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Abstract

Title of Dissertation: Analysis and Synthesis of Distributed Systems

Yan Zhuang, Doctor of Philosophy, 1994

Dissertation directed by: Professor John S. Baras
Martin Marietta Chair in Systems Engineering
Department of Electrical Engineering

University of Maryland, College Park

We first model and analyze distributed systems including distributed sen-
sors and actuators. We then consider identification of distributed systems via
adaptive wavelet neural networks (AWNNs) by taking advantage of the multires-
olution property of wavelet transforms and the parallel computational structure
of neural networks. A new systematic approach is developed in this dissertation
to construct an optimal discrete orthonormal wavelet basis with compact sup-
port for spanning the subspaces employed for system identification and signal
representation. We then apply a backpropagation algorithm to train the network
to approximate the system. Filter banks for parameterizing wavelet systems are
studied. An analog VLSI implementation architecture of the AWNN is also
given in this dissertation. This work is applicable to signal representation and
compression under optimal orthonormal wavelet bases in addition to progressive
system identification and modeling. We anticipate that this work will find future

applications in signal processing and intelligent systems.
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Chapter 1

Introduction

1.1 Background

Modeling complex distributed systems, such as flexible structure systems, is a
challenge due to their infinite dimensional nature. Extensive efforts have been
made to model these systems [7] [6] [5] and their actuators [6] [15] [32]. However,
even a reasonable mathemétical model may involve a large number of coupled
variables, nonlinearities and complicated boundary conditions. When the system
is equipped with many sensors and actuators of both distributed and discrete
types, monitoring the system and processing sensory data can become difficult
if not prohibitive. New techniques need to be developed for system modeling,
system identification and sensory data processing.

We have found recent advances in wavelet theory applicable in generating
an progressive modeling structure used in both system identification and signal
approximation in L?(R). There has been extensive research interest and activi-
ties in wavelet theory and its applications in recent years [12] [19], manly due to
the fact that wavelet transforms decompose a signal into components at differ-
ent resolutions. Wavelet transforms actually simplify the description of signals

and provides analysis at different levels of detail. There are some successful



applications of these properties in the fields of signal processing [43], speech
processing and especially in image processing [34]. It was shown [35] that it is

possible to derive a mother wavelet function ¥(z) € L*(R) such that for j,! € Z,
{¥;u(2)}sez with

pi(z) = V2p(2z — 1) (1.1)

is an orthonormal basis of L2(R). Any square integrable function f(z) € L(R?)

can be represented as

f(z) = lea‘,ﬂﬁj,l(x)- (1.2)
s
This property is very useful in identification of infinite dimensional systems.

Another useful approach to modeling and system identification is using artifi-
cial neural networks which provide distributed computational structures. It has
been shown [17] that two layer neural networks can approximate any nonlinear
function to an arbitrary degree of accuracy. This approach has been successfully
applied to many other fields including pattern classification.

Motivated by the latest developments in wavelet theory and neural networks,
we develop new approaches for system identification and progressive modeling
and introduce the concept of adaptive wavelet neural networks (AWNNs) for
signal representation and system identification. We also develop an optimiza-
tion scheme for generating the optimal wavelet basis forming the AWNN based
on the unknown systems or given signals. AWNNs are applicable to system

identification and signal representation.



1.2 Contributions of the Thesis

This thesis presents the results of interdisciplinary research regarding distributed
systems using theories and methodology mainly from signal processing and con-

trol systems.

o We developed models of distributed systems, flexible structures, proposed
an algorithm for designing a layout of the distributed sensors and actu-
ators. This work will facilitate modeling and control of complex flexible

systems.

o We worked out a progressive system identification scheme which can be

used for model verification and system monitoring.

o We developed a systematic approach to construct a signal based optimal
wavelet basis with compact support for signal representation and system

approximation.

e We utilized the multiresolution property of wavelet transforms and the
distributed computational structure of neural networks and developed
the concept and structure of Adaptive Wavelet Neural Networks; AWNN
would find application in system identification, signal representation and

compression.

e We also demonstrated the feasibility of implementing AWNN via analog

VLSI circuits for future real time implementation.

We anticipate that the methodology and concepts developed in the disserta-
tion can find their applications in the areas of signal processing and intelligent

systems.



1.3 Outline of the Thesis

This thesis is organized as follows:

Chapter 2 discusses the modeling and synthesis of distributed systems. It
deals with a component of flexible structures and analyzes the effects of dif-
ferent sensors and actuators to the system. It also introduces the concept of
multiresolution system identification and monitoring of complex systems.

Chapter 3 studies the issue of shaping distributed sensors and actuators to
maximize active damping to the flexible system. A design algorithm is also given
with the model derived from the previous chapter.

Chapter 4 reviews the connection between compactly supported wavelets
and QMF banks. It demonstrates that compactly supported wavelets can be
constructed through designing a low pass filter subject to certain constraints.

Chapter 5 provides a systematic approach for constructing an optimal wavelet
basis with compact support; such a wavelet basis would be suitable for signal
representation and system identification. The existence of the optimal wavelet
basis is proved in this chapter.

Chapter 6 introduces Adaptive Wavelet Neural Networks (AWNNs) for iden-
tification of infinite dimensional systems and for signal representation. Struc-
tured learning is also discussed regarding real time adaptive learning with vari-
able structures.

Chapter 7 demonstrates the feasibility of implementing AWNN systems via
analog VLSI circuits. Design modules and system architectures are addressed

in term of aggregating the design modules into an AWNN system.

The last chapter suggests future research directions and concludes the thesis.



Chapter 2

Modeling and Synthesis of
Distributed Systems

In this chapter, we discuss modeling and synthesis of a distributed system in
the form of flexible structures. We also point out the necessity for identification

and verification schemes for distributed systems.

2.1 Introduction

Distributed systems cover a wide range of systems in many fields ranging from
physics, mathematics to engineering. They can be categorized in a variety of
ways depending on the circumstance of the physical world and the fields in which
they are used. Most obviously, from their names, one can naturally recognize
those spatially distributed or physically continuous plants in the real world as
distributed systems. For example, fluid dynamics, thermal dynamics belong
to the domain of distributed systems since they deal with continuous media in
their subjects. Another example can be image processing, the basic units of a
digitized image to be treated are pixels which are spatially distributed; so in
some sense, the image system is also a distributed system. In dynamics, when

objects of a system can not be treated precisely as rigid bodies and elastic effects



are considered, we say that the system is a distributed system.

Flexible structures are examples of distributed systems and can be modeled
in different ways, such as finite element fnodels, discrete models and continuous
models governed by partial differential equations. Flexible structure control and
stabilization have long been a field of research. Its applications can be found in
many areas such as vibration suppression in mechanical engineering and struc-
ture control in civil engineering. One of the challenges comes from applications
in aerospace systems and robotics. Due to the limited launching load, space
structures are usually large in size, light in mass and hence weakly damped.
In order to implement attitude control of increasing pointing precision, active
damping is required to enhance the system’s stability. Problems in controller
design for large flexible space structures include quickly damping out the point-
ing errors resulting from step disturbances, or nonzero initial conditions (e.g.,
resulting from slewing) and maintaining the desired attitude as close as possible
in the presence of disturbances.

Modeling these systems, with structure damping, appropriate interface con-
ditions, different geometric configurations and various composite materials, is a
challenging research topic. Even a reasonable mathematical model may involve
a large number of coupled variables, nonlinearities and complicated boundary
conditions. It is a formidable task to obtain concrete representations of optimal
feedback operators or to estimate the decay rate induced [30, p7]. It is natural
that current research in dynamic control of flexible structures mainly focuses
on basic components such as string, beam and plate of the whole structure.
For example, Kim and Renardy [27] proved that the Timoshenko beam can be

uniformly stabilized by means of boundary control. Morgiil demonstrated that



a dynamical boundary and a dynamical boundary torque can cause the vibra-
tion of a Euler-Bernoulli beam to decay exponentially based on a Lyapunov
functional based energy functional. Lagnese [30] presented a systematic study
of uniform stabilization of the motion of a thin plate through the action of
forces and moments applied at the edge of the plate. However, when the sys-
temn becomes more complicated or is equipped with a large number of sensors
and actuators of both distributed and discrete types, monitoring the system
and processing sensory data can become difficult. New techniques need to be
developed to deal with system modeling, system identification and sensory data
processing.

The application of smart materials make it possible to implement distributed
sensing and control of distributed systems. The so called “smart material” is
one whose constitutive property, i.e., its strain and stress relation, is influenced
by the external electric field applied to it. Bonding or embedding segmented
elements of such materials in a structure would allow the application of local-
ized strain developed in them to be transferred to the structure to control the
deformation. The dynamical behavior of the composite structure can be ad-
justed by implementing appropriate control algorithms. Distributed sensors are
bonded to a beam in a similar way. Typically, the output voltage from a sensor
is a functional of the beam curvature[32] [47]. Bailey and Hubbard [4] used dis-
tributed actuators to control the vibration of a cantilever Euler-Bernoulli beam.
Lyapunov’s second method was used to design the control algorithm. Piezo-
electric actuators were also employed as elements of intelligent structures by
Crawley and de Luis [15] and the corresponding static and dynamical analytic

models were derived for segmented piezoelectric actuators. The actuator used



is spatially distributed, made of piezoelectric ceramic material (PZT) which is
glued to the beam. The studies above were all based on Euler-Bernoulli beam
model without considering shear effect and rotational inertia of the beam. The
study of Lee and Moon [32] showed through modal equations that distributed
sensors and actuators could be designed to measure or excite specific modes of
one-dimensional plates and beams. Cudney [16] conducted research on control
of the Timoshenko beam with four added layers of sensors and actuators with
with rate feedback for system damping. Tzou [47] provided some detailed expla-
nation of the nature of piezoelectric actuators and sensors. Despite the research
efforts above, there is still a need to systematically find the optimal layout of
the distributed sensors and actuators for a specific application and to design an
efficient sensing processing network in the presence of complicated structures.
Attempting to fill the gap, we studied active damping problems using distributed
actuators and sensors with the rotational inertia included in the beam model [9].
We also worked on shape optimization [53] for distributed sensors and actuators
in order to maximize the damping effect.

In the rest of this chapter, we shall first discuss the modeling of a composite
Timoshenko beam with distributed actuators and sensors. We then discuss a
stabilizing control algorithm through introducing active damping to the system.
We finally investigate the actuator and sensor shapes and their impact on the
system’s elastic modes. Research presented on flexible structure in this disser-
tation differs from the previous work in the sense of considering the optimal
design and analysis of sensor and actuator shape functions with respect to the
Timoshenko beam. Throughout our discussion on distributed systems in this

dissertation, we shall use flexible structure systems as examples for treatment



PZT actuator

Substructure g
hs
PVDF Sensor b

Figure 2.1: The composite beam

with our methodology.

2.2 System Model

The system model consists of a beam substructure with an actuator layer and
a sensor layer glued on both sides of the beam. We formulate the model of the

composite beam in this section.

2.2.1 Distributed Actuator Made of Smart Materials

One approach to build the desired distributed actuator is to take advantage of
the special constitutive properties of certain materials. The actuation produced
is due to the property change of the material subject to certain stimulation
other than the external actuation force. Since the actuator can be built into the
structure the overall structure design can be optimized. One of the advantages
of using smart materials as sensors and actuators is that that the after-fact
structure change and additional weight can be avoided.

Figure 2.1 shows a simplified structure of a composite cantilever beam with
a sensor and an actuator layers glued on both sides of the beam. The actuator

layer is made of PZT material while the sensor layer is made of piezoelectric



polymer polyvinylidene fluoride (PVDF) material. In this figure, h,, ks and
h, stand for the thickness of the actuator layer, the substructure layer and the
sensing layer of the composite beam respectively. The subscripts a, b and s
denote quantities and variables associated with the actuator, beam and sensor
respectively. We use b to denote the width of the composite beam. For the
convenience of our analysis, we assume a perfect bonding condition; we omit the
shear effect between the actuator layer and its substructure and that between
the sensor layer and the substructure.

The model of the actuator comes from the stress-strain relation of the piezo-
electric materials. This relation is similar to that of the thermoelastic materials,
with the thermal strain term replaced by the piezoelectric strain A. The consti-

tutive equation of the actuator is given by [47]
o= E;(e-A) (2.1)

where A is the actuation strain of the PZT due to an external electric field,
and € is the strain of PZT without the external electric field, E, is the Young’s
modulus of the PZT and o represents the PZT stress induced by the strain and
the actuation. The actuation strain is given by [4] and [15] as

Az, t) = %V(x,t) (2.2)

where d3; is the piezoelectric field and strain field constant. V(z,t) is the dis-
tributed voltage. The induced strain has the following two effects on the com-
posite beam [4]: One effect is that it introduces a longitudinal strain ¢ to insure
a force equilibrium along the axial direction. The steady state value of ¢ can be
derived by solving a force equilibrium equation. The second effect is that the net

force in each layer acts through the moment arm with the length from the mid-
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plane of the layer to the neutral plane of the beam. The result of the actuation
produces the bending moment which is introduced as the control mechanism.
Since the composite beam model here has a similar geometric configuration as
that in [4], we can express the actuation moment using the linear model used

by Bailey [4]
M, = K,A(z,t) (2.3)
where K, is a constant depending on the geometry and the materials of the

beam. The actuation from the PZT actuator appears as a bending moment

which is proportional to the actuation strain of the actuator layer.

2.2.2 Model of the Flexible Structure with Actuators

We use the Timoshenko beam model {46, p331] to describe the dynamical be-
havior of the beam. Unlike the Euler-Bernoulli beam model, the Timoshenko
model contains the rotational inertia and shear effects of the actual beam. The

analysis of the latter is more complicated. The beam model is given as

0w w00
0o 5o a
ploy = Blgs + kAG(?a% _9). (2.5)

Here ¢ is the time variable and z is the space coordinate along the beam in its
equilibrium configuration. w(z,t) is the displacement of the centroid from its
equilibrium line which is described by w = 0. @ denotes the deflection curve
when the shearing force is neglected. The total slope of deflection is

dw
E;=@+/Ba

11



where 3 is the angle of shear. p,I and E are mass density, moment of inertia
of cross section and Young’s modulus respectively. k is a numerical factor de-
pending on the shape of the beam while A and G are area of cross section and
modulus of elasticity in shear.

The bending moment of the composite beam without actuation is

0o
M, = F]— ;
b 18:1:’ (2.6)
where
EI = E,I, + Ev1y + E,I,. (2.7)

The bending moment of the beam with actuation moment is

M =M, + M, (2.8)

Using this augmented moment to replace the moment term in the original Tim-

oshenko beam equations, we obtain equations of motion

0*w o*w 00
0%® 0*0 ow ov
with boundary conditions
w(0,t) = 0, ®(0,t) =0,
ow(L,t) _ 0®(L,t)
5, ®(L,t) = 0, EI 5. - 0, (2.11)

where

d
c= —-3—1]{4.

12



Figure 2.2: The PVDF sensor

The distributed voltage V(z,t) is the control applied to the system. Equations
(2.9) (2.10) and boundary condition (2.11) form the control system model. The
constant ¢ is determined by the PZT material property and the manufacturing
process. The actuation appears in the system in the form of a distributed

bending moment in the rotational equation (2.10).

2.2.3 Sensor Model

A spatially distributed sensor is modeled here to provide the sensing signal for
the control system in consideration. The distributed sensor is the one whose
output is a function of structural responses at different locations. It can be
a group of point sensors or a spatially continuous one or the combination of
both. These structural responses are obtained either discretely or continuously
in space. Using the latter has the advantage of simplifying the complicated
computations based on the point measurements since the sensor geometry can
be tailored to provide the necessary computation. The spatial aliasing from an
array of sensors can be avoided. Typical noncausal sensor dynamics such as gain

rolloff without phase shift is possible by using distributed sensors [14].

13



PVDF is strain sensitive and relies on the applied strain to produce electrical
charge. Figure 2.2 shows the structure of the PVDEF sensor where the shaded
area represents the region covered by electrodes. Only those regions covered by
the electrodes play an active role in collection of electric charge due to beam
bending. The amount of electrical charge is proportional to the amount of strain
induced by the structure. It is also based on the constitutive property of the
sensor material. This process is the reverse of piezoelectric actuation [47]. The

induced charge per unit length from the strain is
q(z,t) = —Eda¢s. (2.12)

where E, is Young’s modulus of the sensor material.

