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Globally, there has been large-scale conversion of natural grassland to 

cropland ecosystems which this has led to land degradation that could reduce future 

food security, other ecosystem services and even climate. Currently, there is a dearth 

of quantitative information assessing the severity, distribution, and causes of this land 

degradation. For practical purposes, this information is needed to develop improved 

methods of land use (LU) conversion. Uruguay, in contrast with many other regions, 

still has a high proportion of unimproved grasslands but, during the last 15 years, 

there has been extensive conversion to grow grain crops.  



  

 

The fundamental goal of this dissertation was to quantify soil degradation 

resulting from this LU change. Two aspects of soil degradation were studied, soil 

organic carbon (SOC) and erosion by water. The Environmental Policy Integrated 

Climate biophysical simulation model (EPIC) was used to model the grassland and 

cropping systems. The study consisted of three steps: (1) calibration and validation of 

the model for the Uruguayan agroecosystems, and development of a spatial version, 

(2) identification of the LU change areas, and (3) quantification of soil degradation as 

a result of the LU changes.  

The EPIC model adequately reproduced the field-scale SOC dynamics and 

erosion in field validation sites. Further, the spatial version of the model was found to 

simulate spatial and temporal performance adequately. LU change areas during 2000-

2013 were mapped and found to cover an area of 410,000 ha, about 13% of potential 

area for commercial agriculture. LU greatly affected soil degradation. It was greatest 

for continuous Soybean cultivation with no crop rotation, and lowest for grassland 

(no conversion to cropping). In addition to LU, slope and initial SOC had significant 

effects on degradation.  

The main conclusions were that the recent and continuing conversion from 

grassland to cropland has caused significant soil degradation, but that some 

modifications of LU can reduce the risk of degradation. 
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Chapter 1: Introduction 

1.1 Background 

Human alteration of Earth is substantial and growing; conversion of land to grow 

crops, raise animals, obtain timber, and build cities is one of the foundations of 

human civilization.  Between one-third and one-half of the land surface has been 

transformed by human action (Vitousek et al., 1997). Until 1000, croplands occupied 

roughly less than 1% of the global ice-free land area and pasture a similar area. In the 

centuries that followed, the share of global cropland increased to 2% in 1700 (c. 300 

Mha) and 11% in 2000 (1,500 Mha), while the share of pasture area grew from 2% in 

1700 to 24% in 2000 (3,400 Mha) change. Rapid increase in population, especially 

between 1700 and 2000, caused large scale conversion of natural ecosystems to 

agricultural land uses, 42-68% of the land surface was impacted by land-use 

activities, this land-use change involved conversion of 1,135 million hectares (Mha) 

of forest and woodland, and 669 Mha of savanna, grassland, and steppe to croplands. 

Similarly, the area under grazing land increased from 530 Mha to 3,300 Mha (Hurtt et 

al., 2006; Lal, 2007). As a result, between 1700 and 2000, the terrestrial biosphere 

made the critical transition from mostly wild to mostly anthropogenic, passing the 

50% mark early in the 20th century. At present, and ever more in the future, the form 

and process of terrestrial ecosystems in most biomes will be predominantly 

anthropogenic, the product of land use and other direct human interactions with 

ecosystems (Ellis et al., 2010). 
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Land use and land cover change (LULCc) is an important driver of global change. 

These profound land-use changes have had, and will continue to have, quite 

considerable consequences for global and regional climates, global biogeochemical 

cycles such as carbon, nitrogen, and water, and biodiversity (Klein Goldewijk et al., 

2011; Meiyappan and Jain, 2012). While land use provides essential ecosystem goods 

(food, fiber, energy), it alters a range of other ecosystem functions, such as the 

provisioning of freshwater, regulation of climate and biogeochemical cycles, and 

maintenance of soil fertility. It also alters habitat for biological diversity (DeFries et 

al., 2004).  

Global croplands, pastures, plantations, and urban areas have expanded in recent 

decades, accompanied by large increases in energy, water, and fertilizer consumption, 

along with considerable losses of biodiversity. Such changes in land use have enabled 

humans to appropriate an increasing share of the planet’s resources, but they also 

potentially undermine the capacity of ecosystems to sustain food production, maintain 

freshwater and forest resources, regulate climate and air quality, and ameliorate 

infectious diseases. Modern land-use practices, while increasing the short-term 

supplies of material goods, may undermine many ecosystem services in the long run, 

even on regional and global scales (Foley et al., 2005).  As was pointed by (Lal, 

2007) agricultural expansion and its intensification, by plowing and irrigation along 

with use of chemicals: (1) exacerbated the problems of soil, mainly is caused by 

water and wind erosion, (2) increased irrigated land area to about 280 Mha or 19% of 

the total cropland area consuming 18,200 km3 of water in evapotranspiration or 26% 

of the total terrestrial evapotranspiration, (3) disrupted global biogeochemical cycling 
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of carbon leading contributing to the increase in atmospheric abundance of CO2 by 

37.5% from 280 ppm in ~1750 to 385 ppm in 2006, (4) accentuated the use of 

fertilizers and pesticides to increase food production, and (5) caused mass extinction 

of plant and animal species. 

Grasslands occur on every continent (excluding Antarctica) occupying  52 x 106 

km2, covering 40.5% of the earth's surface based on the Pilot Analysis of Global 

Ecosystems (PAGE) Classification (White et al., 2000).  This biome is one of the 

most modified on Earth, as a large portion of it has been replaced by crop fields or 

subject to livestock grazing (Piñeiro et al., 2006).  Globally, there has been large-

scale conversion of grassland to human-dominated uses; of the world's 13 terrestrial 

biomes, 45.8% of temperate grasslands, savannahs and shrublands, 23.6% of 

tropical/subtropical grasslands, savannahs, and shrublands, 26.6% of flooded 

grasslands and savannahs, and 12.7% of montane grasslands and shrublands have 

been converted (Hoekstra et al., 2005). 

One type of grasslands are Temperate, which accounts for a large fraction of the 

vegetation of the Earth (Coupland, 1992). Large expanses of temperate grasslands 

and derivative croplands are located at mid-latitudes in Asia, North, and South 

America (Sala et al., 1996). In South America, temperate grasslands encompass large 

units, such as the Pampa grasslands at the mesic end to the Patagonian steppe on the 

xeric end of the gradient (Soriano et al., 1992).   

1.2 Main effects of Land use conversion on soil degradation 

Conversion from grassland to cropland ecosystems often degrades soil quality. 
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Soil is a critically important component of the earth’s biosphere, functioning not only 

in the production of food and fiber but also in ecosystems function and the 

maintenance of local, regional, and global environmental quality (atmosphere, 

hydrology) (Doran, 2002). Soil is the foundation for nearly all land uses  and soil 

quality concepts are commonly used to evaluate sustainable land management in 

agro-ecosystems (Carter, 2002). When soils are degraded to the level that they can no 

longer perform their ecosystem functions, restoration is slow, expensive, and 

uncertain (Arshad and Martin, 2002; Scherr, 1999). 

Karlen, D.L. and a committee for the Soil Science Society of America cited by 

Arshad and Martin  (2002) defined the soil quality as : “the fitness of a specific kind 

of soil, to function within its capacity and within natural or managed ecosystem 

boundaries, to sustain plant and animal productivity, maintain or enhance water and 

air quality, and support human health and habitation”. Maintenance and improvement 

of soil quality in continuous cropping systems is critical to sustaining agricultural 

productivity and environmental quality for future generations (Reeves, 1997). 

Quantitative, measurable properties are needed to study the effects of specific 

changes of soil quality and as a result soil degradation. These properties, soil quality 

indicators, are measurable soil attributes that influence the capacity of soil to perform 

crop production or environmental functions, attributes that are most sensitive to 

management are most desirable as indicators (Doran and Zeiss, 2000). In a given 

agro-climatic region, the measurable soil attributes that are primarily influenced are: 

soil-depth, organic matter, respiration, aggregation, texture, bulk density, infiltration, 

nutrient availability and retention capacity. Many of these soil indicators interact with 
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each other (Arshad and Martin, 2002).  

Soil organic Carbon (SOC) or Soil Organic Matter (SOM) is one of the principal 

indicators of sustainability and soil quality, given it influence on many other soil 

properties (Causarano et al., 2007). Without doubt, SOM is the most used quality 

indicator (or organic carbon), although it is strange that this property is not more 

widely used in establishing the quality of non-agricultural soils too, since soil organic 

matter is related with crop growth but also with plant growth in natural conditions, 

where vegetation is essential for avoiding degradative processes or where it may have 

a buffering effect on some contaminants (Bastida et al., 2008). 

Soil organic matter (carbon) influences numerous soil properties relevant to 

ecosystem functioning and crop growth. Soil organic matter in croplands is a key to 

water-holding capacity, nutrient availability, and carbon sequestration (Foley et al., 

2005).  Total SOM influences soil compactibility, friability, and soil water-holding 

capacity while aggregated SOM has major implications for the functioning of soil in 

regulating air and water infiltration, conserving nutrients, and influencing soil 

permeability and erodibility (Carter, 2002). Even small changes in total C content can 

have disproportionately large impacts on key soil physical properties; practices to 

encourage maintenance of soil C are important for ensuring sustainability of all soil 

functions (Powlson et al., 2011). Soil microorganisms decompose dead roots and 

above-ground residues of plants and animals. Decomposition results in the release of 

carbon as CO2 or, under highly anaerobic conditions, as CH4, but also in the 

formation of soil humus or organic matter, the principal store of organic C in soils 
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(Wood et al., 2000). Storage of C compounds in grasslands soils are an effective way 

for carbon sequestration (Lal, 2002).  

Conversion of natural to agricultural ecosystems in the USA has depleted the 

SOC pool by 3 to 5 Pg  (Lal, 2002). Soils of the world’s agroecosystems (croplands, 

grazing lands, rangelands) are depleted of their soil organic carbon (SOC) pool by 

25–75% depending on climate, soil type, and historic management. The magnitude of 

loss may be 10 to 50 tons C ha-1). Soils with severe depletion of their SOC pool have 

low agronomic yield and low use efficiency of added input. Conversion to a 

restorative land use and adoption of recommended management practices, can 

enhance the SOC pool, improve soil quality, increase agronomic productivity, 

advance global food security, enhance soil resilience to adapt to extreme climatic 

events, and mitigate climate change by off-setting fossil fuel emissions (Lal, 2011). 

One of the management practices that most influence the soil quality is tillage 

technology. The  adoption  of  no-till  practices  has  resulted  in  greater storage of 

precipitation and  water use  efficiency,  which  has  led  to  higher  productivity,  

more  diverse  crop  rotations,  and  improvements  in  soil  properties.  In  Colorado 

(USA),  for  example,  a no-till  rotation  of  winter  wheat–maize–fallow  increased  

total  annualized  grain  yield  by  75%  compared to  winter  wheat–summer  fallow.  

Soil  erosion  was  reduced  to  just  25%  of  that  from  a  conventional  tillage 

wheat–summer  fallow  system.  A risk of  reducing  fallow  frequency  is  the  

increase in  yield  variability  and  risk  of  crop  failure (Hansen et al., 2012).  But, 

even though without tillage, there are some findings, as presented by DuPont et al. 
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(2010), that conversion from perennial grassland species to annual crops reduced 

belowground root biomass to 43% of prior biomass. These authors also found that, 

three years after conversion, readily decomposable C and microbial biomass in the 

top 40 cm soil depth were significantly lower in annual never-tilled cropland than in 

perennial grassland.  

Soil erosion is a major environmental threat to the sustainability and productive 

capacity of agriculture. During the last 40 years, nearly one-third of the world's arable 

land has been degraded and abandoned because of erosion processes that continue 

even today at annual rates larger than 10 million hectares. Croplands are the most 

susceptible to erosion because the soil is repeatedly tilled and often left without 

sufficient protective cover (Pimentel et al., 1995). Erosion results when rainfall, 

runoff, and wind carrying kinetic energy impact and destroy soil aggregates. 

Raindrops hit exposed soil with an explosive effect, launching soil particles into the 

air. In most areas, raindrop splash and sheet erosion are the dominant forms of 

erosion.  Erosion increases dramatically on steep cropland. Living and dead plant 

biomass left on fields reduce soil erosion and water runoff by intercepting and 

dissipating raindrop and wind energy. Both the texture and the structure of soil 

influence its susceptibility to erosion; additionally slope of the land, soil composition, 

and extent of vegetative cover influence the rate of erosion. Soils with medium to fine 

texture, low organic matter content, and weak structural development have low 

infiltration rates and experience increased water runoff (Pimentel et al., 1995). 

On-site effects: When erosion occurs, the amount of water runoff increases, so 
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that less water enters the soil matrix and becomes available for the crop. In addition to 

creating water deficiencies, soil erosion causes shortages of basic plant nutrients, such 

as nitrogen, phosphorus, potassium, and calcium, which are essential for crop 

production. Finally, due to most of the organic matter is near the soil surface in the 

form of decaying leaves and stems, erosion of topsoil results in a rapid decrease in 

levels of soil organic matter. Several studies have demonstrated that the soil removed 

by either wind or water erosion is 1.3 to 5 times richer in organic matter than the soil 

left behind (Pimentel et al., 1995). As a result of this negative effects the crops yields 

are affected, as reported by Izaurralde et al. (2006a) where they found grain yield 

reductions due to simulated soil erosion were either linear or curvilinear functions of 

nutrient removal.  

Off-site effects: erosion not only damages the immediate agricultural area where 

it occurs but also negatively affects the surrounding environment. Off-site problems 

include roadway, sewer, and basement siltation, drainage disruption, undermining of 

foundations and pavements, gullying of roads, earth dam failures, eutrophication of 

waterways, siltation of harbors and channels, loss of reservoir storage, loss of wildlife 

habitat and disruption of stream ecology, flooding, damage to public health, plus 

increased water treatment costs (Pimentel et al., 1995). 

Secondary soil biophysical and biochemical indicators. Bulk density affects plant 

growth because of its effect on soil strength and soil porosity; with increasing bulk 

density, strength tends to increase and porosity tends to decrease; both tend to be 

limiting to root growth at some critical values (Kwong, 2007).  Other indicator is the 
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available water capacity (AWC) is defined as the amount of water (cm3 water=100 

cm3 soil) retained in the soil between the ‘‘field capacity’’ (FC) and the ‘‘permanent 

wilting point’’ (PWP); field capacity and permanent wilting point are defined as the 

volumetric fraction of water in the soil at soil water potentials of 10–33 and 1500 kPa, 

respectively (Tom, 2007); often there is a linear relationship between plant available 

water and yield and between plant available water and leaf growth, within limits 

(Ritchie and Argyrios, 2007). Finally, plant nutrients, apart from water shortages, is 

the major constraint on the plant growth and yield, increased crop production can be 

achieved through enhanced soil fertility, which can only be sustained if the nutrients 

removed from the soil are replenished through addition (Kanwar, 2007).  

1.4 Study area: Uruguayan grasslands 

The Río de la Plata grasslands in South America are one of the largest 

temperate grassland regions of the world, occupying more than 700,000 km2 

distributed across eastern Argentina, Uruguay and southern Brazil (Soriano et al., 

1992). This region is the most extensive biogeographic unit of the prairie biome in 

South America; it has been extensively modified by human activities (Guerschman et 

al., 2003). Finally, this region plays a key role in national crop and animal production 

as well as international trade resulting in land-use change rates among the highest 

within the historical record. 

Uruguay is in the southeast of South America, between 30º and 35º south and 

54º and 59° west. The total land area is 176,215 km2. The topography is rolling plains 

with a maximum height of 514 meters. The climate is temperate, with a range of 
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rainfall between 1,100 – 1,300 mm  year-1, the mean temperatures are 11C° in winter 

and 27C° in summer, and the extreme temperatures are maximum 40C ° and 

minimum - 4C°. The main ecosystem is Grasslands associated with riverside bush 

forest and the soils are Prairie Soils slightly acid (Mollisols) (Berreta, 2003; Castaño 

et al., 2011).  

This region has a long history of land use change. For the last 10,000 years, 

soils developed under prairie vegetation where the trees were almost absent only 

restricted to riparian areas and some isolated rocky soils. The first European settlers 

introduced domestic herbivores (cattle, horses and sheep) in the mid-1500s, but their 

density became significantly by 1600 (Soriano et al., 1992). Cattle and horses were 

the first large domestic herbivores introduced to the region in 1611 and sheep 

increased in number by the mid-nineteenth century. This human action, through the 

introduction of domestic animals to the natural grassland system, has caused changes 

in vegetative life forms so grazing is the main factor which keeps the grasslands  in a 

herbaceous pseudo-climax phase (Berreta, 2003). 

Historic LU change of Uruguay. Livestock density rapidly increased and 

became stable by 1900, once all land was fenced, at high stocking rates (currently 

ranging 178–302 kg/ha), consuming from 30% to 60% of annual ANPP (Piñeiro et 

al., 2006). The present state of natural pastures is far from its potential. Under climax 

conditions, there would be a prevalence of bushes and tall grasses of low palatability 

and nutritive value; though they can be biologically productive, they would be poorly 

suited to feeding cattle and horses; therefore, the present situation of pastoral dis-
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climax seems to be more suitable for feeding grazing animals (Berreta, 2003). During 

the XX century the commercial agriculture was developed in the better soils using 

traditional tillage technics. Finally, since 2000 there has been a change from 

traditional to no-tillage agriculture (Garcı́a-Préchac et al., 2004) 

Currently, the Uruguayan agro-ecosystem is composed of two main sub-

systems, which usually coexist in the same farm, one is the Natural Grasslands and 

the other is the Croplands. The Natural Grassland sub-ecosystem is characterized by 

domestic herbivores grazing the evolved natural pasture during all year 

(continuously), the herbivores are bovine and also ovine grazing together and the 

grassland is defined as a vegetative cover formed by grasses along with herbs and 

associated shrubs, where trees are scarce. This grassland is an environment with great 

richness in grass species (~400) of summer (C4) and winter (C3) habits with 

perennials predominating over annuals. Of this great number of species only 10 

(mostly C4) are the main contributors of the annual forage production, which 

averages 3-4 DM ton/year (Berreta, 2003). The Cropland sub-ecosystem is a 

commercial rainfed crop production system where the main crops are soybean in 

summer and wheat in winter all produced with no-tillage, based on (MGAP-DIEA, 

2015) about half of the crop area rotate summer-winter and the other half only make 

summer-summer rotation (Figure 1.1). Finally, the land tenure of Uruguayan agro-

ecosystem is all private lands, but a high percent of the crop areas are rented and the 

average farm size is 775 ha (MGAP-DIEA, 2015). 

