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GRBs have long been considered as potential sources of hadronic acceleration

of ultra-high energy cosmic rays and, more recently, as potential sources of the diffuse

neutrino flux measured by IceCube. This thesis presents a search for neutrinos

correlated with 2,091 gamma-ray bursts (GRBs) in prompt and extended time

windows using data from the IceCube Neutrino Observatory ranging from May

2011 to October 2018. Ten time windows, ranging from 10 seconds to -1/+14 days

around the time of the GRB’s gamma-ray emission, were searched for coincident

neutrino emission and a p-value was assigned based on the most significant time

window. The results for all 2,091 GRBs were divided by region of the sky and

observed gamma-ray emission time, and were evaluated with a Binomial test, which

was found to be consistent with background. The 23 most significant GRBs were

examined in more detail and they were also found to be consistent with background.

Limits were set assuming two flux models: equal neutrino flux at Earth for every



GRB and standard candle neutrino emission. The equal flux at Earth model led to

similar constraints as previous IceCube prompt GRB studies, namely that GRBs

are responsible for, at most, a few percent of the diffuse flux. The results of the

standard candle analysis, however, indicate GRBs may be contributing up to 11%

of the diffuse neutrino flux up to 1,000 second timescales, which leaves the door

open to GRBs as neutrino sources and hadronic accelerators of at least some of the

ultra-high energy cosmic rays.
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Chapter 1: Introduction

The IceCube Neutrino Observatory was “first light” for high energy neutrino

astronomy, ushering in the age of multi-messenger astronomy. Correlating neutrinos

with gamma-ray emission from high-energy sources would offer smoking-gun evidence

of hadronic acceleration of ultra-high energy cosmic rays (UHECRs), as well as

answer the century-old question about the origin of those cosmic rays. The source

of the diffuse neutrino flux - neutrinos observed across the entire sky detected by

IceCube in 2013 - is also a mystery that could be (at least partially) solved by a

neutrino-gamma-ray source correlation.

Gamma-ray bursts (GRBs) are a potential source of UHECRs and neutrinos.

They meet the energy and magnetic field requirements (see Figure 2.2) to produce

the highest energy cosmic rays, but recent experimental searches have yet to find

direct evidence of a connection between GRBs and high energy neutrinos. These

studies have set tight limits on prompt neutrino emission, but the limits on extended

time windows are far less strict. In addition to prompt, this analysis considers time

windows well beyond the burst duration, continuing out to +/-1 day and -1/+14

days around the GRB.

This thesis examines 2,091 GRBs from 2011-2018, often separating them by
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northern and southern sky, as well as short (≤2s) and long (>2s) duration GRBs.

An unbinned log likelihood was used to study ten time windows centered on the time

of the GRB. The most significant time window is selected to represent the GRB in

a Binomial test. The method to calculate the p-value for each GRB is designed to

be relatively short (approximately 20 minutes of computation time per GRB) in an

effort to run this analysis as a real-time follow-up to GRB alerts.

This thesis is organized as follows. An introduction to cosmic rays and GRBs

is given in Chapter 2. Chapter 3 covers neutrinos and generic models for neutrino

production from GRBs. The IceCube detector and accompanying hardware is

outline in Chapter 4, and the neutrino candidate selection is described in Chapter 5.

Chapter 6 discusses the unbinned log likelihood method and frequentist statistics.

Chapter 7 explains the details of the analysis and Chapter 8 provides the results

and limits, including summary tables for the 23 most significant GRBs and plots

for the single most significant GRB from each sub-population. Chapter 9 discusses

possible future research and paths forward for neutrino-GRB studies. Appendix A

includes result plots for all of the most significant GRBs in this analysis. Full GRB

tables are available as a supplemental PDF, but are not included directly in this

thesis.
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Chapter 2: Cosmic Rays and Gamma-Ray Bursts

Any discussion of astrophysical neutrino sources must include a word about

cosmic rays. Earth’s atmosphere is constantly being bombarded with charged

particles, known as cosmic rays, with energies extending to greater than 1020 eV.

The origin of the most energetic of these particles is still a mystery. The connection

between gamma rays, cosmic rays, and neutrinos is a fundamental question in

particle astrophysics. The composition of cosmic rays is not completely understood,

but protons are known to make up a sizable portion of the cosmic ray spectrum.

Therefore, a powerful accelerator must exist to propel those protons (or heavier ions)

to energies above 1018 eV. Gamma-ray bursts meet the energy requirements for this

acceleration. If gamma-ray bursts were accelerating protons to these high energies,

then neutrinos would most probably be produced as well. Detection of neutrinos

from any astrophysical source, including those correlated with gamma-ray bursts,

would indicate a source of hadronic acceleration and hence cosmic rays.

2.1 Cosmic Rays

Although cosmic rays below ∼1 PeV can be measured directly by satellites,

those interacting in the Earth’s atmosphere cascade down in a shower of hadrons
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and leptons. Ground-based experiments measure the resulting particles from these

showers and estimate the energy of the original cosmic ray. These approaches can

determine the energy of the cosmic ray, but they provide limited information about

the location of the source. The direction of the original particle is reconstructed;

however, charged particles will bend in magnetic fields, which makes them poor

candidates for directional reconstruction. On the other hand, neutrinos are neutral

and rarely interacting, which means, like photons, they are suitable for source

identification. Neutrinos play an important role in multi-messenger astronomy,

because they could provide information on hadronic acceleration pinpointed to an

astrophysical source location.

2.1.1 First Detection of Cosmic Rays

Before cosmic rays were discovered, people believed radiation only came from

the Earth. In the early 1900s, scientists began to realize there was more radiation at

high altitude than expected. In 1910, Theodore Wulf found inconsistently high levels

of ionization at the top of the Eiffel Tower compared to the bottom [1]. From 1911-

1913, Victor Hess began mounting instruments in a hot air balloon to demonstrate

that there was more ionization miles above the Earth than on the ground [1]. The

most famous of Hess’s flights took place during a partial solar eclipse in 1912, and he

showed no decrease in the ionization levels, which proved that these cosmic rays were

coming from a source other than the Sun. Robert Millikan named this radiation

“cosmic rays” in 1925 [1], and nearly 100 years later their origin is still not fully
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understood.

2.1.2 Current Cosmic Ray Research

Cosmic rays are still being studied in modern times. Satellites can observe

lower energy cosmic rays up to roughly 1 PeV, while ground-based experiments

are needed for higher energies. Auger [2], Telescope Array (TA) [3], and HiRes

[4] are among the experiments able to probe the highest energy cosmic rays with

energies around 1018-1020 eV. The composition of these highest energy cosmic rays

is disputed, with recent measurements indicating a mix of protons, helium, and

heavier ions [5].

Identifying the astrophysical sources accelerating these cosmic rays is a compli-

cated task. One step is to determine what objects have enough power to accelerate

particles to these high energies. For cosmic rays below 1 PeV (indicated as the

“knee” in Figure 2.1), for example, supernova remnants (SNRs) meet the energy

requirements and are widely believed to be the source of these GeV to TeV cosmic

rays [6] [7]. An argument can also be made based on acceleration mechanisms. In

1949, Enrico Fermi proposed a method to accelerate particles through interaction

with “wandering magnetic fields” [8]. This method was proposed for magnetic

fields in interstellar space, and was later shown to apply to shock fronts as well [9].

This mechanism, known as first order Fermi acceleration, produces a distribution

of proton energies following a power law spectrum, which matches observations of

cosmic rays [10]. When specifically applied to supernova remnants, it is clear that
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Fermi acceleration is a viable mechanism to accelerate cosmic rays to the observed

energies [6]. Electrons would also be accelerated, producing gamma rays from

synchrotron radiation followed by inverse-Compton scattering. Fermi acceleration

is discussed in more detail in 3.1.2.

Figure 2.1 shows the features of the isotropic cosmic ray spectrum, including

the knee around 1015 eV, and the “ankle” around 1018 eV. The vast range of cosmic

ray energies indicates a variety of progenitors for these particles. As previously

discussed, supernova remnants are generally accepted as the progenitor of cosmic

rays below the knee, following a dN
dE
≈ E−2.7 power law [11]. From the knee to

the ankle, a dN
dE
≈ E−3 behavior is observed. The origin of these sources is largely

unknown, but is believed to be a combination of galactic and extragalactic [9]. The

energy where the sources transition from galactic is disputed, and it is possible that

other galactic sources, such as young massive star clusters, become relevant around

PeV energies [12].
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Figure 2.1: The cosmic ray spectrum showing the “knee” at 1015 eV and the “ankle”
at 1018.6 eV [13].

Figure 2.2, known as a Hillas plot, is a helpful way to visualize potential sources

of cosmic rays [14]. The maximum energy a particle can attain via Fermi acceleration

(3.1.2) depends on the size of the accelerator and the strength of the magnetic fields.

The three reference lines indicate a size and magnetic field strength required to

accelerate iron to 100 EeV (green line), or protons to 100 EeV (dotted red line)

and 1 ZeV (solid red line). Supernova remnants are not able to accelerate particles

to the highest measured energies, which is consistent with their categorization as

accelerators up to the knee. SNRs are relatively large, but their magnetic fields are

not strong enough to confine particles long enough to accelerate them to very high

energies. For more energetic cosmic rays, the likely sources appear to be compact
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objects with large magnetic fields or extended objects [15].

Figure 2.2: A Hillas plot showing potential accelerators of cosmic rays. GRBs
are one of the few sources with a combination of size and magnetic field strength
to accelerate protons above 1 ZeV, making them an ideal candidate for UHECR
acceleration. The size of the GRB refers to the radius of the stellar envelope, which
is roughly the size of the magnetic fields [16]. Figure from [15], modified from [14].

Above the ankle, the energy spectrum returns to dN
dE
≈ E−2.7 [17]. Sources

producing cosmic rays with energies above 1018.6 eV are commonly believed to be
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extragalactic, because the magnetic field of the galaxy cannot contain them [18]. It is

difficult to comment on anything above 1020 eV, because there are very low statistics

in this energy region due to a cutoff above 1019.5 eV called the Greisen-Zatsepin-

Kuzmin (GZK) cutoff. This cutoff comes from the high energy protons interacting

with photons from the cosmic microwave background via the Delta-resonance [18],

[19]. A possible result of the Delta-resonance is a neutral pion and proton. After

this interaction, the proton energy is below the GZK cutoff. It is worth noting that

cosmic rays close to the GZK cutoff may be less influenced by magnetic fields (if

they are protons), and would be better at providing directional information if they

originate in relatively nearby sources [20]. Unfortunately, the low statistics make

this a limited source of information.

It is ultimately the cosmic rays above approximately 1018 eV that are relevant

to the work in this thesis. By energy and acceleration arguments, these ultra-high

energy cosmic rays must be produced by some of the most energetic and cataclysmic

events in the universe. Gamma-Ray Bursts (GRBs) meet the energy requirements

and are thought to include shock waves that could accelerate protons enough to

produce the highest energy cosmic rays.

2.1.3 Cosmic Rays as Sources of Background

When a cosmic ray enters the atmosphere, it can interact with a nucleus and

create pions. These pions then decay into showers of photons, neutrinos, electrons

and muons that are measured by various ground experiments (see 2.1.2). The
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particle showers caused by cosmic ray interactions in the atmosphere are shown

in Figure 2.3. Some research in IceCube is devoted to studying these cosmic ray air

showers, but the analysis presented in this thesis is focused on neutrinos produced

outside Earth’s atmosphere. Those neutrinos, called “astrophysical neutrinos” are

hypothesized to be the byproduct of hadronic acceleration in extremely energetic

sources [21]. The neutrinos created in a cosmic-ray air shower are called “atmospheric

neutrinos” throughout this thesis. Atmospheric neutrinos are a 4π irreducible source

of background that is carefully measured and modeled in simulation.

Figure 2.3: A cartoon illustration of a cosmic-ray air shower. A proton interacts in
the atmosphere, producing photons, neutrinos, electrons, and muons. Figure from
[22].

The muons created by the π+ interaction are the other major source of background

in this analysis. These muons are shielded by the Earth for the northern sky, but
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the southern sky and horizon see large numbers of atmospheric muons enter the

detector. For every atmospheric neutrino, there are roughly 106 muons entering the

detector. These muons can be difficult to distinguish from a muon created by a

neutrino interacting within the detector. Separating cosmic-ray muons and muons

resulting from a neutrino interaction, and further separating the astrophysical and

atmospheric neutrinos, is the focus of Chapter 5.

2.2 Gamma-Ray Bursts

Gamma-ray bursts are enormously bright and energetic transient astrophysical

objects. The photon energy corresponding to the peak spectral flux, Epeak, can be

used to estimate the total isotropic radiated energy, Eiso, as shown in Figure 2.4.

This estimated isotropic energy spans many orders of magnitude, from ∼ 1050 to

∼ 1054 ergs [23].
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Figure 2.4: The estimated total isotropic radiated energy versus the peak spectral
energy of BATSE and Swift GRBs. The typical total energy of these GRBs ranges
from 1050 to 1054 ergs. Figure from [24].

GRB duration varies by many orders of magnitude as well. They have been

measured lasting from milliseconds to hundreds of seconds, where those lasting less

than two seconds are named “short” GRBs and the ones lasting longer than two

seconds are “long” GRBs (see Figure 2.5). Short GRBs are believed to be associated

with compact binary mergers, which is supported by LIGO’s recent detection of a

gravitational wave that overlapped in time and space with a short GRB detected by

the Fermi Gamma-Ray Telescope [25] [26]. Long GRBs are thought to result from

collapsars, a type of core collapse supernova [27].
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Figure 2.5: The clear separation of GRBs into two distinct classes as measured by
BATSE. Short GRBs have measured gamma-ray emission for less than two seconds,
while long GRBs last longer than two seconds (though typically less than 1,000
seconds). Figure from [28].

2.2.1 History of Gamma-Ray Burst Detection

Gamma-ray bursts were first detected in 1967 when the Vela satellites [29]

detected a gamma-ray signal that was unfamiliar. These satellites were launched by

the United States to enforce the Nuclear Test-Ban Treaty from 1963, which banned

testing nuclear weapons in the upper atmosphere and space [30]. The satellites were

positioned to monitor gamma rays emitted in such tests, but the short bursts of

gamma rays observed did not match any known nuclear weapon signatures and did

not seem to originate on the Earth or Sun [29]. In 1971, the IMP-6 satellite was

launched by Russia to further study the mysterious bursts of gamma rays [31]. In

1973, IMP-6 confirmed the Vela detections and noted that “the observed gamma-ray

bursts represent[ed] an entirely novel form of cosmic energy release” [31].
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Nearly twenty years passed before there was consensus in the scientific community

regarding the origin of gamma-ray bursts. GRBs were first thought to come from

neutron stars in the galactic disk. The Compton Gamma-ray Observatory, which

included the Burst Transient Source Experiment (BATSE), launched in 1991 and

observed that GRBs were isotropically distributed [32]. The uniform distribution

meant the sources could not be limited to the galactic disk, and therefore provided

strong evidence for extragalactic sources. GRBs are still actively researched to this

day, because their energy production mechanisms are poorly understood. A few of

the currently favored models are discussed below. While the details may be unknown

for now, any process that emits the energy of a GRB in hadronic cosmic rays must

also produce neutrinos. Measuring neutrinos - or a lack thereof - helps reveal details

of the central engine, the surrounding matter, and acceleration mechanisms of the

gamma-ray burst.

2.2.2 Current Gamma-Ray Burst Models

The Fireball model is a broad name for several specific models of the GRB’s

central engine and acceleration mechanism that predict neutrinos coincident with

gamma-ray emission. The Fireball involves a highly relativistic jetted outflow of

matter, containing relativistic shells made up of a plasma of electrons, photons,

and protons. These shells collide and produce shocks, which leads to conditions to

accelerate protons via Fermi acceleration (see 3.1.2). Electrons are also accelerated

by these shock fronts, leading to synchrotron radiation and inverse-Compton scattering
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to produce the observed gamma rays [33]. The sub-class of Fireball model that

include these shocks inside the plasma is known as the “internal shock” model.

Recent IceCube analyses set tight constraints on prompt neutrino emission from

the internal shock model [34].

Two other sub-classes of the Fireball model were constrained in [34]: “photosphere”

and “ICMART” [35]. These models both feature shock acceleration of charged

particles farther from the GRB’s central engine than the internal shock model.

The dissipative photosphere model results in gamma-ray emission in a region with

larger optical depth, which predicts increased neutrino production but overall lower

energies compared to the internal shock model. The Internal Collision-induced

MAgnetic Reconnection and Turbulence (ICMART) model predicts a highly magnetized

outflow that suppresses photon emission until a large radius. When the internal

shocks can finally disrupt the ordered magnetic fields, a runaway magnetic dissipataion

process is predicted, resulting in reconnection and gamma-ray emission at the largest

radius of the three models. ICMART predicts the lowest neutrino flux of the three

and therefore has the weakest constraints in [34].

There is increasing interest in models that predict neutrinos as precursors

[36] [37] or afterglows [38], because the lack of tight constraints could keep GRBs as

candidates for hadronic acceleration of UHECRs and still be consistent with the non-

detection of neutrinos correlated with prompt gamma rays. The analysis presented

in this thesis was designed to be generic due to large variation in predicted neutrino

fluxes from GRBs. The theoretical predictions that motivate an expectation for

neutrinos correlated with gamma rays will be discussed in Chapter 3.
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2.3 Modern Gamma-Ray Burst Detectors

Today, satellites are used to detect gamma-ray bursts. The Neil Gehrels Swift

Observatory (commonly known as “Swift”) [39] and Fermi satellite are responsible

for nearly 90% of the world’s GRB detections [17]. The Swift observatory has three

instruments working together to observe GRBs, including gamma-ray measurements

as well as follow-ups in X-ray, ultraviolet, and optical wavelengths. The three

components of Swift are the Burst Alert Telescope (BAT) [40], the X-ray Telescope

(XRT) [41], and the UV/Optical Telescope (UVOT) [42]. Swift observes roughly

100 bursts per year [43] and sends alerts to the Gamma-ray Coordinates Network

(GCN) for further study (see 2.3.1).

Swift BAT is able to measure GRBs with excellent precision due to its coded

aperture mask [44]. Swift scans the sky with a 1.4 steradian field of view and

determines the location of a GRB within 1-4 arcminutes. The satellite can then

slew to the gamma-ray direction within one minute of observation, which allows

the X-ray and UV/optical follow-ups to pinpoint the direction of the GRB. The

X-ray followup can resolve the position to arcseconds, and UV/optical followup can

improve the position uncertainty to sub-arcseconds. This resolution exceeds that of

IceCube, which has a lower bound single event angular uncertainty of 0.2 degrees.
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Figure 2.6: The Swift satellite with its three telescopes [45]

The Fermi Gamma-ray Space Telescope is another satellite studying high

energy astrophysics. Fermi has two instruments: the Large Area Telescope (LAT)

and the Gamma-ray Burst Monitor (GBM). Fermi-LAT’s field of view is more than

one-fifth of the sky, and can cover the entire sky every three hours [46]. Fermi-

GBM observes the full unocculted sky, which means it detects many GRBs, but it

has poor angular resolution. The angular resolution of Fermi-GBM is addressed in

more detail in 2.3.3.
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Figure 2.7: The Fermi satellite [47]

Other satellites contribute to GCN notices as well. The International Gamma-

Ray Astrophysics Laboratory (INTEGRAL) [48], Konus-Wind [49], the Monitoring

All-sky X-ray Image (MAXI) [50], AGILE [51] [52], the Suzaku satellite’s Wide-band

All-sky Monitor (WAM) [53] [54], and Third Interplanetary Network (IPN) [55] are

all currently searching for GRBs.

2.3.1 Gamma-ray Coordinates Network (GCN)

When GRBs are detected by any of these satellites, an alert is sent to the

NASA Gamma-ray burst Coordinates Network (GCN) [56]. GCN alerts are part of

the larger Transient Astronomy Network (TAN). This gives the scientific community

a chance to perform follow-up measurements with other satellites or ground-based

detectors.

The three types of GCN alerts are notices, circulars, and reports. Notices

provide the coordinates of the GRB (or other transients) as quickly as possible.
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These are machine-readable alerts intended to offer the fastest follow-up. Circulars

are the human-readable emails sent out after the notice. The circular may include

updated timing, localization, or other measurements as well as calls to coordinate

with specific observatories. Reports are issued considerably later than both notices

and circulars. Reports contain write-ups of the observation, full analyses, and any

relevant corrections.

IceCube’s Realtime Neutrino Alert Stream [57] and Fast Response Analysis

[58] [59] regularly send notices and circulars to the community accompanying IceCube’s

neutrino alerts and follow-up analyses. Although the analysis described in this thesis

is not conducted in real-time, a version of the analysis could join the Fast Response

framework as a neutrino follow-up to GRBs.

2.3.2 GRBweb

Many experiments announce their detections, from gamma rays to gravitational

waves and beyond, via the GCN system. These alerts are an excellent resource for

rapid follow-up and immediate communication. For long-term studies, however, it is

necessary to gather the relevant alerts into a single database. GRBweb is a catalog of

gamma-ray bursts that collects information from all the satellites discussed in 2.3 [60]

[61]. This is a publicly available SQL database that is easily sorted and downloaded

using Python. A summary table with all GRB properties is also available to view

in a web browser and download as a text file. GRBweb is automatically updated

weekly and is hosted by the IceCube Collaboration [62].
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Satellite Number of GRBs Percent of Catalog
Fermi-GBM 1236 59.1%

Swift 621 29.7%
IPN 146 7.0%

Fermi-LAT 79 3.8%
Other 9 0.4%

Table 2.1: The breakdown of gamma-ray bursts detected in this analysis by satellite.
Multiple satellites can contribute information for a single GRB. This table gives a
sense of satellite contribution by measuring the position of the GRB. The satellite
with the lowest uncertainty in source position is selected. Here, “Other” refers to
optical follow-ups sent via GCN circular (5 GRBs detected), Swift-XRT (2 GRBs
detected), MAXI Det (1 GRB detected), and INTEGRAL (1 GRB detected) [62].

The goal of this analysis is to perform a model-independent search on as many

GRBs as possible. The only information required to include a GRB in this search

was a start and stop time of measured gamma rays, and a location of the GRB.

The fluence and redshift were not considered when selecting GRBs for this analysis.

The GRBs in this analysis (see 7.2) have a measured T90,start, which is the time

when the burst has reached 5% of the maximum gamma-ray fluence, and a T90,

which is the time between the 5% and 95% fluence levels [60]. The T90 is used to

determine if the GRB is categorized as a long GRB (T90 > 2 seconds) or a short

GRB (T90 ≤ 2 seconds). A T100 is also required for every GRB, and is different from

the T90 because it is defined as the time between the earliest measured gamma-ray

and latest measured gamma-ray, even if those results come from different satellites.

The T100 is calculated by subtracting the earliest gamma-ray trigger time from the

latest end of the T90 intervals [62].

GRB names throughout this thesis follow the standard format from GRBweb,

which is a six-digit date followed by a letter indicating its order in the day. For
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example, GRBs 130408A and 130408B both occurred on April 8, 2013, but the “A”

GRB happened earlier in the day than the “B” GRB. The times are based on UTC

time to determine the end of a calendar day.

2.3.3 Fermi Gamma-Ray Burst Monitor Position Uncertainty

Understanding the uncertainty in the position of the GRB is a core part of this

analysis. Many satellites can resolve the position of a GRB to less than a degree,

but the position uncertainty for the Fermi Gamma-Ray Burst Moniter (GBM) can

be very large and requires special attention. The method of handling this large

position uncertainties is described in detail in section 7.4. The motivation for careful

handling of the GBM position is the large spread in uncertainty. Figure 2.8 shows

the variation in position uncertainty, with many GRBs at 20◦-40◦, and some even

above a 60◦ position uncertainty. Previous IceCube analyses have attempted to

estimate this large uncertainty as a weighted sum of Gaussian distributions with

σ1 = 2.6◦ and σ2 = 10.4◦, with weights of 0.72 and 0.28, respectively [17]. This led

to an under-estimation of the true GBM errors, as illustrated in yellow in Figure

2.9.
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Figure 2.8: The large spread in position uncertainty for GRBs detected with the
Fermi-GBM satellite. Each line repesents an individual GRB and the errors range
from 20 to 80 degrees. A single position uncertainty does not correctly describe
GBM bursts. Figure by P. Coppin based on [63].

Figure 2.9: The large spread in position uncertainty for GRBs detected with the
Fermi-GBM satellite is shown as a probability density function in blue. The yellow
line indicates the sum of Gaussian distributions used by older software, known
internally in the IceCube Collaboration as “GRBLLH,” to approximate the GBM
source position uncertainties. The red line indicates an attempt to approximate this
PDF. Figure by P. Coppin [64].

Fortunately, the Fermi-GBM team has begun releasing healpix probability
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maps that give far more detailed position uncertainty information. An example of

a GBM probability skymap is shown in Figure 2.10. These are full-sky HEALPix

maps with a resolution of 0.46◦ per pixel, and are produced quickly enough to be

included in GCN circulars [63].

A large part of this analysis is built around implementing these skymaps in the

likelihood calculations (discussed in detail in Chapter 6). To maintain a consistent

analysis framework, the well-localized GRBs are also converted into probability

skymaps and treated the same as GBM bursts. The well-localized skymaps place

all the probability in a handful of equally weighted pixels, allowing any fits to scan

one degree around the right ascension and declination reported on GRBweb.

Figure 2.10: This figure shows an example skymap produced by the Fermi-GBM
team to understand GRB position uncertainty in far more detail than previous
estimates [65] [66]. These maps assign a probability (purple) to each pixel on the
sky with a resolution of 0.46◦ per pixel. The grey circles around the burst indicate
1, 2, and 3 sigma contours. The light grey circles everywhere else on the skymap
represent the detector pointings for all 14 GBM detectors at the time of the trigger.
[63] [67]
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Chapter 3: Neutrinos

3.1 Neutrinos as Cosmic Messengers

Neutrinos can provide information about the highest energy processes in the

universe. Above a few TeV, photons are energetic enough to pair produce with

infrared and Cosmic Microwave Background (CMB) photons long before they reach

Earth [18]. Therefore, the distant universe is opaque in photons at the highest

energies. Similarly, protons above roughly 5 × 1019 eV will interact with CMB

photons while traveling to our detectors (see discussion in 2.1.2). Figure 3.1 illustrates

the distances and energies where photons and protons are no longer observed due

to pair production and photohadronic interactions. Neutrinos, however, interact so

rarely that they are still able to reach us over long distances, even at extremely high

energies.
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Figure 3.1: The distance photons and protons can travel versus their energy. The
colorful bars along the bottom of the plot indicate distance scales of astrophysical
objects, but are not referencing an energy range. The universe is opaque to both
photons and protons in the highest energy regimes. Only neutrinos offer a glimpse
of the highest energy events in the universe. Figure from [68].

