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This dissertation includes two essays on topics related to market microstruc-

ture. In the first essay, we analyze algorithmic trading in the Korean Index Futures

market. We document that short-term traders consistently anticipate the order flow

of large traders that build large positions within a short period of time. We study

trade-by-trade data around 36,164 trades by large traders among the largest 1% of all

active trades during 66 trading days in 2009 from the Korean Index Futures market.

We find that large traders manage their orders first by executing small, positively

correlated trades, which are followed by a single large trade. While the small trades

are executed, short-term traders gradually increase their inventories in the direction

of the forthcoming large trade. After the execution of the large trade, short-term

traders unload their inventories to other traders. We find that short-term traders

correctly anticipate the direction of large trades 56.06% of the time. Furthermore,



the aggregate positions of short-term traders are statistically significant predictors

for the direction of large trades that will arrive within 120 seconds.

In the second essay, we explore market microstructure invariance in the Korean

stock market. We define the number of buy-sell switching points based on the number

of times that individual traders change the direction of their trading. Based on the

hypothesis that switching points take place in business time, market microstructure

invariance predicts that the aggregate number of switching points is proportional to

the 2/3 power of the product of dollar volume and volatility. Using trading data

from the Korea Exchange (KRX) from 2008 to 2010, we estimate the exponent to be

0.675 with standard error of 0.005. Invariance explains about 93% of the variation

in the logarithm of the number of switching points each month across stocks.
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Chapter 1: Can Short-term Trading Algorithms Anticipate Large Or-
der Executions?

1.1 Overview

How trading algorithms affect financial markets has been largely debated. Cur-

rent literature assesses the market influence of algorithms as a whole, overlooking

the differences among the various types of algorithms and the complexity of their

interactions. Taking this into account, we disaggregate the algorithms by their char-

acteristics as the first step in the attempt to answer the question. Using account-level

data, in which dynamics among all algorithms are presented, this paper asks whether

short-term trading algorithms can anticipate the order flow of large order execution

algorithms, and then examines the influence of this anticipation on each trading

entity.

When building or unloading large positions within a short time, a large trader

has an incentive to reduce price impact cost by hiding her order flow. To minimize

the price impact cost within a set time constraint, theory might suggest that the large

trader should split her order into smaller orders of similar-size. Such an execution
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strategy would not be optimal under a time constraint, because the early trades

in the order flow sequence would be large enough to reveal the entire order flow to

short-term traders trying to profit by trading ahead of the large trader. Furthermore,

the large trader is not better off pursuing a strategy of executing just one large order

to hide her order flow, as this would incur even larger price impact, increasing overall

transaction costs.1

To examine the trade-off faced by large traders, we develop a simple two-period

model based on Bertsimas and Lo (1998), in which a large trader decides how to

split a large purchase or sale of a risky asset over two periods. In the model, there

exists a short-term trader who receives a signal based on the order flow in period

one and becomes informed about the large trader’s second trade with a probability

that is endogenous to the large trader’s first trade size. In equilibrium, the large

trader reveals her order flow to the short-term trader to the extent that the marginal

benefits of smoothing out her trades offset the marginal costs of revealing her second

trade to the short-term trader.

In the model, there is one risky asset, whose price follows an arithmetic random

walk with a constant linear price impact. The large trader’s objective is to minimize

the transaction costs of demanding a large number of shares of the risky asset within

two periods. The short-term trader anticipates the second trade of the large trader

1Reference Harris (1997) for the concept of order exposure.
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and uses this knowledge to maximize his profits from the price impact caused by the

large trader. This model produces the following order-anticipation dynamics between

the large trader and the short-term trader: (1) Short-term traders anticipate the

autocorrelated trades of large traders with a probability greater than random chance

based on order flow information. (2) In the presence of short-term traders, when

building large positions, it is optimal for large traders to trade small, positively

correlated “child orders”, which are followed by a large trade. (3) Short-term traders

exit their positions when large traders initiate a large trade. (4) If large traders trade

with bigger “child orders” before initiating a large trade, their large trade following

the “child orders” is more likely to be anticipated by short-term traders.

We document order-anticipation dynamics between large traders and short-

term traders with comprehensive data that contains the complete dynamics among

all traders at an account level in the Korea index futures market for 66 consecutive

trading days beginning in March 26, 2009. In our empirical analysis, short-term

traders are identified as traders whose inventories are strongly mean-reverting. This

is defined as (1) having an average holding time per position of less than 3 minutes,

(2) having an average daily ratio of overnight inventories to their own contracts

traded of less than 0.01%, and (3) trading with an active order more often than

with a passive order. Large traders are identified as traders who are not short-term
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traders and initiate at least one trade among the largest 1% of all trades during the

sample period. All other traders are classified as “small traders”. During the sample

period, large traders initiate 36,164 such large trades. We find that, conditional of

a large trade being executed, short-term traders correctly anticipate the direction of

the large trades 56.06% of the time by taking a long position in advance of a large

buy order or a short position in advance of a large sell order. This result suggests

that short-term traders are informed about the direction of the forthcoming large

trades with a probability greater than random chance and that they profit from the

price impact caused by large traders.

A simple event study is used around the execution of large trades to describe

order-anticipation dynamics among the large, short-term, and small traders. We find

that, prior to initiating a large trade, large traders smooth out their large demand

with small “child orders” in the direction of the forthcoming large trade. During

this period of “child orders”, short-term traders gradually increase their inventories

in the direction of the large trade as if they are informed about the direction of the

large trade. When large traders initiate a large trade, the price jumps because of the

price impact of the large trade, and short-term traders are likely to be on the right

side, profiting from the price impact caused by the large trade. As the large order

arrives, short-term traders begin to liquidate their positions by trading against small
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traders who want to actively trade to respond to new information learned from the

large trade.

We examine the order-anticipation horizon of short-term traders, using predic-

tive regressions with 5 to 240 seconds time intervals. We find that in all predictive

regressions, the aggregate positions of short-term traders are statistically sufficient

and significant predictors for the direction of large trades that will arrive in a short

period of time. Furthermore, in the predictive regressions, the coefficient of the ag-

gregate positions of short-term traders monotonically increases as the time intervals

become longer. This suggests that their order-anticipation strategy is not based on

an extremely low latency.

Our empirical results support the order-anticipation dynamics implied by the

model. When large traders build or unload large positions, they try to slowly accu-

mulate their desired positions by splitting their large orders to minimize price impact

by hiding their order flow from short-term traders. Because of limited liquidity and

time constraints to fill their large orders, large traders encounter a trade-off between

trading faster and not revealing their order flow to short-term traders. When schedul-

ing their orders, large traders rationally expect that short-term traders extract some

order flow information from their “child orders”. Therefore, large traders build or

unload their inventory with small “child orders” early on, and at the very last mo-
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ment on their time constraint, they initiate a large trade to finish filling their large

order. In equilibrium, large traders reveal their order flow information to short-term

traders to the extent that the marginal benefits of smoothing out their trades offset

the marginal costs of revealing their order flow to short-term traders. Therefore, be-

fore a large trade, short-term traders anticipate a sequence of autocorrelated trades

initiated by large traders. The large trade then provides an exit point to short-term

traders, who rationally expect that large traders finish executing their large orders

with a large trade and that small traders will want to actively trade in the direction

of the large trade to respond to new information learned from large traders.

In addition to the literature on order execution and order exposure, this pa-

per is connected with multiple other strands of literature including the market mi-

crostructure invariance hypothesis proposed by Kyle and Obizhaeva (2013) and high

frequency trading. Using an event study approach to analyze repetitive large trades,

we can clearly describe order-anticipation dynamics among large, short-term, and

small traders. When applying the event study methodology, we use a time invariant

trading sequence instead of physical time based on the invariance hypothesis sug-

gesting that “market microstructure properties become constant when measured in

units of business time”. This intuition from the invariance hypothesis is essential

in our analysis since market microstructure noise is substantial in the physical time
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domain, and we can mitigate the noise by aggregating the data with time invariant

trading sequence in the event study.

We use vector autoregression analysis to show that short-term traders predict

short-term price changes by anticipating large trades initiated by large traders. In our

vector autoregression, we partition the trade-by-trade data with large trades instead

of a regular time interval. This approach is less subject to market microstructure

noise than a general method since trading activity between large trades is controlled

by the invariance hypothesis. According to the invariance hypothesis, “business

time” runs differently from physical time. Therefore, trading activity in regular

time intervals is not comparable because the level of risk transferred in regular time

intervals is not homogeneous. However, the time domain partitioned by large trades

is endogenous to trading activity since, if “business time” runs faster, large trades

are more likely to arrive in the market, therefore the time span between large trades

endogenously becomes smaller.

Our study is related to the high frequency trading (HFT) literature. There

is a controversial debate on whether HFT firms can use their faster trading speed

to trade ahead of institutions, thereby raising transaction costs for institutional in-

vestors; Brogaard et al. (2014), Clark-Joseph (2013), Hirschey (2013) and Li (2014).

Although we do not take a stand on whether short-term traders identified in this
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paper are HFT firms, we see that short-term traders have trading patterns similar

to those of HFT firms such as quickly mean-reverting inventories and low overnight

inventories. We also find that short-term traders make consistent profits and that

the size of “child orders” of large traders is the first order reason for the consistent

order-anticipation trading of short-term traders. This finding raises an important

issue in the HFT literature as “speed” may not be the first order reason for consis-

tent HFT firms profits. We need to distinguish between HFT profitability resulting

from a speed advantage versus order-anticipation trading based on public order flow

information.

The next section proceeds as follows. A simple two-period model is introduced

to provide intuition on the trade-off faced by large traders and to derive order-

anticipation dynamics between large and short-term traders. We then describe the

data and institutional background. Finally, using large trades as repetitive random

experiments, we document the order-anticipation dynamics implied by the model.

1.2 Two-Period Model: Large Trader’s Problem

When scheduling a large order for a risky asset, large traders face a trade-off

between order execution speed and order execution cost. Faster order execution

makes orders more expensive by making them easier to anticipate. To examine this

trade-off faced by large traders, we introduce a short-term trader anticipating the
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order flow of large trader to the two-period model developed by Bertsimas and Lo

(1998). In our economy, there is one riskless asset with zero interest rate and one

risky asset, whose price follows an arithmetic random walk with a constant linear

price impact. There exists one large trader and one short-term trader. The large

trader demands a large number of shares of the risky asset that have to be executed

within two periods, and her objective is to minimize transaction costs. The short-

term trader is informed about the large trader’s second trade with probability β,

which is assumed to be proportional to the large trader’s first trade size: β = α · |y1|,

where y1 is the large trader’s first trade, and α is a positive constant.

Let pt, xt and yt denote price, short-term trader’s trade and large trader’s trade,

respectively at time t = 1, 2.

For t = 1, 2, the price motion is

pt = pt−1 + λzt + εt, (1.1)

where zt = xt + yt, and λ is a linear price impact factor, which is assumed to be a

positive constant.

The short-term trader’s problem is

min
x1,x2

βE [p1x1 + p2x2] , s.t. x1 + x2 = 0. (1.2)

We assume that the short-term trader exits his entire positions at t = 2. Although

the model is fixed to end in two periods, in a real financial market, large trades
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would repeatedly arrive in the market, and short-term traders would consistently

anticipate the direction of large trades, if possible. Since large traders may demand

a risky asset in a different direction, whether long or short, short-term traders need

to exit their positions to be ready for anticipating the next large trader.

Given the price motion pt, we can rewrite the short-term trader’s problem:

min
x1

βλ (−x1 + y2)x1.

When the short-term trader is informed about the second trade of large trader, his

optimal trading is

x∗1 = −x∗2 =
y2
2
. (1.3)

The large trader’s problem is

min
y1,y2
{(1− β)E [p1y1 + p2y2|x1 = 0] + βE [p1y1 + p2y2|x1 = y2/2]} , (1.4)

s.t. y1 + y2 = Y .

When deciding a demand schedule, the large trader should consider the pos-

sibility that the short-term trader anticipates her second trade. This is because

order-anticipation trading by the short-term trader increases the total transaction

costs of the large trader. Furthermore, the large trader should consider how her first

trade affects the probability of her second trade being anticipated.
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The large trader faces a trade-off between smoothing out her trades and hiding

her second trade from the short-term trader. Without the order-anticipation of the

short-term trader, it is optimal for the large trader to evenly split her large trades

over two periods. With the order-anticipation of the short-term trader, it is optimal

for the large trader to reduce her first trade size to decrease the probability of her

second trade being anticipated. The expected transaction costs with and without

the order-anticipation by the short-term trader are

E [p1y1 + p2y2|x1 = y2/2] =
(
p0 +

(
Y − y1

)
/2 + λy1

)
y1 +

(
p0 + λY

) (
Y − y1

)
(1.5)

E [p1y1 + p2y2|x1 = 0] = (p0 + λy1) y1 +
(
p0 + λY

) (
Y − y1

)
. (1.6)

We can rewrite the large trader’s problem of minimizing expected transaction

costs with and without the order-anticipation by the short-term trader such that

min
y1

{
Y
(
p0 + λY

)
− λy1

(
Y − y1

)
+
αy21
2

(
Y − y1

)}
, (1.7)

where Y
(
p0 + λY

)
are the expected transaction costs when the large trader trades

all shares at either time t = 1 or 2, −λy1
(
Y − y1

)
are the benefits of smoothing out

her trades, and αy21
(
Y − y1

)
/2 are the costs of revealing her second trade to the

short-term trader. In equilibrium, the large trader chooses y1 such that the marginal

benefits of smoothing out her trades offset the marginal costs of revealing her second
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trade to the short-term trader. At the optimum, the large trader optimally chooses

her demand schedule such that 2

y∗1 =
Y

3
+

2λ−
√
Y

2
α2 − 2Y αλ+ 4λ2

3α
, y∗2 =

2Y

3
−

2λ−
√
Y

2
α2 − 2Y αλ+ 4λ2

3α
.