The main reasons to select Uruguay as the study area are:  it still has a high 
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percentage of grasslands in contrast with other regions, but this area is threatened by 

the recent LULC change. Previous studies in the Río de la Plata region, within the 

period between 1985 and 2003, found that the area covered by grassland decreased 

from 67.4 to 61.4% between the study periods (MGAP-DIEA, 2012). During the last 

12 years there was an expansion of the cropland area in Uruguay, mainly soybean and 

wheat, from 200,000 ha in 1999 to more than 1,400,000 ha in 2010 (Figure 1.1), and 

this process has been more intensive since 2002. As a result of this expansion, 

grasslands were converted to croplands. Additionally, another reason for this 

selection is the available data to perform this research. 

 

 

 

 

 

 

 

 

 

 

 

This research was conducted using the natural grassland regions of the 

Republic of Uruguay (Uruguay) as the study area. The research was conducted in two 

of the Agro-ecological regions of Uruguay (Ferreira, 2001) that historically were 

mainly natural grasslands due to their specific capabilities: Zone 2 East “Sierras” and 

Figure 1.1 Crop area evolution from 2000 to 2015 extracted from (MGAP-DIEA, 

2015).  
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Zone 4 Granitic (Crystaline) also called  “Southern Campos” sub-region (Soriano and 

Paruelo, 1992), it is located in the Middle South of Uruguay where soils support 

natural grassland and have limited crop use capabilities (marginal lands) (MGAP-

RENARE-DSA, 2003). The main reasons to select this study area are: (1) Uruguay 

still has a high percentage of natural grasslands in contrast with other regions of the 

world; (2) this area was being used for grazing beef cattle more than 100 years, one of 

the main exported products of this country, but nowadays this area is threatened by a 

recent LULC change from grasslands to croplands and 3) the availability of the data 

to perform this research. 

 

 

Figure 1.2  Uruguayan Agroecological zones (Ferreira, 2001) 

 

1.5 Research Objectives 

The overall goal of this research was to temporally and spatially identify and quantify 

the possible impacts on the soil degradation (quality) resulting from the conversion of 
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natural grassland to cropland ecosystem under different land use. Even though, the 

land use change from one ecosystem to the other, as was mentioned before, could 

impact on: soil, plants, atmosphere, geology and hydrology, the focus of this research 

will be in the soil component, which is the most affected by the anthropogenic 

processes (management) (Sands and Podmore, 2000), with a main focus in the soil 

quality or health as quantitative indicators of degradation.  The following issues, even 

though could be related to the main question, are not addressed in this research: the 

economic sustainability, the social impacts, possible chemical contamination (ex: 

pesticides) and the impacts on biodiversity and on climate. 

Assessing the soil degradation or loss soil health or of agricultural systems in 

a quantitative manner requires the identification and integration of diverse 

phenomena or ‘indicators’ of environmental effects.  Although selection of soil 

indicators will vary with societal goals, as presented by (Arshad and Martin, 2002) 

the followings seem to be suitable indicators for crop production in most cases: 

organic matter, topsoil-depth, infiltration, aggregation, pH, electrical conductivity, 

suspected pollutants and soil respiration. Crop yield can be used as an integrator of 

the foregoing soil indicators. For this research, based on previous researches, the 

scale (regional) and the available soil data, the two following quality indicators were 

selected as the main indicators: soil carbon and topsoil loss (erosion).  

Previous research had been focused on different aspects of the soil 

degradation of each type of ecosystems grassland (Piñeiro et al., 2006) and croplands 

(Baethgen, 2003) but there are no previous studies that address the impacts of the 
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transition of the first one to the second one.  Additionally, previous researches did not 

address the effect of LUC in marginal lands and also did not consider the impact of 

erosion on the soil degradation. Finally, most of the previous research was conducted 

at a field scale or small regions. 

The main hypothesis is: as a result of the conversion of grassland to cropland 

is expected during medium to long-term a soil degradation which could include soil C 

and N losses, degradation of physical proprieties, soil loss (erosion) and finally 

negative effects on NPP at a regional to country level scale. These expected impacts 

could be different as a result of the influence of the biophysical and the anthropogenic 

drivers. 

To test this hypothesis the following research, with two main steps, was done. 

The first step was the identification of the LUC of the study area based on remote 

sensing since there are no quantitative data on the patterns and rates of land cover 

changes available (Chapter 3). The second step was the quantification of the potential 

impact on the soil quality in the medium-term of this LUC changes using a bio-

physical simulation model, analyzing how the biophysical and anthropogenic drivers 

could affect these potential impacts (Chapter 2 and Chapter 3). The biophysical 

drivers to study was geomorphology (soils, slope) and the anthropogenic drivers to 

study were: land use change scenarios and land use management (crop rotation, 

tillage, crop management) 

1.6 Outline of Dissertation 

The dissertation consists of four chapters. Chapter 1 (a) reviews the topic of 



 

 16 

 

soil degradation as a result of conversion from grassland to cropland ecosystem, (b) 

presents research questions and objective, and (c) describes the study area. 

Chapter 2 presents and tests a data-modeling system designed to simulate 

field-scale crop productivity and soil processes under grassland and cropland covers 

in South-Central Uruguay. This is achieved through the calibration and testing of the 

terrestrial ecosystem model EPIC using local data (e.g., plant productivity, crop 

yields, soil erosion, and soil carbon dynamics). Also, it describes the development 

and testing of a spatial EPIC, calibrated and validated for Uruguayan agroecosystem 

conditions. Finally, addresses the potential impact on C fluxes due to LULC from 

grassland to cropland during a 15-year period at regional scales.  

Chapter 3 utilizes the temporal and spatial results to quantify soil degradation 

(loss of soil quality) resulting from the conversion of grazed grassland to cropland 

under different land use change including the influence of anthropogenic 

(management) and geomorphological processes. 

Finally, Chapter 4 summarizes the findings, discusses the main implications 

and limitations of the findings, and how these limitations may be addressed in future 

research.  
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Chapter 2: Simulating field-scale carbon dynamics of 

natural grassland and cropland ecosystems of Uruguay 

using the EPIC model  

2.1 Introduction 

Temperate grasslands, a major type of grasslands, account for a large fraction 

of the Earth’s vegetation (Coupland, 1992). Large expanses of temperate grasslands 

and derivative croplands are located at mid-latitudes in Asia, North America, and 

South America (Sala et al., 1996). In South America, temperate grasslands encompass 

large units, such as the Pampa grasslands, one of the largest temperate grassland 

regions of the world, occupying more than 700,000 km2  distributed  across  eastern 

Argentina, Uruguay and southern Brazil (Soriano et al., 1992). This region, the most 

extensive biogeographic unit of the prairie biome in South America, has been 

extensively modified by human activities (Guerschman et al., 2003).   

Currently, this region contributes significantly to the domestic and 

international trade of crop commodities and thus it has been experiencing extensive 

and intensive changes in land use and cover (Altesor et al., 2006; Vega et al., 2009). 

These ongoing changes in land use and cover are presumably impacting carbon 

cycling dynamics and soil erosion processes. This conversion from grassland to 

cropland ecosystems is achieved through the use of tillage implements to prepare 

seedbeds, control weeds and apply nutrients. Often, this tillage disturbance enhances 

soil organic matter oxidation (loss of soil carbon), soil structure deterioration, and soil 

erosion all negatively impacting soil quality and ecosystem services (Lal, 2002). 

Uruguay, in contrast with other regions, still has a high percentage of 
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grasslands vulnerable to land-use change. During 1999-2010, Uruguay expanded its 

cropland area from 200,000 to >1,000,000 ha, mainly due to soybean (Glycine max 

(L.) Merr.) and wheat (Triticum aestivum L.) cropping.  During the same period, the 

area under grassland cover decreased from 67.4 to 61.4% (MGAP-DIEA, 2012). This 

process mainly took place in the South-Central Uruguay region (MGAP Uruguay et 

al., 2011). However, a quantification of the intensity and extent of the impacts of the 

land-use and management changes on soil quality is currently lacking.  

To address this important topic, the EPIC (Environmental Policy Integrated 

Climate) model was selected to simulate key agro-ecological processes associated 

with grassland-cropland conversions such as: plant growth, plant yield, water balance, 

soil erosion, soil carbon dynamics, nutrient cycling, and greenhouse-gas emissions 

(Izaurralde et al., 2006b; Williams et al., 1984). Previous studies in Uruguay used the 

Century model (Baethgen, 2003; Parton et al., 1988), but Century was not deemed 

appropriate for this study since it does not explicitly simulate land degradation 

processes such as soil erosion (Caride et al., 2012; Baethgen, 2003). 

Globally, there is a need to better quantify carbon budgets and fluxes (stock, 

emission and sequestration) of managed ecosystems at different spatial scales using 

the best available technology (UNFCCC, 2003). There is a lack of a systematic and 

extensive collection of C budget field data and, consequently, the spatial estimations 

are suggested to be obtained using process-based agroecosystem models (Smith et al., 

2012). The EPIC model (Williams, 1995), was used to simulate C fluxes over the US 

croplands regions (Causarano et al., 2008; Zhang et al., 2015) and other regions of the 
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world (Billen et al., 2009). 

The objectives of this research were to: 1) develop and test a data-modeling 

system to simulate field-scale crop productivity and soil processes under grassland 

and cropland covers in South-Central Uruguay. This was achieved through the 

calibration and testing of EPIC using local data (e.g., plant productivity, crop yields, 

soil erosion, and soil carbon dynamics), 2) develop a spatial version of the EPIC 

model adapted to Uruguayan agro-ecosystems, following the point scale calibration 

and validation of the model, and 3) address the potential C-flux impacts of Land Use 

(LU) change from grassland to cropland during a 15-year period, evaluating the 

capability of the EPIC model to simulate regional-scale grassland and cropland C 

fluxes on the Uruguayan Agro-ecosystem. 

 These steps were necessary to run EPIC at a regional scale in South-Central 

Uruguay to evaluate crop and soil productivity under contemporary grassland-

cropland conversions and future climate, land-use, and management scenarios.  To 

our knowledge, this is an original contribution in which the EPIC model is employed 

to simulate grassland productivity and soil quality under conditions of the Rio de la 

Plata grasslands. 
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Figure 2.1 Map of Uruguay, showing 

the study area (gray zone) and the study 

sites 

2.2 Materials and methods 

2.2.1 Study are area 

Uruguay is located in the southeast 

of South America, between 30º and 35º 

South and 54º and 59° West. The total land 

area is 176,215 km2. The region is 

dominated by rolling plains reaching a 

maximum elevation of 514 m. The climate 

is temperate, with a range of rainfall 

between 1,100 – 1,300 mm yr-1, mean 

temperatures of 11°C in winter and 27°C in 

summer, and extreme temperatures of - 4°C and 40°C. The main ecosystem is 

Grasslands associated with riverside bush forest. Soils are slightly-acidic Prairie Soils 

(Mollisols) (Berreta, 2003; Castaño et al., 2011). The “Southern Campos” sub-region 

(Soriano and Paruelo, 1992) was selected as the study area (Figure 2.1), it is located 

in the Center-South of Uruguay where soils support natural grassland and have 

limited crop use capabilities (MGAP-RENARE-DSA, 2003). 
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As the final objective of the this research was to address the potential impacts 

of LU change on land (soil units) that was deemed suitable for growing cash crops 

(Figure 2.2) according to soil classification made by MGAP-RENARE-DSA (2003) 

of the CONEAT soil maps (Capurro Etchegaray, 1977), which classified soil units as 

suitable, less suitable, marginal and no suitable for crops. 

2.2.2 Uruguayan agro-ecosystem 

Currently, the Uruguayan agro-ecosystem is composed of two main sub-

systems, which usually coexist in the same farm: a) Natural Grasslands and b) 

Croplands. The Natural Grassland sub-ecosystem is characterized by domestic 

herbivores continuously grazing the evolved natural pasture; the herbivores are 

bovine and also ovine grazing together. The grassland (natural pasture) is defined as a 

Figure 2.1 Map of the study area showing the soils units (CONEAT) suitable 

to grow cash crops. 
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vegetative cover formed by grasses along with herbs and associated shrubs, where 

trees are scarce; it is an environment rich in grass species (>400 species) with a high 

proportion of summer species (C4) in comparison to winter species (C3). Several 

perennials of different botanical families predominate over annual species. However, 

of this great diversity of species, only 10 are the main contributors to the annual 

forage production, which averages 3 - 4 Mg DM yr-1 with the most frequent being: 

Andropogon ternatus, Rottboellia selloana, Paspalum notatum, Paspalum plicatulum, 

Paspalum dilatatum, Bothriochloa laguroides, Axonopus affinis, and Aristida murina 

(Berreta, 2003). 

The Cropland sub-ecosystem is a commercial rain-fed crop production system 

where the main crops are soybean in summer and wheat in winter all produced with 

no-tillage; based on MGAP-DIEA (2012) about half of the crop area rotates summer-

winter and the other half supports a summer-summer rotation. In the study area, the 

main winter crop planted is wheat and the main summer crop planted is soybean 

followed by sorghum (Sorghum bicolor (L.) Moench). All land in the Uruguayan 

agro-ecosystem is under private tenure with a high percentage being rented. The 

average farm size is 775 ha (MGAP-DIEA, 2012). 

2.2.3 Description of the EPIC model and inputs 

The Environmental Policy Integrated Climate (EPIC) Model is a computer 

model originally developed to  simulate the impacts of water and wind erosion on 

crop and soil productivity throughout the United States during the 1980's (Williams et 

al., 2008a). Since its first development and application, EPIC has evolved into a 
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comprehensive agro-ecosystem model capable of simulating the growth of crops 

grown in complex rotations and management operations, such as tillage, irrigation, 

fertilization and liming (Izaurralde et al., 2006b). EPIC has been continuously 

improved through the additions of algorithms to simulate water quality, climate 

change and the effect of atmospheric CO2 concentration, as well as nitrogen, carbon, 

and phosphorus cycling (Izaurralde et al., 2012).  Operating at field / small watershed 

spatial scales and at daily time step, EPIC contains physically-based algorithms to 

simulate soil and crop processes such as crop growth, erosion, nutrient balance, and 

related processes. It is designed to simulate homogeneous areas that are characterized 

by a common weather, soil, landscape, crop rotation, and management. The processes 

simulated include leaf interception of solar radiation, conversion to biomass, division 

of biomass into roots, above ground biomass, and economic yield, root growth, water 

use, and nutrient uptake (Gassman et al., 2005). The main inputs needed to run EPIC 

are: daily weather (maximum and minimum temperature and rain), soil-layer 

properties (soil layer depth, texture, bulk density, and C concentration among others), 

and site characteristics (latitude, longitude, elevation and slope) (Williams et al., 

2006). 

This study was focused on three main EPIC sub-models/process: 1) crop sub-

model, 2) Carbon-Nitrogen sub-model, and 3) (water) erosion process. EPIC uses a 

single plant growth model to simulate about 100 plant species, including crops 

(annual and perennial), native grasses, and trees; each characterized by a unique set 

of parameter values. It uses the concept of radiation-use efficiency (Williams et al., 

2008b) by which a fraction of daily photosynthetically active radiation is intercepted 
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by the plant canopy and converted into plant biomass. Plant phenology is controlled 

via heat-unit calculations where each crop/plant species has base and optimal air 

temperatures for growth. Potential daily gains in biomass are affected by 

environmental stresses such as water, temperature, nutrients (primarily N and P), and 

aeration (Parton et al., 1988). The coupled carbon-nitrogen C:N sub-model follow 

the approach used in the  Century model (Izaurralde et al., 2006b), where the C and 

N in soil organic matter are distributed among three pools or compartments: active 

(microbial), slow and passive; these pools differ in size and function while their 

turnover times range from days to hundreds of years (Izaurralde et al., 2006b). The 

EPIC module for water-induced erosion simulates erosion caused by rainfall and 

runoff and by irrigation (furrow, sprinkler, and drip). Five USLE-based erosion 

models (USLE, RUSLE, AOF, MUSLE and MUSL), are used in EPIC to simulate 

water erosion caused by rainfall and runoff as regulated by topography, soil 

properties, and management (Apezteguía et al., 2009).  

2.2.4 Calibration and validation of the EPIC model at a field scale 

Even though EPIC is flexible enough to perform under a variety of 

environments, there was no prior experience using the model to simulate the 

Uruguayan agroecosystem. Consequently, there was a need to calibrate and validate 

the model. Usually the calibration process includes a successive modification of the 

model parameters using the weather, soils, land-use and agronomic conditions of the 

study area until the desired reproduction of this environment is achieved (Bernardos 

et al., 2001). This process was performed independently for the grassland and the 
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cropland ecosystems because these ecosystems have very different management and 

development conditions. Sources of data for field calibration are given in the next 

section in Tables 2.1 and 2.2. 

Two approaches were used to evaluate the model performance during 

calibration and validation steps. In the first approach, when replicated observational 

data were available, two standard statistical tests were conducted: 1) t-test to evaluate 

the probability that modeled and observed means were the same and 2) regression 

analysis to test if the modeled and field data were correlated (significance of the 

coefficient of determination and of the slope). The second approach, in few instances 

when observational data were insufficient, a “semi-quantitative” analysis (without 

statistical significance) was performed combining comparisons of modeled data 

against quantitative sparse data (e.g. data from sparse bibliographic sources, national 

statistics, databases) and finally expert assessment of modeled results by local 

researchers; with this sources combined a “semi-quantitative” evaluation of the 

reliability of these results was done. 
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2.2.4.1 Sources of data for field calibration 

Table 2.1 Study sites for field calibration. 

Site Latitude Longitude Altitude 
(m) 

Dominant  soils 

INIA* Treinta y Tres Research 
Station (INIA-TyT-RS) 

33°:15’36"S 54°:29’26"W 60 Abruptic Argiaquolls and 
Oxiaquic Vertic Argiudolls 

INIA La Estanzuela  Research 
Station (INIA-LE-RS) 

34°20'33"S 57°43'25"W 80 Typic, mesic, Argiudoll 

INIA-SRRN** 32°40'53"S 57°39'29"W 70 Argiudolls and Hapludolls 

SUL** Cerro Colorado 
Research Station (SUL-CC-RS) 

33°52'11"S 55°34'19"W 205 Hapludolls and Argiudolls 

*INIA: National Agricultural Research Institute of Uruguay. **SRRN: Rural Society of Río Negro. ***SUL: Uruguayan Wool 
Secretariat  

 

Table 2.2 Sources of data for field calibration.  