The sensor strain is related to the beam curvature by

_ hb+h,8<1>

€= =5 (2.13)

This is based on the assumption that the neutral layer of bending is close to
the geometric centroid of the composite beam. The electrical charge along the

beam is

Q(z,t) = /:q(x,t)F(x)dz

hb+hs
2

N
—  _ E.dy /0 Fla)5de (2.14)

where F(z) is the shape function of the sensor. The value of F(z) is the local
width of the electrodes covering both sides of the sensor material. We may
also call F(z) weight function of the sensor since it describes the amount of
measurement taken by the distributed sensor at position z along the beam. The

output of the sensor is

14



Vi(z,t) = C
z 0o
= - K bl 2.
K, /0 Flo)5_ds (2.15)
where
K. = Budn(hu + h) .16

2C
is a constant with C being the capacitance between the electrodes of the sensor
layer. Suppose the sensor covers the whole beam, then we can drop the spatial

variable in the sensor output and have

Vi(t) = —K, /OL F(m)%%d:c. (2.17)

Equation (2.17) is the sensor output equation. The output voltage is the
weighted integral of the beam curvature. Integrating by parts the right hand

side of the above expression once in the spatial variable, we have another form

of the sensor output,
L
Vi(t) = —K,®(L,t)F(L) + 1{,/ @(m,t)a—g—i—xldm. (2.18)
0

We shall observe later that the format of Equation (2.18) can be manipulated

according to our control needs.

2.2.4 The Model of the Composite System

From the previous analysis, the model of the composite system is expressed by

the following equations of motion

9w w00

9*® 9*® Ow oV
pf-é'i-z- = EIB?-*-ICAG(-E; —(I))+CE (2.10)



with boundary conditions

w(0,8) = 0,  &(0,t)=0,
duw(L,1) B 0%(L,t)
S - e(Ly) = 0, Bl =0 (211

and the distributed sensor model

V(1) = —K, /0 ’ F(x)%%dw (2.17)

and appropriate initial conditions (IC) to be specified in the next section. The
first equation describes displacement of the beam while the second equation
shows the rotational movement of the cross section. The sensor function yields
a voltage which is a weighted distributed measurement of the curvature of the
beam. Up to this point, we have the completed composite beam model for

further analysis.

2.3 Control Algorithm

2.3.1 Background on Stabilization of a Thin Plate

Lagnese studied the stabilization of a thin plate modeled by the Mindlin-Timoshenko
model [30, pl7] which is a two dimensional case of the Timoshenko beam
model. The Mindlin-Timoshenko plate model consists of one displacement state
w(z,y,t) of the centroid plane, and two rotation states é(z,y,t) and ¥(z,y,t)
of the cross section with respect the two spatial variable z and y, respectively.
Reducing this model to an one dimensional one, we are going to have the stan-
dard Timoshenko beam model. In Lagnese’s work, an energy functional was
used to account for the kinetic energy due to displacement and bending and for

the potential energy due to deformation from bending and shear as well. The
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energy functional is used to measure the amount of vibration of the plate. The
time derivative of the energy functional is given by {30, p27]

dE(t) _ dp  d dw

where m; m, and m3 are two bending moments and a force applied to the
boundary I of the beam. When the control is defined by

dy dé dw

g (2.20)

[ml,mg,mg] = — [

with F being a 3 x 3 matrix which is positive semidefinite on the boundary T,
then the resulting closed-loop system is dissipative in the sense that E(t) is non
increasing. The following theorem provides conditions for the decay of system

energy.

Theorem 2.3.1 (Lagnese [30], p38) Assume that the boundary I' is Lips-
chitz and the plate is clamped and assume that the gain matriz F of (2.20)
is positive definite on some nonempty, open subset of . Then every finite en-
ergy solution of the Mindlin-Timoshenko plate [30, p26-27] with control given

by (2.20) satisfies

lim E(t) = 0. (2.21)

t—co

This theorem states that the vibration of Mindlin-Timoshenko plates can be
asymptotically stabilized by boundary control. Similar results can be derived
from reducing the model to a one dimensional one for the Timoshenko beam
model. In this case, the condition applied to the boundary I' may be removed.
The fact that the Timoshenko beam can be uniformly stabilized by boundary

control can be found from the studies of Kim and Renardy [27].
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Distributed control using distributed sensors and actuators can follow the
same concept of using the energy functional to describe the amount of vibration
energy and introducing feedback control to cause energy dissipation. As dis-

cussed above, an energy functional is an appropriate measure for the vibration

energy.

2.3.2 Control Algorithm

We design the control algorithm by for stabilizing the composite Timoshenko
beam described in the previous section subject to certain initial conditions. An
energy functional is used to measure the amount of vibration of the system.
We seek a control law in such a way that active damping is introduced into the
system and the closed loop system is energy dissipative or at least energy non
increasing. We shall use the energy functional used in [30] and [27].

The control problem becomes the following: given the system (2.9), (2.10)

with boundary conditions (2.11) and an energy functional
L 0w 2 0%,
2/ { 24 I[at] + K22 -] +El[ax]}d:c (2.22)
where
K = kAG,
we need to find a control V(z,t) such that

—%%Q <0, fort>0. (2.23)

The first two terms in the integral are the kinetic energy terms from vertical
displacement and cross section rotation of the beam. The third term is the
energy due to shear deformation while the last term represents the stored energy

from bending.
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Taking the derivative of E(t) with respect to time, we have

dE(t) owdw 0950
d / {pAat ot? s

w09 0d 5*® }
dz.

Waza: ~ 30 + B2 a0 (2.24)

Jw
K(— -9
+ ( 0z
Integrating by parts in the spatial variable and incorporating the system equa-

tions (2.9) and (2.10) into it, we obtain the simplified form

L 90 00" L 908V

TR Bt 3z

dB(t) _ 0w 0w

dt ot (833 5z 0% (2.25)

o)

0 0

Further, using the boundary conditions (2.11), we arrive at

dE(t) _ L BCI) ov
—dz. 2.2
Cdt “Bt oz (2:26)
The first two terms in (2.25) vanish.
Using the technique of separation of variables, we let control V(z,t) be de-

composed as the product of a function of the spatial variable z and a function

of time ¢, such that
V(z,1) = v(2)q(t) (2.27)

where v(z) is an actuator shape function and q(t) is the coordinate function of
the actuator shape. Substituting V(z,t) into (2.25), we obtain

dE(t) L@dv(m)

dt = cqlt o Ot dz

dz. (2.28)

Function ¢(t) can be determined by using sensor output V, from (2.18) with
F(z) compact on [0, L],
st(t)

q(t) = —

99 dF (z
- -K, / 5 dx . (2.29)
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The corresponding control V(z,t) is given by

L 9% dF(z)

)y B dz dz (2.30)

V(z,t) = —K,v(z)

Then the rate of energy change with respect to time (2.28) becomes

Oy [ B

dt o Ot dz
L @BF(:v)d L 9% dv(z)
o Ot 0z T)o Bt dz

dz

dz. (2.31)

= —cli;

Obviously, the rate of energy decay is a function of both the sensor shape func-
tion F(z) and the actuator shape function v(z). The selection of these two
function shall have a direct impact of the effect of the control system on the
closed-loop system. It is sufficient to select functions F'(z) and v(z) to be pro-

portional to each other, i.e.,

F(z) = kasv(z) (2.32)
where k,; > 0. In this case,
dE(t)
— < 2.
o S 0, (2.33)

and the closed loop system is energy dissipative. The feedback control (2.30) is
velocity feedback and actually provides damping of Voigt type.

The feedback control (2.30) can be expressed in another form as

L L 52
K,
0 + Kyv(z) o Oz0t

a0

T F(z)dz. (2.34)

V(z,t) = = Kv(z)5F(z)

The second term in (2.34) is a weighted integral of the rate of change of the beam
curvature with respect to time. Since the curvature of the beam is proportional
to the strain of the beam in this formulation, the controlled beam has an altered
constitutive equation. The stress is no longer just proportional to the strain,

but the linear combination of both strain and the rate of change of the strain
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with respect to time.

We may propose another control algorithm as

dV,(t
q(t) = C1V5(t) + Co dt( ) (2.35)
The corresponding control V(z,t) appears in the form of
_ L _dF(z) L 9o dF(z)
V(z,t) = —CiK,v(z) /0 2 s - CoKo(a) [ S e (2:36)

This control algorithm would increase the natural frequency of the vibration of
the beam in addition to active damping since the integration of the weighted
curvature along the beam is introduced in the feedback. It is similar to intro-
ducing both position and velocity feedback in the traditional PID control for

rigid bodies. The constant Cy is to be determined for the required performance.

2.4 Modal analysis

We discussed sensor shape and actuator shape and their impact to the control
of a cantilever beam in [9]. Different sensor outputs are available by choosing
the appropriate sensor shape function F(z). PVDF can be segmented along
the beam to collect the signals from local regions. The sensor can provide
deflection and strain information of the beam. A sensing network with simple
computations will produce different signals in one sample period to meet the

need of the control system.

2.4.1 Galerkin Procedure for Discretization

We use a Galerkin procedure to implement modal expansion and to analyze the

impact of the induced active damping on the flexible beam. We write the beam
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lateral displacement w(z,t) and cross section rotation &(z,t) as

w(m,t) = ki Pk(l')dk(t) (237)
o(z,t) = i Ui(z)qi(t) (2.38)

x>~
1

1

where Pi(z) and U (z) are the admissible functions satisfying the boundary
conditions of the system. These functions can be chosen such that {F;} form
a normalized orthogonal basis and {¥;} form another normalized orthogonal

basis. Functions di(t) and gx(t) are their time coordinates respectively.

We rewrite here the control V(z,t) from (2.27)
V(z,t) = o(z)a(t) (2:39)

Substituting the modal forms (2.37) (2.38) and (2.27) into the system equations
(2.9) and (2.10), multiplying P, and ¥, to both sides of the first and second
equation respectively, integrating both equation with respect to the spatial vari-

able, we arrive at

’pA/PkP,da: du(t) = I(Z/Pk(2)}°,dmdk(t)

- KZ/\II,J”P, ax() (2.40)

pI/\Ilk\Ilmda: Gu(t) = I{Z/Pk(l)\llmd:r di(t) —|—Z(El/lllk(2)\llmda:
_K / U, U,dz) gu(t) + / oMW, dz g(t). (2.41)

where d and d stands for the first and second time derivative of the function

d(t), PU)(z) stands for the :** spatial derivative of P(z).



The orthogonal property of the base functions Py(z) and Wk(z) yields

pAdi(t) Kzfpk(? Pdz di (%) +I{Z/\I!k(1)P,qk() 0 (2.42)

pLin(t) =K / PO, dz dy(t) — S[EI / 0,0, dz
-K / U0, dz] qi(t) — c/ v dzq(t) = 0 (2.43)

The last term in the second equation is the contribution of the distributed
control.

Equations (2.42) and (2.43) can be rearranged into a 2n x 2n matrix form
Mu(t) + Cu(t) + Ku =0, (2.44)

where u(t) = [di(t) - da(t)q1(t) - - ga(t)]* is the vector of coordinate functions.
M is the mass matrix. It is diagonal in this case with the first n elements being
pA with the rest being p/. C is the damping matrix whose nonzero elements

are given by
Clntl)(ntk) = cl{s/v(l)(x)\lll(a:)d:v/F(l)(x)\llk(z)da:, 1<lLk<n (2.45)

which are introduced by the feedback control V(z,t). It is known from (2.29)

that

L 3d dF (=
qt) = K/ ot d:c

= —K, / U, FVdzgy(t) (2.46)
0

K is the stiffness matrix with elements
ki = -K/Pk(?)P, dz,

Kinsk)y = K_/‘I’k(l)Pl dz,
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k(n-H)k = —I(/Pk(l)q}(d:l}, (247)
bty = K [ Uelide = BI [ .00 dz

where 0 < [,k < n.

The induced system damping can be observed from the introduction of damp-
ing matrix C whose elements are determined by the feedback control loop and
by the sensor shape function F(z) and actuator shape function v(z).

Observing (2.45), we notice that the damping introduced to the system de-
pends on the sensor and actuator shape functions F(z) and v(z). The amount
of damping involved is limited by the sensor and actuator coefficients K, and ¢
which are determined by the materials and their manufacturing. The coefficient
cix describes the amount of damping introduced to the Ith mode by the control
system based on the measurement of the kth mode. The similarity holds for
the actuator as well. Hence it is possible to enhance damping to some unde-
sired elastic modes by modal analysis and by choosing the sensor and actuator
shape functions F(z) and v(z) accordingly. An approach based on minimizing
the average vibration energy over a certain time period can iteratively find the
optimal shapes for both the sensors and the actuators [53]. The actual con-
trol systems can be implemented by segmented actuators and sensors with a
switching network to provide different configurations in each sample period.

It is an interesting question to choose shape functions for the distributed sen-
sors and actuators. The purpose is to introduce damping to different vibration
modes efficiently rather than excite some undesired modes. The concentrated
points or regions of control moment should be placed away form the nodal points

of the vibration modes to assert the maximum control effect. Qur case here can
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be formulated as optimization of a certain performance measurement functional
by choosing the candidate functions F(z) and v(z) subject to some constraints
on the control V(z,t). We anticipate that the optimal layout of sensors and

actuators provide good performance.

2.5 Multiresolution System Identification and
Monitoring

Distributed systems usually need complicated models to describe their dynami-
cal behavior and characteristics as for the flexible structure modeling and control
discussed above. The mathematical model governed by partial differential equa-
tions can be difficult to establish and to solve due to the variety of boundary
conditions and the interfaces with different components and materials. This
poses a question of how to systematically model complicated distributed sys-
tems in order to yield a workable and accurate model for system representation.
One solution is to use system identification and parameter estimation and this
method requires certain information about the plant and the key parameters
which are not available at all time.

Another aspect is system monitoring and sensory data processing. A dis-
tributed system can involve hundreds of sensors and actuators of both dis-
tributed and discrete types for sensing, system control and monitoring. The
sensory data processing and structural health monitoring can be inhibitive. As
we mentioned earlier that the resulting sensor network can yield its own pro-
cessing due to the application of distributed sensors and actuators. However,
special treatments are needed in providing fault tolerance and a structured data

processing scheme.



We introduce the concept of multiresolution system identification and mon-
itoring here to facilitate our treatment of distributed systems. This concept is
motivated by multiresolution representaﬁion in signal and image processing [35]
[36] [18] and is useful in generating a framework of multiresolution system iden-
tification and monitoring schemes for distributed systems. The key motivation
is using the available data from the working sensors to progressively approxi-
mate the real system or to yield the patterns for recognition and monitoring.
Multiresolution in this setting reflects two meanings: the available system config-
uration at different levels of complexity and the different levels of approximation

or monitoring while keeping a similar configuration.

2.6 Conclusions

We have embedded a static distributed PZT actuator model and a distributed
sensor model into the Timoshenko beam model to form a composite beam model.
We then designed a closed loop controller to introduce damping to the system.
The closed loop system is proved to extract energy from the system. Since the
Timoshenko beam model accounts for the rotational inertia and shear effects, it
is suitable for situations when high frequency vibration occurs or when the shear
effects of the material can not be omitted due to both material properties and
the geometry. This composite model is more precise in describing the motion of
the beam compared to the Euler-Bernoulli beam model in this sense. We then
use modal analysis to further discuss the amount of active damping introduced
by the controller and a method to choose the appropriate sensor and actuator
shapes. It is possible to monitor and suppress the undesired modes by using

suitably distributed sensors and actuators.
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Further research is needed regarding the damping of beams with nonlinear
deformation and comparing the results from the linear models with those from
the nonlinear geometric exact model. An efficient numerical approach is also
needed for the latter. The optimal distributed sensor and actuator layout is to
be found through optimization with respect to the appropriate criteria. The
real impacts of the distributed control system on the beam should be verified

and further explored by experiments.
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Chapter 3

Optimal Design of Sensors and
Actuators

We describe a design technique for optimal control in active structural vibration
damping using smart materials. We model the beam by the Timoshenko beam
model together with the distributed sensors and actuators. A control law using
the weighted integration of vibration velocity is incorporated in the closed loop
system. We propose a method to find the optimal layout design of the smart
material so as to maximize the damping effect. An objective functional is defined
based on the vibration energy of the system. The optimal shapes of the sensor
and actuator are determined through minimizing the energy functional of the
beam over the admissible shape function space subject to certain geometric
constraints. An algorithm has been developed to determine the optimal sensor
and actuator layout. This method can be generalized to the plate damping

problem and more complicated structures as well.

