TECHNICAL RESEARCH REPORT

Two-Path Subsets: Efficient Counting and
Applications to Performability Analysis

by M.O. Ball, J.N. Hagstrom, J.S. Provan

T.R. 96-77

INSTITUTE Fg?&
. Sponsored by
‘ the National Science Foundation

Engineering Research Center Program,

the University of Maryland,

‘ Harvard University,

and Industry

Two-Path Subsets:
Efficient Counting and
Applications to Performability Analysis *

Michael O. Ball
University of Maryland, College Park, MD f

Jane N. Hagstrom
University of Illinois, Chicago, IL

J. Scott Provan
University of North Carolina, Chapel Hill, NC

November 8, 1996

*University of North Carolina, Department of Operations Research technical report
#UNC/OR TR95-5.
tThe work of this author was supported in part by NSF Grant EEC-9402384

1

Abstract

The problem of computing performability probabilities in stochas-
tic PERT and flow networks is studied when the network is “minimally
designed” to withstand any fwo component failures. Polynomial-time
algorithms to compute performability when the network is planar —
the nonplanar versions being NP-hard —- solve related “two-path sub-
sel” problems. Given an acyclic graph with weights on the arcs, the
algorithms compute the total weight of all subsets of arcs that are
contained in (1) two source-sink paths. or (2) two arc-disjoint source-
sink paths. A polynomial algorithm is given for (1), and for (2) in
the case where the graph is a source-sink planar k-flow graph, that is,

edge-minimal with respect to supporting & units of flow.

AMS Subject Classification 901325
Keywords: paths, enumeration, performability, PERT, flow, stochas-

tic, planar graph

1 Introduction

Network systems such as communication networks and activity precedence
networks are often designed to meet a certain performance criterion with a
reasonable reliability. This type of design goal is essentially that of structural
engineers who design a bridge to meet anticipated loads and stresses and
then add a margin of safcty. The margin of salely allows for unanticipated
environmental stresses or materials failures. Although a desirable goal would
be to make the bridge “completely” safe, cost considerations usually prevent
attainment, of the goal. Thus including a margin of safety usually means
over-designing the various specifications for the bridge by a relatively small
amount.

In network systemns with a performance criterion, the network designer
also wants to over-design the network. Its design should allow it to meet
the performance criterion, and to be capable of withstanding some level of
component failure. In adding this ability to withstaud such failures, the de-
signer is including a margin of reliability. As in the case of bridge design, cost
considerations usually prevent the designer {from making this margin large.
Steiglitz, Weiner, and Kleitman [7] pursue this aim by defining a survivability
criterion which reflects the connectivity of the network and provide a heuris-
tic method of determining a minimum cost design. Monma aund Shallcross
[3] pursue a similar problem.

In this paper, we pursue two network reliability problems with survivabil-
ity criteria based on a perlormance-level criterion: a threshold flow reliability

problem, and a threshold project scheduling problem. We will analyze these

problems under the assumption that the network has been designed with a

small margin of reliability. The two problems are formally defined as follows.

THRESHOLD FLOW PROBLEM

Given: Directed source-sink graph G = (V, E, s,t), with node set V, arc set

[, and terminal nodes s and ; probability vector p defined on the arcs

of G; flow threshold value f.

Stochastic model: Fach arc e operates with probability p., in which state
il has unit capacity, and fails with probability 1 — p,, in which case it

can carry no flow.

To find: The probability RI'(G, p, f) that the operating arcs of G admit a

flow of f or more.
THRESHOLD PROJECT SCHEDULING PROBLEM

Given: Directed acyclic source-sink graph G = (V, I, s,t) with node set V,
arc set F, and terminal nodes s and ¢; vectors a of task times and p

of probabilitics defined on the arcs of G; project completion threshold

time d.

Stochastic model: Each arc e operates with probability p., in which state
the associated task takes tiine a,, and fails with probability 1 — p,, in

which case the task time is increased by exactly one unit.

To find: The probability RP(G, a, p,d) that the realized task times for the
operating and failing arcs admit a project completion time — or equiv-

alently, the length of the longest (s,1) path — of d or less.

4

These problems were siudied in a previous paper by the current authors
(1]. Although they show that the problems are NP-hard even with strong
restrictions on problem instances, including planarity of G, they show that
polynomial algorithms can be construcled in instances where the underly-
ing systems are r-crifical, that is, minimally over-designed so that they can
survive r arc or task completion failures and still maintain the designed ca-
pacity or project completion bound. They provide a characterization of an
r-critical system in terms of properties of the underlying graph G. For the
case when r = 1, they provide a polynomial-time algorithin for the threshold
flow problem, which can also be applied to the project scheduling problem
when G is planar.

In the current paper, we consider 2-critical systems. Provan [6] shows that
the 2-critical flow problem is NP-hard. However, we show that, when the 2-
critical graph is also (s, t)-planar, both problems can be solved in polynomial
time. To do this, we reduce these two problemns to those of computing a sum

of weighted products over the following two collections:
1. all arc-sets which are contained in the union of two (s,t)-paths;

2. all arc-sets which are contained in the union of two arc-disjoint (s, t)-

paths.

We call these arc-scts two-path subsets and two-disjoint-path subsets, respec-
tively. We then give polynomial-time algorithms for the two-path subset

version for acyclic graphs, and the two-disjoint-path subset problem when

{92

the graph is also (s,%)-planar and is edge-minimal with respect to support-
ing k units of flow.

In Section 2 we provide necessary background on acyclic directed graphs,
and review the relationship between the two-path enumeration problems
above and the computation of threshold reliability. In Section 3, we establish
our recursion for the two-path subset enumeration problem. In Section 4, we
establish our recursion for the two-disjoint-path subset enumeration problem.
In the last section, we survey the results so far on r-critical networks with

performance criteria and discuss important directions for future research.