Class Variable Description Sources Tempor
al Coverage 

Temporal 
resolution 

Grassland 

Forage yield Historical Centro-Sur: (Formoso, 
2005; Risso and Scavino, 1978) 

Este:   (Mas, 1978) (Ayala 
et al., 1993) 

1970-2000 Seasonal 
and annual 
averages 

Forage yield INIA TyT Grassland 
experiment 

(Bermudez and Ayala, 
2005) 

1992-2004 Seasonal 
and Yearly 

Forage yield Cerro Colorado 
experiment 

Formoso, D. (pers. com.)  Seasonal 
and Yearly 

Soil carbon INIA Treinta y Tres 
grasslands experiments. 

Terra et al. (pers. com. 

(Salvo et al., 2008) 
(Ayala, W. pers.com.) 

  

Cropland 

Crop grain yield Historic (MGAP-DIEA, 2012)  Yearly 
averages 

Crop grain yield INIA LE crop evaluation 
experiments 

(Castro and Coutiño, 
2014) 

  

Crop grain yield INIA-SRRN crop 
evaluation experiments 

(Castro and Coutiño, 
2014) 

  

Crop grain yield INIA TyT crop rotation 
experiment 

Terra et al. (pers. com.)   

Erosion Soil loss Outputs of RUSLE 
equations database 

(García Préchac et al., 
2009) 

  

Climatic Precipitation, Temperature, 
solar radiation, wind 

 (INIA Uruguay - GRAS 
Unit, 2016) and INUMET (pers. 

com.) 

1970-2015 Daily 

Soil 
profiles 

Layer depth, soil 
carbon, pH, CIC, 

 Department of 
Agriculture and Fishery 

(MGAP) pers. com. 
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2.2.4.2 Simulation of the Grassland ecosystem 

In order to simulate the grassland ecosystem the following calibration / 

validation steps were performed according to guidelines provided in the EPIC user’s 

guide (Williams et al., 2006) for 1) grass forage yields, 2) water erosion, and 3) soil 

carbon. The first objective was to achieve the mean historic annual and seasonal 

forage yield extracted from published literature (Table 2.2).  The strategy to achieve 

this objective was to select and adapt a grass species from the crop database available 

in EPIC to build the “Grassland Uruguay crop”. Summer grass crop (SPAS) was 

selected from this database, based on that the composition of the Uruguayan 

grassland species is dominated by summer grasses, with a C4 photosynthetic pathway 

(Berreta, 2003). The main modifications, to reflect the characteristics of the 

dominated species on the study area, were made in the following crop parameters: 

WA, DMLA, PP, HMX and HU based on the experience of previous researches 

where the adaptation of EPIC model crops were made (Adejuwon, 2005; Causarano 

et al., 2008) (Table 2.3). 
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Table 2.3 EPIC crop parameters of “Grassland Uruguay crop”. 

Parameter Description  Original value * Modified value 

WA Biomass-Energy Ratio (kg 

ha-1 MJ-1) 

35.0 30.0 

DMLA Maximum potential leaf 

area index (m2 m-2) 

5 2 

HMX Maximum crop height (m) 1.0 0.5 

PP Plant population (no. m-2) --- 10 

HU Potential heat units (°C) --- 1500 

* Source: EPIC crop database. 

The model was parameterized and tested with forage field data measured 

seasonally from two sites. One is INIA-TyT-RS, located in Treinta y Tres in the 

South-East and the other is a SUL-CC-RS located in Cerro Colorado, Florida in the 

South-Center (Table 2.1).  

After the model was able successfully to simulate forage production, the next 

step to complete the carbon cycle of this ecosystem was the addition of the grazing 

component. Although the EPIC has a grazing routine, it was found that the best 

option was to use a simulated grazing, using two EPIC’s operations: “hay cut” to 

simulate the grazing by animals (C output) and “manure addition” to emulate the 

nutrient return to the soil (C return) by dung. This process was done monthly and the 

input and output values were taken from the following computation:  the animal dry 

matter intake (hay cut) was based on an average animal stock of 0.75 beef cow of 400 

kg per hectare (MGAP-DIEA, 2012), the animal requirement of forage dry matter 

(DM) is 2% of the body weight (bw) per day (INIA Uruguay et al., 2012; IPA 

Uruguay, 2012); resulting in a daily consumption is 6 kg of  DM ha-1 or about 2.20 
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Mg ha-1 year-1. However, given than the average animal forage utilization (net 

consumption) is 65% of the consumed (IPA Uruguay, 2012), the required cut forage 

is 9.2 kg of  DM ha-1, from which 6 are consumed (output) and 3.2 kg of  DM ha-1 are 

returned to the soil as litter. Based on this computation, the required dry matter is 3.32 

Mg ha-1 year-1 which agrees with the reported forage production of this area 

(Formoso, 2005; Risso and Scavino, 1978). Finally, the manure added (C return) was 

1.1 kg ha-1 considering that there is an 18% of the dry matter forage intake that is 

returned with the manure (Piñeiro et al., 2006). 

The last step was to test the model’s capability to reproduce soil losses caused 

by water erosion and soil carbon dynamics as affected by residue additions, microbial 

respiration, and carbon losses with soil sediments, runoff, and leaching. As described 

before, the EPIC model has several equations available to simulate water erosion. 

Based on previous research conducted in Uruguay (Clérici C., 2001), the equation 

selected was the Revised Universal Soil Loss Equation (RUSLE). Due to the lack of 

available measured data, the model outputs were compared against local estimates 

obtained by the RUSLE equation (Clérici C., 2001) previously incorporated into a 

computer program called Erosion UY (García Préchac et al., 2009).  Finally, the soil 

carbon model in EPIC was tested with measured soil carbon from two experiments at 

the INIA-TyT-RS (Table 2.1). Data from these experiments consisted of temporal 

measurements of soil carbon stocks in the top 15-cm soil depth.  
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2.2.4.3 Simulation of the Cropland ecosystem 

As described above, the cropland ecosystem consisted of a rotation of winter 

and summer crops. Consequently, the model calibration  was made using the three 

main crops (wheat, soybean and sorghum) in a 2-year rotation, following the general 

modeling procedures applied by Causarano (2007) and Apezteguía (2009). 

Considering the best agronomic practice in order to conserve the soil, the crop 

sequence in the study region (independent agronomy consultants pers. com.) consists 

of wheat planted in late autumn, harvested in late spring, then soybean planted 

immediately and harvested in early autumn, then a second wheat planted in late 

autumn, harvested in late spring, finally sorghum planted in late spring and harvested 

in mid-autumn.  

Similar to the process applied to calibrate the grassland system, the first step 

in the calibration of the model in cropland conditions in the study area was to 

simulate historical grain yields using data available from national statistics  (MGAP-

DIEA, 2012) and crop-cycle details of the three crops (Castro and Coutiño, 2014). It 

was taken from the EPIC crop database the three study crops (spring wheat, soybean 

and sorghum) and the EPIC´s  crop parameters  were modified based on the 

experience of previous research (Causarano et al., 2007), the main adjustments at this 

stage were the crop heats units and PARM7 (Table 2.4).     
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Table 2.4 EPIC’s cropland parameters. 

EPIC global parameters: 

Parameter Description Original 

value* 

Modified value 

PARM7 N fixation   

PARM12 Soil evaporation 

coefficient 

2.50 2.35 

PARM35 Water stress 

weighting 

coefficient 

1.00 0.58 

PARM61 Weighting factor for 

estimating soil 

evaporation 

0.80 0.83 

 

EPIC crop parameters 

Parameter Description Crop Original value Modified 

value 

WA Biomass-Energy 

Ratio (kg ha-1 MJ-1) 

Soybean 30.0 20.2 

Sorghum 37.0 30.0 

HI Harvest index Soybean 0.35 0.30 

Sorghum 0.50 0.45 

* EPIC crop database 

In order to obtain a better adjustment, as a second stage, an automatic 

calibration using a parameter optimization algorithm was performed. It was done with 

the HydroPSO package (Zambrano-Bigiarini and Rojas, 2013) of the R statistical 

software (R Development Core Team, 2013); this package is model-independent R 

package, which the main focus is the calibration of environmental and other real-

world models. It implements a modified version of the Particle Swarm Optimisation 
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(PSO) algorithm to meet specific user needs and optimizes based on a user defined 

goodness-of-fit measure until a maximum number of iterations or a convergence 

criterion is met. It allows the user to perform model calibration and assessment of the 

results (Zambrano-Bigiarini and Rojas, 2013).  

To perform this calibration step, measured data of grain yield from a 10-year 

crop yield experiment (sorghum, soybean and wheat) from the site INIA-LE-RS 

(Table 2.1) was used. Five EPIC variables were utilized in the process, three EPIC 

Parameters: PARM12, PARM35 and PARM61 and two crop parameters from the 

soybean and sorghum crops: WA and HI (Table 2.4). 

The validation of the crop grain yield modeled was performed using data from 

two experiments. A crop yield experiment in the INIA-SRRN (Table 2.1), this 

experiment is a replication of the INIA-LE-RS experiment conducted in another site. 

The other experiment that it was used is a two year no tillage crop rotation (wheat-

soybean, wheat-sorghum) located in the INIA-TyT-RS (Table 2.1). 

Similar to the model calibration and testing performed for grassland systems, 

the last step was to test the capability of EPIC to reproduce soil erosion and soil 

carbon dynamics in cropland systems. To test the model performance on the soil 

erosion in croplands the local calibrated equations were used (García Préchac et al., 

2009). Finally, the modeled soil carbon was tested with measured soil carbon from a 

crop rotation experiment located in the INIA-TyT-RS, the available data were carbon 

measurements made up to 15 cm depth. 
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2.2.5 Development, calibration and validation of EPIC model at a regional scale 

The next step was the development, calibration and validation of EPIC model 

at a regional scale. The development included the following steps: 1) building of a 

geospatial database with the required data, 2) building of the Homogenous spatial 

modeling units (HSMU) and 3) building of faster computation environment using a 

parallel model running environment. 

2.2.5.1 Geospatial database 

2.2.5.1.1. Soils layer 

The CONEAT soil groups (CONEAT) was used as a base layer of soils. These 

CONEAT groups are not strictly basic cartographic soil units, but are homogeneous 

areas defined by its production capacity (productivity), which is considered as the 

initial capacity of the soil to produce a certain yield per hectare per year (MGAP-

RENARE-CONEAT, 1994).  These groups were characterized by aerial photo 

interpretation at scale 1:40,000 together with field verifications and physical and 

chemical soil analyses (Capurro Etchegaray, 1977).  

The defining characteristics of the CONEAT soil groups (properties of soils 

and associated landscape features) were based on the dominant and associated soils 

according to the Soil Classification of Uruguay  (MGAP-RENARE-DSA, 1976a), 

where each CONEAT group was related to the units of the Soil Survey of Uruguay at 

1: 1,000,000 (MGAP-RENARE-DSA, 1976b). The last step was the overlap of the 

Soil Groups with the rural lots and represented it in CONEAT mapping at 1:20,000 

(Capurro Etchegaray, 1977). 
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Recently, by expert assessment, each CONEAT soil group was associated 

with a surveyed soil profile (Molfino, 2009). This soil profile database has the soil 

properties required to run EPIC for each soil group, including the number of soil 

layers; layer depth; albedo; bulk density; pH; sum of bases; percent of sand, silt, clay 

and coarse fragments; and percent of organic C.  

2.2.5.1.2. Climate layer 

EPIC model requires daily weather information, including daily temperature 

(maximum and minimum), precipitation, solar radiation, wind speed, and relative 

humidity. This layer was built using point-weather stations (Figure 2.3), these points 

were interpolated to a 

grid of 10 by 10 km 

using Ordinary Kriging 

geostatistical method 

(Castaño et al., 2011; 

Grimes and Pardo-

Igúzquisa, 2010; Zhang 

and Srinivasan, 2009). 

Based on the climate characteristics of this study region (Castaño et al., 2011) the 

following variables were identified as having less spatial variability: temperature, 

wind, radiation, relative humidity and, as a result, they required fewer stations (11) to 

represent the region but, on the other hand, the rainfall had high spatial variability, 

which required more stations to improve the spatial distribution. 132 points were used 

Figure 2.3 Map of climate grid and weather stations. 
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(108 inside the study area and 25 outside), with an average distance of 37 km between 

each rain gauge with the four nearest. Also, in an attempt to improve the spatial 

distribution of the rainfall data, a remote-sensing option to estimate rainfall was 

evaluated. However, as shown by Salio et al. (2015) and Vila et al. (2009) for SS 

America, this option can lead to overestimations of rainfall. Further, the resulting 

spatial resolution was lower than the interpolated, as shown by De Vera and Terra 

(2012) for this region when comparing remote sensing (RS) rainfall estimations and 

rain gauge observations. In summary, even after statistical adjustments, the RS 

estimations did not produce a spatial improvement when the distance between points 

was less than 50km. 

Table  2.5 Data sources of  the Geospatial database. 

 

  

Class Variables Point Polygon Raster

precipitation INIA Uruguay and INUMET Uruguay X 1995-2015 daily 132 points

temperature, wind, 

solar radiation 
INIA Uruguay and INUMET Uruguay X 1995-2015 daily 11 points

Soils map
Layer depth, soil 

carbon, pH, CIC, Sand, 

Silt; Productivity Index

(MGAP-RENARE-CONEAT, 1994) X - 1:40,000

Topography
elevation and slope 

gradient

MGAP-RENARE Uruguay 

(Dell’Acqua, 2004)
X 30m

Agro-stats crop yields (MGAP-DIEA, 2015) yearly Country

Admin boundaries

departments 

(counties), country 

limits

SGM Uruguay X

Temporal 

resolution

Spatial resolution/ 

Scale/ Points

Climate

Data
Source

Type of data Temporal 

coverage
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2.2.5.1.3. Topography layer 

The required topographical information was extracted from the Uruguayan 

digital elevation model (Dell’Acqua, 2004). It is a raster file with a spatial resolution 

of 30 meters with two layers: elevation and slope gradient. 

2.2.5.2 Building of the Homogenous spatial modeling units (HSMU) 

As mentioned above, in the present study,  only  the land that is suitable for 

growing cash crops was modeled (Figure 2.2) (MGAP-RENARE-DSA, 2003). This 

cash-crop area, covering ~50% of the total study area, is assumed to be the total area 

that could be potentially dedicated to growing cash crops when all the suitable land is 

used. 

To build the homogenous spatial modeling units (HSMU), considering the 

maximum potential area, the approach presented by  Zhang et al. (2010) was adapted 

to this region using the available data sources. A conceptual diagram of the geospatial 

EPIC simulation system is presented in Fig. 3.4. The following layers were 

intersected: 

 CONEAT soils (polygons)  

 Slope (from DEM) 

 Elevation (from DEM) 

Finally, at each HSMU a grid point of daily data was assigned.  
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Figure 2.4 Conceptual diagram of geospatial EPIC 

 

2.2.5.3 Parallel model running  

 

Each run of the EPIC spatial involved about 7,500 HSMU. To reduce the time 

required for each run, a parallel computing software developed by Zhang et al. (2014) 

was adapted, which implement a parallel-EPIC in a Linux server using a Python 

(python.org) script. Finally, a script of R Statistic soft (R Development Core Team, 

2013) was used to extract the study variables (grassland production  and crop yield) 

from the EPIC’s output files to a spreadsheet.  
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2.2.5.4 Spatial EPIC validation 

The EPIC model was previously validated at a point scale for the Uruguayan 

agro-ecosystems (Section 2.2.4). After the development of a spatial version of the 

EPIC model for these conditions, the next step was to validate it for both agro-

ecosystems with the available data at this scale. 

2.2.5.4.1 Simulation of the Grassland ecosystem 

Due to the lack of spatially distributed grassland forage yield field records, the 

model was validated with the average of the grassland production (NPP) over 15 

years using the spatial version of the EPIC model. The outputs were compared with 

the CONEAT Productivity Index (CONEAT PI), as an indirect validation. 

The CONEAT PI, created by Act 13.695 (October 1968) of the Uruguayan 

government, is an index of the potential production capacity of the soils in terms of 

production of cattle meat, sheep meat, and wool per hectare per year. Using an expert 

assessment approach, productivity rates were assigned to the 188 CONEAT soil 

groups according to their similarities. The index values range from 0 (lowest) to 263 

(highest) while the average value at a country scale is the index of 100 (Capurro 

Etchegaray, 1977). It was considered that this index could be used as an indirect 

measure of the grassland productivity, given that under conditions of grazed animal 

production, the productivity index is directly related to forage availability.    

This definition of productivity implies a potential capacity of agricultural 

goods production and covers all agricultural sectors, even though it is expressed on 

animal products, during the development was taking in account the potential crop 
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productivity and crop limitations (MGAP-RENARE-CONEAT, 1994). This index, 

even though, was developed almost 50 years ago, it still captures well the current land 

productivity / capability, as confirmed by Lanfranco Crespo and Sapriza Fraga  

(2011) who found a positive correlation between the CONEAT PI and the unit price 

of farmland. 

2.2.5.4.2 Simulation of the Cropland ecosystem 

The soybean crop was selected to validate the EPIC spatial model on 

croplands since it is the dominant crop (90% of summer crops) and also most of the 

crop production it is exported (MGAP-DIEA, 2015), which means a risk in terms of 

environmental threat of exporting limited available natural resources (water and soil 

carbon). In this ecosystem in order to have a good representation of the crop 

productivity the EPIC annual yield outputs, for the whole region, were compared 

against the National crop yield averages (MGAP-DIEA, 2016). Although these 

statistics cover an area bigger than the study area, it was found it was useful because 

it allows for the examination of trends in inter-annual variability.  

2.2.6 Potential carbon fluxes  

The net ecosystem exchange (NEE) is the net CO2 flux between the terrestrial 

ecosystem and the atmosphere;  a negative sign of NEE indicates C uptake into the 

biosphere, while a positive value denotes net emission to the atmosphere (Chapin et 

al., 2006).  Recent studies (Schwalm et al., 2010; Zhang et al., 2015) showed that the 

C algorithm in EPIC simulated well NEE of diverse agroecosystems in the US 

Midwest, where NEE was calculated as heterotrophic soil respiration (RSPC) minus 
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the net C sequestration from the atmosphere into plant biomass (i.e. NPP) (Chapin et 

al., 2006). 

