temperatures much lower than the Kondo temperature of this system, have shown 

deviations from the Fermi liquid behavior expected in this temperature regime as the 

impurity spins should be fully shielded.  These deviations were found to be dependent 
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on the impurity concentration and thus were attributed to inter-impurity interactions 

[174-176]. 

 Disorder has been known to suppress the Kondo effect.  This problem has 

been recently revisited theoretically [177, 178], and experimentally [150].  Disorder is 

also expected to affect some aspects of the RKKY interaction [179, 180].  Also, the 

effect of local spin fluctuations (LSF) on dephasing has been investigated 

experimentally [181].  That work has shown that LSF impurities cause a much 

weaker dephasing than Kondo impurities. 

 From this review it is clear that the problem is rather complex.  This leads to 

the belief that the analysis of the experimental measurements in Reference [138] 

using Suhl-Nagaoka approximation is an over-simplification.  This analysis assumes 

a single impurity species with a single TK and S, and a temperature-independent 

effective impurity concentration, and as was shown above this might not be correct.  

It might be argued that these variations can be absorbed into an effective simple 

Kondo model.  Indeed, this seems to be, at least qualitatively, the case in many 

experiments [137, 149, 150, 182-184].   However, it can be noticed that in all these 

experiments there was always a dominant impurity at the few PPM or above level.  

This means that in these experiments there was always a sufficient amount of 

effectively 'bulk' impurities to mask out any anomalies. Also notable is that even in 

these systems, the agreement with theory generally becomes worse below TK , and 

this is indicated by the reported experimental difficulty in reaching the unitarity limit 

(complete screening of impurities’ magnetic moments) [175, 183, 184].  This also 

invalidates the usage of Suhl-Nagaoka approximation, which assumes that the 
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unitarity limit should be reached if T<<TK .  This suggests that this renormalization 

into a simple Kondo picture might not work well for high purity samples which do 

not have a dominant magnetic impurity, which is supported by a recent theoretical 

calculation [185], where the scattering rate by dilute magnetic impurities is found to 

be consistently lower than that predicted by the Suhl-Nagaoka approximation.  The 

invalidity of Suhl-Nagaoka approximation in high purity samples might help to 

explain the excessively low estimates, in the order of 0.01 PPM, of magnetic impurity 

concentrations obtained in Reference [138] for 6N Au and Ag samples.  Also, as 

mentioned before, estimates of magnetic impurity levels in 5N samples using the 

Suhl-Nagaoka approximation are two orders of magnitude lower than the 

corresponding estimates from the energy relaxation rates in similar samples [163].  

Further, using S=1/2 for Mn impurities in Ag might not be correct since Mn in bulk 

Ag has S=5/2 [186], and attempting to explain this lower S value in terms of freezing 

out by surface anisotropy further invalidates the usage of Suhl-Nagaoka 

approximation as explained before.  The choice in Reference [138] of Mn as an 

impurity for ion implantation in Ag could have been a poor choice since some 

evidence exists that the Ag-Mn system might not be an ideal Kondo system [187].  

Also if S is larger than 1/2 complete shielding of the impurity spin is not possible 

even at zero temperature [188], which again invalidates using Suhl-Nagaoka 

approximation. 

 To conclude, magnetic impurities have an undeniable role in dephasing at low 

temperatures, and indeed they could be the cause of phase coherence time saturation 
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in some cases.  However, a cautious assessment is needed before a proper judgment 

can be made about their role in a particular set of measurements.  

 

5.2.3 Dephasing by coupling to two-level systems (TLS) 

 

 In a disordered solid, an atomic positional arrangement can arise where one or 

more atoms get trapped in a double well potential.  Therefore, they can tunnel 

between the states localized at the minima of the wells through the middle barrier.  

The low energy excitations of such an arrangement can be approximated as a two 

level system (TLS).  The distribution of the parameters describing these systems such 

as the tunneling rate and energy are assumed to be very broad.  Further, TLS are 

assumed to couple to phonons and conduction electrons [189].  Two models have 

been proposed to account for dephasing by TLS.  The first model calculates their 

effect through the closely related phenomenon of 1/f noise [190].  The second model 

describes them as two-channel Kondo impurities [191-193].  Both models agree that 

coupling to TLS could cause some extra dephasing, therefore saturation of the phase 

coherence time, for some limited temperature range.  That extra dephasing vanishes 

as the temperature approaches zero.  Only a few attempts have been made to fit 

experimental dephasing data to TLS theories [165].  In a recent experimental test 

[194] where Ag samples were ion implanted with a low dose of Ag+ ions (which 

should increase the disorder and hence the density of TLS) no measurable effect on 

the scattering rates was found.  It has been theoretically argued that dephasing by 
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TLS might be irrelevant for disordered metals in the usually investigated low 

temperature regime [195, 196].  

 

5.2.4 Dephasing by external microwave noise 

  

 It has been suggested that external microwave noise is the cause of saturation 

[197, 198].  However, one experiment shows that when microwave radiation with 

frequency comparable to 1/τφ couples sufficient power into the samples to cause an 

observable dephasing, this is accompanied by an enhanced energy relaxation, and this 

effect has not been observed in most measurements [126].  However, there has been 

recent experimental work on this problem attempting to separate the effect of direct 

heating of the electron gas by microwave radiation from true dephasing by the 

electromagnetic field [199]. 

