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Anomaly detection is a critical task in system health monitoring. Current practice of 

anomaly detection in machinery systems is still unsatisfactory. One issue is with the 

use of features. Some features are insensitive to the change of health, and some are 

redundant with each other. These insensitive and redundant features in the data 

mislead the detection. Another issue is from the influence of operating conditions, 

where a change in operating conditions can be mistakenly detected as an anomalous 

state of the system. Operating conditions are usually changing, and they may not be 

readily identified. They contribute to false positive detection either from non-

predictive features driven by operating conditions, or from influencing predictive 

features. This dissertation contributes to the reduction of false detection by 

developing methods to select predictive features and use them to span a space for 

anomaly detection under indeterminate operating conditions. 

 

Available feature selection methods fail to provide consistent results when some 

features are correlated. A method was developed in this dissertation to explore the 

correlation structure of features and group correlated features into the same clusters. 

A representative feature from each cluster is selected to form a non-correlated set of 

features, where an optimized subset of predictive features is selected. After feature 

selection, the influence of operating conditions through non-predictive variables are 

removed. To remove the influence on predictive features, a clustering-based anomaly 

detection method is developed. Observations are collected when the system is healthy, 

and these observations are grouped into clusters corresponding to the states of 

operating conditions with automatic estimation of clustering parameters. Anomalies 

are detected if the test data are not members of the clusters. Correct partitioning of 

clusters is an open challenge due to the lack of research on the clustering of the 

machinery health monitoring data. This dissertation uses unimodality of the data as a 



  

criterion for clustering validation, and a unimodality-based clustering method is 

developed.  

 

Methods of this dissertation were evaluated by simulated data, benchmark data, 

experimental study and field data. These methods provide consistent results and 

outperform representatives of available methods. Although the focus of this 

dissertation is on the application of machinery systems, the methods developed in this 

dissertation can be adapted for other application scenarios for anomaly detection, 

feature selection, and clustering. 
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Chapter 1: Introduction 

Machinery such as bearings, gears, and shafts are widely used in electromechanical 

systems including electric motors, generators, pumps, turbines, and fans. They usually 

play critical roles in the systems. For example, in a typical wind turbine, the kinetic 

energy of wind is captured by blades to rotate the main shaft, which is constrained to 

rotate in the desired direction by a main bearing. The rotation of the main shafts 

converted by a gearbox to get the desired rotation speed and torque to drive the 

generator, completing the conversion of kinetic energy of wind to the electrical energy. 

The drivetrain of a typical wind turbine is shown in Figure 1. A pump works on the 

opposite direction that the electrical energy is converted to the rotation of the pump 

shaft by an electric motor. The rotation of the shaft is constrained to the desired 

direction by pump bearings and it is converted to the desired rotation speed and torque 

by a gearbox. The output rotation drives the impeller to lift the liquid. In both 

examples, the failure of any bearing, shaft, or gear breaks the required energy 

transmission, resulting in system failures. These machinery components play similar 

critical roles in other systems as well, such as cooling fans, gas turbines, hydro 

turbines, steam turbines, vehicle powertrains, and machine tools. 

 

Although machinery components have been used in various industrial sectors since the 

first industrial revolution, their reliability has remained an issue of research focus due 

to multiple factors. One is the criticality of machinery failures, as machinery 

components failures often lead to system failures. Another factor is the frequency of 
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machinery failures, which are widespread in some applications. For example, bearing 

failures account for more than 40% of the system failures of induction motors [2]. A 

third factor is the system downtime caused by the machinery failures. In wind turbines, 

gearbox failure is the top contributor of system downtime [3] due to the time spent on 

the diagnosis and replacement of the failed gearbox. 

 

main shaft

 

Figure 1: Wind Turbine Drivetrain [1] 

 

1.1 Background 

When a machinery component fails, corrective maintenance is carried out to detect the 

failed component and restore its reliability. However, because the maintenance is 

carried out after the occurrence of failure, it cannot avoid some failure consequences. 

Because the maintenance time is unexpected, logistics may not be ready. Since a 

machinery component usually takes time to degrade from a healthy state to failure, 

taking maintenance measures before the occurrence of failure is a desired strategy to 

avoid failures. Because the time of the failure is unknown, maintenance is planned to 
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perform regularly, leading to the development of scheduled maintenance, which is also 

called planned preventive maintenance. Scheduled maintenance has become a standard 

strategy to maintain the machinery reliability in various industry sectors because of 

several advantages over corrective maintenance. First, it restores the reliability of 

machinery components before failures and thus the occurrence of disastrous failure 

consequences can be reduced. Second, it avoids the unscheduled downtime from 

failures. Third, because the maintenance is scheduled, logistics can be prepared in 

advance. However, there are several shortcomings of scheduled maintenance. First, if 

a fault initiated and developed to failure between two maintenances, scheduled 

maintenance cannot detect it. Second, compared with maintenance plans depend solely 

on corrective maintenance, scheduled maintenance avoids unscheduled downtime, but 

it requires more maintenances, which increase maintenance cost and require more 

downtime. Third, when a component is replaced, it may have a significant portion of 

remaining useful life (RUL) left, and thus increases the cost on unnecessary 

component replacement. Finally, scheduled maintenance often involves intrusive 

measurements, increasing the risk of causing damage during the maintenance.  

 

To overcome the shortcomings of the scheduled maintenance, the advent of failure 

should be predicted so the maintenance can be optimized accordingly. The prediction 

of failure needs in-situ monitoring, which becomes possible with the development of 

technologies such as sensing and computation. Based on in-situ monitoring, several 

maintenance strategies have been developed, including predictive maintenance and 

condition-based maintenance (CBM). They are improved further to form prognostics 
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and health management (PHM), which is an enabling discipline consisting of 

technologies and methods to assess the reliability of a product in its actual life cycle 

conditions to determine the advent of failure and mitigate system risk [4]. PHM aims 

to detect, diagnose, and predict the onset and source of system degradation as well as 

the time to system failure. The goal is to make intelligent decisions about the system 

health and to arrive at strategic and business case decisions [5].The implementation of 

PHM has two major approaches: physics-of-failure (PoF) approach, and data driven 

approach. 

 

The PoF approach utilizes knowledge of hardware configurations and life cycle 

loading to predict the reliability and remaining useful life of the components [27]. 

The major inputs in respect of hardware configurations include material properties 

and machinery structure. The life cycle loading includes operational loads such as 

rotation speed, torque, duty cycles, and environmental loads include temperature, 

relative humidity, and pressure. PoF PHM involves conducting a failure mode 

mechanisms and effect analysis (FMMEA) to identify major failure mechanisms. The 

physics of failure models are developed for the identified failure mechanisms to 

establish functional relationships between the time to failure and various physical and 

stresses parameters. The application PoF PHM has following challenges. First, the 

development of physics of failure models is still an active research area that many 

failure mechanisms lack applicable models. Second, it is common that multiple 

failure mechanisms contribute to the failure together and the interaction between 

these failure mechanisms is often stochastic and is not modeled.  
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Data-driven PHM is an alternative to avoid the challenges in PoF PHM. Data-driven 

PHM does not require physics of failure models for any failure mechanisms, and it 

does not need detailed understanding of failure mechanisms. However, compared 

with PoF PHM, it requires larger amount of data and higher capability of computation. 

With the development and popularization of data acquisition and computation 

technologies, these limits on the application of data-driven PHM has been alleviated. 

In data-driven PHM, data are acquired in-situ using a network of sensors that 

monitors the system. Features carrying health information of the system are extracted 

from the sensor signals through a series of procedures like noise reduction, 

normalization, and transformation. Health states of the system are then estimated 

based on the extracted features via decision making using methods such as machine 

learning techniques. Based on the use of historic data, machine learning techniques 

can be classified as supervised learning techniques, and unsupervised learning 

techniques. In supervised learning, historic data with system health labels are used to 

train an algorithm to establish regions of different health states of the system. Current 

health state of the system is determined by classifying the current data to one of the 

regions. Widely used supervised learning techniques include support vector machine 

(SVM), k-nearest neighbor, artificial neural network, deep learning classifiers and 

regressors, decision tree, and random forest. Unsupervised learning techniques do not 

need data with health labels. They explore the nature of the data from different 

aspects. For example, unsupervised learning uses clustering techniques to partition 

the health monitoring data to multiple clusters according to the density of the data, 
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and the fault was detected by judging the density of the data. Widely used 

unsupervised learning techniques include k-means clustering, Gaussian mixture 

model, and self-organizing maps.  

 

In both PoF PHM and data-driven PHM, fault detection is a major task across a wide 

range of applications, such as induction motor rotor bars [6], bearings [7], and 

gears[8]. A machinery fault is an abnormal condition that leads to the failure of the 

machinery, which is a state in which the machinery cannot perform its required 

function under stated conditions. Commonly observed faults in machinery include 

pits, indents, and wear in bearings, pits, root crack, wear, and missing teeth in gears, 

and misalignment, wear, and bent in shafts. In most cases, when a fault emerges, the 

machine can still perform its required function until the fault develops to a certain 

degree. For example, a main failure mechanism of rolling element bearing is rolling 

contact fatigue (RCF), which happens even if the bearing is working under stated 

conditions and is lubricated and maintained properly. In RCF, cracks initiate beneath 

or on the contacting surfaces because of stress concentration around deficiencies or 

material impurities and the cyclic loading from the rolling elements. As the cracks 

propagate, some material is removed, forming pits on the surface. At an early stage, 

the bearing can still work as required at the presence of these faults, which are cracks 

and pits. With the development of the cracks and pits, more material is lost, and the 

working profile of the bearing is changed to a degree that the bearing fails to work as 

required. In general, there is a time gap between the emergence of fault and the 

occurrence of failure. If the fault can be detected at an incipient stage and if its 
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development can be monitored, PHM can be performed to reduce the failure 

frequency and criticality as a result of optimized maintenance.  

 

Machinery fault detection based on PoF PHM monitors the variables of PoF models 

and compares their monitored value to the calculated value from the model. When the 

deviation of the monitored value from the variables exceeds a predetermined 

threshold, the fault is detected. PoF fault detection requires in-depth knowledge of 

machinery failure mechanisms or fault characteristic signal-generating mechanisms [9] 

to construct PoF models, limiting the application range. Therefore, a lot of methods 

were developed for data-driven fault detection, which avoids the limitations of the 

PoF approach. 

 

In data-driven PHM, fault detection is achieved by anomaly detection through 

learning the rules of detection from historical data [10]. Anomalies are patterns in the 

data that do not conform to a defined notion of normal behavior [11]. In machinery 

fault detection, the normal behavior is usually the distribution of healthy reference 

data, which are the health monitoring data collected when the machinery is healthy. 

When a system becomes faulty, the health monitoring data no longer conform to the 

normal behavior defined by the healthy reference data, and thus the behavior is 

considered anomalous. In sum, a fault is a physical state of the machinery, anomalies 

are the representations of the fault in the data, and anomaly detection is the process to 

identify the existence of fault through the detection of anomalies. 
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1.2 Motivation 

Current practice of fault detection is not satisfactory that false detections, including 

both false positive detection and false negative detection, are causing losses. False 

positive detection is also termed type I error. It mistakenly regards healthy data as 

faulty, leading to unnecessary downtime and maintenance cost. False negative 

detection is also termed type II error. It mistakenly regards faulty data as healthy, and 

therefore it may leave catastrophic failures undetected. For example, in 2016, 

undetected gearbox bearing pitting and gear fatigue cracking led to the crash of an 

Airbus Helicopters H225, resulting in 13 deaths [12]. Therefore, it is necessary to 

investigate the problem and improve over available methods. 

 

Two issues contribute to the false detection of anomalies: first, the health monitoring 

data usually contain insensitive and redundant features, and they mislead the 

detection. Features are often extracted using engineering experience about the system. 

Some of them are not sensitive to the faults of specific systems, and thus insensitive 

features exist. Some features are driven by the same underlying factor and they are 

redundant with each other. Useless and redundant information from insensitive and 

redundant features can mislead the detection. Especially, some features are more 

sensitive to the change of operating conditions than the change of system health. 

When operating conditions are changing, false positive detection may occur. Second, 

machinery operating conditions are usually changing due to multiple operation 

regimes and environmental influence. The changing operating conditions are often 

indeterminate because the operating conditions are often not monitored, and the 
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influence of some operating conditions is unknown. As a result, anomalous states can 

be confused with changed operating states. For example, driving on a road with 

unknown surface quality is a case of indeterminate operating condition. If vibration 

amplitude is used to monitor automobile engine health, a car with a faulty engine 

driving on a smooth road surface can be confused with a healthy engine when the car 

is driving on a rough road surface, as shown in Table 1. Both issues and available 

methods to address them need to be investigated. 

 

Table 1: An Example of the Influence of Operating Conditions 

 

 

1.3 Overview of the Dissertation 

The structure of the remaining dissertation is as follows. Chapter 2 discusses the 

issues related to features and anomaly detection methods and provides a literature 

review of available methods that address the issues. Based on the analysis of the 

literature, research gaps were identified, and objectives of the dissertation is proposed 

to fill the gaps. Chapter 3 introduces the development and evaluation of a feature 

selection method that works when insensitive and redundant features exist. Chapter 4 

introduces the development and evaluation of a clustering method and an anomaly 

detection method based on it that works under indeterminate operating conditions. 