Here, an analysis of the potential impact of the land use change from 

grassland to cropland on the carbon fluxes was performed. To this effect, the 

pertinent variables (NEE, RSPC, NPP) were extracted from the outputs of the EPIC 

runs over 15 years obtained previously during the validation process.  Here, the focus 

was on the biogenic-related C processes included in the NEE calculation but do not 

consider fossil fuel C emission from agronomic practices and heterotrophic 

respiration by humans and livestock (West et al., 2011).  

  

2.3 Results and discussion 

2.3.1 Field scale calibration and validation 

2.3.1.1. Simulation of the Grassland ecosystem 

The first step of the calibration and validation process was to modify 

parameters in order to best mimic the observed forage yields; this was an important 

verification step in order to capture the C inputs into the soil system (Apezteguía et 

al., 2009). The model was calibrated comparing the historic yearly averages (Table 

2.2) and the model’s outputs of a run using a representative soil profile of the study 

area with 30 years of recorded daily weather data (precipitation and air temperature). 

During this process, different values of the crop parameters were tested based on the 

model developer’s guidelines and the characteristics of the Uruguayan grassland, 

until the best adjustment of the model was achieved. The final values of these 
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parameters are shown in Table 2.3. 

The EPIC model simulated reasonably well the mean response of historic 

forage yields, based on a “semi-quantitative” comparison (Section 2.2.4). It was 

found that the simulated average of 30 years was 3.56 Mg ha-1 where the average 

reported on selected bibliography (Table 2.2) was 3.46 Mg ha-1; the minimum and 

maximum simulated yields were 1.77 Mg ha-1 and 4.55 Mg ha-1 respectively; these 

values were within the reported observed values that ranged between 1.19 and 5.25 

Mg ha-1 (Table 2.2). Additionally, these maximum and minimum yields agreed well 

with those recorded in dry and wet years (Castaño et al., 2011). The average seasonal 

distribution of simulated forage yields was 27% in spring, 51% in summer, 20% in 

fall and 2% in winter while the historic records were 25-29% in spring, 38-48% in 

summer, 19-23% in fall and 9-13% in winter. Thus, the model tended to over predict 

in summer and under predict in winter. The forage yield under prediction in winter is 

not significant for the objective of this research due to the reported low production in 

winter, about 400 Mg ha-1 (Berreta, 2003) . 

 The next step was the validation of the modeled results; the model´s forage 

yield production was tested using 12 years of data, seasonally measured from 1992 to 

2003 in the INIA-TyT-RS grassland experiment (Figure 2.2).  Analyzing the average 

yearly production over this period, the modeled average was 3.55 Mg ha-1 while the 

measured average was 3.39 Mg ha-1, this difference was not statistically significant 

(p<0.05); however, both were significantly correlated with an R2 was 0.60 (p<0.05), 

with a slope significantly close to 1 (p<0.05) (Appendix 1.1.1). This model 
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adjustment is similar to other reports (Apezteguía et al., 2009; Causarano et al., 2008) 

where EPIC had been calibrated for other cropping conditions because of the lack of 

published EPIC calibrations under natural grassland environments.  

 

 Analyzing the inter-annual 

variation, the model adjusted 

reasonably well to the measured data 

(Figure 2.5a), also representing well 

the dry-wet periods. In some years, 

however,  the model slightly under 

predicted (1996, 1997 and 2002) or 

over predicted  (1999) ; this last 

event may have been because it was 

a dry year (Castaño et al., 2011). 

Considering the seasonal distribution 

of the forage yields (Figure 2.5b), it 

was found that the model 

overestimated in summer and 

underestimated in winter conditions, 

as it had been noted before during 

the calibration process. 

Finally, comparing all the seasonally 

measured data (Figure 2.5c) and modeled results, it was found that both were 

Figure 2.5 Comparison of simulated 

vs observed forage yield in INIA-TyT-

RS: a) yearly, b) seasonal averages 

and c) all seasonal data 
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significantly correlated the R2 was 0.69 (p<0.05) and the slope 0.61 was significantly 

different from the 1:1 line (p<0.05) (Appendix 1.1.2); the main cause of the departure 

from 1 was the bias in the winter production, as mentioned before.    

Secondly, it was tested the 

model´s forage yield 

production using 6 years of 

data, from 1984 to 1990, of 

the SUL-CC-RS grassland 

experiment (Table 2.1).  

Analyzing the yearly 

production during this 

period, the model average 

was 3.09 Mg ha-1 while the measured was 3.24 Mg ha-1, this difference was not 

statistically significant (p<0.05) (Appendix 1.1.3).  Analyzing the inter-annual 

variation, the model adjusted reasonably well to the measured data (Figure 2.6) and it 

represents well the dry-wet periods. With exception of some years were the model 

under predict (1986, 1987, 1990). 

The last step was to test the simulated erosion and soil carbon dynamics. 

Uruguayan grazing conditions (animal stock, forage intake, etc.) were reproduced in 

the model management instructions.  The outputs of modeled grazing runs (30 years) 

were compared with the outputs of the locally validated erosion equations stored in an 

available database (Table 2.2). Again, based on a “semi-quantitative” comparison, 

Figure 2.6 Comparison of simulated vs observed yearly 

forage yield in SUL-CC-RS. 
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good model behavior was found; the average modeled soil loss was 2.24 Mg ha-1 

year-1 while the output of the Erosion UY was 2.50 Mg ha-1 year-1 in the INIA-TyT-

RS site and 3.72 Mg ha-1 year-1 and 3.40 Mg ha-1 respectively, in the SUL-CC-RS 

site.  

Finally, it was simulated 

soil carbon changes 

during a seven year period 

(2006-2012) and 

compared the results 

against measured soil 

carbon in the top 15-cm 

soil depth from two 

experiments conducted at 

INIA-TyT-RS on similar 

conditions (Table 2.2).   The results showed a good agreement between the modeled 

and measured loss of soil carbon during the study period. On average, the modeled 

soil carbon loss was and 0.496 Mg ha-1 year-1 while the average measured loss was 

0.446 Mg ha-1 year-1 this difference was not statistically significant (p<0.05) 

(Appendix 1.1.4). Also, it was compared the simulated outputs with yearly 

measurements (Figure 2.7). Overall, there was a significant correlation (R2 = 0.72, 

p<0.05) between observed and simulated values of SOC stocks. Analyzing the inter-

annual behavior of the data presented in Figure 2.7, it can be observed that measured 

soil carbon was more variable than modeled soil carbon, which could be likely as a 

Figure 2.7 Comparison of simulated vs yearly measured 

soil carbon of INIA-TyT-RS grassland experiment at 

top 15cm soil depth. 
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result of expected spatial variability and errors inherent to the soil sample process. In 

spite of simulated soil carbon being higher than observed soil carbon during some 

years, there were significant negative trends in both observed and simulated soil 

carbon. The simulated and measured loss of soil carbon of the grassland ecosystem 

presented here agrees with that reported by Piñeiro et al. (2006) for the Pampa 

grasslands. 

2.3.1.2. Simulation of the Cropland ecosystem 

The first step of the model calibration and validation process, as with the 

grassland, was to achieve the measured historic grain yield (national statistics, Table 

2.2) and the length of the crop cycle (Table 2.2). The model was run comparing the 

historic yearly averages and the model’s outputs using 30 years of recorded weather 

data. During this process, different values of the crop parameters were tested based on 

the model developer’s guidelines and the characteristics of the Uruguayan cropland 

management (planting date, plant population, fertilization, etc.). After this process, a 

reasonable behavior of the model outputs was obtained, a realistic agreement of the 

length of crop cycle and an acceptable crop yield average, but the model still over 

predicted by more than 20% the measured yields which required a further step to 

improve it. 

After the first approach to the calibration modifying manually the parameters, 

an automatic calibration using the HydroPSO package was performed, with 10 years 

of recorded crop yields from one site (INIA-LE-RS). The objective was to analyze the 

three crops together. The best adjustment of the model was achieved with the values 
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of the model parameters showed in Table 2.4. 

The agreement between modeled and 

measured crop yields was excellent; 

the modeled yield was 4.76 Mg ha-1 

while the measured yield was 4.76 Mg 

ha-1, this difference was not 

statistically significant (p<0.05) 

(Appendix 1.2.1). Both were 

significantly correlated with an R2 

equal to 0.85 (p<0.05), with a with a 

slope significantly close to 1 (p<0.05)  

and the interception closed to 0 

(Figure 2.8), this agreement is similar to previous EPIC calibration exercises 

(Apezteguía et al., 2009; Causarano et al., 2008). Analyzing the results by crop, the 

agreement between simulated and 

observed average yields remained 

outstanding without significant 

difference (p<0.05) on the three 

crops (6.28 and 6.39 Mg ha-1 for 

wheat, 2.84 and 2.90 Mg ha-1 for 

soybean, and 5.31 and 5.14 Mg ha-1 

for sorghum). 

 

Figure 2.8 Comparison of simulated vs 

observed crop yield of INIA-LE-RS crop 

evaluation experiment after HydroPSO 

calibration. 

Figure 2.9 Comparison of simulated vs 

observed crop yield of INIA-SRRN crop 

evaluation experiment. 
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Then the model was tested with data from two locations. The first is the INIA-SRRN 

research station, 10 years of crop yield evaluation. The results showed a good 

agreement between simulated and measured crop yields; the modeled was 4.78 Mg 

ha-1 while the measured was 4.88 Mg ha-1, this difference was not statistically 

significant (p<0.05) and both were significantly correlated with an R2 equal to 0.59 

(p<0.05) (Figure 2.9) (Appendix 1.2.2.). Analyzing the results of the crop 

individually the average yields were very close for the soybean which was 3.14, 3.03 

Mg ha-1 and sorghum which was 5.80, 5.62 Mg ha-1 simulated and measured 

respectively, the wheat crop were less closed   where simulated was 4.66 vs 5.39 Mg 

ha-1 of the observed, but all these differences were not statistically significant 

(p<0.05).  

The other data set that it 

was used was a two year crop 

rotation (1-wheat-soybean, 2-

sorghum) from an experiment 

located in the INIA-TyT-RS; the 

aim was to evaluate the 

performance of the model to 

mimic a crop rotation 

(management) that was 

commonly used in the study 

region. The results showed a good agreement between simulated and measured 

average crop yields; the modeled was 3.76 Mg ha-1 while the measured was 3.60 Mg 

Figure 2.10 Comparison of simulated vs 

observed crop yield of INIA-TyT-RS 

crop rotation experiment 
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ha-1, this difference was not statistically significant (p<0.05) and both were 

significantly correlated (Appendix 1.2.3.) with an R2 equal to 0.71 (p<0.05) (Figure 

2.10).  

The last step was to test the soil lost by water erosion and soil carbon 

evolution. To perform this step, the management of the crop rotation experiment of 

the INIA TyT RS was reproduced again.  To test soil erosion, the model was run with 

30 years of recorded weather, the outputs were compared with the outputs of the local 

validated erosion model equations database (Table 2.1) in two sites: INIA-TyT-RS 

and INIA-LE-RS; based on a “semi-quantitative comparison” , it was found a good 

model behavior in both sites, the average modeled soil loss was 22.9 Mg ha-1 year-1 

and the output of the Erosion UY was 21.8 Mg ha-1 year-1 in INIA-TyT-RS and 15.6, 

16.2 Mg ha-1 year-1 respectively in INIA-LE-RS site. 

As with the grassland data 

presented above, it was also 

simulated soil carbon changes 

during an eight year period 

(2006-2013) and it was 

compared the output with 

measured soil carbon in the top 

15-cm soil depth from the crop 

rotation experiment conducted 

at INIA-TyT-RS (Table 2.2).  As before with the grassland data, there was a good 

Figure 2.11 Comparison of simulated vs yearly 

measured soil carbon of INIA-TyT-RS crop 

rotation experiment at top 15cm soil depth. 
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agreement between simulated and measured soil organic carbon during the study 

period. It was modeled an average soil carbon loss in the top 15-cm soil depth of 

0.664 Mg ha-1 yr-1 while the average measured loss was 0.729 Mg ha-1 yr-1, this 

difference was not statistically significant (p<0.05) (Appendix 1.2.4.). It was also 

found a significant correlation (R2 = 0.75, p<0.05) between yearly values of simulated 

and measured soil carbon (Figure 2.11). As with the grassland dataset, the inter-

annual values of measured soil carbon showed more variation than the simulated 

values. In spite of modeled values being lower than observations in some years, they 

showed a good agreement when considering the whole study period. The higher soil 

carbon loss simulated in cropland than in grassland ecosystems, even under no tillage, 

agrees with previous research of grassland conversion to cropland (Culman et al., 

2010; DuPont et al., 2010).   

2.3.2 Regional scale development, calibration and validation 

2.3.2.1 Grassland 

The EPIC model was run on all HSMU for a period of 15 years (1996-2015) 

using the locally adapted-calibrated grassland and the simulated grazing. The 

modeled forage production yearly average for the whole region over this period was 

2.67 Mg DM ha-1 year-1 with a maximum of   2.17 Mg DM ha-1 year-1 and a minimum 

of 2.92 Mg DM ha-1 year-1 (Figure 3.5a) these values agree with the values presented 

by (Ayala and Bermudez, 2005; Bermudez and Ayala, 2005; Formoso, 2005). 
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Figure 2.13 Comparison between EPIC grassland production (average 15 years) and 

Productivity Index (CONEAT) (a) with outliers and (b) without outliers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the modeled forage production (Figure 2.12b) with the CONEAT PI 

(Figure 2.12a) a good agreement could be observed, where the higher forage yield 

values agree with the higher PIs and vice versa (Figure 2.12c).  

a) b) 

Figure 2.12 Standardized* maps of (a) EPIC grassland production 

yearly average (15 years), (b) CONEAT productivity index and (c) 

EPIC subtracted Productivity Index (* standard value is the original value minus 

the media and divided by the standard deviation) 

c) 

b) a) 

b) 

 

a) 
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Next, the average grassland production by soil units with the CONEAT PI 

was compared. Here, 32 of the 80 units were used, which together cover 85% of the 

study area (Figure 2.13a).  Even though there was a good agreement between both, it 

was found that four soil units (in red) have high grassland productivity but low 

CONEAT PI. These units were identified as outliers; mainly sandy soils, and soils 

with other limitations that newer agricultural techniques, arising after the creation of 

CONEAT, such as direct sowing with herbicide application, allow the crop plantation 

with good production results on soils that still have low index, as was noted on the 

rain-fed summer crops zoning made by MGAP-RENARE-DSA (2003), due to this 

improvement on the potential productivity of these units were not update since its 

creation. Finally, these outliers were removed keeping the 80% of the area (28 soils 

units) and still maintained a good correlation between both (R2=0.64) (Figure 2.13b). 

3.3.2.2 Cropland 

The EPIC annual soybean grain yield outputs for the whole region were 

compared against the Uruguayan country crop yield yearly averages. First, comparing 

Figure 2.14 Comparison between modeled annual crop yield (average 15 years) and 

Productivity Index (CONEAT).     (a)  correlation considering all years and (b) annually 

over the time 

b) a) 
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the annual crop yield modeled against the country average (Figure 2.14a) it was found 

a good agreement, with an R2=0.56. Second, it was analyzed the inter-annual 

behavior (Figure 2.14b), overall it was found that the model best represents the inter-

annual variation in the crop yields. The main exception was on 2010 where the model 

overestimates the production, this could be related to this year was a wet summer-fall 

(INIA Uruguay - GRAS Unit, 2016) in this case the model expresses the crop 

potential, but in the fields usually it could not have reached due to harvest problems 

for the wet conditions. 

2.3.3 Potential carbon fluxes 

 

Figure 2.15 Maps of carbon fluxes (NEE, NPP, RSPC) of Grassland, Cropland 

and Grassland minus Cropland. 
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An analysis of the potential impact of the land use change from grassland to 

cropland on the carbon fluxes was performed, the related variables (NEE, RSPC, 

NPP) from the outputs of the EPIC runs over 15 years (Figure 2.15) were extracted.  

The modeled results show that the average values NEE of the grassland were -

573 kg CO2 ha-1 year-1 and of the cropland 703 kg CO2 ha-1 year-1, which means that 

grassland was mainly removing CO2 from the atmosphere while the cropland mainly 

emitted CO2 the atmosphere. Also, the grassland results of NEE were less variable 

than the cropland results (Figures 2.15 and 2.16). 

Analyzing the NEE components (NPP, RSCP) it could be observed that these 

results of NEE are mainly related to the amount of RSPC who were much bigger on 

cropland than grassland (grassland =2,924, cropland =4,491 kg CO2 ha-1 year-1) even 

though the NPP were bigger on cropland than grassland (grassland=3,498, 

cropland=3,787 kg CO2 ha-1 year-1) it was not enough to compensate the loss by 

RSPC.  

 

 

 

 

 

 

 

Figure 2.16 Comparison of the carbon fluxes (NPP, RSPC, NEE) between grassland and 

cropland. 
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2.4 Conclusions 

EPIC model successfully simulated the field-scale crop productivity and soil 

processes under grassland and cropland covers in South-Central Uruguay. After 

calibration and testing of EPIC using local data, it was found an acceptable agreement 

firstly in the grass and crop yields; and secondly in the soil loss by erosion and the 

soil carbon stock evolution.  

After building, testing, and calibrating the spatial version of EPIC to the 

Uruguayan agroecosystem conditions, an analysis of the potential impact of the land 

use change from grassland to cropland on the carbon fluxes was performed, 

extracting the related variables (NEE, RSPC, NPP) from the outputs of the EPIC runs 

over 15 years. The modeled results show that the average values NEE of the 

grassland was -573 kg CO2 ha-1 year-1 and of the cropland 703 kg CO2 ha-1 year-1, 

which means that grassland were mainly taking CO2 from the atmosphere where the 

cropland mainly emitted CO2 the atmosphere; also, the grassland results of NEE were 

less variable that the cropland results. 

One of the limitations encountered with this research was the scarcity of 

measured data required to perform the calibration/validation process in the study area. 

This lack of data suggests a need to conduct field campaigns dedicated to collect 

weather, agronomic, and soil data to improve field- and regional-scale model 

predictions. In the next chapter, the spatially-explicit EPIC modeling system validated 

for South-Central Uruguay conditions will be deployed to evaluate the evolution of 

crop and soil productivity under contemporary grassland-cropland conversions and 
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future climate, land-use, and management scenarios. 