5.2.5 Other explanations 

  

 Other suggestions to account for the saturation include electron-phonon 

interaction in open systems [200], coherent inter-grain charge transfer [201], vacuum 

fluctuations of the electromagnetic field [201-203], quantum measurement effects 

[204], and spin-magnon interaction [205].  However, these propositions have 

attracted only a little experimental and theoretical attention, hence I mention them 

only for completeness.   
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5.3 Experimental procedure 

 

 In this work, I report on measurements of phase coherence time (length) in 

quasi 1-D silver wires.  This was done through measuring the weak localization (WL) 

correction to conductivity which results from the coherent backscattering of time-

reversed paths [118, 206, 207], and universal conductance fluctuations (UCF) 

correction which results from the statistical fluctuations in the averaging of the 

interference terms of non time-reversed paths over a region of order Lφ [119, 208, 

209].  The application of a magnetic field adds an extra phase to wave functions.  For 

time-reversed paths, the two paths acquire opposite phases, and increasing the field 

further increases their phase difference until their interference term, hence the WL 

correction, is quenched at some characteristic field. For a 1-D conductor, this field is 

of order weLh φ2 , where w is the width of the wire.  This is the field required to 

thread one-half of a flux quantum through a phase coherent area Lφ w, thus causing a 

phase difference of 2π between the time-reversed trajectories.  The WL correction 

appears as an enhancement of resistance at low magnetic field, or as a depression in 

the case of weak anti-localization caused by strong spin-orbit scattering.  Fitting the 

low field magnetoresistance to the proper theoretical form provides Lφ and other 

scattering lengths as we will discuss later.   

 The phase change due to the magnetic field also affects the phases of non 

time-reversed paths, thus changing the ensemble average of their interference terms.  

As the field changes this ensemble average changes too.  After some field span, the 

new ensemble of phases becomes statistically independent from the initial ensemble, 
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resulting in the appearance of UCF as reproducible sample-specific quasi-random 

fluctuations in the magneto-conductance which would have a correlation field BC.  

This is approximately the field needed to thread a flux quantum through a phase 

coherent area thus changing the phase of each partial wave function by 2π.  For 1-D 

samples, this field is given by weLh φ .  This correlation field is obtained as the half-

width of the autocorrelation function of conductance as I will discuss later.  One 

important issue is whether the τφ values calculated from these two different 

measurements are identical.  This has been a subject of debate [210-214].  At least it 

is agreed that both estimates should have the same order of magnitude and 

temperature dependence.  However, this is not necessarily the case in a system that 

has magnetic impurities.  In this situation, temperature dependence of the two 

dephasing times can be different since (τφ )UCF is calculated from the high field 

magnetoresistance and the high magnetic field would polarize the magnetic moments 

of the impurities, thus suppressing the spin-flip scattering.  This offers a powerful 

method to determine whether the origin of saturation in a certain sample is magnetic 

or not.  This method was used by Mohanty and Webb [142] who measured τφ from 

WL and high field UCF in quasi 1-D gold wires and were able to show that (τφ )UCF 

saturated down to 40 mK similar to (τφ )WL , thus proving that the origin of τφ 

saturation in these samples is non-magnetic.  

 My samples are made of 99.9994% purity silver with the main impurity being 

Palladium, which is non-magnetic.  Other elements could still exist in sub PPM 

levels.  In the first step of sample fabrication, oxidized Si wafers are spin-coated with 

two layers of PMMA resist.  The top layer has a higher molecular weight to help 
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create an undercut profile in the developed patterns, which improves the liftoff 

process.  The resist is baked for about one hour at about 170 C.  Then, using an SEM, 

e-beam lithography is used to pattern the image of the samples and contact pads on 

the resist.  This is followed by development in a 3:1 IPA:MIBK mixture.  The 

developed patterns are installed in a thermal evaporator used only for high purity gold 

and silver.  Before evaporation, plasma etching is performed to improve the adhesion 

of silver to the SiO2 surface.  Silver is then evaporated at various rates ranging from 

0.1 Å/s to 12 Å/s, and at residual pressures ranging from 1x10-6 Torr to about 5x10-5 

Torr.  The evaporated thickness is determined from a crystal monitor and is double-

checked in a co-evaporated film using a surface profiler.  The samples are then taken 

out and immersed in Acetone for lift-off.  After that, the SEM is used to check for 

good samples.  If any are found, the wafer is then covered with a thick layer of 

PMMA to protect the samples during dicing, which is done using a diamond tip dicer.  

The good samples are then extracted, fixed on a suitable holder, wire bonded, and 

checked for electrical continuity. 

 I encountered many problems in producing these samples.  These problems 

mainly came from the extreme tendency of these ultrathin silver films to agglomerate 

even at moderate temperatures. Similar behavior have been reported in literature  

[215-218].  I had to give up baking the protective resist layer (used before dicing) 

since this caused breaks to develop in all samples examined.  The thinnest samples 

(~20 nm) have shown agglomeration even at room temperature.  These samples 

developed breaks within a few days at room temperature. This behavior is consistent 

with the observations about the thermal stability of thin silver films in Reference 
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[218].  The thicker samples displayed a linear increase in resistivity with time as 

shown in Figure 5-3 below, ultimately failing.  Near their failure, the wires had a 

large (in the order of hundreds of kilo-Ohms), fluctuating resistance. 

 

 
Figure 5-3: Resistivity of a silver nanowire exposed to air at room temperature as a 
function of time. 
  