Chapter 5 presents the contributions of the dissertation and suggested future work. 
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Chapter 2: Literature Review 

Inappropriate set of features and incompetent anomaly detection methods are two 

major issues of failed anomaly detection. Therefore, these two issues were 

investigated and available methods to address them were reviewed in this chapter to 

identify research gaps. 

 

2.1 Issues Related to Features in Anomaly Detection 

In-situ monitoring signals themselves are often inadequate for fault detection so 

features are extracted from them to capture the existence of fault. Ranging from 2012 

to 2017, every year more than 20,000 papers about machinery fault features are 

published, estimated by searching using Google Scholar. Many features are 

insensitive to faults, and they are influenced by operating conditions. For example, 

shape factor and crest factor are established features used in rotating machinery fault 

detection [13]. In Figure 2, they were calculated to detect bearing faults. Rotation 

speed of the bearing was used as an operating condition. Figure 2 (Left) illustrates the 

insensitivity of features to a fault: under the same rotation speed, shape factor did not 

separate the data from the healthy bearing and faulty bearing, leading to false 

negative detection. Figure 2 (Right) illustrates the influence of operating conditions 

on features. Crest factor separated the data from a healthy bearing and those from a 

faulty bearing under 600 RPM. However, when the rotation speed was increased to 
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1200 RPM, a large portion of the data from the healthy bearing overlaps with the 

faulty data at 600 RPM, leading to false positive detection.  

C
re

st
 f

ac
to

r

Healthy

600 RPM

Faulty

600 RPM

Healthy

600 RPM

Faulty

600 RPM

Healthy

1200 RPM

S
h
ap

e 
fa

ct
o
r

90%

10%

25%
50%

75%

 

Figure 2: Detecting Bearing Fault Using Shape Factor (Left) and Crest Factor (Right) 

 

Researchers have tried to increase the sensitivity of machinery anomaly detection by 

using multiple features together to perform multivariate analysis. Some researchers 

constructed features for specific failure modes and perform multivariate analysis based 

on them. Tian et al. [14] constructed 5 features, each of which is sensitive to a bearing 

failure mode. Some researchers used as many features as possible. Xia et al. [15] 

constructed 21 bearing fault features using signal processing techniques. Oh et al. [16] 

constructed 1000 bearing features using deep learning techniques. However, for a 

given failure mode, some features are insensitive to the fault. They behave as noise 

and have negative influence on the result. In Figure 3 (left), a benchmark dataset Iris 

Data was used to demonstrate the influence of noise features. Iris data have 4 features 

and 3 classes. Additional features consist of Gaussian noise were appended to the 

original data as noise features. Logistic regression was applied to perform 

classification. The performance of classification was evaluated by 5-fold cross-
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validation, and the mean accuracy is used as a performance measure. When the 

number of noise features increases, the mean accuracy has a decreasing trend. 

Therefore, feature selection is necessary to select useful features that are capable of 

separating anomalies from normal data. Besides noise features, redundant features also 

have negative influence on the analysis. Redundant features are the features linearly 

correlated with each other. Some features are redundant with each other because they 

are measuring the same dynamics of the data. For example, the vibration signals 

collected by two accelerometers on the same surface of a gearbox chassis are 

redundant features. Peak-to-peak value and rms from vibration signals are likely 

correlated with each other. In Figure 3 (right), redundant features were appended to the 

Iris data. The redundant features are linear transforms of the original Iris data features 

with random constant terms. As the number of redundant features increases, the 

accuracy decreases. 

 

In multivariate analysis, variables are sometimes termed as attributes, dimensions, or 

features. One observation of variables is also called a point or an object. In some cases, 

sensor signals or other forms of raw data are directly used in anomaly detection. To be 

consistent with academic and industrial conventions, the selection of variables is 

called feature selection, no matter the variables are attributes of raw data or features. 
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Figure 3: The Influence of Noise and Redundant Features 

 

2.2 Survey of Feature Selection Methods 

Available feature selection methods can be categorized as filter methods, wrapper 

methods, embedded methods, and ensemble methods. Filter methods select features 

based on the individual features’ properties towards the objective of the specified 

machine learning task. For example, in binary classification, individual features are 

evaluated that any feature provides a certain degree of separation of the data 

independently is selected. One approach of filter methods is hypothesis testing. The 

null hypothesis is, the data from two classes are sampled from the same distribution 

using a specific feature. If the null hypothesis is rejected, the data from the two classes 

are not regarded as from the same distribution, and it means the feature is able to 

separate the two classes. The hypothesis testing methods used in feature selection 

include t-distribution, F-distribution, and KS-distribution. Another approach selects 

features depending on the similarity between individual features and the response. 

Similarity measures used in feature selection include Pearson’s correlation coefficient 
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[17] and mutual information [18]. The features selected by filter methods can be 

highly correlated and thus some selected features are redundant [17]. Therefore, a 

greedy search algorithm was developed in [19] to compensate this drawback. An 

objective function was used that only the feature maximizes the mutual information 

between the feature and the response while the mutual information between the 

selected feature and the subset of the so far selected features is a minimum. This type 

of optimization problem was summarized as max-relevancy, min-redundancy (mRMR) 

[20], and different optimization methods have been developed to solve the problem 

[21]. Filter methods select features based on the performance of individual features 

and thus they ignore the joint effect of data separation of some features. For example, 

when the data are only separable by a nonlinear function, all the variables in the 

nonlinear function should be selected as useful features but filter methods do not 

realize their relationships because they just evaluate one feature at a time.  

 

Wrapper methods use a search procedure such as forward selection and backward 

elimination to search the optimal subset. Forward selection starts with an empty subset 

and it repeatedly includes one feature at a time into a subset that optimizes an 

objective function [22]. The procedure stops when a threshold on the objective 

function is reached. Backward elimination starts with all features and repeatedly 

removes features one at a time until a criterion is satisfied. In a complete search, the 

approach takes O(n2) calls of the machine learning algorithm, and thus it is impractical 

in computation. Therefore, heuristic search algorithms have been implemented. For 

example, simulated annealing [23], genetic algorithm (GA) [24] and particle swarm 
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optimization (PSO) [25] have been applied to search the optimized subset of features. 

These methods are not guaranteed to converge to the global optimum given finite 

iterations. Therefore, they are often simplified that a predefined order of selection is 

used to reduce the number of combinations for the feature subset. Representative 

method is recursive feature elimination (RFE), such as RFE support vector machine 

(RFE-SVM) [26][27].However, since a predefined order of selection is used, some 

combinations of features are not evaluated and the optimal subset of features may not 

be found. 

 

Embedded approach incorporates feature selection as part of the training process of a 

machine learning algorithm. The idea is to rank the features according to their 

weights or importance assigned by the algorithm during training. For example, the 

hyperplane of a linear support vector machine (SVM) is the optimized linear model 

that maximizes the separation of the data from different classes. The features with 

larger absolute values of weight are the ones contribute more to the separating 

hyperplane, and they are the useful features. Representative methods include neural 

network pruning [28] and decision tree-based feature selection[29]. For example, 

Krishnakumari et al. [30] used decision tree to select features from a group of 

vibration features and then applied a fuzzy classifier to diagnose spur gear fault. 

Some embedded methods utilize regularization to penalize the size of feature set, 

such as Lasso regression using L1 regularization, Ridge regression using L2 

regularization, and elastic net using both L1 and L2 regularization [31]. When some 

features are correlated, regularization-based methods suffer from the inconsistency of 
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selection, which is the randomly selection of features from correlated features. 

 

Ensemble features selection approach was developed to aggregate the power of 

different feature selection procedures. In [32], SVM is used as the feature selection 

algorithm, and it is run on multiple bootstrap samples to generate an ensemble of 

feature sets and a subset of features is selected from the ensemble. To reduce the 

influence of the inconsistency of regularization-based methods, stability selection 

using the idea of ensemble selection was developed, such as randomized Lasso for 

regression and randomized logistic regression for classification [33]. By aggregating 

the feature selection power of decision trees, random forest has been implemented in 

feature selection [34]. In [35], multiple feature selection algorithms from filter, 

embedded and wrapped approaches were combined. Ensemble approach reduces the 

influence of correlated features but still suffer from instability. For example, in 

random forest, correlated variables are used interchangeably in the trees. As a result, 

the less relevant variables often replace the useful ones as selected features [36]. In 

randomized lasso and randomized logistic regression, when the size of a group of 

correlated features increases, the weights of the features in the group decreases, 

leading to incorrect model interpretation and misleading feature ranking [37]. Feature 

selection based on feature clustering [38] has been used for removing the correlation 

bias. However, this method only considers linear model since it depends on Lasso 

regression. Moreover, correlated features were averaged to make new features that the 

physical meaning of original features is lost. In [39], k-means clustering was improved 

to automatically estimate the feature groups. Because the clustering is based on an 
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Euclidean distance-type dissimilarity, the challenge from the correlation of features is 

not addressed. For features extracted by principal component analysis (PCA) and 

manifold learning techniques, correlation is not an issue because the extracted features 

are orthogonal to each other. However, similar to the shortcoming of [38], the features 

lose their physical meaning. Keeping the physical meaning of the original features is a 

desired property of feature selection methods because feature selection is often applied 

in choosing optimal sensor set and interpreting failure physics. These tasks cannot be 

completed without features with physical meanings. 

 

2.2 Issues Related to Anomaly Detection Methods 

When features capable of separating anomalies from normal data are extracted and 

selected, they are still under the influence of operating conditions. In an experimental 

study, an accelerometer was mounted on the housing of a healthy bearing to collect 

vibration signals. The rotation speed was used as an operating condition and it was 

changed several times, as shown in Figure 4 (Left). The vibration signal was affected, 

and it changed with the rotation speed, as in Figure 4 (Right). Without knowing the 

rotation speed, the increase of amplitude and frequency in the vibration signal can be 

mistakenly regarded as anomalies. Therefore, some researchers used the signals of the 

operating conditions to normalize the signals used in health monitoring. In the case of 

vibration analysis, Prof. R. B. Randall at the University of New South Wales 

advocates the use of order tracking [40], and it has been applied to normalize the 

frequency of the vibration signals using the rotation speed in wind turbine bearing 

fault diagnosis [41]. More generally, some researchers develop different healthy data 
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models for different states of operating conditions, such as multi-regime modeling 

PHM from the team of Prof. J. Lee at the University of Cincinnati [42]. Using the 

similar idea, Sammaknejad et al. [43] modeled observations around different process 

operating modes by different multivariate Student's t-distributions to describe 

different likelihoods of anomalies. Above methods require monitoring of operating 

conditions and thus they do not work when the operating conditions are indeterminate. 

Therefore, anomaly detection methods without the information of operating 

conditions are needed. 
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Figure 4: Influence of Rotation Speed (Left) on Vibration Signal (Right) 

 

In the bearing example of Figure 4, a sliding window was applied to the vibration 

signal, and for each window an observation of features was calculated. In the example, 

rms (Dim 1) and Kurtosis (Dim 2) were calculated. These features span a feature space 

and certain patterns in the feature space can be observed, as shown in Figure 5. 

Therefore, machine learning can be used to detect anomalies without knowing 

operating conditions by learning these patterns and differentiate them from those of 

anomalies. 
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Figure 5: Patterns in the Feature Space 

 

2.4 Survey of Anomaly Detection Methods 

Anomaly detection methods using machine learning can be categorized as supervised 

anomaly detection [44], unsupervised anomaly detection [45][46][47], and semi-

supervised anomaly detection [48][49]. Different methods have different requirements 

on the data and different application ranges.  

2.4.1 Survey of Supervised Anomaly Detection 

Supervised anomaly detection is based on statistical classification, which identifies to 

which of a set of classes a test observation belongs by learning the training data of 

these classes. Besides detecting the occurrence of the anomaly, supervised methods 

can also identify some properties of the anomaly, such as the type or location of the 

anomaly. Therefore, supervised methods are usually used for both the detection and 

diagnosis of anomalies. To implement supervised anomaly detection, training data for 

both healthy data and anomalies are required to be labeled. Classification techniques 

are used to set up decision rule from learning the labeled healthy data and anomalies to 
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determine if testing data are anomalies. The anomaly detection task is a binary 

classification problem. Multiple classification is implemented to determine the type, 

location, and severity of anomalies if corresponding labeled training data are available. 

Supervised methods used in machinery anomaly detection include support vector 

machine (SVM), K-nearest neighbor (KNN), artificial neural network (ANN), linear 

discriminant analysis (LDA), naïve Bayes classifier, hidden Markov model (HMM), 

logistic regression, decision tree, random forest, and hybrid ensemble learning 

classification algorithms. 