Chapter 3: The effects of change from grassland to cropland 

on soil carbon and erosion: Uruguay case study 

3.1 Introduction 

Global croplands, pastures, plantations, and urban areas have expanded in 

recent decades, accompanied by large increases in energy, water, and fertilizer 

consumption. Such changes in land use have enabled humans to appropriate an 

increasing share of the planet’s resources, but they also potentially undermine the 

capacity of ecosystems to sustain food production, maintain freshwater and forest 

resources, maintain biodiversity, regulate climate and air quality, and attenuate the 

impact of infectious diseases. Modern land-use practices, while increasing the short-

term supplies of material goods, may undermine many ecosystem services in the long 

run, even on regional and global scales  (Foley et al., 2005).  Agricultural expansion 

and intensification, at the expense of forest and grassland conversion, plowing, 

irrigation, and agrochemicals have led to (Lal, 2007):  (1) deterioration of soil quality, 

mainly due to water and wind erosion, (2) increased irrigated land area (~280 Mha or 

19% of the total global cropland area) and water use (18,200 km3 of water in 

evapotranspiration or 26% of the global terrestrial evapotranspiration), (3) disrupted 

global carbon cycle contributing to a ~38% increase in atmospheric CO2 (from 280 

ppm in ~1750 to 385 ppm in 2006), (4) accentuated use of fertilizers and pesticides to 

increase food production, and (5) caused mass extinction of plant and animal species  

Expanding croplands to meet the needs of a growing population, changing 
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diets, and biofuel production also comes at the cost of reduced carbon stocks in 

natural vegetation and soils (West et al., 2010). Soil Organic Carbon (SOC), is one of 

the principal indicators of sustainability and soil quality due to its positive influence 

on many soil physical, chemical, and biological properties (Reeves, 1997). 

Undoubtedly, SOC is the most useful quality indicator; SOC it is strongly linked not 

only with crop growth but also with plant growth under natural conditions. Healthy 

natural vegetation is essential to avoid degradative processes and maintain buffering 

effect on some contaminants (Bastida et al., 2008). Conversion of natural to 

agricultural ecosystems in the USA has depleted the SOC pool by 3 to 5 Pg C. 

Worldwide, agro-ecosystem’s soils (croplands, grazing lands, rangelands) have been 

depleted of their SOC pool by 25–75% depending on climate, soil type, and historical 

management (Lal, 2002).  

Soil erosion is a major environmental threat to the sustainability and 

productive capacity of agriculture (Pimentel et al., 1995) and the most widespread 

form of soil degradation (Lal, 2003). Erosion results from kinetic energy transmitted 

from water (rainfall and runoff) and wind to soil. Raindrops hit exposed soil with an 

explosive effect, launching soil particles into the air. In most areas, raindrop splash 

and sheet erosion are the dominant forms of erosion.  Erosion increases dramatically 

on steep fields used for agriculture. Living and dead plant biomass left on fields 

reduce soil erosion and water runoff by intercepting and dissipating raindrop and 

wind energy. Both soil texture and structure influence the susceptibility of soils to 

erosion. Other factors such as slope gradient and length, SOC, and vegetative cover 

influence the rate of erosion. Soils with medium to fine texture, low SOC, and weak 



 

 57 

 

structural development have low infiltration rates and experience increased water 

runoff (Pimentel et al., 1995). Erosion causes on-site and off-site effects. When water 

erosion occurs, on-site effects become evident through the formation of rills and 

gullies, increased water runoff, and reduced water availability for crop growth. 

Examples of off-site effects include sediment deposition, blockage of waterways, 

damage to infrastructure, and pollution of water bodies. 

The overall goal of this research is to identify temporally and spatially and 

quantify the possible degradation (loss of soil quality) resulting from the conversion 

of natural grassland to cropland. As mentioned before, even though, the land use 

change from one ecosystem to the other, could impact on: soil, plants, atmosphere, 

geology and hydrology, the focus of this research will be in the soil component, 

which is the most affected by anthropogenic processes (management) (Sands and 

Podmore, 2000), with the main focus on soil quality (“health”) as a quantitative 

indicator of degradation (West and Wali, 2002).  Even though they could be related to 

the main question, issues such as economic sustainability, social impacts, chemical 

contamination, biodiversity losses, and climate impacts are not addressed in this 

research. 

This research was conducted using the natural grassland regions of the 

Republic of Uruguay (Uruguay) as the study area. The rationale for selecting this 

study area includes: 1) Uruguay still has a high percentage of natural grasslands in 

contrast with other regions of the world; 2) this area has been used for grazing beef 

cattle for more than 100 years, one of the main exported products of this country, but 
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nowadays this area is threatened by a recent LU change from grasslands to croplands; 

and 3) the availability of the data to perform this research. 

3.2 Materials and methods 

3.2.1 Study area  

Uruguay is located in the southeast of South America, between 30º and 35º 

South and 54º and 59° West. The total 

land area is 176,215 km2. The region is 

dominated by rolling plains reaching a 

maximum elevation of 514 m. The 

climate is temperate, with a range of 

rainfall between 1,100 – 1,300 mm yr-1, 

mean temperatures of 11°C in winter 

and 27°C in summer, and extreme 

temperatures of - 4°C and 40°C. The main ecosystem is Grasslands associated with 

riverside bush forest. Soils are slightly-acidic, Prairie Soils (Mollisols) (Berreta, 

2003; Castaño et al., 2011). The “Southern Campos” sub-region (Soriano and 

Paruelo, 1992) was selected as the study area (Figure 3.1), it is located in the Center-

South of Uruguay where soils support natural grassland and have crop use capabilities 

but restricted by their intrinsic biophysical characteristics (MGAP-RENARE-DSA, 

2003). In the past, this area was considered “marginal” to grow cash crops; 

historically, the crops were located West of this area in soil more suitable, but it is 

almost full covered; as a consequence the expansion to more “marginal” lands was 

Figure 3.1 Map of Uruguay, showing 

the study area. 
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been done recently.     

 

Currently, the Uruguayan agro-ecosystem is composed of two main sub-

systems, which usually coexist in the landscape: a) Natural Grasslands and b) 

Croplands. The Natural Grassland sub-ecosystem is defined as a vegetative cover 

formed by grasses along with herbs and associated shrubs, where trees are scarce. It is 

used by domestic herbivores throughout the year (continuously), the herbivores are 

bovine and also ovine, grazing together. This grassland is an environment with great 

richness in grass species (~400) of summer (C4) and winter (C3) habits, with 

perennials predominating over annuals. Of this great number of species, 10 (mostly 

C4) are the main contributors of the annual forage production, which averages 3-4 

Mg year-1 of dry matter (DM) (Berreta, 2003). The Cropland sub-ecosystem is rainfed 

where the main crops are soybean in summer and wheat in winter all produced with 

no-tillage (MGAP-DIEA, 2015).  About half of the crop area rotates from summer to 

winter and the other half is only a summer-summer rotation (Fig. 3). Finally, the land 

tenure of Uruguayan agro-ecosystem is entirely private of which a high percent is 

rented. The average farm size is 775 ha (MGAP-DIEA, 2015). 

3.2.2 Description of the EPIC model  

The Environmental Policy Integrated Climate (EPIC) Model is a computer 

model originally developed during the 1980's to simulate the impacts of water and 

wind erosion on crop and soil productivity throughout the United States (Williams et 

al., 2008a). Operating at field / small watershed spatial scales and at a daily time step, 
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EPIC contains physically-based algorithms to simulate soil and crop processes such 

as crop growth, erosion, nutrient balance, and related processes (Figure 3.2). It is 

designed to simulate homogeneous areas that are characterized by a common weather, 

soil, landscape, crop rotation, and management. The processes simulated include leaf 

interception of solar radiation, conversion to biomass, a division of biomass into 

roots, above ground biomass, and economic yield, root growth, water use, and 

nutrient uptake (Gassman et al., 2005). The main inputs needed to run EPIC are daily 

weather (maximum and minimum temperature and rain), soil-layer properties (soil 

layer depth, texture, bulk density, and C concentration among others), and site 

characteristics (latitude, longitude, elevation and Slope) (Williams et al., 2006). 

Since its first development and application, EPIC has evolved into a 

Figure 3.2 Diagram of main components, inputs and outputs the EPIC model.  
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comprehensive agro-ecosystem model capable of simulating the growth of crops 

grown in complex rotations and management operations, such as tillage, irrigation, 

fertilization and liming (Izaurralde et al., 2006b). EPIC has been continuously 

improved through the additions of algorithms to simulate, for example, water quality, 

climate change and the effect of atmospheric CO2 concentration, and nitrogen, 

carbon, and phosphorus cycling (Izaurralde et al., 2012).   

This study was focused on three main EPIC sub-models/process: 1) crop sub-

model, 2) Carbon-Nitrogen sub-model, and 3) (water) erosion processes. EPIC uses a 

single plant growth model with parameters to simulate about 100 plant species, 

including crops (annual and perennial), native grasses, and trees; each characterized 

by a unique set of parameter values. It uses the concept of radiation-use efficiency 

(Williams et al., 2008b) by which a fraction of daily photosynthetically active 

radiation is intercepted by the plant canopy and converted into plant biomass. Plant 

phenology is controlled via heat-unit calculations where each crop/plant species has 

base and optimal air temperatures for growth. Potential daily gains in biomass are 

affected by environmental stresses such as water, temperature, nutrients (primarily N 

and P), and aeration (Parton et al., 1988). The coupled carbon-nitrogen C:N sub-

model follow the approach used in the  Century model (Izaurralde et al., 2006b), 

where the C and N in soil organic matter are distributed among three pools or 

compartments: active (microbial), slow and passive. These pools differ in size and 

function while their turnover times range from days to hundreds of years (Izaurralde 

et al., 2006b). The EPIC module for water-induced erosion simulates erosion caused 

by rainfall and runoff and by irrigation (furrow, sprinkler, and drip) (Apezteguía et 
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al., 2009), although the later capability was not used here.  
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3.2.3 Homogenous Spatial Modeling Units (HSMU). 

  The identification of the LU change areas that occurred during 2000 to 2013 

was made using LCCS-FAO products for Uruguay for the years 2000 and 2013 

(MGAP Uruguay et al., 2011; MVOTMA-DINOT, 2015). These products were made 

using Landsat-TM images based on the FAO LCCS classification (Di Gregorio, 2016; 

Di Gregorio and Leonardi, 2016). The ESRI shapefiles were downloaded from 

MVOTMA – SIT (http://www.mvotma.gub.uy/ambiente-territorio-y-

agua/item/10002809-sistema-de-informacion-territorial.html). The process consisted 

in overlapping the 2013 Cropland classes with the 2000 Grassland class (Figure 3.3).  

This resulted in one ESRI shapefile containing polygons with areas that had 

experienced changes in land use. Subsequently, each of these polygons was used as 

Figure 3.3 Building of the Homogeneous spatial modeling units (HSMU). 

http://www.mvotma.gub.uy/ambiente-territorio-y-agua/item/10002809-sistema-de-informacion-territorial.html
http://www.mvotma.gub.uy/ambiente-territorio-y-agua/item/10002809-sistema-de-informacion-territorial.html
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Homogenous Spatial Modeling Units (HSMU). Finally, using the same methodology 

and data that was presented in the previous chapter, each HSMU was assigned the 

appropriate data needed to run the EPIC model at this scale (soil, Slope, elevation and 

daily weather data).  

3.2.4 Detection of changes in winter and summer crop cover from 2000 to 2015  

Once the new crop areas were identified, the next step was to identify when 

this transition had occurred and what type of crop rotation prevailed in these new 

areas. Due to insufficient 

temporal coverage of Landsat 

images to address this issue, 

the identification was done 

using MODIS Vegetation 

Indexes (VI) (MOD13Q1) 

(Huete et al., 2002) to trace 

crop/pasture phenologies. The MODIS VI were used to describe plant phenology at a 

regional scale using farm-plot level data (Zhang et al. (2003). In order to identify the 

date of the LU change and the crop rotation for each HSMU, a yearly land cover 

product of winter (wheat) and summer crops (soybean) from 2000 to 2015, based on 

MODIS-EVI images using the methodology proposed by (Tan et al., 2011) and 

(Araya et al., 2013), was used, as implemented by A. Cal (pers. com., 9/15/2016). 

These products were intersected with the HSMUs to derive crop rotations and LU 

change dates for each polygon (Figure 3.4).   

Figure 3.4 Example of summer crop cover estimated 

with MODIS images (red) over the HSMUs (green). 
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3.2.5 Building the EPIC model management scenarios   

Management scenarios for the period 2000 – 2015 were developed, with the 

objective of reproducing the recent LU conversion (1) and also other hypothetical 

situations (3) Four scenarios were considered (Figure 3.5): 1) Grass-Crop, this 

scenario was intended to mimic the land use changes in this period, which starts with 

grassland followed by conversion to  crops,  2) Grassland: continuous grassland, with 

no LU change, 3) Soy-Soy: soybean crop in the summer and fallow in winter, 

repeated every year and, 4) Soy-Wheat: soybean in the summer and wheat in the 

winter season, also repeated every year. 

  To construct the scenario Grass-Crop, an R script (R Development Core 

Team, 2013) was used to build a management file for each HSMU, using the data of 

LU change year and the crop rotation estimated with MODIS images (Section 3.2.5). 

The conversion from Grassland to Cropland was made using no-tillage technology 

that is using herbicides to kill the grassland, followed by direct seeding without 

plowing. Note that both cropping scenarios included soybean.  
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3.2.6 Parallel version of model  

 

 

 

The EPIC spatial model was run for each HSMU, which required about 7,000 

individual model runs To reduce  the time required parallel computing software 

developed by Zhang et al. (2014) was used in a Linux server using a Python 

(python.org) script. An R Statistic soft script (R Development Core Team, 2013) was 

used to extract the study variables (grassland production and crop yield) from EPIC 

output files and to place them in Excel spreadsheets. 

3.2.7 The effects of grassland to cropland change on soil degradation 

 

In order quantify the degradation (loss of SOC) resulting from the conversion 

of natural grassland to cropland with different crop rotations, the modeled soil erosion 

by water and the changes in SOC results were examined, both temporally and 

Figure 3.5 Diagram of the four management scenarios simulated with 

EPIC. 
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spatially. 

First, the SOC change (complete soil profile) and the soil loss by erosion were 

estimated for the Grass-Crop LU change; second, the impact on SOC and erosion for 

each Soil Unit; and, finally, the impact of the management and the biophysical 

environment (Slope, initial SOC and the combined effect of initial SOC and Slope) 

were analyzed. 

Many of the characteristic properties used to group soils into spatial units 

(SOC content, texture (clay, sand and silt), pH, bulk density, water holding capacity, 

and soil depth) affect SOC dynamics and soil erosion  (Hassink, 1994, 1992, Wang et 

al., 2013, 2010). The study area is covered by 84 soil units (Figure 3.6), from which 

32 units cover 93% of the total area (Table 3.1) 

  

Figure 3.6 Soils units map. 
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Figure 3.8 Initial SOC map (a) and frequency graph (b) of the HSMUs 

 a) b) 

 

 

 

 

 

 

 

The Slope gradient (%) of the HSMUs are spatially distributed within the 

study area (Figure 3.7a), ranged from 0% to 10%, with an average of 2.7%.Where the 

50% of the area has a Slope of 1.8% to 3.2% (Figure 3.7b). 

 

 

  

Figure 3.7 Slope map (a) and frequency graph (b) of the HSMUs 

a) b) 
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The Initial SOC content of the HSMUs are also spatially distributed within the 

study area (Figure 3.8a), ranged from 33 to 280 Mg C ha-1, with an average of 143 

Mg C ha-1. The Initial SOC content is mainly concentrated in two distribution bins 

averaged 107 and 205 Mg ha-1 (Figure 3.8b); these two bins were selected for the 

analysis.  

Finally, the EPIC model has several equations available to simulate water 

erosion, based on previous research conducted in Uruguay (Clérici C., 2001; Puentes, 

1981), the equation selected was the Revised Universal Soil Loss Equation (RUSLE) 

(Renard et al., 1991):      

A = R * K * LS * C * P            (Equation 3.1) 

Where:  

A= estimated average soil loss in tons per ha per year 

R= rainfall-runoff erosivity factor 

K= soil erodibility factor 

L= slope length factor  

S= slope steepness factor  

C= cover-management factor 

P= support practice factor 

 

 

The following standard statistical tests were conducted:  1) when the impact of 

the management was addressed, Tukey's HSD was used to evaluate the probability 

that the means of the model outputs of the different scenarios were the same and, 2) 

when the combined effect of initial SOC and Slope was analyzed, multiple regression 

analysis of the standardized values of the modeled outputs for each scenario was 

performed in order to determine the weight of each factor in the final results. 
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3.3. Results 

3.3.1 Grassland to cropland changes from 2000 to 2013  

The LCCS-FAO map of Uruguay was used to measure changes in the 410,000 

ha study area from 2000 to 2013. The 7,239 HSMU polygons had an average area of 

57 ha (Figure 3.3).  90% of the area changed after 2005 (Figure 3.9), so the transitions 

in the period from 2006 to 2015 were studied.  

 

 

 

 

 

 

 

 

3.3.2 Winter and summer crop cover from 2000 to 2015 

The locations of LU change estimated with the MODIS LU product agreed 

with the increment of the crop area in the national statistics from 2000 to 2015 

(MGAP-DIEA, 2016) (Figure 3.9). Also, the ratio of winter to summer crops of  1:3 

agreed with that derived from the yearly average national statistics (MGAP-DIEA, 

2016).  

Figure 3.9 Estimated yearly area of LU change. 
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3.3.3 Soil degradation of the study area 

The recent LU changes simulated by EPIC (Grass-Crop scenario) revealed a 

soil degradation associated with these changes, with losses of soil by erosion and 

SOC. The simulated average yearly soil loss due to water erosion was 12.54 Mg ha-1 

year-1 (Figure 3.10a) with a minimum of 3.52 Mg ha-1 in 2008 and a maximum of 

23.49 Mg ha-1 in 2013. These values were similar to those reported by García Préchac 

and Durán (2001), Hill et al. (2008), Clérici  (2001) and Puentes (Puentes, 1981) for 

different soil and management conditions in Uruguay. Considering the distribution of 

the yearly average values per HSMU over the study area, the 90th percentile of 

simulated soil erosion ranged from 2.09 to 32.75 Mg ha-1 (Figure 3.10a). The annual 

total soil loss due to water erosion averaged 5,142 Gg year-1 over the whole study 

area during the study period.  