2 Background Material

2.1 Graph Preliminaries

Basic definitions of graph-theoretic terms may be found in the text by Lawler
[2]. Throughout this section G' = (V, I, s, 1) is assumed to be a directed graph
with source node s and sink node ¢. As is usual, each arc e € F is associated
with a pair of vertices in V. We will speak of the arc e as being directed
from its tail vertex i(c) and intlo ils head vertex h(e). Paths in G will always
be directed, and for nodes (arcs) « and y an (2, y)-path will be a path whose
first node (arc) is and whose last node (arc) is y. For arcs fi, f2, e1, and es,
we say that paths P and Q join [y, f2 to €1, e if either one is a (f1, e1)-path
and the other is a (f3, ez)-path, or one is a (fi,e2)-path and the other is a
(f2, €1)-path. As an abbreviation, we will refer to P and @ as disjoint if they

are arc-disjoint.

Definition. Let G be a directed graph. G is called source-sink planarif (1)
it has a unique node s with indegree 0 and a unique node & with outdegree
0, and (2) G has a plane embedding with s and ¢ on the exterior face.

In the rest of the paper, we will use the shorthand set notation that for
arc-set, S and arc e, S+e=SU{c}and S—e= S5\ {c}.

It is convenient to think of an acyclic graph G as inducing a partial order
on its sct of arcs, so that ¢ < [if there i1s a directed path in GG starting at e
and ending at f. Arcs ¢ and [are comparable if e < [or [=< ¢; oltherwise
they are incomparable and we write e # f. With respect to this ordering,

we define the (strict) lower sct (or lower ideal) of e to be
Le={[J€ FE —-c|f Ze}.

The graph G(e) induced by the arcs of L(e) preserves the partial order on

the arcs of G. We will also use the upper set (or upper ideal) of e,
Ule)={feE-c¢lexf}

We note that for any ¢, L(e) N U(c) = 0. We define the boundary of L(e) to
be OL(e) = {f € E\ L(e)] 1([) is a vertex of G(e)}.

A property of dL(e) that is particularly useful is that it forms a uniformly
directed (s,t)-cut of G. A uniformly directed (s,t)-cut of a directed graph
is an (s,1)-cut, in the sense that its removal disconnects s from ¢, with the
additional property that all arcs are directed from the s-side of the cut to the
t-side of the cut. (See Provan and Kulkarni [4].) Two distinct arcs belonging
to a uniformly directed cut are incomparable with respect to <. Furthermore,
as long as every arc is on an (s,t)-path, a uniforinly directed (s,t)-cut is a

minimal (s,1)-cut.

-1

L(e)

Figure 1: Schematic of a Lower Set

Figure 1 provides a schematic drawing of a lower set of an arc e and the
boundary of the lower set. The curves can be considered to delineate the
lower set of e, with the graph induced by L(¢) lying on or below the curves.
The arcs belonging to dL(c) will be precisely those arcs whose tails lie on
the curves and which otherwise are above the curves. Thus e and f belong
to dL(c).

Uniformly directed (s,1)-cuts have an interesting role in (s, t)-planar graphs.

If G is (s,t)-planar, G has an (s,1)-dual graph (see [2], p. 35), obtained by
1. adding arc (s,1) to G (which will not violate planarity);

2. taking the planar dual of G, directing the associated dual arcs by ro-

tating the original arc counterclockwise;

3. removing the arc (s*,1*) associated with (s,?).

The resulting directed graph GP is the (s,1)-dual of G, with dual source and
sink nodes s* and t*, respectively. It is not difficult to show (and follows
immediately from Theorem 8.1 in [2]) that GP is source-sink planar if G is.

Furthermore, a uniformly directed (s,1)-cut of G corresponds to a directed

8

(5*,1*)-path of GP, and vice-versa. The (s*,1*)-paths of G induce a partial
ordering <” on its arcs. This leads to a dual ordering in G.

Given e # [in G, the boundary of the graph induced by L(e) U L(f)
is also a uniformly directed (s,1)-cut. Thus, if ¢ # [in G, their dual
counterparts €* and f* are comparable in GP since they occur together on
an (s*,t*)-path. From this we can define e to be to the right of f if e* <P f*,
and e to be to the left of f il f* <P e*. ¢ is both to the right and to the left
of itself; when we want to exclude this case, we will say that e is strictly to
the left of f. For two paths PP and (), we can define P to be to the left (right)
of @ il there is no arc of P\ @ lyin strictly to the right (left) of an arc of Q.
In this case we refer to P and @ as a noncrossing pair. For two nodes u and
v a lefimost (rightmost) (u,v)-path is a path which lies to the left (right) of

every (u,v)-path.

2.2 Relationship Between Critical Threshold Prob-

lems and Path Problems

The paper [1] identifies the relationship between the threshold probability
problems presented above and certain path problems. llere we give the high-
lights of that paper as it applies to the problem here. We must define one
more concept first.

We definc a directed source-sink capacitated graph G with terminals s
and t to be a k-flow graph if (¢ has a unique maximum flow of k that saturates
all arcs of G. When capacities are all one, as in our problem, G is a k-flow

graph if and only if G has the following properties:

1. G is acyclic;
9 51 o .

. 8 has no incoming arcs and exactly k outgoing arcs;
3. t has no outgoing arcs and cxactly k incoming arcs;

4. every node v not cqual to s or ¢t has the same number of ingoing as

outgoing arcs.

Propositions 2.3 and 3.2 in [1] characterize threshold flow and project
scheduling systems that are r-critical. The characterizations (with some

additional weak conditions) are as follows:

Threshold flow problem: The system is r-critical if and only if G is a

k-flow graph, where b = [+ 1.

Threshold project scheduling problem: The system is r-critical if and
only if all (s,t)-paths of G Liave the same length (with respect to the

arc task times) of d — r.

Notice that the characterization for r-criticality is stated primarily in terms
of the graph structure, with the value of » determined by the threshold value
J or d. Thus we can talk about r-critical graphs without having to specify
r precisely. We will assume henccforth that all instances of the respective
problem will be r-critical as indicaled above.

Theorems 2.5 and 3.6 in [1] go on to characterize the collection of sets of

failed arcs that correspond to system operation in an r-critical system.

Threshold flow problem: Lect G be an r-critical flow graph with respect

to threshold flow f. Then RI'(G,p, [) is equal to the probability that

10

the set S of failed arcs of G is contained in the union of r disjoint

(s,1)-paths.