Another advantage of studying neutrinos is their ability to point to their

source location. Cosmic rays provide a lot of detail about energetic processes in

the universe; yet, it is extremely difficult to determine the origin of these particles

due to deflection from magnetic fields. Neutrinos have no charge, which means they

travel unhindered through magnetic fields. A primary goal of the IceCube Neutrino

Observatory is to use this directional information about neutrinos to determine their

sources. Determining the sources of neutrinos would further our understanding of

the highest energy processes in the universe.
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3.1.1 What Neutrinos Tell Us About Cosmic Rays

The atmospheric neutrino spectrum is related to the cosmic-ray spectrum.

IceCube’s measurements have shown an atmospheric neutrino spectrum of E−3.7 [69].

There is a hypothesized second component, called “prompt,” to the atmospheric

neutrino spectrum at higher energies with E−2.7, which is shown in Figure 3.2. The

fact that the cosmic-ray spectrum also has a spectral index of 2.7 is not a coincidence;

the proposed prompt spectrum has the same shape because the neutrinos are the

result of charmed particle decays in cosmic-ray showers. Charmed particles decay so

fast that they rarely have time to interact (hence the term “prompt”), which means

their spectrum is similar to the primary cosmic-ray spectrum [9]. The conventional

atmospheric flux, however, results from decays and interactions of pions and kaons

into muons and muon neutrinos.1 Therefore, the neutrino spectrum is shifted in

energy from the original cosmic rays [9].

1It is possible for pions to decay into electrons and electron neutrinos, but this is less common
due to the small mass of the electron.
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Figure 3.2: The conventional atmospheric spectrum is softer than the prompt or
Waxman-Bahcall spectrum (labeled “WB bound”). The prompt spectrum is a
predicted component of the atmospheric neutrino production. The WB bound
results from a model of the GRB central engine that allows protons to escape freely.

The predicted neutrino spectrum of astrophysical sources is an entirely different

matter. In 2013, IceCube detected an excess of neutrinos at high energies that did

not fit with the measured atmospheric spectrum [70]. Figure 3.3 shows this excess.

This astrophysical flux was initially discovered using High Energy Starting Events

(HESE). The HESE event selection is so strict that the initial two-year dataset

only contained 28 neutrino candidate events [71]. The events in this selection

are extremely likely to be neutrinos, as opposed to atmospheric muons, because

they are required to begin inside the detector volume. Because they only interact

through the weak force, neutrinos are only indirectly detected from the nuclear
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recoil and the charged leptons resulting from their capture on a nucleus. Therefore,

a charged lepton track appearing to “start” in the detector is a unique signature

of a neutrino interaction. The events are required to deposit a large amount

of energy in the detector (equivalent to at least 30 TeV) and, to guard against

atmospheric muons slipping into the instrumented volume undetected, only a small

fraction of the earliest photons can be measured near the detector boundary [72].

These requirements ensure the neutrino candidate is able to produce a bright track

beginning in the detector. There is an additional anti-coincidence muon veto to

ensure atmospheric neutrinos are removed from the Southern Hemisphere, because

atmospheric neutrinos are often accompanied by muons produced in the same cosmic-

ray shower [72]. This is unavailable for the northern hemisphere, because the Earth

shields these muons from reaching the detector. The current best fit spectral index

for these astrophysical neutrinos is 2.87+0.20
−0.19 for the 1σ confidence level [73].

The HESE sample was essential for discovering the astrophysical all-flavor

neutrino flux, but the harsh cuts resulted in a low number of events and made fitting

the spectral index of the astrophysical neutrino flux difficult. A complementary

analysis that allowed through-going muons and starting events (focused on muon

neutrino candidates) was conducted to confirm the astrophysical flux [74]. The

most recent version of this dataset, known internally in IceCube as the “diffuse”

sample, contains roughly 650,000 neutrino candidate events [75]. The diffuse dataset

maintains a high neutrino purity (99.7%) and reduces background atmospheric

muons by limiting events to the Northern Hemisphere [74], [75]. Although dominated

by atmospheric neutrinos, analysis of the diffuse dataset demonstrates an excess of
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high-energy events that is inconsistent with the atmospheric neutrino spectrum and

muon backgrounds. Figure 3.4 shows the fit for the spectral index using the diffuse

sample, which is γastro = 2.28 [75].

Figure 3.3: This figure shows the prompt (green) and conventional (purple)
atmopsheric neutrino spectra, along with a statistically significant excess of high
energy events (black) that are not explained by these atmospheric spectra. These
events, known as High Energy Starting Events (HESE), led to the discovery of
an atmospheric neutrino flux. The red is the best fit of the high-energy excess
from the diffuse dataset, which focuses on through-going muons and muon neutrino
candidates, rather than a fit to the all-flavor HESE events (black). Figure from [74].

This astrophysical neutrino flux is still a mystery. Recently, IceCube has

found evidence of the blazar TXS+0506 and the Seyfert II galaxy NGC 1068 as

potential neutrino sources [76] [77] [78]. Transient source candidates, including

tidal disruption events, have been identified as well [79]. However, even the most

generous estimates for these sources are insufficient to explain the entire diffuse

neutrino flux. Previous studies of gamma-ray bursts with IceCube indicate GRBs

are only contributing a maximum of a few percent to the diffuse flux [34]. See 3.2.2
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for more details on the quasi-diffuse flux limits from this analysis.

Figure 3.4: This figure shows the best fit astrophysical normalization and spectral
index using nearly 10 years of diffuse data. The best fit spectral index was γastro =
2.28. Figure from [75].

3.1.2 First Order Fermi Acceleration

First-order Fermi acceleration theoretically leads to an E−2 spectrum of cosmic

rays, which is close to what is observed. The neutrinos are expected to maintain

a similar energy spectrum. The following derivation of Fermi acceleration is from

[9]. The original paper by Enrico Fermi [8] considers a cloud of plasma - rather

than a shock front - which is now known as second-order Fermi acceleration. Fermi

acceleration requires moving magnetized plasma to transfer non-thermal energy to

individual charged particles. This transfer of energy happens in a collisionless way,

meaning there is no interaction between particles that would lead to energy loss.

We begin by considering a test particle that increases energy through “encounters”

with the magnetized plasma. If ∆E = ξE for each encounter, then after n encounters

the partcle has En energy:
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En = E0 (1 + ξ)n (3.1)

where E0 is the initial particle energy as it enters the accerator. This equation can

be manipulated to isolate n, which would give the number of encounters needed

to reach some energy threshold, E. Taking the log of both sides and applying

ln(xn) = nln(x) leads to the following for n:

n =
ln
(
E
E0

)
ln (1 + ξ)

(3.2)

An important value to consider is Pesc, which is the probability per encounter

that the particle will escape the acceleration region. If the particle escapes too

early, then it will not reach the high energies needed to explain the UHECRs or

diffuse neutrino flux. The probability of remaining in the acceleration region after

n encounters is (1 − Pesc)n. The number of particles accelerated to this threshold

energy, E, before escaping the acceleration region is found by summing all the

encounters with m ≥ n:

N(≥ E) ∝
∞∑
m=n

(1− Pesc)m =
(1− Pesc)n

Pesc
(3.3)

which is the beginning of the equation we are after. Substituting 3.2 into 3.3 (and

remembering that xlny = ylnx), N becomes:

N(> E) ∝ 1

Pesc

(
E

E0

)−γ
(3.4)
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γ =
ln
(

1
1−Pesc

)
ln (1 + ξ)

≈ Pesc
ξ

(3.5)

Now we have a way to determine the spectral index, γ, resulting from Fermi acceleration.

Because ∆E = ξE, it is helpful to find an expression in terms of the particle’s energy

and direction compared to the magnetized plasma. In the rest frame of the moving

gas, the variables will be primed. The cosmic ray particle has total energy E ′1, given

by:

E ′1 = ΓE1 (1− β cos θ1) (3.6)

Here, Γ = 1√
1−β2

and β = V
c
. The V contained in Γ and β refers to the “downstream”

velocity of the shocked gas (see Figure 3.5). If the plane shock front, with velocity

−û1, moves toward an “upstream” particle, which has initial velocity û2, then the

total velocity of a (now downstream) shocked particle has V̂ = −û1 + û2.

32



Figure 3.5: This figure shows the directions of the intial upstream particle, moving
with +û2 velocity, and the plane shock front, moving with −û1. The velocity of a
downstream particle is then V̂ = −û1 + û2. Figure from [9].

The ∆E we want represents a particle that has been accelerated to the point

just before it can escape. The energy of the particle in the moving plasma frame at

this point is E ′2 = E ′1. Transforming this back to the lab frame gives the energy of

the particle after its encounter with the plasma:

E2 = ΓE ′2 (1− β cos θ′2) (3.7)

and now equation 3.6 can plug into 3.7 to give an expression for ξ:

ξ =
∆E

E1

=
1− β cos θ1 + β cos θ′2 − β2 cos θ1 cos θ′2

1− β2
− 1 (3.8)

For the rest of the derivation, [9] goes through both first-order (plane shock

front) and second-order (plasma cloud) accereration. The main difference is how to

take the angular averages of 3.8. A gas cloud would be integrated over all directions,
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while the plane shock is the normalized projection of an isotropic flux onto a plane.

This section will only cover first-order acceleration.

The normalized average of a continuous random variable x, with a probability

density function f(x), is given by:

< x >=

∫∞
−∞ xf(x)dx∫∞
−∞ f(x)dx

(3.9)

With this in mind, the angular average for cos θ′2 and cos θ1 depend on the following

conditions:

dn

d cos θ′2
= 2 cos θ′2 , 0 ≤ cos θ′2 ≤ 1 (3.10)

In this case, the f(x) from 3.9 is dn
d cos θ′2

. This leads to the following angular average:

< cos θ′2 > =

∫ 1

0
2 cos2 θ′2 d cos θ′2∫ 1

0
2 cos θ′2 d cos θ′2

=

[
2 cos3 θ′2

3

]1

0

[cos2 θ′2]10

< cos θ′2 > =
2

3
(3.11)

The same can be done for < cos θ1 >, where the distribution is the projection of an

isotropic flux onto a plane with −1 ≤ cos θ1 ≤ 0. This time, we have:
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dn

d cos θ1

=
c− V cos θ1

2c
, −1 ≤ cos θ1 ≤ 0 (3.12)

Following the same procedure as 3.11, we find:

< cos θ1 >= −2

3
(3.13)

Finally, we can take the angular average of 3.8, plugging in the averages for cos θ′2

and cos θ1:

ξ =
∆E

E1

=
1− β

(
−2

3

)
+ β

(
2
3

)
− β2

(
−2

3

) (
2
3

)
1− β2

− 1

=
1 + 4

3
β + 4

9
β2

1− β2
− 1

≈ 4

3
β =

4

3

u1 − u2

c
(3.14)

where β = V
c

refers to the relative velocity of the plasma flow, rather than an

individual cosmic ray. The geometry of the infinite plane shock (cos θ′2 is always

positive and cos θ1 is always negative) guarantees an encounter between a cosmic

ray and the shock front will result in a gain in energy for the particle. In a gas cloud,

however, the particle can lose or gain energy depending on the angles. This is why

the shock wave is first-order and the gas cloud is second-order Fermi acceleration.

Now that we have an expression for ξ, the only missing component for determining
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the spectral index, γ, is an expression for the escape probability, Pesc. The rate of

encounters is given by the projection of an istropic cosmic ray flux onto the plane

shock front. Here, the number density of cosmic rays being accelerated is given by

ρCR.

∫ 1

0

d cos θ

∫ 2π

0

dφ
cρCR
4π

cos θ =
cρCR

4
(3.15)

The rate of convection downstream (away from the shock front) is ρCR × u2. Put

together, this becomes:

Pesc =
ρCRu2

cρCR/4
=

4u2

c
(3.16)

Plugging 3.14 and 3.16 into 3.5, we find:

γ =
Pesc
ξ

=
4u2

c
4
3
β

=
3u2

v︸︷︷︸
−u2+u1

=
3

u1

u2
− 1

(3.17)

After considering the specifics of diffusion, including the sound speed in the

gas, the Mach number of the flow, the continuity of mass flow across the shock, and

the monoatomic gas ratio of specific heats, the final approximation becomes:

γ ≈ 1 +
4

M2
(3.18)

where M is the Mach number of the flow: M = u1

c1
. For a strong shock, M >> 1,

which leads to γ = 1. The final step is to realize 3.4 refers to the number of particles,

but the value we refer to is the flux. Therefore:
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N ∝
(
E

E0

)−1

=⇒ dN

dE
∝
(
E

E0

)−2

(3.19)

3.1.3 Hadronic Acceleration of Cosmic Rays

The analysis presented in this thesis uses an E−2 spectrum for simulated signal

neutrinos because this is predicted by Fermi shock acceleration [68]. There are many

efforts to correlate the gamma-ray spectrum to that of cosmic rays and neutrinos.

The neutrino, photon, and cosmic ray spectra are shown together in Figure 3.6.

Figure 3.6: The neutrino, cosmic ray, and photon spectra observed on Earth and its
orbiting satellites. This figure highlights the intrigue of multimessenger astronomy:
the diffuse fit to high-energy neutrinos, cosmic rays above the ankle, and Fermi-
detected gamma rays all have roughly the same energy flux. Many experiments
around the world are working to connect these three messengers. Figure from [80].

As discussed in 2.1.2, neutrinos correlated with GRBs (or other high-energy

37



astrophysical phenomena) would be evidence of hadronic acceleration of the high-

energy cosmic rays. The prediction of neutrinos follows from assumptions about

the environment of the source. An environment that can create both gamma rays

and extremely high-energy protons should have an acceleration region with large

amounts of protons and electrons confined within magnetic fields [68]. Accelerated

electrons would lose energy via synchrotron radiation, and the protons in this

same region could then interact with the radiated photons to produce the observed

neutrinos and gamma rays measured on Earth [68]. Some of the protons are believed

to be shock accelerated up to 1015 eV, and these protons could interact with 1 MeV

photons to produce 1014 eV neutrinos [81]. Finally, the UHECR protons could be

created (with energies up to 1020 eV) through Fermi acceleration.

The Delta resonance, shown in equations 3.20-3.23, is the most favored photo-

hadronic interaction that produces pions, which are necessary for high energy gamma

rays and neutrinos:

p+ γ → ∆+ →


π0 + p

π+ + n

(3.20)

The ∆+ in equation 3.20 is an unstable, higher mass excitation of a proton. The

decay of neutral pions produces the gamma rays measured by the satellites described

in section 2.2:

π0 → 2γ (3.21)
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These gamma rays can also result from synchrotron self-Compton emission, which

occurs when synchrotron radiation from accelerated electrons transfers energy through

inverse-Compton scattering. The neutrinos measured in IceCube result from the

decay of the charged pion and subsequent muon:

π+ → µ+ + νµ (3.22)

µ+ → e+ + νe + νµ (3.23)

Equations (3.21), (3.22), and (3.23) show how the acceleration of charged

particles such as protons can lead to the photons seen with gamma-ray satellites

and the neutrino signal measured in IceCube. It is also possible to produce the

pions that decay into neutrinos and gamma rays from interactions between protons

and matter (e.g., proton-proton). Proton-proton interactions are more likely than

proton-photon (p− γ) interactions if there is a higher density of gas than radiation

[82] [83]. A GRB is considered more likely support p − γ interactions due to the

higher radiation density.

3.2 Predictions of Neutrinos from Gamma-Ray Bursts

Previous analyses on IceCube data have led to strong constraints on models

predicting neutrinos coincident with GRBs [34] [84] [85] [86] [87] [88]. The analysis

presented in this thesis expands on previous work by searching many time windows
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beyond the prompt, which is the time during measured gamma-ray activity. The

goal is a model-independent search capable of correlating neutrinos with GRBs up

to -1/+14 days of the gamma-ray detection. The most recent IceCube stacking

analyses suggest the prompt gamma-ray emission time of GRBs contribute to less

than 1% of the observed astrophysical neutrino flux [34].

The results of this analysis, presented in Chapter 8, focus on the most significant

GRBs and the Binomial test of four sub-populations. The aggregate result of

searching 2,091 GRBs for neutrinos in different time windows can provide generic

limits and demonstrate consistency with previous work. This thesis does not present

limits on sub-classes of the Fireball model (see 2.2.2), but instead focuses on general

GRB population limits, a generic double broken power law model of neutrino emission,

and the contribution of GRBs to the quasi-diffuse neutrino flux measured by IceCube.

The wide time windows and generic approach in this analysis are meant to complement

model-dependent studies of neutrino emission from GRBs.

3.2.1 Generic Double Broken Power Law

One could approach the question of neutrino production from the view of

cosmic rays or from gamma rays. Eli Waxman and John Bahcall chose cosmic rays,

and wrote a seminal paper [81] predicting the neutrino flux assuming all cosmic rays

with energies above 1019 eV were created by GRBs. This model assumes protons can

escape from the GRB’s central engine freely, which leads to a hard spectrum. The

Waxman-Bahcall model predicts the maximum number of expected neutrinos (in a
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proton escape model) because of the assumption that GRBs are 100% responsible

for UHECRs [68].

Following the procedure in [33], a neutrino flux can be calculated for a break

energy of εb = 106 GeV. The neutrino break energy, εb, is the energy where the

broken power law spectrum (Equation 3.24) first changes spectral index. A double

broken power law is used to model neutrino emission because the gamma-ray spectrum

fits well with a double broken power law. Another parameter to consider for this

model is the GRB variability time scale, tν = 10−3 s for short GRBs and tν = 10−2 s

for long GRBs, which is chosen based on variation in GRB lightcurves and indicates

fluctuations in the source environment. The bulk Lorentz factor, Γ = 300, and the

gamma-ray isotropic luminosity is Lisoγ = 1051 ergs/s are also used in this calculation.

The proton injection spectrum is expected to follow dNp
dEp
∝ E−2

p and roughly 20%

of the proton energy is converted to the pions. This leads to a per-flavor flux

normalization of εbΦ0 ≈ 2.2× 10−9GeV cm−2s−1sr−1 [33] [17].

A similar calculation is done in [89], where the neutrino production is assumed

allowing free neutron escape. This is another model-specific value that is determined

using two basic assumptions: the protons are accelerated to high energies faster than

the lifetime of the fireball, and the energy that is gained by these protons is not lost

to synchrotron radiation or pion production [89]. These assumptions, using the same

inputs from the Waxman-Bahcall model, lead to εbΦ0 ≈ 6× 10−9GeV cm−2s−1sr−1

The Waxman-Bahcall and Ahlers et. al. models are both based on a generic

double broken power law for neutrino flux:
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Φν(Eν) = Φ0 ×


ε−1
b E−1

ν , Eν ≤ εb

E−2
ν , εb < Eν ≤ 10εb

E−4
ν (10εb)

2, 10εb < Eν

(3.24)

where εb is the neutrino break energy and Φ0 is the quasi-diffuse normalization of

the flux. Figure 3.7 shows that the Waxman-Bahcall model of proton escape and

Ahlers et. al. model of neutron escape are both excluded at over a 90% confidence

level in the previous GRB study [34].

Figure 3.7: Constraints on a generic double broken power law neutrino spectrum.
The parameters are the first break energy, εb, and the quasi-diffuse flux
normalization, Φ0. The two points indicate predicted neutrino fluxes motivated
by cosmic ray flux measurements,. The error bars indicate the uncertainty in those
cosmic ray flux values, as well as variation in the bulk Lorentz factor, time variability
of the GRB, and the break energy. Figure from [34].
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Both the Waxman-Bahcall and Ahlers et al. values were strongly ruled out

by previous IceCube studies of the prompt phase of GRBs. Figure 3.7 shows the

limits from a generic double broken power law. This plot was made by injecting flux

for a variety of break energies and producing a stacked test statistic. The stacked

test statistic is described in 6.4.1 and follows the standard procedure of comparing

injected signal to the median of the background-only test statistic distribution.

Chapter 8 shows similar limits based on the analysis from this thesis, with the

90% limit shown for each sub-population of GRBs in the prompt.

3.2.2 Quasi-Diffuse Flux

One goal of IceCube analyses is to understand how the result relates to the

diffuse astrophysical neutrino flux. Answering this question can be difficult, especially

in the world of GRBs. The simple method is to compare the unblinded stacked test

statistic (described in 6.4.1) to test statistic distributions with injected flux. If the

injected flux produces test statistics that are larger than the unblinded test statistic,

say, 90% of the time, then that flux value can be ruled out at 90% confidence. That

injected flux - the 90% flux limit - can be converted to a quasi-diffuse flux by:

FDiffuse =
Time− Integrated F lux

GRB
× 667 GRBs

4π · yr
× 1 yr

3.15× 107s
(3.25)

where 667 GRBs per year all-sky has been the historic density value used in IceCube

GRB searches [90] [34]. There are two subtle details about this conversion from a
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stacked flux limit to a quasi-diffuse limit. The first comes from the time-integrated

flux per GRB. This value comes from injecting a given flux equally over all the

GRBs, which treats every second in the observer frame as equally likely to detect

neutrinos. This assumes all GRBs are producing an equal neutrino flux at Earth.

This method also does not consider the redshift of a GRB; however, only a handful

of GRBs have redshift measured, and there is quite a bit of observer bias involved

(see 8.3.3 for further explanation).

The second detail to consider for equation 3.25 is the density of 667 GRBs

per year all-sky. This may be a reasonable value to test, but it is perhaps more

appropriate to consider a range of densities. Figure 3.8 shows the limits for previous

IceCube GRB analyses, and the dashed lines show the limits on GRB contributions

to the diffuse flux. The total diffuse flux measured by IceCube is 9×10−9 GeV cm−2

s−1 sr−1 [91] [92]. The dashed lines in Figure 3.8 indicate GRBs are responsible for,

at most, a few percent of the diffuse flux under the assumptions of 667 GRBs per

year all-sky and equal flux at Earth.
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Figure 3.8: This plot shows the differential sensitivity for recent IceCube GRB
analyses. A differential sensitivity is a sensitity per neutrino energy bin. The dashed
lines show the limits on the quasi-diffuse neutrino flux for each of the GRB analyses.
Figure from [34].

Chapter 8 shows the limits from the analysis presented in this thesis on the

diffuse flux by sub-population and time window. A limit is also placed on GRB

densities assuming different contributions to the diffuse flux under this “equal flux

at Earth” model.

3.2.3 GRB Density

The following section draws heavily from the star-formation history paper by

Madau and Dickinson [93].

Another way to consider the GRB contribution to the diffuse flux is to assume a
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source model and stellar evolution. A stellar evolution model describes the formation

and evolutionary phases of stars across redshifts, which leads to an estimate of the

number of sources for a given redshift. The stellar evolution model used in this

thesis gives the following relationship between density and redshift:

ρ(z) = 0.015
(1 + z)2.7

1 +
(

1+z
2.9

)5.6 M� yr
−1 Mpc−3 (3.26)

where ρ is the source density and z is the redshift.

Modeling the source density is important for predicting neutrino flux, because

GRBs are difficult to study due to their transient nature. In particular, identifying

a redshift can be difficult if the GRB does not have a detectable afterglow. The

larger the redshift, the less likely the satellites are to detect the GRB at all, let

alone to determine that redshift. A choice of stellar evolution model and source

luminosity estimates the total number of sources, creating a more complete picture

of GRBs than simply those that are successfully detected. This allows more realistic

constraints to be placed in the event of a non-detection of neutrinos correlated with

GRBs, because those that are not measured in gamma rays may still be producing

measurable neutrinos.

The modeling for the star-formation density is primarily based on recent galaxy

surveys with star-formation rates measured in far-UV and far-IR. In most galaxies,

the short-lived massive stars (the progenitors of core-collapse supernovae) are the

dominant source of UV emission. Therefore, UV emission can be used as tracers and

provide a direct measurement of the instantaneous star-formation rate density for a
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given stellar initial mass function and dust content. Unfortunately, too much dust

can be a significant limiting factor for measurements in UV. Interstellar dust absorbs

UV light and re-radiates it as IR, which means dusty starburst galaxies observed

in far-IR emission can also trace the star-formation rate. Starburst galaxies refer

to galaxies with particularly high star-formation rates. Equation 3.26 was the best-

fitting function to data points from far-UV and IR measurements, shown in Figure

3.9.

Figure 3.9: This plot shows far-UV and IR measurements converted to instantaneous
star-formation rate densities. The solid curve shows the best-fit star-formation rate
density (Equation 3.26). Figure from [93].

Madau and Dickinson express some uncertainty that this model correctly

describes GRBs because they may require special conditions that are difficult to

model. This may mean the star-formation density (Equation 3.26) is incomplete in

the context of GRBs, and the results presented in Chapter 8 may require additional

study. It is always difficult to discuss GRBs as a single group, because the redshifts,
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lightcurves, and progenitors are so varied. The analysis in this thesis considers all

2,091 GRBs together for limits on GRB density and total energy (see 8.3.3). It is

perhaps more correct to isolate the long GRBs in a future study. All discussions

related to simulating population densities in this thesis make the assumption that

we can combine GRBs according to this star-formation density model.
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Chapter 4: Detecting Neutrinos with IceCube

Neutrinos were first proposed by Wolfgang Pauli to explain the missing energy

in the products of beta decay [94]. We now know neutrinos are very light, neutral

elementary particles that only interact via the weak force. When neutrinos do

interact, they can produce charged leptons (see Figure 4.2). If enough energy

is transferred in the neutrino interaction, the resulting leptons can travel faster

than light in the ice, which emits a directional cone of blue light called Cherenkov

radiation. Measuring Cherenkov radiation in the ice is the primary goal of the

IceCube detector.

4.1 The IceCube Neutrino Detector

IceCube is a cubic-kilometer-scale neutrino detector located at the South Pole.

The Antarctic ice is instrumented with 5,160 digital optical modules (DOMs) [95].

These DOMs include photomultiplier tubes optimized to detect blue light from

Cherenkov radiation. Holes are drilled deep in the ice, allowing DOMs to be deployed

at a depth of 1,450 to 2,450 meters (see figure 4.1) where the ice is optically clear.
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Figure 4.1: The IceCube neutrino detector located in ice at the South Pole. Figure
from [96].