3.1 Introduction

An important issue in the control system design for flexible systems is the deter-

mination of the optimal number and location of the control system components:
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sensors and actuators [33] [11]. In general there is a larger number of candi-
date locations than available sensors and actuators. Based on experience and
knowledge on structure dynamics and control objectives, a priori selection is
usually available. However, this may not give the optimal effect on the closed
loop system. Extensive experimental work is expected to justify the design. For
discrete optimal sensor and actuator locations, a method based on the orthogo-
nal projection of structural modes onto the intersection of the controllable and
observable subspaces is introduced Lim [33]. The controllability and observabil-
ity Gramians are used in this research to reflect the degrees of controllability
and observability of an actuator/sensor pair. However, this method is based on
a second order linear model. In the studies by Choe and Baruh [11] regarding
the placement of force and torque actuators for structural control, an objective
function is defined based on the elements of the actuator influence matrix, and
an optimization study is performed to compare the system performance. This
work suggests that a relative even distribution of the actuators can lead to sat-
isfactory results. Again, pointwise sensors and actuators are analyzed here. It is
also pointed out [11] that piece-wise continuous distributed actuators have the

advantage of reducing the stress level and exciting the higher modes less.

The use of smart materials as sensors and actuators allows the adjustment of
geometry and dynamical behavior of flexible space structures. It also provides
means for sensory data processing by the sensor geometry. Modal sensors and
modal actuators are proposed and developed in [32] to provide sensing signals
related to certain elastic modes and to suppress the selected elastic modes. It
has been pointed out [15] that PZT actuators should be placed in regions with

high average strain and away from the nodes of the specified elastic modes to
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be controlled to achieve maximum effect. We discussed the damping effect in
Chapter 2 with respect to the shape functions of both distributed sensors and
distributed actuators on the system. The choice of the sensor and actuator
shapes is also an important factor in the performance of systems. A question
arises naturally: what are the optimal shapes of the distributed sensors and
actuators made from smart materials? We need a systematic approach to answer
this question.

We know that the flexible beam is an infinite dimensional system. In order
to faithfully measure and control the system without using a truncated model,
there is a need to design control algorithms directly from partial differential
equation models to avoid the so called spillover [8]. We can develop certain
performance measures to carry out the optimal design.

We consider the design issue associated with the vibration damping control
of a cantilever beam. The beam is modeled as the Timoshenko beam. Both
sides of the beam are covered by PVDF and PZT materials for sensing and
actuation as iilustrated in Figure 2.1. Using the control algorithm developed
in the previous chapter and in [51], the closed loop system can be stabilized.
Based on this result, we want to further determine the optimal layout of the
continuous distributed sensors and actuators for the system based on minimizing
the vibration energy of the system. It is likely that this approach can lead to a

general design methodology or at least provide a design guideline.

3.2 Problem formulation

We model the cantilever beam with the Timoshenko beam model which accounts

for shear effects and rotational inertia. The Timoshenko model describes the
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physical behavior better than the Euler-Bernoulli model does especially for the

high frequency vibration components. The actuator and sensor are the layers

made of piezoelectric ceramic (PZT) and piezoelectric polymer polyvinylidene

fluoride (PVDF) materials attached to both sides of the beam as illustrated in

Figure 2.1.

The equations of motion are given by (2.9) and (2.10) of the previous chapter.

For the convenience in reference, we rewrite them as

0*w Pw 00
PAeE = MAem T )
*® 0*® ow v
and boundary conditions (2.11) as
w(0,t) = 0, $(0,t) =0,
Jw(L,t) _ 0®(L,t)
5 ®(L,t) = 0, EI 5 0.

El = Ea]a + Eb]b + Eslsv
and

_ ds1
c= 71—0‘1(0,.

The distributed control V(z,t) appears in (3.2) as the distributed bending mo-

ment. Suppose that the beam is initially at rest, we thus have the following

initial conditions

w(z,0) = u(z), O(z,0) =r(z)
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and

Ow(z,0) 09(z,0)
oo, =0 (3.6)

We shall refer boundary conditions (3.5) and (3.6) as IC in our discussing for
simplicity.
The sensor output is given by (2.17) as

9%d
otozx

V,(t) = —K, /0 ") 22 4 (3.7)

which is a weighted integral of beam curvature along the longitudinal direction
of the beam. K, is a constant determined by the sensor material. We rewrite
the feedback control (2.30) as

L 9%
V(z,t) = Ko(z) /0 F(z)g-dz,

where v(z) is the actuator shape function. Similarly to the sensor shape function,

v(z) is the width of the electrodes covering the surfaces of the PZT actuator.

The energy functional (2.22) is rewritten as

ow

Lt {pA[%Lt—”]"’ + pl[%(-?]? + K[— — ®)* + EI[%%P} dz.  (3.8)

EW =3,

Oz

The vibration energy defined above is a function of time ¢ and the initial con-
dition IC specified above. Our goal is to maximize system damping through
selection of sensor and actuator shape functions with respect to this particular

case.

3.3 Optimal Control and a Numerical Algo-
rithm

Unlike point sensors and actuators, the geometry of the spatially distributed

sensor and actuator has a function of preprocessing the sensor output signals
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and control weight. A judicious choice of the shapes can extract the desired
signals and implement the control algorithm. We discussed in [51] a method of
choosing the appropriate sensor and actuator shapes for active damping control
by means of modal analysis. We would like to develop a systematic approach to

deal with this problem here.

3.3.1 Optimal Control

The control (3.2) is a function of sensor and actuator shape functions and the
weighted integral of the beam curvature. We have proved that the control (3.2)
stabilizes the system [51] through introducing damping into it.

We seek the optimal control in the sense that the energy functional is min-
imized over all the possible sensor and actuator shapes for a specific vibration
state. Our task here is to find the optimal sensor and actuator shape functions
v(z) and F(z) so as to minimize the energy functional (2.22) at a certain time.
This optimization scheme depends on the initial condition of the beam.

When the beam is initially at rest, the problem is to find functions vo(z) and

Fy such that

J(T, vo, Fo, IC] = ver\g{}nef%/; {,,A[%%]z + p[[%%z + K[g—:: _o 4 El[%%z} dz,
(3.9)

where V and F are the sets of all the admissible actuator and sensor shape

functions. The admissible functions here depend on geometry of the structure.

For beam and plate like structures, the geometry is usually simple. Since the

region of the beam which could be covered with smart materials is assumed

to have length L and width b, the sets V and F contain the collection of all

the piecewise continuous curves within this region. The optimization hence has
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Figure 3.1: Discretizing the sensor and actuator layout

a geometric constraint. The functions v(z) and F(z) denote the width of the
electrodes covering the smart materials; we have 0 < v(z) < band 0 < F(z) <L b.

We are interested in minimizing the amount of vibration energy at time T

3.3.2 A Numerical Algorithm

For numerical solution of a shape optimization problem, one typically starts
by guessing an initial design. One then discretizes the elastic problem using
finite elements or using difference method or a Galerkin procedure. After dis-
cretization, the optimal design problem becomes a large nonlinear programming

problem. Different routines are available for working on the latter.

We start our numerical scheme by discretizing the region along the longitu-
dinal spatial axis as in Figure 3.1. Denote distance along this axis by z. Let N
be the total number of segments with equal size. Then the width of each seg-
ment is L/N. The discretized shape functions v(z) and F(z) assume constant
values v(k) and F(k) inside the k" element. We thus have piecewise constant

functions v(k) and F(k) with k£ = 1,2,...N. The 2k members of v(z) and F(k)
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become the optimization parameters. We then compute the distributed control
V(k,t), k = 1,2,..N, based on the initial conditions of the system and the
discretized shape functions. The time résponse to the input can be computed
through solving the equations of motion numerically. This procedure yields the
value of the cost functional J at time 7. An optimal routine shall be followed
to search and adjust the piecewise constant sensor and actuator shape functions
toward reducing the value of the cost functional (3.9). The new shape functions
are then used to generate the system input V(k,t) again. This procedure is
repeated until the difference of the energy functional values between two itera-
tions is less than a predetermined threshold. The resulting v(k) and F(k) can
be smoothed to give the final optimal shape functions vo(z) and Fo(z) for the

sensors and actuators. The algorithm is given in Figure 3.2.

3.3.3 Numerical Examples

In this section, we provide a numerical example regarding the optimal shape
design. We consider an aluminum beam substructure with a PZT actuator layer
and a PVDF sensor layer on both side of the beam and investigate the impact of
the layout of the distributed sensor and distributed actuator on system energy.
Our goal is to show the feasibility of conducting designs based on the energy
measure and the method described in this chapter.

We first select the basis functions as discussed in the previous chapter for
using a Galerkin procedure to discretize the equations of motions (3.1) and (3.2)

as the following

Pi(z) = sin((k7 + E)-L_) (3.10)
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Figure 3.2: Optimization algorithm
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for displacement and
Uy(z) = sin((kr + %)-I‘”:). (3.11)

It is easy to check that the boundary conditions associated with equations of
motions (3.1) and (3.2) are satisfied by the basis functions above. These basis
functions span the space of admissible solutions of these two partial differential
equations.

A composite aluminum beam model is employed in the simulation. The alu-
minum beam model used in simulatioﬁ is 2m long, 0.15m wide and Tmm thick.
The Young’s modulus of aluminum is 70 GPa and the density of aluminum is
2710 kg/m3. We assume that the Young’s modulus for the materials used in
the sensing and actuation layers is 2.0 GPa and both the sensor layer and the
actuator layer is 3mm thick. These parameters are used in the simulation.

The displacement and rotation of the beam are approximated by their first
four modes respectively with zero initial velocity and zero shear. The initial

conditions in consideration are

w(z,0) = 0.015L sin(%x), o(z,0)=0 (3.12)

and

Jw(z,0) 0 09(z,0)
ot ’ ot

= 0. (3.13)

The nonzero initial displacement is shown in Figure 3.3.

The response of the undamped beam model subject the initial condition
above is simulated to analyze its nature behavior. The responses of time coordi-
nates di(t) and gx(t) of the modal equation (2.44) are illustrated in Figure 3.4.

It can be seen that the rotation of the cross section of the beam contains high
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Figure 3.3: The initial displacement of the beam

frequency components compared with the motion of the transversal displace-
ment. The waveforms of the rotational are the modulated wave forms of those
of the displacements. The Timoshenko beam model describes the high frequency
components of the vibration of the system in this regard. A mesh plot of the
time-space response without damping is shown in Figure 3.5 in which the shear
of the beam appears to concentrate on the half closest to the clamped end
(z = 0). The system energy does not decay with respect to time as shown in
Figure 3.6.

To concentrate on the concept and methodology of this chapter, we partition
the beam along its longitudinal axis z into two segments of equal length L/2
where L is the length of the beam. We also let the sensor layer and the actuator

layer have equal width at both sides of the same beam location, ie.,
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Furthermore, we denote the width of these layers at the first and the second
beam segment from the clamped end by a and b respectively. We may then
vary a and b, the optimization parametérs, and observe the impacts of different
configurations on the change of system energy subject to initial conditions (3.12)
and (3.13).

Simulation results show that for the given initial conditions the system is
mostly damped when the layout of the sensor layer and the actuator layer is
chosen to be a = 0.15 m and b = 0. This matches the phenomenon of the zero
damping response shown in Figure 3.4 and Figure 3.5 in which shear deforma-
tion concentrates near the clamped end (z = 0) of the beam. We can observe
the time responses of the first four coordinates di(t) of the displacement and the
first four coordinates gx(t) of the rotation from Figure 3.7. The high frequency
components in rotations are damped out in less than 10 seconds. The corre-
sponding mesh plots of the time-space responses in Figure 3.8 demonstrate that
the vibration of the system dies out in about 10 second. Figure 3.9 provides the
control voltage which is used to close the system loop. The vibration energy of
the system decays towards zero with an envelop of an exponential type as shown
in Figure 3.10.

Different sensor and actuator layouts provide different damping effects. One
case in the simulation shows that when the layout is placed near the free end of
the beam, i.e., a = 0 and b = 0.15 m, with respect to the same initial conditions,
the damping induced is less efficient than that in the previous case. The time
history of coordinates of different displacement modes and rotation modes are
illustrated in Figure 3.11. Some of these modes display similar patterns to

those in the previous case except the fourth rotation coordinate contains high
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frequency components. The effects of this layout can be seen from the time-space
response in Figure 3.12. These responses are less favorable when compared with
those in the previous case shown in Figﬁre 3.8. The control voltage V(t) and
the system energy E(t) are shown in Figure 3.13 and Figure 3.12 respectively.
The rate of system energy decay is slower than that of the previous case due to
the changed layout of the sensor and actuator layers.

System energy is a useful measurement of the vibration. Comparing the
cases above, we know that is not sufficient to observe the time history of differ-
ent coordinates of different vibration modes to design the layout of distributed
sensors and actuators. As a consequence, it may not be accurate to judge the
design and performance of systems based on modal analysis alone. However,
from the system energy profiles of Figure 3.10 and Figure 3.14, we can see that
the former one has a faster energy decay rate than the later one does. This phe-
nomenon explains in part the differences in system performances as illustrated

by the time-space responses in Figure 3.8 and Figure 3.12.

3.4 Other Considerations

The optimization scheme can be used to deal with more complicated struc-
tures. Sensors and actuators may be piecewise continuously distributed on the
structures. When structures contain both distributed and pointwise sensors
and actuators, our formulation still holds. The corresponding shape functions
v(z) and F(z) become both piecewise continuous and pointwise in the relevant
regions.

In terms of computation, the bottleneck is the simulation of the systems gov-

erned by partial differential equations. Different methods can be implemented
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to solve the partial differential equations (2.9) and (2.10).

Modal sensors and actuators can be designed through optimization as well.
This may reduce the influence of leak—through, i.e., the crossover effect among
different modes [32], to improve the overall performance. Different performance
measures and cost functions are required to formulate these optimization prob-
lems.

The design algorithm is useful in dealing with complicated systems. The
design from the methodology above depends on initial conditions and specific
boundary conditions of systems. One may use a segmented sensor layer and
a segmented actuator layer or multi-layer structures, and incorporates sensing
switch networks to reconfigure the layout dynamically so as to meet the needs
in sensing and control of the various initial conditions and boundary conditions.
The layout of these segements and the switching rules of the networks can be

designed through the optimization scheme above.

3.5 Conclusions

We have developed a method to facilitate optimal designs of active vibration
damping using smart materials. Simulation results indicate that the energy
based design methodology is feasible. The optimal algorithm described can be
expected to yield reasonably good designs for the layout of distributed sensors
and actuators. Although the algorithm is developed based on the beam model
used, the method can be extended to the plane case. This procedure is expected
to work for cases with irregular geometry or nonuniform structural material as

well.
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Chapter 4

Compactly Supported Wavelets
and QMF banks

4.1 Introduction

We have found recent advancement in wavelet theory encouraging in generating
progressive modeling structure for system identification and signal approxima-
tion in L?(R). There have been extensive research interest and activities in
wavelet theory and its applications in recent years [12] [19]. The most attractive
features of wavelet theory are the multiresolution property and time and fre-
quency localization ability. The wavelet transform decomposes a signal into its
components at different resolutions. Its application actually simplifies the de-
scription of signals and provides analysis at different levels of detail. There have
been successful applications of these propérties in the fields of signal processing,
speech processing and especially in image processing [43] [36] [34]. The wavelet
transform differs from short-time Fourier transforms (STFT) in the sense of
producing a varying time-frequency window for signal representation. It admits
nonuniform bandwidths, so that the bandwidth may be higher at higher fre-
quencies, allowing implementation of the transform through different levels of

decimation in filter banks.
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In this cﬁapter, we introduce the background on choosing the optimal wavelet
basis with compact support of an appropriate size. We first briefly review the
multiresolution property of wavelet functions and the structure of quadrature
mirror filter (QMF) banks. We then introduce the conditions for generating a
compactly supported discrete wavelet basis in terms of properties of quadrature
mirror filter (QMF) banks [48].