Threshold project scheduling problem: Let G be an r-critical project
scheduling graph with respect to threshold completlion time d, with G
(s,1)-planar, and let G be the (s, t)-dual of G, with the same failure
probabilities p. Then RP(G, a, p, d) is equal to the probability that the
set S of failed arcs in GP is contlained in the union of r (not necessarily

disjoint) (s*,1*)-paths of GP.

We will subsequently concentrate on solving these path probability prob-
lems. Thus, we will be abie to solve the threshold project scheduling problem
for (s,t)-planar graphs if we can solve the r-path problem, and we will be
able to solve the threshold flow problem if we can solve the r-disjoint-path
problem. The paper [1] gives a polynomial algorithm that solves the 1-path
problem (the two versions are identical in this case) on any acyclic graph. As
a consequence, when G is l-critical, we can solve the threshold flow problem
in polynomial time. When G is (s, t)-planar, we can also solve the threshold
project scheduling problem in polynomial time.

In the current paper, we provide a polynomial algorithm that solves the
2-path problem when G is acyclic. We provide a polynomial algorithm for the
2-disjoint-path problem when G is also source-sink planar and a k-flow graph
for some k > 2. These algorithms are distinctly different for the two types of
path problems, but in both cases produce a polynomial-time algorithm for
solving the respective threshold problem in the case where G is 2-critical and

source-sink planar.

11

2.3 The Failure-Odds Norm

In the previous section, we cited results showing that for our problems system
operability is nicely characterized in terms of allowable sets of failed arcs. In
both the current paper and the cited paper, computing the reliability of the
system can then be done in terins of a measure defined on the collection of
all such allowable sets. We now define that measure.

Let E be a set of elements which we will refer to as the base set. Let C
be a collection of subsels of E. Let each element ¢ € F have a weight p. # 0.
Definition. The failure-odds norm is defined as follows:

il = 3 I —2

Secees Pe

We will use some observations about the propertics of this norm. We will

defineC-D={SUT|SeC,T €D}
1. |0} = 0.
2. {0 =1

3. HCND =0 then
lic uD|| = |ICl| + I DIl

4. USNT =Pforall SeC,T €D, then

iC - DIl = lICIIDI-

Note that when p, = 1 for all ¢ € E, then ||C| is the cardinality of C.

Because of this observation, we will define an enumerative expression to be a

12

collection-valued expression in U and - satislying the disjoint collection and
disjoint set conditions of (3) and (1). In [5], a more general version of this in
terms of boolean indicators is defined as a p-normal form expression.
Reliability computations provide a more general application of these prop-
erties. If 17 is the set of components of a binary system, so that each com-

ponent has two states, either working or failed, we may define
C={SCE]|

the failure of the elements in S docs not cause the failure of the system }.

If all clements fail independently and p, is the probability that element e is
working, then the reliability of the system can be factored as ||C|| [Tees pe-
In particular, if we let C(G, s,1) be the collection of two-path subsets and

D(G, 3,t) the collection of two-disjoint-path subsets as defined in Section 1,
then from Section 2.2 we get

RF(G,p.f) = ”D ’ q’i ” H Pe

ecE

and

RP(G,a,p,d) = ||C(G®, s, t)|| T] e
eel
If we can provide an enumerative expression for C, then the properties of

this section may be applied to compute ||C]| in terms of the norms of smaller
collections. We use this approach in the remainder of this paper.

As an application of these ideas, we review the recursive enumeration
scheme for r = 1 provided in [1].

Let S be a set of failed arcs of the network. If the network is 1-critical,

as long as S is contained in a single path, the system continues to operate.

13

To allow a recursive formulation, define

C'(e) = {S C |

S is contained in a single path ending at t(e) }

If we create an artificial arc ¢! directed out of ¢, C!(c*) is the collection of all
complements of cutsets of the system. Then ||C}(e')|| [1.cg pe is the reliability

of the system. The computation scheme is based on the {ollowing recursion.

Cl{e) = {0} U [U {1} -C‘(f)}

Jf€l(r)
This enumerative expression for C!(e) is readily translated into a recursion
in terms of the failurc-odds norm. Appropriate ordering of the recursive
arguments leads to the polynomial algorithm given in [1] for the 1-critical
problems.
In the rest of the paper we will use a similar idea. We will be concerned
with collections of sets which are contained in the union of two paths. We

will say that a set is covered by two paths if it is contained in their union.

3 The Two-Path Problem

In this section we give a polynomial-time algorithm for computing ||C(G, s, 1)||.
This algorithm requires only that G be acyclic. The results stated at the end
of Section 2.2 indicate thal to compute RP(G,a,p,d) it is necessary to as-

sume in addition that G is 2-critical and source-sink planar.

14

3.1 Recursion

To simplify the presentation of the recursion, we first add additional arcs
e, e3 directed into s, e}, ¢} dirccted out of ¢, each with operating probability

1. Now for ey, ¢e; € I7, define

C*(er,e2) = {S S E\ {er, e2)]

S is covered by two paths joining €3, €5 to e, e, }.

It follows that
IC?(e3,e3)ll = 1.
and

IC* (el ea)ll = IC(G, s, 1)]l.

To produce a recursive formula {or general ||C?(ey, e3)||, we need a more useful
characterization of clements in C%(cq,e,). Let S be a two-path subsel. By
the definition of e; # ey, S can be covered by a single path if and only
if there do notl exist arcs ej,e; € S such that e; 7 e;. If there exists a
pair of arcs e;,e; € S such that ¢; # ez, we will say that it is the highest
pair of incomparable arcs in S if, for any pair fy, f2 € S such that f; # fa,
{f1, 12} € L(e1) U L(ca) U {c1,e2}. Since S is contained in the union of two
paths, the pair e;, e, is uniquely defined.

If e;, e, is the highest pair of incomparable arcs of S, all arcs of S that
are in the upper sets of cither of their heads are mutually comparable and
comparable to both e, and e;. Thus these arcs belong to SN U(ey) N U(ez)
and lie on a single path that can be extended to a path starting at e; and

also can be extended to a path starling at es.

15

We can compute ||[C%(et,eb)|| recursively if we also have the following

collection of sets. For any four arcs ey, ¢z, f1, f2 such that f; € L(cy), f2 €

L(e3), define

cl(el’ezaflﬁfZ) = {S g E
S is covered by a single path P C (L(e)) U L(e2)) N (U(f1) N U(f2)) }.