  

b) a) 

Figure 3.10 Maps of average yearly soil loss by erosion (a) SOC loss (b) and of 

Grass-Crop scenario. 
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Soil organic C losses are closely linked to erosion, as demonstrated by (Lal, 

2005, 2003) when comparing SOC pools between severe and slightly eroded soils. In 

this study, the simulated average yearly SOC loss per hectare for the whole study area 

for the study period was 1.08 Mg ha-1 year-1 with a minimum of 0.50 Mg ha-1 in 2008 

and a maximum of 1.02 Mg ha-1 in 2006. Again, considering the 90th percentile of the 

distribution of the yearly average values per HSMU over the study area, the simulated 

spatial distribution in SOC loss ranged from 0.39 to 1.96 Mg ha-1 (Figure 3.10b).   

Overall, the study area lost an average of 441 Gg C year-1. 

3.3.4 Soil types and soil degradation 

The relation between the characteristic properties used to group soils into 

spatial units and SOC dynamics and soil erosion were clearly present in our study 

(Table 3.1).  For example, soil units 2.21 and 10.7 (Table 3.2, red rectangle), which 

cover similar areas and have the same depth (Table 3.1), but differ in texture (unit 

10.7 has more silt and less sand) and initial SOC (unit 10.7 has almost double), 

differed two to three fold in erosion and almost the same for SOC (Table 3.2).  

 

Description Layer1 Layer2 Layer3 Layer4 Layer1 Layer2 Layer3

Depth to bottom of layer (m) 0.21 0.32 0.59 0.80 0.20 0.40 0.85

Organic carbon concentration (%). 3.19 2.03 1.74 1.04 1.73 1.25 0.69

% sand. 31.0 26.0 18.0 24.0 20.0 13.0 12.0

% silt. 44.0 42.0 20.0 26.0 57.0 42.0 43.0

Bulk Density (T/m3) 1.17 1.28 1.53 1.38 1.29 1.33 1.38

soil pH 5.5 6.5 6.7 8.0 5.7 6.5 7.3

Sum of bases (cmol/kg) 10.2 14.7 20.9 30.6 9.2 19.7 21.7

Cation exchange capacity (cmol/kg) 18.5 21.1 29.0 34.0 12.8 22.5 22.8

Soil Unit 2.21 Soil Unit 10.7

Table 3.1 Description of soil unit 2.21 (left) and 10.7 (right).  
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Table 3.2 Average SOC loss and soil loss by erosion by soil units. 

 

 

  

Soil Unit area (ha)
Percentage 

Accumulated Grass-Crop Grass Soy-Wht Soy-Soy Grass-Crop Grass Soy-Wht Soy-Soy

10.3 81056.2 20% -1.4 -1.0 -1.2 -2.2 12.9 2.5 8.0 33.5

5.4 38765.4 29% -0.8 -0.4 -0.5 -1.1 15.8 3.1 15.5 39.5

10.12 36764.9 38% -1.2 -0.9 -1.0 -1.8 11.0 2.2 8.2 29.9

10.7 28873.9 45% -0.6 -0.3 -0.3 -0.7 7.7 1.4 7.6 20.1

2.21 28777.8 52% -1.7 -1.1 -1.4 -2.3 23.6 4.4 17.5 57.7

10.2 13722.4 55% -1.2 -0.8 -1.0 -1.5 10.7 2.2 6.7 29.3

2.20 9902.6 58% -0.9 -0.4 -0.6 -1.0 27.1 5.1 30.2 75.2

12.11 9813.3 60% -1.5 -1.2 -1.2 -2.3 9.1 1.6 7.0 25.6

12.22 9013.8 62% -1.6 -1.2 -1.2 -2.2 8.3 1.4 5.4 23.2

4.1 8390.4 64% -0.7 -0.3 -0.3 -0.7 7.0 1.2 5.6 21.6

5.3 8252.2 66% -0.7 -0.3 -0.4 -0.9 13.9 2.7 11.9 32.4

5.5 8199.7 68% -1.4 -0.9 -1.1 -2.2 16.5 3.3 11.9 41.7

13.32 6761.2 70% -1.3 -0.9 -1.0 -1.6 10.3 2.0 4.4 33.5

6.16 6394.8 71% -1.3 -0.6 -0.8 -1.7 20.6 3.8 12.6 57.1

3.54 5942.2 73% -0.6 -0.3 -0.4 -0.7 5.9 1.1 6.2 14.2

D10.1 5844.7 74% -0.6 -0.4 -0.5 -0.7 5.3 1.1 4.3 13.5

10.13 5831.3 76% -0.6 -0.3 -0.4 -0.8 11.4 2.3 10.8 30.2

G10.2 5775.4 77% -0.9 -0.5 -0.6 -1.4 10.7 1.8 7.2 33.6

13.4 5278.1 78% -1.4 -0.8 -0.9 -1.9 12.0 2.0 6.4 37.7

G10.6b 5206.8 80% -0.6 -0.3 -0.4 -0.5 3.4 0.6 2.8 10.0

12.21 5184.8 81% -1.1 -0.7 -0.8 -1.5 12.0 2.1 9.6 34.6

8.5 4935.2 82% -0.5 -0.4 -0.4 -0.5 9.7 1.9 5.7 26.4

G10.6a 4673.9 83% -0.6 -0.3 -0.4 -0.7 7.2 1.3 6.1 22.0

8.6 4612.4 84% -0.6 -0.3 -0.4 -0.5 4.6 0.9 3.9 13.0

8.8 4530.5 85% -0.6 -0.3 -0.3 -0.6 10.3 1.8 7.7 26.4

10.1 4142.0 86% -1.6 -1.3 -1.4 -2.5 12.0 2.6 5.0 33.4

10.16 4085.7 87% -1.3 -0.8 -1.0 -1.7 10.5 1.9 7.2 25.2

10.8a 3920.8 88% -1.1 -0.9 -1.0 -1.7 11.3 2.2 7.9 28.5

10.4 3730.0 89% -1.0 -0.8 -1.0 -1.2 6.8 1.5 4.3 18.9

10.8b 3672.8 90% -1.3 -1.0 -1.1 -1.9 11.3 2.4 9.5 29.3

9.3 3527.8 91% -0.4 -0.2 -0.2 -0.3 4.2 0.7 3.8 10.1

6.15 3483.6 92% -1.0 -0.4 -0.6 -1.2 13.6 2.4 10.2 41.5

9.5 3184.2 93% -0.8 -0.5 -0.6 -0.9 8.2 1.4 6.4 19.1

Average -1.0 -0.6 -0.7 -1.3 11.1 2.1 8.4 29.9

Std. Dev. 0.4 0.3 0.3 0.6 5.1 1.0 5.1 13.7

Average SOC loss Mg ha-1 year-1 Average soil loss erosion Mg ha-1 year-1
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3.3.5 Effects of anthropogenic and biophysical drivers on soil degradation 

3.3.5.1 Anthropogenic (Management) 

Farmers select cultivation method, cultivar selection, planting date and 

method, nutrient and pest management, and harvest and post-harvest treatments. 

These choices, when combined with seasonal weather and soil-landscape 

characteristics, determine the extent of soil degradation. Here, the focus was on the 

crop rotation of winter and summer crops and also fallow period; i.e., after a summer 

crop, it could be planting a winter crop, or keeping the land fallow.  

The address the impact of this management practice, comparisons between 

scenarios (Grass, Grass-crop, Soy-Wheat and Soy-Soy) were done, using the 

grassland condition (Grass) (no LU change) as a baseline scenario. On Grass 

scenario, the average simulated yearly loss for the whole study area for the study 

period of soil by water erosion was 2.4 Mg ha-1 year-1, while the average yearly SOC 

loss was 0.7 Mg ha-1 year-1   (Figure 3.11).  

 

  

  

b) a) 

Figure 3.11 Maps of average yearly SOC loss (a) and soil loss by erosion (b) of 

Grass scenario. 
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The simulated crop rotation scenarios had large effects in erosion losses, the 

Grass scenario (baseline) produced the minimum soil loss, followed in increasing 

order by Soy-Wheat and Grass-Crop (medium), and finally Soy-Soy (maximum) 

(Table 3.3), all these different were statistically significant (p<0.05). The loss in the 

Grass-crop scenario was 5.3 times more that for Grass, 4.0 times more with Soy-

Wheat and 13.9 times more with the Soy-Soy. There was a notable spatial variability 

in the average soil loss by erosion between the different scenarios (Figure 3.12).  

Table 3.3 Soil loss by erosion under the different scenarios. 

 

Average†      
(Mg ha-1 year-1) 

Study area        
(Gg year-1) 

Compared with 
Grassland  (times) 

Grass 2.4a†† 
                       

964    

Grass-Crop 12.5c 
                   

5,142  
                             

5.3  

Soy-Wheat 9.4b 
                   

3,841  
                             

4.0  

Soy-Soy 32.6d 
                 

13,365  
                           

13.9  

   

† Averages of yearly values for all HSMUs  

†† Within columns, means followed by the same letter are not significantly different according to Tukey's HSD (p<0.05) 
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Similarly to the erosion losses, the effect of crop rotation scenarios greatly 

affected SOC loss. The losses were lowest on the Grass scenario (minimum), 

followed in increasing order by Soy-Wheat, and Grass-Crop and Soy-Soy (Table 3.4), 

all these different were statistically significant (p<0.05). Compared with the Grass 

scenario, the losses were 1.2 times greater for Grass-crop, 1.5 times more for Soy-

Wheat and 13.9 times more for the Soy-Soy scenarios. As with the erosion results, 

there was a significant spatial variability of SOC losses (Figure 3.13).  

b) 

c) 

a) 

Figure 3.12 Maps of yearly soil loss by erosion for each scenario after subtraction of 

the Grass scenario:  a) Grass-crop, b) Soy-Soy and c) Soy-Wheat. 

Grass-Crop Soy-Soy 

Soy-Wheat 
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Table 3.4 Average yearly SOC loss under the different scenarios. 

 

Average†         
(Mg ha-1 year-

1) 

Study 
area        

(Gg year-

1) 

Compared 
with 

Grassland  
(times) 

Grass 0.7a†† 285 
 

Grass-Crop 1.1c 441 1.5 

Soy-Wheat 0.8b 340 1.2 

Soy-Soy 1.5d 622 2.2 

 

The differences in soil and SOC losses between scenarios were similar to the 

results of Duval et al. (2016), Novelli et al., (2017, 2013, 2011) and Havlin et al. 

(1990). For example, the greater plant cover in the Grass and Soy-Wheat scenarios 

were inversely correlated with soil erosion and SOC losses; and residues left after 

wheat harvest were also inversely correlated too. The simulation results also 

suggested that, in spite of using No-Tillage, in all scenarios the soils lost SOC, as 

reported by others Milesi et al. (2013), and Maraseni and  Cockfield  (2011). 

  

† Averages of yearly values for all HSMUs  

†† Within columns, means followed by the same letter are not significantly different according to Tukey's HSD (p<0.05) 
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  Figure 3.13. 2006-2015 yearly average SOC loss compared with Grass scenario 

a) Grass-crop, b) Soy-Soy and c) Soy-Wheat. 

b) 

c) 

a) 

Grass-Crop Soy-Soy 

Soy-Wheat 
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3.3.5.2 Biophysical factors 

Slope had a significant impact on simulated soil loss (Figure 3.14a), as 

expected since slope steepness and length are key components of the soil erosion 

equation (García Préchac et al., 2009; García Préchac and Durán, 2001) (Equation 

3.1).  

 

Slope was also related to SOC loss in all four scenarios (Figure 3.14b); of 

these, Grass-Crop and Soy-Soy were most affected. For example, for an average 

slope of 2.2%, the SOC loss was 0.72, 0.81, 1.03 and 1.40 Mg ha-1 for the Grass, Soy-

Wheat, Grass-Crop and Soy-Soy scenarios, respectively.   

 

Figure 3.14 Impact of slope on average loss of soil by erosion (a) and SOC (b) for  

each LU scenario. 
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Initial SOC content had a lower correlation with soil erosion than C loss 

(Figure 3.15). Average soil loss across the study area during the study period was 

13.3 Mg ha-1 year-1 when initial SOC stock was 107 Mg ha-1, and 15.6 Mg ha-1 year-1 

when initial SOC stock was 205 Mg ha-1. Considering the average of all scenarios, the 

yearly average SOC loss for the whole study area during the modeled period was 6.2 

Mg ha-1 year-1 when initial SOC stock was 107 Mg ha-1 (a 6% loss with respect to its 

initial value) and 14.6 Mg ha-1 year-1 when initial SOC stock was 205 Mg ha-1 (a 7% 

loss with respect to its initial value). Differences between scenarios were consistent 

across the study area, i.e., initial SOC 205 Mg ha-1always lost more carbon than initial 

SOC 107 Mg ha-1 (1 - 1.75 fold more). These results agree with Mann (1986) who 

found low-C soils gained C after cultivation while high C soils lost at least 20%.  

 

 

  

Figure 3.15 Impact of initial SOC on (a) soil loss by erosion and (b) on average 

SOC of each LU scenario. 

a) b) 
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Finally, the combined effect of initial SOC and slope on the soil degradation 

was analyzed. As was presented above in this section, the loss of SOC was related to 

both, in order to determine the importance of each factor, multiple-regression 

analyses of the standardized values of the model outputs for each scenario was used 

(Appendix 2.1.1.). For all scenarios, the initial SOC had the highest coefficients for 

soil losses (Table 3.5); in the Grass scenario, this accounted for about 84% of the 

variance, while in scenarios that included crops (Grass-Crop, Soy-Wheat, and Soy-

Soy) it ranged from 60% to 66%. This less weight of the slope on Grass scenario, is 

explained due to its SOC loss has the less correlation with slope (Figure 3.14b).  

 

 

 

 

 

The simulated average values of SOC loss in the four scenarios, and their 

average for sites with two initial SOC levels and five different slopes (Table 3.6) 

indicated the same strong influence of slope as was found in the regression analyses.  

For example, with an initial SOC of 107 Mg ha-1, the fields with slopes of 2.2% and 

5.0%, lost 0.71 and 0.52 Mg ha-1 year-1, respectively, that is 5.0% and 38% C of their 

initial values. The same trend was observed with initial SOC of 205 Mg ha-1, and the 

effect of slope was greater: 1.79 and 1.18 Mg ha-1 year-1, respectively, which is 51% 

more C loss with 5.0% than 2.2% slope.  For the HSMUs with 2.2% slope (average of 

Initial SOC Slope

Grass 84% 16%

Grass-Crop 65% 35%

Soy-Wheat 66% 34%

Soy-Soy 60% 40%

Table 3.5 Relative contribution of the Initial SOC and Slope 

on the SOC loss (see Appendix 2.2.1). 
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the study area) those with initial SOC 205 Mg ha-1 lost 1.18 and those with 107 Mg 

ha-1 lost 0.52 Mg ha-1 year-1, respectively, that is 130% more C. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As was done with loss of SOC, to quantify the effect of soil loss by erosion, a 

multiple-regression analysis was used to determine the weight of each factor 

(Appendix 2.1.2.). The results (Table 3.7) show that for all scenarios the Slope was 

the dominant factor related to the soil losses by erosion (about 90%) and the Initial 

SOC only weight for 10%.    

Table 3.6 Impact of initial SOC and slope on average SOC loss (Mg ha-1 

year-1) for each LU scenario. 
Initial SOC Slope (%) Grass-Crop Grass Soy-Wheat Soy-Soy

Average slope 0.68 0.35 0.43 0.84
Average 

scenarios

0.8 0.56 0.30 0.28 0.55 0.42

2.2 0.62 0.34 0.38 0.71 0.52

3.6 0.70 0.36 0.46 0.92 0.61

5.0 0.81 0.38 0.54 1.11 0.71

7.9 1.03 0.41 0.75 1.43 0.91

Average slope 1.41 0.95 1.14 2.06

0.8 1.11 0.86 0.85 1.22 1.01

2.2 1.20 0.91 0.99 1.63 1.18

3.6 1.47 0.97 1.17 2.23 1.46

5.0 1.82 1.05 1.41 2.86 1.79

7.9 2.28 1.12 1.84 3.42 2.17

SOC 107

SOC 205
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3.4 Discussion  

Based on the results, it can be concluded that the recent land conversion from 

grassland to cropland in the study area has significantly reduced soil quality. The loss 

of soil by erosion greatly exceeds tolerable limits for maintenance of soil quality in 

the medium to long term both in the Uruguayan environment (García Préchac and 

Durán, 2001) and elsewhere (Pimentel et al., 1995; Verheijen et al., 2009).  The main 

drivers that could affect the erosion processes during the crop stage are the biomass 

and during fallow periods the amount, type of residue and how long it last over the 

soil (Montgomery, 2007). With this management that was common practice leave as 

fallow during winter (management scenarios Grass-Crop and Soy-Soy) with no cover, 

and due to amount of rain are more than 300 mm per season (Castaño et al., 2011) is 

expected that these combined effects could be the main drivers of the loss by erosion 

estimated. 

The main driver of SOC loss is the respiration of soil organisms and the 

harvested portion of the crops that remain over the soils (residue) (Izaurralde et al., 

Table 3.7 Relative contribution of the initial SOC and slope on 

the soil loss by erosion. 

Initial SOC Slope

Grass 10% 90%

Grass-Crop 9% 91%

Soy-Wheat 8% 92%

Soy-Soy 10% 90%



 

 84 

 

2007; Mazzilli et al., 2012). In this study the crops management scenarios include two 

crops soybean and wheat, the first one has less biomass and when harvesting less 

residue (input) is left, and in addition, the residue have a different composition (more 

degradable) which in fact is discomposed (carbon respiration) much quicker than the 

wheat residue.  Finally, less C is incorporated to the soils (inputs) on soybean than in 

wheat, and it could be the main reason of why it loss more soil C than wheat.  

One limitation of our research it was assumed that the entire soil C was lost to 

the atmosphere or runoff but in fact, there is a redistribution of C across the landscape 

with deposition of carbon in the lower areas from higher areas (Gregorich et al., 1998; 

Lal, 2005). The Spatial EPIC model developed here does not include lateral transport 

of materials between adjacent HSMUs. 