 

In support vector machine (SVM), the data space is partitioned into normal regions 

and abnormal regions by hyperplanes [50]. If testing data fall into the abnormal region, 

they are detected as anomalies. Du et al.[51] constructed features using wavelet 

analysis and in the feature space bearing faults from different locations and severities 

were classified by SVM.As an improvement of SVM, Improved Support Vector 

Machine-based Binary Tree (ISVM-BT) was applied in [52][53] to classify different 

fault categories. ISVM-BT takes the advantage of both the efficient computation of the 

tree architecture and the high accuracy of SVM. However, users need to define the 

optimal hierarchy of the ISVM-BT, which lacks available rules. SVM methods work 

on both linear and nonlinear data, and they are robust against outliers. Their results are 

sensitive to the selection of kernel functions and parameters, but there is no efficient 

method for the selection. Because SVM is memory intensive and the search of the 

parameters requires multiple iterations of training and testing, SVM methods are not 

suitable for large datasets. 
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K-nearest neighbor (KNN) classifier compares the distance from a testing data 

observation to its nearest neighbors in the healthy training data and the anomalies 

training data. If the distance to the neighbors of anomalies training data is closer, it is 

classified as an anomaly. [54] extracted bearing features using principal component 

analysis (PCA), and then classifies the bearing health states using KNN. KNN is a 

nonparametric method that it does not pose any assumptions on the data and therefore 

it has a wide range of applications. However, KNN is sensitive to outliers. If irrelevant 

or redundant features are included, KNN may also generate undesired result. 

 

Artificial neural network (ANN) simulate the structure of brain that multiple layers of 

neurons are interconnected to establish the relationship between the input and output. 

In the bearing fault detection and diagnosis, Ali et al. [55] used empirical mode 

decomposition (EMD) to extract features from vibration signals, and then used back 

propagation neural networks (BPNN) with two hidden layers to classify the anomalies. 

With the development and successful applications of deep learning techniques based 

on ANN, researchers began to explore the opportunity of implementing deep learning 

to machinery anomaly detection. Gan et al. [56] presented a deep learning application 

architecture for fault detection and fault severity classification using features 

constructed from the coefficients of wavelet packet decomposition. They developed a 

Hierarchical Diagnosis Network (HDN) based on Deep Belief Networks (DBN) that 

are constructed from multiple layers of Restricted Boltzmann Machines (RBM). The 

HDN consists of two layers with one for fault identification and another for severity 
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classification. ANN methods can provide the best classification accuracy among 

available classification algorithms. However, they need large amount of training data, 

and they are sensitive to outliers. 

 

Discriminant analysis uses a discriminating function to perform classification. The 

optimal coefficients of the discriminating function are estimated that that the distance 

between classes is maximized, and the distance within the classes is minimized. The 

most widely used discriminating function is linear, leading to linear discriminant 

analysis (LDA). LDA assumes the data follow Gaussian distribution, but actual 

machinery data are usually non-Gaussian. Therefore, Jin et al. [57] uses trace ratio 

linear discriminant analysis (TR-LDA), which is a variant of LDA without the same 

normality requirement of the original LDA, to diagnose the bearing fault.  

 

Bayesian network is a probabilistic graphical model that represents a set of variables 

and their conditional dependencies via a directed acyclic graph (DAG). Observations 

are classified according to their probabilities received from the network. A widely 

used type of Bayesian network is naïve Bayes classifier, which assumes the features 

are independent. Because the independence assumption is difficult to meet, Zhang et al. 

[58] used decision tree and selective SVM to select features with low correlations, and 

then applied naïve Bayesian classifier to perform fault diagnosis. Hidden Markov 

model (HMM) is another type of Bayesian network. It models the training data with 

Markov process with one hidden state. In [59] shift-invariant dictionary learning was 

used to extract features for bearing signals, and then HMM was applied to detect and 
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diagnose bearing faults. Because Bayesian network methods set strict assumptions on 

the distributions and the dependencies of the data, which are rarely met, their 

classification accuracy usually fail to match with other algorithms if they are properly 

tuned. 

 

Logistic regression trains a logistic function with the labeled training data by 

optimizing a cost function, such as the negative log-likelihood of the true labels given 

the predictions. During testing, the membership probabilities of test observations are 

calculated. Authors in [60] used logistic regression to classify engine health. In [61], 

logistic regression was applied to the features extracted from wavelet packet 

decomposition for bearing fault diagnosis. Compared with algorithms such as ANN 

and SVM, the result from logistic regression has better probabilistic interpretation, and 

its training process is efficient. However, if the decision boundary is nonlinear, its 

classification performance fails to be compared with ANN and SVM. 

 

Decision trees classify observations by sorting them based on feature values. Each 

node in a decision tree represents a feature in an observation to be classified, and each 

branch represents a value that the node can assume. Observation are classified starting 

at the root node and sorted based on their feature values. Because decision tree is 

working based on setting rules on features, its process facilitate intuitive understanding 

in engineering. In [62], decision tree was set up to detect machinery faults consist of 

mass imbalance, gear fault, and belt fault. Because classification algorithms such as 
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decision trees, ANN and KNN are sensitive to outliers, they were often used in an 

ensemble to make a consensus decision, giving rise to ensemble learning. 

 

Ensemble learning combines the results of multiple classifiers to give a consensus 

decision. Because different classifiers have different sensitivity to outliers, ensemble 

learning is robust against overfitting. Random forest is an ensemble learning method 

that aggregates the estimation of a diverse set of decision trees To detect and diagnose 

bearing fault, Wang et al. [63] extracted features using wavelet packet transform, and 

then applied random forest in the feature space to perform classification. In the fault 

detection and diagnosis of spur gear in [64], an initial set of features from vibration 

signals were extracted from time domain, frequency domain, and wavelet transform. 

The classification performance of the subsets of these features were evaluated by a 

random forest classifier. The optimal subset was identified using genetic algorithm. 

Based on the selected subset of features, bearing health states were classified using 

random forest. Because diversity among classifiers is desired in ensemble learning, 

hybrid classifiers with an ensemble of classifiers induced from different classification 

algorithms were developed. To detect gear fault, Lei et al. [65] extracted features using 

envelope analysis, wavelet packet transform, and empirical decomposition, and then 

used a hybrid classifier consists of multi-layer perceptron (MLP) neural network, 

radial basis function (RBF) neural network, and KNN to perform the detection. Tian et 

al. [66] extracted commonly used features for rotating machinery from raw signals to 

form the base sample, and then bootstrap samples were generated. Each bootstrap 

sample was used to train a set of different classification algorithms to obtain a group 
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trained classifier. The final decision was obtained by majority voting from the groups 

of trained classifiers from all the bootstrap samples. Because this hybrid classifier has 

two sources of diversity from bootstrapping and different algorithms, it is less likely to 

provide estimation with high variance. Ensemble learning methods can provide the 

best classification accuracy, they are robust against outliers, and they do not set 

restrictions to the statistical properties of the data. However, there is no explicit rule to 

determine the setup of the ensemble, and the training process is usually not as efficient 

as other algorithms. 

 

The application of supervised anomaly detection in machinery anomaly detection is 

limited by the requirement on the data. First, the requirement on the labeled faulty data 

as anomalous training data is difficult to meet. The training data from faulty systems 

are usually unavailable. For example, rotating machinery are critical components in 

safety-critical systems such as airplanes, and faulty data from these systems are 

unavailable. Some researchers have tried to fill this gap by simulating faulty data, as in 

the study of Tian et al. [14], where faulty bearing data are simulated using a faulty 

bearing signal generating model. In general, to simulate faulty data of a component, 

data generating models based on the physics of failure of the component are required. 

However, those models are often unavailable due to lack of modeling or inadequate 

understanding of the physics of failure. Second, even if faulty training data are 

collected in some cases, the sample size is not comparable to the data from the healthy 

systems because the faulty component either develops to failure or is processed by 

maintenance when it is noticed. Therefore, the training data from the healthy class and 
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the faulty class are not balanced. Although techniques such as upsampling of the faulty 

training data or downsampling of the healthy training data can alleviate the biased 

classification of the unbalanced data, the faulty training data only represent a portion 

of the faulty population so that the classification boundaries are still biased towards the 

healthy training data. 

 

2.4.2 Survey of Unsupervised Anomaly Detection 

Unsupervised anomaly detection avoids the requirement on the labeled data. In 

unsupervised anomaly detection, anomalies are detected using unlabeled data based on 

pre-defined assumptions that differentiate normal data and anomalies. A review of 

unsupervised anomaly detection is provided in [67]. Unsupervised anomaly detection 

starts with partitioning health monitoring data into clusters from the assumption that 

the data from healthy systems and the data from faulty systems are generated by 

different mechanisms and they form different clusters, as in the example in [68] that 

fuzzy c-means clustering identified multiple clusters in the feature space when the 

same number of bearing health states exist. In [69], noise Clustering and Density 

Oriented Fuzzy c-Means algorithms were used to eliminate outliers, and then kernel c-

means algorithm with optimized parameters was applied to maximize the separation of 

clusters, which were assumed to be from different health states. An improved artificial 

ant clustering technique was applied in [70] to automatically group data consist of 

observations from healthy motor, motor with broken bar, and motor with faulty 

bearing. In [71], wavelet packet transform (WPT) and ensemble empirical mode 

decomposition (EEMD) were applied to extract features from bearing vibration signals, 
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and then an adaptive feature selection technique was developed to remove redundant 

features. Using these features, affinity propagation clustering was applied to partition 

the data into clusters, which are assumed to correspond to different bearing health 

states. Using vibration signals, Li et al. [72] extracted features using empirical wavelet 

transform and autoregressive model. After dimensionality reduction using locality 

preserving projection, fuzzy c-means was applied to cluster the data in the feature 

space. Observations from different health states were found to concentrate around 

certain centroids.  

 

Above papers did not talk how to determine if certain clusters correspond to fault 

conditions to complete anomaly detection. To identify the clusters of anomalies, the 

properties of the clusters need to be evaluated based on pre-defined assumptions. One 

assumption is based on the densities of clusters. For a given observation, the radius of 

a hyper-sphere centered at the observation, which contains a defined number of other 

observations, is an estimate of the inverse of the density in the neighborhood of the 

observation. The mean value of the densities for all the observations in a cluster is 

used to represent the density of the cluster. Healthy systems are working in 

equilibrium states, and thus the health monitoring data form clusters with high 

densities. When the systems become faulty, they do not stay in the equilibrium states 

and thus the data are scattered more widely, forming clusters with lower densities. 

These clusters of different densities can be identified using density-based clustering. 

Tian et al. [73] applied a density-based clustering algorithm to partition bearing health 

monitoring data, and used the rate of change of the density as a threshold to detect 
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anomalies. A challenge to this approach is, under different operating conditions, the 

cluster densities of a healthy system can be different. For example, under higher 

rotation speed and higher load, the vibration of a bearing has higher variance that the 

features extracted from the vibration signal form clusters with lower densities. This 

kind of lower density clusters can be confused with anomaly clusters. A third 

assumption assumes the data from a healthy system and a faulty system are sampled 

from different statistical distributions. For example, if the data in the clusters from the 

healthy system are Gaussian, the non-Gaussian clusters consist of anomalies. There are 

some difficulties to implement this approach because machinery health monitoring 

data are usually high dimensional. First, the evaluation of the high-dimensional 

multivariate distributions, such as multivariate hypothesis testing, is difficult. Second, 

the data in a given cluster may not follow any known multivariate distribution. A 

widely used assumption is based on the sizes of clusters. The data from healthy 

systems are usually abundant, and anomalies are scarce. Because they are generated by 

different data generation mechanisms, they form different clusters, and the clusters of 

anomalies have smaller sizes. Clusters with sizes smaller than a certain threshold are 

regarded as consist of anomalies. This approach can be unreliable because smaller 

clusters can be generated by situations other than anomalies: if the system is working 

briefly in a state of operating conditions, a small cluster is formed even if the system is 

healthy. One assumption assumes anomalies are distributed in a manner that they do 

not form clusters by themselves. Therefore, only the data from healthy systems form 

clusters and the observations do not form any cluster are regarded as anomalies. A 

difficult to implement this approach is from the challenge of setting up threshold to 
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determine the cluster membership of observations. Moreover, it is common that 

anomalies form clusters by themselves, and thus violating the assumption.  

 

Some researchers borrow the knowledge from the faulty data generating mechanisms 

in PoF for the identification of faulty clusters. K-means clustering was used to 

partition bearing data according to the bearing's health states in [74]. Initial centers of 

the k-means clustering are produced by simulated data. The initial cluster centers for 

the faulty bearing data were simulated using known faulty bearing data generating 

models, and the initial cluster centers for the healthy bearing data were simulated as 

white noise. The observations in the clusters developed from the initial centers of the 

simulated faulty data are regarded as faulty. Compared with simulating training data in 

supervised anomaly detection, this approach does not have strict requirement on the 

accuracy of the data generating models, because the initial cluster centers are only 

required to be close to the final centers, and k-means algorithm updates its value 

during iterations. However, after the update, the cluster center values may have 

significant changes that the initial cluster center, which represent certain health state, 

may not represent the final cluster, and thus false detection occurs. Moreover, the data 

generating model for many failure modes are not available. Inacio et al. [75] 

developed a recursive clustering approach for machinery fault diagnosis. At the 

beginning, only healthy data are available, and after the clustering, a rule was set up to 

identify the healthy cluster. When faulty occurred, the rule was updated that the faulty 

clusters were manually identified. Although training data were not formally labeled, 

knowledge from the actual machine condition was required to identify faulty clusters. 
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2.4.3 Survey of Semi-Supervised Anomaly Detection 

The data from healthy systems are abundant, facilitating the application of semi-

supervised anomaly detection, which uses labeled normal data to define the normal 

behavior and identifies observations deviating from the defined normal behavior as 

anomalies [76]. Statistical anomaly detection techniques assume that anomalies occur 

in the low probability regions of a stochastic model of the healthy data. These 

techniques rely on the assumption that the data follow certain distributions. However, 

real data may not follow these distributions. Representative work includes 

nonparametric statistical analysis [8]. Nearest neighbor-based anomaly detection 

techniques assume that anomalies occur far from the nearest neighbors in the healthy 

reference data. A representative method is k-nearest neighbor (KNN) [7]. Outliers in 

the healthy reference data may lead to false negative errors since they can be regarded 

as close neighbors by an anomaly. Also, these techniques do not consider the influence 

of the distribution of the data on anomaly detection. 