 The increase in resistivity might be explained by agglomeration causing 

constrictions to form across the wire, or by the interaction of silver with sulfur 

compounds present in air forming inter-granular insulating layers.  I believe both 

played a role.  The assumption that the silver interaction with sulfur compounds 

increases the resistivity through forming inter-granular insulating layers, rather than 

through reducing the effective cross section of the wire, is based on the observation 

that passing a current for some time through samples near failure causes a reduction 

and stabilization of their resistance.  Also, reduction of the cross section causes a non-

linear change of resistance with time [219], in contrast to the nearly linear change 

observed.  Thus, aged silver wires likely have a non-uniform structure with high 

resistivity spots or constrictions.  These might dominate the transport and/or produce 
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local heating at low temperatures.  I found that storing the samples in helium 

significantly reduced these changes.  On one hand, this kept the samples away from 

the sulfur compounds in air, and on the other hand it possibly reduced the 

agglomeration which is enhanced in the presence of oxygen [216]. 

 Another problem was my inability to control the resistivity of the samples 

through changing the evaporation parameters (rate, residual pressure).  Obtaining 

samples with a diverse set of resistivity values is needed in order to test the validity of 

the theory of intrinsic decoherence.  There, the expected behavior of τφ as a function 

of temperature is controlled by the value of τ0 , which in turn is controlled by the 

diffusion constant as seen from Equations (5-2-a), and (5-2-b).  This insensitivity of 

the resistivity to evaporation parameters in silver is in contrast to gold where using 

this method, it is possible to change the resistivity of ultrathin gold wires by about 

one order of magnitude [64].  However it has been reported that highly disordered 

silver films could be produced under a much lower pressure and evaporation rate than 

what the evaporator I used could access [220].  Attempts to increase the resistivity of 

the wires through reducing their cross sectional area [64, 221] failed because of the 

instability of thin wires at room temperature mentioned above.  

 All the samples were patterned in the form of a meander, and connected to 

four 2-D contact pads through 1-D leads in order to perform four probe 

measurements.  A typical sample geometry is shown in Figure 5-4.  The length of the 

1-D leads was always made to be longer than 3Lφ in order to minimize non-local 

contributions to the measurements [119, 222-224].  Table (5-2) summarizes the 

properties of my samples. 
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Figure 5-4: An example of a quasi 1-D metallic sample, the meander is 56.14 μm and 
the quasi 1-D leads are about 12.5 μm each. 
  

Sample R(KΩ) L(μm) w(nm) t(nm) ρ(Ω.nm) D(cm2/s) le(nm) 
S-1 1.88 246 75 43 24.6 153.5 32.8 
S-2 1.41 56.14 39 30 29.4 128.7 27.6 
S-3 0.26 26.1 70 45 31.3 120.5 25.8 
S-4 0.105 26.1 95 61.5 23.5 160.9 34.5 
S-5† 7.54 246 50 36 55.2 68.6 14.7 
S-6 3.03 1130 80 91 19.5 193.7 41.5 

Table (5-2): Samples properties, both resistance and resistivity are low temperature 
values, the diffusion constant D is calculated from ρFNeD 21=  , and the elastic 
mean free path is calculated from le from 2nemvl Fe ρ= where vF is the Fermi 
velocity 1.39x106 m/s , and n is the electronic density 6.1x1028 m-3. 
† This was an aged sample 
  

 The samples were installed in a dilution refrigerator with a base temperature 

of about 5 mK.  Temperatures above about 100 mK were measured using a calibrated 

Germanium resistance thermometer (GRT).  This was also used to calibrate an RF 

SQUID based magnetic susceptibility thermometer [225], then this calibration is 

extrapolated down to the base temperature.  Both thermometers were fixed to the 
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mixing chamber.  Sometimes, I used an un-calibrated Ruthenium oxide thermometer 

fixed in the sample cell as an indicator of thermal equilibrium.  It is believed that 

Ruthenium oxide thermometers are not usable below about 20 mK due to saturation 

of the resistance [64].  However, I found that by using an ultra-low excitation current 

~10 pA, the resistance did not actually saturate as is shown in Figure 5-5.  Below 20 

mK, the resistance changes roughly as a weak power of temperature; the previously 

observed saturation behavior may have been caused  by excessive Joule heating due 

to an excitation current which was too large. 

 

 
Figure 5-5: Resistance of Ruthenium oxide thermometer as a function of temperature, 
room temperature resistance is about 1 KΩ. 
 

 It must be noticed that the temperature indicated by the thermometers does not 

necessarily reflect the actual temperature of the electrons in the samples.   Heating or 

loss of thermal contact between the electrons and the thermal bath can be indicated 
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only through any temperature-dependent effect measured in the sample itself.  This is 

usually taken to be the electron-electron interaction correction to the conductivity, 

which I will discuss later.  The refrigerator was equipped with an 8 Tesla 

superconducting magnet.  For weak localization sweeps, the magnetic field was 

ramped between about ± 1500 Gauss in a period of 6-12 hours.  For the UCF sweeps 

the field is ramped from zero to about 7.9 Tesla, then back to zero in a period of about 

20 hours.  The slow ramping allows more points to be averaged per field bin, thus a 

better signal to noise ratio is obtained.  It also reduces the possibility of eddy current 

heating of the sample cell. 