IceCube consists of 86 strings deployed on a hexagonal grid with 125 meters

between each string. A string refers to a cable that includes 60 DOMs with 17 meter

vertical DOM spacing and the associated power and readout electronics. Eight of

these strings are spaced closer together and are called “DeepCore.” These have

70 meter horizontal spacing and seven meter vertical spacing. DeepCore is used

for lower energy measurements such as neutrino oscillations. Most of the IceCube

strings are paired with two surface tanks. Each tank is filled with water and contains

two DOMs. These tanks are called “IceTop” and form an array near the surface

above the detector [97]. Dedicated analyses are performed with IceTop, including

study of the cosmic ray spectrum.
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The IceCube Laboratory (ICL) sits at the surface in the approximate center

of the hexagonal grid. The ICL is the communication and power hub for the entire

detector, including IceTop and all components frozen kilometers in the ice.

4.2 Neutrino Interactions in Ice

Neutrinos must be detected indirectly because they are neutral and only

interact via the weak force. The most common interaction is an exchange of a

W-boson with a quark from a proton or neutron of the hydrogen or oxygen atoms

in the ice. If the resulting lepton has enough energy, then it will travel faster than

light in its medium and produce Cherenkov radiation (see section 4.2.1), which is

able to be detected by the IceCube DOMs.

There are three neutrino interactions that are relevant to this analysis in

IceCube. The first is the “charged current” (CC) interaction, which gets its name

from the exchange of the charged W-boson. This involves a neutrino or anti-neutrino

interacting with a down or up quark, respectively, in the nuclei of the ice. This results

in the charged lepton counterpart to the neutrino and changes the quark from down

to up (or up to down).

The charged current interaction can occur for electron neutrinos (νe), muon

neutrinos (νµ), or tau neutrinos (ντ ). For a CC νe interaction, the resulting electron

(or positron) produces a shower of electrons, positrons, and photons very close to the

interaction vertex. An electron does not travel far before depositing its energy, which

results in a roughly spherical photon emission shape, commonly called a cascade.
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There is an additional hadronic shower that results from the nucleus recoiling and

interacting with surrounding matter. The cascade and the hadronic shower fall on

top of each other and are not easily distinguishable.

A CC νµ interaction results in a muon, which, if energetic enough, is able to

travel more than a kilometer through the ice before decaying. The muon deposits

its energy (and therefore light) along this long route, and the result is called a track.

A minimum ionizing muon deposits roughly 1 GeV every 5 meters, which would

mean the muon needs at least 200 GeV to produce a 1 kilometer track [98]. These

interactions also result in a hadronic shower at the beginning of the track (see Figure

4.6). Tracks from muon neutrino interactions are the desired events for this analysis,

because the long lever arm allows for better angular reconstruction.

CC ντ interactions are difficult to detect. Taus decay very close to the initial

interaction hadronic cascade, making them difficult to distinguish from other interaction

channels. The ideal signature of a high-energy tau interaction is the “double bang,”

which would occur if the decay vertex and initial interaction vertex could be distinguished.

Only two candidates for tau neutrino events have been observed in IceCube [99] [100].
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Figure 4.2: The Feynman diagrams for charged current (top two), neutral current
(bottom left), and Glashow resonance (bottom right). Figure from [17].

Another possible interaction is the neutral current (NC) interaction, which

occurs when a neutrino scatters off a quark and exchanges a Z-boson. Energy is

transferred to the quark via the neutral Z boson, which leads to a hadronic shower

very similar to the charged current. No charged lepton is emitted, meaning the

hadronic shower is the only detected signal. A hadronic shower is produced in any

neutrino interaction in ice, and therefore IceCube cannot distinguish between the

neutral current and charged current (e−, τ) cascades. All interaction channels are

included in simulations.

The final interaction, the Glashow resonance, occurs when an electron-antineutrino

interacts with an electron instead of a quark [101]. This interaction peaks for

antineutrinos with an energy of 6.3 PeV. A W− boson carries out the interaction

and produces a pair of quarks or an anti-neutrino-lepton pair. This is theoretically
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possible for all flavors of neutrino; however, electrons are the only target lepton

available in the ice. Only one candidate event, which had a reconstructed energy

of 6.05±0.72 PeV, has been measured by IceCube [100] [102]. The cross-sections of

CC, NC, and Glashow resonance are shown in Figure 4.3.

Figure 4.3: This figure shows the interaction cross sections for neutrinos and anti-
neutrinos in deep inelastic scattering. The Glashow resonance (black) is clear at 6.3
PeV, though only one candidate event has been detected by IceCube. Figure from
[17], adapted from [103] and [104].

4.2.1 Cherenkov Radiation

Relativisitc charged particles are capable of moving faster than the speed of

light in ice (i.e., β > 1
n
). When this happens, light is emitted and propagated in a

direction that forms an angle θ with the particle:

cos θ =
1

βn
(4.1)

54



This is known as Cherenkov radiation [105] and results from the relativistic

charged particle disturbing the medium’s electromagnetic field. Equation 4.1 indicates

the Cherenkov angle, which produces blue-UV wavelength light for high energy

particles at θ ≈ 41◦ and an index of refraction of nice = 1.32 [106]. The IceCube

DOMs are designed to be sensitive to photons in this blue-UV range to detect

Cherenkov photons as efficiently as possible.

Figure 4.4: An illustration of a Cherenkov cone of radiation. Figure from [107].

4.2.2 Muon Propagation

Muons are central to this analysis, because tracks have the best angular

reconstruction and are ideal for neutrino astronomy. High energy muons can travel

for several kilometers before decaying, which means only a fraction of the muon

energy may end up in the ∼1 km IceCube detector. Understanding those muon

tracks, particularly how much energy is deposited by each type of energy loss, is

important for reconstructing the particle’s energy and direction accurately, and

allows muons to be detected even if they are produced outside the detector volume.
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Figure 4.5: This figure shows the energy losses due to muon propagation through
the ice. At lower energies, light is produced as the medium is ionized by the passing
muon. Muons can also produce secondary radiation through pair production,
photonuclear interactions, and bremsstrahlung radiation. These interactions can
occur at random and are categorized as “stochastic” energy losses. These stochastic
losses dominate at high energies and are important to include in simulation. Figure
from [107] (adapted from [108]).

The muon that results from the interactions described in 4.2 loses energy

continously as it travels through the dense ice. At low energies (below roughly

300 GeV), the ionization of the medium dominates the energy losses. The muon

effectively rips electrons off nearby nuclei and those electrons undergo Cherenkov

radiation. At higher energies, stochastic losses such as pair production, bremsstrahlung,

and phtononuclear interactions take over as dominant mechanisms for energy loss
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(see Figure 4.5). The average rate of energy loss for muons is given by:

dE

dx
= −a− bE (4.2)

where a and b can be approximated as constants referring to the energy loss from

ionization and stochastic losses, respectively [109]. The ionization loss parameter

can be found using the Bethe-Bloch formula, which describes the stopping power

due to ionization. This leads to a ≈ 0.26 GeV per meter-of-water-equivalent (mwe)

and b ≈ 3.6× 10−4 mwe−1 [17].

Figure 4.6: This figure shows the energy losses in an event. The initial burst is the
result of a hadronic shower. The particle (in this case, a muon) travels through the
detector, depositing energy via Cherenkov radiation and ionization. Toward the end
of the track, there are some larger deposits of light, which may be due to stochastic
losses. There is also a small amount of detector noise at the bottom of this event.
A high energy track such as this one is easier to separate from background, which
means there is very little detector noise. Figure from [107].
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4.2.3 South Pole Ice

One of the main reasons the South Pole was selected as the site for IceCube

is the optical clarity of the ice. The gradual compression of snow over thousands of

years has led to optically clear, realtively bubble-free ice 1.4 km below the surface.

The region of ice from the surface to 1.4 km has more air bubbles and leads to

higher rates of scattering. Determining the direction of a Cherenkov cone would be

incredibly difficult if too many of the photons were scattered before reaching the

DOMs, which is why the IceCube detector begins at 1,450 meters below the surface

of the glacier. Figure 4.7 shows the absorption and scattering of the ice by depth.

Figure 4.7: The scattering (left) and absorption (right) coefficients of ice from 1100-
2300 meters. This includes nearly the entire detector volume for IceCube, as well
as some of the region dominated by bubbles. Figure from [110].

Careful measurements of the ice were made during the hot-water drilling in

AMANDA and IceCube. A dust logger (see Figure 4.8) was lowered into the hole,

which had been drilled with hot water, and recorded measurements of the bubbles,
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dust, and volcanish ash at 10-ms intervals [106] [111]. A 404-nm source emitted light

sideways out of the borehole and the amount of scattered photons that returned to

the dust logger was recorded. The most prominent dust feature is located between

2.0-2.1 km below the surface. This is known within IceCube as the “dust layer”

and is carefully considered in simulation. Figure 4.9 shows the scattering across the

entire depth of ice.

Figure 4.8: The dust logger used to map the bubbles, dust, and volcanic ash in an
IceCube borehole. Figure from [111].

Each DOM in IceCube also contains LEDs that can be turned on and off to

measure scattering in situ [106]. Details of the DOM are in the following section.
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Figure 4.9: The dust concentration by depth, including the Dust Layer at 2.0-2.1
km, and the location of IceCube DOMs. Figure from [107].

4.3 Digital Optical Modules

The digital optical module (DOM) is the core piece of hardware for the IceCube

detector (see Figure 4.10). Each of the 5,160 DOMs in the Antarctic ice contains

(among many other components) a 10” diameter Hamamatsu R7081-02 photomultiplier

tube (PMT), digitizing boards (or “main boards”), and a 20 MHz oscillator to serve

as a local clock [112] [113]. These three components allow the DOM to perform

the fundamental task of measuring Cherenkov photons and relaying the relevant

information - the number of photoelectrons and timing - for energy and direction

reconstruction back to the ICL.
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4.3.1 Hardware

The Hamamatsu PMTs were selected because of their low dark noise, and the

good time and charge resolution for single photons [113]. These R7081-02 PMTs

were custom-made for IceCube using a low radioactivity glass, which reduced the

dark count rate to 300 Hz (down from a standard 500 Hz) from -40 C to -20 C,

which is the region of interest for in-ice equipment [113]. In a typical PMT, a

photon hits the photocathode to produce an electron, which accelerates toward a

series of dynodes, producing a cascade of electrons. By the time the electrons reach

the anode, there are many orders of magnitude more electrons, which is how a single

photon can turn into a large enough signal to measure.

Figure 4.10: This figure shows a schematic of the digital optical module (DOM)
with the major components highlighted. Figure from [112].

The Hamamatsu PMT has 10 linear focused dynode stages, reaching a gain of
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107 electrons at the anode, and giving a voltage drop that is roughly 8 mV for each

photoelectron (PE) collected from the photocathode. These PMTs have a quantum

efficiency of 25% at 390 nm, which means there is a 25% chance a Cherenkov photon

hitting a PMT inside the DOM will produce a readable signal [113]. The PMTs

require high voltage, around 1300 V, to achieve a maximum collection efficiency and

still produce 107 gain. An unintentional scintillation effect in the glass envelope of

the DOM’s pressure sphere produces background light that rises with decreasing

temperature, but the efficiency of this DOM is still excellent in the range required

by IceCube. In fact, for a high-energy neutrino track, the short measurement time

for each DOM would mean only 1% of muons would have problematic noise, making

the effect on reconstruction and background rejection quite small [113].

The DOM was designed to be robust and withstand indefinite deployment

in the ice. These DOMS operate reliably in cold, high-pressure conditions due

to the combination of high-quality commercial parts and well-designed original

components. The PMTs are half-spherical with the bulbs facing downward (see

Figure 4.10) surrounded by a mu-metal grid to reduce the effects of Earth’s magnetic

field. Each PMT is secured to the pressure vessel with optical silicone gel. The gel

was tested to have minimum light reflection and high durability at -45 C [98]. Only

87 of 5,160 DOMs failed during deployment, freeze-in, and post-commissioning,

which is a pretty impressive success rate [95].

The main board digitizes the analog PMT signal in the DOM. Digitizing the

signal before sending it to the ICL minimizes the loss of information due to the

analog signal degrading over a long cable [112]. This ensures high-quality signals
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and a reduced computational load at the surface. The main board controls all the

devices in the DOM, and also communicates with neighboring DOMs.

The local clock provides time stamps for internal DOM operations and allows

for precise timing of the photon arrival. The local clock drift is less than 2 ns per

second compared to the master clock at the surface [112].

All the components of the DOM are housed in a 35.6 cm diameter glass pressure

sphere, which is strong enough to withstand the high pressures of hole-ice. The ice

is melted as part of the drilling process, and after the DOMs are deployed the water

is allowed to freeze, causing very high pressures (650 atm during freeze-in and 300

atm after freeze-in [90] [114]) several kilometers below the surface.

Figure 4.11: This figure shows a block diagram of the DOM main board. This is
responsible for waveform digitization. Figure from [95].
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4.3.2 Waveform Digitization

Waveform digitization takes place on the DOM main board, which is coupled

to the anode of the PMT via a transformer. Figure 4.11 shows a block diagram of

the main board. After an analog signal comes from the PMT (upper left in Figure

4.11), the discriminator on the DOM will trigger if the voltage corresponds to at

least 0.25 photoelectrons. Once this digitization process begins, the neighboring

DOMs are alerted to determine the local coincidence. If there is a Hard Local

Coincidence (HLC), meaning one of the four neighboring DOMs (two above and

two below) on the same string also records a discriminator trigger within 1 µs, then

all the digitized information will be sent to the ICL. If the HCL condition is not

met, then the information is instead tagged as a Soft Local Coincidence (SLC) and

far less information is stored. While the decision of HLC vs. SLC is being made,

the digitized waveforms are stored in DOM memory.

The actual digitization happens in the fast analog-to-digital converter (FADC)

and Analog to Digital Waveform Digitizer (ATWD), which are both controlled by

a Field Programmable Gate Array (FPGA). The FADC bins the information at

40 × 106 samples per second for the 6.4 microseconds following the discriminator

trigger [95]. The ATWD uses much finer binning at 322 bins with 3.3 nanoseconds

per bin (compared to 25 ns for the FADC) [115]. The FADC has low time resolution,

but samples for a much longer time overall. This is helpful for lower amplitude

signals with longer photon traveling times. The ATWD provides more detail because

of the finer binning, and this information is preferred over the FADC if both are
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available.

There are two ATWDs, each with four gain channels with 128 sampling capacitors

[95]. As the signal is digitized, the ATWD can experience up to 29 µs of dead time.

The secondary ATWD is able to record new pulses while the first ATWD is in use. If

both ATWDs are in use, then the DOM is unable to record additional pulses. This

reduces the dead time to roughly 22 µs based on the average noise rate [116]. Each

of the two ATWDs uses three of the four gain channels to optimize the waveform

fit (the fourth channel is used for calibration). The PMT waveform is amplified to

three different gains: ×16, ×2, and ×0.25 [98]. The unsaturated channel with the

highest gain is recorded.

If the result is a soft local coincidence, then only three FADC samples corresponding

to the highest amplitude portion of the waveform are sent to the ICL. All waveforms

are sent to the ICL for hard local coincidences. The waveforms are then analyzed

by a Non-Negative Least Squares algorithm called Wavedeform. The goal is to

determine the number of photoelectrons detected by the PMT, as well as their

time of arrival. The number of photoelectrons is fit by beginning with a single

photoelectron (SPE) (Figure 4.12 shows a typical SPE waveform). SPE waveforms

are typically dominated by a Gaussian peak with a width of 3.2 nanoseconds [113].

Wavedeform performs the least squares minimization on a single pulse to find the

best-fit time. A second pulse is added and the fit is performed again. This continues

until the goodness-of-fit improvement from adding an additional pulse is neglible.
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Figure 4.12: Average of 10,000 single photoelectron (SPE) waveforms from one PMT
used in a typical IceCube DOM. Other PMTs show consistent results, indicating
this waveform is a valid estimate for SPEs measured by a typical DOM in the
detector. The solid line shows the transformer used in the deployed DOMs (dashed
line indicates testing on an older version of the transformer). Figure from [113].

Triggering the DAQ leads to a window of at least 10 µs while the HLC and

SLC information is stored. 10 µs is a very long time in terms of background noise.

Large amounts of noise can interfere with accurate particle reconstructions. The

pulse series produced by Wavedeform goes through a cleaning step to remove noise.

A simple method using the r − t causality condition is used [90]. A pulse must

occur within 150 m and 1 µs of another pulse. Only HLC pulses satisfying this

r − t condition with other HLC pulses are kept. If a pulse fails the condition, it is

considered in another two iterations where pulses are added to see if the condition

is then met.
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4.3.3 Calibration

Every DOM includes a flasher board, which contains 12 LEDs that produce

bright UV optical pulses that are observable by other DOMs [117]. These flashers are

used to calibrate DOMs by simulating Cherenkov photons, and are also used to study

the optical properties of the ice. The 12 LEDs, six of which are pointed horizontally

while the other six are tilted slightly upward, can be flashed independently [114].

Additionally, a low-light LED pulser - controlled by the DOM CPU program

called DOMcal - is used for calibration [17]. DOMcal is run annually for in-ice

PMTs (monthly for IceTop PMTs). The goal is to use the minimum voltage to

trigger the discriminator and precisely test the features of the DOM’s main board.

The 128 sampling capacitors in each of the ATWD’s four channels are used to map

the input-output voltage, and the gains of the three amplifiers are tested as well

[117]. This calibration is then used for the next year of data event processing.

The 20 MHz clock in every DOM must be calibrated to the other DOMs and

the ICL clock. The clock in the ICL, called “IceCube Time” (ICT) is the master

clock for the in-ice DOM clocks. A Reciprocal Active Pulsing (RAPcal) procedure

is used to calibrate timing among clocks [117]. The RAPcal procedure is to send a

pulse from the ICL to the DOM, then have the DOM wait for some fixed delay δ,

and then return the pulse, along with the digitized waveform of the original pulse,

back to the ICL. The timestamps of the pulse waveforms received on the DOM

and returned are used to calibrate the master and local clocks. RAPcal signals

are distributed to all DOMs in the array every 5 seconds. This may sound like a
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calibration burden that would dominate the communications lines, but the exchange

of RAPcal signals takes less than 1.5 ms for the entire array [117]. This means the

communications bandwidth used is relatively small considering the timing precision

that is gained. The measured DOM-to-DOM timing accuracy is 1.2 ns [95].

4.4 Data Acquisition

The purpose of the data acquisition system (DAQ) is to store HLC and SLC

readouts from individual DOMs and prepare the event data for initial processing.

The DAQ also prepares the data to transmit to the north via satellite.

4.4.1 Trigger

The DOMs are constantly transmitting waveform data to the ICL. This information

- either for an HLC or SLC state - goes to a DOMHub computer, which is responsible

for a string in IceCube. A DOMHub supplies power to the string as well as

communication. The DAQ monitors all the DOMHubs, waiting for coinditions to be

satisfied that indicate a physics event. The most common trigger type is a Simple

Multiplicity Trigger (SMT), which looks for coincidences between DOMs reporting

HLC launches. The SMT-8 trigger, which is the standard trigger used in astronomy

analyses in IceCube, occurs when eight HLC launches (a discriminator trigger on

the DOM’s main board is called a “launch”) are received during a 5 µs window.

The event includes data from 4 µs before and 6 µs after the time when at least one

trigger condition was met [90]. If, after 6 µs, no trigger condition is satisfied, then
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that event data is finalized. This final event data bundle is called a “frame” and is

the fundamental unit used in the processing and filtering system [90].

4.4.2 Processing & Filtering

An SMT-8 trigger occurs roughly at a rate of 2.0-2.4 kHz (the rate varies

depending on the time of year), but only ∼10 mHz is expected to be from neutrino

interactions (see Figure 4.13) [116]. The rest of the SMT-8 triggers are due to

muons from cosmic-ray showers (see Chapter 2). A data rate of over 2,000 triggers

per second is too high to send to the north via satellite. Therefore, the online

processing and filtering (PnF) system performs pulse extraction, calibrations, and

reconstructions while everything is still at the South Pole. The full waveform data

is stored on disks in the ICL for every trigger, and that disk archive is physically

carried north once per year.
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Figure 4.13: This figure is taken from live.icecube.wisc.edu, the web interface for
IceCube monitoring. For this randomly chosen run, the SMT-8 triggers are around
2.3 kHz. The rates range from 2.0-2.4 kHz over a given year due to seasonal variation.

The IceCube PnF system runs basic physics reconstructions on the event

frames produced by the DAQ. Simple and fast algorithms are favored in this step

to keep computational needs low. The waveforms from the ATWD and FADC

are converted into a series of PE pulses (see the discussion on Wavedeform in

4.3.2). Reconstructions performed on the pulse series provide an estimate of the

particle direction, particle energy, total collected charge on the DOM, and quality

of reconstruction.

Filters are applied to the pulse series reconstructions in an effort to select

interesting physics events. Each filter has a signal hypothesis and the subset of

events is selected to pass based on specific criteria. One of the more commonly

used filters is the Muon Filter (5.1.1), which targets high-energy downgoing muons,

as well as upgoing muons that are well-reconstructed. This filter alone reduces the

70



event rate from ∼2 kHz to ∼30 Hz.

Many other filters are in place, including the GFU filter. The GFU filter is

described in 5.2.1, and directly produces part of the dataset used in this analysis.

Figure 4.14 gives an overview of the main filters in IceCube.

Figure 4.14: This figure shows the trigger rates of the most common filters in
IceCube. The SMT-8 trigger rate (typically 2.0-2.4 kHz) is shown at the top and
is reduced depending on the filter selected. Most high-energy astronomy analyses,
including this one, use the MuonFilter as one of the cuts. The GFU Online and
GFU Offline filters are discussed in Chapter 5. Figure from [118].

After data is sent north, the specific cuts and more rigorous reconstructions

are performed for each dataset within IceCube. The procedure for the Gamma-Ray

Follow-Up (GFU) sample is described in detail in Chapter 5.

4.4.3 Monitoring

IceCube’s hardware is maintained by a core team of experts, and is monitored

in shifts by members of the general collaboration. Detector operation information
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is stored in a databased called IceCube Live, which has a web interface for easy

searching and monitoring. Individual run statistics are available, including filter

pass-rates, DOM launch rates, and other paramaters related to individual DOMs.

A map of the detector makes it simple to see if certain DOMs had problems

during a run, or if the DOMs have recurring issues. Roughly 100 DOMs are

permanently removed from HLC pulse processing because of a problematic HCL

connection (though 20 of those are available for SLC pulse processing because that

communication line is intact) [17].

IceCube is stable and has an excellent uptime (see Figure 4.15). A typical

“run” is eight uninterrupted hours of data-taking, with roughly 130 files per run.

Once filtered, this data is sent north via satellite (usually within one day). All

stable runs are included on the “good run list,” which is maintained by the detector

operations team. Runs can be excluded if there is a power outage or DOMHub

crash, and calibration runs are not included in the good run list. Issues such as

a power outage are managed by the two IceCube Winter Overs, who reside at the

South Pole for a full year.
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Figure 4.15: The detector uptime from the beginning of construction to the present
day. The uptime stabilized after construction was completed in early 2011. Figure
from live.icecube.wisc.ed, the web interface for IceCube monitoring.

Some of the GRBs in this sample were detected during detector downtime.

For these cases, a test statistic (6.8) of zero is assigned to the time window to

be conservative. There is no two-week period of detector downtime, which means

every GRB will have at least one time window with data. Therefore, no GRBs are

excluded due to problems with the good run list.
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Chapter 5: Gamma-Ray Follow-Up (GFU) Dataset

The dataset used in this analysis is called the “Gamma-Ray Follow-Up” (GFU)

sample within IceCube. There are two branches of this dataset: “GFU Online” and

“GFU Offline.” GFU Online is a 6.5 mHz sample of neutrino candidate events

that is processed entirely at Pole and transmitted north via satellite within roughly

one minute of triggering the detector. GFU Offline takes the online events and

performs additional reconstructions using Level 1 data. “Level 1” refers to data

that has gone through Wavedeform (see section 4.3.2) and additional filtering. The

reconstructions applied in the north to create the GFU Offline sample are described

in 5.2.2. GFU Offline, which runs from May 13, 2011 through October 13, 2018,

is used in this analysis and described in this chapter. The GFU dataset [119]

was created by Thomas Kintscher, with contributions from Elisa Bernardini and

Konstancja Satalecka.
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5.1 Event Reconstruction

5.1.1 Muon Filter

The Muon Filter is the first filtering level for IceCube, where the goal is to

reduce the event rate enough to transmit via satellite. The input to this filter is

the SMT-8 trigger, which looks for eight DOMs reporting HLC launches within a 5

µs window (see 4.4.1). These HLCs can be anywhere in the detector, which means

most of these triggers are random noise arriving close in time. There are roughly

2,000-2,400 of these triggers every second, dominated by downward going cosmic-

ray shower muons, which is far too high a rate for sending data via satellite to the

north.

5.1.1.1 LineFit

To cut down on the event rate, a first guess fit algorithm called “LineFit” is

used to reconstruct all SMT-8 triggers as a starting point for the full reconstruction.

This method approximates the reconstruction as a least-squares fit of pulses to an

infinite muon track [120]. The geometry of the Cherenkov cone is ignored, and

the picture is simplified to light traveling with a velocity ~v along a 1-dimentional

path through the detector. For PMTs at positions ~ri, which are hit at time ti, the

least-squares fit yields the following:

~r = 〈~r〉+ ~v · 〈ti〉 (5.1)
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where ~r is the vertex through which the muon passes and the brackets indicate an

average over DOMs. The velocity of the muon is then given by:

~v =
〈~r · ti〉 − 〈~ri〉 · ti
〈t2i 〉 − 〈ti〉2

(5.2)

The vertex position, ~r, and the direction of the muon velocity vector, ~v, are helpful

seed parameters for the next step of level 1 filtering.

The procedure described so far (and in [120]) is the original LineFit method.

Improvements to LineFit are now widely used within IceCube [121]. This reconstruction,

known as “ImprovedLineFit” reduces the impact of highly scattered light by applying

a Huber penalty [122] to outlier pulses. ImprovedLineFit still disregards the Cherenkov

geometry to keep the fits fast and simple, but an additional timing component is

included to reduce the weight of pulses that travel for a relatively long time [121].