This chapter makes use of the multiresolution property of wavelets as stud-
ied by Mallat [35], the link between wavelets and filter banks as studied by
Daubechies [18], and the structures of multirate systems and quadrature mir-
ror filters (QMF) of Vaidyanathan [48], Akansu [1] and Herley [22]. We follow

Vaidyanathan [48] closely in this chapter.

4.2 Background Review

This section reviews the background on the wavelet transform, multiresolution
property of wavelets and the components in multirate systems to be used in

generating the wavelet transform.

4.2.1 Wavelet Transform

All the basis functions are dilations and shifts of a single function called the

base wavelet. A general form is

boslt) = —=0(122), (4.1)

Va o oa

where @ € R*, b € R. The parameters a and b provide scaling and shift,

respectively, of the original function ¥(t). The wavelet transform is defined as

Xola,b) = o= [ 0 (S

)z(t)dt. (4.2)
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The discretized version of the wavelet basis functions is
bma(t) = ag™ *p(ag™t — nbo), m,n € Z, ao > 0,bo # 0, (4.3)

which corresponds to @ = a* and b = naf'by, where the size of the shift depends
on the scaling factor. We are interested in the dyadic case, that is, the case
ao = 2 and by = 1. It was shown [35] that it is possible to derive a base wavelet

function v(z) € L*(R) such that for 5,1 € Z, {1;:(z)};1ez with
pia(z) = 27%p(27z — 1) (4.4)

is an orthonormal basis of L?(R). Any signal in L?(R) can be decomposed
into its components in different scales in subspaces of L*(R) of corresponding
resolutions and the reverse is true when the regularity condition for the base
wavelet 1(z) is introduced [19] [35]. The base wavelet function ¥(z) plays a

central role in this formulation.

4.2.2 Multiresolution Approximation

A multiresolution approximation of L?(R) due to Mallat [35] is a sequence
{V;};ez of closed subspaces of L?(R) such that the following hold, with Z de-

noting the set of all integers:

@

V,CVin, Vj€Z (4.5)
Uo V; is dense in L*(R) and ﬁo V; = {0} (4.6)
j==00 j==~oco
(11).
f(z)e Vi< f(2z) € V;1, Vi€ Z (4.7)

o1



(I10).
f(x)ei/}=>f(xf25k)etfj, keZ (4.8)
and there is a scaling function ¢(z) € L*(R), such that, for all j € Z,
$is=27"¢(2z —1))iez (4.9)

is a orthonormal basis of V; with V; C V;_;.

With this setting, W;, the complement of V; C V;_1, can be expressed as
V; & W; = Vi, (4.10)
with
Vi=&2,.W; (4.11)

For all j, there is a wavelet function ¥ (z), such that,

~

Yiu(x) = 27277z = 1))iez (4.12)

is an orthonormal basis of W;. The additional information in an approximation
at resolution 27 compared with the resolution 277! is contained in the subspace
W;, the orthogonal complement of V; C Vj_;. If we define Py, to be a projection

operator in L?(R) and I to be the identity operator, then
Py, — 1, as j — —o0. (4.13)
Any square integrable function f(z) € L(R?) can be represented as
f(z) = lej,l¢j.l($)’ (4.14)
I

the coefficients w;, carry the information of f(z) near frequency 27 and near
T =271

When a function in L2(R) or a transfer function in H?(R) is unknown, the
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Figure 4.1: The decimator and expander

wavelet system is feasible for its approximation. Affine wavelet decompositions
are developed as a means of construction rational approximations to nonrational
transfer functions in the studies by Pati [40]. Since a closed expression is usually
not available for practical purposes, it is necessary to use a sum of finitely many
functions, typically of lower order or of less complexity, to approximate the
original transfer function. A wavelet system can be implemented to approximate
the unknown system. This process is completed by adjusting the coefficients

with respect to the wavelet basis.

4.2.3 Decimators and Expanders in Multirate Systems

Figure 4.1(a) shows the M-fold decimator and L-fold expander. The decimator
is also called a downsampler. It takes the input sequence z(n) and produces the

output sequence
yp(n) = z(Mn), (4.15)

where M is an integer. Only those samples of z(n) which occur at times equal
to a multiple of M are retained to form the output sequence. When M =2, the
decimation process is shown in Figure 4.2.

Figure 4.1(b) shows the L-fold expander. It takes the input sequence z(n)
and produces the output sequence

z(n/L), if n is integer-multiple of L
0, otherwise

ye(n) = { (4.16)
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Figure 4.2: Decimation for M = 2

where L is an integer. Other names for the expander are sampler rate expander,
interpolator and upsampler. Figure 4.3 demonstrates the process of upsampling,

in which zeros are inserted between the two adjacent input pulses. The z-domain

expression for the decimator is given by

yp(z) = L Mz_lX(zl/MW") (4.17)
M k=0 ’

where X(z) is the z transform of the input sequence z(n) and W is defined as

X‘“’[[[J'.. .
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Figure 4.3: Demonstration of the expander for L = 2
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the Mth root of unity
W = i IM, (4.18)

Consequently, the transform on the unit circle yields

, 1 M=l :
yp(e) = - Y X(ef WM, (4.19)
k=0

The transform yp(e’”) is obtained by first stretching X(e’*) by a factor of M
and then shifting the stretched version uniformly by the amount 2k and taking

the summation of all the shifts.

The expander has an easier form of

ye(z) = fo: ye(n)z™"

= ki yE(kL)z_kLz i yE(k)z'kL
= X(z5). (4.20)

Similar to the decimator, the expander has the expression
ye(z) = X (") (4.21)

on the unit circle.
The operation of the expander produces multiple copies of the compressed

spectrum in the frequency domain.
4.2.4 Decimation Filters and Interpolation Filters

The process of decimation is similar to the sampling process of a continuous
signal regarding to causing possible aliasing. The stretched version of X (e/M)
can in general overlap with its shifted copies and prevent recovering the orig-

inal signal z(n) from the decimated signal yp(n). A low pass signal with its
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bandwidth limited to #/M or a signal passing through a low pass filter with
this bandwidth shall avoid signal aliasing, when passing through a M-fold dec-
imator. Figure 4.4 shows the block structure of a decimation and its typical

amplitude response. Similarly, we demonstrate the interpolation filter in Fig-

‘ .
He' )l
x(n) (n) !
H(2) l N y \
Decimation Decimator 4 >
filter ° © wM © @
(a) (b)

Figure 4.4: Decimation filter and its response

ure 4.5. Fractional sampling rate L/M alteration is possible by first passing the
signal through an expander with a factor L and then through a filter followed

by a decimator of factor M. The input-output relation in the time domain for

He' )l
1
x(n) (n
b H(z) L \
Expander interpolation 5 +—t
filter filter @ oM @ @
@ ®)

Figure 4.5: Interpolation filter and its response

the decimator, expander and the rational decimator are given by the following:

Sez(k)h(nM — k), M-fold decimator
ym) =< Txz(k)h(n—kL), L-fold expander (4.22)
S e z(k)h(nm — kL), M/L-fold decimator

where M and L are relatively prime in the M/L-fold decimator.

In the application of filter banks, the basic structure blocks above can be
reorganized to form an interconnected system. Figure 4.6 demonstrates the
Noble identities for changing the cascade orders of the decimator and decimation

filter and that of the interpolation filter and expander. These identities are very
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Figure 4.6: Noble identities for multirate systems

useful in the formulation and simplification of multirate systems.

4.3 QMF Banks and Wavelets

4.3.1 Quadrature Mirror Filter Banks

The earliest known quadrature mirror filters are related by the relation
Hi(z) = Ho(—2), (4.23)

which apparently satisfies |Hy(e)| = |Ho(e?™=)|. This means that if H;(2)
is a ideal high pass filter, then Ho(z) is a low pass filter. These two filters
form the components of QMF banks. It can be separated into two parts: the
analysis bank and the synthesis bank as shown in Figure 4.7. As we shall see in
Chapter 5, the QMF bank can be used to generate orthonormal wavelet bases

under certain conditions.

Definition 4.3.1 (Vaidyanathan [48] p196) A filter bank is said to be a per-
fect reconstruction system if its transfer function is a pure delay, free from alias-

ing, amplitude distortion and phase distortion, i.e., if Z(n) = cz(n — no).

Definition 4.3.2 (Vaidyanathan [48] p288) A rational transfer matriz H(z)

is said to be paraunitary if
H(z)H(z) = dI, for all z, (4.24)
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Figure 4.7: Quadrature mirror filter bank (a) and its response (b)

where d is a constant, I is the identity matriz.

The QMF bank in Figure 4.7 is in a general setting. The reconstructed signal

is given by

X(z) = S[Ho(2)Fo(z) + Hi(2) Fi(2)]1 X (2)

1
2
+%[Ho(—z)Fo(z) + Hi(—2)Fi(2)] X (—2). (4.25)

The X(—z) term represents the aliasing component of the system due to deci-

mation of the input signal z(n). The matrix notation for the above is

5[ X6 X(—z)][ ) ZiE‘i)] [;’OE” (4.26)

where H(z) is the alias-component (AC) matrix of the system which is given by

H(z) = [ Iﬁ‘z(_"’g) gigz_)z) } (4.27)

X(z)=

The conditions for this filter bank to be free of aliasing are the following [48]

Fo(z) = Hi(~2), Fi(z) = —Ho(~2), (4.28)
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causing the coefficient of the X (—z) to vanish thus cancelling the aliasing com-
ponent. In fact, only the filter Ho(z) needs to be designed for the system and
the other filters are given by the relation above. If we further assume that Ho(2)

is power symmetric, i.e.,

Ho(2)Ho(z) + Ho(—2)Ho(—2) = 1, (4.29)
and assign
Hi(z) = —z~N Ho(—2), (4.30)

where N is an odd integer, then, the transfer function of the QMF bank reduces
to a pure delay of N time units. Thus, #(n) = 1/2z(n — N) and the QMF bank
forms a perfect reconstruction system.

For a general filter bank with analysis bank composed of FIR filters, we have

N N
Ho(z) = ho(n)z™", Hi(z) = > hi(n)z7", (4.31)

n=0 n=0

which are obviously causal. By definition, the AC matrix is paraunitary if
Hy(2)Hy(z) + Hi(—2)Hi(—2) = d, (4.32)

Lemma 4.3.1 The AC matriz of (4.27) is paraunitary if Ho(z) is power sym-

metric and

Hy(z) = cz"VHo(—2), lc| =1, (4.33)
or equivalently in the time domain,

ha(n) = —e(=1)"h3(V = n), (4.34)



where N is an odd integer.

The order of the filter Ho is necessary to be odd to satisfy the constraint
imposed on a zero-phase half band filter. For the two channel QMF bank, if we
let ¢ = —1, rearrange the relationship between the analysis filter bank and the

synthesis bank, we have as in [48, p301]
Hi(z) = =2V Ho(=2), Fo(z) = ZNHy(z), Fi(z) = 2N Hy(2), (4.35)

with the corresponding impulse responses in the time domain given by

h(n) = (=1 Rs(N —n), (4.36)
foln) = hg(N —n), and (4.37)
filn) = AI(N —n), (4.38)

respectively. These equations demonstrate that it is only necessary to design
the filter Ho(z) and to derive the other filters as above to formulate a perfect
reconstruction two channel QMF bank for signal decomposition and synthesis.
For filters with real coefficients, if Ho(z) is a low pass filter, then the correspond-
ing Hy(z) is a high pass one. These two filters have a close relationship with

orthonormal wavelets.

4.3.2 Orthonormal Wavelet Basis and QMF

A particularly useful set-up for our problem is a discrete orthonormal wavelet
basis with compact support. This is useful for real time implementation on
digital computers. The compactness of support provides a means of isolation
and detection of signals at a certain region which has proven useful in the signal

processing community. Our interest is in parameterizing the discrete wavelet

60



basis functions with a finite number of parameters so as to generate the optimal
wavelet basis for system identification and signal representation.

From the multiresolution property of wavelets due to Mallat [35], for #(¢) €
V;, we have $(2t) € V;_; and ¢(2t — n) is a basis for the space V;-1. Hence, we

have the expression for the scaling function ¢(t) with ¢ denoting time as [19]

bt)=vE S ced(2t— k). (4.39)

k=-—00

The corresponding discrete wavelet is given by

P(t) = V2 i de (2t — k), (4.40)

k=-—00

where the coefficient v/2 is for normalization. These are the two fundamental
equations for the scaling function ¢(t) and wavelet function ¥(t) which is deter-
mined by the scaling function ¥(t) while the latter is to be parameterized by a
finite set of parameters as we proceed.

Let us denote ho(k) = cx and hq(k) = dx and take their Fourier transforms
Hg(ej“’) = Z ho(k)e'j“k, (441)
P
and

Hi(e™) = 3 hy(k)e 3k, (4.42)

k

The coefficients {ct} and {dx} can be identified as a low pass filter and a high
pass filter respectively. The frequency domain version of the fundamental equa-
tions are obtained by taking the Fourier transform of Equation (4.39) and Equa-

tion (4.40). This yields

Ho(e?/?)®(w/2) (4.43)



and
U(w) = 71—511,‘(6@/2)@(@0/2) (4.44)

where ®(w) and ¥(w) are the Fourier transforms of ¢(t) and ¥(t), respectively.
These two equations can be used recursively to generate the scaling and wavelet
functions.

We need to consider the case when Hy(z) is a causal FIR filter, i.e., the
case in which only finitely many c’s are nonzero for the filter. Without loss of
generality, we assume that ¢ # 0 when k € [0, K] where K is a positive odd
integer. The scaling function ¢(t) can be nonzero only on [0, K] due to the finite
duration of the sequence {ci}. The base wavelet function obtained through o(t)
is also compactly supported. With the FIR assumption, the two fundamental

equations for the scaling function and the wavelet function become
K
$(t) = V23 cnd(2t — k) (4.45)
k=0
and
K
W(t) = V2 dep(2t — k), (4.46)
k=0

respectively. We need to find the conditions for the generated wavelet function
to produce an orthonormal basis for a subspace of L*(R) for function approxi-
mation and signal representation. Interestingly, the dyadic orthonormal wavelet
functions can be related to binary tree structured QMF banks constructed from
the two basis filters which determine the scaling function and the wavelet func-
tion.

Figure 4.8 (a) shows a three level dyadic tree structured QMF bank for

wavelet transformation. The input sequence z(n) is decomposed into different
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resolutions by passing the signal through the QMF bank. The outputs z;n are
the related wavelet coeflicients. Figure 4.8 (b) provides the equivalent four chan-
nel filter bank which is derived from (a) through applying the Noble identities
of Figure 4.6. Figure 4.9 demonstrates the corresponding synthesis QMF bank
whose input is the sequence of the wavelet coefficients while the output is the re-
constructed signal #(n) which is the wavelet representation of the original signal.

The following theorem is a revised version of a theorem due to Vaidyanathan

48, p530).

Theorem 4.3.1 (Vaidyanathan [48] p530) Let Ho(z) and Hi(z) be causal
FIR filters, then the scaling function ¢(t) and the wavelet function P(t) gen-
erated by the QMF bank of Figure 4.8 and Figure 4.9 are causal with finite
duration Kbo. Further, if Ho(z) and Hy(2) satisfy paraunitary condition (4.32),
|Ho(1)| = v/2 and Ho(e™) # 0 while |w| < 7/2, the wavelet functions ¥;(t) are

orthonormal.

The condition imposed on orthonormality of wavelets can be relaxed when
the number of levels of the QMF tree is finite. In this case, both the scaling
function and the base wavelet function are obtained through finite recursion by
using Equation (4.43) and Equation (4.44) respectively, i.e., the paraunitary con-
dition alone is enough to guarantee the orthonormality of the wavelet functions.
A proof of this fact in the frequency domain is provided in [48]. As a matter of
fact, this is the usual situation in practical application and implementation.

We summarize the conditions for compactly supported scaling functions and
wavelets to be orthonormal based on the theorem above and the properties of

AC matrices of the two channel QMF banks as a lemma as follows.
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Lemma 4.3.2 A compactly supported scaling function and wavelets generated
through the finite recursion are orthonormal if the matriz

Ho(ej““) Hy(e¥)

Ho(“™)  Hy(e3+7) (447)

H(w) =

is paraunitary for all w for the two-channel quadrature mirror filter (QMF) bank.