(1.8)

The equilibrium is defined as the price motion {p∗1, p∗2}, the large trader’s

demand schedule for the risky asset {y∗1, y∗2} and the short-term trader’s order-

anticipation strategy {x∗1, x∗2} when he is informed about the large trader’s sec-

ond trade, y∗2, and the probability of order-anticipation by the short-term trader

β∗ = α · |y∗1|.

When the short-term trader is not informed about y∗2, he cannot strategically

trade to extract more information about the large trader’s second trade because both

the short-term trader and the larger trader are risk-neutral. If we introduce small

amounts of trading fees proportional to the trading volume to the short-term trader,

it is optimal for the short-term trader not to trade when he is not informed about

the large trader’s second trade.

The total demand for the risky asset of the large trader, Y , is assumed to be

a large number, which would determine the signs in the comparative statics analysis

below. A few important comparative statics results are noted: (1) In equilibrium,

2There exist two solutions that satisfy the first order condition. Since the large trader minimizes
the transaction costs, the solution chosen is the unique one with the second order condition being
positive.
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the short-term trader anticipates the large trader’s second trade with a probability

greater than random chance since β > 0 for all Y . (2) In the presence of the

short-term trader, the large trader trades a small trade, which is followed by a large

trade: y∗2 > y∗1. (3) If the short-term trader can more accurately extract order flow

information from the large trader’s first trade (i.e. α increases), the marginal costs of

revealing the large trader’s second trade increase. Therefore, the large trader reduces

her first trade size while increasing her second trade size:

∂y∗1
∂α

= −λ ·
Y α− 4λ+ 2

√
Y

2
α2 − 2Y αλ+ 4λ2

3α2

√
Y

2
α2 − 2Y αλ+ 4λ2

< 0,
∂y∗2
∂α

> 0.

(4) If the price impact factor becomes larger, the marginal benefits of smoothing out

trades increase. Then the large trader balances more evenly her trade size between

her first and second trade:

∂ (y∗2 − y∗1)

∂λ
= − 4

3α
+

−2Y α + 8λ

3α

√
Y

2
α2 − 2Y αλ+ 4λ2

< 0.

(5) If the large trader demands larger liquidity, her demands are more concentrated

on the second trade:

∂
(
y∗1/Y

)
∂Y

= −λ ·
Y α− 4λ+ 2

√
Y

2
α2 − 2Y αλ+ 4λ2

3Y
2
α

√
Y

2
α2 − 2Y αλ+ 4λ2

< 0.

The model produces the following order-anticipation dynamics: (1) In equi-

librium, when large traders build or unload large positions within a short period
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of time, short-term traders can anticipate the autocorrelated trades of large traders

with a probability greater than random chance based on order flow information. (2)

In the presence of short-term traders, when building large positions within a short

period of time, it is optimal for large traders to trade small “child orders”, which

are followed by a large trade. (3) Short-term traders exit their positions when large

traders initiate a large trade. (4) If large traders trade with bigger “child orders”

before initiating a large trade, their large trade is more likely to be anticipated by

short-term traders.

The model has a few limitations. First, the total demand Y of the large trader

is not endogenous to the price. In theory, large traders should endogenously adjust

their total demand, depending on the price changes. In a real financial market,

there are many cases in which large traders cannot change their demand, especially

in a short time. For instance, large traders may delegate the execution of large

demands to an execution agent, which will execute the requested large order within

a time constraint. Also, within an investment bank, deciding total demand could be

separated from executing it in that portfolio managers decide total demand of the

risky asset, and an execution department manages details of small orders which fill

the large order. Moreover, since we are modeling an execution decision over one to

two minutes, large traders have limited ability to react to a price change. Another
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limitation is that the model forces the large trader to trade over two periods. In

a real financial market, large traders trade over a multiple periods. To apply the

model to a real financial market, we may consider large trader’s first trade as all

“child orders” before large traders initiate a large trade, and her second trade as a

large trade belonging to the largest 1% of all trades during the sample period. Third,

there is no competition among large traders and short-term traders in the model.

It would be an interesting extension if we introduce multiple agents of large traders

and short-term traders competing on liquidity with correlated information.

1.3 Institutional Background and Data Description

The data is from the Korea Exchange (KRX hereafter). This section discusses

the market conditions and rules in the KRX as well as the data descriptions that give

us a unique opportunity to examine the complete dynamics among large, short-term,

and small traders.

The KRX is an automated centralized electronic market based on a limit order

book; it is the sole exchange that houses both the stock and derivatives market

in South Korea. Compared to the U.S. markets, its size is small but its intraday

trading is very active relative to the size. According the 2009 statistics published by

the World Federation of Exchanges, the market capitalization of the KRX reaches

one trillion USD, which is nearly 7% of NYSE’s, while the KRX has relatively high
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daily turnover of approximately 10% of NYSE’s. The intraday trading in the index

futures market is 5 times more active than in the stock market; traders in the KRX

hold 106,151 contracts of daily open interest, which mark 3% of those of the CME;

however, the notional value of daily trading volume takes nearly 20% of CME’s.

The data contains the complete records of trades and quotes time-stamped at

one millisecond with an encrypted account identification for 66 consecutive trading

days beginning in March 26, 2009.3 When several events occur in the limit order

book during the same millisecond, the order of the events is recorded in the proper

sequence in the data. Therefore, we can observe the complete dynamics of the limit

order book at an individual trader level. For instance, the data records a time-

stamp of the times of when a message is submitted and when an order is matched.

Therefore, when a trader submits a limit order, we can determine when this limit

order is matched or canceled at a millisecond precision. Furthermore, by comparing

the times of when a buyer and a seller sent their messages for each trade, it is possible

to accurately identify the trader that initiated the trade. That is, given a trade, if

the buyer sent a message later than the seller, then such a trade is a buyer-initiated

trade, which implies that the buyer crossed the bid-ask spread, and bought at the

ask price.

Another unique feature of this data is that we can identify whether a trader

3During this period, the KRX did not provide a collocation service to any trader.
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is an institution or a retail investor and also determine if it is a foreign or domestic

investor from the perspective of South Korean. Although we cannot rule out the

possibility that a domestic investor opens an account outside of South Korea so

that he is classified as a foreign investor, it is likely that foreign investors are foreign

investment banks, mutual funds or hedge funds that are actively trading in the KRX.

Our analysis focuses on the KOSPI 200 index futures market for the following

reasons. First, the KOSPI 200 index futures contract is one of the most liquid index

futures contracts in the World. Second, the underlying asset is a well-diversified

index, which is the KOSPI 200 index, a basket of two hundred major stocks listed in

the KRX. Therefore, there is not much idiosyncratic risk involved in trading the index

futures contract. This implies that an idiosyncratic shock from an individual stock

does not affect the index futures price to a large extent. Instead of idiosyncratic risk

in an individual stock, macro news such as interest rate changes, Chinese economic

growth forecast, etc. are major determinants of significant price changes in the

KOSPI 200 index futures contract.

An open outcry market does not exist for the KOSPI 200 index futures contract;

all contracts are traded electronically. In 2009, 83 million KOSPI 200 index futures

contracts were traded. Unlike the E-mini S&P 500 index futures contracts, which

are traded mostly by institutions, retail investors provide substantial liquidity to
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the KOSPI 200 index futures market. The substantial trading volume from retail

investors allows us to examine the interactions among large, short-term traders and

small traders who are mostly retail investors.

The notional value of one KOSPI 200 index futures contract is KOSPI 200

futures price times a multiplier of 500,000 Korean Won (KRW). The average notional

value of one contract during our sample period is USD 67,779, which is higher than

that of the E-mini S&P 500 index futures contract.4 Its tick size is 0.05, which is

about USD 19.37 or 2.86 basis points.

We analyze only the front month contracts. June 11, 2009, is the only expira-

tion date. Therefore, until June 11, 2009, we use the data of the June 2009 contract,

and after June 11, 2009, we use the September 2009 contract for our analysis. Since

the back month contracts were illiquid except for a few days right before or on the

expiration date, including the data on the back month contracts in our analysis does

not qualitatively change the results in this paper.

The daily price limit on the KOSPI 200 futures contracts is plus and minus

10% of previous closing price. There are few market conditions severe enough to

trigger a circuit breaker. During the sample period, the price fluctuated within the

daily price limit and a circuit breaker never came into effect.

4The average closing price is 174.97, and the average exchange rate is USD/KRW 1,290.73 during
our sample period.
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1.4 Identifying Large, Short-term, and Small Traders

The data tracks all traders in the market of 25,172 traders. We identify short-

term traders and large traders based on their trading records. Short-term traders are

identified by the following criteria: (1) An average holding time for one position is

less than 3 minutes.5 (2) An average daily ratio of overnight inventories to their own

contracts traded is less than 0.01%. (3) The number of contracts with a marketable

order is greater than the number of contracts with a non-marketable order.

Among all traders, excluding short-term traders, we identify a “large trader”

as a trader who initiated at least one large trade that belongs to the largest 1% of all

trades during the sample period. All other traders are classified as “small traders”.

During the sample period, the average daily volume was 348,114 contracts and

the notional value was USD 24 billion. Based on the three criteria above, of the 25,172

traders, 3% are classified as either short-term traders or large traders, which initiate

72% of daily volume. Large traders initiate 14% of daily volume with a large trade.

When a large trade is initiated, large traders trade against non-marketable orders of

large, short-term, and small traders by 46.05%, 10.22%, and 43.73%, respectively.

We observe 32 short-term traders who switch their positions as frequently as

5We define one position as a sequence of trades that maintain the same sign of the inventories.
For example, a long position starts from a zero-inventory, and retains the position as long as the
inventories are positive, and ends with the next zero-inventory.
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Panel A. Trader Entity

# Total # Foreign # Institution

Short-term Trader 32 5 24
Large Trader 737 179 557
Small Trader 24,403 391 3,057

Total 25,172 575 3,638

Panel B. Volume Ratio

Volume(%) Large Trade(%) Small Trade(%)

Trader Take Make Take Make Take Make

Short-term Trader 30.48 14.51 0.00 10.22 34.76 15.12
Large Trader 42.13 43.18 100.00 46.05 34.01 42.77
Small Trader 27.39 42.31 0.00 43.73 31.23 42.11

Daily Volume 348,114 (100%) 49,671 (14%) 298,443 (86%)

Panel C. Other Statistics

Mean Median Std.

# of Switch/Day
Short-term Trader 91.10 58.53 92.83

Large Trader 5.09 1.45 18.67
Small Trader 4.32 2.16 10.00

Switch Time(sec)
Short-term Trader 104.89 81.96 115.76

Large Trader 9,607.83 10,014.12 5,135.44
Small Trader 5,860.38 4,730.69 5,080.46

Overnight Ratio(%)
Short-term Trader 0.00 0.00 0.02

Large Trader 40.33 29.80 36.47
Small Trader 21.40 4.44 32.86

Table 1.1: This table reports summary statistics for large, short-term, and small traders.
The total volume consists of small trade (%) and large trade (%), which are expressed
as the proportion to the total volume. Large trades are defined as active trades by large
traders among the largest 1% of all active trades. We define one position as a sequence
of trades that retain the same sign of the inventories. The number(#) of Switch/Day is
daily average number of position changes such as changing from a long to short position or
vice versa. Switch Time(sec) is mean holding time for one position. Overnight Ratio(%)
is daily average ratio of overnight inventory to whole day trading volume by each trader.
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91.10 times per day. Their average holding time for one position is 104.89 seconds.

They liquidate most of their inventories at the end of day. This leads to the average

low overnight inventory ratio of 0.004%.

We identify 737 traders as large traders. They are long-term investors compared

to short-term traders, since they hold their positions for 2.7 hours on average. They

tend to take large directional positions, keeping a high overnight inventory ratio

compared to short-term traders. On average, they keep 40.33% of intraday trading

volume as overnight inventory. Large traders may be an execution algorithm, index

arbitrage, or portfolio insurance program that occasionally execute a large trade.

We conjecture that small traders are similar to noise traders in Kyle (1985)

since their trading volumes are small compared to those of short-term traders and

large traders, and 87% of small traders are domestic retail investors who may trade

for exogenous reasons.

1.5 Large Order Executions

Executing large trades is an economically significant event in the market for

the following reasons. First, large trades incur substantial price impact. Second, the

direction of large trades is uncertain to market participants except for the one who

initiates them. Traders are likely to be on the wrong side of large trades unless they

can consistently anticipate the trading direction of large trades. Thus, large trades
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Variable Mean Median Std. Max Min

Large Trade Size 78.76 62.00 40.74 800.00 50.00
# Large Trade per Day 547.94 531.00 109.30 951.00 334.00

Time btwn Large Trades (sec) 39.97 16.31 65.17 1,239.29 0.01
Volume btwn Large Trades 1,074.79 638.00 1,287.64 24,523.00 1.00

# Trades btwn Large Trades 489.33 281.00 612.58 11,253.00 1.00
# Message btwn Large Trades 848.49 471.00 1,108.84 22,220.00 0.00

Table 1.2: This table reports summary statistics of large trades. Large trades are defined
as active trades by large traders among the largest 1% of all active trades. We observe
36,164 of large trades, among which 48.99% are buyer-initiated and 51.01% are seller-
initiated. Buyer-initiated trade is a trade that the buyer crossed the bid-ask spread and
bought at the ask price. Similarly, seller-initiated trade is a trade that the seller sold at
the bid price.

cause negative skewness in the profits distribution of traders who are on the wrong

side.

Using the trade-by-trade data in the KOSPI 200 index futures market, we

define a “large trade” as an active trade by large traders among the largest 1% of

all active trades in the sample period. We observe 36,164 of such large trades during

the sample period. This paper analyzes 200 trades before and after large trades to

document the order-anticipation dynamics of large, short-term, and small traders.

Two hundred trades occur in approximately 1 minute.

The total number of large trades during the sample period is 36,164. The

minimum trade size to be considered as a large trade is 50 index futures contracts,

which have a notional value of 3.4 million USD. The mean size of large trades is

78.76 contracts. Of the 36,164 large trades, 48.99% are buyer-initiated, meaning
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that a large trader crossed the bid-ask spread and bought at least 50 contracts at

the ask price. Large trades occur 547.94 times per day on average. The average

time between two consecutive large trades is 39.97 seconds, during which 1,074.79

contracts are traded while 489.33 trades and 848.49 messages occur on average.