 The WL and UCF corrections to the conductivity are rather small.  In my 

samples, they correspond to a relative change of about 0.1% in resistance.  The 

electrical measurements are done via lock-in amplifiers using two different 

configurations.  In the 'direct' configuration shown schematically in Figure 5-6-a 

below, the excitation current is fed into the I+ lead of the sample from the reference 

voltage output of the lock-in amplifier through a resistance much larger than the 

sample resistance, thus effectively converting it into a reference current output, and 

the I- lead is grounded.  The voltage difference across the sample measured between 

the V+ and the V- leads is fed into a differential pre-amplifier, and from there into the 

lock-in amplifier, which is internally referenced to the excitation frequency.  I had 

some trouble with this configuration in the form of long-time period drifting of the 

output.  These drifts were proportional to the input/output voltages of the lock-in 

amplifiers, and I could link them to variations in the ambient temperature. 
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 The second configuration is a Wheatstone bridge configuration, where another 

branch with a constant resistor and a variable standard resistor were added to the 

previous configuration between the reference voltage output and the V- lead in order 

to null the voltage drop across the classical resistance of the sample as is shown 

schematically in Figure 5-6-b below.  This configuration reduces the input voltage to 

the lock-in amplifiers, consequently reducing the thermal drift voltage relative to the 

signal voltage, and offered another advantage by enabling the measurement to be 

performed at the highest possible sensitivity of the lock-in amplifiers without having 

to change the sensitivity as the samples’ excitation currents are changed.  However, 

for reasons that I do not understand, this configuration produced anomalous electron-

electron interaction data.  I believe this anomaly was a measurement artifact since the 

'direct' configuration applied to the same samples, despite being smeared by the 

thermal drift of equipment, produced normal results.  I did not observe any anomalies 

in the magnetoresistance data obtained using the bridge technique.  The lock-in 

amplifiers were operated in the frequency range of 10-25 Hz.  Care was taken to set 

the reference frequencies of the different amplifiers far apart compared to their 

bandwidths, ~1 Hz in this frequency range. 
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Figure 5-6: The two measurement configurations used. (a) The direct measurement 
configuration. Rp1 through Rp4 are 2 KΩ metal film protection resistors mounted in 
the sample cell, Rs is the sample resistance, and Ri is a large resistor to keep the 
excitation constant. (b) The bridge measurement configuration. Rb1 is a constant 
resistor, and Rb2 is a high precision variable resistor used to balance the bridge. 
 

 One important consideration in these measurements is the magnitude of the 

excitation current.  A large voltage difference across the sample can directly heat the 

electron gas and reduce the quantum corrections.  Meanwhile, a sufficiently large 

current is needed to obtain a good signal to noise ratio.  One rule of thumb to avoid 
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heating is that the energy acquired by an electron from the electric field while passing 

across a phase coherent region, must be lower than the temperature i.e. KTeV ≤φ , 

where Vφ is the voltage drop per phase coherence length. 

 Experimental determination of the proper measurement current can be done 

by measuring the phase coherence length as a function of the excitation current and 

finding the value at which Lφ begins to drop.   However, the presence of Lφ saturation 

complicates the direct interpretation of the results in terms of electron heating.  At a 

current where Lφ is found to be current independent, the electrons could have been 

heated to a higher temperature still within the saturation region.  Figure 5-7 shows the 

current test data for samples S-5 and S-6 at a temperature of about 7 mK.  These 

samples (only briefly studied) showed Lφ saturation up to 1 K.  For sample S-6 the 

criteria mentioned above gives a maximum current of 51 nA, yet Lφ seems to be 

current-independent up to double that value.  On the other hand, sample S-5 where 

the maximum excitation current should be about 5.4 nA, shows heating at less than 

half this value.  I interpret this as due to the existence of hot spots in this ‘aged’ silver 

wire.  A detailed discussion of other measurement considerations in a similar system 

can be found in Reference [226]. 
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Figure 5-7: Lφ  for samples S-5 and S-6 as a function of excitation current at 7 mK. 
 

5.4 Results 

 

5.4.1 Weak localization  

 

Figure 5-8 below shows the low field magnetoresistance for samples S-1 to S-

4 at    1 K (upper traces), and 220 mK (lower traces).  All samples display positive 

magnetoresistance (weak anti-localization) as expected for silver, which has a 

considerable spin-orbit scattering.  The data is fit to the theoretical form [226]: 
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and where LSO, LS, and LB are the spin-orbit scattering length, spin-flip scattering 

length, and magnetic length respectively.  In the actual fitting procedure, I added a 

constant term to account for offsets and a linear term to account for drifts.  I fitted the 

traces for each sample to a constant value of LSO since it is not a function of 

temperature.  This constant value of LSO is obtained from fitting the highest 

temperature trace (~ 2-4 K) where the UCF has diminished.  It is a common belief 

that Lφ  , LSO , and LS  could all be obtained simultaneously from fitting to Equation 

(5-4-a) [123].  I do not believe that this is true since the actual fitting parameters 

obtained from Equation (5-4-a) are L1 and L2 .  This makes the algebraic problem of 

solving for Lφ , LSO , and LS indeterminate.  To get meaningful results, one of the 

three parameters must be fixed, and then the fitting determines the other two. 
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Figure 5-8: Low field magnetoresistance for samples S-1 to S-4 with fits to Equations 
(5-4), the spin-orbit scattering lengths are 0.447, 0.7, 0.33, and 0.645 μm for S-1 
through S-4 respectively. 
 