If light has been significantly scattered from the original trajectory, then it would

be better to reduce the weight of those pulses within the fit. The optimal value to

begin applying the penalty was found to be 156 meters, which means events that

are more than 156 meters from the muon fit track trajectory at the time of the PMT

hit are penalized [121].

Another way to identify outliers was to simply remove events that were too

late and far from nearby DOMs. For a given hit, hi, the neighboring hits within 156

meters are checked for time stamps. If any neighboring hits, hj, were more than

778 ns before the original hit, then the pulse in question is considered scattered. If,

within a reasonable distance of 156 m, a DOM is still recording hits in this region
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after 778 ns, then it is unlikely to be a direct Cherenkov photon (i.e., not scattered)

and should be removed from the fit.

These improvements - applying a Huber penalty and removing likely outliers

based on clustering - nearly double the accuracy of the seed values, ~r and ~v, passed

to the SPE fit.

5.1.1.2 SPE Fit

The single photoelectron (SPE) likelihood performs a track reconstruction

using the charge and timing information from only the first hit from each DOM,

because the first photon is less likely to be scattered [120]. The measured photon is

compared to the expected light production, which includes scattering and absorption

models in the ice. A maximum likelihood method is used to estimate the track

parameters. For an observed PMT hit position ~ri and time ti, and a muon passing

through a vertex ~r at time t with velocity ~v, the probability of observing the hit

from the muon is given by the probability distribution function:

Probability = P (~ri, ti|~r, t, ~v) (5.3)

and the likelihood for several hits, {~ri, ti}, is given by:

L ({~ri, ti} |~r, t, ~v) = ΠiP (~ri, ti|~r, t, ~v) (5.4)

Minimizing the negative log likelihood (LLH) with respect to ~r, t, and ~v gives

the most likely muon trajectory. The velocity of the muon is assumed to be close to
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the speed of light (i.e., |~v| ≈ cvacuum), which simplifies this likelihood space slightly.

It is important to remember that the position of the muon, ~r, is fit in terms of the

zenith and azimuth angles,1 θ and φ. Therefore, equation 5.4 ([90] adapted from

[120]) is in 5-dimensional parameter space.

Figure 5.1: The geometry of the Cherenkov cone produced by a muon near IceCube
DOMs. θc is the angle of Cherenkov light with respect to ~v. Figure from [120].

Scanning the entire LLH parameter space is very computationally intensive.

Instead, the numerical minimizers focus on finding a local minimum around the seed

values, which are given by LineFit. The improvements to LineFit, described in the

previous section, are important to ensure the minimizer is likely to find the global

optimum by scanning the correct region of the likelihood. An effort is also made to

include properties of the ice in this fit. Detailed PDFs constructed from spline fits

of measured ice properties are approximated using the Pandel function [90] [123].

The Pandel function is a modified Gamma distribution that yields a PDF of

1Angles θc and η from Figure 5.1 are folded into the photospline tables discussed in 5.1.1.3.
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the arrival time for photons based on the case of an isotropic, monochromatic, and

point-like light source [120] [124]. For a photon from the Cherenkov cone in Figure

5.1, the time of arrival at a PMT is given by:

tgeo = t0 +
|~v| · (~ri − ~r) + d tan θc

cvacuum
(5.5)

The relative time of arrival, known as a time residual, is given by:

∆t = thit − tgeo (5.6)

A limitation of the Pandel PDF is that it cannot handle negative time residuals

(∆t). Negative time residuals can result due to time jitter in the detection devices

[124] and early noise hits that survive the pulse cleaning processes [90]. Therefore,

a convolution of the Pandel PDF with a Gaussian is done to ensure the finite time

resolution of the detector is considered [124]. This gives a Pandel PDF of:

ppandel (∆t) =
(∆t)deff/λ−1

Γ (deff/λ)
(

1
τ

+ cmedium
λa

)e−∆t( 1
τ

+
cmedium

λa
) (5.7)

where cmedium = cvacuum
n

is the speed of light in ice, λa is the absorption length, and

Γ
(
d
λ

)
is the Gamma function [120]. The absorption length, λa, along with the free

parameters τ and λ, are fit in simulated data and found to have the following values:
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τ = 557 ns

λ = 33.3 m (5.8)

λa = 98 m

The distance between the PMT and Cherenkov cone, represented by d and η,

respectively, in Figure 5.1, must also be fit in the Pandel function [120]. The relative

effect of scattering, depending on angle η, between the unscattered light path and

the PMT axis is determined using an empirical effective impact parameter, deff.

This is why deff appears in equation 5.7 instead of d shown in Figure 5.1. The best

parametrization for deff is given by:

deff = a0 + a1 · d

a1 = 0.84 (5.9)

a0

[m]
= 3.1− 3.9 cos(η) + 4.6 cos2(η)
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Figure 5.2: This figure shows the parametrized Pandel function (values in equations
5.8 and 5.9). Left: A relatively small distance, d, highlights a pole at t = 0 resulting
from the Pandel function. Right: A larger distance, d does not have a pole at t = 0.
Figure from [120].

Figure 5.2 shows the Pandel function using the values in equations 5.8 and

5.9. The Pandel function has a pole at t = 0 for small distances, which corresponds

to a photon that is likely unscattered [120].

The SPE reconstruction finds the vertex, ~r, and angles of incidence, θ and

φ, that maximize the likelihood (or minimize the log of that likelihood) given

in equation 5.4. The probability in equation 5.4 is given by the Pandel PDF in

equation 5.7. There is, of course, some bias associated with only using the earliest

photon when the Pandel PDF was constructed based on any random photon from

the Cherenkov cone. This bias is addressed by using a multiple photoelectron (MPE)

fit (see 5.1.1.3). The value in using the SPE first is to improve the angular resolution

of the tracks compared to LineFit. The SPE fit is performed twice, and the result

that yields the best likelihood is saved and passed as a seed for the MPE fit.
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5.1.1.3 MPE Fit

The previous section described the reconstruction based on fitting pulses from

the first photon to arrive at each DOM. The Pandel PDF fits can be improved by

allowing more than the first pulse to contribute to the reconstruction. The total

charge, nPE, is included in the PDF:

PMPE(∆t) = nPE · pSPE(∆t) ·
[∫ ∞

∆t

pSPE(t′)dt′
]nPE−1

(5.10)

The integral in this modified PDF is computationally intensive, and could only

be implemented as part of the Muon Filter starting in the second year of full-detector

data, which is known as IC86, 2012, because the computing resources at the South

Pole were expanded [119]. Several helpful variables for cutting out background can

be derived from the MPE fit, including a scaled log-likelihood, the number of DOMs

that register a direct hit, and the reconstructed track length [119].

The scaled log-likelihood is the maximum likelihood value divided by the

number of degrees of freedom:

SLogL(x) =
− log10(maxL)

NDOM − x
(5.11)

where NDOM is the number of hit DOMs, and x is the number of parameters

determined by the fit. The fit often finds x = 5, because there are two angles

and three coordinates. Due to an energy-dependent bias for the estimated errors in

the track fits (see Figure 5.8), a cut is made at SLogL(3.5) ≤ 8 to reduce the bias
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[119]. Table 5.1 shows that this cut does a good job reducing the rate of atmospheric

muon background hits.

The number of direct DOM hits, or NDOM is another great tool for determining

the quality of a track reconstruction. Reconstructing a track requires understanding

the journey of the photon from the Cherenkov cone to the DOM. As discussed in

section 5.1.1.2, the longer the photon takes to arrive, the more uncertainty there

is in the original location due to likely scattering. Therefore, the most reliable

information comes from photons that travel directly to the DOM without scattering.

These photons are called “direct hits” and tend to arrive in a very small time

residual: tres ∈ [−15 ns, 75 ns] of the expected time for Cherenkov emission [119].

Only the first photon is counted for a direct hit per DOM, which means the variable

Ndir is counting the number of DOMs that receive a direct hit. The length of the

track determined by the direct hits is known as the “direct length.” The direct

length is another helpful variable for cutting out background events.

The log likelihood in 5.11 compares the number of hits to the expected number

from simulation. The simulation propagates an infinite track through the detector

for a given starting position and direction. The energy loss (assuming a minimum

ionizing muon) is recorded along the track. This process is repeated for every

possible starting position and direction. The resulting massive amount of information

is stored in a table and splined using the photospline package [125] [126]. These

photospline tables are used to calculate charge expectations in the “splineMPE”

reconstruction used at final level.
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5.1.1.4 Muon Filter Cut

The Muon Filter decision is based on the results of the SPE fit. The Muon

Filter divides the sky into roughly upgoing and downgoing regions. The first

region, mostly upgoing, is defined by a zenith angle of θ ≥ 78.5◦. In this region,

the background events are downgoing muons that have been misreconstructed as

upgoing. For every atmospheric neutrino, there are 106 atmospheric muons entering

the detector. Cutting on the parameters that characterize the reconstruction quality

of the event is the main method of removing this background [119]. For events in

the downgoing region, zenith angle θ < 78.5◦, the high-energy muon tracks from

cosmic ray air showers are the primary background. These muons have an energy

spectrum of E−3.7, which is much steeper than the expected E−2 signal spectrum.

The primary method of removing background in this region is to simply cut on

energy-related variables.

All events in the upgoing region (zenith angle θSPE ≥ 78.5◦) are selected that

fulfill:

− log10 (max(LSPE))

NDOM − 3
≤ 8.7 (5.12)

where max(LSPE) is the maximum value of the likelihood function of the SPE track

fit (equation 5.4), and NDOM is the number of triggered DOMs that passed the filter

for the given event [119]. The total passing rate of the Muon Filter is roughly 30-40

Hz.
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5.1.2 Online Level 2 Filter

5.1.2.1 Angular Uncertainty

An important aspect of reconstructing event directions is understanding the

uncertainty in those reconstructions. IceCube generally uses three angular uncertainty

estimators: Cramer-Rao, Parabaloid, and Bootstrap. The Parabaloid and Bootstrap

methods are too computationally intensive to perform on all events in the Online

Level 2 processing, and are only performed if the reconstructions will finish quickly

(see 5.2.2). Cramer-Rao, on the other hand, is relatively fast and gives a lower

bound on the true resolution.

The Cramer-Rao lower bound relation [127] [128] places a limit on angular

uncertainty based on the per-DOM PDFs near the fit minimum from the Pandel-

based MPE PDFs. The per-DOM arrival time probabilities (for hit DOMs only)

are summed in a Fisher information matrix [17]. The Cramer-Rao inequality places

a lower bound on the covariance of pairs of track parameters:

cov(µm, µk) ≥ I(~µ)−1 (5.13)

where the Fisher information matrix is given by:

Imk(~µ) = −

〈∑
i

∂2

∂µk∂µm
ln p(∆ti|~µ)

〉
(5.14)

Here, ~µ represents the x, y, and z coordinates of the vertex, as well as the reconstructed
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direction angles θ and φ. All possible values of ∆ti are averaged (indicated by the

angle brackets) and weighted by the MPE PDF values, p(∆ti|~µ) [90]. The Cramer-

Rao variances determine the angular uncertainty of a track reconstruction. The

variances are given by σθ,CR =
√

(I−1)θθ for zenith and σφ,CR =
√

(I−1)φφ for

azimuth. The final error circle for each event comes from the combination of these

variances:

σCR =

√
σ2
θ,CR + σ2

φ,CR sin2 θMPE

2
(5.15)

The decision to sum over hit DOMs (rather than summing over all DOMs)

produces a per-event angular error estimate that is comparable to the paraboloid

method [90]. The paraboloid reconstruction is still preferred when possible, which

is why the additional offline reconstructions are done on the final events (see 5.2.2

for details of the paraboloid method).

5.1.2.2 Split Fits

Two overlapping down-going tracks are sometimes fit as an up-going track. It is

easy to imagine a scenario where two background muons arrive close in time (perhaps

a corner clipper or another poorly reconstructed track) and the reconstruction

algorithms treat these two events as a single upgoing track. The split fits defend

against this by dividing the pulses into two parts, either by their average time or

at the center of gravity. For a true single track, splitting the pulses either of these

ways will still yield a similar reconstructed direction. For two separate tracks, the
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reconstructions will be drastically different when split.

A geometrical splitting of pulses relies on the center of gravity (COG) of all

the hits. The pulses are divided based on their position with respect to the center

of gravity, which is given by:

~xCOG =

∑NDOM
i=1 qi × ~xi∑NDOM

i=1 qi
(5.16)

where ~xi refers to the positions of individual hit DOMs, and qi is the charge for those

DOMs [119]. Each individual hit position is projected onto the track generated by

the MPE fit. The COG position is also projected onto the track, and it serves as

the divider between sets of pulses. A time-based splitting simply divides the hits

into early and late groups. The mean of all hit times, tmean, is the dividing point

and splits the pulses into two sets as well.

The four subsets - the two from the COG position on the track and the two

from either side of the tmean - are fit again using LineFit. The result from LineFit

is used as a seed for the double-iteration of the SPE maximum-likelihood fit. The

zenith angle, θi, is used to define the cut variable (Table 5.1) for the split fit:

∆Split
SPE

= max
i∈split fits

(cos θi − cos θSPE) (5.17)

5.1.2.3 Bayesian LLH Ratio

The purpose of this filter is to reduce the background rate using relatively

quick processing at the Pole, so a reasonable amount of data can be sent north via
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satellite. The probability of an event being a true upgoing, neutrino-induced muon

- rather than a mis-reconstructed air-shower muon - after the Online Level 2 Filter

is roughly one in a thousand [119]. The event rate is still around 2 Hz and needs

another significant cut. One way to do this (without adding another reconstruction)

is cutting on a likelihood ratio to the SPE fit using a Bayesian approach [129] to

the event reconstruction [119].

Bayes’ Theorem describes the probability of an event A occuring given that B

is true:

P (A|B) =
P (B|A)P (A)

P (B)
(5.18)

This can be adapted to the case of the muon track by considering a track hypothesis

(i.e., a downgoing, atmospheric muon), µ, and the data recorded for an event in the

detector. Then, equation 5.18 becomes:

P (µ|data) =
LSPE(data|µ)P (µ)

P (data)
(5.19)

Here, the probability of the data given the track µ is the SPE likelihood function.

P (µ) is the probability of a muon passing through the IceCube detector, which is

known as the prior function. P (data) can be dropped because it is a normalization

factor that is constant for the observed event. The prior function, P (µ), is given by:

P (µ) = 2.50× 10−7 cos θ1.68 exp

(
− 0.78

cos θ

)
(5.20)
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Incorporating this prior information, P (µ), into the reconstruction accounts

for the strong prior that the event is likely to be down-going. The rate of expected

downgoing atmospheric muons is zenith-dependent, and is many orders of magnitude

larger than the rate of upgoing neutrino-induced muons [129]. Including this function

in a likelihood ratio provides another way to cut down on background down-going

muons that are mis-reconstructed as up-going (particularly for events with zenith

angles close to the horizon).

The SPE likelihood fit and the Bayesian-fit LLH are combined to make the

following cut variable, which is included in Table 5.1:

∆ SPE
Bayesian

= log10 LSPE − log10 (LSPE(data|µ)P (µ)) (5.21)

5.1.2.4 Energy Estimator

The energy of the muon is estimated based on the light deposited along the

track in the detector. For HESE events, described in 3.1.1, the muon track is almost

entirely contained in the detector volume, which means a very good estimate for

the energy of the muon and the neutrino can be achieved. Most events, however,

are not fully contained within IceCube. For these events, the exact energy of the

initial muon is not known (any reference to a “true energy” refers to simulation)

and various energy estimators are used to estimate the muon energy. The muon

energy is used as a lower bound for the neutrino energy. A precise neutrino energy

extrapolation is only possible if the muon interaction point is known.
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This lower bound neutrino energy is more precise for the southern hemisphere,

because the potential path length for an interacting muon is shorter through the

glacial ice than through the Earth’s volume. Therefore, the true neutrino energy is

going to be closer to the muon energy because the muon will not have traveled as far

through a medium before entering the detector. The muon’s deposited energy can

be used as a cut for upgoing and downgoing tracks, because the downgoing muons

will deposit more energy.

Two energy estimators are used in the GFU event sample. The first is called

“MuEX” and is a single template scaling of expected light output of a simulated

event to match observed data [115]. Here, a template refers to one of the photospline

tables described in 5.1.1.3. The single template approach assumes the muon is

minimum ionizing, which means dE
dx

is roughly constant. The energy deposited in

the detector is then determined by comparing the number of photons observed by the

DOMs to the expected photons from a template muon with some reference energy.

Following the derivation in [115], the number of detected photons by a single DOM

can be defined as a Poisson distribution of muon energy E:

λ = ΛE + ρ (5.22)

where Λ is the expected photon yield per unit energy and ρ is the number of noise

photons. The Poissonian likelihood of observing k photons is given by:

L =
λk

k!
exp(−λ) (5.23)
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Taking the natural log of both sides, and plugging 5.22 into 5.23, the likelihood of

detecting k photons in a single DOM is then:

ln(L) = k ln(EΛ + ρ)− (EΛ + ρ)− ln(k!) (5.24)

This can be extended to include all DOMs and maximized with respect to E:

0 =
∑

(kjΛj/(EΛj + ρj)− Λj)

∑
Λj =

∑
kjΛj/(EΛj + ρj) (5.25)

Equation 5.25 can be maximized with respect to the energy, E, to determine

the muon energy. This is done using gradient-descent numerical minimization

algorithms [115].

MuEX is a relatively simple energy reconstruction. An attempt to improve this

estimator is called “Truncated Energy,” which aims to address the stochastic losses

that contribute light to a track. MuEX assumes the muon is minimum ionizing and

therefore deposits roughly constant energy. Stochastic losses contribute additional

bursts of light that can bias the single-template scaling. Truncated energy removes

the highest energy losses, assuming they are the result of stochastic losses, and

averages the remaining energy losses along the track as if they were minimum

ionizing [130]. The result is a more accurate energy reconstruction compared to

MuEX.
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Truncated Energy is configured to use photospline tables (see 5.1.1.3) based on

the South Pole ice model with scattering from Mie et al. [106] rather than attempt

to fit the energy [131]. The mean energy loss rate of a muon, given by
〈
dE
dx

〉
, is

roughly proportional to its energy above 1 TeV (see 4.2.2). Large stochastic losses

in the detector can saturate the DOMs and lead to a poor energy reconstruction.

Truncating portions of the track with the highest loss rates leads to a more robust

measurement of the energy loss rate [115]. Removing the bins with the largest

energy losses cuts outliers from the average and variance in the
〈
dE
dx

〉
calculation.

Therefore, the muon energy is reduced and a better data-MC agreement is reached.

The MuEX energy is used to make cuts on the dataset at different selection

points. For example, it is required that an Online Level 2 event have a successful

MuEX reconstruction to be accepted by the GFU Filter. However, the energy for

each event in the final sample is the value determined by the Truncated Energy.

Figure 5.3: These plots show the truncated energy reconstruction (left) versus MuEX
(right) in the northern hemisphere data. Figure from [131].
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5.2 Event Selection

5.2.1 GFU Filter

The final step of online processing at the South Pole is the GFU Filter. This

takes the 2 Hz Online Level 2 events and only keeps them if they have a successfully

converged SplineMPE fit, have a Cramer Rao uncertainty estimate for a SplineMPE

track, and have a successful MuEX reconstruction [131]. The detailed cuts given

in Table 5.1 drop the rate down to roughly 6.5 mHz. The cuts are tuned to be

sensitive to a neutrino signal with a spectrum of E−2 because of First Order Fermi

Acceleration, which is described in detail in section 3.1.2.

Table 5.1: The GFU event selection cuts corresponding to the passing event rate
for IC86, 2012. An event is selected if it passes all 0-6 cut levels. Figure from [119].

Both the upgoing and downgoing selections for the GFU filter use Boosted

Decision Trees (BDTs) to classify events as signal and background. The final BDT

cuts were chosen to optimize point source sensitivity. The public software package

scikit-learn [132] was used for BDT training, and the IceCube software package
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pyBDT [133] was used for classification.

The final event rates as a function of the true neutrino energy and zenith,

determined by running the filters on simulated data, are shown in Figures 5.4 and

5.5, respectively.

Figure 5.4: These plots show event rate versus true neutrino energy. The upgoing
(northern) selection is shown on the left and the downgoing (southern) is on the
right. The atmospheric muons are not shown on this plot, but they dominate below
∼1 PeV in the southern sky. The blue solid line refers to the best fit astrophysical
neutrino spectrum (described in 3.1.1), which is approximately E−2.28. Figure from
[131].

Figure 5.5: This plot shows the true neutrino zenith (left) and reconstructed zenith
(right) versus event rate in the final GFU sample. Figure from [131].

5.2.2 Offline Processing

The entire processing chain up to this point is completed at the Pole and sent

north for immediate use in real-time analyses. Additional processing, discussed in
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this section, is completed offline in the north and used for archival studies.

There are three angular estimators used regularly in IceCube: Cramer-Rao,

Paraboloid, and Bootstrap. Cramer-Rao is the fastest, which is why it is favored

by the online analysis. However, it is also the least accurate of the three. Once the

events passing the GFU Filter are sent north, the Paraboloid and Bootstrapping

methods are applied to the events.

The Paraboloid estimator is derived directly from the reconstruction likelihood

space [134]. This method takes the minimum from the track fit and scans the

nearby likelihood space by varying the fit parameters. The resulting points in that

likelihood space are fit with a parabola [119]. This method requires fitting the

likelihood function repeatedly, which is why it is too slow for online reconstruction.

It is particularly slow for events with high numbers of DOM fits.

Figure 5.6: This plot shows the median angular resolution by energy bin of the
neutrino (solid lines) and muon (dotted lines) as a function of true neutrino energy.
The caption refers to the declination range being tested. Figure from [131].
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The Bootstrap estimator does not directly evaluate a likelihood. Instead, the

process is to randomly remove hits and refit the track direction. This process is

repeated to define the uncertainty in track direction. If a single hit from far away is

removed and the direction changes significantly, then the angular uncertainty will

be relatively large. If all the hits align, then removing one will have little impact and

the angular uncertainty will be small. This is a helpful angular estimator because

it will always return a value. Paraboloid, on the other hand, can fail to return a

result.

All three angular estimators are used in this event selection. The runtime

for each estimator is related to the number of photons in each event. The number

of DOMs hit and the reconstructed energy determine which estimator is used for

each event. If the reconstructed energy from MuEX (5.1.2.4) is below 4 TeV, then

Paraboloid is used. For a MuEX value above 4 TeV, Bootstrapping is used if fewer

than 300 DOMs are hit and Cramer-Rao is used for more than 300 DOMs [131].

Figure 5.7: This plot shows the rate of Cramer-Rao, Paraboloid, and Bootstrap
estimators used in the northern (left) and southern (right) sky. Figure from [131].

The resulting angular uncertainty is shown in Figure 5.6. Each event has a

correction applied called a “pull.” A pull correction is used because the Monte
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Carlo simulation’s angular uncertainty is unrealistically small. Figure 5.8 shows

this tendency, which is particularly dramatic at higher energies, in simulation by

plotting the true direction divided by the reconstructed direction. The solution in

this dataset is to divide each energy bin by some factor to pull the ratio of Ψtrue
Ψreco

to

a flat line (also shown in Figure 5.8).

Figure 5.8: Left: Uncorrected ratio of true direction to reconstructed direction
errors. The high energy values increase dramatically due to the unrealisitically
small reconstructed angular uncertainty in simulated data. Right: The corrected
ratio pulled down to a value of 1.1774σ. Figure from [135].

The values in each bin are corrected to a value of 1.1774 [131] [135]. This

decision comes from difficulties mapping the two-dimensional direction (e.g., δ and

φ) onto the one-dimensional sigma. This is clearly illustrated in Figure 5.9, which

shows the reconstructed values will correctly fall within 68% containment for each

angle, leading to a grid. However, the single sigma value can only be used to

make a circle, which loses information in the corners of the grid created by two

reconstructed angles. The result of a pull correction to a value of 1σ will only lead

to 39% containment. A compromise of 1.1774σ is used to achieve 50% containment,
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which is the median pull correction.

Figure 5.9: This figure shows how information is lost attempting to map the two-
dimensional reconstructed direction uncertainty onto a one-dimensional value of
sigma. A value of 1.1774σ must be used to achieve 50% containment, which is
known as the median pull correction. Figure from [135].

5.2.3 Neutrino Effective Area

The effective area of an event selection is used to compare datasets to one

another. Effective area (m2) represents the size target the detector becomes to a

particle of a given energy and declination. This quantity is independent of signal

spectrum and flux. The goal is to show how sensitive the dataset is to a particle

of a certain energy coming from a particular direction. This is very useful if an

analyzer is interested in signal neutrinos in a specific energy range, because all the

datasets within IceCube are optimized for different energy ranges. Comparing the
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effective areas can be a good way to decide what dataset is best for a given study.

The effective area for the GFU selection is shown in Figure 5.10.

Figure 5.10: The neutrino effective area of the 2011-2018 GFU Offline sample by
declination. Effective area generally increases as a function of energy. At high
declinations, the effective area peaks and drops due to Earth absorption.

5.3 Simulation

Reliable simulation of IceCube data is essential to any physics analysis. An

analyzer uses simulated data to develop the steps of an analysis and determine

the sensitivity and discovery potential of the analysis. If the simulation data is

completely different from true detector data, then all the tests and decisions made

for the analysis are useless. The goal of simulated data is to accurately model the

common backgrounds in the northern and southern sky. In the northern sky, the

most common background is from atmospheric neutrinos interactions that produce
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muons. In the southern sky, the muons from cosmic ray air showers enter the

detector directly as a source of background (this does not happen for the northern

sky because the Earth acts as a shield). These sources of background are simulated

in Monte Carlo datasets.

Common background events are muon bundles and corner clippers. Muon

bundles refer to muons arriving from the same air shower with very small spatial

separation [120]. Corner clippers are muons that pass just outside the detector.

They send some photons into the detector, mimicking an upgoing muon, but the

reconstruction is poor and only provides a small amount of light near the edge of

the detector.

5.3.1 Cosmic Ray Simulation

A software package called CORSIKA (COsmic Ray SImulations for KAscade)

[136] is used to simulate cosmic ray air showers. CORSIKA is a detailed Monte Carlo

program that has been developed into a tool for many scientific collaborations. The

simulated air showers are induced by a range of cosmic ray primaries, including

protons, light nuclei up to iron, and photons [136]. The compositions and energies

of these cosmic ray primaries are generated randomly from the Polygonato model

[137]. The output of CORSIKA is coordinates and momenta of resulting shower

particles, which includes a correctly weighted energy spectrum.