The number of large trades is distributed over the intraday trading hours in

a U-shape. The directions of large trades are positively autocorrelated. Panel A

of figure 1.1 plots the total number of large trades during the sample period in 10

minute intervals between 9:00 a.m. and 3:00 p.m. Panel B shows that the directions

of large trades are positively autocorrelated with the directions of up to 10 previous

large trades.

We use an event study to examine buying pressure, selling pressure, and price

changes around the execution of large trades. We calculate the mean active trades

and the mean relative price that have the same trading sequence around large trades.

For example, denote the price as p (i, j), where i indexes large trades, and j indexes

the trading sequence around the ith large trade. Let’s define the relative price such

that

p′ (i, j) = {lnp (i, j)− lnp (i, 0)} × 104,

where p (i, 0) is price at the ith large trade. The mean relative price p′ (j) can be
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Figure 1.1: Large trades are defined as active trades by large traders among the largest
1% of all active trades. We observe 36,164 large trades in the KOSPI 200 index futures
market from March 26 to June 29, 2009. Panel A plots the total number of large trades
during the sample period in 10 minute intervals between 9:00 a.m. and 3:00 p.m. Panel
B shows the partial autocorrelation function of large trades. The sign and size of large
trades represent the trading direction and volume of large traders at each time when large
traders initiate a trade.
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computed as

p′ (j) =
1

T

T∑
i=1

p′ (i, j) ,

where j indexes the trading sequence around large trades. Note that a negative value

j indicates a trade prior to large trades and a positive value j indicates a trade after

large trades. Due to difference in their dynamics, we aggregate buyer-initiated large

trades and seller-initiated large trades separately. The mean active trades and the

mean relative price are calculated by their trading sequence around large trades.

Figure 1.2 presents the mean active trades and the mean relative price around

large trades. The x-axis is the time invariant trading sequence centered at large

trades and the y-axis is either the mean active trades or the mean relative price.

In panel B of figure 1.2, the relative price increases slowly and monotonically

as the trading sequence approaches the execution of the large buyer-initiated trades.

The price jumps instantly at the execution, and the price is maintained for up to

200 trades after the execution.

Current literature provides a partial explanation for this price pattern. Gradu-

ally increasing price pattern before the execution point simulates the pattern gener-

ated by the order splitting of the informed trader (Kyle, 1985). Namely, the trader

with monopolistic information splits orders in building a large position while hiding

his information, resulting in gradual price increase. Therefore, the model of informed
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Figure 1.2: Large trades are defined as active trades by large traders among the largest
1% of all active trades. We observe 36,164 large trades in the KOSPI 200 index futures
market from March 26 to June 29, 2009. The buyer-initiated trades and seller-initiated
trades account for 48.99% and 51.01% of large trades, respectively. Panel A plots the signed
active trades and prices on the time domain for 30 seconds. Panels B and C plot the mean
active trades and the mean relative price that have the same trading sequence around large
trades. Panels B and C aggregate the buyer-initiated trades and seller-initiated trades,
respectively. The relative price p′ (i, j) is defined as {ln p (i, j)− ln p (i, 0)} × 104, where i
indexes large trades and j indexes the trading sequence around the ith large trade.
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trader does not anticipate neither the large order execution nor the price jump.

In order to explain the price jump occurred by large order executions, we

separate the traders that initiated the large orders from other traders, and track their

trading behavior around large order executions. In addition, we decompose remaining

traders by short-term trader and small traders, and compare their behaviors with

that of large traders.

1.6 Order-Anticipation Dynamics

We analyze order-anticipation dynamics around the execution of large trades

using a simple event study. The traders are decomposed into three groups: short-

term traders, small traders and large traders who initiated large trades. We calculate

the average inventories of the 3 groups of traders around large trades by the direction

of large trades and that of aggregate positions of short-term traders.

Figure 1.3 presents the average inventories of large, short-term, and small

traders as a function of trading sequence centered at large trades. Figure 1.4 plots

the average relative prices as a function of trading sequences centered at large trades.

In figure 1.3 and 1.4, the panels for the seller-initiated large trades are symmetric

with those for the buyer-initiated large trades.

Figure 1.3 compares 4 combinations generated by two directions of large trades

and two aggregate positions of short-term traders. The aggregate positions of short-
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Figure 1.3: Using an event study, this figure plots the average inventories of large, short-
term, and small traders around large trades. We analyze 36,164 large trades during the
sample period. The x-axis is the time invariant trading sequence centered at large trades,
and the y-axis is the number of contracts. Two hundred trades occur in approximately 1
minute. The thick dashed line represents the average inventories of passively traded large
traders. Panels A and C plot the average inventories when short-term traders correctly
anticipate the direction of large trades. Panels B and D plot the average inventories when
short-term traders incorrectly anticipate the direction of large trades. The ratio in the title
indicates the proportion of each panel among total large trades.
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term traders are likely to be on the right side of large trades. When large traders

initiate a large buy order, the aggregate positions of short-term traders are long

54.77% of the time. Similarly, when large traders initiated a large sell order, the

aggregate positions of short-term traders are short 57.3% of the time.

When short-term traders are on the right side of large trades, the aggregate

positions of short-term traders gradually increase as if they are informed about the

direction of the forthcoming large trade approximately 200th trade prior to large

trades (Panels A and C of figure 1.3). At the execution of large trades, short-term

traders trade against large traders instantly, and their positions shrink. Short-term

traders recover some of their positions after the immediate response. They slowly

exit their positions entirely by unloading the positions to small traders and other

large traders who demand liquidity to respond to new information from large trades.

Figure 1.3 also details how large traders build their positions. Large traders

manage their orders by executing small, positively correlated trades, which are fol-

lowed by a single large trade. This order execution pattern is consistent with the

strategy of large traders trying to reduce the price impact of their large demand in

the presence of short-term traders, thereby minimizing overall transaction cost.

Figure 1.4 tracks relative prices around large trades. When short-term traders

are on the right side of large trades, the price slowly moves toward the price at
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Figure 1.4: Using an event study, this figure plots the average relative prices around large
trades. We analyze 36,164 of large trades during the sample period. The relative price
p′ (i, j) is defined as {ln p (i, j)− ln p (i, 0)}×104, where i indexes large trades and j indexes
the trading sequence around the ith large trade. The x-axis is the time invariant trading
sequence centered at large trades. The y-axis is the relative price(bps). Two hundred
trades occur in approximately 1 minute. Panels A and C plot the average relative prices
when short-term traders correctly anticipate the direction of large trades. Panels B and D
plot the average relative prices when short-term traders incorrectly anticipate the direction
of large trades. The ratio in the title indicates the proportion of each panel among total
large trades. 30



the execution of large trades (Panels A and C). This price pattern is generated

by demand pressure from both large traders splitting their trades and short-term

traders anticipating the order flow of large traders. Their competition for liquidity

contributes to the price discovery by making the price converge to the fundamental

value at the execution of large trades.

Panels B and D in Figure 1.3 and 1.4 track three groups of traders when short-

term traders are on the wrong side of large trades. The average inventories in Figure

1.3 shows that short-term traders quickly reverse their inventories when they are on

the wrong side of large trades. We conjecture that such behavior is the strategy

taken by short-term traders to minimize their losses, because they expect that small

traders will trade actively to respond to large trades.

Such behavior is distinguished from the behavior of short-term traders when

they are on the right side of large trades. Short-term traders do not unload their

positions quickly since they expect that small traders will actively trade in the direc-

tion of large trades. They are better off exiting their positions with a passive order

instead of an active order to maximize their profits.

Short-term traders face trade-off between favorable price and order information

accuracy when they build positions. They are better off building their positions

quickly before their competitors push the price. However, early position building
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increases the risk of being on the wrong side of large trades, because they are less

informed about the order flow. Therefore, trading speed prior to large trades is not

as critical as that after large trades, especially when short-term traders are on the

wrong side.

In summary, when large traders build or unload large positions within a short

period of time, they want to slowly accumulate their desired positions by smoothing

out their large order to minimize price impact and to hide their order flow from short-

term traders. Theoretically, such as the informed trader in Kyle (1985), large traders

want to perfectly smooth out their trades, but in a real financial market, because of

competition with other large traders who have correlated information, and because

of limited liquidity, large traders have a time constraint on their order, within which

they have to fill their large order. Under this condition, large traders have a trade-

off between smoothing out their trades and hiding their order flow from short-term

traders. Large traders rationally expect that short-term traders extract their order

flow information from their early trades. Therefore, they shift some demand in their

earlier trades to later trades as shown in the model, in which the large trader shifts

some shares of the first trade to the second trade. At the very last moment on

their time constraint, large traders have to initiate a large trade to fill their large

order. In equilibrium, large traders reveal their order flow information to short-term
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traders to the extent that the marginal benefits of smoothing out trades offset the

marginal costs of revealing their order flow to short-term traders. Therefore, near

the execution of large trades, there are short-term traders anticipating a sequence of

autocorrelated trades of large traders. Large trades provide an exit point to short-

term traders as short-term traders rationally expect that large traders fill their large

order with a large trade.

To formally test whether short-term traders anticipate large trades, we run

a simple regression to test the null hypothesis that the probability of short-term

traders being on the right side of large trades is less than or equal to 50%. Let y t

be the sign of the tth large trade: Plus 1 is a buyer-initiated trade, and minus 1 is a

seller-initiated trade. Let x i,t be the sign of positions of short-term trader i at the

tth large trade: Plus 1 is a long position, and minus 1 is a short position.6

y t = β0 · x i,t +
15∑
j=1

γj · y t−j + αi + εt, (1.9)

where αi represents a fixed effect of short-term traders. The null hypothesis is that

β0 ≤ 0. To control for the autocorrelation of large trades, we include lagged large

trades. We choose the number of lags based on the partial autocorrelation function

of large trades in figure 1.1.

6The subscript i indexes short-term traders.
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Model Estimate S.E. t value Pr(≤ |t|) Adj. R2

Panel A. Direction of Trade and Position

Simple OLS
(Intercept) −0.021 0.002 −10.005 0.000

0.004
xi,t 0.063 0.002 29.493 0.000

Fixed Effect xi,t 0.064 0.002 29.617 0.000 0.004

Fixed Effect xi,t 0.036 0.002 16.766 0.000
0.041

+ Lag y
∑15

j=1 yt−j 0.365 0.006 61.817 0.000

Panel B. Direction× Size of Trade and Position

Simple OLS
(Intercept) −1.023 0.019 −5.371 0.000

0.004
xi,t 0.085 0.003 29.112 0.000

Fixed Effect xi,t 0.085 0.003 29.092 0.000 0.004

Fixed Effect xi,t 0.050 0.003 17.150 0.000
0.040

+ Lag y
∑15

j=1 yt−j 0.350 0.006 58.651 0.000

Table 1.3: This table tests the null hypothesis that the probability of short-term traders
being on the right side of large trades is less than or equal to 50%. The dependent variable
is y t, which is the direction of the tth large trade: Plus 1 is a buyer-initiated trade and
minus 1 is a seller-initiated trade. The subscript t indexes large trades. The independent
variable is x i,t, which is the position of the ith short-term trader at the tth large trade: Plus
1 is a long position and minus 1 is a short position. There are 32 of short-term traders and
36,164 of large trades. The number of observation is 217,583.
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The regressions in panel A in table 1.3 reject the null hypothesis β0 ≤ 0. This

implies that the probability of short-term traders being on the right side of large

trades is statistically strictly greater than 50%, and that short-term traders can

anticipate large trades initiated by large traders.

Regression (1.9) is not a spurious regression because both the dependent vari-

able and the independent variables are a stationary time series and there is no coin-

tegration between them. That is, y t is the sign of the tth large trade, which is a

stationary time series, and x i,t is the sign of the positions of short-term trader i at

the tth large trade, which is a strongly mean-reverting process. This variable indi-

cates whether short-term traders actively trade and take a long or short position

prior to the tth large trade. Since short-term traders switch their positions as fre-

quently as 91 times per day, either from a long to short position or vice versa, the

sign of positions of short-term traders at the tth large trade is a stationary process.

Regression (1.9) is a predictive regression. If x i,t indicates a direction of short-

term traders, β0 implies the likelihood that short-term traders correctly anticipate

the direction of large trades.

If we use the actual size and the direction of large trades along with the actual

positions of short-term traders instead of +1 or −1 for y t and x i,t in regression (1.9),

the signs and their statistical significance are the same with those from the regression
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with +1 and −1. See panel B in table 1.3. However, the regression with +1 and

−1 is more meaningful in that β0 has a simple interpretation associated with the

probability of short-term traders being on the right side of large trades such that

P [y t = x i,t] = E [y t · x i,t] /2 + 1/2

≈ β0/2 + 1/2 = 52.05%.

Based on the regression result in table 1.3, short-term traders are on the right side of

large trades with a probability 53.50% when not controlling for the autocorrelation

of large trades, and 52.05% when controlling for the autocorrelation.

We do not drop any large trades that were initiated by large traders during

trading hours except the beginning and closing times. As long as a short-term trader

has an open position when a large trader initiate a large trade, this is included as an

observation in regression (1.9)

Short-term traders consistently anticipate the direction of large trades with a

probability greater than 50%. We run regression (1.9) with every two consecutive

trading days of the data, and plot the time series of β0 in figure 1.5.

Figure 1.5 demonstrates that the probability of short-term traders being on the

right side of large trades is consistently greater than 50% over the sample period.