 

Tian et al. [14] used KNN in a semi-supervised manner for motor bearing anomaly 

detection. At first, bearing fault features are extracted using spectral kurtosis, cross 

correlation, and principal component analysis. Then, KNN is applied to calculate the 

distance between the test observation to its nearest neighbors in the training data in the 

feature space. The KNN distance is used as an anomaly indicator that a hypothesis 

testing is applied on it to perform anomaly detection. 
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In [77], an one-class SVM model was trained by healthy bearing data, and during test 

the faulty bearing data were found outside of the model's decision boundaries. To 

reduce the influence of outliers in the healthy training data, one-class SVM was 

improved in [78] for the purpose of anomaly detection. In [79], recurrence time 

statistics of vibration signals were calculated as features to capture the information of 

incipient bearing fault, and one-class SVM was trained by healthy bearing data to set 

up healthy boundaries for anomaly detection. 

 

KNN and one-class SVM methods are sensitive to the choice of hyper-parameters, as 

shown in Figure 6. Choosing the hyper-parameters requires labeled anomalies, which 

are often unavailable. 
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Figure 6: A General Boundary and a Detailed Boundary 

 

Some researchers model the healthy data as a mixture of distributions, and anomalies 

are detected if test data are not generated by the mixture. In the bearing health 

assessment work of [80], features were extracted by locality preserving projections as 
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an improvement of feature extraction by principal component analysis (PCA). In the 

feature space a Gaussian mixture model (GMM) was trained by healthy bearing data. 

Kernel density estimation [81] was applied to setup the anomaly threshold. The 

anomaly score of the test data is the exponentially weighted moving average of the 

negative log likelihood probability referring to the trained GMM. 

 

Because GMM is not application for many situations, other clustering techniques are 

used. Pan et al. [82] extracted bearing fault features using wavelet packet transform, 

and then applied fuzzy c-means to the healthy data in the feature space to identify the 

cluster centroid as healthy reference. The deviation from the reference is used as the 

degradation indicator. Although no faulty data were used in the calculation of the 

degradation indicator, the characterization of the values of the indicator still needs the 

centroid of the faulty data cluster. Huang et al. [83] developed a method based on self-

organizing maps (SOMs) that vibration features from healthy bearings are used to train 

SOMs and anomaly score of a test observation is obtained by calculating the minimum 

quantization error of the observation referring to the trained maps. The robustness of 

SOMs in machinery anomaly detection is further improved by Tian et al. [84] that the 

mean quantization error from the test observation referring to its nearest best matching 

units in the trained SOMs is calculated as the anomaly score. 

 

Some researchers combine multiple anomaly detection methods together to construct 

an ensemble. In [85], empirical mode decomposition and Hilbert-Huang Transform 

were applied to extract features from bearing vibration signals, and then a hybrid 
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ensemble detector from the majority voting of Gaussian anomaly detector, nearest 

neighbor anomaly detector, and PCA anomaly detector was developed to detect 

anomalies in the feature space. 

 

2.5 Problem Statement and Objectives 

A typical scenario in PHM is, a number of sensors and features are prepared from 

different sources of information and feature selection is carried out at an early stage 

that fault sensitive sensors and features can be selected and installed for health 

monitoring. At this stage, experimental study can still be carried out to generate both 

the healthy and faulty data to guide the feature selection. In the health monitoring at a 

later stage, large amount of healthy data under a wide range of operating conditions 

are collected, and faulty data are usually unavailable. 

 

Under this scenario, insensitive and redundant features still remain an issue in feature 

selection. Selecting features without considering feature correlation structure results in 

overfitting from redundant features. Available methods either provide inconsistent 

result when features are correlated or are impractical in terms of computation. Even 

when appropriate features are used, available anomaly detection methods are 

unsatisfactory when operating conditions are indeterminate. Because faulty data are 

usually not available at the stage of anomaly detection and healthy data are abundant, 

semi-supervised learning is an appropriate approach. Modeling healthy data and 
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setting up hyper-parameters of the model without faulty data is an open issue to be 

addressed. 

 

To address above research gaps, this dissertation has the following objectives: first, 

develop a method to select useful features when insensitive features exist and some 

features are correlated. This objective involves the identification of the correlation 

structure of the features, selecting representatives from correlated features, and 

selecting useful features from representative features. Second, develop a semi-

supervised anomaly detection method that works without the information from 

operating conditions. This objective involves investigation of the influence of 

operating conditions on machinery data, developing semi-supervised anomaly 

detection method by identifying the influence of operating conditions, and developing 

methods to automatically set up model parameters. The feature selection method and 

the anomaly detection method developed in the dissertation have different 

requirements on the data: the feature selection method is a supervised method that the 

training data of all health classes are needed. The anomaly detection method is a semi-

supervised method that only the training data from the healthy class are required. 

Typical application scenarios combining the use of the feature selection and anomaly 

detection methods are machinery health monitoring projects: at the beginning, sensors 

and their mounting locations are evaluated. An initial set of sensors and their locations 

is selected based on domain knowledge. To avoid false negative detection, this initial 

set of sensors tries to include a large number of sensors covering all possible 

conditions. Then, experiments are conducted to collect labeled data for all health 
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classes of interest. After that, feature selection is performed to select uncorrelated 

useful sensors from the initial sensor set. Based on the correlation structure of the 

sensors identified by the feature selection method, redundant sensors for critical 

features are kept. These selected sensors are the ones most sensitive to the change of 

health conditions and they are installed to the machinery system as the final product. 

During the actual health monitoring, failure data are rare and they have a wider 

diversity than the failure data collected from experiments. Therefore, only healthy data 

are collected by the selected sensors as the training data to train the anomaly detection 

method of this dissertation, which is semi-supervised. 

 

Chapter 3: Feature Selection 

A feature selection method is developed in this dissertation to achieve two objectives: 

first, select useful features. The method should work even when both noise features 

and redundant features exist, and it should accept both linear and nonlinear data. 

Second, identify the correlation structure of the features to find useful redundant 

features. Identifying the useful redundant features is necessary because in some 

applications, such as the sensor systems of aircraft or nuclear plant, redundancy of data 

sources is required for safety concerns. 

3.1 Development of the Feature Selection Method 

The feature selection method searches the optimal subset of useful features using a 

procedure consists of three steps. In the first step, features are clustered according to 

their linear correlations. Correlated features are grouped into the same cluster and they 
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are regarded as redundant with each other. If a feature is not correlated with other 

features, it is regarded as a cluster containing only itself. Second, from each cluster a 

representative feature is selected. Although the features within the same cluster are 

correlated, they are still different from each other that some features contain more 

useful information, and some contain more noise. The feature that is most capable of 

separating different classes is selected as the representative. Third, representative 

features from all the clusters are concatenated to form a new feature space where all 

the features are noncorrelated. A subset of features is selected by a feature selection 

algorithm from this preprocessed feature space. The first two steps identify redundant 

features and the third step removes noise features. Because redundant features are 

removed in the first two steps, feature selection algorithm will not suffer from the 

correlation. The procedure is illustrated in Figure 7. 

 

If feature clustering and representative selection are performed after useful feature 

selection, the whole procedure will have the same shortcoming as other feature 

selection methods in processing redundant features. For example, if random forest is 

used to select useful features as the first step, features with lower capability of 

separability within a group of highly correlated features have the same chance of being 

selected [36]. If one less useful feature is selected, the features highly correlated with it 

will be abandoned and these features may be more capable of separating different 

classes. After clustering and representative selection, the final feature set loses some of 

the most useful features. Therefore, feature clustering and representative selection 

should be performed before useful feature selection. 
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Figure 7: Flowchart of Selection 

 

To implement this procedure, several challenges need to be solved. First, what is the 

criterion to determine some features are highly correlated and they should be grouped 

into the same cluster? Second, how to determine if a feature is more capable of 

separating the classes than the rest within a cluster? Third, what feature selection 

algorithm should be used in the third step? 

 

To measure if two features are highly correlated, correlation distance is used. 

Correlation distance d(u,v) between feature u and feature v is defined as in Equation 

(1). 
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where cov is the covariance operator, σu and σv are the standard deviation of feature u 

and v, respectively. 

 

The correlation distance is developed based on Pearson’s correlation coefficient, 

where 1 indicates perfect positive linear correlation and -1 indicates perfect negative 

linear correlation. Since both positive and negative linear correlations have the same 

influence on feature selection, the strength of linear correlation can be represented by 

the absolute value of Pearson’s correlation coefficient, where 1 indicates perfect linear 

correlation, and 0 indicates no linear correlation. Correlation distance measures how 

much two features’ relationship deviates from perfect correlation, where 0 indicates no 

deviation from perfect correlation, and 1 indicates a total deviation. Correlation 

distance is a dissimilarity measure that can be readily processed by available clustering 

methods. 

 

Using correlation distance as the dissimilarity metrics, correlated features are grouped 

into clusters. Compared with k-means clustering, density-based clustering [86], and 

self-organizing maps, agglomerative clustering provides a correlation tree to describe 

the structure of correlations between the features, which is desirable for intuitive 

understanding. The agglomerative clustering is used in this research in the following 
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way: at the beginning of clustering, every feature is a cluster itself. These clusters form 

a set F. Two clusters are merged into one cluster based on the criterion of Equation (2). 

Then the two original clusters are removed from F, and the newly merged cluster is 

included in F. This procedure is performed iteratively until F contains only one cluster. 

  Fbabag ,:),(min  (2) 

where g(a, b) is the distance between cluster a and b, as defined in Equation (3). 

  bvauvudbag = ,:),(min),(  (3) 

The result is a correlation tree that the features in the clusters near the root are less 

correlated than the features at the furthest branches, as shown in Figure 8, where the 

cluster tree of the Iris data is plotted. To complete the clustering, a threshold on the 

correlation distance is needed to cut down the tree. In the Iris example, if the tree is cut 

below node 1, every feature is a cluster itself. If the tree is cut between node 1 and 

node 2, feature 2 and 3 form a cluster, and feature 0 and 1 are two separate clusters. If 

the tree is cut between node 2 and 3, feature 0, 2, and 3 form a single cluster and 

feature 1 is a cluster itself. If the tree is cut above node 3, all the features form a single 

cluster. 
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Figure 8: Correlation Tree of the Iris Data 

When the correlation tree is cut, one or more clusters are formed. Features in the same 

clusters are similar and a representative is selected. Selecting only one representative 

feature from a group of linearly correlated features does not have the same problem of 

filter methods of ignoring the joint effect of separation using multiple features for the 

following reasons: when the features are linearly correlated, they carry the same 

information that contributes to the separation of different classes and therefore 

including multiple linearly correlated features will not improve the result. However, 

perfect linear correlation rarely exists and some features may contain a nonlinear 

relationship that contributes to the separation of classes. Therefore, an optimal value to 

cut the tree that minimizes loss of joint information among features is needed.  

 

The representative is the feature that is most capable of separating different classes of 

data within a cluster. Decision tree is used to evaluate the separating capability 

because of its generosity on the types of data and its advantage of providing intuitive 
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results. The data from individual features in the same cluster are evaluated by decision 

tree in turn using cross validation. The feature providing the highest mean accuracy is 

selected as the representative of the cluster. For clusters with only one feature, the only 

feature is used as the representative. After representative selection, the correlation 

among the features that restricts the performance of available feature selection 

methods is removed. 

 

To select useful features from the representative features, random forest with Gini 

impurity is used. For each tree in the random forest, the impurity decrease of each 

feature is calculated. The mean impurity decrease across all the trees in the forest is 

calculate for every feature, and the features are ranked according to their mean 

impurity decrease. Compared with feature selection methods based on linear models, 

random forest has a wider application range that both linear and nonlinear data can be 

processed. Since random forest is nonparametric, it does not require the data follow 

any parametric distributions. Being an ensemble learning method, random forest is 

robust against noise and is more likely to provide stable results.  