CORSIKA provides the simulated background of cosmic-ray muons that dominates

the lower level IceCube data, particularly in the downgoing region. Coincident air-
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shower events, which includes several muons from distinct air showers that appear

as one event, are also simulated. The muons are tracked from the air shower in the

atmoshpere down to the IceCube detector, approximately 1.4 kilometers below the

ice. The muons are propagated through IceCube’s detector volume as if they were

produced in charged current interactions (see 4.2). Only muons are simulated all

the way to the detector because other particles will not survive the thick layer of

ice.

5.3.2 Neutrino Simulation

A Monte Carlo generator called ANIS (All Neutrino Interaction Simulation) is

the software foundation for IceCube’s neutrino-generator (“NuGen”), which simulates

the neutrino events [138]. The simulation includes both atmospheric neutrino backgrounds

and astrophysical signals. The neutrinos are prepared based on the desired spectrum,

propagated through the Earth, and then interactions are simulated near the detector

volume. This simulation software requires elaborate models for neutrino-nucleon

interaction cross-sections [139] and propagation through the Earth. The Preliminary

Reference Earth Model [140] provides the density profile for Earth in ANIS [138]

(see Figure 5.11).

101



Figure 5.11: The density profile of Earth from the Preliminary Reference Earth
Model is shown here. This is used to understand how neutrinos would propagate
through the Earth. Figure from [17], plotting the values from Table 1 in [140].

There are several steps to producing an accurate neutrino simulation. The first

is to simulate a spectrum of neutrinos with enough statistics at high energies, which

can be computationally expensive for analyses focused on TeV-energy ranges. The

atmospheric neutrinos have an energy spectrum of E−3.7, which means one would

have to simulate billions of neutrinos to start seeing high statistics in the TeV-

range. Rather than spend a lifetime simulating neutrinos with the proper spectrum,

a generic primary spectrum is generated: dN
dEµ
≈ E−γν with γ = 1 or γ = 2 [119].

This generic spectrum can be re-weighted to apply the correct probability of being

detected.

The next step is to model the neutrino-nucleon cross section, which is taken

from the parton distribution function calculated in [103], and calculate the probability
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the neutrino will interact before reaching (or inside) the detector. Neutrinos are

propagated in small steps through the Earth and all interactions (absorption, resonant

scattering, neutral current interactions, etc.) are included. Of course, the simulated

neutrino could interact far away and produce a muon that does not reach the

detector. This is computationally expensive considering the low probability of

yielding an event that deposits enough energy in the detector volume to trigger

an event. The solution is to force neutrinos to interact at a random vertex near

the simulated detector, even though this unrealistically improves the efficiency of

low-energy neutrinos, and weight the probability of interaction by the trigger-level

effective area. This is a complicated way of saying the neutrinos interact near the

detector, but each neutrino sees a different size target depending on its energy. Once

the neutrino has propagated to the interaction vertex and its energy is calculated,

the neutrino interacts according to the Standard Model. At these energies, the

neutrino mostly interacts by deep inelastic scattering via the charged or neutral

current, depending on the cross-section and interaction energy.

All these simulation steps in NuGen include randomization parameters that

contribute to per-weight events known as OneWeight. The dataset size, volume of

interaction, generic spectrum, and more all contribute to OneWeight. The units of

OneWeight are GeV cm2 sr, and it is given by:

OneWeight =

(
Pint

E−γ

)
· Area · Ω

∫ Emax

Emin

E ′−γdE ′ (5.26)

Here, Pint is the total interaction probability weight and E−γ is the neutrino
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generation energy spectrum shape. Area is the area over which neutrino events are

generated, Ω is the solid angle, and γ is the spectral index from Emin to Emax. Since

OneWeight incorporates the generic spectrum that produced neutrinos (e.g., E−1),

the actual weight on each neutrino event must include the physical spectrum (e.g.,

E−3.7). Therefore, the weight for each event is given by:

wi =
OneWeight

Nevents

× dΦν(Eν)

dEν
(5.27)

UsingOneWeight requires three pieces: OneWeight, known as “ow” in standardized

dataset files, which has units of GeV · cm2 · sr; the flux model, Φ, which is in

GeV −1 · cm−2 · sr−1 · s−1, is the desired neutrino spectrum; and the total of amount

of time, t, measured in seconds. This leads to:

wevent = ow · Φ · t (5.28)

The sum of the weights then gives the number of expected events:

Nexpected =
events∑
i

wi (5.29)

5.3.3 Detector Simulation

Once the neutrino interaction is simulated, the next step is to propagate the

resulting particles through the ice and identify where light is produced (see Figure

5.12). This light can come from Cherenkov emission of the muon or from stochastic
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losses. Once those photons are created in the simulation, they are propagated

outward until they are detected by a DOM, absorbed, or move too far from the

detector. This portion of the simulation is conducted by a Monte Carlo software

package called PROPOSAL (Propagator with Optimal Precision and Optimized

Speed for All Leptons)2 [141]. PROPOSAL calculates the continuous energy loss of

the muon, as well as the stochastic losses (bremsstrahlung, pair production, etc.).

The photons produced must be propagated with consideration for scattering

and absorption in the ice. The Photon Propagation Code (PPC) [142] and CLSim

[143] are used to simulate these photons. The result is a set of times each DOM is

hit by simulated photons and includes effects from ice models, photon wavelength,

and PMT quantum efficiency. Noise associated with the DOM glass scintillation is

simulated with Vuvuzela [116]. The response of the PMTs is simulated in PMTRe-

sponseSimulator [144], which considers the entire waveform digitization process

within the DOM, including the trigger system.

2That acronym is, perhaps, a stretch.
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Figure 5.12: The simulation chain in IceCube. Figure from [107].

Simulated data is reconstructed and filtered following the same steps described

in 5.1 and 5.2, including online processing at Pole and the offline processing in the

north.

5.4 Seasonal Variation

There is some natural variation in the IceCube data based on atmospheric

temperature (see Figure 5.13). When the air temperature increases, the atmospheric

density decreases and the decay probability increases, which means the rate of high-

energy muons increases [9]. Because this analysis uses pre-computed all-sky scans

(see 7.5) instead of scrambled data strictly around the time of the GRB, the seasonal

variation was a source of concern for the analysis. To check the impact of seasonal

variation, the sensitivity and 3σ discovery potential were calculated using the median
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expected background rate from Figure 5.13 compared to the maximum background.

Figure 5.13: The seasonal variation of the 2011-2018 GFU Offline sample. Runs are
grouped into five days and the average rate among those runs is used. The orange
line indicates the 90% rate of this dataset.

The ratio of the median background rate to the maximum background rate is

shown in Figure 5.14. There is very little change in the sensitivity and 3σ discovery

potential due to the higher background rate. There are small impacts in the longest

time windows, but there is never more than a 10% change. This is especially clear

in Figure 5.15, which shows how many bins in the declination vs. time window grid

had any change in sensitivity. A vast majority of bins had no change in sensitivity,

and no bins changed more than 10%. The final decision in this analysis was to

use the 90% background rate to have a slightly conservative estimate of expected

background events. The 90% background rate refers to the orange line in Figure

5.13, which is 90% of the maximum 5-day rate from the entire dataset.
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Figure 5.14: The change in sensitivity due to different expected background rates.
The median and maximum rates refer to values taken from Figure 5.13. These
figures confirm the effects of seasonal variation are quite small and mostly limited
to long time windows and extreme declinations.

Figure 5.15: These figures highlights how few bins change from Figure 5.14. Only a
small fraction of bins change, and the ones that do mostly change by a few percent.
No bins change more than 10%.
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Chapter 6: Unbinned Likelihood Method and Frequentist Approach

The unbinned likelihood method and frequentist approach used in this analysis1

determines the significance of neutrinos coincident with GRBs. Although rare, due

to the sheer number of atmospheric neutrinos, an accidentally coincident neutrino-

GRB detection is possible. The probability of each neutrino event being signal

versus accidental coincidence is calculated based on its reconstructed energy, arrival

time, and reconstructed direction relative to the GRB.

It is possible to perform this analysis using a binned likelihood approach.

In this case, the number of events within some angular bin around the GRB’s

position (determined by the detector’s angular resolution) would be considered [146].

The number of events measured would be compared to the number of expected

background events from Poisson statistics. This method is computationally efficient,

but the bin limitation risks losing signal events that are just beyond the bin edge.

An unbinned likelihood, on the other hand, considers the contribution from all

neutrinos. In practice, only events within roughly 10 degrees are calculated in the

likelihood, because any events beyond that will have a negligible impact on the test

statistic (see 6.8).

1and previous GRB analyses from recent years [17] [90] [145]

109



The goal of this entire chapter is to set up a method to assign a probability

that the data is consistent with typical background. The information from all the

individual neutrinos gets combined into a test statistic, which represents the GRB

as a whole. Using frequentist statistics, this test statistic can be converted into a p-

value, a probability that this data is consistent with background. If we find the data

is very inconsistent with background, then we have found evidence of astrophysical

neutrinos correlated with a GRB. Finally, the outcome of a Binomial test reveals if

the collection of GRB p-values is consistent with background-only neutrinos, or if,

instead, there is evidence that sub-populations of GRBs are producing detectable

fluxes of neutrinos.

6.1 Likelihood Method

The likelihood is used to understand the background neutrinos and to apply

reasonable models for the signal neutrinos. The data is assumed to have both

background and signal events, which are modeled using three signal and three

background probability density functions (PDFs): space, energy, and time [146].

Each neutrino candidate near a given GRB will get scored based on the six PDFs,

and those event scores get combined into a likelihood, and ultimately a test statistic.

6.1.1 HEALPix

HEALPix (Hierarchical Equal Area isoLatitude Pixelization of a sphere) is

a mathematical framework to make skymaps by dividing a spherical surface into
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pixels that cover equal surface area [147] [148] [149] [150]. “Healpy” is a software

package that generates the “HEALPix” maps described throughout this thesis. In

this analysis, we divide the sky into HEALPix maps with Nside = 128, meaning each

pixel represents approximately half a degree in the sky. The number of pixels, Npix,

in a HEALPix map is calculated with the following (from [150]):

Npix = 12N2
side (6.1)

which results in pixels of the same area:

Ωpix =
π

3N2
side

(6.2)

A plot of a few common pixelizations is shown in Figure 6.1. The unbinned

likelihood is evaluated at the center of each pixel. Each pixel, representing a GRB

position, will have a test statistic, and that test statistic is the result of contributions

from the individual neutrinos across the sky.
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Figure 6.1: An example of a sphere divided into 12, 48, 192, and 768 pixels. There
are 196,608 pixels in the maps used for this analysis (Nside=128). Figure from [147].

6.2 Probability Density Functions (PDFs)

Probability density functions (PDFs) describe an expected distribution of

values of a continuous random variable. A PDF is defined to have its integral equal

to 1, and therefore provides a relative likelihood. It is important to understand that

a PDF plot, such as Figure 6.4, may have a distribution of values that appears to

lead to a total probability greater than 1. The variable is continuous, and integrating

that continuous function leads to a value of 1. A spline is fit to the PDFs to provide

an instantaneous value at every point.

PDFs are generated for the energy, space, and time of background (atmospheric

muons and neutrinos) and signal (astrophysical neutrinos). These six PDFs are used

to determine the probability of an event being of astrophysical origin. Because the
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PDFs offer relative likelihoods (rather than absolute likelihoods), the ratio of signal

to background is used (see 6.8). The signal and background PDFs are combined for

each event:

S(x) = Sspace(~x)× Stime(t)× Senergy(E, δ) (6.3)

B(x) = Bspace(~x)×Btime(t)×Benergy(E, δ)

where δ indicates the declination-dependence of the energy PDF. The background

PDFs show distributions in energy, time, and space for typical atmospheric neutrinos.

When the background is well-understood, there is a good separation between signal

and background events. This leads to an understanding of what to expect from

background-only fluctuations without any signal (i.e. the Null Hypothesis) [151].

The signal PDFs are predicted distributions in energy, time, and space based on

Monte Carlo simulation. The signal PDFs also include several assumptions, such

as the energy spectrum from a source. In this analysis, an E−2 energy spectrum is

assumed for neutrinos produced in a GRB.

The background energy PDF is constructed from data, which is intended to

represent the atmospheric neutrino spectrum. This is not a perfect representation

for several reasons. First, there is significant contribution from cosmic-ray muons,

particularly in the southern sky. Second, the PDF is constructed from reconstructed

muon energy, which is a lower bound on the true neutrino energy. The reconstructed

muon energy is used, because the neutrino (and therefore its energy) is not measured
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directly. Finally, the events included in data must pass a series of cuts, which means

the fluxes are scaled by the effective area of the detector at the final processing level.

The background energy spectrum is softer than that of signal, with many low-energy

events predicted and a steep drop at higher energies. A spline fit to the data is used

as the actual background energy PDF. These splines are done per-declination using

the same sin(δ) bins in the space PDFs in Figure 6.4. These splines are shown for a

few declinations in Figure 6.2. There are very clear differences between the northern

and southern sky (see 5.2), which is why the declination-dependent PDF is most

appropriate.

Figure 6.2: The reconstructed energy from data is used to make the background
energy PDF in this analysis. A spline is fit to the data for the actual PDF values at
different declinations. The solid black line shows the full data binned by energy, and
the color-coded lines show the spline fits (the actual PDFs) at a few representative
declinations.

The signal energy PDF is the assumed spectrum of astrophysical neutrinos. In

GRB analyses, this is assumed to be E−2 (see 3.1.2). The PDF is parametrized from

the reconstructed (or “proxy”) energy distribution of events from a simulated E−2
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spectrum. Figure 6.3 shows the ratio of the signal energy PDF to the background

energy PDF at a few representative declinations.

Figure 6.3: These three plots show how the ratio of the signal energy PDF to the
background energy PDF varies with declination.

The time PDF is relatively straightforward. The background time PDF is
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assumed to follow a uniform distribution across the analysis time window, because

background events can be independently produced at any time. The signal PDF

is a uniform box, meaning the PDF value is constant when the events falls within

the time window and 0 when they fall outside the time window. Previous GRB

analyses [17] [90] [145] in IceCube have tried to soften the boundary by using a

Gaussian tail for a falling PDF value at both ends of the time window. Those

analyses were limited to the prompt phase of the GRB and used the Gaussian tails

to extend beyond the T100 with a reduced weight in case there were neutrinos near

the boundary edge. For this analysis, a box time profile is sufficient because several

time windows are included that extend far beyond the typical time of a GRB’s

gamma-ray emission. This ensures signal neutrinos will not be missed if they are

close to (but not coincident with) the time of the GRB. The specific time windows,

and the accompanying compuational complications, are discussed in detail in 7.4.

The background space PDF is created from data and expressed in Equation

(6.4). To first order, IceCube is assumed to have azimuthal symmetry, which means

the background is uniform within a declination band. There is some azimuthal

anisotropy present in IceCube, but the effects get smoothed out as the detector

rotates over long time windows. A spline fit to a histogram of sin(δ) is enough

information for a background space PDF, and the specific source location does not

matter beyond the declination band [151]. This is shown in Figure 6.4, where the

northern and southern sky have been split to emphasize the difference.

The background space PDF is given by:
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B (δi, φi, σi) =
1

2π
P (δi) (6.4)

where δi is the declination of the event being considered. Note that although the

right ascension, φi, and the angular error, σi, of the event do not contribute to the

background spatial likelihood, this information will be highly relevant to the signal

spatial PDF.

Figure 6.4: The real data is used to make the background space PDF in this analysis.
A spline is fit to the data for the actual PDF values. The southern sky (left) ranges
from −90◦ < δ < −5◦ and the northern sky (right) covers −5◦ < δ < 90◦.

The probability of detecting neutrinos at particular energies varies dramatically

across the sky. Figure 6.5 demonstrates the difference between the northern and

southern sky in terms of energy and declination. The northern sky is shielded by

the Earth, which becomes opaque to high-energy neutrinos because their interaction

cross-section increases with energy. The highest energy neutrinos are only observable

from the southern sky where there is no such shielding.
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Figure 6.5: This figure shows a 2D histogram of the data by energy and declination.
The northern sky (sin(δ) greater than 0.087) shows a higher probability of seeing
neutrinos up to tens of TeV, while the southern sky expects energies up to the PeV
range.

The signal space PDF is a 2D Gaussian, meaning the probability of an event

being spatially correlated with a GRB drops off with Gaussian probability [146].

S (~xi, σi|~xsrc) =
1

2πσ2
i

e
− |~xi−~xsrc|

2

2σ2
i (6.5)

where ~xi is the reconstructed direction of the neutrino in right ascension and declination,

σi is the uncertainty on that reconstructed neutrino direction, and ~xsrc is the position

of the GRB [146]. In this analysis, the GRB position uncertainty is often quite large.

In that case, many positions on the sky have test statistics calculated and a penalty

is applied after the test statistic calculation. This is described in more detail in 7.5.
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6.3 Log Likelihood

The PDFs described in the previous section get combined following Equation

6.3. Equation 6.3 includes xi to represent all the event characteristics (space,

energy, and time) for each candidate neutrino (indicated by i). The individual

event probability densities are multiplied together to get the overall likelihood of

the data:

L(ns|nb, xi) = PN

N∏
i=1

[psS(xi) + pbB(xi)] (6.6)

The probabilities are then ps = ns
ns+nb

and pb = nb
ns+nb

, and ns and nb are

the number of expected signal and background counts, respectively. Given these

expected signal and background counts, PN is the Poisson probability of the total

observed event count:

PN =
(ns + nb)

Ne−(ns+nb)

N !
(6.7)

If we write this out fully, it is clear we can remove the (ns + nb)
N term from

outside and the 1
ns+nb

from inside the product:

L = ������
(ns + nb)

Ne−(ns+nb)

N !

N∏
i=1

[
ns

����ns + nb
S(xi) +

nb

����ns + nb
B(xi)

]

The next step is to take the log of the likelihood, which is where we get the

shorthand “log likelihood” (or “LLH”). Note that a log of a product will become a
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sum.

ln(L) = ln

(
e−(ns+nb)

N !

N∏
i=1

[nsS(xi) + nbB(xi)]

)

= −ns − nb − ln(N !) +
N∑
i=1

ln [nsS(xi) + nbB(xi)]

The test statistic is the ratio of the likelihood with the best-fit n̂s and the

likelihood with ns = 0.

TS = ln

[
L(n̂s)

L(ns = 0)

]

= ln(L(n̂s))− ln(L(ns = 0))

= −n̂s −��nb −����ln(N !) +
N∑
i=1

ln [n̂sS(xi) + nbB(xi)]

−

(
−��nb −����ln(N !) +

N∑
i=1

ln [nbB(xi)]

)

= −n̂s +
N∑
i=1

ln

[
n̂sS(xi) + nbB(xi)

nbB(xi)

]

= −n̂s +
N∑
i=1

ln

[
n̂sS(xi)

〈nb〉B(xi)
+ 1

]

Finally, the log likelihood ratio is maximized with respect to ns to find the

test statistic. The PDFs and likelihood can be combined into a single test statistic

to determine if an event is more likely created in Earth’s atmosphere (background)
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or beyond (signal). Here, n̂s indicates the fit value of ns that maximizes the LLH.

6.4 The Test Statistic and Frequentist Method

The previous section outlined the steps to obtain the test statistic:

TS = ln

[
L(n̂s)

L(ns = 0)

]
= −n̂s +

N∑
i=1

ln

[
n̂sS(xi)

〈nb〉B(xi)
+ 1

]
(6.8)

This log likelihood ratio combines information about expected signal and

background data, producing a number that indicates if the observed events at a

location on the sky is more signal-like or more background-like. Unfortunately, it is

not so simple to declare if a point on the sky is signal-like. The analysis described

in this thesis uses a frequentist approach to the calculation of signficance. The

basic idea is to determine baseline background behavior using scrambled data (see

7.5 for a description of scrambles) and see how far the real (unscrambled) data

strays from that baseline. If the real data is very similar to the baseline, then it is

considered consistent with background. If the data is very different, then it is said

to be inconsistent with background. The background is sometimes referred to as the

“null hypothesis” because there is no injected signal. Instead of claiming a result

is signal-like to some extent, the goal is to reject the null hypothesis as strongly as

possible.

The first step is understanding the background, meaning a dataset with no

signal2 in it. The baseline behavior of the data must be understood for each GRB

2This analysis assumes that the diffuse neutrino flux measured by IceCube is present in the
dataset, and is testing whether it is correlated with GRBs (signal-like) or not (background-like).
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in order for the test statistic to have any meaning. The frequentist approach

is to calculate the test statistic for the same GRB using different realizations of

background-only data. If this is repeated many times (at least 104 scrambles) then

the random fluctuations in background data will lead to different test statistics. This

group of many test statistics is called a test statistic distribution. Figure 6.6 shows

an example test statistic distribution for a well-localized GRB (position uncertainty

<1◦) at a few different time windows. For very short time windows, most test

statistics are zero, but the longer time windows begin to have a very clear tail of

non-zero test statistics.

Figure 6.6: This plot shows the shape of test statistic distributions (left) and their
cumulative sums (right) for a well-localized GRB near the horizon at three different
time windows. Short time windows have almost all test statistics equal to zero,
while longer time windows have more nonzero test statistics.

It is clear from Figure 6.6 that TS = 5 means something very different for

the three time windows. Now that there are many test statistics clarifying the

expectation of the background, it is much easier to make a statement about the

significance of a measured test statistic. The p-value can be read off the cumulative

sum (the plot on the right in Figure 6.6). The p-value is the fraction of test statistics

above the threshold value (i.e., the measured TS value). If the measured test statistic
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is, for example, the tenth highest test statistic out of 104 trials, then the p-value

would be: P = 10
104 = 10−3. A p-value of 10−3 is close to a 3σ result, which would

certainly be considered interesting in the context of a neutrino-GRB analysis. In

this case, σ refers to a standard deviation of a standard normal distribution. The

p-value can be determined for any test statistic by comparing it to the rest of the

test statistic distribution (or reading it off the y-axis of a cumulative sum).

When constructing an analysis, it is important to set expectations for the

unblinded results, including sensitivity and discovery potential. The idea behind

these terms is to set thresholds in advance that identify a potentially interesting

result. A sensitivity is defined as the amount of signal present such that 90% of

test statistics are greater than the median of the background-only test statistic

distribution. In other words, this is the median 90% upper limit one would set

if there were no signal observed in real data. This does not mean the unblinded

data must be measured many times. The sensitivity threshold is found by injecting

simulated signal into scrambled data, and increasing the amount of injected signal,

until a distribution is created with 90% of trials above the median background

test statistic. This threshold represents an amount of signal that would make the

unblinded data just different enough from the expected background that there are

hints of signal present in the data. For a GRB analysis, a sensitivity can be difficult

to define because most background-only test statistics are zero. A stronger threshold

is required to truly identify signs of signal present in the data.

A discovery potential is a much stronger threshold, and typically refers to an

amount of signal present such that 50% of the test statistics are greater than the
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5σ test statistic of the background-only test statistic distribution (in other words,

99.99998% of test statistics). In the realm of particle physics, where one may be

looking for evidence of a new particle, the burden of proof is far higher because the

existence and detection of the particle must be demonstrated. The diffuse neutrino

flux, on the other hand, has already been demonstrated beyond 5σ. A true discovery

is still expected at the 5σ threshold, but if any portion of this analysis (a single GRB

p-value or a binomial p-value) passed the 3σ threshold (99.865% of trials) then it

would still be a noteworthy result.

The injected signal refers to an amount of neutrino flux generated by the

GRB (see 5.3.2). This is also discussed as time-integrated flux as well. Figure 6.7

shows the passing fraction versus injected flux, which determines the sensitivity of

an example GRB in a given time window.
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Figure 6.7: This curve shows the flux injected to determine the sensitivity for an
example well-localized GRB. The y-axis shows the fraction of test statistics greater
than the median of the background-only test statistic distribution. The background
test statistic distribution has 105 trials and the injected signal distributions have
300 trials per point. In this example, the analysis is sensitive to a flux of 6.7 ×
10−10 GeV−1cm−2s−1.

Figure 6.7 shows the result of the method to determine the sensitivity for a

single time window for a GRB. This can be repeated for every time window to

demonstrate how the sensitivity and discovery potential change with time window.

The flux from the x-axis of the passing fraction plot is often re-written as E2F ,

which has units of GeV · cm−2:

E2
0F = E2

0

∫
Φdt (6.9)

where Φ is the flux injected as signal, t is the time of signal injection, which is

assumed to be the entire time window, and E0 is 1 TeV. F is known as the time-

integrated flux.
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It is important to note that the 3σ discovery potential can be very close to the

sensitivity for shorter time windows because of the pile-up at test statistics equal to

zero. The typical GRB test statistic distribution has a median background TS of 0

and relatively few nonzero TS values in the tail. When considering a 3σ discovery

potential, the 3σ threshold TS value may be quite close to zero. This may lead to a

situation where it requires more injected signal to get 90% of trials greater than zero

compared to only 50% of trials above a TS slightly greater than zero. Therefore,

it is often easier to show a modified 3σ discovery potential where 90% of trials are

above the background-only 3σ value. Figure 6.8 shows this for an example GRB

roughly 10◦ north of the horizon.

Figure 6.8: This plot shows the neutrino time-integrated flux sensitivity and
modified 3σ discovery potential for an example GRB that is poorly-localized
(GRB 180423A) compared to a simulated well-localized GRB centered at the same
declination (9.84◦). The solid lines show the sensitivity and the dashed lines show
the 90% above the background-only 3σ. This GRB had a T100 of 54 seconds, making
it a northern sky long GRB.

It is important to study how this sensitivity changes with time window and
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declination. Figure 6.9 shows this behavior for a few example time windows. The

behavior is clear with respect to declination: the northern sky is an order of magnitude

more sensitive than the southern sky, with the most sensitive region within 10◦ of

the horizon. The difference between time windows is more significant for the 3σ

discovery potential, while the sensitivities remain quite similar, even for drastically

different time windows.

Figure 6.9: The different colors represent a range of time windows, from a fraction
of a second out to two weeks. For sensitivity, this has very little impact on the
time-integrated flux. For discovery potential, the impact is more significant, but is
still less pronounced than the impact of declination. The southern sky is an order
of magnitude less sensitive than the northern sky.