To illustrate the economic significance of order-anticipation strategy by short-

term traders, let’s simply assume that short-term traders lose one tick price ($20)
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Figure 1.5: This figure plots the time series of β0 estimated in two-day interval during the
sample period: y t = β0 · x i,t +

∑15
j=1 γj · y t−j + αi + εt, where the subscript t indexes large

trades, and y t is the direction of the tth large trade: Plus 1 is a buyer-initiated trade and
minus 1 is a seller-initiated trade. The variable x i,t is the position of the ith short-term
trader at the tth large trade: Plus 1 is a long position and minus 1 is a short position. Our
null hypothesis is β0 ≤ 0, which implies that the probability of short-term traders being on
the right side of large trades is less than or equal to 50%. The shade area represents a 95%
confidence interval. The coefficient β0 is related to the probability of short-term traders
being on the right side of large trades such that P [y t = x i,t] ≈ β0/2 + 1/2
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if they are on the wrong side, and gain one tick price if they are on the right side

of large trades. Also, let’s assume that short-term traders trade just one futures

contract in their order-anticipation trading strategy. There are 548 large trades per

day on average. Short-term trader’s net profits per day would be 548 × (0.52 −

0.48) × 1 tick × 1 contract × multiplier = 548 × 0.04 × 20 USD = 438 USD. These

profits would be consistent across trading days. If short-term traders can replicate

their order-anticipation strategy with 50 contracts instead of one contract, the total

profits of all 32 short-term traders would be 438× 50× 32 = 700,800 USD per day.

Short-term traders may attemp similar strategies not only in futures markets but

also in options markets, and they may use their strategies in other international

markets. The profits can become economically significant.

Short-term traders make consistent profits with a positive skewness. We aggre-

gate the mark-to-market profits of all short-term traders in one hour intervals during

our sample period, and normalize them to have a standard deviation of one. Figure

1.6 is the histogram of the mark-to-market profits aggregated across all short-term

traders.

1.6.1 “Child Order Size” and Order Exposure Probability

The order-anticipation dynamics in the model is mainly driven by the assump-

tion that, if the large trader increases her first trade size, the short-term trader is
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Figure 1.6: This figure plots the histogram of mark-to-market profits aggregated across
all short-term traders in one hour interval during the sample period. The mark-to-market
profits are normalized to a standard deviation of one.
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more likely to be informed about her second trade. To validate this assumption, we

take the data to the model as follows. We consider the large trader’s second trade

as large trades belonging to the largest 1% of all trades during the sample period,

and consider the large trader’s first trade as all small “child orders”. For each large

trade, we compute the mean size of small “child orders”, and test whether short-

term traders are more likely to anticipate a large trade initiated by a large trader

who traded with bigger “child orders” before initiating the large trade.

As a competing hypothesis, we test whether the trading speed of large traders

affects the probability of large trades being anticipated by short-term traders. The

trading speed of large traders is measured with order matching and submission times

in all passive trades of large traders. If large traders are faster, they are more likely

to be in the front of queue in the limit order book by responding to market conditions

faster than others. Therefore, the difference between order matching and submission

times would be smaller for faster large traders. To measure large trader’s speed,

we take the mean differences between order matching and submission times for all

matched passive orders of the large trader. The reason to use only the passive orders

is that the difference between order matching and submission times in an active trade

is subject to the latency within the exchange servers instead of the latency between

the exchange servers and large traders.

40



The idea that “child order” size affects the probability of order-anticipation is

not new. Harris (1997) argues that “the aggregate order size may then attract a

costly response from other traders”. The market makers in Kyle (1985) respond to

the trade size of the informed trader by making the market thin when the market

makers expect that the informed trader will demand large liquidity. The idea that

the trading speed matters in order-anticipation by short-term traders is not new,

either. Clark-Josep (2012) and Hirschey (2013) argue that HFT firms can trade

ahead of others with their speed advantage. Li (2014) develops a theoretical model

in which HFT firms can anticipate the order flow of all other traders due to their

speed advantage. What we are testing in this section is whether “child order size” or

“speed” affects the probability of short-term traders being on the right side of large

trades.

The ideal experiment to test whether “child order size” or “speed” affects the

probability of order-anticipation by short-term traders would be a random exper-

iment, in which “child order size” and “speed” are randomly assigned to other-

wise identical large traders (or their characteristics except for “child order size” and

“speed” are randomly distributed), and compare the order exposure probabilities of

the trader groups that have various “child order size” and “speed”. The first issue

to implement the ideal experiment is that “child order size” and “speed” may be
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positively correlated if traders with more capital are more likely to invest in increas-

ing their trading speed. To address the correlation between “child order size” and

“speed”, we test the null hypotheses associated with “child order size” and “speed”,

both separately and jointly. The second issue is that characteristics of large traders

except for “child order size” and “speed” may not be identical or not be randomly

distributed. However, we argue that most characteristics of large traders except for

“child order size” and “speed” are unobservable to short-term traders. Therefore,

from the perspective of short-term traders, large traders are almost identical, expect

for “child order size” and “speed”. Furthermore, since large traders should random-

ize their trades and try to find the best time to manage their large orders, such

trading behaviors would make it hard for us to reject the two null hypotheses.

Let xci,t be the mean trade size between the (t− 3)th and the tth large trade

traded by the large trader who initiated the tth large trade. Let DB
t be a dummy

variable indicating whether xci,t is greater than or equal to the median of xci,t during

the sample period. The dummy variable DB
t = +1 indicates that a large trader uses

a relatively big child order compared to other large traders before initiating the tth

large trade. Similarly, let DS
t be a dummy variable indicating whether the speed of

large trader who initiates the tth large trade is slower than the median speed of larger

traders. The dummy variable DS
t = +1 indicates that the large trader who initiates
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the tth large trade is more likely to be in the back of queue in the limit order book

than other large traders, and the average time difference between order matching

and submission times in her passive trades is longer than the median difference of

all large traders.

Using the dummy variables, DB
t and DS

t indicating the “child order” size and

the relative speed of large traders, the two null hypotheses can be formally stated as

follows:

Ha
0 :P

[
y t = x i,t|DB

t = 1
]
− P

[
y t = x i,t|DB

t = 0
]
≤ 0

Hb
0 :P

[
y t = x i,t|DS

t = 1
]
− P

[
y t = x i,t|DS

t = 0
]
≤ 0.

Given the two null hypotheses above, we design a simple regression to test two

hypotheses:

y t =β1 ·DS
t ·DB

t · x i,t + β2 ·DS
t · x i,t + β3 ·DB

t · x i,t

+ β4 · x i,t +
15∑
j=1

γj · y t−j +DS
t ·DB

t +DS
t +DB

t + αi + εt.

Based on the regression, we can rewrite our null hypotheses as follows:

Ha
0 : β3 ≤ 0, β1 + β3 ≤ 0

Hb
0 : β2 ≤ 0, β1 + β2 ≤ 0.

A linear hypothesis test rejects Ha
0 with a p-value less than 0.001 since β3 > 0

and β1 + β3 > 0, and rejects Hb
0 with a p-value less than 0.005 since β2 > 0 and

43



Model Covariate Estimate S.E. t value Pr(≤ |t|) Adj. R2

Child Size
x i,t −0.019 0.003 −6.392 0.000

0.043DB
t · x i,t 0.110 0.004 26.183 0.000∑15

j=1 y t−j 0.363 0.006 61.634 0.000

Speed
x i,t 0.021 0.003 6.684 0.000

0.041DS
t · x i,t 0.026 0.004 6.253 0.000∑15

j=1 y t−j 0.364 0.006 61.583 0.000

Child Size
+ Speed

x i,t −0.031 0.005 −6.103 0.000

0.044
DS

t · x i,t 0.018 0.006 2.879 0.004
DB

t · x i,t 0.086 0.006 13.318 0.000
DS

t ·DB
t · x i,t 0.059 0.009 6.909 0.000∑15

j=1 y t−j 0.362 0.006 61.513 0.000

Table 1.4: This table tests the “child order size” and “speed” hypotheses, separately and
jointly. Let xci,t be the mean size of child orders between the (t− 3)th and the tth large trade

traded by the large trader who initiated the tth large trade. The speed of large traders
is measured by the mean differences between order matching and submission times for all
matched passive orders of large traders. The dummy variable DB

t indicates whether xci,t is
greater than or equal to the median of xci,t during the sample period. The dummy variable

DS
t indicates the speed of the large trader who initiates the tth large trade is slower than

the median speed of large traders.
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β1 + β2 > 0. This result implies that if large traders use bigger “child orders”

with slower trading speed before initiating a large trade, their large trade is more

likely to be anticipated by short-term traders. Although large traders can reduce

the probability of order-anticipation by being faster, they cannot completely avoid

order-anticipation by short-term traders if their “child order” size before initiating a

large trade is relatively bigger than that of other large traders.

If we interpret DS
t as a dummy variable indicating whether large traders use

a trading algorithm to execute their large orders, the result implies that although

an execution algorithm helps large traders to hide their order flow, large traders

cannot completely avoid order-anticipation by short-term traders if they demand

large liquidity within a short period of time.

Our tests have a few limitations. First, the regressions in table 1.4 cannot test

whether an extreme low latency affects the probability of order-anticipation since

the proxy for speed is not a good measure for the extreme low latency. It is possible

that HFT firms exploit their extreme low latency to anticipate the order flow of large

traders, but these tests cannot reveal whether HFT firms have the capability to do

so. Second, the assumption that other characteristics of large traders are randomly

distributed or not observable to short-term traders may not be valid. Large traders

may have trading characteristics that are observable and correlated with “child order
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size”, and it is possible that such characteristics are driving the results in table 1.4.

The results in table 1.4 do not conflict with the findings in Clark-Josep (2012),

Hirschey (2012) and Li (2014). It is perfectly possible that HFT firms can trade ahead

of institutions or informed traders based on their extreme low latency. What we are

arguing in this paper is that in addition to the “trading speed” of large traders, “child

order size” is an important factor that affects the probability of order-anticipation

since “child orders” of large traders may reveal information about the forthcoming

large trade to short-term traders.

The results in table 1.4 along with order-anticipation dynamics imply that the

trading speed is important to short-term traders. The “speed” of large traders affects

the probability that short-term traders are on the right side of large trades, and the

“speed” of short-term traders is valuable when they are on the wrong side of large

trades. See panels B and D in figure 1.3. When large traders initiate a large trade,

and if short-term traders are on the wrong side of it, short-term traders need to

get out of their positions as quickly as possible since they expect small traders to

respond to the large trade by trading actively against their positions. Therefore,

“speed” is valuable to short-term traders in the sense that if short-term traders have

low latency, they can reduce negative skewed profits when they are on the wrong

side of large trades.
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In summary, the two main objectives of short-term traders are (1) to be on the

right side when large traders initiate a large trade and (2) to get out of their positions

as quickly as possible when they are on the wrong side of large trades. Bigger “child

order size” of large traders increases the probability of short-term traders to be on

the right side, and faster “speed” of short-term traders reduces their negative skewed

profits when they are on the wrong side of large trades.

1.6.2 Large Trade Size and Order Exposure Probability

The model predicts that larger trades among the largest 1% of all trades are

more likely to be anticipated by short-term traders because the size of the large

trade is positively correlated with the size of its “child order”, and the bigger “child

orders” increase the probability of large trades being anticipated. By estimating the

probability of order-anticipation for different size groups, we test whether the larger

trades among the largest 1% of all trades are more likely to be anticipated.

The estimated β0 in table 1.5 does not monotonically increase as the size of

large trades increases. However, the extreme large trades among the largest 1% of all

trades are more likely to be anticipated by short-term traders than relatively small

large trades.

The model is inconsistent with the result in table 1.5 for a few possible reasons.

First, the model forces the large trader to schedule her order over only two periods. If
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Group(Largest%) Size Bound β0 S.E. t value Pr(≤ |t|) Nobs.

1.00 ∼ 0.60% [50, 62) 0.032 0.003 10.531 0.000 108,001
0.60 ∼ 0.20% [62, 100) 0.031 0.004 7.373 0.000 55,481
0.20 ∼ 0.10% [100, 128) 0.022 0.006 3.923 0.000 31,812
0.10 ∼ 0.05% [128, 154) 0.040 0.010 4.078 0.000 10,494
0.05 ∼ 0.01% [154, 228) 0.120 0.010 12.048 0.000 9,068
0.01 ∼ 0.00% [228,max) 0.120 0.018 6.577 0.000 2,727

1.00 ∼ 0.00% [50,max) 0.036 0.002 16.766 0.000 217,583

Table 1.5: This table tests whether the larger trades among large trades are more likely
to be anticipated. Large trades are defined as active trades by large traders among the
largest 1% of all active trades. We divide large trades into 6 groups based on their trade
size, and estimate the probability of order-anticipation, β0 for each group. The variable yt
is the direction of the tth large trade: Plus 1 is a buyer-initiated trade and minus 1 is a
seller-initiated trade. The subscript t indexes large trades. The variable x i,t is the position
of the ith short-term trader at the tth large trade: Plus 1 is a long position and minus 1 is
a short position.

large traders have a longer time horizon to manage their large order and if short-term

traders extract more accurate order flow information with a longer time series, the

larger trades among the largest 1% of all trades may be less likely to be anticipated

than the smaller trades. Second, the model implicitly assumes that liquidity provision

from noise traders is constant since we assume a constant linear price impact factor.

Since large traders have large demands, it is optimal for them to work their large

orders when the market is more liquid so that they can efficiently hide their order

flow while smoothing out their trades. In order to properly test the model prediction,

we need to measure the size of large trades relative to liquidity.
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1.7 Order-Anticipation Horizon

To show the order-anticipation horizon of short-term traders, we run predictive

regressions, unconditional of the execution of large trades, with 120 second time

intervals:

y(t,t+1] = β0xt +
5∑

i=1

βix(t−i,t−i+1] + ε(t,t+1],

where y(t,t+1] is the number of buyer-initiated large trades minus the number of seller-

initiated large trades between time t and t + 1. The variable xt is the sign of the

aggregate inventories of short-term traders at time t. The variable x(t−i,t−i+1] is the

sign of short-term traders’ trades between time t − i and t − i + 1. Note that the

subscript (t′, t′ + 1] implies that t′ is not included, but t′+ 1 is included and that the

120 second time intervals cover the entire trading hours during the sample period.

The predictive regressions in table 1.6 show that the aggregate positions of

short-term traders are statistically significant predictors for the direction of large

trades that will arrive within 120 seconds. The positions of short-term traders are

a still significant predictor, even after controlling for the lagged trades of short-term

traders. This implies that the positions of short-term traders are sufficient statistics

to evaluate the predictability of short-term traders.