It might seem here that this problem is already solved by fixing LSO ,  however 

for materials with strong spin-orbit scattering like gold and silver and in a high purity 

sample LSO is usually about one order of magnitude lower than Lφ and LS .  Thus, the 

value of L2 becomes rather insensitive to variations in Lφ and LS , and we effectively 

get only one equation from L1 to solve for Lφ and LS .  This means that we have to 

assume some value for LS in order to obtain Lφ or vice versa.  I initially assume that 

LS is infinite, i.e. no magnetic scattering.  Therefore, the values identified 
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experimentally as Lφ are actually the values of L1.  One last consideration is the width 

w which enters into the fitting through the magnetic length LB .  This is the physical 

width of the wire (assuming a rectangular cross section), so it must be constant.  

However, in fitting I usually left it as a free parameter.  The reason for this is that 

Equation (5-4-a) is actually an approximate expression [122] .  Therefore, allowing w 

to vary helps to absorb any small differences from the actual expression.  Indeed, I 

found that doing this helps to improve the quality of fitting at the lower temperatures.  

Variations between w and the physical width of the wires as determined using the 

SEM were in the order of 20%.  Figure 5-9 shows the experimental values of τφ for 

samples S-1 to S-4 as a function of temperature.  I also show the theoretical 

predictions for dephasing by electron-electron interaction, calculated from Equation 

(5-1) with summary in Table (5-3), and intrinsic decoherence, calculated from 

Equations (5-2-a), and (5-2-b).  These estimates should be smaller for temperatures 

roughly above 1 K due to the effect of electron-phonon interaction that I have not 

taken into account here. 

 

Sample C1 (ns.K2/3) C2 (μm.K1/3) 

S-1 2.06 5.62 
S-2 0.99 3.57 
S-3 1.92 4.98 
S-4 3.12 7.09 

Table (5-3): Theoretical coefficients for samples S-1 through S-4, calculated from 
Equation (5-1) for 3/2

1)( −
− = TCeeφτ and 3/1

2ee)( −
− = TCLφ . 
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Figure 5-9: Experimentally measured τφ as a function of temperature for samples S-1 
to S-4 along with the theoretical predictions from Equations (5-1) and (5-2). 
 

Table (5-4) summarizes the experimental values of τφ and its theoretical 

estimates from both theories at 10 mK.  Before commenting on the behavior of τφ in 

my samples, it might be important to discuss the error associated with these 

measurements.  Variations between repeated measurements of Lφ are usually in the 

order of 3-4%, leading to variations in τφ of about 6-8% , and this should not lead to 

any significant alterations of the behavior displayed.  It can be noticed that in all the 

samples τφ begins to saturate below about 600 mK and remains in saturation till the 

lowest measurement temperature of about 10 mK except for S-4.  This sample shows 

some growth below about 100 mK then tends again to saturate at the lowest 
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temperatures.  In addition, sample S-2 has shown some change of the τφ saturation 

value upon thermal cycling.  Changing the temperature from about 7 mK to 4.2 K and 

back to 7 mK, τφ dropped from the higher values shown in Figure 5-8 using the open 

symbols, to lower stable values shown by the solid symbols.  This effect was not 

observed in the other samples. 

 

Sample Exp.)( φτ ee)( −φτ Intrinsic)( φτ

S-1 0.53 44.4 2.09 
S-2 1.12 21.3 0.33 
S-3 0.47 41.4 2.54 
S-4 3.78 67.2 6.54 

Table (5-4): Experimentally measured τφ at about 10 mK for samples S-1 to S-4 along 
with theoretical predictions from Equations (5-1) and (5-2), values are in 
nanoseconds. 
 

Another feature is that the estimates for τφ from electron-electron interaction 

for all the samples are 1-2 orders of magnitude higher than the corresponding 

experimental measurements except for S-2.  In this sample, the experimental and 

theoretical values for τφ roughly above 600 mK are rather close. 

The estimates from intrinsic decoherence theory are one order of magnitude 

higher than the experimental values except for S-2.  However, looking at Table (5-2) 

we can see that for this sample the value of the elastic mean free path is very close to 

the thickness, so the classical dimensionality d (which is actually a crossover function 

[64]) of this sample might have been closer to 2 than 3.  Taking into account the 

extreme sensitivity of Equation (5-2-a) to this parameter ( 7
0 /1~ dτ  taking into 

account the dependence of the diffusion constant D on dimensionality), the difference 
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between the τ0  estimates for 2 or 3 dimensions becomes large.  For S-2, τ0 becomes 

about 5.64 ns if d=2, which is higher than the measured values.  

 

5.4.2 Electron-electron interaction 

 

The electron-electron interaction causes a temperature-dependent correction to 

the resistance.  In one dimensional samples this correction is proportional to T -1/2 and 

is given by [122]: 
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where LT is the thermal diffusion length KTDh , and )(xξ is the Riemann Zeta 

function with 612.2)2/3( ≈ξ .  As mentioned before, this correction is usually 

employed to probe the actual temperature of the electrons in the samples.  To measure 

this correction, the voltage drop across the sample is monitored while the temperature 

of the refrigerator is ramped, while the magnetic field is set to a value high enough to 

quench the weak localization correction.  These temperature ramps had to be 

sufficiently slow in order for the sample cell to have some degree of thermal 

equilibrium.  This made the measurements susceptible to the thermal drifts of the 

amplifiers as explained before.   

Figure 5-10 below shows RR /Δ  versus 2/1−T  for samples S-1 through S-4. 