We claim that these two collections can be defined recursively in terms

of each other.

Proposition 3.1 The following cqualion provides an enumerative expres-

sion for C'(ey, €2, [1, f2)-

C'(e1, e, f1, f2) = {0}U
U {{g}} - C'(9:9: f1s f2)- (1)

gE(L{en)UL(e2))NU (/1)U (J2)
Proof: 1u an acyclic graph, any subset of arcs contained in a path will have
a unique highest element. The remaining elements in the path subset will
be contained in the lower sel of that element. {{g}}-C(g,9, f1, f2) is the
collection of all path subsets above fy or f, with g as their highest element.
Each of these collections of path subsets are disjoint and they, together with
the empty set, constitute all path subsets contained in Cl(es,ea f1,f2)- 11

Applying the properties of Section 2.3 yields the following corollary.
Corollary 3.2

”Cl(clﬂ C27./-|a.l.‘27)ll = 1+
1—-9»
2 —s et (g, 9, fr, . @)

g€(Lien)UL(e2)AU(H1)NU(5z) Pe

16

Figure 2: Schematic of Pair of Arcs in LL%(e;, ;)

The basis of our algorithin for computing ||C(G, s,1)|| is the next propo-

sition. Define an index sel LL%(ey,e3) as follows:

LL%(ey,c2) = {{/1, [2} C E\ {e1,e2}|

f1 # f2 and there exist paths joining [, fo to ¢1,e2 }

A pair of arcs {1, f2} belonging to LL%(ey, ;) is illustrated in the schematic

in Figure 2.

Proposition 3.3 The following equation provides an enumerative expres-

sion for C*(ey, ¢q).

62(61, 62) = Cl(ela €2, eia C;)U

U Clevenfifa) (0} - UL -CULR). ()

{flvf?}ELLo(cl v62)

Proof: In an acyclic graph, any subset of arcs contained in the union of two
paths will either be the subsel of a single path or will have a unique highest
pair of incomparable elements. The first term in the expression includes all

relevant arc subsets contained in a single path. The second term contains

17

all other subsets of two paths. The union is taken over all possible highest
incomparable arc pairs, {f, f2}. The term C!(ey, 4, fi1, f2), within the union,
accounts for arcs that can be above the highest incomparable pair, which by

necessity would be contained in a single path. g
Corollary 3.4

IC?(e1, e2)l| = [IC (ex, 2, ¢, €3) |1+

T I e en Sy fo)ll - PR L2 P yer g ol ()

{fl vf2}€LLo(c] ,C2) })f] pf2

3.2 An Efficient Implementation of the Recursive Equa-

tions

In this section Tables 1 and 2 provide algorithms first to compute a look-
up table containing [|C!|| for the necessary arguments and then to compute

|IC%(e, €b)]|. We analyze the computational complexity of these algorithms.

Proposition 3.5 The Single-Path Algorithn computes a table of values of
IC' in O(JE)®) time.

Proof: The correctness of the algorithm follows from Corollary 3.2. We note
that the ordering insures that all quantities on the right side of Equation 2
are computed by the time they are needed.

The For loop indexed by fi, f2 is of course a nesting of loops where in
fact arcs f; can be generaled by a breadth-first-search as implemented in
a precedence numbering algorithm, and given fi, the arcs f, can be gener-

ated by a similar breadth-first-search in which arcs above f; take priority in

18

Table 1: Single-Path Algorithm
Given: Acyclic graph G = (V, E, s,1) and arc probability vector p.

Output: Valucs of ||C'(cy, ey, 1, f2)]] for arcs salislying ¢; # cq, fi1 € L(e1),
f2 € L(ea), 1 # [

Procedure:
Add arcs e, €5 directed into s and arcs e}, e} directed out of ¢. Set
CH (e, €3, i, ed)|l = 1.
For pairs of arcs f; # f> do

for pairs of arcs e; 7 e, or e; = eg, €1 € U(f1),e2 € U(f2), in

nondecrcasing order do

compute ||C'(ey, ez, f1, f2)|| using Equation 2.

Return the table of ||C' (e, €2, f1, f2)]|-

19

Table 2: Two-Path Algorithm

Given: Acyclic graph G = (V, E, s,1) and arc probability vector p.
Output: ||C(G, s,)]
Procedure:
Add arcs e}, ¢5 directed into s and arcs ej, ej directed out of ¢. Set
IC? (et ea)ll = 1.
For pairs of arcs e; 7 ey in nondecreasing order do

compute ||C?(cy,e2)| using Equation 4.

Return ||C(G,s,t)|| = ||C?(e, €b)ll.

the search over other arcs. Thus the doubly-indexed loop requires O(|E|?)
iterations.

The for loop indexed by €;. e, can be handled similarly, requiring O(| E|?)
iterations for each arc pair fj, ;. Thus the compute s‘tep is performed
O(|E|*) times. The summation index arcs for a single application of Equa-
tion 2 can be generated in O(|E|) time with breadth-first-search, so that the

overall computation time requirements are O(|£]%). &

Proposition 3.6 Given the output of the Single-Path Algorithm, the Two-
Path Algorithm compuies ||C(G,s,1)|| in O(|E|*) time.

Proof: As in Proposition 3.5, generating the indexes for the For loop in

the Two-Path Algorithm requires O(|E|?) time. Generating the indexes for

20

the summation in Equation 4 can be performed similarly to the way they
were generaled in the inner for loop of the Single-Path Algorithm. Since we

can perform the look-up of ||C!]| as we generate our indexes, the Two-Path

Algorithm requires O(]E|*) time. 1

We combine the two propositions in the following theorem.

Theorem 3.7 Applying the Single-Path and Two-Path Algorithms to com-
pute ||C(G, s, t)|| requires O(|E[*) time.

Corollary 3.8 If G is a source-sink planar acyclic graph, then ||C(G, s, t)||
can be computed in O(|V|?) time.

Proof: This is a consequence of |E| = O(]V]) in a planar graph. &

A more careful implementation of the same ideas yields a stronger com-
plexity result than that of Theorem 3.7 for the nonplanar case. We state
this result and sketch its proof afterwards. We do not present a formal proof

since it would require introduction of significant additional notation.