This is the constraint that the parameters ¢, should satisfy in order to gener-
ate an orthonormal wavelet basis. In particular, by Lemma 4.3.1, the cross-filter

orthonormality implied by the unitary property is satisfied by the choice
Hi(z) = =2~ % Ho(=2z7"), K odd (4.48)
or, in the time domain,
hi(k) = (=1)Fho(K — k). (4.49)

As we can see from the above, both the scaling function and the wavelet function
depend on the selection of {cs} for k € [0, K]. As a consequence, the dilations
and shifts of the base wavelet depend on the selection of this set of parameters

subject to the paraunitary condition imposed on the filters of the QMF bank.

4.4 Conclusion

Compactly supported wavelets and QMF's are closely related. Indeed, the design
of a good wavelet for signal representation can start from building the appro-
priate power symmetric low pass filter Ho and the corresponding QMF bank.
In order for the wavelet system to really represent the signal or reconstruct the
signal with a simple structure, it is necessary to further introduce optimal design

techniques which are the tasks to be introduced in the next chapter.
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Chapter 5

Optimal Wavelet Basis for
Signal Representation

5.1 Introduction

We know that wavelet functions can be used for function approximation and fi-
nite energy signal representation in signal processing and system identification.
The wavelet basis is generated by dilating and shifting a single base wavelet
functiori ¥(t). As we addressed in the previous section, that the wavelet func-
tion is not unique and its design can be related to that of a power symmetric
FIR low pass filter. Obviously, different wavelet (t) shall yield different wavelet
bases. However, the choice of the wavelet for signal representation should be
appropriate to receive the maximal benefits of this new technique. Different
wavelet functions may be suitable for different signals or functions to be repre-
sented or to be approximated. It is reasonable to think that if a wavelet contains
enough information about a signal it is going to represent, the total complexity
of the wavelet system is going to be simplified in terms of the level of resolution
required which then reduces the computational complexity of the problem for
system implementation.

The key to choosing the optimal wavelet basis for signal representation and
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construction of adaptive wavelet neural networks (AWNNs) [52] lies in the ap-
propriate parameterization and the right performance measure in addition to
the accurate interpretation of physical phenomena. A method is proposed in
[45] [26] for choosing a wavelet for signal representation based on minimizing
an upper bound of the L? norm of error in approximating the signal up to the
desired scale. Coifman et al. derived an entropy based algorithm for selecting
the best basis from a library of wavelet packets [13]. However, a direct method
to systematically generate a signal based optimal orthonormal discrete wavelet
basis with compact support is still to be developed.

In this chapter, we study the problem of choosing the optimal wavelet basis
with compact support as the continuation of our previous work on the selection
of wavelet bases [55]. We first introduce the concepts of information measure as
a distance measure and the optimal discrete orthonormal wavelet basis under the
information measure. We then derive the information gradient for construction
of the optimal wavelet basis. We also provide a proof of the existence of an
optimal wavelet basis. A systematic approach is developed for derivation of the
best wavelet basis. This approach may be implemented for real time systems

due to our parameterization of the problem.

5.9 Parameterization of Wavelet Functions and
Information Measures

We first introduce a distance measure for optimization purposes. Inspired by
the work in [13], we define an additive information measure of entropy type and

the optimal basis as the following.
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Definition 5.2.1 (Coifman et al [13]) A non negative map M from a se-

quence {f;} to R is called an additive information measure if M(0) = 0 and

M(Zifi) = }:iM(fi)-

Definition 5.2.2 Let z € RN be a fized vector and B denote the collection of
all orthonormal bases of dimension N, a basis B € B is said to be optimal if

M(Bz) is minimal for all bases in B with respect to the vector .

We shall define a distance measure between a signal and its decompositions

to subspaces of L2(R) motivated by Shannon entropy (Shannon’s formula) [24]

H(X)= — > P(z)log P(z), (5.1)

reX

which is interpreted as a measure of the information content of a random variable

X with distribution P, = P in information theory.

Definition 5.2.3 Let H be a Hilbert space which is an orthogonal direct sum
H=6)> H, (5.2)

a map & is called decomposition entropy if

2
s Il Dol 653
llv || * ol
forv e H, ||v|]| #£0, such that
v=@)Y v, € H, (5.4)
and we set
plogp =0, when p=20. (5.5)
Entropy is a good measure for signal concentration in signal processing and

information theory. The value of exp&(v) is proportional to the number of
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coefficients and the length of code words necessary to represent the signal to

) ] 2.
a fixed mean error and to error less coding respectively. The number "” U 1s

|
the equivalent probability measure in the decomposition entropy which is the
stochastic approximation of Shannon entropy since the density function of the
signal is unknown. For a source of a finite number of independent signals, such
as a digital image considered as a source of independent pixels, its entropy
is maximum for uniform distribution [25, p42]. If the entropy value is less
than the maximum, then, this implies that a higher concentration of the signal
energy over certain bands exists. In our system identification formulation, energy
concentration is identified with models of lower orders or networks with less
complexity. Using entropy as a performance measure takes advantage of the fact
of the nonuniform energy distribution of the signal or systems in consideration.
The optimization of the wavelet basis is finding the suitable wavelet for a certain
class of signals which have energy concentration at certain frequency bands. In
other words, we are seeking a representative of a certain class of signals to

generate suitable subspaces in which the decomposition entropy is minimized or
equivalently that the energy of the signal is concentrated.

Let 1(t) be the base wavelet function and let W(t) represent the orthonormal
discrete wavelet basis of L? generated by dilation and shifting of ¥(t), similarly,
we define ¥; to be the basis of H;. We write ¥(t) = {¢;(t)} and Ui(t) =
{1;1(t) }iez respectively. We treat both ¥(t) and ¥; as operators and thus

define the following.

Definition 5.2.4 Let U be a given basis as above, a basis operation is defined to

be a map from L*(R) to a set of real numbers, i.e., U(t)f(t) = {fii}jiez where

fia = (F(t),;u(t)) for all f(t) € L2.
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Figure 5.1: Mesh structure of the projection space

Let M and N be appropriate positive integers. We truncate the approxima-

tion in Equation (4.14) to a scale up to M

M N
fl@)= 3 > wi(a) (5.6)

j==-MI==-N

The subspaces used to approximate the function f(z) has a mesh structure of
size (2M + 1) x (2N + 1) as in Figure 5.1.

Given a function or signal f(¢) € L*(R) and a base wavelet function %(t)
with a finite mesh of size (2M + 1) x (2N + 1), we can decompose the signal

into the orthogonal subspaces as

’ M N
f)= > 2 futiab). (5.7)

j=—M I=-N

We are going to find the best wavelet base function ¥(t) for a given signal f(t)
such that the additive information measure M is minimized. The base operation
U f(t) yield the weights on the nodes of the mesh. The weights on the vertical

line with coordinate j is the number set produced by ¥; f(t).
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Although the decomposition entropy is a good measure for the “distance,” it
is not an additive type of map because the norm [[v|| is used to scale the vector.

We thus further introduce a cost functidnal

AT, v) ZH%N log ||;1|”, (5-8)

which relates to the decomposition entropy through
£(v,0) = ||v]| 7> M(®,v) + (2M + 1) log |lv]|”. (5.9)

As shown in the expression above, the cost functional A takes the wavelet basis
¥ and the signal vector v as its arguments. For any fixed signal, it is a functional
of the basis and hence of the base wavelet function (t). The former function in
(5.8) is an additive measure. Since the above two functionals share the same set
of minimal points, we minimize the functional A(®, f) for seeking the optimal
wavelet basis through multiresolution decompositions.

The weight of the decomposition of a signal f(t) on a subspace H; is measured

by the subnorm || f;|| defined as
15l = | Pe, L) (5.10)
where
N
I5I1F = > fir (5.11)
I=—-N

Similarly, the norm of the decomposed signal is given by

I1£(2) Z 15117 (5.12)

=M
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5.3 Sensitivity Gradient of Wavelet Compo-
nents

We need to further find %ﬁ% which is a measure of the sensitivity of the compo-
nent of signal decomposition to a wavelet basis versus the change of the defining
parameter set of the base wavelet. One can solve this through numerical meth-
ods from the relations and definitions. Based on the definition of information
measure and the properties of QMF discussed earlier, we derive an explicit ex-
pression for analyzing the sensitivity of a dilated and shifted wavelet function

versus the parameter set as follows.

Sbid of the component y;,; of the wavelet

Ock

Lemma 5.3.1 The sensitivity gradient

basis U versus parameter ci 1s given by

%ﬁ"" \/2_7+_12[ )K=k g(279+1¢ — 21 —n)
k

+ (=1)" ek -nd(277? — 41 — 20 — k)] . (5.13)

Proof:

From the fundamental equation of wavelets (4.46) and the wavelet basis function,

81/)1" — 9= +1__ J+1
Tor j Ber 2 3" hi(n)g(277 t — 20 — n). (5.14)

This is

%{1 =V Y ——8};1(:(”)¢(2'j+1t —2l—n)+ hl(n)£—¢(2“j“t —2-n)|.
k n k ' k
(5.15)

From Equation (4.45), we have

04(t)
. = V24(2t — k). (5.16)
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hence,

5(2—¢(2_j+1t — 9l —n) = V2427 — 4l — 2n — k). (5.17)
. .

We need to find %%ﬂ. From the time domain relation (4.49) of the QMF, we

have ,
hi(n) = (—=1)"ho(K —n) (5.18)

with ko being compactly supported on [0, K]. Thus,

ha(n) = -a%(—l)"ch._n, (5.19)

there is only one nonzero term when K —n = k. This yields,

dhy(n)

e = (—1)K-*. (5.20)

The lemma is proven through (5.17) and (5.20).

This lemma establishes a direct link between the rate of change of the com-
ponents in the basis ¥ and the variations of the parameters in the fundamental
equations of wavelets, which leads to the next theorem. We introduce the follow-
ing theorem to show the relationship between the information measure and the
parameter set cx. The relation to be described shall provide a clue for developing

an algorithm to find the optimal base wavelet function for the AWNN.

Theorem 5.3.1 Let A(-,-) be the additive information measure as defined in
(5.8) and f(t) € L*(R) be a fized signal. Let [0, K] be the compact support for
{ci} and let U be the corresponding wavelet basis from dilations and shifts of the

mother wavelet (t). Then the gradient of the information measure with respect
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to the parameter set {cy} for the given signal is given by

Q&‘g,?:‘(t_)) = V2 Y S log 2|
i

S S [ (F(), (27— 2 = n))

n

+(=1)"exon { f(1), @72t —dl —2n - K))| . (5.21)

Proof:
By the chain rule, we have the information gradient
OMY. (1) _ 5~ ONLTW) DUS 6522
R VA T

The definition of information measure A(f(t)) in (5.8) yields,

oMY, f(1))

= —logllf;ll* -1
allfill” ’

= —log2|Ill', (5.23)

with 2 being the base of log function. We use the chain rule again,

AL 9
dek - 8ck;fj"
_ i
= QZI:fJJ 9 (5.24)
We have so far
MY, F(1) _ _ 2 Ofi
de Q;Zl:logﬂlfjll firges (5.25)
Since
Ofin _ 0v;,
dcr <f(t)’—8ck >, (5.26)

the result from the previous lemma concludes the proof.
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This theorem demonstrates an explicit relation among the gradient of the ad-
ditive information measure, parameter set {c} and the measured signal f(2). It
points to the direction for updating the parameter set to reduce the information
measure and thus will facilitate the search for the optimal wavelet basis.

We may propose a gradient based scheme of construction of the optimal
wavelet basis from the theorem above. This algorithm starts by assigning an
initial set of parameters which form the low pass filter of the QMF bank which
is followed by the generation of both scaling function ¢(t) and the base wavelet
1 (t) through a recursive process. The wavelet decomposition is implemented by
passing the input signal through the QMF bank composed of Ho(z) and Hi(z).
The parameter set {c;} is updated after sensitivity analysis. The flow chart in

Figure 5.2 describes this process.

5.4 Analysis of Time and Frequency Alloca-
tion

The parameter set {ci} is updated based on the result from sensitivity analysis

and the final wavelet is generated upon the final set of parameters.

The values of M and N determine the computational complexity of signal
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representation and system identification. In our problem, these values can be
identified with the size of AWNN. Obviously, when both M and N turn to
infinity, the constructed function converges to the original function. However,
in real system implementation, one has to use the truncated model instead of
the form of infinite summation. As a consequence, the selection of the values of
M and N becomes a practical issue. One can also start the computation by an
educated guess and uses an adaptive scheme on the level of resolution required
and the size of each subspace of the given resolution which is described by the
value of N. Knowledge of the system and of the signal may also help choosing
the initial size of the mesh in Figure 5.1.

One applicable method is to analyze the time and frequency allocation of
the signal from available data. We wish to estimate the bandwidth of the signal
and estimate its energy concentration on the time and frequency plane so as to
provide a initial guess of M and N. The choice of M and N shall provide a
mesh which covers the region where the energy of signal is concentrated. In this
way, one can hope to represent the signal with a wavelet network of a reasonable
size. This process is not unique and does not have a precise solution. Different
methods, prior knowledge about the system and common sense should be used
to solve this problem. Some discussion on time-frequency allocation analysis for

system approximation can be found in [41].

5.5 Algorithms

We have identified the problem of finding the optimal wavelet basis ¥ with that
of finding a parameter set {cz} such that the additive information measure Als

minimized. Once the set {cx} is determined, both the scaling function ¢ and the
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base wavelet function ¥ can be derived afterwards. Equipped with the above
theorem, the information gradient is available, different optimization schemes
can be applied to solve this problem. ‘We have developed a basis selection
algorithm based on a steepest descent method as follows. To simplify notation,

we denote the parameter set {co,c1, -+, cx-1} by a vector C.

Algorithm 5.5.1 Computation of the optimal wavelet basis

Step 1: Set1:=1,
Xo : =10,
mesh parameters M, N;
Initialize vector Cy;
Input f(t).
Step 2: If C; dose not satisfy the constraint,
then, modify C; and repeat Step 2.
Step 3: C;:=Ciq + p,-_la—ca%:.
Step 4: Compute ¢ and .
Step 5: Compute A.
Step 6: If |\ — A1 > €,
i:=1+1, go to Step 2.

Step 7: Output the optimal basis ¥ and stop.

The mesh size is governed by the choice of parameter M and N. Obviously,
when M and N turn to infinity, the supporting subspace spanned by the dilations
and shifts of the base wavelet turns to space L?(R). The size of the mesh is
identified with the complexity of the resulted wavelet system. The constraint on

the parameter cx is dominated by the unitary property of the QMF bank which
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can be transformed into a set of algebraic equations. The parameters M and
N can be predetermined by the time and frequency localization property of the
signal in consideration. We can also perform an adaptation scheme to generate
an mesh of an appropriate size. This is realized by a modified algorithm as

follows.

Algorithm 5.5.2 Computation of the optimal wavelet basis with variable AWNN

size.

Step 1: Set1:=1,
Ao :=0,
mesh parameters M, N;
Initialize vector Co;
Input f(t).
Step 2: If C; does not satisfy the constraint,
then, modify C; and repeat Step 2.
Step 3: C; := Ci_1 + pic1 58—
Step 4: Compute ¢ and .
Step 5: Compute A.
Step 6: If |\i — Aic1] > ¢,
=141,
M:=M+1,
N := N +1, go to Step 2.

Step 7: Output the optimal basis ¥ and stop.

This algorithm starts from an initial mesh size determined by M and N in

step 1. While updating the parameter set {C;}, the algorithm adjusts the size
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of the mesh until the error tolerance is met to finish the iterative process. The
sequence of order updating and parameter updating can be organized adequately

for reducing computational complexity.