The temperature is changed between 80 mK and 220 mK for S-1 and S-2, and 
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between 50 mK and 400 mK for S-3 and S-4.  All the samples were placed in a 

magnetic field of 6000 Gauss, which was sufficient to quench weak localization as is 

evident from Figure 5-7 above.  In Table (5-5) I compare the theoretical expectations 

from Equation (5-5) with the experimental results from the slopes of the linear fits to 

the data in Figure 5-10.  Despite the large fluctuations in these data due to thermal 

drift in the equipment, the agreement seems to be reasonable. This leads to the 

conclusion that down to 80 mK for S-1 and S-2, and down to 50 mK for S-3 and S-4, 

the samples were in good thermal contact with the 3He bath. 

 

Sample lTheoreticaC )( 3  alExperimentC )( 3  
S-1 3.16x10-4 2.17x10-4 
S-2 9.51x10-4 6.07x10-4 
S-3 3.65x10-4 2.96x10-4 
S-4 1.70x10-4 1.86x10-4 

Table (5-5): Coefficients of (ΔR/R)e-e=C3T -1/2 for samples S-1 to S-4, the theoretical 
values are calculated from Equation (5-5), all values are in (K1/2).  
 

When the bridge technique was used to minimize the thermal drift (only for S-

3 and S-4), the obtained results were anomalous.  In this case, the correction 

increased with increasing temperature instead of decreasing.  I believe this to be an 

artifact for two reasons: first, the direct configuration produced a rather normal 

response which is consistent with the expected theoretical behavior, and second, this 

anomalous response was (aside from an offset) identical for both samples.  As I 

mentioned before, I do not understand the origin of this artifact. 
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Figure 5-10: Electron-electron interaction data for samples S-1 to S-4.  The slopes of 
the linear fits are shown in Table (5-5). The large fluctuations in the data are due to 
thermal drift in the equipment. 
 

5.4.3 Universal conductance fluctuations (UCF) 

 

 Measurements of UCF were performed only for samples S-3 and S-4.  These 

samples were specially made short enough to provide a reasonable UCF signal, but 

not too short such that the weak localization is not masked out by a much larger UCF 

signal.  Figure (5-11-a) shows the conductance fluctuations of S-3 and S-4 at 99 mK 

for the up and down sweeps of the magnetic field.  These traces are obtained after 

background subtraction in the form of a parabola, which accounts for the classical 

magnetoresistance and quasi-Hall [222] contributions plus an offset.  The 
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reproducibility of the fluctuations is evident, indicating that they are indeed UCF 

rather than random noise.   

 Two quantities of interest are extracted from UCF traces.  The first is the 

correlation field BC obtained as the half width of the auto-correlation function of 

conductance traces >Δ+ΔΔ=<Δ )()()( BBGBGBF .  The second is the root mean 

square (RMS) value of the fluctuations.  Noise affects both measurements and needs 

to be subtracted out.  To do so I recorded data at zero excitation current while 

sweeping the magnetic field, and from these data sets I got the RMS values of the 

voltage noise, which I assume to be current independent. The noise is subtracted 

using the formula 22
Noise

2
RMSTotal

2
RMSUCF

2
RMS )()()()( IRVGG Δ−Δ=Δ .   

 Noise also increases peak value of the auto-correlation function at ΔB=0 

(which is the mean square value of the fluctuations multiplied by the number N of 

data points), thus creating the so called ‘noise peak’ around ΔB=0.  This peak has a 

finite width since the noise has some degree of correlation due to averaging.  In order 

to determine the correct half width I did not use half the raw peak value 

( ) NG 2
TotalRMS2

1 Δ , but I rather used ( ) NG 2
UCFRMS2

1 Δ , which is the value after noise 

subtraction.  The noise peak can actually dominate the auto-correlation function if the 

signal to noise ratio is low, and this can prevent the correct determination of the half 

width.  This was mostly the case for my data below about 37 mK.  Figure (5-11-b) 

shows the auto-correlation functions corresponding to the up field traces in Figure (5-

11-a), both functions were normalized using their noise-subtracted peak values.  The 

correlation field BC is used to find Lφ from the equation [227]: 
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φwL
ehCBC
)/(

=  (5-6) 

 

where the constant C ranges from 0.95 for Lφ >>LT to 0.42 for Lφ << LT .  For both S-

3 and S-4 at the lowest temperature of about 22 mK, LT is about 2.3 μm, which is still 

lower than Lφ of about 3.7 μm at the same temperature.  Therefore, the value of 

C=0.95 can be used in these calculations.  In designing the samples I made them 

rather wide such as to have a low BC .  This was done in order to have a sufficient 

number of fluctuation cycles within the limited range of magnetic field available.  

This came at the expense of lowering the resistance, thus leading to a lower signal to 

noise ratio.  The RMS value of the UCF in 1-D samples is expected theoretically to 

follow the form [142]: 
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 This formula is valid in the limit of strong spin-orbit interaction defined as Lφ 

=3LSO [228], and in the limit Lφ >> LT [227], both conditions are satisfied in my 

samples.  Another condition for the validity of Equation (5-6) is that kBT must be 

higher than the Thouless energy 2
φLDEC h= .  For my samples, this corresponds to 

about 8 mK, which is lower than our lowest measurement temperature of about 22 

mK. 
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Figure 5-11: UCF traces for samples S-3 and S-4 at 99 mK and auto-correlation 
functions for the field up traces.   
 