Theorem 3.9 IfG is acyclic, then ||C(G, s, 1)]| can be computed in O(|V|*|E|)

lime.

We base our arguments on the observation that if t(e;) = 1(e}), t(ez) =

t(e'g), h(fl) = h(fl'), h(f2) = h(fé), then Cz(el, e2) = Cz(e/“ 6'2) and cl(el, es, f1, f2a) =

C(e1, €3, f1, f2)-
Then the Single-Path Algorithim can be written to loop over vertex pairs
instead of arc pairs. The pairs of vertices vy, v, that we need are such that

either v; = v, or vy is incomparable to v,. Given a vertex vy, we can compute

21

in O(]F]) time the set, of vertices w, which are above it and the set of vertices
vy which are incomparable to it. For cach pair vy, w;, we can compule in
O(|E|) time the set of vertices w, which are above v, and incomparable to
wy. Thus we can gencrate acceptable indices for the loops in O(|V|2|E|) time
and create a data structure in which the acceptable vertex quadruples can be
read off in correct order in QO(|V|*) time. Using this data structure a version
of the Single-Path Algorithm can be written which requires O(|V[*|E|) time
and returns a table based on vertices.

A simpler operation provides acceptable vertex pairs for the For loop of a
new version of the Two-Path Algorithm, giving the new version a complexity

of O(|V?|E[?). This is dominated by the Single-Path Algorithm complexity.

4 Two-Disjoint-Path Problem

In this section we give a polynomial-time algorithm for computing || D(G, s, t)||.
This algorithin is more restrictive than the one given in Section 3, since we
must assume that G is a source-sink planar k-flow graph. It can then be used
to compute RP(G, a, p, d) for instances where G is 2-critical and source-sink
planar. The planarity condition is nccessitated by the difficulty here of main-
taining the existence of two disjoint paths even when a subset of failed arcs
can be covered by a single path. This necessity requires stronger conditions
relating the recursive entities.

We begin the definitions and write the recursion making no assumptions
about the graph other than that it is acyclic. The recursive computation

will be shown to be polynomial with the additional assumption that G is an

22

(s,)-planar k-flow graph.

4.1 Recursion

To simplify the presentation of the recursion, we first add four artificial arcs

to G: ef, €3 directed into s, and e, e}, directed out of ¢, each with operating

probability 1. Now for e; # e, define

D2(61,62) = {S - ID) \ {61,62”

S is covered by disjoint paths joining €3, €5 to €, ¢e;}.

1t follows that,
D% (ef, e3)ll = 1.
and

ID*(cls ex)l = ID(G, s, 1),
We extend the definition of D? to allow arguments of the form (e, R),
where the arcs of £ + e are mutually incomparable:

D*(c,R) = | D*(e,)

JER
We will actually use these definitions when arguments of D? are either a pair
of incomparable arcs, or they are a single arc and a subset of the boundary
of the arc’s lower set.
We next extend the concept of a lower set in order to consider whether or

not a pair of arcs can reach another pair via a pair of disjoint paths. Given

23

e1 7 eq, define

LL(ey,e0) = {{fl,fz} C E\{er,e}|i # [a,

there exist disjoint. paths joining fy, f2 to ey, ¢z }.

We extend LL(ey,ez) to have as its second argument a set R of arcs, by

setting
Li(e,R) = U LL(e,g).

g9€ER

In the previous section, the recursion was able to move from a pair of
incomparable arcs to another pair of incomparable arcs. If there were failed
arcs below one pair and above the other, we could just ensure that such
arcs lay on a single path. The two-disjoint-path case introduces an added
complication. The failed arcs between two incomparable pairs must be such
that we can maintain two disjoint paths between the incomparable pairs. We
must change our perspective, and move from a pair of incomparable arcs to
an arc for which we can maintain a disjoint pair and vice versa. We will do
this by including as recursive arguments not only pairs of incomparable arcs,
but also singleton arcs which are below at least one of a pair of incomparable
arcs. In the case of the singleton arc, all its recursive arguments should
be restricted to its lower set, for otherwise it can be included in a pair of
incomparable arcs. In the case of such a singleton arc, we must ensure the
existence of the appropriate disjoint path pair. Given a singleton failed arc
f, we can properly identily possible failed arcs in the lower set of f if we
properly identify arcs in QL(f) which can “carry” a path disjoint from a

path containing f.

24

Figure 3: Reaching Set for Recursion

The following definition is designed to appropriately handle such a single-
ton arc f. For e; # ez, f € L(e1) U L(ez), define the reaching set associated

with f, e, e to be

W(f,c1,e3) = {g € OL(])|

there exist disjoint paths joining f,¢ to e;,e; }.

In the schematic in Figure 3, both f, and f2 belong to W(f, e, e2).
We extend the definition of W to have as a third argument a set R of

arcs:

W(f,e,Ry= | W(f,e,9).

g9€R

In applying these extensions, the sct R is always either a single arc incom-

parable to e or it is a set of arcs belonging to dL(e). A key property of pairs

25

e, R thal we consider is that R + ¢ is a sct of mutually incomparable arcs.

We will use this characterization in the proofs that follow.

The next proposition provides the appropriate recursion for D?. Define

an extension to L(e) by

JeR

L(c, R) = L(e)U [U L(f)} :
If R C 0L(e) L(e, R) = L(e).
Proposition 4.1 Lei e € I, R C E — e salisfy R+ e is a set of mutually

incomparable arcs of G. Then the following equation provides an enumerative

ezpression for D?(c, R).