5.6 Structure Analysis and System Parame-
terization

We have developed in the previous section the formulation of the information
measure and the sensitivity analysis of wavelets versus their parameter set which
determine the amount of information represented by the base wavelet ¥(t). We
also formulated the optimization problem and proposed a gradient based opti-
mization algorithms. However, the algorithms in the previous section are con-
strained procedures which guarantee the paraunitary property of the filters in
the QMF bank. In this section, we are going to parameterize the optimization
into an unconstrained optimization through analyzing the structures of unitary
matrices over the complex field. The structure analysis shall reduce the number
of parameters of the system and should be an economical way to express and

generate a family of wavelets.
5.6.1 Decomposition of Unitary Matrices

We shall show that the paraunitary matrix discussed earlier can be decomposed
to its minimum forms and thus be parameterized for the optimization purpose.
We first introduce some basic definitions and notations to facilitate the descrip-
tion of our problems. Let F' be a subfield of C' closed under complex conjugation,
let U be the multiplication group of two by two unitary matrices over the ring
of Laurent polynomials F(z) with |z| = 1. Define a natural conjugate operation

denoted by ~ which takes the complex conjugate of F and replaces z by its re-

79



ciprocal. Denote U to be the subgroup of matrices in U which have determinant
1 and equal identity matrix when evaluated at z = 1. Use U to represent the
two by two multiplication group of unit;':mry matrices over the subfield F. It is
obvious that the aliasing component (AC) matrix in (4.27) belongs to U. From
the previous definition of a paraunitary matrix, it can easily be converted as a
unitary matrix here with a scaling factor d. Without further explanation, we

shall identify those two in the rest of this section.

Theorem 5.6.1 (Pollen [42]) For every element M € U, there ezist unique

1 0

AeUI,Be[O Zk},CeU

with k € Z such that M = ABC.

The uniqueness holds upon the choice of the parameter & of matrix B. To
proceed further, we define the order of a matrix in U to be the highest order
of the Laurent polynomial in the matrix. This theorem shows [42] that we can
factor the matrix in U into the product of a zero order polynomial matrix, a
monomial matrix and a matrix which has unit determinant and is equal to the

identity matrix upon evaluation at z = 1. The process can be repeated when

the order of the factor C is greater than one. Hence, we may have
M = ABC
= ABA,B,C;
= ABA B A:B,- - AnBnCr (5.27)

where m < deg(M). The matrices in U have a nice property of being able to be

expressed as a unique product of a minimal number of simple factors in U.
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Definition 5.6.1 A matriz X € U is called a simple factor if its degree is not

more that one.

Lemma 5.6.1 A 2 x 2 matriz X is a simple factor if

a+(l—a)z b—bz

X = —(b=b2z) a+(1—-a)/z

with ja — 12 + b = (2)7.

The set of simple factors is a subset of the collection of all the degree 0 or 1
elements of UI.

Proof:

Obviously, X is an identity matrix when z = 1. The circle condition regarding

a and b in the theorem proves that det(X) = 1.

The topology of the factor is shown here to be a circle when the field is real, or
a 2-sphere for complex field. The set of all simple factors is a subset of the set
composed of all the matrices of degree zero and one.

The unique factorization theorem for second order matrices in U due to
Pollen is introduced here without proof for the parameterization of the unitary

matrices.

Theorem 5.6.2 (Pollen [42]) Let M € U with deg(M)> 0, then there ezist

simple factors A; and B; such that
M - /‘ilBlAsz o AmBm.

This expression is the factorization of M as a product of 2m simple factor ele-

ments and factor inverses. Furthermore, the factorization is unique. A slightly
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weaker form of the decomposition is that M is factorized into a product of m
elements of degree one, i.e., M = C1Cy---Crn. However, these elements may

not be simple factors.

This theorem implies that the original parameters of the matrix can be pa-
rameterized by the factors in a simple form and the factors can be derived from
the coefficient matrices of the original unitary matrix M. This property is es-
pecially useful since we consider the paraunitary property of the filter transfer
function Hy and H; on the unit circle in the z plane which falls into the realm

of this unique factorization theorem.
5.6.2 Givens Rotation and QMF Lattice Structures

This section intends to transform the constrained optimization of the optimal
wavelet function into an unconstrained problem through parameterization. The
decomposition theorem shows that it is possible to formulate the problem with
z on the unit circle which is convenient to be treated by trigonometric functions.
We need to find an appropriate mapping between the parameters of the QMF
and the corresponding set of unconstrained parameters on the unit circle. We
then apply the numerical procedure discussed earlier to find the right QMF
bank and thus to find the optimal wavelets. One of the convenient ways is to
use Givens rotation as following.

From the decomposition theorem 5.6.1, for any matrix in U with degree
greater than or equal to one, we can apply the theorem again until all the
factors have degree zero or one as defined above. The resulting factors are of

the form of a 2 x 2 paraunitary transfer matrix

Az) = [ L0 ] . (5.28)

0 271
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Figure 5.3: Block structure of the unit factor

C =CoS em

s =sin &,

Figure 5.4: A structure block of Givens rotation

Figure 5.3 shows the block structure of this basic factor in U. We notice that
the product of two unitary matrices is still unitary. We further introduce the

transfer matrix

R, = [ cosl,, sinb, ] , (5.29)

—sinb,, cosb,
where 8., is real. This is a Givens rotation which is used to parameterize the AC
matrix on the unit circle. The block structure of the Givens rotation is shown in
Figure 5.4. It can be easily shown that the determinant of the AC matrix (4.27)
is Bz~K where B is a constant coefficient for the low pass filter Hy(z) of degree

K. At most, the AC matrix has K such factors in its decomposition form.

Let Hg(z) denote the 2 x 2 aliasing component matrix of degree K, the
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factorization through Givens rotation is given by

Hy(2) = aRoAoRihy -+ Rk 1 Ak-1 R Ak [é i ] (5.30)
where « is a constant. The structure of the factorization is a cascade system
in which the basic blocks R; and A(z) appear alternatively. The parameters of
the QMF bank, i.e., of the low pass filter Hy(z), are functions of those angles
9,, where m runs from zero to K. The number of parameters of the QMF and
that of the factorization through applying Givens rotation are the same. Hence,
the parameter set {cx} can be expressed as a continuous nonlinear function of

those angles which take their values in the closed interval [0, 27]. We represent

the relation as
C = P(6), (5.31)

where P denotes the nonlinear function of the parameterization, C and 0 rep-
resent the corresponding K + 1 dimensional vectors of parameters. We can

minimize (5.9) through the gradient based method with

OMY. A1) _ 5 MY, S(1)) O
a@k 5cm 89k )

m=0

(5.32)

The optimization of the cost functional (5.9) turns into an unconstrained opti-

mization on the compact set [0, 27].

5.6.3 The Existence of the Optimal Wavelet Basis

With the parameterization of the low pass filter Ho(z) by the rotation vector
9 over the set [0,27]K¥1, the existence of the global minimum is guaranteed
although the gradient based algorithm may stop at a local minimum. The
parameter set C is computed from the final set of §’s to further improve the

optimal base wavelet ¥(t) and the optimal compactly supported orthonormal
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wavelet basis. The next theorem is a main result of this chapter.

Theorem 5.6.3 (Existence of an optimal wavelet basis) Let A(-,-) be the
additive information measure as defined in (5.8) and let f(t) € L*(R) be an ar-
bitrary finite energy function. Then there exists an optimal base wavelet function
P*(t) such that, A(¥*, f(t)) = Amin where U~ is the wavelet basis generated by

the dilations and shifts of ¥*(1).

Proof:

By the definitions, A is continuous with respect to its arguments, ¥, f(t) and
the parameter set C, the nonlinear function in (5.31) is a continuous bijection
with 6 € [0,27]%+1, a compact set, as the consequence, the information measure
parameterized by the angular vector § is a continuous functional defined on a
compact manifold [0,27]K*!, hence, there exists a vector 6" € [0,27]K+1, at

which, A attains its minimum. The optimal wavelet is thus determined through

C, the coefficients of the low pass filter in the QMF bank.

]

The existence theorem guarantees that the global optimal solution does exist.
However, as mentioned earlier, the computation may end up at a local minimum
depending on the starting point and thus yields a suboptimal solution which in

many cases may still provide satisfactory performance.

5.7 Simulated Annealing for Global Optimiza-
tion

We have proven the existence of the optimal wavelet for signal representation

and have developed an algorithm for generating the optimal wavelet in the pre-
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vious sections. The resulting gradient method is straightforward to implement.
However, it is important to emphasize that the outcome of the optimal base
wavelet from the optimization scheme deit)ends on the choice of the initial point.
The gradient based method will stop at the local minimum nearest to the initial
point. To overcome this limitation, we need to select an appropriate initial point

or to resort to other remedies.

5.7.1 Stochastic Relaxation

Stochastic relaxation is a viable option for searching for the global optimal. It
makes possible to evade local minima, to reduce or to eliminate the dependency
of the outcome on the initial choice of data. At each iteration, the parameter
set is perturbed in a random fashion by a prescribed amount. The cost func-
tional is then evaluated at the perturbed state which tends to increase the value
of the cost functional randomly. The local change of the parameter set can
be modeled by its neighborhood or by the fuzzy set generated by the random
disturbance. The magnitude of disturbance generally decreases with time, or,
with the increase of the number of iterations. A prescribed threshold decides
the acceptance or rejection of the result of each iteration. This threshold is in
general a function of time, of the variance of the stochastic disturbance and of
the amount of increment of the value of the cost functional. If the cost decreases,
the updated state is accepted; if the cost increases, it is accepted with proba-
bility. The essence of stochastic relaxation is that the parameter changes which
increase cost functional but with lower probability are permitted. Hence, the
optimization process is not going to be trapped at local optima. In the other
words, the results from the iterative process is irrelevant to the initial point in

the space of feasible solutions.
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The local change of parameter set depends on a global control parameter
called temperature. At low temperature, the local conditional distribution con-
centrates on decreasing the cost functionél, on minimizing the energy functional
whereas at high temperature, the conditional distribution tends to be uniform.
The extreme cases are the gradient based method and random selection method.
The gradient of the information measure versus the state provides a guide for
reducing the cost functional at each iteration on the perturbed optimization pa-
rameters. This technique has been used in vector quantization to generate the
optimal codebook by Zeger and Gersho [49]. Another example is an algorithm
for computing the maximum of a posterior estimate of the original image from
the degraded image based on the Gibbs distribution and stochastic relaxation
with convergence in probability to the global optimal by Geman and Geman in

(20].
5.7.2 Simulated Annealing

Simulated annealing is a stochastic relaxation technique in which a randomly
generated perturbation is added to the set of optimization parameters 6 at each
iteration. The name annealing came from physics. The key is the analogy be-
tween the state of physical systems related to temperature and the random state
under Gibbs distribution. Certain materials can be driven to low energy state
by reducing their temperature gradually at appropriate rate to produce desired
properties. Simulated annealing has an equivalent state most probable under
Gibbs distribution with low “temperature.” If a sufficient number of iterations
is made at a given temperature, simulated annealing yields a numerical solution
close to the thermal equilibrium at that temperature at which the probability

distribution of that state is stationary. If the temperature is further reduced and
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the iteration repeated, the resulting state approaches a new equilibrium at this
reduced temperature. The equilibrium reached at very low temperature is the
state with minimum energy. We can séek the global optimal wavelet solution
via simulated annealing.

Let 6 be the parameter vector as appeared in the previous chapter, we may
also call it state of the simulated annealing, © denote the corresponding state
space, [0,27]5*1. Let f be the perturbed state of § and the corresponding

perturbed space is denoted by 0.

Definition 5.7.1 (Geman and Geman [20]) A Gibbs distribution relative to

{0,0} is a probability measure © on § with

~(60) = }Z_e—w,t)/T _ %e—w’)/T, (5.33)

where T is a constant, which is the temperature, Z is the scaling factor Z =

5, e~ *O/T X is the additive information measure in (5.9).

The functional A(-,-) is an implicit function of the state 6 and plays the role
of energy functional of the Gibbs distribution. The “temperature” T controls
the peak of the density function. The value of T' reduces gradually during the
simulated annealing process in order to produce the low energy state, i.e., the
optimal parameter vector 8, for generating the optimal mother wavelet and the
optimal wavelet basis.

The problem of finding the optimal wavelet basis becomes minimizing A over
O through simulated annealing. Let K be the order of the low pass filter Ho(z),
i.e., the degree of the paraunitary matrix composed of the low pass and high pass
filters. The unconstrained parameter set § = [0o0; - - - k]| takes value at time ¢,

with t = 0,1,2,---. At time ¢, the kth component of 8 is denoted by k(¢), we
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have 6(t) = [0o(t)01(t) - - - 0k (t)] with 0x(t) taking value from the interval [0, 2.
We want to find the global with an arbitrary starting point. At each step, only
one component of 4 is updated. Assume. no,ni,na,- - - be the sequence in which
the components of # is updated, thus, at any instance ¢, 0,(t) = 0,(t — 1) for
all s # n,. At each t, with 6(t) given we generate y randomly from the interval
[0,27]. We assign 6,,(t) = y. This is the local updating scheme for vector 6.
We shall demonstrate that as ¢ turns to infinity 6(t) is irrelevant to 6(0).

The statistical properties of the random process {6(t)} can be expressed by

the state transition from 8(¢ — 1) to 6(t) by the following
P(05(t) = ys,s € S) = w(bn = Yntl0s = ys, 8 # n)
CP(0,(t = 1) = ys, 8 F# 1)y (5.34)

where 7 is the Gibbs distribution (5.33) which drives the stochastic process
for the optimization scheme. The temperature T is a function of time ¢ in the
distribution, T" decreases as time t increases. If we denote the Gibbs distribution

7 at time t by 77(s), the random process above can be expressed as
P0,(t) =45, s €S) = 7r)(fne = Ynells = sy s # 1)
cP(0,(t — 1) = ys,, 8 F# nt) (5.35)

Let A = maxg A(0) — ming A(6), denote ©p = {0 € ©,A(f) = min, A(n)}, we
then have the following theorem due to [20, Geman and Geman] to prove the

convergence of the simulated annealing.

Theorem 5.7.1 Assume there is an integer M > K +1, then for arbitrary t =
0,1, -, we have S € {ne41,Neq2, -, Musm}, let T(t) be a decreasing sequence

and assume, (@) lim;—.oo T(t) =0, (b) T(t) > (K +1)A/logt, for allt >t 22,
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then, for every yo € © and for every y € O,

lim P(0(2) = y10(0) = vo) = mo(0)- (5.36)

This theorem demonstrates two facts. First, the distribution of state 6(t)
converges to m regardless of the selection of initial conditions. Second, the
distribution of the state converges to the distribution which minimizes the energy
of the system globally as the temperature decreases to zero. Gradually reducing
temperature T' yields the most probable state under the Gibbs distribution. This
state is the low energy state of the system.

The complexity of simulated annealing is determined by the value of K which
is the degree of the paraunitary matrix (4.27). The value K +1 is the dimension
of the search space for simulated annealing. In finding the optimal wavelet, the
state to be randomized is the compact parameter set [0,27]%*!. We observe

from the above theorem that the approximate computation time

t > EFNA/T (5.37)

which is the number of total updating of the parameter set. For practical im-
plementation, the product of (K +1)A may cause a long time iteration process.
It is necessary to control the size of the problem and to select the appropriate

temperature T'. Further research is needed regarding this aspect.

5.8 Conclusion

This chapter has provided a direct approach to construct an optimal orthonor-
mal wavelet basis with compact support for signal representation. First, a cost
functional, an additive information measure, is introduced based on the decom-

position entropy of a given signal with respect to an initial wavelet basis. This
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entropy measures the nonuniform energy concentration of the given finite energy
signal. The sensitivity of each dilation and shift of the mother wavelet function
1(t) with respect to the governing coefﬁcients has been found. This relation es-
tablishes the gradient of the information measure versus the parameter set. We
have proved the existence of an optimal wavelet basis for signal representation
and for system identification.

Simulated annealing is proposed to avoid the influence of the initial condition
on the optimization process. Theoretically, simulated annealing will find the
global optimum. However, the computation may be very time consuming. As a
consequence, one may try to proceed with a combined method of both gradient
based and stochastically relaxed approaches.

Our method can find applications in the other fields in addition to signal
representation and system identification. In the context of pattern recognition,
the methodology described in this chapter is also a way to construct the feature
space and to partition the signal space according to its representatives. The
parameterization of cost functionals in this chapter is not unique, other forms
of measures or cost functions may be introduced according to the contexts of
actual physical problems.

Finally, it is worth pointing out that although the optimal wavelet basis de-
scribed in this chapter is one dimensional, it can be extended to two dimensional
nonindependent wavelets due to our general formulation. This demonstrates the
potential applications of this method of wavelet basis construction in image pro-

cessing for obtaining high compression ratios.
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Chapter 6

System Identification via
Adaptive Wavelet Neural
Networks

In this chapter, we discuss identification of infinite dimensional systems via
adaptive wavelet neural networks (AWNNs). We first address the background
for system identification via neural networks. We then formulate the problems
of system identification and self monitoring of distributed systems and illustrate
the structure of adaptive wavelet neural networks. Finally, we propose an AWNN

training algorithm.