 Figure 5-12 shows the value of Lφ calculated from the correlation fields of 

UCF traces as a function of temperature between 430 mK and 37 mK.  In contrast to 

Lφ as found from weak localization, (Lφ )UCF shows temperature dependence.  The 

different temperature dependence for (Lφ )UCF (determined at high magnetic field) and 

Lφ (determined at low magnetic field) is an indication of the presence of magnetic 

impurities in the samples (see previous discussion).  The exponents that deduced from 

the linear fits to the data on a double logarithmic scale as shown in Figure (5-12-a), 

are smaller than the theoretically expected value of -⅓ .  The exponents obtained are 

about -0.18 for both S-3 and S-4.  However, given the scatter in the data, and the 
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density of points, it is difficult to decide whether this represents a real deviation from 

theory.  In Figure (5-12-b) I plot Lφ as a function of T -1/3 and the slopes of the linear 

fits are shown in Table (5-6).  These values are clearly smaller than the corresponding 

ones in Table (5-3).  As I mentioned before, it is not necessary that (Lφ )WL and 

(Lφ )UCF be identical.  

 

Sample (C2)Corr. Field (μm.K1/3) (C2)RMS (μm.K1/3) 
S-3 0.81 1.04 
S-4 0.82 1.30 

Table (5-6): Theoretical coefficients for (Lφ)UCF =C2T -1/3 from the correlation field 
and RMS data. 
 

 Figure 5-13 shows the temperature dependence of the RMS value of UCF for 

S-3 and S-4 between 430 mK and 22 mK.  The data displays the expected behavior of 

growth with lowering temperature.  On a double logarithmic plot as shown in Figure 

5-13-a, the linear fits give temperature exponents of -0.49 for S-3, and -0.45 for S-4.  

Both exponents are lower than the expected theoretical value of -⅔ obtained by 

inserting the temperature dependence of Lφ into Equation (5-7).  Again, these 

differences in exponents might not be significant. 
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Figure 5-12: (Lφ)UCF for samples S-3 and S-4 as a function of temperature, calculated 
from Equation (5-5). The exponents of the line fits in (a) are about -0.18, and the 
slopes of the line fits in (b) are shown in Table (5-6). 

 

 In Figure (5-13-b) I plot the RMS value as a function of T -2/3.  By comparing 

the slopes of the linear fits to the calculated slopes from Equation (5-7), assuming 

3/1
2

−= TCLφ , from these I deduced the values of the constant C2 shown in the right 

column of Table (5-6), and we can see that they are in reasonable agreement with the 

same values calculated from the correlation fields.  Another way to see the agreement 

with theory is to rewrite Equation (5-7) in the from 
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 Then, using the values of Lφ obtained from the correlation fields; I plot the left 

hand side of Equation (5-8) as a function of T -1/2  and obtain the experimental values 

of the slopes. The theoretical values can be calculated using the data in Table (5-2).  I 

show this comparison in Table (5-7) and the agreement is reasonable.  The growth of 

the RMS value down to 22 mK can be used as another indication of good thermal 

contact between the samples and the 3He bath, which supports our electron-electron 

interaction measurements for samples S-3 and S-4. 

 

 
Figure 5-13: ΔGRMS as a function of temperature for samples S-3 and S-4.  The 
exponents of the line fits in (a) are -0.49 for S-3 and -0.45 for S-4, and the slopes of 
the line fits in (b) are shown in Table (5-7). 
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 Since magnetic impurities are apparently the cause of saturation in (τφ )WL , we 

might go back and calculate the residual dephasing rate due to mechanisms other than 

the electron-electron interaction, these are the electron-phonon interaction and the 

spin-flip scattering due to magnetic impurities. Using Equation (5-4-c), we get 

eeExpR −−= )1()1(1 . φφ τττ  , where sfpheR τττ 2/11 += −  is the residual dephasing 

rate, the results of this calculation are shown in Figure (5-14). 

 

Sample (C5)Experimental (C5)Theoretical 
S-3 0.0424 0.0663 
S-4 0.0423 0.0766 

Table (5-7): Coefficients for ΔGRMS[(Lφ)CorrField]-1/2 =C5T -1/2 for samples S-3 and S-4, 

units are )..( 2/12/1
2

Km
h
e −μ  

 

 The increase in Rτ1  above about 600 mK can be attributed to the electron-

phonon interaction. Below this temperature, the electron-phonon scattering rate, 

which drops as T3, quickly dies out and the residual dephasing rate can be attributed 

to spin-flip scattering only.   
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Figure 5-14: Residual scattering rate versus temperature for samples S-1 to S-4. 
 

 The diverse behavior of the magnetic scattering rate in the four samples is 

surprising since all of them were made out of the same silver assay, and therefore 

should have a similar content of magnetic impurities.  I notice that only in sample S-4 

the magnetic scattering rate shows a clear maximum around 100 mK, which for 

conventional Kondo behavior is identified with TK .  For the other samples, it is rather 

difficult to identify such a feature, and this is not consistent with conventional Kondo 

behavior.  I also did not observe any sign indicating the presence of a species with a 

Kondo temperature in the proximity of 40 mK, in contrast to the beliefs of the authors 

of Reference [138].  I take all this as an indication supporting the previous discussion 

that samples with no dominant magnetic impurity cannot be described using Suhl-
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Nagaoka approximation, and that a more realistic model is needed for the proper 

description of magnetic impurities in high purity mesoscopic samples.  The presence 

of magnetic impurities might help explain the changes in the value of τφ in sample S-