 

To determine the optimal value to cut down the correlation tree, the cluster should be 

defined specifically. Because in this research the purpose of clustering is to find the 

groups of features that behave similarly in classification, a cluster is defined as a group 

of features sharing the same piece of useful information that does not exist outside the 

group. If the threshold value is too high, a smaller number of clusters are formed, and 

each cluster has more members with higher dissimilarity. Except the information 
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shared by the members of clusters, some members may specifically contain useful 

information that contributes to the classification. After representative selection, this 

useful information is lost, leading to reduced classification accuracy. If the threshold 

value is too low, a larger number of clusters are formed, and different clusters may 

share the same information. After representative selection, correlated features still 

exist, leading to unstable feature selection and reduced classification accuracy. In both 

scenarios, the definition of clusters of this research is violated. If an optimal threshold 

is selected, the loss of useful information is minimized because all the features in the 

same cluster share the same piece of useful information, and after representative 

selection, this information is kept. The number of redundant features is also minimized 

because the shared useful information does not exist outside the cluster. As a result, 

classification accuracy is maximized. The optimal threshold is determined by 

searching all the tree-cut nodes. In the example of the Iris data, the cluster tree is cut at 

node 1, node 2, and node 3, generating 3 subsets of features by implementing the 

procedure described in Figure 7. The tree-cut node value leads to the highest 

classification accuracy corresponds to the threshold, as shown in Equation (4). 

 )(maxarg dAd
Dd

T


=  (4) 

where dT is the threshold, d is the correlation distance, A is the model performance 

metrics, such as accuracy, area under curve, or a transform of generalization error. In 

this research the mean accuracy of cross validation is used. D is the set of correlation 

distance values corresponding to the nodes of correlation tree. 
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In general, if there are m features, the correlation tree has m nodes, including the root 

node. The procedure in Figure 7 is evaluated m times to get the optimal value. The 

dimensionality of most systems is in the order of less than 103, and an exhaustive 

searching strategy is practical. In cases of large dataset with higher dimensions, 

heuristic optimization algorithms such as simulated annealing [87] can be applied for 

the search. The searching strategy is shown in Figure 9. Moreover, since the searches 

are independent from each other, parallel computing is implemented, as shown in the 

dashed box of Figure 9. 
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Figure 9: Optimization of the Feature Selection 
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At first, a correlation tree is obtained by agglomerative feature clustering using 

correlation distance as dissimilarity measure. From the correlation tree the correlation 

distance values at the nodes are obtained. These values of the nodes are used as 

thresholds to cut down the treetop form clusters. For each tree-cut threshold, a feature 

subset is selected using the procedure of Figure 7. Each feature subset is evaluated by 

cross-validation to get its performance in classification. The feature subset giving the 

best cross-validation result is the final selection, and the corresponding threshold value 

is the optimal value for cluster tree-cut. The classifier used in the cross validation can 

be determined by the specific problem. In this research, decision tree is used due to its 

wide application range and intuitive result, which is needed in feature selection. 

Because the whole procedure is based on the searching of the optimal tree cut, the 

method is named correlation tree-cut (CTC) feature selection. This procedure also 

helps to define the concept of correlated features. Measuring by the absolute value of 

Pearson’s correlation coefficient, any pair of features are correlated with a value 

between 0 to 1. 0 indicates no correlation and 1 indicates perfect correlated. In real life 

0 and 1 of the coefficient values are ideal and they are unlikely to occur. Since any 

value above 0 indicates a degree of correlation, to determine if a value is significant, 

researchers have selected fixed thresholds, which is a subjective approach. In this 

research, a flexible threshold is used. Different thresholds lead to different groups of 

features. The threshold that leads to the selection of the optimal feature subset, which 

provides the highest classification accuracy, is selected, and the features with 

correlation coefficients above the threshold are regarded as correlated with each other. 

The true-cut method is choosing a global threshold to cut down the tree to form 
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clusters. Using localized thresholds for tree-cut may have possibility of utilizing more 

detailed information of the correlation tree to generate clusters leading to higher 

classification accuracy. This will lead to the development of another feature clustering 

algorithm and can be studied as a future research topic. 

 

3.2 Evaluation of the Feature Selection Method 

The correlation tree-cut (CTC) feature selection was compared with widely used 

feature selection methods including random forest (RF) with Gini impurity, stability 

selection (SS) using randomized logistic regression with L1 penalty, recursive feature 

elimination (RFE) using decision tree, support vector machine (SVM), and logistic 

regression (LR) with L1 penalty. For each method, the selected subset of features was 

evaluated by k-fold cross validation. The mean accuracy and the number of selected 

features were used as performance metrics. Higher mean accuracy and smaller number 

of selected features indicate better performance of a method. In the k-fold cross 

validation, decision tree was used to induce classifiers because of its capability of 

classifying both linearly separable and non-separable data and its insensitivity to the 

setup of hyperparameters. Moreover, unlike random forest classifier or hybrid 

classifier [88], decision tree’s own feature selection effect is less likely to mask the 

performance of the feature selection methods under evaluation is set to 5 because 5 

values from the testing results are usually regarded as statistically large enough for the 

calculation of mean and standard deviation (std), and are small enough to give 

adequate observations for the testing fold. Datasets used in the evaluation consist of 

simulated data, benchmark data and experimental data.  
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3.2.1 Feature Selection Method Evaluation Using Simulated Data 

Simulated data, experimental data, and field data were applied to evaluate the method 

to avoid the possibility that any conclusion is made only for specific situations. 

Simulated data were used because the ground truth of useful features is known. Spiral 

data with two classes were simulated because they are challenging cases of nonlinear 

data, and thus the performance of different methods can be distinguished more easily. 

The data have 12 features and 400 observations. The features include 2 useful features 

that separate the classes, as shown in Figure 10. Additional features include 6 features 

of Gaussian noise, 2 features correlated with the 2 useful features, and 2 features 

correlated with 2 noise features. 
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Figure 10: Useful Features of the Simulated Data 
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The correlation tree from CTC is shown in Figure 11. It correctly identified feature 0 

and feature 8, feature 1 and feature 9, feature 2 and feature 10, feature 3 and feature 11 

are mutually redundant features due to their linear correlations. 

Correlation distance

Tree cut threshold

 

Figure 11: Correlation Tree of the Simulated Data 

 

CTC automatically selected feature 1 and feature 2 as the useful features. The result is 

consistent with the ground truth. A comparison of the results from all the selected 

methods is shown in Table 1. Compared with other methods, CTC is the only method 

correctly identified the useful features. RF, SS, SVM, and LR mistakenly include 

noise features and some redundant features as useful features. Although RFE selected 

two features, one feature is a redundant feature of an actual useful feature. As a result, 

CTC has higher mean accuracy and lower std accuracy from the cross validation. 
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Table 2: Feature Selection Results of the Simulated Data 

Method CTC RF SS RFE SVM LR

# Features 2 3 9 2 5 8

Mean Accuracy 88.3% 87.7% 86.2% 87.5% 86.2% 86.5%

std Accuracy 0.02 0.033 0.048 0.035 0.028 0.025  

 

The performance of the methods was further evaluated by increasing the number of 

noise features and redundant features, as shown in Figure 12 and Figure 13.In addition 

to the 2 useful features, 2m noise features were added to the feature set. Subsequently, 

m redundant features were added to the feature set, some of which were linearly 

correlated with the useful features and some of which were linearly correlated with the 

noise features. To generate a redundant feature, a feature is randomly selected from the 

feature set, which consists of both useful features and noise features, and the selected 

feature is linearly transformed with a randomly generated constant term. As the m 

increases, the number of features selected by linear models such as SS, SVM, and LR 

increases. This is because the data are not linearly separable, and linear models failed 

to find a subset of features to maximize the classification accuracy. Instead, most 

features were assigned the same weight or importance. RF and REF using decision 

tree are capable of processing nonlinear data and therefore they selected a smaller 

number of features and achieved higher values of mean accuracy than SS, SVM, and 

LR. However, RF and REF randomly select features from correlated features. As a 

result, their performances fluctuated. CTC consistently selected the smallest number of 

features with the highest mean accuracy. An observation is, when the number of noise 

and redundant features is 90 and 120, besides two useful features CTC selected an 

additional noise feature and the mean accuracy was increased as a result. This is 



 

 49 

 

because a randomly generated noise feature may form a separable pattern by chance 

and thus it contributes to the classification. 
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Figure 12: The Number of Selected Features as the Number of Noise and Redundant 

Features Increases 
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Figure 13: Mean Accuracy as the Number of Noise and Redundant Features Increases 
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3.2.2 Feature Selection Method Evaluation Using Benchmark Data 

Wine dataset [89] was used as the benchmark data. This dataset has 3 classes, 13 

features, and 178 observations. The correlation tree from CTC is shown in Figure 14. 

CTC regards feature 5, feature 6, and feature 11 as mutually redundant features. It 

identified feature 6, feature 9, and feature 12 as useful features. The results are shown 

in Table 2. Compared with other methods, the number of features selected by CTC is 

the smallest, and the mean accuracy is also the highest. However, its std accuracy is 

not the smallest. 
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Figure 14: Correlation Tree of the Wine Data 

 

Table 3: Results of the Wine Data 

Method CTC RF SS RFE SVM LR

# Features 3 7 8 9 5 7

Mean Accuracy 97.2% 95.5% 95.0% 93.2% 93.2% 94.9%

std Accuracy 0.031 0.014 0.048 0.028 0.056 0.038  
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Similar to the evaluation of the simulated data, 2m noise features and m redundant 

features linearly correlated with the useful and noise features were added to the 

original 13 features. The results are shown in Figure 15 and Figure 16. 
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Figure 15: The Number of Selected Features as the Number of Noise and Redundant 

Features Increases 
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Figure 16: Mean Accuracy as the Number of Noise and Redundant Features Increases 
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CTC consistently selected the smallest number of features while maintaining the 

highest mean accuracy: independent of the choice of the number of noise and 

redundant features, CTC constantly selected the smallest number of features and it has 

the smallest fluctuation compared with other methods. When the number of noise and 

redundant features increased, the mean accuracy of CTC did not drop as other methods. 

In sum, compared with benchmark methods, CTC provided more accurate feature 

selection results and was influenced the least by noise and redundant features. 

3.2.3 Feature Selection Method Evaluation Using Experimental Data 

An application of feature selection is to identify useful features from a large number of 

features in fault diagnosis. Therefore, CTC was evaluated by an experimental study of 

fault diagnosis using a machinery fault simulator, as shown in Figure 17. 

Motor Shaft Accelerometer Bearing

Belt driveGearbox
 

Figure 17: Experiment Setup 
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The experiment was step for fault diagnosis of rolling element bearings. The bearings 

under test include a healthy bearing, a bearing with outer race fault, a bearing with 

inner race fault, and a bearing with ball fault. The data generated were labeled 

accordingly. A gearbox was installed as a noise source, and the motor driving the 

bearing was run at different rotation speeds. The setup is to simulate the scenario of 

conducting health monitoring under changing operating conditions and masking noise. 

 

An accelerometer was mounted on the housing of the bearing to collect vibration 

acceleration signals at a sampling rate of 25,600 Hz. The sampling rate was selected 

considering the resonance excited by a faulty bearing should be captured. A 

rectangular window with a length of 2 s (51,200 points) was applied to slide along the 

signals with a step of 1s (12,800 points). The window setup gives a frequency 

resolution of 0.5 Hz, and a time resolution of 1 s, which are appropriate for frequency 

domain analysis and in-situ monitoring. For each slide of the window, a vector of 

features was calculated from the portion of the signal inside the window. Widely 

accepted features in time domain, frequency domain, and time-frequency domain were 

calculated. This research used 11 time domain features, including peak-to-peak, rms, 

standard deviation, skewness, kurtosis, impulse factor, crest factor, the square root of 

the amplitude, margin factor, shape factor, and kurtosis factor. Math expressions of 

these features are described in [90]. Frequency domain feature used is the primary 

frequency of the enveloped signal. Time-frequency domain features used are the 

wavelet packet node energies of the first three levels, which generate 14 features. 

Together 26 features are used. The data in each dimension were normalized using Z-
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score to avoid biased classification from the difference of scales among different 

features. There are 214 observations distributed in 4 classes of bearing health 

conditions. 
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Figure 18: Correlation Tree of the Experimental Data 

 

The correlation tree from CTC is shown in Figure 18. CTC found the features 

extracted from the wavelet transforms (feature 12-25) are correlated. In addition, they 

are also correlated with peak-to-peak and rms of the signal in time domain. Among 

these correlated features, feature 25 has the highest capability of separating different 

bearing classes. Impulse factor (feature 5) and crest factor (feature 6) are correlated 

and the impulse factor was selected. 
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The result is shown in Table 3. Compared with other methods, CTC selected the 

smallest number of features and achieved the highest mean accuracy and the smallest 

standard deviation. The two selected features are impulse factor (feature 5) of the 

signal in the time domain and the energy of wavelet packet (3, 7) (feature 25), which is 

the detail of the last node of the third level. This selection is consistent with the 

engineering analysis. When the bearing becomes faulty, rolling elements strike the 

fault as they run over it, generating impulses. When the signal becomes impulsive, the 

distribution of the signal has heavier tails that the kurtosis increases. The strike of the 

rolling elements on the fault excited the resonance of the mechanical structure. Due to 

the compact structure of the bearing, the resonance usually has a high frequency. As a 

result, the resonance information is picked up by wavelet packet node energy (WPNE) 

(3, 7), which represents the highest frequency band of the chosen wavelet packet 

transform. 