In panel B of table 1.6, we use the actual size of large trades for the dependent

variable and use the aggregate inventories and trades of short-term traders for the
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Panel A. Direction Panel B. Direction× Size

Covariate (1) (2) (3) (1) (2) (3)

Intercept −0.06 −0.06 −0.06 −2.94 −3.15 −2.94
(−2.57) (−2.44) (−2.54) (−1.34) (−1.40) (−1.34)

xt 0.17 – 0.16 0.21 – 0.22
(7.49) – (6.04) (7.50) – (3.70)

x(t−1,t] – 0.09 0.01 – 0.16 −0.02

– (3.90) (0.34) – (6.42) (−0.28)
x(t−2,t−1] – 0.09 0.05 – 0.17 0.03

– (3.30) (1.83) – (5.47) (0.51)
x(t−3,t−2] – 0.05 0.03 – 0.14 0.03

– (1.83) (1.12) – (4.23) (0.60)
x(t−4,t−3] – 0.03 0.02 – 0.06 −0.02

– (1.18) (0.82) – (1.88) (−0.60)
x(t−5,t−4] – −0.02 −0.02 – 0.01 −0.03

– (−0.75) (−0.97) – (0.48) (−1.11)

Nobs 11,674 11,674 11,674 11,674 11,674 11,674
Adj. R2 0.0049 0.0017 0.0050 0.0056 0.0043 0.0057

Table 1.6: This table tests whether the aggregate inventories of short-term traders predict
the direction of large trades. We run predictive regressions with data points extracted in
120 second intervals between 9:00 a.m. and 3:00 p.m. for 66 consecutive trading days of the
sample period: y(t,t+1] = β0xt +

∑5
i=1 βix(t−i,t−i+1] + ε(t,t+1], where y(t,t+1] is the number of

buyer-initiated large trades minus the number of seller-initiated large trades between time
t and t + 1. The variable xt is the sign of the aggregate inventories of short-term traders
at time t, and x(t−i,t−i+1] is the sign of short-term traders’ net trades between time t − i
and t− i+ 1. Note that the subscript (t′, t′ + 1] implies that t′ is not included, but t′ + 1
is included. In panel B, we use the actual size of large trades for the dependent variable,
and use the aggregate inventories and trades of short-term traders for the independent
variables. Newey and West (1994) t-statistics with 30 lags are reported in parentheses.
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independent variables. In these specifications, we still find the predictability of short-

term traders on the direction of large trades. As a robustness check, we run the

same regressions in table 1.6 with 5, 20, 40, 60, 120 and 240 second time intervals,

and report the results in table 1.7. In all specifications, we find that the aggregate

positions of short-term traders are statistically significant predictors for the direction

of large trades that will arrive in a short period of time. Furthermore, the coefficient

of xt monotonically increases as the time intervals become longer. This implies that

the order-anticipation strategy of short-term traders is not subject to their trading

speed.

1.7.1 Order-Anticipation Horizon across Large Trades

Order-anticipation by short-term traders can occur over a few large trades. Us-

ing vector autoregression with contemporaneous trades, this section analyzes order-

anticipation dynamics over ten large trades among large, short-term, and small

traders.

When taking the data to a vector autoregression model, large trades are used

as a partition of time domain to aggregate the active trades of large, short-term, and

small traders. Based on the market microstructure invariance hypothesis proposed

by Kyle and Obizhaeva (2013), the partition of time domain by large trades is more

appropriate than regular time intervals for analyzing order-anticipation dynamics.
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Panel A. Direction: y(t,t+1]

Covariate 5 sec 20 sec 40 sec 60 sec 120 sec 240 sec

Intercept 0.00 −0.01 −0.02 −0.03 −0.06 −0.13
(−0.16) (−2.45) (−2.47) (−2.49) (−2.54) (−2.61)

xt 0.02 0.04 0.08 0.10 0.16 0.26
(8.16) (11.45) (9.42) (8.01) (6.04) (4.42)

x(t−1,t] 0.00 0.00 0.00 −0.02 0.01 0.00

(0.78) (−0.47) (0.04) (−1.90) (0.34) (0.04)
x(t−2,t−1] 0.00 0.01 0.00 0.01 0.05 −0.03

(0.93) (1.92) (0.28) (0.45) (1.83) (−0.61)
x(t−3,t−2] 0.00 0.01 0.00 0.02 0.03 −0.01

(−0.22) (2.57) (−0.27) (1.63) (1.12) (−0.24)
x(t−4,t−3] 0.00 0.00 0.01 0.01 0.02 −0.04

(0.50) (0.73) (1.54) (0.47) (0.82) (−0.64)
x(t−5,t−4] 0.00 0.01 0.01 0.01 −0.02 0.03

(1.37) (1.80) (1.95) (1.13) (−0.97) (0.53)

Nobs 71,421 71,819 35,749 23,683 11,674 5,672
Adj. R2 0.0013 0.0026 0.0036 0.0034 0.0050 0.0045

Table 1.7: This table reports the order-anticipation horizon of short-term traders. We
run the predictive regressions in table 6 with various time intervals: 5, 20, 40, 60, 120 and
240 seconds: y(t,t+1] = β0xt +

∑5
i=1 βix(t−i,t−i+1] + ε(t,t+1], where y(t,t+1] is the number of

buyer-initiated large trades minus the number of seller-initiated large trades between time
t and t+ 1, where t is not included, but t+ 1 is included. The variable xt is the aggregate
inventories of short-term traders at time t, and x(t−i,t−i+1] is the net trades between time
t − i and t − i + 1, where t − i is not included, but t − i + 1 is included. For panel B, we
use the actual size of large trades instead of the number of large trades. Newey and West
(1994) t-statistics with 30 lags are reported in parentheses.
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The reasons are that (1) large trades provide a natural partition of time domain

that is endogenous to trading activity, and (2) large trades can be considered as

an exit point to short-term traders. If the market runs fast in business time, the

level of risk transferred per unit of calendar time increases and a large trade is more

likely to occur. Therefore, the time spans between two consecutive large trades would

become smaller when business time runs faster, controlling for trading activity across

the time spans between large trades.

Let x l
{t,t+1}, x s

{t,t+1} and xm
{t,t+1} denote the net signed active trades of large,

short-term, and small traders, respectively, between the tth and the (t+ 1)th large

trade. Let’s define short-term price change ∆p{t,t+1} as (ln pt+1 − ln pt)× 104, where

pt is the price at the tth large trade. Let’s define a 4× 1 vector Λ{t,t+1} and Y{t,t+1}

as:

Λ{t,t+1} =
[
λ1x

l
{t,t+1} + λ2x s

{t,t+1} + λ3x
m
{t,t+1} 0 0 0

]′
Y{t,t+1} =

[
∆p{t,t+1} x l

{t,t+1} x s
{t,t+1} xm

{t,t+1}
]′
.

Our vector autoregression model with contemporaneous trades is

Y{t,t+1} = Λ{t,t+1} +
5∑

i=1

ΘiY{t−i,t−i+1} + ε{t,t+1}, (1.10)

where Λ{t,t+1} is a vector controlling for the price impact of contemporaneous trades,

and Θi is a 4 × 4 vector of coefficients capturing the relationship among the active
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trades of each trader group and the short-term price change.

Based on the model, short-term traders anticipate the order flow of large traders

instead of predicting the short-term price change directly. Consistent with the

model, when controlling for the contemporaneous active trades of x l
{t,t+1}, x s

{t,t+1}

and xm
{t,t+1}, the lagged active trades of short-term traders cannot predict the short-

term price change, ∆p{t,t+1} directly.

The variable x s
{t,t+1} is strongly negatively associated with x s

{t−i,t−i+1} for 1 ≤

i ≤ 10. This is consistent with the summary statistics that short-term traders switch

their positions, either from a long to short position or vice versa, as frequently as

91 times per day. This negative correlation is also consistent with the model, in

which the short-term trader exits his positions when the large trader initiates a large

trade at her second trade. The variable x l
{t,t+1} is strongly positively associated with

both x l
{t−i,t−i+1} and x s

{t−i,t−i+1} for 1 ≤ i ≤ 10. The positive autocorrelation of

x l
{t−i,t−i+1} is due to large traders smoothing their trades. The positive correlation

between x l
{t,t+1} and x s

{t−i,t−i+1} implies that short-term traders anticipate the order

flow of large traders.

Short-term traders profit from the price impact caused by large traders. To

show this, the short-term price change ∆p{t,t+1} is regressed on the active trades of
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(1) ∆p{t,t+1} (2) x s
{t,t+1} (3) x l

{t,t+1} (4) xm
{t,t+1}

Covariate x Coef t-stat Coef t-stat Coef t-stat Coef t-stat

x s
{t,t+1} −0.015 (−3.36) – – – – – –

x l
{t,t+1} 0.095 (50.52) – – – – – –

xm
{t,t+1} −0.035 (−8.59) – – – – – –

x s
{t−1,t} 0.000 (−0.09) −0.115 (−20.75) 0.244 (18.35) 0.157 (25.03)

x s
{t−2,t−1} −0.002 (−0.45) −0.092 (−16.18) 0.185 (13.66) 0.075 (11.80)

x s
{t−3,t−2} −0.008 (−1.71) −0.074 (−13.02) 0.155 (11.42) 0.068 (10.64)

x s
{t−4,t−3} −0.006 (−1.43) −0.060 (−10.69) 0.090 (6.70) 0.026 (4.15)

x s
{t−5,t−4} −0.004 (−0.93) −0.038 (−6.96) 0.064 (4.89) 0.014 (2.33)

x l
{t−1,t} 0.003 (1.64) 0.010 (4.04) 0.112 (19.00) 0.038 (13.67)

x l
{t−2,t−1} 0.005 (2.71) 0.003 (1.04) 0.067 (11.30) 0.024 (8.51)

x l
{t−3,t−2} 0.000 (−0.15) −0.001 (−0.28) 0.024 (4.09) 0.009 (3.34)

x l
{t−4,t−3} 0.001 (0.66) −0.004 (−1.60) 0.021 (3.59) 0.008 (2.85)

x l
{t−5,t−4} 0.002 (0.82) −0.004 (−1.44) 0.033 (5.51) 0.010 (3.73)

xm
{t−1,t} 0.004 (1.02) −0.019 (−3.65) 0.003 (0.24) 0.078 (13.43)

xm
{t−2,t−1} 0.003 (0.68) −0.005 (−1.00) 0.041 (3.36) 0.066 (11.40)

xm
{t−3,t−2} 0.002 (0.55) −0.022 (−4.33) 0.050 (4.10) 0.048 (8.19)

xm
{t−4,t−3} 0.009 (2.17) −0.015 (−2.95) 0.055 (4.45) 0.047 (8.11)

xm
{t−5,t−4} −0.005 (−1.12) −0.018 (−3.55) 0.037 (3.03) 0.042 (7.35)

∆p{t−1,t} 0.027 (5.12) 0.188 (0.28) 2.102 (1.32) 0.013 (0.02)

∆p{t−2,t−1} −0.005 (−0.90) −1.332 (−2.00) −0.624 (−0.39) −0.445 (−0.59)

∆p{t−3,t−2} 0.018 (3.41) −0.180 (−0.27) 3.049 (1.92) −0.161 (−0.22)

∆p{t−4,t−3} 0.018 (3.37) −0.041 (−0.06) 2.026 (1.28) 0.325 (0.43)

∆p{t−5,t−4} 0.004 (0.74) −0.061 (−0.09) −2.139 (−1.35) −0.366 (−0.49)

Nobs 35,438 – 35,438 – 35,438 – 35,438 –
Adj. R2 0.080 – 0.030 – 0.060 – 0.090 –

Table 1.8: This table analyzes order-anticipation dynamics among large, short-term, and

small traders across large trades. Let Y{t,t+1} =
[

∆p{t,t+1} x l
{t,t+1} x c

{t,t+1} xm
{t,t+1}

]′
,

where ∆p{t,t+1} is the log return (bps) of midpoint of the bid-ask prices between the tth and

the (t+ 1)th large trade. Let x l
{t,t+1}, x s

{t,t+1} and xm
{t,t+1} be the net signed active trades

of large, short-term, and small traders, respectively, between the tth and the (t+ 1)th large

trade. Define Λ{t,t+1} =
[
λ1x l

{t,t+1} + λ2x s
{t,t+1} + λ3xm

{t,t+1} 0 0 0
]′

. Our VAR model is

Y{t,t+1} = Λ{t,t+1} +
∑5

i=1 ΘiY{t−i,t−i+1} + εt , where Θi =
{
θm,l
i

}
is a 4 by 4 coefficient

matrix, and the coefficients λ1, λ2 and λ3 in Λ{t,t+1} capture the contemporaneous price

impact of x l
{t,t+1}, x s

{t,t+1} and xm
{t,t+1} on the price change ∆p{t,t+1}, respectively. Every

first 5 large trades in a day are dropped since their lagged variables are missing. The unit
on the coefficients in the first column is 10−2 and the unit on the independent variables is
the number of contracts actively traded by the corresponding trader group.
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large, short-term, and small traders along with the lagged short-term price changes:

∆p{t,t+1} = λ1x
s
{t,t+1} + λ2x

l
{t,t+1} + λ3x

m
{t,t+1} +

5∑
i=1

∆p{t−i,t−i+1}+

5∑
i=1

(
θ1,i · x s

{t−i,t−i+1} + θ2,i · x l
{t−i,t−i+1} + θ3,i · xm

{t−i,t−i+1}
)

+ ε{t,t+1}.

(1.11)

We intentionally omit x l
{t,t+1} or xm

{t,t+1} to examine which trader group contributes to

the profits of short-term traders when short-term traders exit their positions. When

omitting x l
{t,t+1} or xm

{t,t+1}, the dependent variable in regression (1.11) becomes the

price impact from the contemporaneous trades of the omitted trader group plus

the short-term price change that cannot be explained with contemporaneous trades.

If short-term traders profit from the price impact caused by a certain group, its

omitted active trades would result in positively biased estimates between x s
{t−i,t−i+1}

and ∆p{t,t+1}.