D2(e_, R) = {#}uU

U {{f}} : D2(f7 ‘/V(f’eaR))] U

| feL(c,R)

U {{fl}}'{{f2}}’,Dz(flaf2)} : (5)

L{f1./2}€LL(e,R)

Proof: Arc subsets contained in D*(e, R) are either (i) the null set, (ii) have
a single highest element or (iii) have a unique highest incomparable pair of
elements. Cases (i), (ii) and (i) are respectively included in the first, second
and third terms in the expression. |

By applying the properties of Section 2.3, we obtain

26

Corollary 4.2 Let e and R be as in Proposition J.1. Then
ID* (e, R)|| = 1+

1 —
S (s, W, e R +
| rel(ey S

1—p
L D1,)| - (6)
[{51.f2)eLLie,R) Ph Py,

4.2 An Efficient Implementation of the Recursive Equa-

tions

Corollary 4.2 still does not provide an efficient method for computing || D?(et, €4)|l,
since the number of distinct sets R for which we compute Equation 6 may
be exponential in the number of arcs of the network. To make this recursion
efficient, we need to provide more structure for the sets R and W(f, e, R).
In this section, therefore, we make the additional assumption that G is a
source-sink planar k-flow graph. Any set R which is needed in Equation 6
is either a singleton arc or is generaled as a set W(/[f,e,R') C OL(f). If G
is an (s,1)-planar k-flow graph, we will establish that each set W(f,e, R) is
defined by f and the set’s leftmost and rightmost arcs. This reduces the
number of possible sets R to a number polynomial in the number of arcs of
the network.

As an initial step in developing both the proofs and the computational
procedure, we provide a genceral construction method that produces rightmost

and leftmost paths, which is given in Table 3.

27

Table 3: Leftmost-Rightmost Path Construction Procedure
Input: arcs f and e of G with f <e.

Output: leftmost (rightmost) path P, (P.) whose first arc is f and whose

last arc is e.

Procedure:

1. Mark each vertex of GG for which there exists a path joining that

vertex 1o 1(e).
2. Set P, (.I),) to be the single arc f.
3. Repeal the following until P, (P,) has e as its last arc:

(a) Let x be the last vertex of P (F;).

(b) If 2 = t(e) then add e to P4 (P;). Otherwise, scan through
the arcs directed out of = from right to left. Add to P (P,)

the leftmost (rightmost) arc whose head is marked.

4. Return P (7).

28

Lemma 4.3 (1) The Leftmost-Rightmost Path Construction Procedure takes
O(|V]) time, and lhe paths P; and P, constructed by the algorithm are the
(unique) leftmost and rightmost paths joining f to e, respectively.

(2) Let ey and ez, [1 and fz, be pairs of arcs with ey to the left of e; and fi
to the left of fo. 1If {f1.f2} € LL (e1,€3), then the leftmost path Py from fi
to e is to the left of the rightmost path P, from f3 lo es.

(3) Let ey and ey, [and [z, be pairs of arcs with ey to the left of ¢ and f; to
the left of [2. If {f1,/2} € LL(e1,¢2), then the paths P and P, constructed
in (2) are disjoint.

Proof: (1) The procedure requires an clementary scarch from i(e), and -
El) = O(V]) time (since G is

planar). To prove correctuess, let P be a path from f to e having an arc

another from h(f), cach of which take O(

strictly to the left of P, (the other case is symmetric). Let g be the first such
arc of P. t(g) is a vertex of . But, since h(g) can reach i(e), g would have
been chosen instead of the next arc of P, after ¢(g), a contradiction. Thus P
is the leftmost path from f to e.
(2) Consider the subgraph of G induced by (L(e1) U L(e2))N(U(f1) U U(f2))-
This graph is planar and has t(e1),t(e2), h(f1), h(f2) on its outer face. We
can maintain planarity as we do the following: (i) replace e;, e3, directing
them both into a new vertex v, (ii) replace fi, f2, directing them out of a
new vertex w, (iii) add arc [with head at w, (iv) add arc e with tail at v.
Any paths joining f1, f2 to €, ez retain their identities.

Apply the Leftmost-Rightmost Path Construction Procedure to produce

leftmost and rightmost paths P; and P, from f to e. Then in particular, P is

29

to the left of P, and any pair of paths joining fi, f2 to ey, e; must lie between
P, and P,. It follows that I’ must join [; to ¢; and P, must join f; to e,.

(3) Let I'; and T be disjoint paths from fi, f2 Lo ey, ez. P is to the left of
both I'; and I';. P; is to the right of both of them. Since I'; and T'; have no

arcs in common, P and P, can have no arcs in common. §
We note that the Leftmost-Rightmost Path Construction Procedure can

also be modified to find the following paths:

o A rightmost(leftmost) path which lies to the left(right) or strictly to
the left(right) of a given arc e. This can be accommodated by simply
removing the arcs to the right(left) or strictly to the right(left) of e, and
then running the Leftimost-Rightmost Path Construction Procedure on

the remaining subgraph.

o A rightmost(leftmost) path starting in a set of mutually incomparable
arcs and/or ending in a set of mutually incomparable arcs. This can
be done by creating an adjusted subgraph of G similar to the one
constructed in the proof of part (2) of Lemma 4.3. The procedure

continues to run in linear time.

We next give a constructive-description of W(f, e, R). For two arcs ¢; and

e, in OL(e), define the interval between e; and e, with respect to L(e) to be
ler, er]e = {f € OL(e)| f is to the right of e; and to the left of e, }

Note that this set is empty if e; is strictly to the right of e,. When the

graph is planar, the schematics we have been using can be regarded as truly

30

Figure 4: Interval of a Planar Acyclic Graph

indicating left-rightness. The schematic in Figure 4 indicates that [eq, 3],
contains e, ej, ez, €33 ey, €3], contains only ey, e; from among the arcs shown.
In the application of Equation 6, R is ecither a subset of 0L(¢) or R
consists of a single arc eg. In the latter case, R = [eo, €pe,- We show that if
R is of the form I — e for some interval I, then W(f,e, R) = I' — f for some
interval I’ C OL(f). To do this we first identify the end arcs f; and f, for
I' by finding the leftmost and rightmost arcs of dL(f) for which {f;, f} and
{f+, f} are in LL(e, R). This is done using the procedure given in Table 4.
Figure 5 shows this construction for fi;. Left-bending (right-bending)
curves indicate leftmost (rightmost) paths, and e] is the unique arc of dL(e)

that is in P} or Qi nol going through e. The Interval Construction Proce-
dure takes O(|E|) time, since il involves eight applications of the Leftmost-

Rightmost Path Construction Procedure.

Lemma 4.4 Let the triple [,e, R defined in the Interval Construction Pro-
cedure salisfy W(f,e, R) # . Then both f; and f, exist, and further, every
g € W(f,e, R) must lie in [f1, f+]s.