Table 4: Results of the Experimental Data 

Method CTC RF SS RFE SVM LR

# Features 2 12 25 13 20 12

Mean Accuracy 98.6% 97.2% 94.4% 95.8% 93.9% 96.3%

std Accuracy 0.019 0.028 0.024 0.023 0.044 0.024  

 

The two selected features are plotted in Figure 19. Both features were normalized by 

calculating their Z score. Because rotation speed was changed several times, the 

observations of every class form multiple clusters. The clusters from different classes 

are separable by decision tree classifier in the space spanned by the two selected 

features and thus a high mean accuracy is achieved. 
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Figure 19: Selected Features 

 

3.2.4 Field Study of the Feature Selection Method 

CTC was implemented to evaluate the sensors of a fleet of carrier aircraft from 

Lockheed Martin. The data were collected from a fleet of more than 20 airplanes. Each 

airplane has used 57 sensors in health monitoring. A specific type of fault was 

observed on some airplanes and historic data were labeled as faulty and healthy 

according to the maintenance findings and engineering judgment. It is assumed some 

of the 57 sensors are sensitive to the fault of interest and some are not. The task is to 

identify the fault sensitive sensors, which are the useful features in this research. The 

original labeled data have several millions of observations. They were down-sampled 

and a sample of 648 observations was randomly selected for evaluation. 
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The result is shown in Table 4. CTC selected only one features but it achieved the 

highest mean accuracy. This result is practical that an interpretable rule can be setup 

with this feature using decision tree. 

 

Table 5: Results of the Field Data 

Method CTC RF SS RFE SVM LR

# Features 1 3 48 25 47 44

Mean Accuracy 87.5% 70.1% 65.4% 66.3% 64.5% 65.1%

std Accuracy 0.025 0.060 0.031 0.051 0.006 0.031  

 

An excerpt of the correlation tree is shown in Figure 20. Several groups of correlated 

features are identified. However, the selected sensors are not correlated with any other 

sensors. Therefore, there is a potential to add redundant sensors for the useful sensor. 
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Figure 20: An Excerpt of the Correlation Tree for the Aircraft Data 
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3.3 Summary 

Correlation tree cut (CTC) feature selection method was developed in this dissertation. 

It can select useful features under indeterminate operating conditions even when some 

features are correlated. In the simulation study, the CTC method was not affected by 

the number of noise and correlated features, and its overall performance is superior 

than that of benchmark methods. In the experimental study, under indeterminate 

operating conditions, the method provides the highest detection accuracy with the 

smallest standard deviation. In the field study, it chose a single feature and achieved 

the highest accuracy. The feature correlation tree constructed in the feature selection 

method provides an approach to identify redundancy among features. One feature 

from each cluster is adequate for modeling. Remaining features can be used for needed 

redundancy. 

 

CTC feature selection is performed without the requirement on domain knowledge of 

the system. However, the initial set of features to be selected by CTC can benefit from 

the use of domain knowledge. The initial set of features should include fault sensitive 

features, and otherwise the result of CTC will be useless. To ensure fault sensitive 

features are included, domain knowledge can be used to generate a large set of features 

that have been proven useful theoretically or experimentally.  
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Chapter 4: Anomaly Detection Using Unimodality-Based 

Clustering 

The focus of this research is semi-supervised anomaly detection. That is, only healthy 

training data are used and the training data from anomalies are not required. This focus 

is based on the situation of machinery data: the health states of the data are usually 

labeled using domain knowledge based on maintenance activities. If no fault is found, 

the data collected between two adjacent maintenances are labeled as healthy. If a fault 

is found, the data collected before the maintenance for a certain period are regarded as 

faulty, and the data collected for a period after the corrective maintenance are labeled 

as healthy. The periods before and after the maintenance for the determination of the 

faulty and healthy data are usually judged by engineering experience and thus 

uncertainties are introduced. To avoid increasing the risk of including faulty data to 

the set of healthy data, healthy data can be selected only from the period between two 

adjacent maintenances that no fault is found. Although this practice abandoned the 

data collected before the maintenances where faults are identified, healthy data are 

usually abundant to afford the abandoning of the uncertain data. However, the 

uncertainty involved in labeling faulty data cannot be avoided in the same way. Even 

when two adjacent maintenances identified the same fault, the data between them are 

still mixed with both healthy and faulty data. Moreover, a machinery system involves 

multiple failure modes, and some of them only occur once during the whole life cycle 

of the system. As a result, it is unlikely to get a data set covering a full range of failure 

modes for training. In sum, healthy training data are widely available and faulty 

training data are not, and thus using semi-supervised anomaly detection is practical. 
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One-class SVM and semi-supervised KNN have been applied as benchmark methods 

in semi-supervised anomaly detection due to their wide range of application and 

satisfactory results. However, these methods are sensitive to the choice of hyper-

parameters that it is difficult to reach a trade-off between specificity and generality 

without the supervision of labeled anomalous data, which are usually not available at 

the stage of anomaly detection.  

 

Clustering-based methods is semi-supervised and they do not have the problem of one-

class SVM and KNN. They model the data under a state of operating conditions as a 

cluster. Each cluster is a group of observations generated by a state of operating 

conditions when the system is healthy. Thus, a cluster is a generalization of data under 

a state of operating conditions. The trade-off between specificity and generality is 

reached by identifying the data associated with different states of operating conditions 

and by generalizing the data for a given state of operating conditions. After clustering, 

a test observation is detected as an anomaly if it is not a member of any cluster. A 

general procedure of clustering-based anomaly detection is illustrated in Figure 21. 
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Figure 21: Procedure of Clustering-Based Anomaly Detection 

 

4.1 Development of Unimodality-Based Clustering 

Among various clustering approaches, partition-based clustering and hierarchy-based 

clustering are widely used in the condition monitoring of machinery systems. 

Representative partition-based clustering algorithms include the k-means clustering 

family, and representative hierarchy-based clustering algorithms include the linkage 

clustering family. Both approaches require that the number of clusters is known in 

advance either directly or indirectly. Determining the number of clusters gives rise to 

the research on clustering validation, where the clustering, given a certain choice of 

the number of clusters, is evaluated to determine if the clustering is successful under 

validation criteria[91]. 

 

Established methods for determining the number of clusters include the empirical 

approach, the cluster similarity-based approach, and the distribution-based approach. 

The empirical approach determines the number of clusters either using domain 
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knowledge about the data [92] or the elbow method, which tries to make a trade-off 

between the number of clusters and the variance explained from clustering. User 

experience is required for every specific clustering, and determining the threshold for 

the elbow method also requires prior understanding of the data although the threshold 

often cannot be identified [93]. Thus, the empirical approach is not suitable for 

automated clustering without user interference. The issue of elbow method is 

illustrated in Figure 22, where Iris data were used. The Iris data have 3 classes. When 

the data are clustered without using the labels, 3 clusters should be identified. Elbow 

method found both 2 clusters and 3 clusters look like the elbow. 
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Figure 22: The Issue of Elbow Method 

 

In the similarity-based approach, the number of clusters is determined by maximizing 

the ratio of intra-cluster similarity to the inter-cluster similarity. Representative 

methods include the silhouette index (SI) [94][95] and gap index [96]. SI takes value 

in [-1, 1]. Higher value indicates better result. To use SI, a clustering algorithm such as 

k-means is run by trying different number of clusters. The number of cluster gives the 

largest SI is selected. For a clustering result, SI is calculated as: 
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where a is the mean of intro-cluster distance, and b is the mean of the distances of 

points to its nearest-clusters. 

 

Similarity-based approach does not use an application-specific definition of clusters 

and the clustering result is often not valid. For example, SI is liable to choose a larger 

number of clusters, and gap statistics may not choose the optimum number of clusters 

if different dimensions have different scales. I 

 

In the distribution-based approach, every cluster is assumed to be sampled from a 

parametric distribution, such as a Gaussian distribution [97] or a mixture of parametric 

models [98]. Distribution-based clustering methods give an unambiguous definition of 

each cluster by describing it with a distribution model. However, the data from a 

cluster often cannot be described by a known parametric distribution.  

 

Distributions commonly observed in the health monitoring of machinery systems 

include normal, lognormal, Rice, Rayleigh, Nakagami, Student’s t, and truncated 

versions of these distributions  [99]. The common characteristic of these distributions 

is that they are unimodal. Based on this idea and the distribution-based approach, in 

this dissertation a cluster is defined as a group of observations following a unimodal 

distribution in every dimension. Thus, if a dataset has M modes, it can be partitioned 



 

 64 

 

into M clusters of unimodal data. A unimodality-based clustering method was 

developed accordingly in this dissertation: different clustering partitions are generated, 

and the one validated by the unimodality test is the optimal partition. Compared with 

normality-based methods, the unimodality-based clustering method has a wider range 

of applications by considering all unimodal distributions. Based on unimodality-based 

clustering, an anomaly detection method is developed. 

 

A unimodal distribution is a probability distribution that has a single mode, which 

means a single value appears most frequently without a local maximum. For the 

probability density function (pdf) f(x) of a unimodal distribution with mode x = m, f(x) 

is monotonically increasing for x ≤ m, and monotonically decreasing for x ≥ m. 

Intuitively, the pdf of a unimodal distribution has only one peak. However, due to the 

disturbance of noise, the pdf of the actual unimodal data may not strictly have one 

peak, which challenges the validation of unimodality. 

 

In this research, a cluster is defined as a group of observations that follow a unimodal 

distribution in every dimension. This definition addresses the challenges of 

distribution-based clustering by treating the clusters as following a general form of 

unimodal distribution, which includes the case where the data cannot be described by a 

parametric unimodal distribution and the case where the data consists of clusters from 

different types of unimodal distributions.  
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If a set of multimodal data is correctly partitioned, the data in each cluster follow a 

unimodal distribution in every dimension, as illustrated in Figure 23: the data were 

simulated to have two modes. There would be at least one dimension where the 

original data are not unimodal, and when the data are partitioned to 2 clusters, the data 

in a cluster are unimodal, as shown in dimension 1. 

The data are not 

unimodal.
The data in one 

cluster are unimodal.  

Figure 23: Unimodality and Clusters 

 

To develop a unimodality validation method, the properties of unimodal distributions 

are investigated. The cumulative distribution function (cdf) has the following 

properties: first, the cdf is non-decreasing. Second, the cdf converges to 0 and 1. Third, 

the cdf of a unimodal distribution has only one inflection point. The first two 

properties hold for any distribution, and the third property is unique for unimodal 

distributions. The cdf satisfies these properties in the shape of a sigmoid function 

bounded between 0 and 1. In general, for a data with m modes, the number of 

inflection points is 2m – 1. For example, for a bimodal distribution, m = 2, and there 
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are 3 inflection points. For a unimodal distribution, m = 1, and there is one inflection 

point. 

 

If a dataset is unimodal, its empirical distribution converges to its underlying unimodal 

distribution. In general, if the empirical distribution of data x with n observations is 

Fn(x), and the underlying distribution is F(x), according to the law of large numbers, 

Fn(x) converges to F(x), as described in (6) and (7). 

 )()()(
1

1 xXIxXPxF
n

i

innn == 
=

 (6) 

 0|)()(|sup →−


xFxFn
x

 (7) 

where I (y) = 1 for y = True, and 0 for y = False. n is the number of observations. 

 

When the data are sampled from a unimodal distribution G(x), the underlying 

distribution F(x) =  G(x): 

 0|)()(|sup →−=


xGxFd n
x  

(8) 

The supremum of the absolute difference d between the empirical distribution Fn(x) 

and the G(x) is the Kolmogorov–Smirnov (KS) statistic. d should converge to 0 if the 

null hypothesis is true that G(x) is the underlying distribution. Otherwise, d is positive. 

A smaller d indicates the data are more likely being sampled from G(x). Under the null 

hypothesis, dn  follows KS distribution, and therefore the KS test can be used to 

perform the hypothesis test.  
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Based on the idea of the KS test, Hartigan’s dip test [100] was developed to test 

unimodality. The dip test employs an empirical procedure to find a unimodal 

distribution that is most similar to the empirical distribution of the data by minimizing 

the KS statistic d. Then a hypothesis test is performed to determine if the data are 

sampled from the identified unimodal distribution.  

 

The dip statistic was defined as the maximum difference in terms of KS distance 

between the empirical distribution function and the unimodal distribution function that 

minimizes that maximum difference. The dip statistic of a distribution function F is as 

defined in (9) 

 ),()( = FFr   (9) 

where r(F) is the dip statistic of F. Ω is the class of unimodal distributions. For any 

bounded functions F and G, ρ(F, G) is defined in (10). For any class Λ of bounded 

functions, ρ(F, Λ) is defined in (11) 

 )()(sup),( xGxFGF x −=  (10) 

 ),(inf),( GFF G  =  (11) 

In the unimodality test, F is replaced by the empirical distribution function of the data 

under test. Equation (5) is the calculation of the KS distance of the empirical 

distribution to a unimodal distribution G. The KS distance ρ(F, G) is the largest 

absolute difference of F and G, as shown in Figure 24. 
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Figure 24: Dip Statistic 

 

In Equation (6), G is the unimodal distribution that results in the smallest dip statistic 

of F. To find G, the properties of unimodal distributions are investigated. As a 

cumulative distribution function (cdf), G is non-decreasing and it converges to 0, and 1, 

as shown in Figure 25. G has an additional property: it has only one inflection point. 