When omitting x l
{t,t+1} in regression (1.11), the short-term price change ∆p{t,t+1}

is strongly positively associated with x s
{t−i,t−i+1}. We interpret this positive corre-

lation with the negative autocorrelation of x s
{t,t+1} such that short-term traders an-

ticipate a sequence of trades of large traders by accumulating their positions in the

direction of the forthcoming large trade, and when large traders initiate a large trade,

short-term traders consider this as an exit point, in which they start to realize their

profits by liquidating their positions to other traders who respond to large trades.

Such order-anticipation dynamics show up in predictive regression (1.11) as if short-
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Panel A. Short-term Traders Active Trades at Large Trades t

(1) ∆p{t,t+1} (2) ∆p{t,t+1} (3) ∆p{t,t+1} (4) ∆p{t,t+1}

Covariate x Coef t-stat Coef t-stat Coef t-stat Coef t-stat

x s
{t,t+1} −0.015 (−3.36) 0.019 (4.36) 0.010 (2.25) −0.024 (−5.52)

x l
{t,t+1} 0.095 (50.52) – – – – 0.091 (50.24)

xm
{t,t+1} −0.035 (−8.59) – – 0.028 (6.83) – –

x s
{t−1,t} 0.000 (−0.09) 0.021 (4.63) 0.016 (3.42) −0.006 (−1.28)

x s
{t−2,t−1} −0.002 (−0.45) 0.016 (3.44) 0.013 (2.81) −0.005 (−1.02)

x s
{t−3,t−2} −0.008 (−1.71) 0.007 (1.53) 0.005 (0.99) −0.010 (−2.21)

x s
{t−4,t−3} −0.006 (−1.43) 0.003 (0.72) 0.002 (0.45) −0.007 (−1.65)

x s
{t−5,t−4} −0.004 (−0.93) 0.003 (0.64) 0.002 (0.47) −0.005 (−1.05)

x l
{t−1,t} 0.003 (1.64) 0.012 (6.04) 0.011 (5.55) 0.003 (1.28)

x l
{t−2,t−1} 0.005 (2.71) 0.011 (5.31) 0.010 (4.99) 0.005 (2.47)

x l
{t−3,t−2} 0.000 (−0.15) 0.002 (0.84) 0.001 (0.71) −0.001 (−0.26)

x l
{t−4,t−3} 0.001 (0.66) 0.003 (1.56) 0.003 (1.44) 0.001 (0.55)

x l
{t−5,t−4} 0.002 (0.82) 0.004 (2.20) 0.004 (2.05) 0.001 (0.70)

xm
{t−1,t} 0.004 (1.02) 0.002 (0.56) 0.000 (0.01) 0.001 (0.31)

xm
{t−2,t−1} 0.003 (0.68) 0.005 (1.08) 0.003 (0.64) 0.001 (0.15)

xm
{t−3,t−2} 0.002 (0.55) 0.006 (1.45) 0.005 (1.09) 0.001 (0.15)

xm
{t−4,t−3} 0.009 (2.17) 0.013 (3.06) 0.011 (2.72) 0.007 (1.80)

xm
{t−5,t−4} −0.005 (−1.12) −0.002 (−0.45) −0.003 (−0.77) −0.006 (−1.48)

∆p{t−1,t} 0.027 (5.12) 0.029 (5.29) 0.029 (5.30) 0.027 (5.13)

∆p{t−2,t−1} −0.005 (−0.90) −0.005 (−0.86) −0.005 (−0.86) −0.005 (−0.89)

∆p{t−3,t−2} 0.018 (3.41) 0.021 (3.85) 0.021 (3.86) 0.018 (3.45)

∆p{t−4,t−3} 0.018 (3.37) 0.020 (3.59) 0.020 (3.58) 0.018 (3.37)

∆p{t−5,t−4} 0.004 (0.74) 0.002 (0.37) 0.002 (0.38) 0.004 (0.74)

Nobs 35,438 – 35,438 – 35,438 – 35,438 –
Adj. R2 0.080 – 0.010 – 0.010 – 0.080 –

Table 1.9: This table identifies a channel through which short-term traders predict the
short-term price change. The short-term price change ∆p{t,t+1} is regressed on the lagged
short-term price changes and the active trades of large, short-term, small traders. The vari-
able x l

{t,t+1} or xm
{t,t+1} are intentionally omitted in the regression. The omitted variables

result in biased estimates for the coefficients on x s
{t−i,t−i+1}, which identify the indirect

channel, through which short-term traders predict the short-term price change ∆p{t,t+1}.
Panel B replaces x s

{t,t+1} with x {t}, which are the aggregate positions of short-term traders

at the tth large trade. As a counterfactual analysis, panel C replicates panel B with ran-
domly chosen trades. Every first 5 large trades in a day are dropped since their lagged
variables are missing. The unit on the coefficients is 10−2 and the unit on the independent
variables is the number of contracts actively traded by the corresponding trader group.

57



term traders predict the short-term price change between two consecutive large trades

when omitting x l
{t,t+1}. What actually happens is that short-term traders anticipate

the order flow of large traders, and they profit from the price impact caused by large

traders by liquidating their positions when large traders initiate a large trade.

Even if x s
{t−i,t−i+1} is positively associated with ∆p{t,t+1}, if the short-term

trader’s position is on the wrong side of large trades, short-term traders cannot

profit from the price impact incurred by large traders. To address this concern,

x s
{t,t+1} is replaced with the aggregate positions of short-term traders at the tth large

trade, x {t} in regression (1.11), and the results are presented in panel B in table 1.7.1.

The results in panel B in table 1.7.1 imply that short-term traders’ position

at the tth large trade is a strong predictor for the short-term price change between

the tth and the (t+ 1)th large trade. The variable x s
{t−i,t−i+1} is no longer positively

associated with ∆p{t,t+1} when controlling for the positions of short-term traders,

x {t}. This is because the active trades of short-term traders, x s
{t−i,t−i+1}, are highly

correlated with their positions, x {t}, which is a sufficient predictor for ∆p{t,t+1}.

The underlying mechanism in panel B in table 1.7.1 is that short-term traders take

positions in the direction of large trades before large traders initiate large trades,

and they profit from the price impact caused by large traders.

As a counterfactual analysis, panel C replicates panel B in table 1.7.1 with
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randomly chosen trades instead of large trades. Between randomly chosen two con-

secutive trades, short-term traders’ position, x {t} is negatively associated with the

short-term price change ∆p{t,t+1}. The results in panel B and C in table 1.7.1 imply

that except for large trades, the short-term price is likely to move against the position

of short-term traders and large trades are the main source of profits of short-term

traders.

1.8 Conclusion

This is the first paper to document that short-term traders anticipate the di-

rection of large trades, and they profit from the price impact caused by large traders.

When large traders initiate a trade, short-term traders correctly anticipate the di-

rection of the large trade 56.06% of the time. By either taking a long position in

advance of a large buy order or a short position in advance of a large sell order, short-

term traders profit from the price impact caused by the large trade. Furthermore,

we find that the aggregate positions of short-term traders are statistically sufficient

and significant predictors for the direction of large trades that will arrive within 120

seconds.

Based on the findings, we argue that order-anticipation trading occurs because

of order flow revealed by large traders rather than because of their speed slower than

short-term traders. Large traders inevitably reveal their order flow to reduce the
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price impact of large positions. This acts as a trading signal to short-term traders

Although this paper analyzes the index futures market of South Korea, the

main findings are driven by the foreign trading algorithms that would actively trade

in other international markets. Thus, we conjecture that the results can be replicated

in other major markets such as E-mini S&P 500 index futures market.

This paper does not evaluate overall effect of order-anticipation by short-term

traders on financial markets. Short-term traders clearly increase the transaction

cost of large traders, however they also contribute to the price discovery process by

competing for liquidity with large traders prior to large trades. After large trades are

made, short-term traders provide liquidity to other market participants who want to

actively trade to respond to new information revealed by large trades.

In our next paper, we ask how exogenous order flow frequency change affects

the order-anticipation of short-term traders. The KRX went through a structural

change on March 23, 2009, when the exchange server capacity was doubled from the

former system. Since the upgrade, market participants have received more frequent

limit order book information from once per 10 millisecond to once per 1 millisecond.

This structural change would exogenously give an advantage to short-term traders

as they receive more refined information about large traders who do not want to

reveal their order flow. Using this exogenous change as a natural experiment, we

60



examine how this structural change affects order-anticipation dynamics, and how

order-anticipation by short-term traders affects price informativeness, short and long-

term volatility, market depth and liquidity.
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Chapter 2: An Invariance Relationship in the Number of Buy-Sell
Switching Points

2.1 Overview

Financial markets generate a voluminous amount of data on order placements

and quote updates. These data leave little doubt that trading patterns vary signifi-

cantly across securities. The market microstructure invariance hypothesis developed

by Kyle and Obizhaeva (2013) nevertheless claims that trading patterns in different

markets look similar when viewed from the perspective of an appropriate “busi-

ness” time clock. Market microstructure invariance predicts similarities in the dollar

amounts expected to be at stake, the scale of risk transferred, the magnitude of

transaction costs, and the size of profits.

In this paper, we test the market microstructure invariance hypothesis by ex-

amining variation in the aggregate number of buy-sell switching points across stocks.

We define the number of buy-sell “switching” points based on the number of times

that individual traders change the direction of their trading. We hypothesize that

the number of switching points is proportional to the rate at which business time
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passes. Under this hypothesis, market microstructure invariance predicts that the

aggregate number of switching points is proportional to the 2/3 power of the product

of dollar volume and volatility.

Using account-level data from the Korea Exchange (KRX) from 2008 to 2010,

we estimate the exponent to be 0.675 with standard error of 0.005. Invariance ex-

plains about 93% of the variation in the number of switching points each month

across stocks. Invariance patterns are especially pronounced for the subset of do-

mestic retail investors. A decomposition into the number of unique accounts and the

average number of switching points per account shows that it is the cross-sectional

variation in the number of accounts that exhibits the invariance patterns, while the

number of switching points per account is relatively stable.

2.2 Market Microstructure Invariance, Business Time, and Switching
Points

According to the market microstructure invariance hypothesis of Kyle and

Obizhaeva (2013), the business time clock is governed by the frequency at which

independent ideas—referred to as “bets”—are expected to arrive into the market-

place. In more active markets, bets arrive more frequently as the time clock runs

faster. As bets are placed at a faster rate, trading costs decrease and the average

distance between the market price and unobserved fundamental value decreases by
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an amount proportional to the square root of the arrival rate of bets. For informed

traders to make the same expected dollar profits per bet when trading costs fall and

price efficiency increases, they scale up the dollar size of their bets proportionally.

Holding volatility constant, invariance implies that the dollar size of bets increases

at a rate proportional to the square root of the number of bets per day; this implies

that, as trading volume varies across securities, the number of bets increases twice as

fast as the size of bets. Thus, if trading volume increases by a factor of 8, the number

of bets increases by a factor of 4 and the dollar size of bets increases by a factor of 2.

Since the business time clock—which ticks at the rate bets arrive—effectively speeds

up by a factor of 4, the speed with which business time passes is proportional to the

2/3 power of trading volume.

To adjust for differences in percentage returns volatility, Kyle and Obizhaeva

(2013) introduce the concept of “trading activity” denoted W . Trading activity is

defined as the product of daily dollar volume P · V (dollar share price times share

volume per day) and daily percentage returns volatility σ,

W := P · V · σ. (2.1)

It is a measure of aggregate risk transfer per calendar day. The expected number of

bets per calendar day—and thus the rate at which trading unfolds—is proportional to

W 2/3. Invariance implies that specific exponents of 1/3 and 2/3 govern relationships
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between trading activity W and various market characteristics such as bet size, bid-

ask spreads, market impact costs, speed of mean reversion, and price efficiency. These

relationships should be present in data on trading in financial markets.

The variable of interest in this paper is the aggregate number of buy-sell

“switching” points. For each month and each security, we count how many times in-

dividual traders change their trading direction from buying to selling or from selling

to buying and then aggregate those numbers across all accounts to find an aggregate

number of switching points for all traders in a given stock in a given month. If an

account trades a given stock in a given month but not in the previous month, then

we count its number of switching point as at least one. Each time an individual

account changes the direction of its trading from buying to selling or from selling to

buying, the number of switching points is increased by one. We denote the aggregate

number of switching points, summed across all accounts which traded stock i during

month t, as Sit.

We expect to find an invariance relationships in the cross-sectional patterns

of switching points. More precisely, consistent with the invariance hypothesis, we

hypothesize that Sit is proportional to W
2/3
it ,

Sit = a ·
(Wit

W ∗

)2/3
, (2.2)

where a is the same “invariant” constant for all stocks i and all months t. The
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constant a is scaled by W ∗ so that it quantifies the expected number of switching

points per calendar day for a hypothetical benchmark stock with trading activity

W ∗. To match the benchmark stock of Kyle and Obizhaeva (2013), we define the

benchmark stock to have a daily volume of one million shares, daily volatility of

2%, and price of 47, 440 KRW per share (approximately equal to $40 per share

given the average exchange rate of 1,186 KRW per USD between 2008 to 2010).

This hypothetical stock would be at the bottom of the top 50 stocks in the Korean

Composite Stock Price Index (KOSPI). In this paper, we present evidence supporting

our hypothesis.

Our tests have a number of advantages over other tests for invariance rela-

tionships in trading data. Kyle and Obizhaeva (2013) document invariance relation-

ships for the size distributions of portfolio transition orders. These tests require the

identifying assumption that portfolio transition orders of institutional investors be

proportional to bets. Kyle, Obizhaeva and Tuzun (2012) document invariance rela-

tionships for the size distributions of “prints” of quantities traded in the Trade and

Quote dataset (TAQ). These tests rely on the even stronger assumption that print

sizes are proportional to bets. This assumption broke down after the 2001 reduction

of tick size to one cent and electronic order handling algorithms motivated traders

in the earlier 2000s to shred their larger “meta-orders” into trades equal in size to
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the minimum lot size of 100 shares or even smaller odd lots.