Proof: Let g € W(f,e, R). Let P and @ be disjoint paths joining g, f to A, e

31

Table 4: Interval Construction Procedure

Given: arce € I, R C £ — e such that R + e is a set of mutually incompa-

rable arcs of G, and arc [< e.

Output: leftmost arc f; and rightmost arc f, of W(f, e, R).

Construction of f;:

Construct the following paths, using the Leftmost-Rightmost Path
Construction Procedure.
@} is the rightmost path from f to e;

P} is the leftmost path from dL(f) to R thal is strictly to the
left of Q};

(7 is the leftmost path from f to c;

P? is the leftmost path from dL(f) to R that is to the right of ¢
and strictly to the right of Q?;

@7 is the rightmost path from f to R;

P} is the leftmost path from dL([) to e that is strictly to the left
of Q7;

Q1 is thg leftinost path fromn f to R;

P! is the leftmost path from OL(f) to e that is strictly to the
right of Qf.

For i =1,2,3,4, if P} and Q} exist then let f{ be the arc of dL(f) in
Pi. Set f) to be the leftost arc of {f}', /2, 12, fi}-

Construction of f;: Same as for fi,pxcept that the subscript r replaces !

everywhere and the roles of “right” and “left” are interchanged.

Figure 5: Construction of f;

33

for some h € R, labeled so that f € Q. We show that f; exists and that ¢
lies to the right of f; (the argument for f, being symmetric). By Lemma 4.3

we can assume without loss of generality that P and @) are noncrossing.

Case 1: Suppose that e is in (), and that P is (strictly) to the left of Q.
Then by construction @] exists and lies to the right of Q, and P! exists and

lies to the left of P. Thus f} exists, and therefore f; exists and is to the left

of g.

The other three cases correspond to the existence of paths Pf and Qi for

1 = 2,3,4, and the proof proceeds as above. The lemma follows. g

Proposition 4.5 If the sel R of Lemma 4.4 satisfies R = I — e for some
interval I; then W(f,e,R)=[fi, [:]; = I

Proof: Since [€ W(f e,R), Lemma 4.4 establishes that W(f,e,R) C
Ui £y — 1. To prove [fi, fily — f € W(J,e, R), let P, @i, PI, Qi where
i,j =1, 2, 3, or 4, be the paths defining fi, f, as produced by the Interval
Construction Procedure. Now choose arc g in [fi, f;]; — f. We must show
that there exists a pair of disjoinl paths joining f,g to e, R.

We can assume by syminetry that g lies to the left of f. Then f; = f}
or fi = ff. Tigures 6 and 7 show the eight possible configurations under
which f; and f, are defined using the Interval Construction Procedure. The
arcs labelled e} and ¢ arc members of R. The cases in which R = {eo} can
be considered to be represented by configurations (d), (e), (g), and (h), with
ep = €] = €.

We first show that the configuratious (a) and (b) given in Figure 6 lead

34

(2) (b)
Figure 6: Paths Produced by Int. Const. Proc.: Cases (a) and (b)

to the conclusion that [= f!. In configuration (a) let P be the leftmost
path among the union of P’ and P?, and let Q@ = @Q?. In configuration (b),
let P be the leftmost path among the union of P? and @2, and let @ be
the leftmost path among the union of P2 and @3. In both cases it follows
that P is strictly to the left of (). The paths P,Q are as described in Case
1 of the proof of Lemma 4.3. Therefore f} exists and is to the left of f7.
Hence f? = fi = f} and we can assume that we have paths in one of the six
remaining configurations (c)-(h) given in Figure 7.

The construction method and Lemma 4.3 assure that, in the six configu-
rations we need to consider, the four paths P}, Qi, P?, and QJ do not cross.

Consider the leftmost path P, fromn g o ¢t. Referring to Figure 7 we see that

Py must lie to the left of all of the four paths except P/, and so in particular,

(d)

©

(h)

®

®

Figure 7: Paths Produced by Int. Const. Proc.: Cases (c)—(h)

36

Py has an arc h € R+ e. Let P be the portion of Py joining ¢ to k. If P is
disjoint from @} then these are disjoint paths joining [, g to e, h, and we are
done. We note that for configurations (d) and (h), since P is to the left of
P?, which is strictly to the left of QJ = @i, this must be the case.

For the remaining configurations, it appears possible that the paths P, Qi
are not disjoint. If they are not disjoint then there is an arc z which is the
first arc P and Qi have in common.

For configuration (f), note that = must belong to P! as well. In this
configuration, P is to the left of P}, which in turn is strictly to the left of Q.
Define P’ to be formed from the portion of P joining g to z, and the portion
of P! joining z to e. P’ and Q? are disjoint paths joining f, g to e, R.

We now consider configurations (c), (e), and (g). We make the following

observations:

e z is an arc of @7, since P is to the left of QJ, which in turn is to the

left of Qi;

x is not the first arc of either P or @}, since g # J;

¢ there must be al least one additional arc y having the same tail as «,
since the arcs of P and @} immediately before z are different and G is

a k-flow graph;

e y must be to the right of z, since otherwise P would have chosen y as

its next arc instead of x;

e we can choose y to be to the left of P?, since x is on @J and therefore

is strictly to the left of PJ.

37

For configuration (e), ¥ must be able to reach e, since it lies between @} and
P3. However, this contradicts the definition of @}, since it should take the
rightmost arc out of ¢(z) in order to reach e. Similarly, for configuration (g),
y must be able to reach R, since it lies between @7 and P!. This in turn
contradicts the definition of 7. We thus conclude for these configurations
that it is impossible for z to exist and P and @} are disjoint.

Finally, we must exhibit the existence of disjoint paths for configuration
(c). Let P’ be the rightmost path from y to dL(e) that lies to the left of P?.
Since y lies strictly to the right of @}, and @} is a rightmost path from z to
e, then P’ cannot subsequently intersect QQF. Let b/ be the arc of P’ that is
in dL(e), and note that by construction h’' € [e},el]e. Let P” be the path
consisting of that portion of P occurring before z followed by P’. P” and @}
are disjoint paths joining f, g to e, ', and the proposition follows. §

Proposition 4.5 leads to the algorithm in Table 5 for computing ||D(G, s, t)]|
efficiently.