Therefore, G has the shape of a sigmoid function. 

 

Data

cd
f

 

Figure 25: The Shape of Unimodal Distributions 

 

It is not feasible to search all unimodal distributions for G in (6), and thus Hartigan 

and Hartigan [100] developed an estimate of G as a curve in the shape of a sigmoid 
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function. The sigmoid curve minimizes the KS distance between this curve, and the 

empirical distribution of the data is determined as the estimate of G. 

 

A smaller dip statistic of a test dataset indicates the data are closer to a unimodal 

distribution. The dip statistic changes with the sample size of the data under test. To 

evaluate the unimodality of datasets with different sizes, the significance of the dip 

statistic is used, which is invariant with the sample size. It measures the chance that 

the dataset has a smaller dip statistic than the reference data of the same size from a 

uniform distribution. A uniform distribution is an extreme case of unimodal 

distribution; it is between unimodal and multimodal. Hartigan and Hartigan [100] 

proved that the dip statistic is stochastically larger for the uniform distribution than for 

any other unimodal distributions. If the test dataset has a dip statistic smaller than that 

of uniform distribution with a probability p, the test data are regarded as unimodal 

with probability p, which is the significance. For example, if the significance p = 0.5, 

it means the test dataset has a 50% chance that its dip statistic is smaller than that of 

the samples from a uniform distribution. By setting up a threshold of the significance, 

the unimodality of the clusters can be evaluated. 

 

The unimodality test using the dip statistic significance is integrated with a clustering 

algorithm to construct a clustering method that automatically estimates the number of 

clusters. K-means clustering, due to its wide application range and the large amount of 

variant algorithms [101], is integrated as a demonstration. Using other algorithms in 

the unimodality-based clustering procedure is similar. The choice of clustering 
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algorithms depends on the application. For example, if the data are nonlinearly 

correlated or membership scores are needed, kernel fuzzy c-means clustering is a 

better choice, as in [102]. 

 

K-means clustering finds cluster centroids and identifies data observations that belong 

to the clusters of the centroids according to the distances of the observations to the 

centroids. An observation belongs to the cluster for which the observation has the 

shortest distance to the centroid. For a given set of centroids, the clustering criterion F 

is provided by (12). 

 
= 

−=
k

i Sx

ij
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ij

xF
1

2||||minarg   (12) 

where S = {S1, S2, …, Sk} are k sets of clustered data; (x1, x2, …, xn) are n observations 

to be clustered; and μi is the centroid of Si. 

 

To find the centroids of the clusters, Lloyd’s algorithm is usually used. Centroids for 

the initial clusters are assigned randomly. When the distances between each 

observation and the centroids are calculated, the membership of the observations in the 

clusters is reassigned so that an observation becomes an member of a cluster with the 

nearest centroid. After that, the centroids of the updated clusters are calculated. This 

process is repeated until the membership of the data points in the clusters does not 

change any more. 
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In the unimodality-based clustering developed in this dissertation, k-means is 

implemented to partition the data into a small number of clusters, and then the 

unimodality of the data from each of the k clusters is tested on all dimensions. If the 

data from all the k clusters pass the unimodality test, the number of clusters is 

determined as k. Otherwise, the number of clusters is increased to k + 1, and the 

procedure is repeated. To avoid outliers being identified as a unimodal cluster, the size 

of each cluster is examined. If the cluster size is smaller than a certain number, it is not 

regarded as a valid cluster, and the method would repeat the procedure by using a new 

set of initial centroids for k-means. The procedure for the method is shown in Figure 

26.  

 

Start the number of cluster k = 0

Do the clusters 

satisfy unimodality 

criterion?

k = k + 1

k0 = k

Partition the data into k0 clusters 

using k-means

Does each cluster 

have more than N0

members?

Clustering completed.

The data has k0 clusters

Yes

No

No

Yes

Yes

 

Figure 26: Flowchart of Unimodality-Based Clustering 
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4.2 Evaluation of Unimodality-Based Clustering 

Clusters with different degrees of overlaps, dimensionalities, and distributions were 

simulated to evaluate the performance of unimodality-based clustering. It was 

compared with silhouette-based clustering and gap-based clustering due to their 

widely reported effectiveness [91] [95] [103]. In silhouette-based clustering, different 

partitions from k-means clustering are tried and the partition that maximizes the mean 

silhouette coefficient is selected [94]. In the same way, the partition that maximizes 

the gap statistic is selected by gap-based clustering [96]. 

 

Adjusted Rand score was applied to measure the clustering result. Adjusted Rand 

score measures the similarity between true cluster labels and estimated cluster labels. 

Adjusted Rand score is based on Rand score, which is defined in the following 

equation: 

 
a b

R
a b c d

+
=

+ + +  

(13) 

where R is Rand score; a is the number of times a pair of observations belongs to the 

same cluster for both the estimated clustering result and the actual clustering result; b 

is the number of times a pair of observations belongs to different clusters for both the 

estimated clustering result and the actual clustering result; c is the number of times a 

pair of observations belongs to different clusters for the estimated clustering result but 

in the same cluster for the actual clustering result; d is the number of times a pair of 

observations belongs to the same cluster for the estimated clustering result but in 

different clusters for the actual clustering result. 



 

 73 

 

 

Adjusted Rand score (AR) improves Rand score as shown in the following equation to 

suppress the score of random labeling. 

 
( )

max( ) ( )

R E R
AR

R E R

−
=

−
 (14) 

A value of 0 indicates the estimated labels for the test data are randomly assigned, and 

a value of 1 indicates the estimate labels have a perfect match with the true labels [104] 

[105]. Compared with other metrics such as Rand score and V-measure [106], adjusted 

Rand score is not misled by the random guess of labels. In every evaluation, the 

simulation was repeated 10 times, and the mean value of the adjusted Rand score was 

calculated. 

 

In the first evaluation, the clustering performance on the data with different degrees of 

overlaps was evaluated. The simulated data have 4 equally spaced clusters. Each 

cluster had 100 2-dimensional observations sampled from a Gaussian distribution with 

the same standard deviation (σ). The distance between centroids was changed from 

0.5σ to 3σ to simulate different degrees of overlaps, as demonstrated in Figure 27. The 

results are shown in Figure 28. Unimodality-based clustering, silhouette-based 

clustering and gap-based clustering are denoted as UC, SC, and GC, respectively. All 

3 methods use the same procedure that the data are clustered using k-means with the 

number of clusters increasing iteratively. The best partition is selected by UC if all 

clusters satisfy unimodality criterion and by SC and GC if the optimal SI and GI are 

obtained, respectively. 
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All 3 methods had increased scores when the separations among clusters were 

increasing, and they had a similar score. However, when the separations between 

clusters were small, UC had a similar score with SC and a higher score than GC. 
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Figure 27: Control Overlaps by Setting the Distance Between Centroids: (a) separate 

the clusters by 2σ; (b) separate the clusters by 3σ 
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Figure 28: Clustering Performance of Gaussian Clusters Using Unimodality-Based 

Clustering (UC), Silhouette-Based Clustering (SC), and Gap-Based Clustering (GC) 
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In the second evaluation, the performance of clustering non-Gaussian data was 

evaluated. The simulated data have 4 clusters. Each cluster had 100 2-dimensional 

observations sampled from a lognormal distribution with the same scale parameter σL. 

The distance between the clusters was controlled by the difference of the cluster 

location parameters, which was set to 5σL in this evaluation. Due to the skewed shape 

of lognormal distributions, the right tail of the distribution from one cluster can 

overlap with a nearby cluster even when the distance between the clusters is large 

enough to separate Gaussian clusters. The value of σ has changed from 0.1 to 0.6 to 

simulate data with different skewness, as demonstrated in Figure 29. The results are 

shown in Figure 30. All 3 methods had decreased scores when σL was increasing, 

where the data from every cluster became more skewed. When σL was smaller than 0.4, 

all 3 methods provided the same result. When σL was increasing from 0.4, UC and SC 

had similar scores, and they were decreasing slower than GC.  
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Figure 29: Control the Shape of Clusters: (a) set the scale parameter σ to 0.1; (b) set 

the scale parameter σ to 0.4 
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Figure 30: Clustering Performance of Lognormal Clusters 

 

In the third evaluation, the performance of clustering from the influence of 

dimensionality on Gaussian data was evaluated. Four clusters of Gaussian data were 

simulated, and each cluster had 100 observations. The distance between cluster 

centroids was set to 2σ. The dimensionality was increased from 2 to 30. The results are 

shown in Figure 31. With the increase of dimensionality, the scores of UC and GC 

increased asymptotically, and the score of SC was decreasing. 
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Figure 31: Clustering Gaussian Data of Different Dimensions 
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In the fourth evaluation, the performance of clustering from the influence of 

dimensionality on non-Gaussian data was evaluated. Four clusters of lognormal 

clusters were simulated, and each cluster had 100 observations. The difference of 

cluster location parameters was set to 5σL. The scale parameter was set to 0.5. The 

dimensionality was increased from 2 to 30. The results are shown in Figure 32.  When 

the dimensionality was increasing, UC provided a consistent score; SC decreased 

asymptotically; GC did not work when the dimensionality was small, and as the 

dimensionality increased, GC caught up with the performance of UC and SC. 
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Figure 32: Clustering non-Gaussian Data of Different Dimensions 

 

From the above 4 evaluations, although UC does not provide the highest score in all 

cases, it has the smallest negative influence from cluster overlapping, non-Gaussian 

data, and dimensionality compared with SC and GC. Therefore, UC can work as a 

general-purpose clustering algorithm. Especially, when the properties of the data are 

unknown, UC is the best choice. For specific applications, UC is the best choice for 

high dimensional non-Gaussian data. For Gaussian data and low dimensional non-

Gaussian data, UC does not have advantage over SC or GC. 
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4.3 Development of the Anomaly Detection Method Using 

Unimodality-Based Clustering 

An anomaly detection method was developed using unimodality-based clustering, as 

described in Figure 33. At first, the normal reference data are projected to the feature 

space where the anomaly detection will be conducted. Then the normal reference data 

are clustered using unimodality-based clustering. After that, a test data observation is 

projected to the same feature space. An anomaly indicator is calculated by measuring 

the distance between the test data to its nearest cluster. If the test data observation is 

not a member of the nearest cluster, it is identified as an anomaly. The idea can be 

summarized as a hypothesis test. The null hypothesis is that the test observation is a 

member of the clusters, and the alternative hypothesis is that the test observation is not 

a member of the clusters. In the fault detection of machinery systems, the null 

hypothesis corresponds to the hypothesis that the system is healthy, and the alternative 

hypothesis corresponds to the hypothesis that the system is faulty. 



 

 79 

 

-2 -1 0 1 2

-2

-1

0

1

2

Dimension 1

D
im

en
si

o
n

 2

-2 -1 0 1 2

-2

-1

0

1

2

Dimension 1

D
im

en
si

o
n
 2

-2 -1 0 1 2

-2

-1

0

1

2

Dimension 1

D
im

en
si

o
n

 2

Test data
-2 -1 0 1 2

-2

-1

0

1

2

Dimension 1
D

im
en

si
o

n
 2

Anomaly 

indicator

Clusters

(a) (b)

(c) (d)

Dimension x Dimension x
D

im
en

si
o
n
 y

D
im

en
si

o
n
 y

Dimension x Dimension x

D
im

en
si

o
n
 y

D
im

en
si

o
n
 y

 

Figure 33: Clustering-Based Anomaly Detection 

(a) project normal reference data to the feature space; (b) partition the normal 

reference data into clusters; (c) project test data to the feature space; and (d) calculate 

the anomaly indicator of the test data. 
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Figure 34: Anomaly Detection Procedure Using Unimodality-Based Clustering. 

 

Figure 34 explains the details of the anomaly detection method. In the procedure, there 

are 3 major processing steps: unimodality-based clustering, anomaly indicator 

calculation, and anomaly threshold determination. An anomaly indicator is a measure 

of how an observation deviates from the normal reference data. Distance measures are 

widely used anomaly indicators. For example, Mahalanobis distance (MD) has been 

applied as an anomaly indicator to measure the probability of a test observation being 

a member of the normal reference data. If the reference data are non-Gaussian 

unimodal, the MD value loses its original meaning in terms of probability. However, 

because MD takes the reference data covariance into calculation, as in (15), the shape 
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of the reference data distribution has less influence on MD than on other distance 

measures such as Euclidean distance. 

 T

M xSxxd )()()( 1  −−= −

 
(15) 

where dM(x) is the MD of an observation x = (x1, x2, …, xN) to the reference data with 

mean μ = (μ1, μ2, …, μN) and covariance matrix S. N is the dimension of the data.  

 

In the dissertation, the anomaly indicator of a test data observation is the MD of this 

observation to its nearest cluster from the normal reference data, as shown in Figure 35. 