Although the aggregate number of switching points is hardly of any economic

interest in itself, it is a convenient tool for testing invariance. The tests based on the

aggregate number of switching points do not require strong assumptions about bets.

Kyle and Obizhaeva (2013) develop invariance hypotheses using the concept of

“bets.” In theory, a portfolio manager places a bet when he makes a statistically

independent decision to accumulate a position of a particular size. In practice, the

concept of a bet is difficult to map into data. Bets do not map easily into orders,

since one bet might be broken into many orders or spread across different accounts;

thus, bets do not necessarily show up in an obvious way in consolidated audit trail

data. Bets map even less easily into public data on trades, such as TAQ prints.

In contrast to the concept of a bet, the concept of a switching point can be

given a more unambiguous definition which maps into data in a straightforward

manner, provided trading data is available by individual account. There is some

ambiguity concerning the possibility that bets are spread across multiple accounts

or multiple bets are merged together; these possibilities may affect the number of

switching points, but the effect is likely to be proportional across stocks. Empirical

tests of cross-sectional variation based on the number of switching points only require

the structure of trading to be approximately preserved across securities, regardless
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of the specifics of how the flow of bets in the marketplace is expressed as a flow of

trades. Of course, switching point results may be affected by various market frictions

and institutional features such as minimum tick size, minimum lot size, the level of

cross-market arbitrage, and the industrial organization of entities participating in

trading financial securities. We examine these issues in later sections of the paper.

2.3 The South Korean Stock Market Data

Our study is based on trade-level and account-level data provided by the Korea

Exchange (KRX) for the period from February 2008 through November 2010. The

Korea Exchange was created after the integration of the Korea Stock Exchange, the

KOSDAQ Stock Exchange, and the Korea Derivatives Market in 2005. According to

the World Federation of Exchanges, the South Korean stock market is ranked 17th

in terms of market capitalization (about $1 trillion). Our sample includes only the

stocks listed in the KOSPI Market division at the Korea Exchange.

The KRX operates a single central limit order book for each KOSPI stock.

The dataset contains records of all orders placed, canceled, or modified as well as

all transactions executed. Records include blocking trading codes, short-sale codes,

trading system codes, and time stamps to the millisecond. Each message is linked

to the specific accounts involved and some additional information on account types

is collected, such as whether accounts belong to domestic retail investors, domestic
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institutional investors (financial investment companies, insurance companies, private

equity funds, etc.), or foreign investors. The KRX database has about 2.69 billion

messages and 1.29 billion distinct trade records during our sample period.

For our analysis, one observation is associated with each stock for each pe-

riod of 20 trading days from February 2008 through November 2010. In this paper,

we refer informally to each period of 20 trading days as a “month” (even though

the 20-trading-day period do not correspond precisely to calendar months). Using

this definition, our dataset covers 36 months. We begin with 24,441 observations,

one observation for each KOSPI stock and each month from February 2008 through

November 2010. We drop 2, 506 stock-month observations, because trading of some

stocks was discontinued during particular months, thus biasing downwards the num-

ber of switching points calculated for those observations. Our final sample has 21, 935

observations of stock-month pairs. There are on average 609 KOSPI stocks traded

during each month.

Using these data, we calculate for each stock i and for each month t the ag-

gregate number of accounts which trade Nit and the aggregate number of buy-sell

switching points Sit (summed across accounts). For each observation, we calculate

the dollar share price Pit as the product of the exchange rate between the South

Korean won and the U.S. dollar (KRW-USD exchange rate) and the closing KRW
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stock price. We obtain share volume Vit from the official daily public share volume

report. We calculate daily returns volatility σit as the sample standard deviation of

daily percentage returns during the same month. Trading activity Wit is defined as

Wit := Pit · Vit · σit. We define market capitalization based on the number of shares

outstanding at the end of each year. We calculate the annualized turnover rate νit

based on share volume in month t and shares outstanding at the end of the previous

year.

The dataset identifies three broad categories of traders: domestic retail in-

vestors, domestic institutional investors, and foreign investors. The number of ac-

counts Nit and number of switching points Sit represent sums across these three

investor types. We let αit denote the fraction of share volume due to domestic retail

investors.

There are in total 425, 440, 260 switching points in the sample, on average

19, 395 switching points per month per stock in the KOSPI universe: 94.2% from

accounts of domestic retail investors, 4.7% from accounts of domestic institutions,

and 1.1% from accounts of foreign investors. There are 5, 886, 557 distinct accounts

in the sample: 94% domestic retail investors, 5.1% domestic institutions, and 0.8%

foreign investors.

Table 2.1 shows summary statistics for the entire sample as well as the six
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Volume Group

Variable All 30th 60th 75th 85th 95th 100th

Price 36,839 13,957 26,530 37,815 47,599 77,869 119,947
Daily Volume (1B) 8.50 0.08 0.50 2.08 6.68 23.55 94.88

Volatility (%) 2.79 2.22 2.88 3.34 3.21 2.97 2.74
Capitalization (1T) 1.32 0.07 0.15 0.33 0.99 3.39 14.62

Annual Turnover (%) 263.70 49.23 193.23 429.22 553.08 495.40 363.91
Tick Size (BPS) 22.10 21.53 22.25 22.44 22.80 22.30 21.69
# Trades/Day 5,659 255 1,170 3,574 7,893 17,033 41,400

Avg Trade Size (1M) 2.87 1.21 2.06 2.51 3.75 5.90 10.37
Trades at Min Lot Size (%) 23.25 28.78 23.42 20.27 19.21 18.46 17.51

DR Volume (%) 78.32 86.63 81.57 79.09 71.95 62.31 54.71
DI Volume (%) 13.93 10.11 12.08 13.78 17.87 21.45 23.91
FI Volume (%) 7.75 3.27 6.35 7.13 10.18 16.24 21.38
Avg # Switches 19,395 930 4,072 13,353 28,501 57,567 136,710

Avg # Stock 609 176 185 93 62 62 32
# Observations 21,935 6,330 6,669 3,341 2,220 2,235 1,140

Table 2.1: The Summary Statistics: The table shows the price (KRW), daily volume
(1 billion KRW), volatility (%), market capitalization (1 trillion KRW), annual turnover
(%), percentage tick size (bps), number of trades, average trade size (1 million KRW),
percentage of trades of minimum lot size, the fraction of double-sided volume of domestic
retail investors, the fraction of double-sided volume for domestic institutional investors,
the fraction of double-sided volume of foreign investors, average number of switches per
month, average number of stocks, and number of month-stock observations. The average
exchange rate is 1, 186 KRX/USD during the sample period.

volume subgroups defined by the 30th, 60th, 75th, 85th, 95th 100th percentiles of aver-

age daily volume. The largest volume group is dominated by Samsung Electronics,

the largest stock in the Korea Exchange, which accounts for about 5% of the total

trading volume in KRW.

The average number of switching points per month increases by a factor of

147 from 930 for the lowest volume group to 136, 710 for the highest volume group.

71



Trading activity Wit = Pit ·Vit ·σit increases by a factor 1, 464 from the lowest to the

highest group. Most of the variation in trading activity is due to variation in daily

volume, which increases from 0.08 billion KRW to 94.88 billion KRW. Volatility

does not change much across groups and the modest changes are not monotonic

across groups; volatility is 2.22 percent in the lowest group, 3.34 percent in the 75th

percentile group, and 2.74 percent in the highest group. These patterns are consistent

with invariance predictions, since 147 is approximately equal to 2/3 power of 1, 464.

The minimum lot size is equal to ten shares if the share price is below 50, 000

KRW and one share if share price is above 50, 000 KRW. In our sample, the median

size of trades is equal to 38 shares, implying that the minimum lot size constraint

is often binding. Indeed, about 23.25% of trades are executed in the minimum size

allowed; the fraction decreases from 28.78% for the low volume group to 17.51% for

the high volume group. As in the U.S. market, extensive order shredding makes it

difficult to test directly the invariance hypothesis by identifying bets in market data.

The tick size is determined according to a schedule.1 The average tick size is

about 22.10 basis points, approximately ten times larger than the typical tick size in

the U.S. stock market (e.g., one penny on $40 stock or 2.5 basis points). The average

1The tick size is equal to 1 KRW if share price is below 1,000 KRW; 5 KRW if share price is
between 1,000 KRW and 5,000 KRW; 10 KRW if share price is between 5,000 KRW and 10,000
KRW; 50 KRW if share price is between 10,000 KRW and 50,000 KRW; 100 KRW if share price
is between 50,000 KRW and 100,000 KRW; 500 KRW if share price is between 100,000 KRW and
500,000 KRW; and 1,000 KRW if share price is above 500,000 KRW.
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tick size is relatively stable across volume groups, ranging from 21.53 basis points for

low volume group to 22.83 basis points for high volume group. The large tick size is

likely to influence the trading behavior of market participants and have an effect on

the aggregate number of switching points.

Let ∆it denote the tick size in units of KRW for stock i in month t (e.g., ∆it

is 1 KRW if the share price is below 1,000 KRW). Following Kyle, Obizhaeva and

Tuzun (2012), we define effective relative tick size eit/e
∗ as the ratio of tick size in

basis points ∆it/Pit to the standard deviation of returns over one unit of business

time (which is proportional to σit/W
1/3
it ), scaled so that this ratio is equal to one for

the benchmark stock, i.e., we have

eit
e∗

:=
∆it

Pit

· P
∗

∆∗
· W

1/3
it

σit
· σ∗

W ∗1/3 . (2.3)

Another possibly important market friction is South Korea’s transactions tax.

The exchange collects a tax of about 30 basis points on the sale of securities, paid

by the seller. Trading fees of about 1.50 basis points are paid to on-line brokers on

executed orders.

Several stock indices are used as reference values for actively traded derivatives

contracts. The Korea Composite Stock Price Index (KOSPI) includes all common

stocks traded on the Korea Exchange, with weights proportional to market capital-

ization. The KOSPI includes about 688 stocks. The KOSPI 50 index includes the
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50 largest companies listed on the Korea Exchange, approximately corresponding to

the 95th percentile and the 100th percentile volume groups in table 2.1). The KOSPI

200 index includes the 200 largest companies listed on the Korea Exchange, approx-

imately corresponding to the 75th percentile to 100th percentile volume groups in

table 2.1). The largest 200 stocks are often traded by investors engaging in cross-

market and index arbitrage strategies. The resulting basket trades will tend to affect

the number of switching points across stocks in the KOSPI 50 and KOSPI 200 uni-

verses. The identification of basket trades in the dataset is complicated, because the

dataset does not link accounts trading in the stock market to accounts trading in

the derivatives market.

2.4 Trading Activity and Switching Points

The main result of this paper concerns the empirical relationship between

the logarithm of the aggregate number of buy-sell switching points ln(Sit) and the

logarithm of scaled trading activity ln(Wit/W
∗) in the same month.

Figure 2.1 shows that all 21, 935 observations line up along a straight line whose

fitted slope of 0.675 (from an OLS regression) is very close to the predicted slope of

2/3. Observations for stocks included in the KOSPI 50 universe (black points) and

KOSPI 200 universe (blue points) are close to the fitted line as well. At the far right

corner of figure 2.1, the observations for the largest South Korean stock, Samsung
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Electronics, do not deviate much from that line. When Samsung Electronics is

compared to the stock with the least amount of trading activity, the difference in

trading activity is a factor of about exp(10), or approximately 22, 000. It is apparent

from visual observation that the data is relatively homoskedastic. For a given level

of the logarithm of trading activity, the logarithm of the number of switching points

for the less actively traded stocks deviates from the fitted line only slightly more

than for the more actively traded stocks. This slightly higher deviation may indicate

a larger estimation error in the estimates of expected trading activity for smaller

stocks.

A similar conclusion can be drawn from a regression analysis of the logarithm of

the aggregate number of buy-sell switching points ln(Sit) on the logarithm of scaled

trading activity ln(Wit/W
∗), clustering standard errors in the panel data regression

at monthly levels:

ln(Sit) = 11.156 + 0.675 · ln(Wit/W
∗) + εit. (2.4)

The estimated coefficient of 0.675 has a clustered standard error of 0.005, implying

that the hypothesis that the coefficient is equal to the predicted value of 2/3 is not

rejected (t = 1.67). The non-clustered standard error is 0.0012. The constant

term of 11.156 implies that benchmark stock has on average about 53, 000 buy-sell

switching points per month. The R2 of the regression is equal to 0.935.
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Figure 2.1: Aggregate Number of Switching Points ln(Sit) against Trading Activity
ln(Wit/W

∗): The vertical axis is ln(Sit). The horizontal axis is ln(Wit/W
∗), where

W ∗ = 106 ·40·1186·0.02 and Wit = Vit ·Pit ·σit. The fitted line is 11.156+0.675·ln(Wit/W
∗).

The invariance-implied slope is 2/3
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Figure 2.2 presents estimates from monthly regressions of the logarithm of

the aggregate number of switching points ln(Sit) on the logarithm of scaled trading

activity ln(Wit/W
∗). To make interpretation of results easier, the figure also contains

a horizontal line indicating the regression coefficient of 2/3 predicted by invariance.

All 36 point estimates of monthly regression coefficients are very close to 2/3. Only

15 out of 36 point estimates lie slightly outside of 95%-confidence bounds. Most

of these 15 months occur between October 2008 and November 2009, when the

South Korean market was most affected by the 2008 financial crisis. The estimated

coefficients exhibit persistence across months, fluctuating over time between 0.64 and

0.72.

We conclude that even though there is enough variation in the time series of

regression coefficients to reject the hypothesis that the coefficient is 2/3 every month,

the coefficient estimates are economically close to this predicted value.
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Figure 2.2: Time Series of Monthly Regression Coefficients: The time series of estimates
βs and their 95%-confidence intervals from 36 cross-sectional regressions ln(Sit) = ln(a) +
βs · ln(Wit/W

∗) + εit, where Sit is the aggregate number of switching points and Wit is
expected trading activity for stock i and month t. The time period is from February 2008
to November 2010. The invariance predicted slope is 2/3.