Theorem 4.6 The Two-Disjoint-Path Algorithm computes ||D(G,s,t)|| in
O(|V°) time.

Proof: The correctness of the algorithm follows from Corollary 4.2 and
Proposition 4.5, noting that the order of computation of the ||D?(e, R)||’s
insures that the right-hand-side values of Equation 6 are available at the
time of computation. For the complexity, note that the For loop is indexed
by at most 3 arcs, so that there are |E[® loop iterations. The first sum in
Equation 6 requires enumerating L(e, R) and then computing W(f,e, R).

Each of these takes O(|E|) time. The second sum requires the computation

38

Table 5: Two-Disjoint-Path Algorithm

Given: Source-sink planar 2-critical graph G = (V, E, s,t) and arc proba-

bility vector p.
Output: ||D(G, s,)]}
Procedure:

Add arcs c§,c5 directed into s and arcs €}, el directed out of t. Set

1D?(ef, ep)ll = 1.

For arcs e in nondecreasing order, and sets R = {eg} for some eo 7 e

or R = [ee]. —efor e e. € IL(e) do
compute ||D?(e, R)|| using Equation 6.

Return [|D(G,s,1)|| = |D*(e}, e2)l.

of LL(e,R). This can be computed using Lemma 4.3 as follows: For each
f1 € L(e), find the rightmost (ef, f1)-path P, and the rightmost (fi,e)-path
P,. Now delete all arcs to the right of P, U P, (this includes the arcs on the
paths themselves). Now find all arcs f, thal can reach an arc of R. The set
of arcs [, found constitute all arcs to the left of f; such that the pair {f1, f2}
is an element of LL(e, R). By repeating this for the leftmost paths through
f1 we obtain all arcs f, to the right of f; having this property. By deleting f;
after performing this, we guarantee no repeated pairs, and the whole process
takes O(|E|?) time as well.
Finally, since the terms of the sums are already known the computation

of Equation 6 takes O(]E|?) time, for a total time of O(|E|®) = O(|V|®) (since

G is planar). The theorem follows. g

5 Summary and Further Challenges

In this paper, we have provided recursions for enumerating two-path subsets
and two-disjoint-path subsets of acyclic graphs. These recursions lead to ef-
ficient methods of analyzing the perforinability of 2-critical network systems.

We review the computational resulls and their application below.

5.1 Computational Complexity

The algorithms provided in this paper and in [1] address the general prob-
lems of r-path subset enumeration. The algorithms are efficient methods for

either counting the nuinber of these subsets or, more generally, computing a

weighted norm such as the failurc-odds norm for such sets.
To summarize what is known to date about the path problems discussed

in this paper:
e The r-path problem is polynomial when r =1 or 2 and G is acyclic.

e The 1-path problem becomes #P-complete (See [8]) when G is not

required to be acyclic.

e When r > 3 is fixed and G is acyclic, the complexity of the r-path

problem is open.

o The r-disjoint-path problen: is polynomial when r = 1, and when r = 2

and G is a source-sink planar k-flow graph.

e The 2-disjoint-path problem becomes #P-comnplete in a nonplanar graph

G even when it is a k-flow graph.

e When r > 3 is fixed and G is a source-sink planar k-flow graph, the

r-disjoint-path problem is open.

The relevant results are found here and in {1}, {6].

5.2 Application to Performability Analysis

This paper was motivaled by two network performability analysis problems:
the evaluation of the reliability of a two-terminal flow network with a capacity
criterion, and the evaluation of the reliability of a project network with a

project duration criterion. Even with some restrictions we have shown that

41

these problems are NP-hard [1]; therefore we do not expect to find efficient
algorithms to handle these evaluations.

However, we observe that such networks are designed to withstand a
certain minimal level of failure. For instance, a typical reliability design
criterion is that the proposed system/network should be able to withstand
the failure of any single component. When higher reliability is desired this
criterion is generalized to require that the system be able to withstand the
failure of any r components. With this design philosophy in mind, one would
expect to find many real systems that are 1- (or more generally r-) critical
or “nearly” 1- or r-critical. These arguments led to our study of reliability
analysis problems defined on r-critical systems in this paper and our previous
paper.

In this paper, we have shown that we can analyze the 2-critical probiems
of threshold flow and threshold scheduling when the underlying network is
source-sink planar. We are able to do this by formulating the problems
in terms of the failure-odds norm, and applying the recursive enumerative
expressions we have developed.

The natural broad extension of this work would be to study reliability
analysis problems on other classes of r-critical systems. We anticipate that
the additional structure imposed by this characterization may often lead
to polynomial algorithms for seemingly difficult analysis problems. In the
network setting, examples that merit attention include computing reliabil-
ity measures for networks with multi-commodity capacity requirements and
other performance criteria. In addition, a similar point of view may lead to

addressing performability analysis problems for non-network systems.

12

References

[1] M. O. Ball, J. N. Hagstrom, and J. S. Provan. Threshold reliability of

networks with smnall failure scts. Nelworks, 25:101-115, 1995.

[2] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.

3]

[4]

[5]

(6]

[7]

Holt, Rinehart and Winston, New York, 1976.

C. L. Monma and D. F. Shalicross. Methods for designing communica-
tions networks with certain two-connected survivability constraints. Op-

erations Research, 37:531-541, 1989.

J. S. Provan and V. G. Kulkarni. Exact cuts in networks. Networks, A

19:281-289, 1989.

J. Scott Provan. Boolean decomposition schemes and the complexity of

reliability computations. DIMACS Series in Discrete Mathemalics and
Theoretical Computer Science, 5:213-228, 1991.

J. Scott Provan. The intractability of the 2-critical flow problem in k-flow
graphs. Technical Report UNC/OR TR95-3, Department of Operations
Research, University of North Carolina, Chapel Hill, 1995.

K. Steiglitz, P. Weiner, and D. J. Kleitman. The design of minimum-cost
survivable networks. IEEE Transactions on Circuit Theory, CT-16:455-
460, 1969.

L. G. Valiant. The complexity of enumeration and reliability problems.

SIAM J. of Computing, 8:410-421, 1979.

43