The results presented above (Section 3.3.5.2) show that in order to preserve 

the soils under different crop managements, farmers or conservation lawmakers need 

to consider the combined effects of biophysical drivers on soil degradation instead of 

taking each one independently. Also, the results could help farmers to select crop 

rotations based on how crop sequence and slope gradient impact on soil degradation. 

Finally, in the mid-term, a change in the current land use could be necessary 

in order to ameliorate the current soil degradation. Many technological solutions 

could be adopted such as those proposed by Lal (2002) and by studies conducted in 

other regions of Uruguay (Alvarez et al., 1995; Morón et al., 2012). These options 

could be (1) introduction of winter cover crops (grass) to protect the soil and also as a 

soil C input; and (2) rotation with grass and leguminous plants (e.g. Trifolium repens, 
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Trifolium pratense) and lotus (Lotus spp) that have been used in the past in Uruguay 

to restore the soils, also grazed by livestock that increases the soil carbon, as reported 

by Guo and Gifford (2002); and  (3) rotate the summer crop (soybean) with a crop 

that leaves more residues such as Sorghum (Sorghum bicolor (L.) Moench) or Maize 

(Zea mays L.).  

3.5 Conclusions 

The main findings of the study of the impacts of the recent conversion of 

natural grassland to cropland ecosystem in the Center-South of Uruguay, with the  

main focus on soil erosion by water and the changes in soil C stock, were: first, 

analyzing the impact of management (crop rotation),  for the whole study period, on 

average the soil by erosion as a consequence of the recent LU change was  higher 

than the Grass and  the Soy-Wheat scenario, and lower than the Soy-Soy scenario. 

Almost the same trend was observed when the loss of SOC stock is analyzed, in this 

case, the higher loss was Soy-Soy, followed by Grass-Crop and the less loss was Soy-

Wheat and Grass scenarios. Second, analyzing the impact by drivers on soil loss by 

erosion, the highest impact was the Management (crop rotation) followed by Slope 

and finally Initial SOC and the impact on SOC stock the order of the drivers was 

Management,  followed by Slope and the less impact was Initial SOC.  

Finally, it could be concluded that based on the results of this study that the 

recent conversion from Grassland to Cropland has impacted negatively on the soil 

quality and or soil degradation that could be mitigated with improved crop 

management practices. 
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Chapter 4:  Synthesis, discussion and significance 

4.1 Synthesis of research  

Globally, during the last decades there was a conversion at a high rate of 

natural lands to human managed agricultural lands to grow crops, raise animals, and 

obtain timber; as a consequence, this conversion produced a land degradation that 

could impact negatively on future food security, climate and other ecosystem 

services. Currently, there is a demand for quantitative information assessing the 

severity, distribution, and causes of this land degradation in order to mitigate these 

impacts. 

The focus of this research was on grasslands, one of the most modified 

biomes, which have been converted mainly to croplands to produce food, biofuels and 

fiber. A region of natural grassland in Uruguay was selected that had a notable LU 

change during the last 15 years to assess the impact on soil degradation of these 

changes. 

The main goals of this dissertation were: (1) the calibration and validation of a 

bio-physical simulation model to reproduce to simulate key agro-ecological processes 

of this agro-ecosystem,  (2) the identification of the LU change from Grassland to 

Cropland and the yearly land use (crop rotation) of the study area, and (3) the 

quantification of the potential impact on the soil quality (degradation) in the medium-

term of this LU changes, at a regional scale, using the adapted bio-physical 

simulation model, analyzing how the biophysical and anthropogenic drivers affect 
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these impacts. This chapter synthesizes the main findings and discusses their 

significance.  

To address the first goal, the EPIC (Environmental Policy Integrated Climate) 

model was selected to simulate key agro-ecological processes associated with 

grassland-cropland (Izaurralde et al., 2006b; Williams et al., 1984). This model was, 

first developed to run at a point scale, typically one simulation per field,  but lately, it 

has been extended to a spatial domain to simulate regional to country scale processes 

(Zhang et al., 2010).  

In order to simulate at a regional scale, first the model was calibrated and 

validated at a field scale and after that extended to a spatial version, even though 

EPIC is flexible enough to perform under a variety of environments, there was no 

prior experience using the model to simulate Uruguayan agroecosystems. 

Consequently, there was a need to calibrate and validate the model for these 

conditions. This process was performed independently for the grassland and the 

cropland ecosystems because these ecosystems have very different management and 

development conditions. 

It was found that EPIC model consistently reproduced the field-scale crop 

productivity and soil processes under grassland and cropland covers in South-Central 

Uruguay. An acceptable agreement was achieved after calibration and testing of EPIC 

using local data, firstly on the grass and crop yields and, secondly, on the soil loss by 

erosion and the loss of soil carbon.  These results allow to running EPIC at a regional 

scale in the study region. 
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The next step was the development of a spatial version of the EPIC model 

adapted to the main Uruguayan agroecosystems, and after that, the validation for 

Grasslands and Croplands was done. There was good spatial and temporal agreement 

between modeled productivity (NPP) and the indirect indicators used.  

To achieve the second goal, changes in LULC areas during 2000 - 2012 were 

identified with the product LCCS-FAO of Uruguay (MGAP Uruguay et al., 2011; 

MVOTMA-DINOT, 2015) covering  an area of 410,000 ha about 13% of potential 

area  to grow cash crops (MGAP-RENARE-DSA, 2003) were converted during this 

quite short period. Next,  when this transition had occurred and what type of crop 

rotation were used in these new areas (winter and summer crops) was identified using 

MODIS’ Vegetation Indexes (MOD13Q1) (Huete et al., 2002) and vegetation 

phenologies. The findings agreed with the increment of the crop area based on 

national statistics (MGAP-DIEA, 2016) and also the ratio of winter to summer crops 

(1:3)  agreed with that derived from yearly average national statistics (MGAP-DIEA, 

2016). 

Finally, the impact on soil degradation was addressed, with the main focus on 

soil erosion by water and the changes in soil C stock, caused by conversion of natural 

grassland to cropland. The main finding was that crop rotation affected the loss of soil 

by erosion and loss of SOC.  The soil loss by erosion was greatest for Soy-Soy, 

followed by Grass-Crop, and Soy-Wheat and the least effect was continuous Grass, 

almost the same trend was observed when the loss of SOC stock is analyzed, in this 

case, the higher loss was Soy-Soy, followed by Grass-Crop and the less loss was Soy-
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Wheat and Grass. The effects of drivers on soil loss by erosion and on SOC found 

that the type of crop rotation was most important, followed by Slope and finally 

Initial SOC and the impact on SOC stock the order of the drivers was the highest 

Management, followed by Slope and the less impact was Initial SOC.  

The main conclusion, based on the results of this study, was that the recent 

conversion from Grassland to Cropland has impacted negatively on the soil 

degradation (soil quality); it could be mitigated with improved crop management 

practices on the current modified areas and selecting new areas with less potential 

degradation risk (Slope). 

4.2 Relevance to climate, global carbon budget, water quality and food security 

The research was focused on soil degradation, a major aspect of the land 

degradation.  “Land” was defined by the United Nations Convention to Combat 

Desertification (UNCCD) as “the terrestrial bio-productive system that comprises 

soil, vegetation, other biota, and the ecological and hydrological processes that 

operate within the system” (UNCCD/Science-Policy-Interface, 2016). In the context 

of land degradation resulting from land use changes, even though some of them were 

not directly addressed in this research, relevant effects of this conversion are the 

change of the carbon cycle, the climate, water, ecosystem services and biodiversity.  

4.2.1. Impact in the carbon cycle 

Between 1850 and 1990, changes in land use are calculated to have added 124 

Pg C to the atmosphere over this period, about half as much as released from 
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combustion of fossil fuels; where about 108 Pg C are estimated to have been 

transferred from forests to the atmosphere as a result of human activity, and another 

16 Pg C were lost as a result of cultivation of mid-latitude grassland soils (Houghton, 

1999). Shevliakova et al. (2009) using a dynamic land model (LM3V), estimated that 

during the 1990s, globally, a net terrestrial carbon source due to land use activities 

ranges from 1.10 to 1.30 Pg C year-1, where the range is due to the difference in the 

historic cropland distribution, the estimates for the pastures' carbon flux vary from a 

source of 0.37 to a sink of 0.15 Pg C year-1, and for the croplands shows a carbon 

source of 0.60 to 0.90 Pg C year-1.  

In this context, the findings, presented in Chapter 3, shows that the estimated 

impact of the land use change in Uruguay from grassland to cropland on the carbon 

stock was a loss of 0.441 x10-3 Pg C year-1 (Grass-Crop scenario). It could be 

assumed that most of this carbon was released to the atmosphere, due to the main 

proportion of this loss is from heterotrophic respiration; as a result, even if all this C 

was released to the atmosphere, the impact of the LC change of this study region is 

almost insignificant compared to the global emissions of land use activities for 

croplands (between 0.074% and 0.049% of the global)  (Shevliakova et al., 2009).  

The findings of this research in part of Uruguay could be related to a global 

scale applying the Uruguayan findings to regions of the world that have similar 

conditions. An attempt to project the Uruguayan SOC loss at global scale was done; 

basically, it was made mapping the Uruguayan conditions at the global scale and after 

that applying the found Uruguayan SOC loss to this global area.  
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Class - Variable Description Source 
Spatial resolution and 

coverage 

Climate 

Koeppen-Geiger climate 
region dataset 

representative for the 50-
year period 1951-2000. 

(Kottek et al., 2006) 
0.5 degree (30 arc 

minutes) global 

Soil - SOC SOC (0-20cm depth) 

International Soil Science 
Society - World Inventory 
of Soil property Estimates 

(WISE) project,  (Batjes, 
2012) 

 

5 by 5 arc-minutes global 
grid 

Grassland cover 
The data is presented as a 
percentage share of the 

total grid-cell 

Harmonized World Soil 
Database v 1.2 – FAO 

Land Use and Land Cover  
(Fischer et al., 2008) 

5 by 5 arc-minutes global 
grid 

 

In order to find the regions of the world similar to the study area, it was identified 

those that have a similar climate, SOC at 20cm and grassland cover. The data 

available at the global scale (Table 4.1) was used. The criteria used for each variable 

was (1) Koeppen-Geiger climate region Cfa (Humid subtropical, mild with no dry 

season, hot summer and year around rainfall but highly variable) (Kottek et al., 2006), 

(2) SOC (20cm) between 1 and 2%  (Batjes, 2012), and (3) ) Natural, potential 

Grassland cover more than 60% for each grid cell (Fischer et al., 2008); the regions 

that meet each criterion is presented in Figure 4.1 (red areas). Intersecting the areas 

that meet the three criteria a map of the global UY conditions was made (Figure 4.2), 

the resulted  area covers 107,992,500 ha (purple areas) while the UY Study area was 

400,000 ha (0.4% of the global); and was located mainly in Southern-East of South 

America and South-Central US, and spotted areas in Australia, China, Madagascar 

and Mid-East.  

Table 4.1 Mapping Uruguayan conditions at the global scale, data sources. 
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Figure 4.2. Intersection of three aspects of Uruguayan conditions at the global 

scale. See Fig. 4.1 for maps of each component. 

Figure 4.1 Global maps of three components of the Uruguayan environment. 
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The last step was to apply the UY estimations of SOC loss after LU change to the 

global UY conditions, the results are presented in Table 4.2. The estimated potential 

global C losses, if all this area was converted from Grassland, were under the 

different LU change scenarios: 54.0 Tg year-1 on Grass-Crop, 10.8 Tg year-1on Soy-

Wheat and 86.4 Tg year-1 on Soy-soy. These results could be compared to the global 

soil respiration, where the CO2 is released into the atmosphere at an average rate of 

about 60 PgC year-1 (Houghton, 2007).  

 

 

 

 

 
 

4.3.2. Impact on climate and water 

 Land conversion can alter regional climates through its effects on net 

radiation, the division of energy into sensible and latent heat, and the partitioning of 

precipitation into soil water, evapotranspiration, and runoff  (Foley et al., 2005). 

Snyder, Delire, and Foley (2004) using CCM3-IBIS model studied the influence of 

different vegetation biomes on the global climate; in one simulation they completely 

removed the vegetation cover of a particular biome and compared it to a control 

simulation where the biome was present, thereby isolating the climatic effects of each 

UY estimations

Mg ha-1 year-1 Tg year-1 % of global soil 

respiration

Grass-Crop 0.5 54.0            0.09%

Soy-Wheat 0.1 10.8            0.02%

Soy-Soy 0.8 86.4            0.14%

Global UY conditions

Table 4.2 Global net SOC loss after conversion to cropping from Grassland to 

each of the three crop rotations. 
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biome. They found that removal of the grassland and steppe vegetation has the largest 

effect on the central United States with warming and drying of the atmosphere in 

summer. The area that changed from grassland to cropland under this study was 5.6% 

of the total area of the study region, which could not be relevant to produced changes 

in the whole region. But it is expected to produce an impact on the climate at local 

scale (microclimate) as a result of the changes in evapotranspiration, albedo, etc. and, 

also it could affect water catchments on quantity (less runoff) and quality (runoff of 

fertilizers and pesticides).     

4.3.3. Impact on Ecosystem services. 

 Agricultural ecosystems provide humans with food, forage, bioenergy and 

pharmaceuticals and are essential to human well-being relying on services provided 

by natural ecosystems, including pollination, biological pest control, maintenance of 

soil structure and fertility, nutrient cycling and hydrological (Millennium Ecosystem 

Assessment, 2005; Power, 2010). Current trends in land use allow humans to 

appropriate an ever-larger fraction of the biosphere's goods and services while 

simultaneously diminishing the capacity of global ecosystems to sustain food 

production, maintain freshwater and forest resources, regulate climate and air quality, 

and mediate infectious diseases. Furthermore, modern land-use practices, while 

increasing the short-term supplies of material goods, may undermine many ecosystem 

services in the long run, even on regional and global scales (Foley et al., 2005).   

In this regional research was found a loss of soil quality, loss of carbon and 

soil loss by erosion,  these losses could produce a risk on food security as a result of 
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future diminishment of crop yields as was pointed by Lal (2007, 2006) and Izaurralde 

et al. (2006a). Even though this impact could be at a local scale, due to the almost all 

the harvested soybean are exported (Simoes and Hidalgo, 2011),  in the future could 

produce loss of food that is required by a high populated country (e.g. China) and this 

could be a link between a local impact (degradation) with a global impact (food 

security).  

4.3.4. Impact on Biodiversity 

In the Rio de la Plata region, the change from a grassland with a rich number 

of native species (2,000 to 4,000), with about 100 species categorized as endangered 

species which have been categorized as likely to become extinct as was presented by 

many authors (Altesor et al., 2005; Lezama et al., 2014; Paruelo et al., 2007; Soriano 

et al., 1992) to a system with few crops would produce a biodiversity loss of endemic 

species, not only vegetal species also this change would affect soil microbiomes, 

insects and small animals (birds, mammals).  The estimated LU changed area in this 

study area from 2000 to 2013, and as a resulting loss of habitat from the grassland 

environment, was 410,000 ha which represents a 5.6% of the total area of the study 

region. Even though not cover an important percentage of the total area, it was 

concentrated in few soil units as was described in the Section 3.3.4 and due to each of 

these units have as a described characteristic a number of vegetal species (Capurro 

Etchegaray, 1977) there is a risk of loss of these species on the high intensify land use 

areas; as an example, the soil unit 10.3 on 2000 has cropland on 25% of its area while 

in 2013 has 50% or the soil unit 10.12 who has 50% and 67% respectively, both 
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losses a considerable amount of their grassland habitat. Also, a process of landscape 

fragmentation was detected with about 7,300 HSMU (polygons), this process, as was 

reported by Baldi et al. (2006) in the same region, has negative consequences on 

biodiversity.  

4.3 Potential beneficiaries and future research 

The findings of this original research containing a detailed identification of 

the impact on land degradation of a contemporary LU change could serve as a base 

for future researches and could have many potential beneficiaries such as farmers, 

local government, national policy, international programs and for Earth system 

science research. 

Users clearly include the Uruguayan government. The national soil 

conservation laws and acts currently are based only on erosion as an indicator of soil 

degradation in order to ensure crop rotations are used that erode soils below a fixed 

threshold. The result of this research could allow developing new policies to 

ameliorate the soil degradation using the loss of soil carbon also as an indicator to 

preserve the soils.   

Uruguay, as one of the Non-Annex I countries parties of the United Nation 

Framework Convention on Climate Change (UNFCCC), reports national statistics to 

the Secretariat. In October 2016, the 4th report was published (MVOTMA-SNRCC, 

2016) In this document was reported the National Greenhouse Gas Emissions 

Inventory (NGHGI) using methodologies included on the “Tier 1” as was defined by 

UNFCCC  (2003), and also was stated that “A projected future improvement is to 
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estimate the emission/removal on account of biomass change in grassland to cropland 

conversion, as well as carbon stock changes in soils”. The results and also the 

developed methodology (EPIC model) presented here could avoid using “Tier 2” or 

“Tier 3” methodologies in future reports, ideally extended to the country as a whole, 

including the traditional crop areas (South-West) and also others “marginal” lands to 

grow cash crop that remains less impacted by the LU change (North).   

The results of this research could be also a contribution for the next 

Uruguayan national report to the United Nations Convention to Combat 

Desertification (UNCCD) - PRAID2, the last of which was for the 5th cycle (2014-

2015) (UNCCD, 2015).  

Farmers could be another potential 

beneficiary; the results could help them 

when they plan to change grassland to 

crops, taking into account the possible 

impact on land degradation of this 

transition, and the best types of land 

management (crop rotation) to adopt. The 

comprehensive outputs of the modeling also 

allow the economic consequences of the 

different rotations to be assessed. This could be applied immediately as a decision 

support system (Figure 4.3) (INIA Uruguay - GRAS Unit, 2014, 2012). Simple 

presentations of the results are possible, especially with the spatial products. 