2.5 Number of Switching Points and Different Types of Traders

Figure 2.3 shows the relationship between the logarithm of buy-sell switching

points and the logarithm of scaled trading activity for different types of traders:

domestic retail investors, domestic institutional investors, and foreign investors..

Panel A of figure 2.3 shows results for the subset of domestic retail investors.
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These observations reveal a striking invariance relationship. The slope of the fitted

line 0.669 (t=0.4630 using clustered standard error, t=1.7903 using non-clustered

standard error) does not reject the hypothesis of equality to the predicted value of

2/3. Trades by retail investors dominate the results in figure 2.1, since domestic

retail investors account for about 94.7% of switching points in the entire sample.

Panel B of figure 2.3 shows results for the subset of domestic institutional

investors. These observations account only for about 4.7% of switching points of the

entire sample. They satisfy the invariance relationship less closely. The slope of the

fitted line 0.82 is higher than predicted coefficient of 2/3. The number of switching

points for stocks included in the KOSPI 50 universe is flatter than predicted by

invariance; the estimated slope for these observations is 0.332. The number of

switching points for stocks in the KOSPI 200 universe but outside of the KOSPI

50 universe is slightly steeper; the estimated slope for these observations is 0.532.

The flatness of the empirical distribution on the right side of the graph suggests

that cross-market arbitrage plays an important role in trading patterns of domestic

institution, especially for stocks in the KOSPI 50 universe. The small counts for

less actively traded securities (as revealed by horizontal lines corresponding to one

through ten switching points per month) introduces further distortions.

Panel C of figure 2.3 shows results for the subset of foreign investors. The slope
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of the fitted line 0.639 is lower than the predicted slope of 2/3, but not by much. The

points representing stocks included in KOSPI 50 and KOSPI 200 indices have much

flatter slopes; the slopes of the fitted lines are 0.451 for the stocks in the KOSPI

50 universe and 0.35 for the stocks in the KOSPI 200 universe but outside of the

KOSPI 50 universe. These slopes are similar in magnitude to the slopes for domestic

institutions, suggesting that cross-market arbitrage affects trading patterns of both

domestic institutions and foreign investors in a similar way. Since these observations

account for about 0.6% of all switching points, these patterns are also influenced by

small counts for less actively traded stocks, but this issue is less important for this

subset than for the subset of domestic institutions.

The main lesson from these results is that trading by retail investors, as mea-

sured by the rate at which switching points occur, reflects the passage of business

time in a manner strikingly close to the predictions of market microstructure invari-

ance. A conceptual issue raised by this result concerns whether invariance results

from the trading behavior of institutional investors or retail traders. As developed

by Kyle and Obizhaeva (2013), the invariance hypothesis is based on the idea that

institutional investors choose their strategies for placing bets and professional inter-

mediaries respond to these bets in a manner which leads to invariance relationships.

The powerful results in this paper suggests that the trading behavior of individual
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Figure 2.3: Aggregate Number of Switching Points ln(Sit) against Trading Activity
ln(Wit/W

∗) for different types of investors: The vertical axis is ln(Sit). The horizontal axis
is ln(Wit/W

∗), whereW ∗ = 106·40·1186·0.02 andWit = Vit·Pit·σit. Panel A presents results
for domestic retail investors; the fitted line is 11.056+0.669 · ln(Wit/W

∗). Panel B presents
results for domestic institutional investors; the fitted line is 7.391+0.82·ln(Wit/W

∗). Panel
C presents results for foreign investors; the fitted line is 6.643 + 0.639 · ln(Wit/W

∗).
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investors leads to invariance relationships as well.

The importance of retail investors may be an institutional characteristic specific

to the South Korean stock market. In the South Korean stock market, retail investors

account for a much larger share of trading than in most other countries, about 78.32%

of double-counted trading volume, i.e., about 39.16% of buys and 39.15% of sells.

Many large traders are classified as retail investors in the data, but they trade in a

manner similar to institutional investors; South Koreans often refer to large retail

investors as “super-ants”.

2.6 Effective Relative Tick Size, Index Inclusion, and Other Explana-
tory Variables

When the slope is fixed at the predicted value of 2/3 and only a constant term

is estimated, we obtain ln(Sit) = 11.123 + 2/3 · ln(Wit/W
∗) + εit; the mean squared

error is 0.190 and the R2 is 0.927 (where 1 − R2 is defined as the variance of resid-

uals divided by the variance of the demeaned data, i.e., 0.190/2.60). Neither the

mean squared error nor the R2 are different from the regression equation (2.4) in an

economically significant way, since the data closely fit the invariance relationship to

begin with. Thus, invariance explains about 93% of the variations in the logarithm of

the number of buy-sell switching points. We next study what explains the remaining

variation in the aggregate number of switching points.
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Table 2.2 presents results of panel data regressions of the logarithm of the

number of switching points by month and stock on five sets of explanatory variables:

1. a constant term;

2. a constant term and the logarithm of trading activity ln(Wit/W
∗);

3. a constant term; the logarithm of trading activity ln(Wit/W
∗); and the loga-

rithm of effective relative tick size ln(eit/e
∗);

4. a constant term; the logarithm of the three separate components of trading

activity, share volume ln(Vit/V
∗), share price ln(Pit/P

∗), volatility ln(σit/σ
∗));

the logarithm of effective relative tick size ln(eit/e
∗); the logarithm of the stock’s

turnover rate ln(νit/ν
∗); the logarithm of a fraction of volume executed by

domestic retail investors ln(αit/α
∗); dummy variables for stocks in the KOSPI

50 and the KOSPI 200 universes; and month fixed effects;

5. the logarithm of trading activity ln(Wit/W
∗) and stock fixed effects;

6. the logarithm of effective relative tick size ln(eit/e
∗); the logarithm of the com-

ponents of trading activity (share volume ln(Vit/V
∗), share price ln(Pit/P

∗),

volatility ln(σit/σ
∗)); the logarithm of the turnover rate ln(νit/ν

∗); the loga-

rithm of the fraction of volume executed by domestic retail investors ln(αit/α
∗);

83



dummy variables for the stocks in the KOSPI 50 and the KOSPI 200 universes;

month and stock fixed effects.

All explanatory variables are scaled so that the estimated coefficients correspond to

the benchmark stock with V ∗ = 106, P ∗ = 40 · 1, 186, σ∗ = 0.02, α∗ = 1, ν∗ = 1/12,

and W ∗ = V ∗ · P ∗ · σ∗. The standard errors are clustered at the monthly level.

The most important results are the R2 and the mean squared errors of each

specification. The coefficients themselves are less important, because they are heavily

affected by multi-collinearity.

The main lesson of table 2.2 is that the addition of other explanatory variables,

including month and stock fixed effects, improves the R2 in a statistically significant

manner but nevertheless leaves some economically significant variation unexplained.

The initial variation of the dependent variable is equal to 2.60 (21, 395 observations).

In comparison with the R2 of 0.927 for in the first column (where only a constant

term is estimated), the remaining five specifications have R2 of 0.935, 0.936, 0.973,

0.969, and 0.984, respectively. The highest value of 0.984 is achieved in the fifth

specification which has 8 estimated parameters, 36 month fixed effects, and 686 stock

fixed effects (20, 665 degrees of freedom). The mean squared errors of the regressions

show similar variation across different specifications.
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Covariate (1) (2) (3) (4) (5) (6)

Intercept 8.500 11.156 11.358 – – –
(0.059) (0.022) (0.046) – – –

ln(W/W ∗) – 0.675 0.659 – 0.679 –
– (0.005) (0.005) – (0.005) –

ln(e/e∗) – – 0.066 – – −0.047
– – (0.012) – – (0.007)

ln(P/P ∗) – – – 0.539 – 0.617
– – – (0.012) – (0.014)

ln(V/V ∗) – – – 0.727 – 0.802
– – – (0.016) – (0.018)

ln(σ/σ∗) – – – 0.245 – 0.228
– – – (0.008) – (0.011)

ln(ν/ν∗) – – – 0.049 – −0.023
– – – (0.018) – (0.020)

ln(α/α∗) – – – 0.590 – 0.562
– – – (0.025) – (0.025)

KOSPI50 – – – −0.028 – −0.030
– – – (0.020) – (0.017)

KOSPI200 – – – 0.120 – 0.127
– – – (0.026) – (0.027)

F.E. Month No No No Yes No Yes
F.E. Stock No No No No Yes Yes

Nobs 21,935 21,935 21,935 21,935 21,935 21,935
Adj. R2 0.927 0.935 0.936 0.973 0.969 0.984

MSE 2.926 0.190 0.188 0.078 0.091 0.047

Table 2.2: Explanatory Power of Other Variables: The explanatory variables are trading
activity ln(Wit/W

∗), share volume ln(Vit/V
∗), share price ln(Pit/P

∗), volatility ln(σit/σ
∗),

effective relative tick size ln(eit/e
∗), turnover rate ln(νit/ν

∗), the fraction of volume exe-
cuted by domestic retail investors ln(αit/α

∗), and dummy variables for stocks in the KOSPI
50 and the KOSPI 200 universes. Some specifications have month and stock fixed effect.
In the first column, 1 − R2 is defined as the variance of residuals divided by the variance
of the demeaned data, i.e., 0.190/2.60
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2.7 Decomposition into the Number of Accounts and the Number of
Switching Points per Account

By definition, the aggregate number of switching points is equal to the product

of the number of unique accounts traded in a given month and the average number

of switching points per account. The cross-sectional variation in those two factors is

the question we examine next.

Figure 2.4 shows the relationship between the logarithm of the number of

unique accounts ln(Nit) trading a given security i during a given month t and the log-

arithm of trading activity ln(Wit). The slopes of 0.625, 0.666, and 0.595 for domestic

retail investors, domestic institutions, and foreign investors, respectively, are slightly

lower than the value of 2/3 implied by invariance if the number of switching points

per account is constant. The higher intercept for domestic retail investors reveals

the exceptionally high level of retail participation in the South Korean stock market.

Domestic institutions and foreign investors are less active than retail investors. Many

stocks were traded by only a few domestic institutions or foreign investors during a

particular month, as reflected by clustering of data points around horizontal lines of

ln(1), ln(2), ln(3), and ln(4).

Figure 2.5 shows the analogous relationship for the average number of switching

points per account, ln(Sit/Nit). The clouds of data points for all three categories of
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Figure 2.4: The Number of Unique Accounts ln(Nit) against Trading Activity ln(Wit/W
∗)

for different types of investors: The vertical axis is ln(Nit). The horizontal axis is
ln(Wit/W

∗), where W ∗ = 106 ·40·1186·0.02 and Wit = Vit ·Pit ·σit. Panel A presents results
for domestic retail investors; the fitted line is 10.129+0.625 · ln(Wit/W

∗). Panel B presents
results for domestic institutional investors; the fitted line is 6.65+0.666·ln(Wit/W

∗). Panel
C presents results for foreign investors; the fitted line is 5.166 + 0.595 · ln(Wit/W

∗).
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traders—domestic retail, domestic institutions, foreign investors—are almost flat.

The slopes of 0.044, 0.154, and 0.043 for the three investor categories are close to

zero. The sums of the slopes in figure 2.4 and figure 2.5 are by construction equal

to the corresponding slopes in figure 2.3. There are more data points on the left

side of the subplot for domestic retail investors rather than the other subplots, since

domestic institutions and foreign investors avoid trading South Korean stocks with

low trading activity.

The clustering patterns along horizontal lines are less distinct than before be-

cause the horizontal lines correspond to both integers (such as one switch for one

account, two switches for one account, two switches for two accounts) and fractions

(one switch for two accounts, one switch for three accounts, two switches for three

accounts, etc.); nevertheless, the horizontal clustering is still visible on panel B and

panel C. Also, the data points in those two panels are somewhat symmetric relative

to each other.

We conclude that the invariance relationship arises mostly from cross-sectional

variation in the number of unique accounts, not from number of switching points

per account. This empirical fact is consistent with the spirit of the theoretical

model in Kyle and Obizhaeva (2013), where the endogenously determined number

of traders—each of whom makes decision to participate in the trading game, buy
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Figure 2.5: The Average Number of Switching Points per Account ln(Sit/Nit) against
Trading Activity ln(Wit/W

∗) for different types of investors: The vertical axis is ln(Sit/Nit).
The horizontal axis is ln(Wit/W

∗), where W ∗ = 106 · 40 · 1186 · 0.02 and Wit = Vit ·Pit ·σit.
Panel A presents results for domestic retail investors; the fitted line is 0.927 + 0.044 ·
ln(Wit/W

∗). Panel B presents results for domestic institutional investors; the fitted line is
0.742 + 0.154 · ln(Wit/W

∗). Panel C presents results for foreign investors; the fitted line is
1.476 + 0.043 · ln(Wit/W

∗).
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a signal of the same precision, and place exactly one bet—is shown to satisfy the

invariance relationship.

Yet, this similarity should be taken with a word of caution. A slope slightly

lower than 2/3 for the number of accounts may indicate that financial firms devote

more resources, generate better signals, and place bigger bets when trading more

active stocks. For example, domestic institutions and foreign investors may restrict

their trading to stocks present in relevant benchmark indices such as the MSCI

Emerging Markets Index, of which South Korea is one of the largest components.

The empirical patterns may also be influenced by trades of cross-market arbitrageurs

that tend to flatten the average number of switching points across stocks in indices.

2.8 Conclusion

The patterns documented in this paper strongly support the predictions of

market microstructure invariance. This evidence complements the evidence on the

invariance relationships in the U.S. market data documented by Kyle and Obizhaeva

(2013), Kyle, Obizhaeva and Tuzun (2012), and Kyle et al. (2014). It suggests

that invariance relationships hold in all markets, not just the U.S. markets. It

also suggests that the trading of individual traders, not just institutions, exhibits

invariance relationships.

The results in this paper are so precise that they look like empirical evidence
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from a physics journal rather than from an economics or finance journal. Yet, the em-

pirical patterns reported in this paper are not regularities which have an explanation

based on a mechanical interdependence among variables. If there is an alternative to

the market microstructure invariance hypothesis which better explains how the num-

ber of buy-sell switching points varies across stocks, we leave it to other researchers

to discover it.
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