6.4.1 Stacked Test Statistic

The test statistic described in this chapter considers events on the sky within

a specific time window, contributing to a test statistic for a single GRB. Another

common approach is to consider the events within specified time windows of many

GRBs, all of which contribute to a test statistic for a collection of GRBs. This is

known as a “stacked” test statistic.

Equation 6.8 is still valid, and now i runs over all events on-time with any of
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the GRBs. The stacked test statistic is not used in the pre-unblinding portion of this

analysis. The purpose of the stacked test statistic is to set limits on the collection

of GRBs post-unblinding if no significant results are found from individual GRBs

or the Binomial test (described in the next chapter).
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Chapter 7: Eight-Year Analysis Details

7.1 Overview

The goal of this analysis is to study 2,091 GRBs over the time period from

May 2011 - October 2018 individually and as an ensemble. This is accomplished

by searching for coincident neutrino emission from each GRB at 10 time windows,

determining the most significant of those time windows using the frequentist methods

described in section 6.4, and running a Binomial test on the collection of p-values to

understand if the entire set is significant. This chapter outlines the details required

to run these tests, including the complicated procedure of evaluating each GRB

using HEALPix maps and pre-generated all-sky scans.

In particular, section 7.5 explains how the test statistic distribution is created

for each GRB, including those with complicated probability maps. In addition to

the log likelihood and test statistic procedure explained in section 6.1, a penalty is

applied to each test statistic based on its proximity to the GRB position.

Figure 7.1 gives an overview of the analysis steps. Each step in this diagram

is explained in detail in this chapter.
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Figure 7.1: This flow chart outlines the steps in this analysis. Each GRB is
considered individually. If the burst’s position was only detected by the Fermi-GBM
satellite, then the HEALPix map provided by the Fermi Collaboration is loaded and
used as a probability map for the GRB. If the burst’s position is not determined
by GBM (or is determined by GBM and also a satellite with better localization),
then a HEALPix map is generated using the source position uncertainty provided by
GRBweb (with a minimum of 1◦). The pre-computed all-sky scans are used to build
a test statistic distribution for each time window (TW) and the most significant
p-value is selected to represent the GRB. A Binomial test is performed on these
final p-values to determine the significance of the collection of p-values.

7.2 GRB Catalog

GRBs were selected for this analysis if they fell within the dates of the neutrino

dataset described in chapter 5, and if they had a measured start and stop time in

GRBweb (see section 2.3.2). 2,125 GRBs met these criteria; however, 34 of those

GRBs were localized solely by Fermi-GBM but did not have a HEALPix map (6.1.1).

These 34 GRBs were not included in this analysis and have been noted for study in

the near future when the Fermi team can re-run their analysis. This led to a final
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Sub-Population Number of GRBs Percent of Catalog
Northern Long 960 46%
Northern Short 183 9%
Southern Long 814 39%
Southern Short 134 6%

Table 7.1: The number of GRBs in each sub-population out of a total of 2,091.
Short GRBs have a T90 ≤ 2 seconds, while long GRBs have T90 > 2 seconds. The
southern sky has a declination of δ < −5◦ and the northern sky has δ ≥ 5◦. GRB
information from GRB Web [62].

catalog of 2,091 GRBs.

These 2,091 GRBs are split into four-subpopulations. The first split is by short

and long GRBs, because they are commonly thought to have different progenitors

(see section 2.2). The second split is by the northern and southern sky at a

declination of δ = −5◦. This was done because of the dramatic difference in

sensitivity of our analysis between the northern and southern sky. Figure 7.2 shows

the clear declination-dependence of the sensitivity for a well-localized GRB, which

motivates the split into northern and southern sky sub-populations. Another reason

to split the GRBs by hemisphere is the expected neutrino energy. The southern sky

has no shielding from Earth, which means higher energy neutrinos will reach the

detector that would otherwise interact in rock and never send photons into the ice.

All GRBs are searched with the same time windows, regardless of the T100

duration. The T100 is defined by the earliest reported start time and the latest

reported stop time from any satellite for the given GRB, even if those values are

from different satellites. The final p-values are divided into four sub-populations for

a binomial test, which means the result of this analysis is four binomial p-values.

The breakdown of GRBs by sub-population is given in Table 7.1.
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7.3 Sensitivity

Section 6.4 describes the method to determine the sensitivity of a GRB from

frequentist statistics. Figure 6.8 shows an individual GRB’s sensitivity over ten

time windows. The following plots show the sensitivity for a broader range of

GRBs. Figure 7.2 considers many different declinations and time windows for a

well-localized GRB and shows the splined sensitivity. The sensitivity is roughly

flat along time windows and shows an order of magnitude difference in sensitivity

between northern and southern sky.

Figure 7.2: This figure shows the sensitivity (left) and 3σ discovery potential (right)
of a well-localized GRB (position uncertainty < 1◦) and the strong declination-
dependence of that sensitivity. As section 6.4 explains, the sensitivity is defined as
the amount of time-integrated neutrino flux required for 90% of trials to have a test
statistic above the median background-only TS value. The 3σ discovery potential
is the same, with the requirement that 50% of trials be above the 3σ test statistic
of the background-only distribution. This plot indicates this analysis is consistently
sensitive along a given declination until the very longest time windows. The analysis
is less sensitive at the very longest time windows and the most extreme northern
and southern declinations.

The relatively constant sensitivity along a given declination is the result of

the low background rate in this dataset. 6-7 events are expected on the entire sky

every 1,000 seconds, which means the 1◦ circle around a well-localized GRB has an
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expected background of zero events until very long time windows. Figure 7.3 shows

the number of events in the dataset in a 1◦ circle at a given declination and time

window, as well as the number of events in a 1◦ declination band for a given time

window. Even with an entire declination band, there are very few events until the

very longest time windows.

Figure 7.3: This figure demonstrates the low expected background for well-localized
GRBs by considering the number of events in a 1◦ circle (left) and a 1◦ band (right)
around each declination for a given time window. The counts in each bin are
averaged over many times in the dataset to wash out effects from seasonal variation.

Figures 7.4 and 7.5 show the differential sensitivity for example declinations

in the northern sky, southern sky, and near the horizon. The differential sensitivity

is found by injecting signal within specific energy bins. The horizon is the most

sensitive region in all time windows. The northern sky is more sensitive than the

southern sky for events below 1 PeV. Above 1 PeV, the southern sky is dramatically

more sensitive than the northern sky, but still loses out to the horizon.
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Figure 7.4: Left: Differential sensitivity over decade energy bins for an example
GRB in the northern sky, southern sky, and horizon for a 1000 second time window.
Right: Differential sensitivity for half-decade bins in the same regions and time
window.

Figure 7.5: Left: Differential sensitivity over decade energy bins for an example
GRB in the northern sky, southern sky, and horizon for a -1/+14 day time window.
Right: Differential sensitivity for half-decade bins in the same regions and time
window.

7.4 Extended time windows

Every GRB has ten identical time windows tested, based on the center of the

GRB’s T100. The first nine time windows are symmetric, ranging from ±5 seconds

to ±1 day. The final time window is asymmetric, searching from -1 day to +14
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days. The time windows were chosen to finely sample the most common T100 times,

while also stretching out to -1 day/+14 days. All ten time windows are tested,

including ones shorter than the T100 of the GRB, which will make this analysis

translate smoothly into a realtime follow-up for GRBs with the IceCube detector.

A cartoon of these time windows is shown in Figure 7.6.

Figure 7.6: Cartoon illustration of time windows used in this analysis. Grey dashed
lines indicate the T0 and T100 of a hypothetical GRB.

All of the 2,091 GRBs in this search have a T100 of less than 1,000 seconds.

Figure 7.2, and the plots in section 6.4, show the sensitivity is quite flat in this

region, even for poorly localized GRBs. Figure 7.3 illustrates the low expected

background, especially in shorter time windows. The shortest time window chosen

for this analysis is 10 seconds, which is sufficient to study the shorter time windows

as well due to the low background.
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These time windows were chosen to minimize the amount of background being

let in by choosing the shortest pre-defined time window to represent the T100. Figure

7.7 shows the short and long GRB distributions in terms of the T100. The black and

red dots above show options of time windows considered to illustrate how the final

(red) time windows were chosen. The evenly spaced time windows were initially

considered; however, the clustered time windows sample the most common T100

values more finely and let in less background (see Figure 7.8).

Figure 7.7: The GRB distributions and the chosen time windows for this analysis
(red) compared to evenly spaced time windows (black).

Figure 7.8: Left: the difference between the T100 and prompt time window (shortest
pre-defined time window that fully includes the t100). Right: the fractional difference
between the T100 and prompt time window.

Both Figures 7.7 and 7.8 show the clustered time windows do a better job
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of reducing extra background resulting from the pre-defined time window method.

Although both sets of time windows seem to ignore the short GRBs, the background

is effectively zero at these times, and the 10 second time window is sufficient to study

these short GRBs. While the discovery potential may improve for a neutrino landing

in an extremely short time window, the goal of this analysis is not to miss any

possible neutrino-GRB correlation. Including another time window would simply

add to the computational requirements and trials factor with minimial gain.

The final three time windows were selected to search for precursor and afterglow

neutrinos. 5,000 seconds, two days, and fifteen days were chosen as these longer time

windows. The purpose of the longer time windows is to catch a possible excess of

neutrinos while the background rate from data is still relatively low. For a well-

localized GRB, the sensitivity remains quite flat out to several weeks (see Figure

7.2). A poorly-localized GBM burst may become overwhelmed with background

after a few days. All the time windows are extended symmetrically around the

center of the GRB’s T100 up to +/-1 day. The longest time window (15 days)

is asymmetric, scanning -1/+14 days. The choice to emphasize the afterglow on

the longest timescale is due to the potential for higher energy neutrinos. Some

models predict GeV-TeV neutrinos in the precursor stage and > PeV neutrinos in

both the prompt and afterglow phase [152]. Unfortunately, GeV-TeV neutrinos are

difficult to separate from background, and a one-day timescale is long enough to

begin seeing coincidence from random chance at those energies. PeV neutrinos are

far more likely to be astrophysical and can be distinguished from background, even

over longer timescales.
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7.5 Pre-Generated All-Sky Scans

This analysis requires that an unblinded test statistic, along with a test statistic

distribution from scrambled data, is calculated for each time window shown in Figure

7.6. This allows for the calculation of a p-value for each time window as well1.

However, producing that much scrambled data would take hours to days for each

GRB, especially for the longer time windows and poorly localized GRBs. Instead

of making new trials every time, this analysis takes advantage of all-sky scans that

are generated in advance to build the test statistic distributions. This method is

only possible because the ten time windows are fixed; if the time windows varied

depending on the duration of the GRB T100, then it would be impossible to use

pre-computed all-sky scans2. Pre-generated all-sky scans speed up the analysis to

approximately 20 minutes per GRB, compared to hours or days of generating trials

without the scans.

An all-sky scan begins with the full neutrino candidate dataset randomly

scrambled by time (with new right ascensions calculated). A random selection of

that scrambled data is then chosen based on the time window. For example, the

shortest time window selects 10 seconds of that scrambled data. For most of the

all-sky scans, there will be no events on the sky in a random 10 seconds. An example

all-sky scan for 5,000 seconds of data is shown in Figure 7.9, because this is enough

time to have several neutrinos appear on the sky. The HEALPix skymap shows the

1Narrowing down from ten p-values to one p-value requires a trials correction, which is explained
in section 7.6.

2Or we would need enough all-sky scans to cover every possible T100 time.
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test statistic calculated at each pixel on the sky based on the on-time neutrinos.

These all-sky scans were generated before unblinding this analysis. One all-sky

scan yields one test statistic for the background test statistic distribution. 104-106

trials were generated for each time window. The +/-1 day and -1/+14 day time

windows take 2-3 minutes to combine 104 all-sky scans with a GRB map. The 50-

5,000 second time windows are somewhat faster and have 105 scans for their test

statistic distributions in roughly 1 minute. The shortest time windows require less

than one minute to combine scans and the GRB map, which allows 106 scans. This

pre-generated all-sky scan method is fast enough to produce background test statistic

distributions (with 104-106 trials) for all ten time windows in roughly four minutes.

Calculating the unblinded test statistic requires scanning over every pixel near on-

time events, which is a computationally intensive procedure and lasts another 12-15

minutes per GRB.

Figure 7.9 also shows an example GRB probability map from the Fermi-GBM

data. This map shows the source position uncertainty from the GBM data.

Figure 7.9: Left: An example of 5,000 seconds of IceCube data with a test statistic
calculated at every pixel on the sky. Right: An example GBM map with a
probability at every pixel on the sky.
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The skymaps from Figure 7.9 are combined by applying a penalty to the

test statistics based on the proximity of a given neutrino data pixel to the higher

probability pixels in the GRB map:

TSprior = TSoriginal − TSpenalty (7.1)

In this equation, TSoriginal refers to the neutrino data from the all-sky scan

(left plot in Figure 7.9). TSpenalty is the penalty term we wish to apply based on the

GRB healpix map (right plot in Figure 7.9). TSprior refers to the final test statistic

after the GRB’s spatial prior has been applied to the neutrino data (Figure 7.10).

The healpix map is provided in terms of p-values rather than test statistics, which

means the value of TSpenalty is actually 2 lnP . Because the probabilities are less

than 1, the log of the p-value at the most significant spot will be the largest, but

still negative, possible value. The penalty is established so the most significant GRB

pixels maintain their original test statistic (TSoriginal), and the pixels far from the

most likely position of the GRB receieve a large penalty. The penalty is therefore

calculated using the following:

TSprior = TSoriginal − [−2 ln(P )] (7.2)

TSprior = TSoriginal + 2× [ln(PGBM)− ln(PGBM,max)]

In this method, the test statistic is not allowed to be negative. After applying the
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penalty, the final step to determine a test statistic for this one all-sky scan is to take

the maximum test statistic remaining on the sky.

Figure 7.10: Left: The outline of the GRB probability map is shown over the
neutrino data, which has the penalty from Equation 7.2 applied. Right: The
maximum test statistic for this all-sky scan and GRB is indicated by the plus sign.

Figures 7.9 and 7.10 show the steps to calculate a single test statistic for a

GRB in one time window. This process would be repeated 104-106 times (depending

on which time window) to build the entire test statistic distribution. This is done

for all ten time windows every time a GRB is analyzed. A few example test statistic

distributions are shown in Figure 7.11

Figure 7.11: Left: The test statistic distribution of GRB 180423A, which has its
localization from the Fermi-GBM data. This is the GRB shown in Figure 7.9. Right:
The cumulative sum for the same GRB and time windows.

After assembling a test statistic distribution, the unblinded test statistic is
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compared to the overall distribution. This is explained in more detail in section 6.4

and illustrated in Figure 7.12.

Figure 7.12: The test statistic distribution for the 5,000 second time window of GRB
180423A is shown here. This is a GBM burst, which explains the large test statistic
values for a relatively short time window. An example unblinded test statistic is
marked with a vertical dashed line. The p-value is found by dividing the number of
test statistics larger than the unblinded test statistic by the total in the distribution.
For an example test statistic of 12.4, the p-value is 1%.

Previous IceCube GRB analyses have used the T100 for the prompt time

window of the GRB, plus a small Gaussian tail to soften the time window edge.

Using fixed time windows requires an approximation of the prompt time window

because the pre-computed scans will only have specific time values. The shortest

time window that contains the entire T100 is therefore used to esimate the prompt

time window. The dashed grey lines in Figure 7.6 show the duration of an example

GRB, which has a T100 somewhere between 500 and 1,000 seconds. In this example,

the 1,000 second time window is considered prompt because it completely contains

the T100. The prompt window is only used for setting limits and is not part of

determining the most significant p-value for a given GRB.
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7.6 Effective Trials Factor

Any time a search is repeated, there is a chance to find a significant result

simply by the large number of attempts. For example, having four coins land

with heads is quite unlikely if you only flip the coins one time. If you repeat this

experiment one million times, then you will certainly have all four coins land heads

at some point. One would have to consider the number of coin flips to decide if

having all four coins landing heads was statistically significant.

In the case of this analysis, searching ten time windows increases the chances

of randomly finding a significant result from pure background. If these were ten

independent time windows, then we could simply multiply the most significant p-

value by ten and be done. However, these time windows overlap with each other,

which means they are not independent. This allows us to determine an effective

trials factor that is smaller than ten. The goal is to compare background test

statistics against background test statistic distributions, select the most significant

of the ten p-values, and understand how this set of p-values compares to a uniform

distribution.

To determine the effective trials factor, a separate set of all-sky scans is

generated with 104 scans in each time window. These scans are carefully controlled

to ensure the scrambled data is the same in each time window. This means the data

in the 10 second time window is exactly contained in the 25 second time window, and

so on. These 104 scans are then used to create background test statistic distributions

for each time window.
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A background-only test statistic distribution is often used to determine the

significance of an unblinded test statistic. However, in this situation, the test

statistic distributions are used to compare background against background. Each of

the 104 test statistics is compared to the other 9,999 in the test statistic distribution3

to calculate 104 p-values for each time window. The most significant p-value of 10

time windows is selected for each of the 104 trials. This set of background-against-

background p-values is then plotted in a cumulative sum (Figure 7.13). This is

done for every GRB and the bins of this cumulative sum serve as a look-up table to

correct the initial p-value.

Figure 7.13: Background-only test statistics are compared to background-only test
statistic distributions in each time window. The most significant p-value of these
ten is selected in 104 trials. These p-values are plotted in a cumulative sum to
indicate the trials correction needed for this particular GRB. For example, if this
GRB initially yielded a most significant p-value of 1 × 10−2 then the result would
be closer to 6× 10−2 after the effective trials correction.

In early versions of this analysis, only one trials correction was used for each

GBM burst and one correction was used for all non-GBM bursts. This caused quite a

3It would be ideal to have one set of 104 scans for the TSD and another for each of the 10,000
test statistics, but this requires a prohibitive amount of CPU time.

144



few problems with the p-values, which were discovered during Binomial test checks.

When several effective trials corrections are plotted as cumulative sums, it is quite

clear that each GRB is different enough to require its own correction (see Figure

7.14). The solution was to perform an effective trials correction for every individual

GRB. Using the additional 104 scans, this takes 1-2 minutes per GRB.

Figure 7.14: The procedure from Figure 7.13 was repeated for 100 GRBs in each
sub-population. The spread in effective trials factors is shown for GBM bursts (left)
and well-localized bursts (right).

This effective trials correction works nicely to correct the distribution of p-

values for each sub-population, as shown in Figure 7.15. This plot shows the

individual p-values as a scatter plot in ascending order. These are background-

only p-values, which is why they are expected to follow the dashed line, indicating

a uniform p-value distribution. If the unblinded p-values were inconsistent with

background (meaning more signal-like) then the p-values would be expected to

deviated from this uniform distribution.
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Figure 7.15: The effective trials correction is applied to each individual GRB, with
the sub-populations highlighted. These are scatter plots, meaning each dot is a
single GRB p-value and the p-values are plotted in order from most significant on
the left to least significant on the right. The top row shows the p-values without a
trials correction straying far from a uniform p-value distribution. The bottom row
includes the correction and is much closer to a uniform distribution.

7.7 Binomial Test

It is always challenging to make a statement about a catalog search when there

is no obvious detection of signal. Early IceCube searches for neutrinos coincident

with GRBs were found to be consistent with a background-only hypothesis, including

in extended time windows [84] [85] [86]. More recent searches attempted to amplify

a small signal by stacking all the GRBs together [90] [145] [34]. This approach is
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ideal if all GRBs are contributing a small amount. Another option is to take the

best p-value from the sample and use it to represent the entire population (with

a trials correction for the number of sources in the catalog) [17]. This approach

is valid, but it may miss a “warm” population, meaning a small number of GRBs

that are contributing signal, but not necessarily all GRBs. A binomial test is a

nice compromise, because it allows a search for this warm population as long as the

p-values are well-behaved and uniformly distributed between 0 and 1.

A Binomial test is performed on each of the sub-populations: northern sky

long GRBs, northern sky short GRBs, southern sky long GRBs, and southern sky

short GRBs. The Binomial p-value is calculated with Equation 7.3:

P (k) =
N∑

m=k

N !

(N −m)!m!
pmk (1− pk)N−m (7.3)

P(k) is the binomial probability, which is updated for each GRB (the GRBs

are considered in order of increasing p-value). The binomial test evaluates how

likely it is to have “k” GRBs with a certain p-value or more significant. This is

the threshold p-value, because only the number of p-values below this threshold

is relevant, rather than the actual p-values themselves. For example, a trial that

yields k=10 means the most interesting binomial p-value occurred when considering

the lowest 10 p-values. This would be a hint of a “warm” population and those 10

GRBs may warrant additional study. Of course, k alone is not the whole story. The

resulting binomial p-value is of interest and indicates the significance of the sample

as a whole.
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Figure 7.16 shows an example Binomial test performed on scrambled data in

each sub-population. The black dots are the p-values representing a single GRB,

and these p-values have the effective trials correction (for choosing the best of 10

time windows) applied. The blue dots show the Binomial test for a given threshold

p-value. The lowest (and therefore most significant) Binomial p-value is selected to

represent the sample.

Figure 7.16: An example binomial test performed on the four sub-populations. The
GRB p-values are shown in ascending order in black. The grey dotted line is shown
to guide the eye to see the GRB p-values are following a uniform distribution, which
is expected for scrambled background data. The Binomial p-values are shown in
blue, and the most significant result is highlighted with a red horizontal line.

There is no trials correction for the number of GRBs applied to the p-values
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in the Binomial test. The method for handling the number of GRBs studied is

very similar to the effective trials correction described in the previous section for

selecting the most significant of ten time windows. The Binomial test is repeated

on many sets of scrambled data, and the resulting Binomial p-values are plotted in

a cumulative sum (see Figure 7.17). The cumulative sum is used as a look-up table

for the initially calculated Binomial p-value. The corrected Binomial p-value for

each sub-population is the final output of this Binomial test.

Figure 7.17: The Binomial test is run many times on scrambled data to determine
the trials correction for the final p-value in each sub-population. The p-values in
the Binomial test are corrected for searching ten time windows, but there is no
correction for population size. These cumulative sums serve as a look-up table to
determine the final Binomial p-value.
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Chapter 8: Results

The results of the analysis described in Chapter 7 are presented here. 2,091

GRBs were analyzed individually and in four sub-populations split by northern and

southern sky as well as duration. The most significant GRB is a northern sky long

GRB from 2014, with the most significant time window being +/-1 day (see Table

8.1).

The four sub-populations are studied with a Binomial test, which is intended

to reveal possible “warm” populations. A warm population might mean a handful

of GRBs with a fairly significant p-value rather than a single outstanding GRB with

> 5σ. The Binomial test did not indicate the presence of a handful of significant

GRBs.

The results of this search - the individual GRBs and confirmed by the Binomial

test - are consistent with background. Therefore, limits are set using the GRBs

to constrain neutrino emission. The stacked test statistic (section 6.4.1) is used

to determine a test statistic for a group of GRBs, and then signal is injected to

determine a 90% confidence limit. The limits are consistent with those set in [34],

and go further by setting limits on the sub-populations as well.
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8.1 Binomial Test Results for Sub-Populations

The results of the Binomial test (described in 7.7) do not indicate a significant

subset of GRBs. The post-trials Binomial p-value never falls below 1%, which is the

generous threshold used in IceCube to indicate a need for further study. In general,

a threshold of 3σ is required to declare evidence of a given phenomenon, and 5σ is

necessary to claim a discovery. The results of the Binomial test are presented in

Figure 8.1.

Figure 8.1: The unblinded results of the Binomial test for all four sub-populations.
The black dots show the unblinded p-values for each sub-population, and the blue
dots show the Binomial p-value for the kth GRB p-value. The post-trials Binomial
p-value, written in red in each plot, gives the final result for each sub-population.
None of the post-trials Binomial p-values indicates a significant subset of GRBs.
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The northern long sub-population may seem suspicious due to the post-trials

p-value of 3.8%; however, this result is still consistent with background. The large

value of k suggests this is not a set of uniform p-values, which is a prerequisite for the

Binomial test. If the p-values are not uniform, then it is possible to see features such

as the extremely low binomial p-value in the 400-600 GRB range. Closer inspection

of this range (Figure 8.2) reveals a few hundred GRBs with slightly-below-uniform

p-values. If this region is discounted, and a “best” Binomial p-value is selected from

the first 150 GRBs, then the post-trials p-value becomes 44.5%, which is consistent

with background.

Figure 8.2: Left: A zoomed in view of the low p-values leading to a large value of k
in the northern long GRB sub-population. Right: The post-trials Binomial p-value
if limited to k < 150.

The GRBs in this suspicious region tend to select the two longest time windows

as the most significant more frequently than the total northern long population (see

Figure 8.3). This suggests that the two longest time windows (+/-1 day and -1/+14

days) are not handled perfectly, resulting in slightly lower p-values in the northern

sky. No changes were made to the pre-trials p-values after this was discovered. A
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correction would make the result less significant, which is unnecessary given the

result already qualifies as a “non-detection.”

Figure 8.3: The time window index indicating the most significant time window
selected. A time window index of 0 refers to the 10 second time window and 9
refers to the -1/+14 day time window. If all time windows have a p-value of 1, then
time window 0 is selected. Left: All northern long p-values (red) compared to the
region with low p-values (blue). The three longest time windows have larger shares
of p-values in the questionable region (highlighted in Figure 8.2). Right: The same
comparison for the northern short GRBs. This set of p-values is better behaved in
the Binomial test and has a smaller excess in the longest three time windows.

8.1.1 Correlations

There was initial concern that the same neutrino could contribute to the

test statistic of more than one GRB. If this were the case, then the Binomial p-

values would not truly be uncorrelated and the results would be invalid. The most

significant GRBs were checked for correlations. The GRBs with a p-value less than

0.01 (or 0.04 for the southern short population to include the top k = 5) were

examined. The time window selected as the most significant was checked for each

of these “most significant” GRBs. Out of 32,405 events contributing to the most

significant time window of the top 23 GRBs, no events were repeated.

Figure 8.4 shows the potential overlap of poorly-localized GRBs. In particular,

153



GRBs measured by the Fermi-GBM instrument had the potential to cover large

portions of the sky. This could lead to more neutrinos contributing to the test

statistic, increasing the chances of a single neutrino contributing to multiple GRBs.

The purpose of this figure was to raise awareness of the possibility of correlations,

but also to ease concerns that this would be a big problem. The plot clearly shows

most GRBs do not overlap with each other.