6.1 Introduction

There are two well known types of system identification schemes, parametric
and nonparametric. The former depends on the given model structure used in
identification and determines the model parameters based on input and output
of the unknown systems. The second scheme does not require the information
regarding the model structure and gives an estimate of the impulse response
of the unknown systems. However, some cases are not suitable to be treated

with these conventional approaches due to insufficient analytical knowledge of
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the plant, incomplete information on the number of key parameters and the
presence of disturbance and uncertainties. Even when enough knowledge about
the system is available, the model of tfxe system may be too complicated to
be used to design control systems. For this reason, we introduce an adaptive

learning scheme to emulate the real system.

6.1.1 Background in System Identification

We are interested in introducing another form of identification scheme which
employs a parallel computational structure and uses knowledge from measure-
ment to adapt to different models and structures. This method can be used
for both linear and nonlinear system identification. The underlying idea is two-
fold: first, identify the type or class of the system and pick a simple component
or a structure which describes the characteristics of the system; second, start
from the simple structure to build a basis to generate or approximate the given
system successively in an appropriate functional space.

We consider identification as constructing a suitable subspace of L*(R) and
generating a function to approximate the output of the system with respect to
the input since the input responses of a large class flexible structure systems
and distributed systems belong to L?(R). The identification of an input output
relation can thus be formulated as the approximation of a function in L*(R)
by its projection on an appropriate subspace of L?*(R). If we can construct
a suitable subspace of L?(R) in an appropriate scale spanned by dilating and
shifting a base wavelet function, we should be able to approximate a function
in L?(R) with a function in the subspace of the relevant resolution in the sense
of minimizing a norm of the difference between the two functions. Naturally,

the best approximation is predetermined by the subspace in consideration and
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thus by the base wavelet which determines the dynamical characteristics of the
subspace used for approximation. If partial information of the system is available
a priori, or the class of the function to Be approximated is detected, as shown
in the previous chapter, an appropriate wavelet basis could be built and the

multiresolution property can be used to approximate the function progressively.

6.1.2 Computational Structures of Neural Networks and
AWNN

A general representation of a neural network is a computational structure of

finite linear combinations of the form

N
g(x) = Z wja(ajrx + bj), (6.1)

i=1

where x,a; € RN, b; € R are fixed. The network is formed from weighted
compositions and superpositions of a single, simple nonlinear pattern or response
function. The activation function o is generaly nonlinear and depends heavily
on the context of the application. The real constant b; is the bias of each neuron.

Neural networks have found their applications in controls and system iden-
tification. A neural network was used as an emulator and controller to control
a highly nonlinear truck-trailer docking problem in [39]. Applications of neural
networks have been studied and summarized in [23] regarding modeling, iden-
tification and control structures. The nonlinear functional mapping properties
of neural networks are central to their applications in system identification and
;:ontrols. It has been proven by Cybenko [17] that a two-layer neural network
can approximate a nonlinear function to an arbitrary degree of accuracy. How-
ever, the number of neurons required in the neural network may far exceed the

limit for practical implementations. This poses a burden for the applications in
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on line system identification and in real time system controls. As we see from
the structure of artificial neural networks above, no dynamical components are
included in the general setting of neural nétworks and the network is memoryless.

Incorporating proper dynamical components into the network can reduce the
number of neurons required for certain performance. An issue in control is the
dynamical nature of the system to be considered. It is reasonable to speculate
that when proper dynamics are included in the neural networks, the performance
of the networks is expected to improve. We anticipate that the information from
the wavelet basis will help reducing the number of neurons needed to achieve the
same performance provided that the wavelets contain useful information about
the system in consideration.

Our thoughts on a unified work on wavelets and neural networks are fur-
ther encouraged by the work on wavelets and neural networks by Zhang and
Benveniste [50]. In their work, a notion of wavelet networks is proposed as
an alternative to feedforward neural networks for approximating arbitrary non-
linear functions. We are interested in using both the multiresolution property
from wavelet decomposition and the convenience of computational structures
of neural networks to approximate the unknown plants; we first introduced the
concept and structure of adaptive wavelet neural networks (AWNN) in which a
signal based optimal wavelet basis is incorporated and applied AWNN for iden-
tification of distributed systems in [52]. The dynamics of the AWNN adapts
to the relevant systems and hence yields an AWNN smaller than that of static

neural networks.
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Figure 6.1: A wavelet neural network identification structure.

6.2 Problem Statement

6.2.1 Structure of AWNN

Given an infinite dimensional stable system with unknown input output rela-
tionships, we set up an identification structure shown in Figure 6.1, in which u(-)
and y(-) are the input and output to and from the unknown system. An adap-
tive wavelet neural network block (AWNN) is used to approximate the given
system with z(-) as its output. The matching error e(+) is defined as the differ-
ence between y(-) and z(-). The network is tuned to match the system through
minimizing the error e(-).

The structure of an adaptive neural wavelet network is shown in Figure 6.2
, in which u(-) is the input to both the system and the network, z(:) is the
corresponding output. This network contains a hidden layer of an appropriate
wavelet basis {1;,} from dilating and shifting a base wavelet ¥(-) which is to be

determined via an optimal adaptive scheme of basis selection. The activation

function o(-) is a nonlinear function. One of the possible forms is a sigmoidal
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Figure 6.2: An AWNN block.

function

1 — 6—21'

= — 6.2
1 4e 2% (6.2)

o(z)

Although this is a general setting, the dynamics of the activation function can
be selected either as a linear or a nonlinear function according to the dynamics

of the wavelet blocks. The output of the network is given by
z(+) = O’(Z; w; b ())ul-), (6.3)
i
where
G(-) = U(X; w;¥5(+)) (6.4)
B

is the estimated input-output relation of the unknown system. The function
G() approximates the input-output relation to a certain level of resolution which

depends on the resolution of the subspaces spanned by the wavelet functions.
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6.2.2 Optimal Wavelet Basis and AWNN

The mother wavelet function %(z) determines the dynamical nature of the adap-
tive wavelet neural networks. We use z to denote the variable in the domain
of consideration. We are interested in using a mother wavelet function which
describes the dynamical behavior of the systems in consideration most closely.
When incorporated into the network, the wavelet network should have the best
performance for a certain complexity or to provide a certain performance level
with a minimum complexity. This is true when (z) is chosen to contain in-
formation regarding the class of the given system. We shall use this optimal
wavelet function ¥(z) in our wavelet neural networks for system approximation.
In chapter 5, we discussed in detail the formulation and solution of the optimal
wavelet basis selection. We shall use the optimal wavelet basis described as the
basic component in the AWNN.

We define the random error at instant k by the random sample (ux, yx) as the
difference between y, and z;, with the system output yi as the desired output

for the neural network. The error at the k™ instant is defined by
er = Yk — Zk. (6.5)
The square of error at step k is
1 2
Ek = 3[y’° — Zk] . (66)
The accumulated error E,

E=Y E (6.7)
k

sums the errors of the first k iterative steps. The network with a minimal

matching error E is required to approximate the unknown system. The identifi-
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cation problem transforms into trajectory learning in the corresponding discrete
domain.

Our problem becomes two-fold: selecting the best wavelet basis for a wavelet
neural network; training the AWNN afterwards to match the unknown plant.
First, we need to find the optimal base wavelet function ¥*(z) such that the
positive cost measure M is minimized for the detected dynamical behavior of a

given system, i.e.,
Y*(z) = arg min My (¥, f(2)). (6.8)

Secondly, we need to train the network to emulate the given system in the sense

of finding the optimal weights {w;;} to minimize the cost index J which is
Jopt = min Elw]. (6.9)

The input-output relation of the trained neural wavelet network is used to
represent the transfer function of the given system to facilitate the design of
control systems. This forms a self-tuning system identification scheme via an

AWNN.

6.2.3 Dynamics of Neurons and AWNN

An artificial neural network is an interconnection of computational components,
called neurons or nodes. It provides a distributed computational structure and
can be processed in parallel. The function of each neuron may not be the same
unlike the elegant mathematical expressions in general. We can imagine artificial
neural networks as maps from stimulus to responses subject to either reward of

penalty depending on the setting of real physical systems.

The neural network is shown as layers of recognition and adaptive response
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as described in Figure 6.3 [2, p30]. The first layer takes the complex stimulus

1 Reward

Stimulus - Response

ey NeOUIFE -
network

(a)

Discrimination i
o Conversaoy Reward
: T ".. ':" l'~.

Complex

stimulus Simple stimulus

(Sensing input)

&)

Figure 6.3: Separation of a neural network as discrimination and conversion
parts. (a) A neural network block. (b) The structure of discrimination and

conversion.

from the physical systems, i.e., sensory data for the artificial neural network, it
then extract the feature of the complex input and produces a representative, a
simple stimulus, to excite the next layer. The second layer converts the stimulus
into either a command or a response according to adaptive learning schemes.
This is one of the local computational models of neural networks.

A low level description of the process above is illustrated in Figure 6.4 2,
p31] as three separated layers. The first two layers act as a feature extractor and
a classifier respectively. The first layer extracts features form the sensory data.
This process is highly parallel and can be implemented with analog parallel
circuits. The second layer takes the outputs from the preprocessed signals and
represents them in a simplified way at a higher level. Those patterns in the

second layer can be classified based on theory form vector quantization.
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Figure 6.4: Feature extraction and classification.

The system identification scheme can be realized through using a two-layer
AWNN. We may call it an emulator. A two layer AWNN emulator is shown in
Figure 6.5. The first layer consists the AWNN blocks illustrated in Figure 6.2;
the second layer takes the weighted sun of the outputs from the first layer and
sends it to the linear neuron in the layer. This structure can approximate the
input-output relation of an unknown system and is similar to those represented
by Equation (6.1).

The AWNN system has its special adaptability to outside changes while
maintaining the basic functions of general artificial neural networks. The first
layer of the AWNN emulator consists of wavelet blocks generated from the op-
timal mother wavelet described in Chapter 5. The process of the basis selection
plays the role of feature extraction in the signal space. As we discussed ear-
lier, the resulting optimal mother wavelet serves as the representative of a class
of signals from the physical system. The second layer of the AWNN emulator
produces responses to the stimuli preprocessed by the wavelet blocks of the first
layer. The adaptive nature of the AWNN is realized though the signal dependent

basis and network training.

Definition 6.2.1 (Cybenko, [17]) We say o is discriminatory if for a mea-
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Figure 6.5: A two layer AWNN emulator.
sure p € M(I,)
/1 o(y"e + 0)du(z) =0
for all y € R* and 6 € R implies p = 0.

Theorem 6.2.1 (Cybenko, [17]) Let o be any discriminatory function, then

the finite sums of the form
N
G(e) =Y ajo(y; = +6))
i=1

are dense in C(I,). In other words, given any f € C(I,), for arbitrary € > 0,

there is a partial sum, G(z), of the above form, for which,
IG(z) — f(z)| <€, ,Vz € Iy,

This important theorem tells us that a two layer neural network of (6.1) can
approximate any nonlinear function. This theorem foresees the basis for system

identification and function approximation via neural networks.

6.3 Network Training

This section describes a supervised learning process of the AWNN as stochastic

approximation of an unknown function. The training of an AWNN consists of
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Figure 6.6: AWNN training structure.

two stages: a pre-training procedure and an actual training scheme via weight
updating. The pre-training is a preparation process of configuration or adjusting
the basis of the network based upon the output measurements from the unknown
system excited by a test signal. The purpose is to equip the network with
the appropriate dynamics and generate an AWNN of a manageable size. The
network is trained afterwards with a supervised learning process. The training
structure is shown in Figure 6.6.

During the first stage, the network takes the output of the unknown system
excited by a test signal and looks for the best wavelet basis with the switch at the
closed position. The algorithm given in Chapter 5 is used to generate the best
wavelet basis U for the AWNN. The dynamical behavior of the AWNN is thus
determined by this process. This stage also provides appropriate initial weights
for the network training to start with. Since the basis contains the measured
information of the unknown system, the required size of the network is reduced
compared with a neural network without the dynamical components. This will

speed up the network training process.
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The next stage is the network training which is a goal-directed learning
aimed at minimizing the relevant cost functional. It is supervised learning since
certain pattern of 1¥(z) related to the unknown system is used during training.
Different training algorithms were discussed in [29], [44] and [10]. Due to the
convenience of our problem formulation, we use the backpropagation algorithm
in [29] to train the AWNN. The backpropagation algorithm, an extension of
LMS algorithm, modifies the weights at each step with nonlocal error informa-
tion. This is an implied feedback which closes the loop for adapting weights of
the AWNN. The backpropagation provides a suboptimal solution in the sense
of using finitely many wavelet blocks to approximate the infinite dimensional

system. For convenience, we rewrite Equation (6.9) as
Jopt = min Elw)]. (6.10)

The task here is to minimize the cost functional J of Equation (6.10).

From the structure of the AWNN, we have

S = ij,ltﬁj,;(s)u(s) (6.11)

as the input to the sigmoidal function o(-). We update the weight wj(k) at &kt

iteration by a stochastic difference equation

wj,l(k + 1) = wj,z(k) + qkij,z(k) (6.12)
where
0K
Dji(k) = =5 (6.13)

with the learning coefficients gi’s satisfying {29, p186],

Y ge=00 (6.14)
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Y gk < oo (6.15)
k

The condition (6.14) constrains the sequence {g;} to decrease slowly, while (6.15)
constrains to decrease g quickly. The combined effect is to guarantee the ap-
propriate learning rate.

The gradient of the cost functional with respect to the weight w; is expressed

(6.16)

We refer to the definition of the square of error at step & in Equation (6.6) and
use the subscript k of a variable to denote the value of the variable at the instant

k. By the chain rule, we have

aEk . _( . ) 82k
6wj,1 n Yk i awj,l
= —(yx—z )% 03k
- i . 8Sk 8wj,1
= —(yx — z)0' (Sk) s uk- (6.17)

Hence
Awji(k) = (ye — o(Sk))o'(Sk)vsiuk

= (yx—0(>_ w; i)' (O wiasuk )5 1uk (6.18)
gl 7l

as the weights updating scheme. The general backpropagation algorithms can
be found in [29]. This process starts by assigning yj;., the coefficients from
the basis operation Wy of the measured output y(s) to the wavelet basis of
the AWNN, to w;;(0). The trained neural wavelet network shall be used to
implement control system design. The reconstruction from the given wavelet

basis is the approximation of the plant up to a certain resolution. Summarizing
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the above yields the following algorithm.

Algorithm 6.3.1 AWNN training scheme

Step 1: Set1:=1,

Basis selection, input ¥,
Set w;1(0) ==y
Step 2: w;i(i) := wii(i — 1) + qic1 Dw;y(i — 1).
Step 3: Compute J;.
Step 4: If |Ji = Jic1| > ¢,
1:=1+1, go to Step 2.

Step 7: Stop.

The first step of the AWNN training scheme begins with the optimal base
wavelet selection which has been discussed in detail in Chapter 5. This proce-
dure equips the AWNN with the appropriate dynamical component for system
identification owing to the fact that the decomposition entroy of the output
of the system is minimized. The optimal feature space in which the unknown
system is to be approximated is optimized in such a way that the energy distri-
bution of the system or the signal concentrates in it. The complexity is expected
to be reduced due to the dynamical wavelet blocks embedded. This is one of
the key ideas of AWNNs. The second step updates the weights using the back-
propagation algorithm. The next step check the ending condition for stopping
the iteration process.

The gradient based training algorithm converges to a local minimum. As

discussed in Chapter 5, stochastic relaxation may be used to reduce the chance
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of being trapped by a local minimum, howevér, this will increase the cost for
computation and put burden for real time implementation. One usually starts
the procedure from a randomized initial point and searches for the minimum
and hopes that the local minimum is good enough for practical purposes. Due
to the combined structure of the wavelet system and the neural network, one
can start from the wavelet coefficients resulting from the basis search algorithm.
This paradigm is reasonable since the wavelet decomposition should be close to
the optimal solution before truncating the full representation into finitely many
terms. The QMF bank in Chapter 4 can implement this system and produce
the discrete wavelet coefficients. We shall accept the solution starting from the
wavelet decomposition. At least, it is one ‘of the suboptimal solution having a

better chance of being closed to the optimal solution.