2 upon thermal cycling in terms of the presence of frozen spins that are freed as the 

temperature rises.  This freezing can possibly happen through the surface anisotropy 

mechanism mentioned before because sample S-2 has the smallest lateral dimensions 

of all the samples.  I believe that the concentration of magnetic impurities in my 

samples was rather low because I have not seen any obvious hysteresis in the 

magnetoresistance traces.  I also have not seen any growth of the fluctuations’ RMS 

value as a function of magnetic field, which in the presence of magnetic impurities, 

should display a magnetic field dependence [188].  Finally, it has been claimed [229], 

in an attempt to explain the saturation of (Lφ )UCF observed in Reference [142], that 

the measurement of Lφ  through UCF might not be sensitive enough to differentiate 

between a weak temperature dependence and true saturation.  I believe my 

measurements clearly refute this claim since my UCF data in general had a lower 

signal to noise ratio than the corresponding measurements in Reference [142], and 

therefore these measurements do indicate the possibility of τφ saturation in the 

absence of any role by magnetic impurities. 

 

5.5 Conclusion 

 

 Measurements of Lφ (or τφ) using both weak localization and UCF in the same 

sample offer a powerful method to differentiate between magnetic and non-magnetic 
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origins of saturation.  In my measurements, I found that the phase coherence times in 

silver wires, obtained from weak localization, saturated roughly at temperatures 

below 600 mK, while the phase coherence times obtained from high magnetic field 

UCF grew as a power law down to 37 mK, thus concluding that the saturation of 

phase coherence time obtained from weak localization is due to the presence of dilute 

magnetic impurities. I also see possible signs indicating unconventional behavior of 

magnetic impurities in my samples.  I conclude that comparison of temperature 

dependence of weak localization and UCF dephasing rates in the same sample is a 

powerful and unambiguous means of determining whether saturation of the dephasing 

time is due to magnetic impurities.   These findings, considered along with the 

literature review in the beginning of this chapter, call for a more rigorous analysis of 

the role played by dilute magnetic impurities in mesoscopic samples.   
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Appendix A: Measurements of other carbon nanotubes 
 

This appendix contains a description of the three carbon nanotubes D2, D4, 

and D6, these nanotubes were mainly used to obtain force data. 

 

A.1 Nanotube D2 

 

D2 is a metallic nanotube, the diameter is 2.2 ± 0.2 nm, and total length is 

about 45 μm. The last 12 microns from the free end side had some contamination and 

therefore I did not perform measurements in that part. The extension of the gold 

islands band at the edge of the macroscopic gold electrode is about 0.5 μm. Another 

nanotube intersects D2 about 4.1 μm away from the gold electrode, and that nanotube 

also contacts the gold electrode. That other nanotube is semiconducting as I verified 

that by directly contacting it. A partial view of D2 is shown in Fig. A-1 below. 

Typical  Id versus Vg and Id versus Vd sweeps on D2 are shown in Fig. A-2 below. 
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Figure A-1: An AFM topography scan of nanotube D2. The scan size is 22x22 μm. 
The cut in the nanotube near the bottom of the frame accidentally happened during 
the measurement. The other nanotube intersecting D2 is visible near the top. 
 

 
Figure A-2: Typical Vg and Vd sweeps on nanotube D2, (a) An Id versus Vd sweep, the 
red line is a linear fit with slope 4.7 μS, (b) An Id versus Vg sweep. 
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A.2 Nanotube D4 

 

D4 is a metallic carbon nanotube, the diameter is 4.1 ± 0.2 nm. This nanotube 

has a naturally formed loop. The distance from the gold pad to the loop junction is 

32.6 μm, and the part that makes up the loop has a length of 21.2 μm, this is followed 

by straight part that is 37.8 μm. Another nanotube (was not examined) intersects D4 

about 1.5 μm away from the fixed electrode. A partial view of D4 is shown in Fig. A-

3 below. Typical Id versus Vg and Id versus Vd sweeps on D4 are shown in Fig. A-4 

below. 

 

 
Figure A-3: An AFM topography scan of nanotube D4, the scan size is 30x30 μm, the 
other nanotube intersecting D4 is visible near the top. The edge of the fixed electrode 
is not visible but should be immediately above the top of the image. 
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Figure A-4: Typical Vg and Vd sweeps on nanotube D4, (a) An Id versus Vd sweep, the 
red line is a linear fit with slope 1.3 μS, (b) An Id versus Vg sweep. 
 

A.3 Nanotube D6 

 

D6 is a metallic carbon nanotube. The diameter is 4.0 ± 0.4 nm. This nanotube 

has a naturally formed loop. The distance from the gold pad to the loop junction is 

17.8 μm, and the part that makes up the loop has a length of 20.7 μm, this is followed 

by straight part that is 32.9 μm. A partial view of D6 is shown in Fig. A-5 below. 

Typical  Id versus Vg and Id versus Vd sweeps on D4 are shown in Fig. A-6 below. 
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Figure A-5: An AFM phase scan of nanotube D6, the scan size is 25x25 μm. 

 

 
Figure A-6: Typical Vg and Vd sweeps on nanotube D6, (a) An Id versus Vd sweep 
(notice the large Vd range), the red line is a linear fit for 5.0≤dV V only , with slope 
7.0 μS, (b) An Id versus Vg sweep. 
 

Nanotubes which have loops (D4 and D6) were used to study the orientation 

dependence of the cantilever-nanotube contact (see Chapter 3).  
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