Figure 8.4: This plot illustrates the potential for one neutrino to contribute to
the test statistics of multiple GRBs. Each dot represents the temporal and spatial
separation between two GRBs. Note that each GRB is compared to every other
GRB in the sub-population. A small number of GRBs fall within 15 days and 25
degrees of another GRB, but even this does not guarantee there will be overlap of
events.
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8.2 Detailed Study of Significant GRBs

The most significant GRBs are listed for each sub-population in this section.

A handful of those GRBs are illustrated in plots showing upper limits, signal-to-

background ratios, event times, and event energies. The plots for all the most

significant GRBs are provided in Appendix A.

8.2.1 Northern Long GRBs

The most significant long GRBs from the northern hemisphere are shown in

Table 8.1. They are sorted by p-value, which has been corrected for searching 10

time windows (see section 7.6), but not for the 960 GRBs in this sub-population.

GRBs with a p-value less than 0.01 are considered in this “most significant” category.
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GRB RA(◦) Dec(◦) σ(◦) z Tstart(MJD) T100(s) TW TS P

140607A 86.4 18.9 1.5e-02 — 56815.718 109.90 2 d 12.8 6.0e-04

141121A 122.7 22.2 6.5e-05 1.47 56982.150 1419.90 15 d 11.8 1.7e-03

161125A 59.4 28.1 4.7e+00 — 57717.930 69.63 25 s 18.8 2.1e-03

120911A 358.0 63.1 2.1e-04 — 56181.298 22.02 250 s 10.6 2.5e-03

120504A 329.9 46.8 8.8e+00 — 56051.468 41.98 1000 s 19.4 3.6e-03

170131A 341.4 64.0 2.3e-02 — 57784.969 23.04 5000 s 10.6 4.1e-03

120711B 331.7 60.0 2.3e-04 — 56119.133 60.00 2 d 11.8 4.2e-03

180721A 347.7 4.9 2.8e-04 — 58320.463 47.60 2 d 11.7 4.3e-03

140114A 188.5 28.0 1.8e-04 3.0 56671.498 139.70 2 d 11.0 7.5e-03

160201A 312.7 69.3 3.1e+00 — 57419.883 40.51 1000 s 13.4 7.5e-03

120217A 122.4 36.8 5.0e+00 — 55974.808 5.89 25 s 15.7 7.7e-03

180623B 199.4 -4.3 2.5e+00 — 58292.849 17.73 50 s 11.5 9.6e-03

Table 8.1: The most significant long GRBs from the northern hemisphere. The
“TW” column indicates the best time window leading to the p-value in the final
column. The σ column refers to the GRB’s positional uncertainty, which may be
many degrees in the case of a Fermi-GBM localization. The p-value has an effective
trials correction for searching 10 time windows, but is not corrected for the size of
the sub-population (960).

A closer look at the most significant GRB from this sub-population shows

a relatively high-energy neutrino landing on top of the GRB (Figure 8.5). The

neutrino in question has a reconstructed energy of roughly 10.5 TeV. The declination

is 19.41◦ and right ascension is 86.42◦. The event’s spatial coincidence contributes

significantly to the ratio of signal to background, which is shown for this GRB in

Figure 8.6. The neutrino arrives roughly 7 hours after the GRB, which is only seen

by the longest two time windows. This is the most significant p-value out of all
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2,091 GRBs.

Figure 8.5: The relative times (left) and reconstructed energies (right) for the events
arriving within +/-1 day of GRB 140607A. The GRB’s reported position is identified
with a star at the center of the grid. The neutrino candidates are identified with an
“x” at the reconstructed positions, and the size of the circle indicates the angular
uncertainty of the event. All events have a minimum of 0.2◦ uncertainty. The high-
energy event that sits directly on top of the GRB location is a 10.5 TeV event that
arrives roughly 7 hours after the GRB.

A two-day time window has roughly 1,000 events in the GFU sample, many of

which are low-energy and do not contribute to the test statistic. To emphasize the

most important contributing events to the signal-to-background ratio, a threshold

is set based on the number of fit events in the test statistic. This fit number of

events, ns, provides a threshold of S
B
≥ 3 × ns. Therefore, only events with a

signal-to-background value greater than this threshold are plotted in Figure 8.6.
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Figure 8.6: The signal-to-background ratio for GRB 140607A. The blue indicates
the duration of the GRB, beginning with the trigger time on the left. The pink
region indicates the most significant time window selected by the analysis. While
there are many on-time events, there is only one event with a high enough S/B to
be plotted here ( S

B
≥ 3×ns). The event arrives roughly 7 hours after the GRB and

has a reconstructed energy of 10.5 TeV.

The 90% upper limit for this GRB is shown in Figure 8.7. The upper limit is

found for each time window based on the unblinded test statistics. Signal is injected

until 90% of trials are above the unblinded test statistic. If the unblinded test

statistic happens to be an under-fluctuation, then the median of the background test

statistic distribution is used (making the upper limit equivalent to the sensitivity).

The upper limits are plotted for all ten time windows.

158



Figure 8.7: The 90% upper limit for GRB 140607A in all ten time windows. The
two day time window was found to be the most significant.

8.2.2 Northern Short GRBs

The most significant short GRB from the northern hemisphere is shown in

Table 8.2. The p-value has been corrected for searching 10 time windows (see

section 7.6), but not for the 183 GRBs in this sub-population. GRBs with a p-value

less than 0.01 are considered in this “most significant” category.

GRB RA(◦) Dec(◦) σ(◦) z Tstart(MJD) T100(s) TW TS P

140807A 200.2 26.5 4.4e+00 — 56876.500 0.51 100 s 15.7 4.8e-03

Table 8.2: The most significant short GRBs from the northern hemisphere. The
“TW” column indicates the best time window leading to the p-value in the final
column. The σ column refers to the GRB’s positional uncertainty, which may be
many degrees in the case of a Fermi-GBM localization. The p-value has an effective
trials correction for searching 10 time windows, but is not corrected for the size of
the sub-population (183).

Only one GRB meets the criteria for additional study from the northern sky
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short GRB sub-population. The event times and energies are shown in 8.8 and the

signal-to-background plot is shown in 8.9.

Figure 8.8: The relative times and reconstructed energies for the events arriving
within 100 seconds of GRB 140807A. The GRB’s reported position is identified with
a star at the center of the grid. The single on-time neutrino candidate is identified
with an “x” at the reconstructed position, and the size of the circle indicates the
angular uncertainty of the event. GRB 140807A is a GBM burst, which is why
an event roughy 10 degrees from the reported position can result to a high test
statistic. In this case, the event is quite low energy, but arrives within 100 seconds
of the GRB, leading to a more significant p-value.

The same relatively low-energy event shows up in the signal-to-background

ratio plot. The event arrives within 1 minute of the GRB, which is why the p-value

is more significant.
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Figure 8.9: The signal-to-background ratio for GRB 140807A. The blue indicates
the duration of the GRB, beginning with the trigger time on the left. The pink
region indicates the most significant time window selected by the analysis. There is
one nearby on-time event contributing to the S/B to be plotted here ( S

B
≥ 3× ns).

The event has a reconstructed energy of 0.69 TeV, but arrives within 100 seconds
of the GRB, leading to a more significant p-value.

The upper limit for GRB 140807A is shown for all 10 time windows in Figure 8.10.

Figure 8.10: The 90% upper limit for GRB 140807A in all ten time windows. The
100 second time window was found to be the most significant.
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8.2.3 Southern Long GRBs

The five most significant long GRBs from the southern hemisphere are shown

in Table 8.3. They are sorted by p-value, which has been corrected for searching 10

time windows (see section 7.6), but not for the 814 GRBs in this sub-population.

GRBs with a p-value less than 0.01 are considered in this “most significant” category.

GRB RA(◦) Dec(◦) σ(◦) z Tstart(MJD) T100(s) TW TS P

150202A 39.2 -33.1 2.2e-04 — 57055.965 25.70 2 d 18.6 5.0e-04

150118B 240.2 -35.8 5.0e-01 — 57040.409 48.65 2 d 12.9 3.0e-03

170923C 228.3 -10.8 9.1e+00 — 58019.566 27.65 1000 s 19.7 4.1e-03

150626A 111.3 -37.8 2.3e-04 — 57199.092 144.00 15 d 11.2 7.4e-03

180906A 104.8 -67.0 3.6e+00 — 58367.597 52.03 25 s 9.7 8.6e-03

Table 8.3: The most significant long GRBs from the southern hemisphere. The
“TW” column indicates the best time window leading to the p-value in the final
column. The σ column refers to the GRB’s positional uncertainty, which may be
many degrees in the case of a Fermi-GBM localization. The p-value has an effective
trials correction for searching 10 time windows, but is not corrected for the size of
the sub-population (814).

GRB 150202A was chosen to represent this group of GRBs (the other four

have plots in Appendix A). This GRB has three precursor events with reconstructed

energies above 30 TeV. The earliest of these precursors has a reconstructed energy

of 105 TeV. The event times and energies are shown in 8.11 and the signal-to-

background plot is shown in 8.12.
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Figure 8.11: The relative times and reconstructed energies for the events arriving
within +/-1 day of GRB 150202A. The GRB’s reported position is identified with
a star at the center of the grid. The neutrino candidates are identified with an
“x” at the reconstructed positions, and the size of the circle indicates the angular
uncertainty of the event. All events have a minimum of 0.2◦ uncertainty. GRB
150202A is a well-localized burst, which is why several events landing very close
to the reported GRB position increases the TS. This is one of the most significant
p-values in the entire collection of 2,091 GRBs.

Only three of the events in this time window contribute substantially to the

test statistic. The threshold of S
B
> 3ns eliminates all but three events. These three

precursor events are shown in Figure 8.12.
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Figure 8.12: The signal-to-background ratio for GRB 150202A. The blue indicates
the duration of the GRB, beginning with the trigger time on the left. The pink region
indicates the most significant time window selected by the analysis. While there are
many on-time events, only three pass the S

B
≥ 3ns threshold. The events arrive

roughly 1, 7, and 11 hours before the GRB. The earliest event has a reconstructed
energy of roughly 105 TeV, and the other two are roughly 30 TeV. In the northern
hemisphere, an event would need roughly 200 TeV to have an equal chance of being
signal or background. At -33.1◦, the energy needs to be closer to 1 PeV to be
considered signal-like.

The upper limit for GRB 150202A is shown for all 10 time windows in Figure 8.13.

Figure 8.13: The 90% upper limit for GRB 150202A in all ten time windows. The
two day time window was found to be the most significant.
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8.2.4 Southern Short GRBs

The five most significant short GRBs from the southern hemisphere are shown

in Table 8.4. They are sorted by p-value, which has been corrected for searching 10

time windows (see section 7.6), but not for the 134 GRBs in this sub-population.

GRBs with a p-value less than 0.04 are considered in this “most significant” category.

This deviates from the other three sub-populations, because the Binomial test

resulted in k=5 GRBs. Therefore, the top five GRBs are considered in this section.

GRB RA(◦) Dec(◦) σ(◦) z Tstart(MJD) T100(s) TW TS P

140511A 329.8 -30.1 8.5e+00 — 56788.095 1.41 2 d 20.3 9.2e-03

130919B 297.4 -11.7 5.2e+00 — 56554.173 0.96 5000 s 16.2 1.8e-02

160411A 349.4 -40.2 2.8e-04 — 57489.062 1.26 2 d 8.1 2.4e-02

120212B 303.4 -48.1 1.0e+01 — 55969.353 0.86 500 s 17.8 2.8e-02

141102B 223.2 -17.4 9.2e+00 — 56963.112 0.02 15 d 18.6 2.8e-02

Table 8.4: The most significant short GRBs from the southern hemisphere. The
“TW” column indicates the best time window leading to the p-value in the final
column. The σ column refers to the GRB’s positional uncertainty, which may be
many degrees in the case of a Fermi-GBM localization. The p-value has an effective
trials correction for searching 10 time windows, but is not corrected for the size of
the sub-population (134).

GRB 140511A was chosen to represent this group of GRBs (the other four

have plots in Appendix A). This is a GBM burst, and includes neutrinos arriving

before and after the burst contributing to the test statistic. The event times and

energies are shown in 8.14 and the signal-to-background plot is shown in 8.15.
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Figure 8.14: The relative times and reconstructed energies for the events arriving
within +/-1 day of GRB 140511A. The GRB’s reported position is identified with
a star at the center of the grid. The neutrino candidates are identified with an
“x” at the reconstructed positions, and the size of the circle indicates the angular
uncertainty of the event. All events have a minimum of 0.2◦ uncertainty. GRB
140511A is a GBM burst. The many coincident events are shown in these two plots.
The relative event times are in the plot on the left, and the reconstructed energies
are shown on the right.

The threshold of S
B
> 3ns leaves three events contributing to the test statistic:

two precursors and one afterglow. These are shown in Figure 8.15.
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Figure 8.15: The signal-to-background ratio for GRB 140511A. The blue indicates
the duration of the GRB, beginning with the trigger time on the left. The pink region
indicates the most significant time window selected by the analysis. While there are
many on-time events, only three pass the S

B
≥ 3ns threshold. Two precursors and

one afterglow event survive this cut.

The upper limit for GRB 150202A is shown for all 10 time windows in Figure 8.16.

Figure 8.16: The 90% upper limit for GRB 140511A in all ten time windows. The
two day time window was found to be the most significant.
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8.3 Stacked Limits

Because the result of this analysis is consistent with a background-only hypothesis,

the logical next step is to set a limit on the possible neutrino production from GRBs.

If GRBs are, in fact, producing neutrinos, then the results of this analysis can be

used to constrain the energy and time of production of those neutrinos. If GRBs were

producing many high-energy neutrinos on-time (and in the same direction) with the

GRBs, then the results of this analysis would look very different. Individual upper

limits were shown in the previous section for a few select GRBs, but a more powerful

approach to setting limits is to take advantage of the stacked test statistic.

A stacked test statistic (described in 6.4.1) is the result of combining the

signal-to-background values from events over many GRBs. Signal is injected until

90% of the stacked test statistics are greater than the unblinded stacked test statistic.

This approach leads to limits on contributions to the diffuse flux, GRB population

assumptions, and a generic double broken power emission spectrum.

A quick sanity check is to confirm the number of events in the stacked time is

consistent with the number of events expected from background. The stacked time

results from stitching the most significant time windows together for all GRBs in

the sub-popultion. Table 8.5 shows the number of events in each sub-population

compared to the total expected from data. This result emphasizes that the overall

number of neutrinos is consistent with background.
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Sub-Population
∑
T100 Events Events Poisson

(Hours) Expected Measured Probability

Northern Long 23.3 534.05 549 25.06%

Northern Short 5.4 128.54 123 66.75%

Southern Long 21.1 488.03 494 38.22%

Southern Short 4.1 96.57 97 45.55%

Table 8.5: This table presents the number of measured events (all-sky) during the
stacked test statistic T100 time compared to the expected number from typical
background. The time comes from stitching together the most significant time
windows of all the GRBs. The measured events are consistent with expected
numbers of events from background.

8.3.1 Generic Double Broken Power Law Limits

The constraints on a generic double broken power law (described in 3.2.1) are

shown in Figures 8.17-8.19. The models from Waxman-Bahcall and Ahlers et. al.

are plotted against the 90% limits of all the GRBs, all short/long, all north/south,

and the four sub-populations. It is not surprising that these models are ruled out

by most sub-populations; both the Waxman-Bahcall and Ahlers et. al. models

assume GRBs alone are responsible for the UHECR flux and therefore predict fairly

large neutrino emission. The limits from all GRBs, all northern GRBs, all long

GRBs, and the northern long GRBs rule out both models at greater than 90%

confidence. The southern sky and short GRBs, taken on their own, do not rule out

the Waxman-Bahcall model at 90% confidence.

The time-integrated flux in each stacked test statistic is assumed to be equal
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for each GRB at Earth. This time-integrated flux is then scaled to the quasi-diffuse

flux, assuming a density of 667 GRBs per year. The constraint on the double broken

power law is a function of the first break energy, εb, and the flux normalization, Φ0.

The limits on the generic double broken power law spectrum were only calculated

for the prompt. The shortest time window that completely included the t100 was

assigned as the prompt. Although the southern sky and short GRBs do not constrain

the double broken power law at 90%, these limits do continue to cast doubt on the

hypothesis that GRBs are significant produces of UHECRs. At the very least, only

a fraction of GRBs are contributing to the highest energy cosmic rays.

Figure 8.17: The double broken power law constraints set by the northern sky GRBs
(blue) and southern sky GRBs (red). The limit for all 2,091 GRBs is shown in green
as a reference.
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Figure 8.18: The double broken power law constraints set by the long GRBs (blue)
and short GRBs (red). The limit for all 2,091 GRBs is shown in green as a reference.

Figure 8.19: The double broken power law constraints set by the four sub-
populations. The limit for all 2,091 GRBs is shown in green as a reference. The
northern long GRBs are nearly indistinguishable from the limits set by all 2,091
GRBs.
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8.3.2 Quasi-Diffuse Flux and Density Limits

The stacked test statistic (6.4.1) is very powerful on its own. Simply injecting

signal until 90% of stacked test statistic trials are greater than the unblinded value

can provide an interesting limit on GRB contributions to the quasi-diffuse flux.

This injected flux can be converted to a diffuse flux (see 3.2.2 for details), which is

compared to the measured diffuse flux in IceCube. This conversion assumes each

GRB is contributing equal time-integrated flux at Earth, and that GRBs have a

population density of 667 GRBs per year.

The stacked limit on the quasi-diffuse flux is shown in Figures 8.20-8.22. Each

time window has a limit on the flux (indicated by the filled circles) and a prompt

limit on the flux (dashed line). The prompt limits are comparable to the limits set

in 3.7 (the dashed lines in Figure 3.8). The limits in the previous search are stronger

by roughly a factor of 2. Although this analysis includes more GRBs (which should

lead to a stronger stacked limit), the generic time windows coupled with the handling

of Fermi-GBM errors includes larger backgrounds, which is likely the cause of the

looser constraint.
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Figure 8.20: The stacked limit on the quasi-diffuse flux for all northern GRBs (blue)
and all southern GRBs (red). The limits for all 2,091 GRBs are shown in green for
reference. Each dot indicates the 90% confidence limit for the given time window,
and the dashed lines show the limit for the prompt.

Figure 8.21: The stacked limit on the quasi-diffuse flux for all long GRBs (blue)
and all short GRBs (red). The limits for all 2,091 GRBs are shown in green for
reference. Each dot indicates the 90% confidence limit for the given time window,
and the dashed lines show the limit for the prompt.
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Figure 8.22: The stacked limit on the quasi-diffuse flux for all four sub-populations.
The limits for all 2,091 GRBs are shown in green for reference. Each dot indicates
the 90% confidence limit for the given time window, and the dashed lines show the
limit for the prompt.

The final comment from the stacked test statistics applies to the assumption

of 667 GRBs per year. Equation 3.25 shows the conversion from a time-integrated

flux to the quasi-diffuse flux. This diffuse flux is then compared to the measured

value and a percentage of diffuse flux from GRBs is determined. If, instead, the

percentage of diffuse flux generated by GRBs was assumed, then the limit could

be placed on density. The top plot in Figure 8.23 shows the first step to limit this

density. The typical approach would assume 667 GRBs and increase the flux until

90% of trials were above the threshold value. In this method, the flux is fixed and

the density changes. For a given fraction of diffuse flux, the density that leads to

90% of trials above the threshold is the result.

The bottom plot in Figure 8.23 shows this density limit for all the time windows
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and the prompt. The limits are calculated for 1%, 10%, and 100% of the diffuse flux.

While this result does not necessarily rule out 667 GRBs per year as the accurate

source density, it does raise the question of the validity of the assumption. A higher

density would mean more sources producing fewer neutrinos. A lower density would

suggest each GRB has a higher neutrino luminosity. It is possible that GRBs are

far more dense, but not producing as many neutrinos as expected.

Figure 8.23: Top: The passing fraction plot to determine the source density that
yields 90% of trials above a threshold value. The three curves are for a flux equivalent
to 1%, 10%, and 100% of the measured diffuse flux. Bottom: The density limits by
time window and the prompt. The historic 667 GRBs per year value is shown as
a black dashed line for reference. The red, light blue, and dark blue dashed lines
indicate limits on the prompt, while the dots of the same colors refer to limits on
each time window. The densities are found by assuming a number of GRBs per
year (e.g., 667) and converting to the source density per Mpc3 that produces that
number of GRBs in a year with FIRESONG.
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8.3.3 FIRESONG Standard Candle Quasi-Diffuse Flux Limits

FIRESONG is a simulation software package that simulates sources (and their

fluxes) for a given local density and stellar evolution model [91]. Section 3.2.3 details

the stellar evolution model chosen for this analysis. The GRBs were assumed to be

standard candles, which differs from the approach used in the double broken power

law and stacked quasi-diffuse limits where fluxes at Earth are assumed to be equal.

It is perhaps better to assume the GRBs follow a power-law neutrino luminosity

(to match the gamma-ray spectrum) rather than being standard candles. However,

the lack of correlation measured between GRBs and neutrinos suggests there is no

obvious choice for neutrino luminosity and standard candles are an equally valid

assumption.

One point of comparison between the stellar evolution model described in [93]

and data is the distribution of redshifts. Using the sources generated by FIRESONG,

a distribution is compared to the redshifts of the GRBs in this catalog (see Figure

8.24). Out of 2,091 total GRBs, only 206 of those had a measured redshift. It is

quite difficult to measure a redshift for a transient source because of the short

duration. Furthermore, the redshift is determined by optical follow-up, which

introduces sources of observer bias. An astronomer may not be able to measure

the redshift unless it happens to be a longer and brighter GRB, making it easier

to observe the optical follow-up. It is also possible that small redshift sources will

be favored, because an astronomer may not even attempt to measure the redshift

of a distant and faint GRB. The combination of only being able to measure certain
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GRB redshifts, and only choosing to attempt low redshift GRBs, could explain the

discrepancy in Figure 8.24. Of course, it is always possible that this model is an

incomplete explanation for GRBs and the two redshift populations could improve

with a better model.

Figure 8.24: This plot shows many simulated FIRESONG GRBs normalized to 206
to match the catalog. The GRB catalog for this analysis contains 2,091 GRBs,
but only 206 of those have a measured redshift. The difference between the two
distributions may be caused by difficulty measuring distant GRB redshifts and an
observer selection bias to only attempt measurement for low redshift GRBs.

FIRESONG generates a list of simulated sources, ranging from tens to thousands

per year, for a given density and GRB luminosity (see 3.2.3 for more detail). The

standard candle neutrino luminosity is constant per GRB. For each density and

luminosity, 300 stacked test statistics are calculated. This stacked test statistic is

found by randomly drawing 2,091 FIRESONG fluxes and assigning them to a GRB
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declination. The flux is converted into an expected number of neutrinos injected,

and signal-to-background values are calculated based on the expected background

of the declinaton. The luminosity is converted to a total GRB energy in neutrinos

by:

Eν = Lν ×
timescale

3.15× 107 s/yr
(8.1)

This conversion is a result of FIRESONG producing luminosities over a year. It

is necessary to convert using the time of the GRB as well. The “timescale” here

is considered the source time in FIRESONG. However, this is also used as the

observer time when injecting flux to the GRB. It is natural to assume one should

use timescale× (1 + z) to capture the full neutrino emission time on Earth. In fact,

FIRESONG simulates neutrino production for a given timescale (e.g., 1000 seconds)

in the source frame. The redshifted time for this would be much longer on Earth

than the source time. However, the neutrino-GRB search is conducted in uniform

time windows, independent of the GRB’s redshift. This means the actual analysis

applies a penalty on GRBs far away by measuring the same time window for all

GRBs. It is important to accurately reflect this in the simulation.

The result of testing several densities and total energies is a grid where each

point has 300 trials of an injected flux. The fraction of test statistics greater than

the unblinded test statistic is saved for that grid point. A 2D spline is used to

smooth this grid, and 500×500 bins are used for both the density and total energy.

The result for the 1000 second time window is show in Figure 8.25. The other time
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windows are shown in Appendix A.

Figure 8.25: The 90% limit on the total neutrino energy from the 1000 second time
window based on FIRESONG’s standard candle simulation. The 90% exclusion
confidence limit is roughly flat across densities because 2,091 GRBs are always drawn
from the set of simulated sources. The FIRESONG source density that reproduces
the historic choice of 667 GRBs per year is indicated with a vertical dashed line.
The limits on the diffuse flux are indicated with the diagonal lines. If GRBs are
standard candles with a density of 667 GRBs/Mpc3, then this plot clearly shows
that GRBs are ruled out at 90% confidence from producing more than 11% of the
diffuse neutrino flux.

Figure 8.25 is a bit strange because the limits are roughly flat across all

densities studied. This happens because the same number of sources (2,091) is

considered regardless of simulated source density. If GRBs were producing neutrinos

as standard candles, and 2,091 of those GRBs were observed, then energies and

luminosities above the white line would have shown up in this analysis 90% of the

time. The historic choice for a density of GRBs in IceCube stacked analyses is
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667 per year, which refers to the number of detectable GRBs per year by operating

satellites. The density required to produce 667 GRBs in the Madau-Dickinson stellar

evolution model is indicated by a vertical dashed line for reference.

This same approach was carried out for all 10 time windows. The results are

shown in red in Figure 8.26. The FIRESONG limit on the diffuse flux is shown

as a percentage of the diffuse flux normalization, which is 0.9 × 10−8 GeV
cm2·s·sr . This

flux normalization is based on a spectral index fit of 2.13, which differs from the

assumption of γ = 2.0 in this analysis.

Figure 8.26: Left: The limits on standard candle source energy from FIRESONG
for each time window in terms of total energy. The longest time windows are unable
to constrain this value significantly. Right: The limits on standard candle neutrino
emission in terms of diffuse flux percentage. The blue line shows the limits from the
stacked analysis (8.3.2) for all 2,091 GRBs by time window and prompt (dashed line).
The stacked analysis also includes the density assumption of 667 GRBs per year,
which translates to 1.69 × 10−10 Mpc−3 in the Madau-Dickinson stellar evolution
model (3.2.3). The FIRESONG limits (red) are capped at 100% for the longest time
windows, because they are unable to constrain the standard candle hypothesis for
GRB contribution to the diffuse flux.
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8.4 Systematic Uncertainties

The results of this GRB search were consistent with background, leading to

the upper limits presented earlier in this chapter. Determining those limits requires

injecting simulated neutrino events, which brings in systematic uncertainties in

ice models, DOM response, and other features of detection. The impact of these

systematic uncertainties has been widely studied and quantified in previous analyses

that use similar event selections, making them applicable to the limits presented in

this chapter. A conservative estimate of total systematic uncertainty of 15% is

applied to every limit in this chapter.