Implementation of AWNNSs is another way of curve fitting to available data.
They have both advantages and disadvantages. They are conceptually simple
and easy to use and are adaptable to complicated problems or suitable to deal
with problems which do not have a modeled structure or are too complicated
to model. Another advantage is that neural networks offer a distributed, par-
allel processing ability thus provide integrity and possible fault tolerance. The
function of each neuron is usually a simple function which is easy to implement.
The most obvious disadvantage is that neural networks do not recognize and
preserve the structures of the systems they deal with and there is no systematic
way to determine the structures of the networks either. Embedding system de-
pendent dynamical components into the networks will be useful in overcoming
these disadvantages. Our attempt in designing an AWNN will be of research

potential in this regard.
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6.4 Structured Learning via Vector Quantiza-
tion and Feature Extraction

We have discussed the training of AWNN in the previous section in which both
the training structure and algorithm were given. We shall propose a general

learning structure to conclude this chapter.

6.4.1 Optimal Wavelet Basis versus Vector Quantiza-
tion |
Adaptive wavelet neural networks (AWNNs) are dynamical systems whose com-
ponents are adjusted according to the real system. Consequently, the AWNNs
contain the information of the systems to be approximated and the signal to be
represented. The training procedure is based on the adaptation of the optimal
wavelet basis. In the first step of the training, given a test signal, the optimal
algorithm in Chapter 5 produces the corresponding optimal wavelet in the sense
of minimizing the decomposition entropy of the system. The basis selection al-
gorithm can be performed off line due to the complexity of the computation.
We may use techniques in vector quantization to systematically complete both

the off line optimization and the on line search for the optimal basis.

Given an input sequence, we can have a corresponding output sequence and
produce the optimal basis using the given algorithm. These two sequences can
be formed into a vector, called signal vector, then the process becomes estab-
lishing mapping from a vector to a functional. If we collect all the wavelet bases
corresponding to the representatives of the elements of the vector space called
signal space which is composed of all the input-output vectors, we can use vector

quantization schemes [21] to pair a signal vector with the corresponding wavelet
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Figure 6.7: A tree structured learning scheme.

basis and partition the signal space into disjoint subspaces whose indices corre-
spond to those of the wavelet bases. The generalized Lloyd algorithm employing
the nearest neighbor condition and the centroid condition [21, p195] is suitable
for generating the optimal partition and the corresponding set of the optimal
wavelet bases, i.e., the codebook here. A vector quantizer and a decision tree
are employed to choose the feature space partition corresponding to classes of
signals and search for the index of the optimal wavelet bases to be used. In the
context of pattern recognition, the collection of the optimal wavelet bases with
compact support form a feature space. Detailed explanation and analysis can

be found in [54] on multiresolution feature extraction.

6.4.2 A Classifier Based Learning Structure

A classifier can be used to generate a pointer to specify the wavelet basis in use
for a given input and output pair of the system. Figure 6.7 demonstrates the
principle of the structured learning scheme via classification of the signal space

through employing a vector quantizer and a decision tree. Given a input and the
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corresponding output signals in the form of a signal vector with the appropriate
length, we pass the vector through the vector quantizer and the decision tree, i.e.,
the classifier of the system. The classifier maps the signal vector to the pointer
of the corresponding optimal wavelet basis, and the adaptive wavelet neural
network thus input this optimal wavelet with respect to this input-output pair
into the system. The system identification and signal representation is performed
through the weight updating algorithm discussed earlier.

The vector quantizer and the decision tree based AWNN provides flexibility
in progressive learning, modeling and signal representation. The VQ based
AWNN described above offers both structural and parameter adaptations to

the encountered situations. It is of research potential in this aspect.

6.5 Conclusions

We have developed algorithms for identification of infinite dimensional systems
via an adaptive wavelet neural network. We first work on the problem of select-
ing the compactly supported optimal wavelet basis for spanning the subspaces
in which the unknown system is approximated up to a predetermined resolution.
An algorithm is given for constructing the optimal basis ¥ for the network em-
ulator based on the measurements of the output from the unknown system. We
then apply a backpropagation algorithm to train the resulting AWNN for system
approximation. This is an efficient way of approximating an infinite dimensional
system up to a certain resolution in a subspace of L*(R) spanned by the dilations
and shifts of the optimal base wavelet and the size of the AWNN can be reduced

compared with the neural networks without the dynamical components.

We proposed an adaptive scheme for the AWNN which adjusts its structure
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through the optimal basis selection and thus construct the feature space for ap-
proximating the transfer function of the system. The approximation algorithm is
based on the selection of an optimal basis. Qur method combines the advantage
of multiresolution property of wavelet decompositions and the convenience of
the computational structures of neural networks. The marriage of the best from
both fields should provide a powerful tool kit for solving problems of a much
wider range. Our approach can be generalized to the V dimensional case with
signals from L?*(RN). We also introduced the principle of a structured learning
scheme via vector quantization and illustrated the classifier based adaptation
structure for system identification and signal representation. This structured
learning scheme offers additional flexibility for adaptive systems subject to the
environmental changes.

The methodologies developed in this chapter are expected to be useful not
only for system identification and progressive modeling but also for signal clas-
sification, compression and reconstruction. Future research is needed on these

aspects.
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Chapter 7

Analog VLSI Architecture
Design for AWNN

In this chapter, we address the implementation of AWNN via analog VLSI cir-
cuits. We first analyze the design modules of the major components of the
artificial neural networks. We then provide the architectural design for real

time implementation.

7.1 Introduction

Neural networks and the AWNN provide parallel computational structures for
real time system identification and signal representation. More important, they
offer a parallel processing power and means of possible real time implementa-
tion for system identification, systems monitoring and equally important, sen-
sory data processing of distributed systems and complex systems. In a more
general sense, neural networks and AWNN perform data exchange, signal pro-
cessing and data association with their nodes being processors for operation at
different levels of a distributed system, and the functions of different nodes can
be custom designed to meet specific requirements based upon the context of

the physical problems. The significance and advantage of using neural networks

112



lie in the potential power in dealing with nonlinear systems and in real time
implementation.

Many neural networks are implemeﬁted through digital systems and soft-
ware and the computation is performed off line. In such systems, weights and
parameters are usually stored and recalled in local memories of the network
nodes while the activation function is computed through a look up table of each
node using limited amount of hardware. However, the multiplication of between
inputs and weights can be the bottleneck of the problem. In addition, fetching
variable values takes extra time during computation. Computation speed is a
critical issue in digital neural network implementation. Effort has been made
to speed up the operation through employing a digital neural network without
multipliers [37] with parameters being restricted to power-of-two.

Analog circuits have several features in the implementation of neural net-
works. Principles, background and basis circuit components in analog VLSI
and neural systems can be found in the book by Mead [38]. For realizing certain
nonlinear functions such as those of sigmoidal type, analog circuits can take
advantage of the physics property such as the Bolzmann distribution [38, p25]
to yield a direct and simple system realization which could be time and area
consuming if implemented digitally. Although the precision of analog circuits
may not exceed the accuracy of 7-8 bits in the next few years, they can still sat-
isfy some important tasks such as navigation and tracking which have incoming
data precision of usually not more that one percent [28].

We are interested in designing modularly structured analog VLSI implemen-
tations of AWNNs in which relatively simple structures aggregate to generate

the whole system. We shall first illustrate and analyze some basic modules of
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nonlinear functions, vector multipliers and weight adaptation blocks. We then

produce a frame work for the analog AWNNGs.

7.2 Design Modules for Analog VLSI Imple-
mentation

In this section, we illustrate several existing design modules for the implemen-
tation of analog AWNN. We then address the refreshing scheme and circuit

structures for the weight adaptation.

7.2.1 An Analog Neuron Structure

We use the analog CMOS circuitry shown in Figure 7.1 {31] as a basic component
of neurons for the AWNN. The circuit consists of three major parts: an input
layer, a nonlinear function part and an output stage.

The input of the neuron block is a current denoted by ;. The output of the
circuit is a voltage denoted by v,. This structure allows the input to be the sum
of several current signals. The input current is converted into a voltage V by
an operational amplifier with controlled feedback by differential resistance Ry.

This differential resistance is a gain factor determined by

v = Ryij, (7.1)

1
R, = (7.2)
T KNV = Va2)

where Kn, W, and L, denote the transconductance parameter, the channel
width and the channel length of the relevant four transistors in the feedback
loop, respectively.

The sigmoidal function is implemented by the hyperbolic tangent function.
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Figure 7.1: A neuron implementation structure with input stage, transfer stage
and output stage.

This function is realized through the differential pair of transistors with the
input and output relation

vo = Voey + Rilpatanh(V/(2V})) (7.3)

where V; is the thermal voltage and & = —i./IEg, I, is the bias of the differential
pair of transistors. The output of the differential pair goes through the second
operational amplifier with the same feedback loop as that in the input stage.

The transfer function of the neuron is given by [31]
V, = Vref + R, ta.nh(RngJ/(2V;)) (74)

where R, is the controlled differential resistance which is used to control the gain

of the system. Voltage V,s serves as the bias of the output stage.

7.2.2 Vector Multiplier for Weight Adaptation

The next major component is the one responsible for synapse updating or weight

updating. We use the circuit illustrated in Figure 7.2 [31] for this purpose.

The basic computational structure in artificial neural networks is the sum of

products. This operation is equivalent to the inner product of two vectors.

Figure 7.2 [31] illustrates the structure of a vector multiplier. The input and
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Figure 7.2: A realization of a vector multiplier

output relation of the vector product is given by

iig = gi (Vo= Vies) (7.5)

n

—_ g; . (Vo 511 — Va5i2)(Vzit — Vzi2), .
= (W/L)O(vcl—vcg) ;(W/L);( w,ji gi2)(vz, i2) (7.6)

where g; is the transconductance of the output stage of the jth neuron. The
(Vw ji1 — Vw,jiz) and (vzi1 — vg.i2) represent the voltage differences of both the
weigh parameters w;,; and the input vector z(k). The value of W/L is the width
and length ratio of the channel and provides the weights for the terms in the sum
of product together with the control voltage (ve1 — ve2). Each weight coefficient
of a neuron is supported by the above structure. The vector multipl'ier is a
basic component for weight updating, additional auxiliary circuits are needed
for addressing and for weight refreshing. One option is using an A/D and D/A
conversion scheme; each weight voltage is read and transformed through an A /D
converter followed by a D/A conversion to write to the storage capacitor [3] for
weight updating. This method can be used for the implementation of AWNN.
We can see from these modules the significance of reducing the size of neural

networks and the advantage of implementing AWNNG.
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Figure 7.3: Analog VLSI blocks: (a) A vector multiplier. (b) A scalar multiplier.

7.2.3 Design Modules for AWNN Systems

We now have the design modules for both neurons and synapses. For clarity,
we introduce the structure blocks illustrated in Figure 7.3 for implementing the

AWNN system. The function of the vector multiplier is given by

Vv

[l

(a=0)TQ(c—d),

= Z qi(a - b),-(c - d),‘ (77)

where a, b, ¢ and d are vectors of the same dimension, @ is the diagonal real
matrix whose elements are determined by the transconductance, control voltage
and the channel geometry of the transistor as appeared in (7.5). The output of
the scalar multiplier is given by ¢ = ab.

In addition to the above basic design modules, several auxiliary components
are needed such as weight refreshing circuits, addressing circuits and control
circuits for connecting the basic components for analog VLSI system implemen-

tation.
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7.3 Adaptive Learning Scheme via Analog VLSI
Structures

We shall illustrate that it is feasible to implement the AWNN learning algorithm
in Chapter 6 through using the analog VLSI modules for real time implementa-
tion and thus increase computation speed for on line system identification and
signal representation. The training scheme in the above chapter is backpropaga-
tion, a supervised learning algorithm based on the gradient of the error square
with respect to the weight vector w.

We know that a two layer neural network can approximate any nonlinear
function arbitrarily close. However, the number of neurons required may far
exceed the feasible limit for any practical real time implementation. With
the AWNN architecture and the application of the multiresolution property of
wavelets, one layer of AWNN can approximate any function with finite energy to
any precision and the resulting AWNN could be smaller in size compared with
its static counterpart since the AWNN contains information extracted from the
system. For this reason, we consider AWNN architectures with one dynamical

layer only. More complicated AWNNs will follow suit.
For convenience, we rewrite the training algorithm for weight updating (6.12),

(6.18) and (6.11) respectively as

wjyl(k + 1) = wjyl(k) + qkij,l(k), (78)

Awji(k) = (yx — o(Sk))'(Sk)jux (7.9)
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where
S = winja(Jul)- (7.10)
i

We use a linear function to replace the sigmoidal function in the case of one
layer AWNN to reduce the complexity of implementation. Let o(z) = z, and

consider the weight increment updating scheme
Aw; (k) = (yg — Sk)Sk; Uk, (7.11)
with
Sk = 21: w; (- )uk, (7.12)
7,

while keep the updating scheme (7.8).

We use the design blocks in the previous section for AWNN system imple-
mentation. The architecture of analog implementation of the adaptive wavelet
neural network is shown in Figure 7.4. The system is realized by using two vec-
tor multipliers and three scalar multipliers. The first multiplier takes the vector
inputs from both the optimal wavelet basis ¥ generated from the algorithm for

constructing the optimal wavelet basis and the weight vector w; for clarity, the
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subscripts are omitted here. The output of the first stage is multiplied by the
input u to the system to generate S which is being sent to both the neuron
and to the second multiplier to produce.the increment of w;, for updating the
weight vector w. The second vector multiplier takes actually scalar in this case
and its structure can be simplified accordingly. The signal Awjy, is forwarded
to the weight updating unit for producing the weight vector. This shows the
principle of the implementation of the adaptive learning scheme of the AWNN
structure in Chapter 6.

The design above is for each individual weight component of a single node
which is connected to the neuron function block to approximate the system out-
put. As we can see, the system is modular and can be aggregated to form a
complete system with full functionality. Auxiliary control circuits and address-

ing schemes are needed to complete the whole AWNN system.

7.4 TFeasibility of Analog AWNN

AWNN can hope to be used for real time system identification and for signal
representation. It contains the information extracted from the unknown systems
and the signals to be represented. The application of AWNN shall reduce the
size of neural networks.

In this chapter, we demonstrate that it is feasible to implement the AWNN
using analog VLSI design moduluses which can be arranged in a distributed
fashion to realize the AWNN algorithm. The significance of analog AWNNSs lie
in its parallel structures and high operation speed. Although this chapter deals
with only an framework of the architectural design, it shows the feasibility and

the hardware structure for future real time system implementations.
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Further research needs to be carried out in producing an implementation
which saves area and provides fast operation speed. Also, issues on nonlinearity

of the multipliers need to be studied to yield the best possible circuit precision.
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Chapter 8

Conclusions and Future
Research

We have studied the analysis and synthesis of distributed systems and discussed
modeling and control of flexible structural systems and related problems such
as design of distributed sensors and actuators, system identification and signal
representation. We developed a systematic approach for generating the opti-
mal orthonormal wavelet basis with compact support and proposed the AWNN
structure for signal representation. The work presented in this thesis bridges
theories and methodologies from signal processing and control systems.

We considered identification of distributed systems via adaptive wavelet neu-
ral networks (AWNNs). We took advantage of the multiresolution property of
wavelet systems and the computational structure of neural networks to approx-
imate the unknown plant successively. A systematic approach was developed in
this thesis to find the optimal discrete orthonormal wavelet basis with compact
support for spanning the subspaces employed for system identification. We then
applied a backpropagation algorithm to train the network to emulate the un-
known system. This work is applicable to signal representation and compression

under the optimal orthonormal wavelet basis in addition to progressive system
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identification and modeling. We anticipate that this work will be useful for
practical applications in the areas of signal processing and intelligent systems.
In the last chapter of the thesis, we ‘demonstrated that it is feasible to im-
plement our AWNN concept via analog VLSI for real time implementation.
Further research needs to be carried out on possible real time optimal wavelet
selection and for implementing the AWNN for both system identification and
for signal representation in real time. Also, the concept of structured learning
via vector quantization and feature extraction can find applications in differ-
ent areas of research including system identification, signal representation, data

compression and in different intelligent systems.
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