Figure 4.3 SIGRAS - INIA GRAS Unit 

Geographic Information System.  
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Finally, this research could contribute to future scientific investigations. For 

example: to enhance an existing use of the EPIC model to assess the effects on 

eutrophication and water quality of phosphorus losses from grasslands fertilized with 

broiler litter (Pierson et al., 1997); assessment of risks to food security (Aggarwal et 

al., 2010) of land degradation associated with climate changes. The modeling 

methodology (EPIC model) used in this research, makes it possible to assess the 

future effects on soil degradation as a consequence of the different possible climate 

change scenarios (IPCC, 2013); and to expand the scope of existing studies of the 

impact of climate change on Rio de Plata region, which was focussed on crop yields 

(Travasso et al., 2006) and grasslands production (Lauenroth et al., 2004) alone, 

without consideration of land degradation.  
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Appendix 1. Field scale validation statistical tests 

The data analysis for this paper was generated using the Real Statistics Resource Pack 

software (Release 4.3). Copyright (2013 – 2015) Charles Zaiontz. www.real-statistics.com 

 

1.1. Field scale validation of Grassland ecosystem 

 
1.1.1. Yearly forage yields of INIA-TyT-RS site  

 

 

 

  

 Yearly Simulated (EPIC) vs Measured forage yield (DM Mg ha
-1

)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Simulated 12 3.548 0.530

Measured 12 3.394 0.836

Difference 12 0.154 0.585 0.16221 0.948918 11 0.263183 0.264196

T TEST

 p-value t-crit lower upper sig

One Tail 0.180691 1.782288 no

Two Tail 0.361382 2.178813 -0.1995 0.50735 no

Regression Analysis

OVERALL FIT

Multiple R 0.777 AIC -16.2407

R Square 0.604 AICc -13.2407

Adjusted R Square 0.565 SBC -15.2709

Standard Error 0.471

Observations 12

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 3.390562 3.390562 15.26253 0.002929 yes

Residual 10 2.221494 0.222149

Total 11 5.612057

coeff std err t stat p-value lower upper sig

Intercept -0.0988 0.938184 -0.10532 0.918201 -2.18922 1.99159

Slope 1.0153 0.259891 3.906729 0.002929 0.436251 1.5944 yes

file:///C:/Users/sprince/Downloads/www.real-statistics.com
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1.1.2. Seasonal forage yields of INIA-TyT-RS site 

 

 

  

 Seasonal Simulated (EPIC) vs Measured forage yield (DM Mg ha
-1

)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 51 0.915 0.463

Simulated 51 0.872 0.627

Difference 51 0.044 0.356 0.050 -0.00243 50 0.00034 0.000344

T TEST

 p-value t-crit lower upper sig

One Tail 0.499035 1.675905 no

Two Tail 0.99807 2.008559 -0.10026 0.100017 no

Regression Analysis

OVERALL FIT

Multiple R 0.828 AIC -134.557

R Square 0.685 AICc -134.046

Adjusted R Square 0.679 SBC -130.693

Standard Error 0.262

Observations 51

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 7               7               106.6382 6.85E-14 yes

Residual 49 3               0               

Total 50 11            

coeff std err t stat p-value lower upper sig

Intercept 0.339 0.063 5.34983 2.31E-06 0.211558 0.466114

Slope 0.611 0.059 10.32658 6.85E-14 0.492267 0.730153 yes
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1.1.3. Yearly forage yields of SUL-CC-RS site  

 

 
 

  

Yearly Simulated (EPIC) vs Measured forage yield (DM Mg ha
-1

)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Simulated 6 3.089 0.367

Measured 6 3.277 0.701

Difference 6 -0.188 0.507 0.207 -0.90651 5 0.37008 0.375702

T TEST

 p-value t-crit lower upper sig

One Tail 0.203116 2.015048 no

Two Tail 0.406232 2.570582 -0.72033 0.34474 no
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1.1.4. Yearly SOC loss and stock (15cm) of INIA-TyT-RS site  
 

 

  

Simulated (EPIC) vs Measured SOC loss (15cm depth) (Mg ha -1 year-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 6 0.496 1.2316

Simulated 6 0.449 0.1766

Difference 6 0.047 1.1835 0.4831805 0.09812715 5 0.04006024 0.0438416

T TEST

 p-value t-crit lower upper sig

One Tail 0.46282185 2.01504837 no

Two Tail 0.9256437 2.57058184 -1.1946419 1.28946815 no

Yearly Simulated (EPIC) vs Measured SOC (15cm depth) (Mg ha -1)

Regression Analysis
OVERALL FIT

Multiple R 0.846 AIC -7.30813916

R Square 0.716 AICc 0.69186084

Adjusted R Square 0.660 SBC -7.41631887

Standard Error 0.528

Observations 7

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 3.5145 3.51448413 12.6273989 0.01632665 yes

Residual 5 1.3916 0.2783221

Total 6 4.9061

coeff std err t stat p-value lower upper sig

Intercept 15.313 7.15542691 2.14005172 0.08531176 -3.08062676 33.70659412

Slope 0.630 0.17733283 3.55350516 0.01632665 0.17430457 1.08600166 yes
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1.2 Field scale calibration and validation of Cropland 

ecosystem 

1.2.1. Crop grain yield of INIA-LE-RS site after HydroPSO 

automatic calibration  

 

Simulated (EPIC) vs Measured crop grain yield (Mg ha -1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Simulated 29 4.76 1.652

Measured 29 4.76 1.753

Difference 29 0.00 0.678 0.12583 0.015072 28 0.002799 0.002848

T TEST

 p-value t-crit lower upper sig

One Tail 0.494041 1.701131 no

Two Tail 0.988081 2.048407 -0.25585 0.259648 no

Regression Analysis

OVERALL FIT

Multiple R 0.922 AIC -19.6686

R Square 0.851 AICc -18.7086

Adjusted R Square 0.845 SBC -16.934

Standard Error 0.689

Observations 29

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 73.17494 73.17494 154.0925 1.14E-12 yes

Residual 27 12.82167 0.474877

Total 28 85.99661

coeff std err t stat p-value lower upper sig

Intercept 0.099864 0.396433 0.251908 0.80302 -0.71355 0.913277

Slope 0.978619 0.078836 12.4134 1.14E-12 0.816862 1.140376 yes
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Wheat:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 9 6.4 0.776945

Simulated 9 6.3 0.343662

Difference 9 0.1 0.64338 0.21446 0.515507 8 0.171836 0.179305

T TEST

 p-value t-crit lower upper sig

One Tail 0.310069 1.859548 no

Two Tail 0.620138 2.306004 -0.38399 0.605101 no

Soybean:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 10 2.9 0.534413

Simulated 10 2.8 0.622122

Difference 10 0.1 0.558215 0.176523 0.322904 9 0.102111 0.107017

T TEST

 p-value t-crit lower upper sig

One Tail 0.377072 1.833113 no

Two Tail 0.754144 2.262157 -0.34232 0.456323 no

Sorghum:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 10 5.1 1.436906

Simulated 10 5.3 1.127759

Difference 10 -0.2 0.839036 0.265327 -0.61057 9 0.193079 0.199434

T TEST

 p-value t-crit lower upper sig

One Tail 0.278294 1.833113 no

Two Tail 0.556588 2.262157 -0.76221 0.43821 no
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1.2.2. Crop grain yield of INIA-SRRN-RS site  

 

 

  

Simulated (EPIC) vs Measured crop grain yield (Mg ha -1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 32 4.9 1.811632

Simulated 32 4.8 1.838124

Difference 32 0.1 1.245561 0.220186 0.463695 31 0.081971 0.082995

T TEST

 p-value t-crit lower upper sig

One Tail 0.323053 1.695519 no

Two Tail 0.646106 2.039513 -0.34697 0.551172 no

Regression Analysis

OVERALL FIT

Multiple R 0.767159 AIC 12.59777

R Square 0.588533 AICc 13.45491

Adjusted R Square 0.574818 SBC 15.52924

Standard Error 1.181293

Observations 32

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 59.87872 59.87872 42.90989 3.03E-07 yes

Residual 30 41.86358 1.395453

Total 31 101.7423

coeff std err t stat p-value lower upper sig

Intercept 1.267532 0.589755 2.149251 0.039803 0.063091 2.471972

Slope 0.756103 0.115426 6.550564 3.03E-07 0.520372 0.991833 yes



 

 106 

 

  

Wheat:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 10 5.3 1.134

Simulated 10 4.7 0.918

Difference 10 0.7 1.176 0.3719565 1.782867 9 0.563792 0.510881

T TEST

 p-value t-crit lower upper sig

One Tail 0.054142 1.83311293 no

Two Tail 0.108285 2.26215716 0 1.5045728 no

Soybean:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 8 3.0 0.448

Simulated 8 3.1 0.913

Difference 8 -0.1 0.802 0.2836783 -0.39245 7 0.138752 0.146727

T TEST

 p-value t-crit lower upper sig

One Tail 0.353201 1.89457861 no

Two Tail 0.706401 2.36462425 -0.782122 0.559463 no

Sorghum:  Simulated (EPIC) vs Measured crop grain yield (Mg ha-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 14 5.6 1.993

Simulated 14 5.8 2.058

Difference 14 -0.2 1.429 0.381838 -0.46274 13 0.123672 0.127296

T TEST

 p-value t-crit lower upper sig

One Tail 0.325601 1.7709334 no

Two Tail 0.651202 2.16036866 -1.001602 0.6482199 no
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1.2.3. Crop grain yield of INIA-TyT-RS site crop 

rotation experiment  

 

 

 

 

  

Simulated (EPIC) vs Measured crop grain yield (Mg ha -1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Simulated 10 3.76 1.022023

Measured 10 3.60 1.915184

Difference 10 0.17 1.187624 0.37556 0.440184 9 0.139198 0.145174

T TEST

 p-value t-crit lower upper sig

One Tail 0.335093 1.833113 no

Two Tail 0.670186 2.262157 -0.68426 1.01489 no

Regression Analysis

OVERALL FIT

Multiple R 0.843485 AIC 3.513223

R Square 0.711467 AICc 7.513223

Adjusted R Square 0.6754 SBC 4.118393

Standard Error 1.091151

Observations 10

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 23.48648 23.48648 19.72642 0.002164 yes

Residual 8 9.524881 1.19061

Total 9 33.01136

coeff std err t stat p-value lower upper sig

Intercept -2.35024 1.382947 -1.69944 0.127661 -5.53932 0.838843

Slope 1.580618 0.355879 4.441444 0.002164 0.759959 2.401278 yes
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1.2.4. Yearly SOC loss and stock (15cm) of INIA-TyT-

RS site crop rotation experiment  

 

 

  

Simulated (EPIC) vs Measured SOC loss (15cm depth) (Mg ha -1 year-1)

T Test: Two Paired Samples

SUMMARY Alpha 0.05 Hyp Mean Diff 0

Groups Count Mean Std Dev Std Err t df Cohen d Effect r

Measured 7 0.729 1.402118

Simulated 7 0.664 0.711743

Difference 7 0.065 1.438758 0.5438 0.119725 6 0.045252 0.048819

T TEST

 p-value t-crit lower upper sig

One Tail 0.4543 1.94318 no

Two Tail 0.9086 2.446912 -1.26552 1.395736 no

Yearly Simulated (EPIC) vs Measured SOC (15cm depth) (Mg ha
-1

)

Regression Analysis

OVERALL FIT

Multiple R 0.865 AIC 1.723024

R Square 0.748 AICc 7.723024

Adjusted R Square 0.706 SBC 1.881908

Standard Error 1.002

Observations 8

ANOVA Alpha 0.05

df SS MS F p-value sig

Regression 1 17.86376 17.86376 17.80918 0.005561 yes

Residual 6 6.018389 1.003065

Total 7 23.88215

coeff std err t stat p-value lower upper sig

Intercept 4.356145 6.031018 0.72229 0.49729 -10.4012 19.11351

Slope 0.880239 0.208583 4.220092 0.005561 0.369855 1.390623 yes
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Appendix 2. LU change degradation statistical tests 

The data analysis for this paper was generated using the Real Statistics Resource Pack 

software (Release 4.3). Copyright (2013 – 2015) Charles Zaiontz. www.real-statistics.com 

 

1.1. Contribution of the Initial SOC and Slope using 

multi-regression analysis 

 
1.1.1.  Impact on Soil SOC loss using  multi-regression 

analysis with standardized* values 

 

* Standard value is the original value minus the media and divided by the standard deviation. 

 

  

Grass scenario Soy-Wheat scenario
Multiple Regression Analysis Multiple Regression Analysis

OVERALL FIT OVERALL FIT

Multiple R 0.974452 AIC -38146.5 Multiple R 0.932287 AIC -27754

R Square 0.949557 AICc -38146.5 R Square 0.869159 AICc -27754

Adjusted R Square 0.949543 SBC -38125.8 Adjusted R Square 0.869123 SBC -27733.4

Standard Error 0.071615 Standard Error 0.146864

Observations 7235 Observations 7235

ANOVA Alpha 0.05 ANOVA Alpha 0.05

df SS MS F p-value sig df SS MS F p-value sig

Regression 2 698.2051 349.1025 68068.69 0 yes Regression 2 1036.207 518.1034 24020.66 0 yes

Residual 7232 37.09062 0.005129 Residual 7232 155.9875 0.021569

Total 7234 735.2957 Total 7234 1192.194

coeff std err t stat p-value lower upper
Relative 

contribution coeff std err t stat p-value lower upper
Relative 

contribution

Intercept 0.694246 0.000842 824.2858 0 0.692595 0.695897 Intercept 0.82393 0.001727 477.0255 0 0.820544 0.827316

Slope 0.057031 0.00082 69.53909 0 0.055424 0.058639 16% Slope 0.176673 0.001682 105.0441 0 0.173376 0.17997 34%

Initial SOC 0.306999 0.000844 363.7125 0 0.305345 0.308654 84% Initial SOC 0.336671 0.001731 194.4972 0 0.333277 0.340064 66%

Grass-crop scenario Soy-Soy scenario
Multiple Regression Analysis Multiple Regression Analysis

OVERALL FIT OVERALL FIT

Multiple R 0.816613 AIC -17936.3 Multiple R 0.916564 AIC -17078

R Square 0.666857 AICc -17936.3 R Square 0.84009 AICc -17078

Adjusted R Square 0.666765 SBC -17915.6 Adjusted R Square 0.840046 SBC -17057.3

Standard Error 0.289455 Standard Error 0.307143

Observations 7235 Observations 7235

ANOVA Alpha 0.05 ANOVA Alpha 0.05

df SS MS F p-value sig df SS MS F p-value sig

Regression 2 1212.887 606.4435 7238.186 0 yes Regression 2 3584.191 1792.095 18996.73 0 yes

Residual 7232 605.9252 0.083784 Residual 7232 682.2454 0.094337

Total 7234 1818.812 Total 7234 4266.436

coeff std err t stat p-value lower upper
Relative 

contribution coeff std err t stat p-value lower upper
Relative 

contribution

Intercept 1.070183 0.003404 314.3728 0 1.06351 1.076857 Intercept 1.50708 0.003612 417.2171 0 1.499999 1.514161

Slope 0.191818 0.003315 57.86637 0 0.18532 0.198316 35% Slope 0.393046 0.003517 111.7429 0 0.38615 0.399941 40%

Initial SOC 0.363878 0.003412 106.6594 0 0.35719 0.370566 65% Initial SOC 0.586376 0.00362 161.9792 0 0.57928 0.593473 60%

file:///C:/Users/jcastano/Google%20Drive/UMD-Dissertation/Dissertation/3er_paper_ch4_Impact-LULC/www.real-statistics.com
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Grass scenario Soy-Wheat scenario
Multiple Regression Analysis Multiple Regression Analysis

OVERALL FIT OVERALL FIT

Multiple R 0.890933 AIC -2073.13 Multiple R 0.835387 AIC 23497.26

R Square 0.793761 AICc -2073.12 R Square 0.697872 AICc 23497.27

Adjusted R Square 0.793703 SBC -2052.52 Adjusted R Square 0.697787 SBC 23517.87

Standard Error 0.864175 Standard Error 5.217228

Observations 7111 Observations 7111

ANOVA Alpha 0.05 ANOVA Alpha 0.05

df SS MS F p-value sig df SS MS F p-value sig

Regression 2 20430.11 10215.06 13678.47 0 yes Regression 2 446902 223451 8209.234 0 yes

Residual 7108 5308.242 0.746798 Residual 7108 193476 27.21947

Total 7110 25738.35 Total 7110 640378

coeff std err t stat p-value lower upper
Relative 

contribution coeff std err t stat p-value lower upper
Relative 

contribution

Intercept 2.303761 0.010251 224.7388 0 2.283666 2.323855 Intercept 9.167604 0.061887 148.1352 0 9.046287 9.28892

Slope 1.646173 0.00999 164.7838 0 1.62659 1.665757 90% Slope 7.683897 0.060311 127.4038 0 7.565669 7.802125 92%

Initial SOC 0.180384 0.010281 17.54587 1.67E-67 0.160231 0.200538 10% Initial SOC -0.68997 0.062067 -11.1165 1.79E-28 -0.81164 -0.5683 8%

Grass-crop scenario Soy-Soy scenario
Multiple Regression Analysis Multiple Regression Analysis

OVERALL FIT OVERALL FIT

Multiple R 0.836613 AIC 25027.92 Multiple R 0.882814 AIC 34647.06

R Square 0.699921 AICc 25027.93 R Square 0.779361 AICc 34647.07

Adjusted R Square 0.699836 SBC 25048.53 Adjusted R Square 0.779299 SBC 34667.67

Standard Error 5.810068 Standard Error 11.42665

Observations 7111 Observations 7111

ANOVA Alpha 0.05 ANOVA Alpha 0.05

df SS MS F p-value sig df SS MS F p-value sig

Regression 2 559657.5 279828.8 8289.53 0 yes Regression 2 3278243 1639122 12553.74 0 yes

Residual 7108 239944 33.75689 Residual 7108 928080.2 130.5684

Total 7110 799601.5 Total 7110 4206324

coeff std err t stat p-value lower upper
Relative 

contribution coeff std err t stat p-value lower upper
Relative 

contribution

Intercept 12.07342 0.068919 175.1828 0 11.93832 12.20852 Intercept 32.01621 0.135543 236.2072 0 31.7505 32.28191

Slope 8.624788 0.067165 128.4127 0 8.493126 8.756451 91% Slope 20.84643 0.132093 157.8168 0 20.58749 21.10537 90%

Initial SOC 0.83022 0.06912 12.0113 6.45E-33 0.694725 0.965716 9% Initial SOC 2.35715 0.135938 17.33988 5.29E-66 2.090671 2.623629 10%

 
1.1.2.  Impact on soil loss by erosion using  multi-regression 

analysis with standardized* values 

* Standard value is the original value minus the media and divided by the standard deviation 
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