The main focus for these systematic uncertainties is in Mote Carlo simulation.

The uncertainties in background are considered negligible, because the data itself is

used to characterize the analysis. The simulation uncertainty is estimated by varying

model parameters, processing that simulation to final event level, and calculating a

new sensitivity. The change in sensitivity is summarized in Tables 8.7 and 8.6. The

uncertainty for the northern sky is based on the 2015 northern sky track sample

described in [90], as well as an updated 2021 northern tracks event selection [153]

[154]. The southern sky uncertainty is based on the 2017 southern sky track sample

described in [17].
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Table 8.6: A summary of systematic uncertainties determined for the 2015 northern
sky track sample described in [90]. A conservative estimate of 15% uncertainty is
applied to the upper limits in this section. The relevant column for this analysis is
E−2, as the other columns refer to model-specific studies.

8.4.1 Absorption and Scattering in Ice

The South Pole ice model is a potential source of uncertainty. The photon

propagation simulation includes many assumptions about ice properties, which can

be parametrized by light absorption and scattering coefficients (Figure 4.7). The

uncertainty of absorption and scattering cofficients for the northern sky study ranged

from±10%, while the southern sky estimated a change of -7.1%/+10%. An increased

absorption coefficient would lower the total light available for DOMs to record.

This would lead to lower energy estimates, which would impact event selection cuts

related to the energy proxy.

8.4.2 DOM Efficiency

The PMT contained in the DOM was studied before deployment by IceCube.

Those studies indicated that the PMT detection efficiency was 7.7%, with an additional

2% uncertainty in the measurement of each position on the PMT face [113]. Reduced
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DOM efficiency would lead to poorer direction and energy reconstructions. The

efficiency of the DOM is therefore estimated at ±10% for both the northern and

southern hemispheres.

Table 8.7: A summary of systematic uncertainties determined for the 2017 southern
sky track sample described in [17]. A conservative estimate of 15% uncertainty is
applied to the upper limits in this section. The relevant column for this analysis is
E−2, as the other columns refer to model-specific studies.

8.4.3 Summary

Ice models and DOM efficiency are the primary sources of uncertainty. Additional

errors, such as interaction cross section, muon energy loss during propagation, and

rock density near the detector are estimated to contribute up to 8%. The results of

varying potential sources of uncertainty are summarized in Tables 8.7 and 8.6.

The total systematic uncertainty for E−2 in the southern sky was found to be

14.6% [17]. This is rounded to 15% as a conservative estimate of error. The total

systematic uncertainty for the northern sky from [90] was found to be 9.1% for E−2.

The 2021 northern tracks sample estimates this uncertainty is at most 15% [153]
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[154]. Out of an abundance of caution, the 15% error is applied to the northern sky

as well.
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Chapter 9: Outlook

This thesis presented an all-sky search for muon neutrinos correlated with

2,091 GRBs. The individual GRBs were studied at ten time windows, ranging from

ten seconds to 15 days. P-values were calculated for each of the time windows, and

the most signifcant p-value was selected for a Binomial test. The Binomial test was

performed on four sub-populations of GRBs, split by northern and southern sky as

well as by short (<2 s) and long (>2 s) GRBs.

Previous GRB searches focused on the prompt gamma-ray emission time

and performed stacked analyses to determine if all GRBs were contributing small

neutrino fluences. These searches were found to be consistent with background and

GRBs were demoted to sources producing only a few percent of observed neutrinos.

The tight constraints on the prompt emission from stacking searches, which assume

all GRBs contribute a small neutrino fluence, led to the current study performing

the Binomial test in search of a smaller “warm” popultion of GRBs within the

larger group. The Binomial test in this analysis was also found to be consistent

with background.

The 23 most significant GRBs in this search were studied in greater detail

and, while hints of possible precursors or afterglow neutrinos taunt the analyzer,
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the results are consistent with statistical flucuations from background. The most

significant pre-trials p-value for the northern long sub-population is 6 × 10−4 for

GRB 140607A. This translates to a post-trials p-value of 0.44 for a correction of

960 GRBs in the sub-population and a post-trials p-value of 0.71 if corrected for

the entire 2,091 GRB sample. The most significant GRB of the entire group was

the southern long GRB 150202A with 5× 10−4 for the pre-trials p-value. This is a

post-trials p-value of 0.33 for the 814 southern long sub-population correction, and

0.65 for an overall post-trials p-value correction. These top GRBs are completely

consistent with background.

And yet, this is not quite a death knell for GRBs as major neutrino emitters.

The tight constraints from stacked limits in this (and previous) studies assume all

GRBs produce equal neutrino fluence on Earth, which has no physical motivation.

GRBs vary by orders of magnitude in terms of photon fluence and energy, making

a “one size fits all” assumption incomplete. The benefit of the standard candle

approach is to demonstrate that different assumptions allow GRBs to produce up

to ∼10% of the diffuse neutrino flux rather than ∼1%. Additional study of neutrino

production models from GRBs is warranted.

In particular, it is worth studying the impact of source density and brightness

on neutrino emission. There may be populations of GRBs that are not detected

because they 1) are not emitting gamma rays due to choked jets [155] [156] or 2) have

lower source energies and therefore are not bright enough in gamma rays. If GRBs

are more dense than the typical assumption of 667 per year, then each individual

source may emit fewer neutrinos and be more difficult to detect. If a subset of GRBs
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are gamma-ray-dark, but still producing neutrinos, then these could be searched

using afterglow signatures that are comparable to those of gamma-ray-bright GRBs

without the gamma-ray precursor.

A focus of future IceCube studies should be the real-time follow-up of all

detected GRBs. This analysis was designed to study any GRBs efficiently, requiring

only 20 minutes to scan the prompt, +/-1 day, and -1/+14 days. Incorporating

this (or a similar) analysis into IceCube’s real-time framework will provide valuable

insight to the GRB community. New models of choked jet and low luminosity GRBs

are constantly being developed, and the results from IceCube can be very helpful

for shaping those models. A Binomial test or stacked analysis could be done at the

end of every season to study the population results and provide an IceCube limit.

The study presented in this thesis supports the mounting evidence that GRBs

observed by satellites are not major contributors to the diffuse neutrino flux or

the highest energy cosmic rays. If GRBs are standard candle neutrino emitters,

then they account for a maximum of 11% of the diffuse flux up to 1,000 second

timescales. This may indicate a need for additional subclasses of gamma-ray bursts

[157] or further study of choked jets GRBs, which may have the conditions for

hadron acceleration and neutrino production without the high-energy gamma rays.

Although no longer the favored candidate for UHECR acceleration, GRBs are still

worth analyzing for neutrino counterparts and may surprise us all in the world of

real-time analyses.
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Appendix A: Additional Plots

The results for the most significant GRBs are shown below. The three plots

are the same for each GRB: the event times, energies, and S/B for the on-time events

in the most significant time window. The most significant GRB of each group is

discussed in greater detail in 8.2.

A.1 Most Significant Individual GRBs

A.1.1 Northern Sky Long GRBs
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A.1.2 Northern Sky Short GRBs

A.1.3 Southern Sky Long GRBs
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A.1.4 Southern Sky Short GRBs
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A.2 Firesong Limits

The 90% limit on the total neutrino energy for the ten time windows based

on FIRESONG’s standard candle simulation. The 90% exclusion confidence limit is

roughly flat across declinations because 2,091 GRBs are always drawn from the set

of simulated sources. The historic choice of 667 GRBs/Mpc3 per year is indicated

with a vertical dashed line. The limits on the diffuse flux are indicated with the

diagonal lines. This is discussed in detail for the 1000 second time window in 8.3.3.
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[83] P. Mészáros. “Astrophysical Sources of High-Energy Neutrinos in the IceCube
Era”. In: Annual Review of Nuclear and Particle Science 67.1 (2017), pp. 45–
67. doi: 10.1146/annurev-nucl-101916-123304. eprint: https://doi.
org/10.1146/annurev-nucl-101916-123304. url: https://doi.org/10.
1146/annurev-nucl-101916-123304.

[84] Abbasi, R. et al. “An absence of neutrinos associated with cosmic-ray acceleration
in gamma-ray bursts”. In: Nature 484.7394 (2012), pp. 351–354. doi: 10.
1038/nature11068. url: https://doi.org/10.1038/nature11068.

[85] Casey, James. “SEARCH FOR HIGH ENERGY GRB NEUTRINOS IN
ICECUBE”. PhD thesis. Georgia Institute of Technology, 2015.

[86] R. Abbasi et al. “Limits on Neutrino Emission from Gamma-Ray Bursts
with the 40 String IceCube Detector”. In: Physical Review Letters 106.14
(2011). issn: 1079-7114. doi: 10.1103/physrevlett.106.141101. url:
http://dx.doi.org/10.1103/PhysRevLett.106.141101.

[87] M. G. Aartsen et al. “SEARCH FOR PROMPT NEUTRINO EMISSION
FROM GAMMA-RAY BURSTS WITH ICECUBE”. In: The Astrophysical
Journal 805.1 (2015), p. L5. issn: 2041-8213. doi: 10.1088/2041-8205/
805/1/l5. url: http://dx.doi.org/10.1088/2041-8205/805/1/L5.

202

https://doi.org/10.1126/science.aat1378
https://doi.org/10.1126/science.aat1378
https://doi.org/10.1126/science.aat1378
https://doi.org/10.1103/physrevlett.124.051103
https://doi.org/10.1038/s41550-020-01295-8
https://doi.org/10.1038/s41550-020-01295-8
http://dx.doi.org/10.1038/s41550-020-01295-8
http://dx.doi.org/10.1038/s41550-020-01295-8
https://doi.org/10.1103/PhysRevLett.78.2292
https://link.aps.org/doi/10.1103/PhysRevLett.78.2292
https://link.aps.org/doi/10.1103/PhysRevLett.78.2292
https://agenda.infn.it/event/19259/contributions/98104/attachments/68928/85422/Palladino-nuday2019.pdf
https://agenda.infn.it/event/19259/contributions/98104/attachments/68928/85422/Palladino-nuday2019.pdf
https://agenda.infn.it/event/19259/contributions/98104/attachments/68928/85422/Palladino-nuday2019.pdf
https://doi.org/10.1146/annurev-nucl-101916-123304
https://doi.org/10.1146/annurev-nucl-101916-123304
https://doi.org/10.1146/annurev-nucl-101916-123304
https://doi.org/10.1146/annurev-nucl-101916-123304
https://doi.org/10.1146/annurev-nucl-101916-123304
https://doi.org/10.1038/nature11068
https://doi.org/10.1038/nature11068
https://doi.org/10.1038/nature11068
https://doi.org/10.1103/physrevlett.106.141101
http://dx.doi.org/10.1103/PhysRevLett.106.141101
https://doi.org/10.1088/2041-8205/805/1/l5
https://doi.org/10.1088/2041-8205/805/1/l5
http://dx.doi.org/10.1088/2041-8205/805/1/L5


[88] M. G. Aartsen et al. “AN ALL-SKY SEARCH FOR THREE FLAVORS
OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE
NEUTRINO OBSERVATORY”. In: The Astrophysical Journal 824.2 (2016),
p. 115. issn: 1538-4357. doi: 10.3847/0004-637x/824/2/115. url: http:
//dx.doi.org/10.3847/0004-637X/824/2/115.

[89] M. Ahlers, M.C. Gonzalez-Garcia, and F. Halzen. “GRBs on probation:
Testing the UHE CR paradigm with IceCube”. In: Astroparticle Physics 35.2
(2011), 87–94. issn: 0927-6505. doi: 10.1016/j.astropartphys.2011.05.
008. url: http://dx.doi.org/10.1016/j.astropartphys.2011.05.008.

[90] Richman, Michael David. “A Search For Muon Neutrinos Coincident With
Gamma-Ray Bursts Using IceCube”. PhD thesis. University of Maryland,
2015.

[91] Ignacio Taboada, Chun Fai Tung, and Joshua Wood. Constrains on the
extragalactic origin of IceCube’s neutrinos using HAWC. 2018. arXiv: 1801.
09545 [astro-ph.HE]. url: https://arxiv.org/abs/1801.09545.

[92] The IceCube Neutrino Observatory. 2015. arXiv: 1510.05223 [astro-ph.HE].
url: https://arxiv.org/abs/1510.05223.

[93] Piero Madau and Mark Dickinson. “Cosmic Star-Formation History”. In:
Annual Review of Astronomy and Astrophysics 52.1 (2014), 415–486. issn:
1545-4282. doi: 10.1146/annurev- astro- 081811- 125615. url: http:

//dx.doi.org/10.1146/annurev-astro-081811-125615.

[94] W. Pauli. Pauli Neutrino Letter. 1930. url: https://microboone-docdb.
fnal.gov/cgi-bin/ShowDocument?docid=953.

[95] The IceCube Collaboration Aartsen M.G. et al. “The IceCube Neutrino
Observatory: instrumentation and online systems”. In: Journal of Instrumentation
12.03 (2017), P03012–P03012. issn: 1748-0221. doi: 10.1088/1748-0221/
12/03/p03012. url: http://dx.doi.org/10.1088/1748-0221/12/03/
P03012.

[96] The IceCube Collaboration. IceCube Quick Facts. url: https://icecube.
wisc.edu/science/icecube/detector.

[97] R. Abbasi et al. “IceTop: The surface component of IceCube”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 700 (2013), 188–220. issn: 0168-9002.
doi: 10.1016/j.nima.2012.10.067. url: http://dx.doi.org/10.1016/
j.nima.2012.10.067.

[98] Cheung, Yee Lam Elim. “Measurement of Atmospheric Neutrino Oscillation
Parameters Using Three Years of IceCube-DeepCore Dat”. PhD thesis. University
of Maryland, 2018.

203

https://doi.org/10.3847/0004-637x/824/2/115
http://dx.doi.org/10.3847/0004-637X/824/2/115
http://dx.doi.org/10.3847/0004-637X/824/2/115
https://doi.org/10.1016/j.astropartphys.2011.05.008
https://doi.org/10.1016/j.astropartphys.2011.05.008
http://dx.doi.org/10.1016/j.astropartphys.2011.05.008
https://arxiv.org/abs/1801.09545
https://arxiv.org/abs/1801.09545
https://arxiv.org/abs/1801.09545
https://arxiv.org/abs/1510.05223
https://arxiv.org/abs/1510.05223
https://doi.org/10.1146/annurev-astro-081811-125615
http://dx.doi.org/10.1146/annurev-astro-081811-125615
http://dx.doi.org/10.1146/annurev-astro-081811-125615
https://microboone-docdb.fnal.gov/cgi-bin/ShowDocument?docid=953
https://microboone-docdb.fnal.gov/cgi-bin/ShowDocument?docid=953
https://doi.org/10.1088/1748-0221/12/03/p03012
https://doi.org/10.1088/1748-0221/12/03/p03012
http://dx.doi.org/10.1088/1748-0221/12/03/P03012
http://dx.doi.org/10.1088/1748-0221/12/03/P03012
https://icecube.wisc.edu/science/icecube/detector
https://icecube.wisc.edu/science/icecube/detector
https://doi.org/10.1016/j.nima.2012.10.067
http://dx.doi.org/10.1016/j.nima.2012.10.067
http://dx.doi.org/10.1016/j.nima.2012.10.067


[99] Juliana Stachurska. “IceCube High Energy Starting Events at 7.5 Years -
New Measurements of Flux and Flavor”. In: EPJ Web of Conferences 207
(2019). Ed. by C.Editor Spiering, p. 02005. issn: 2100-014X. doi: 10.1051/
epjconf/201920702005. url: http://dx.doi.org/10.1051/epjconf/
201920702005.

[100] Gen2 Collaboration. IceCube-Gen2: The Window to the Extreme Universe.
2020. arXiv: 2008.04323 [astro-ph.HE].

[101] Sheldon L. Glashow. “Resonant Scattering of Antineutrinos”. In: Phys. Rev.
118 (1 1960), pp. 316–317. doi: 10.1103/PhysRev.118.316. url: https:
//link.aps.org/doi/10.1103/PhysRev.118.316.

[102] The IceCube Collaboration. “Detection of a particle shower at the Glashow
resonance with IceCube”. In: 591 (2020), pp. 220–224. url: https://www.
nature.com/articles/s41586-021-03256-1.

[103] Amanda Cooper-Sarkar, Philipp Mertsch, and Subir Sarkar. “The high energy
neutrino cross-section in the Standard Model and its uncertainty”. In: Journal
of High Energy Physics 2011.8 (2011). issn: 1029-8479. doi: 10 . 1007 /

jhep08(2011)042. url: http://dx.doi.org/10.1007/JHEP08(2011)042.

[104] Raj Gandhi et al. “Ultrahigh-energy neutrino interactions”. In: Astroparticle
Physics 5.2 (1996), 81–110. issn: 0927-6505. doi: 10.1016/0927-6505(96)
00008-4. url: http://dx.doi.org/10.1016/0927-6505(96)00008-4.

[105] P. A. Cherenkov. “Visible Radiation Produced by Electrons Moving in a
Medium with Velocities Exceeding that of Light”. In: Phys. Rev. 52 (4 1937),
pp. 378–379. doi: 10.1103/PhysRev.52.378. url: https://link.aps.org/
doi/10.1103/PhysRev.52.378.

[106] M.G. et al. Aartsen. “Measurement of South Pole ice transparency with
the IceCube LED calibration system”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 711 (2013), 73–89. issn: 0168-9002. doi: 10.1016/j.
nima.2013.01.054. url: http://dx.doi.org/10.1016/j.nima.2013.01.
054.

[107] Michael Larson. Student Likelihood Workshop. Tech. rep. IceCube Collaboration,
Oct. 2020.

[108] D. Chirkin and W. Rhode. “Propagating leptons through matter with Muon
Monte Carlo (MMC)”. In: ArXiv High Energy Physics - Phenomenology e-
prints (2004). url: https://arxiv.org/abs/hep-ph/0407075.

[109] M. et. al. Tanabashi. “Review of Particle Physics”. In: Phys. Rev. D 98
(3 2018), p. 030001. doi: 10.1103/PhysRevD.98.030001. url: https:

//link.aps.org/doi/10.1103/PhysRevD.98.030001.

[110] The IceCube Collaboration. “Optical properties of deep glacial ice at the
South Pole”. In: Journal of Geophysical Research 111.D13 (2006). doi: 10.
1029/2005jd006687. url: https://doi.org/10.1029/2005jd006687.

204

https://doi.org/10.1051/epjconf/201920702005
https://doi.org/10.1051/epjconf/201920702005
http://dx.doi.org/10.1051/epjconf/201920702005
http://dx.doi.org/10.1051/epjconf/201920702005
https://arxiv.org/abs/2008.04323
https://doi.org/10.1103/PhysRev.118.316
https://link.aps.org/doi/10.1103/PhysRev.118.316
https://link.aps.org/doi/10.1103/PhysRev.118.316
https://www.nature.com/articles/s41586-021-03256-1
https://www.nature.com/articles/s41586-021-03256-1
https://doi.org/10.1007/jhep08(2011)042
https://doi.org/10.1007/jhep08(2011)042
http://dx.doi.org/10.1007/JHEP08(2011)042
https://doi.org/10.1016/0927-6505(96)00008-4
https://doi.org/10.1016/0927-6505(96)00008-4
http://dx.doi.org/10.1016/0927-6505(96)00008-4
https://doi.org/10.1103/PhysRev.52.378
https://link.aps.org/doi/10.1103/PhysRev.52.378
https://link.aps.org/doi/10.1103/PhysRev.52.378
https://doi.org/10.1016/j.nima.2013.01.054
https://doi.org/10.1016/j.nima.2013.01.054
http://dx.doi.org/10.1016/j.nima.2013.01.054
http://dx.doi.org/10.1016/j.nima.2013.01.054
https://arxiv.org/abs/hep-ph/0407075
https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1029/2005jd006687
https://doi.org/10.1029/2005jd006687
https://doi.org/10.1029/2005jd006687


[111] N. E. Bramall et al. “A deep high-resolution optical log of dust, ash, and
stratigraphy in South Pole glacial ice”. In: Geophysical Research Letters 32.21
(2005). doi: 10.1029/2005gl024236. url: https://doi.org/10.1029/
2005gl024236.

[112] IceCube Collaboration A. Achterberg et al. “First year performance of the
IceCube neutrino telescope”. In: Astroparticle Physics 26.3 (2006), 155–173.
issn: 0927-6505. doi: 10.1016/j.astropartphys.2006.06.007.

[113] IceCube Collaboration R. Abbasi et al. “Calibration and characterization
of the IceCube photomultiplier tube”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 618.1-3 (2010), 139–152. issn: 0168-9002. doi: 10.

1016/j.nima.2010.03.102.

[114] Whitehorn, Nathan. “A Search for High-Energy Neutrino Emission from
Gamma-Ray Bursts”. PhD thesis. University of Wisconsin-Madison, 2012.

[115] The IceCube Collaboration Aartsen M G et al. “Energy reconstruction methods
in the IceCube neutrino telescope”. In: Journal of Instrumentation 9.03
(2014), P03009–P03009. issn: 1748-0221. doi: 10.1088/1748- 0221/9/

03/p03009. url: http://dx.doi.org/10.1088/1748-0221/9/03/P03009.

[116] Larson, Michael James. “A Search for Tau Neutrino Appearance with IceCube-
DeepCore”. PhD thesis. Niels Bohr Institute, 2018.

[117] IceCube Collaboration R. Abbasi et al. “The IceCube data acquisition system:
Signal capture, digitization, and timestamping”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 601.3 (2009), 294–316. issn: 0168-9002.
doi: 10.1016/j.nima.2009.01.001.

[118] Hans Niederhausen Michael Larson. Nu Sources Filtering and Processing
Review. Tech. rep. IceCube Collaboration, Oct. 2020.

[119] IceCube Collaboration. In: Journal of Instrumentation 11.11 (2016), P11009–P11009.
issn: 1748-0221. doi: 10.1088/1748- 0221/11/11/p11009. url: http:

//dx.doi.org/10.1088/1748-0221/11/11/P11009.

[120] The AMANDA Collaboration Ahrens J. et al. “Muon track reconstruction
and data selection techniques in AMANDA”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 524.1-3 (2004), 169–194. issn: 0168-9002. doi:
10.1016/j.nima.2004.01.065. url: http://dx.doi.org/10.1016/j.
nima.2004.01.065.

[121] The IceCube Collaboration Aartsen M.G. et al. “Improvement in fast particle
track reconstruction with robust statistics”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 736 (2014), 143–149. issn: 0168-9002. doi: 10.
1016/j.nima.2013.10.074. url: http://dx.doi.org/10.1016/j.nima.
2013.10.074.

205

https://doi.org/10.1029/2005gl024236
https://doi.org/10.1029/2005gl024236
https://doi.org/10.1029/2005gl024236
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://doi.org/10.1016/j.nima.2010.03.102
https://doi.org/10.1016/j.nima.2010.03.102
https://doi.org/10.1088/1748-0221/9/03/p03009
https://doi.org/10.1088/1748-0221/9/03/p03009
http://dx.doi.org/10.1088/1748-0221/9/03/P03009
https://doi.org/10.1016/j.nima.2009.01.001
https://doi.org/10.1088/1748-0221/11/11/p11009
http://dx.doi.org/10.1088/1748-0221/11/11/P11009
http://dx.doi.org/10.1088/1748-0221/11/11/P11009
https://doi.org/10.1016/j.nima.2004.01.065
http://dx.doi.org/10.1016/j.nima.2004.01.065
http://dx.doi.org/10.1016/j.nima.2004.01.065
https://doi.org/10.1016/j.nima.2013.10.074
https://doi.org/10.1016/j.nima.2013.10.074
http://dx.doi.org/10.1016/j.nima.2013.10.074
http://dx.doi.org/10.1016/j.nima.2013.10.074


[122] S. Boyd & L. Vandenberghe. ““Convex Optimization””. In: Cambridge University
Press, 2009, pp. 190, 298–300.

[123] Pandel, Dirk. “Bestimmung vonWasser- und Detektorparametern und Rekonstruktion
von Myonen bis 100 TeV mit dem Baikal-Neutrinoteleskop NT-72”. PhD
thesis. Humboldt-Universit at zu Berlin, 1996.

[124] G. Japaridze N. van Eijndhoven O. Fadiran. “Implementation of a Gauss
convoluted Pandel PDF for track reconstruction in neutrino telescopes”. In:
Astroparticle Physics 28 (2007), pp. 456–462. issn: 0927-6505. doi: 10.1016/
j.astropartphys.2007.09.001. url: https://doi.org/10.1016/j.
astropartphys.2007.09.001.

[125] IceCube Collaboration. Photospline. 2020. url: {https://github.com/

icecube/photospline}.

[126] Paul H. C. Eilers and Brian D. Marx. “Flexible smoothing with B-splines and
penalties”. In: Statistical Science 11.2 (1996), pp. 89 –121. doi: 10.1214/
ss/1038425655. url: https://doi.org/10.1214/ss/1038425655.

[127] H. Cramer. “Mathematical Methods of Statistics”. Princeton Univ. Press,
1945.

[128] C. R. Rao. “Information and accuracy attainable in the estimation of statistical
parameters”. In: Bulletin of the Calcutta Mathematical Society 37 (1945),
pp. 81–91. issn: 0008-0659.

[129] G. C. Hill. “Bayesian event reconstruction and background rejection in neutrino
detectors”. In: PoS (2001). eprint: https://arxiv.org/pdf/astro-ph/
0106081.pdf.

[130] Maintainer: Joulien Tatar. Truncated Energy Software Documentation. Tech.
rep. IceCube Collaboration, 2020. url: https://docs.icecube.aq/combo/
trunk/projects/truncated_energy/.

[131] Thomas Kintscher Elisa Bernardini Konstancja Satalecka. Gamma-Ray Follow-
Up (GFU). Tech. rep. IceCube Collaboration, 2018.

[132] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[133] M. Richman. Pybdt user manual. Tech. rep. IceCube Collaboration, 2018.
url: https://code.icecube.wisc.edu/projects/icecube/browser/
IceCube/projects/pybdt/trunk/resources/docs/.
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