To test if the test data observation is a member of the nearest cluster, a hypothesis test 

based on the anomaly indicator is set up. The null hypothesis is, the anomaly indicator 

value of the test data observation is sampled from the distribution of the anomaly 

indicator of the nearest cluster from the normal reference data. 
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Figure 35: Using MD as Anomaly Indicator 
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To set up the anomaly threshold for the hypothesis test, the data from the selected 

nearest cluster are sampled to generate two datasets. One dataset is used as normal 

reference, and the other is used as test set. Anomaly indicator values for all the test set 

observations to the reference set are calculated, and then the distribution of these 

anomaly indicator values is estimated. The hypothesis test can then be conducted by 

choosing percentile of the data, which corresponds to the false positive rate selected by 

the user. If the anomaly indicator value of the test data observation is higher than the 

threshold value identified by the significance level, the null hypothesis is rejected and 

thus anomaly is detected. The threshold value is the hyperparameter. Its value can be 

determined by maximizing an anomaly detection performance metric [107] if training 

data for both normal and anomalies are given. A commonly used performance metric 

is anomaly detection accuracy, which is the ratio of the number of test observations 

assigned to the correct labels to the total number of test observations. Because 

anomaly data are usually unavailable, false positive rate is a practical measure to set 

up the threshold. The false positive rate equals to 1-(percentile/100). A larger false 

positive rate means more healthy data would be detected as anomalies by mistake and 

less true anomalies would be missed. In practice, the user can choose the largest 

affordable false positive rate as a start to avoid the risk of false negative detection, 

which is more destructive than false positive detection, and gradually change the 

threshold to reduce the false positive rate as the information of false negative rate is 

obtained during the monitoring. 
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Figure 36: Determination of the Anomaly Threshold 

 

In the health monitoring of machinery systems, when operating conditions are 

changing, the data have multiple modes. The unimodality-based clustering partitions 

the data accordingly, and the anomaly detection method is implemented as in Figure 

34. When the operating conditions are stationary, in most cases the healthy data have 

only one mode, and the unimodality-based clustering regards all the healthy data as a 

single cluster, which is the nearest cluster to the test observation. In some cases, the 

healthy data have multiple modes. For example, a healthy system may have more than 

one resonance excited at the same time even when the operation conditions are 

stationary, and thus the health monitoring data have multiple modes. These data are 

partitioned into multiple clusters using unimodality-based clustering, and anomaly 

detection is still performed as in Figure 34. In all the cases, a cluster is a subspace of 

the healthy reference. If a test observation is not within a subspace, it is an anomaly. 
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4.4 Evaluation of the Anomaly Detection Method 

The anomaly detection method was evaluated by simulated data, benchmark data, and 

experimental data.  

4.3.1 Evaluation of the Anomaly Detection Method Using Simulated Data 

Normal reference data of 3 clusters were simulated. Each cluster consisted of 100 2-

dimensional observations from a Gaussian distribution. Using unimodality-based 

clustering, labels were assigned to the observations of the 3 clusters, as shown in 

Figure 37 (a). After calculating the anomaly indicator values, a lognormal distribution 

was fit to the anomaly indicator values of the normal data, and a significance level of 

0.05 was used to set up the threshold. 

 

Three sets of test data were simulated, and each set had 10 observations, as shown in 

Figure 37 (b). One of them consisted of normal data. The rest of the datasets were 

generated by not using the distributions of the normal clusters, and they were used as 

anomalies. These anomalies were generated to have overlaps with the normal 

reference data. By comparing the anomaly indicator value of the test data to the 

threshold, 19 of the 20 actual anomalies were detected, and 1 of the 10 actual normal 

observations was mistakenly detected as anomalies. The anomaly detection accuracy 

was 93.3%.  
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Figure 37: Simulated Normal Reference Data and Test Data 

 

The results were compared with a conventional method without clustering normal 

reference data, and the anomaly indicator value is the MD value of a test data 

observation to the whole normal reference data. The anomaly threshold was set up in 

the same way as in the anomaly detection using unimodality-based clustering.  

 

Using the conventional method, the anomaly detection accuracy is 76.6%, which is 

lower than the 93.3% accuracy from the method developed in this dissertation. The 

confusion matrix of the detection results is shown in Table I. The anomaly detection 

method using the unimodality-based clustering and the conventional method are 

denoted as ADU and CONV, respectively. The conventional method had fewer false 

positive detections. This is because the normal test data were surrounded by the 

normal reference data, the conventional method did not refine the reference, and any 

observation in the surrounded region is regarded as normal. If anomalies exist in the 

surrounded region, they will also be regarded as normal. On the contrary, the method 

developed in this dissertation refines the reference to be clusters that even if anomalies 
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exist in the surrounded regions, they will be detected because they are not members of 

the clusters. 

 

Table 6: Results of Simulated Data Anomaly Detection 

 Detected Normal 

ADU/  CONV  

Detected Abnormal 

ADU/CONV 

True Normal 9/10 1/0 

True Abnormal 1/7 19 /13 

 

4.3.2 Evaluation of the Anomaly Detection Method Using Simulated Data 

Three most widely used benchmark datasets were used for evaluation: Iris data, Wine 

data, and Breast Cancer data. For every benchmark dataset, the data from one class 

was used as anomalies, and the data from other classes were used as normal data. 

During training, class labels were removed, and a portion of the normal data were 

used as reference. Remaining normal data and all the abnormal data were used for 

testing. Evaluation metrics were obtained using 5-fold cross validation. Unimodality 

Clustering Anomaly Detection (UCAD) were compared with benchmark methods.  

 

The Iris dataset has 4 features with a sample size of 150 distributed in 3 classes. The 

data from the third class is designated as anomalies and they were not given in 

training. The data from the remaining two classes are concatenated as the normal data. 
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Iris data are non-Gaussian. However, anomalies and normal data do not have 

significant overlaps. UCAD has the best result. 

Dim 1

D
im

 2

AbnormalNormal

 

Figure 38: Iris Data 

 

Table 7: Results of Iris Data Anomaly Detection 

Iris Data UCAD 1-SVM KNN GMM

Mean accuracy 0.92 0.86 0.80 0.91

STD accuracy 0.07 0.08 0.17 0.07

False negative rate 0.02 0.14 0.08 0.04

False positive rate 0.11 0.14 0.26 0.11  

 

The Wine dataset has more features. It has 13 features with a sample size of 178 

distributed in 3 classes. The data from the first class is designated as anomalies and 

they were not given in training. The data from the remaining two classes are 

concatenated as the normal data. The normal and abnormal data are overlapped. 

UCAD has the highest mean accuracy and the smallest standard deviation. However, 

it has 14% false negative rate. 
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Figure 39: Wine Data 

 

Table 8: Results of Wine Data Anomaly Detection 

Wine Data UCAD 1-SVM KNN GMM

Mean accuracy 0.90 0.83 0.81 0.82

STD accuracy 0.06 0.11 0.09 0.09

False negative rate 0.14 0.22 0.10 0.03

False positive rate 0.08 0.15 0.23 0.25  

 

Breast cancer data have more features and more observations than Iris data and Wine 

data. It has 30 features with a sample size of 569 distributed in 2 classes. The data 

from the second class is designated as anomalies and they were not given in training. 

The data from the first class are designated as the normal data. The data are close to 

be Gaussian, and as a result, besides UCAD, GMM also gets similar results. 



 

 89 

 

Dim 1
D

im
 2

AbnormalNormal

 

Figure 40: Breast Cancer Data 

 

Table 9: Results of Breast Cancer Anomaly Detection 

Breast Cancer Data UCAD 1-SVM KNN GMM

Mean accuracy 0.90 0.90 0.83 0.90

STD accuracy 0.05 0.03 0.05 0.04

False negative rate 0.09 0.10 0.03 0.07

False positive rate 0.10 0.10 0.25 0.12  

 

For all the 3 benchmark datasets, UCAD consistently provided the highest mean 

accuracy. It also had the smallest STD accuracy for the Iris data and the Wine data. 

Only in the analysis of the Breast Cancer data, 1-SVM and GMM had smaller STD 

accuracy than UCAD. However, 1-SVM, KNN, and GMM are sensitive to the choice 

of hyper-parameters. To set up their parameters, grid-search was applied where some 

labeled anomaly data were used. UCAD selected an acceptable false positive 

detection rate, such as 5% in the benchmark data analysis, and avoided the 

requirement on the labeled anomaly data. 
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4.3.2 Evaluation of the Anomaly Detection Method Using Experimental 

Data 

Fault detection is a main concern in the maximization of the availability of wind 

turbines [108]. An experiment was conducted on a wind turbine simulator at the 

Korea Institute of Machinery and Materials. A wind turbine gearbox was tested 

because it is the top contributor to wind turbine downtime [109]. Due to the complex 

environment, the operating conditions of wind turbine gearboxes are usually changing 

and may not be monitored. The unimodality-based clustering method can partition the 

data into clusters such that each cluster corresponds to a state of the operating 

conditions, and thus the anomaly detection method developed in this dissertation can 

be implemented. 

 

To implement the anomaly detection method to a machinery system, the health 

monitoring data are usually preprocessed so the information concerning the fault can 

be extracted. In this experimental study, the necessary preprocessing steps are 

introduced, which include the setup of signal acquisition, signal preprocessing, the 

extraction of raw features from the signals, and feature space construction. 

 

The wind turbine simulator is shown in Figure 41. A motor was used to act as the wind 

power that drives the wind turbine. The gearbox connected to the main shaft of the 

wind turbine was tested. The gearbox has three stages. The pinion on the third stage, 

which is connected to the output shaft of the gearbox, was the component under test. 

Five tests were carried out. In the first test, a healthy pinion was installed to generate 
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healthy data. In the remaining 4 tests, faulty pinions with a 1 mm root crack, pitted 

teeth, worn teeth, and a missing tooth were tested, as shown in Figure 42. The healthy 

pinion was replaced by one of the faulty pinions in turn to generate test data. In each 

test, rotation speed was changed several times and its value was not given in the 

analysis, simulating the situation of unmonitored operating conditions. The objective 

was to check if the method developed in this dissertation can identify the existence of 

different faults under changing operating conditions. 

Motor

Main bearing

Gearbox

GeneratorFlywheel Controller

 

Figure 41: Wind Turbine Simulator 

 

Eight accelerometers were mounted at different locations on the chassis of the gearbox. 

Vibration signal was used because it is available for most wind turbine condition 

monitoring systems [110]. In each test, one accelerometer collected 480 s of data 

under the sampling rate of 25,600 Hz. The sampling rate leads to a Nyquist frequency 

of 12,800 Hz, which is high enough to capture the fault information carried by the 

meshing frequency and the resonance frequencies of the gearbox. 
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Root crack

Pitting
 

Figure 42: Pinion Faults 

 

Vibration signals from gear meshing systems are modulated. Modulating frequency 

components have been widely used to indicate the gearbox faults. A major carrier of 

the gearbox modulated signal is the meshing frequency. Due to the low speed of the 

gearboxes in wind turbines, meshing frequency usually exists at the same frequency 

band as the low-frequency noise, and thus the modulated signal is contaminated. 

Therefore, wavelet thresholding de-noising was performed in this study. Figure 43 

shows a comparison of the original data and the de-noised data of the first 12 s of 

healthy data. 
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Figure 43: De-Noising Result 

 

After denoising, features were extracted to give an account of the gearbox health state 

from various aspects. If all 480 s of data were analyzed as one dataset to provide an 

observation of features, the analysis would face two shortcomings: first, one 

observation of features is not adequate to draw a conclusion on the health state of the 

system. Second, the dynamics of the system, such as short-period fluctuations within 

480 s, cannot be captured. Thus, the data were cut into 300 segments, and each 

segment generated one observation of features, so there were 300 observations after 

feature extraction. Every segment had 1.6 s of data, resulting in a frequency resolution 

of 0.625 Hz, which is fine enough to differentiate different frequency components in 

the gearbox signal.  

 

For every signal segment from one of the 8 sensors, 10 widely used features were 

calculated [111]. Six features were in the time domain, including peak-to-peak, root-
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mean-square (rms), standard deviation, crest factor, skewness, and kurtosis of the 

signal amplitude. Four features were in the frequency domain, including peak 

magnitude and rms of frequency components, peak magnitude and rms of the 

frequency components of the enveloped signal. Altogether, the 8 sensors generated 80 

features. There are more sophisticated wind turbine gear fault features reported in 

different sources [112] [113]. These sophisticated features were not used in this study 

considering they are not available in many existing systems.  

 

After raw feature extraction, the data were grouped into normal reference data and test 

data. The normal data were uniformly sampled without replacement to form two parts: 

the first part consisted of 80% of the normal data and was used as the normal reference 

data; the second part consisted of 20% of the normal data and was used as test data. 

All the faulty data were used as test data because in actual applications labeled faulty 

data are usually not available. 

 

The feature space was spanned using the normal reference data by principal 

component analysis (PCA), which reduces the redundancy and the dimensionality, as 

introduced in [76]. The values of raw features have different scales so they are 

normalized by calculating the Z-score before PCA. The cumulative sum of the 

variance for the first 4 principal components accounts for more than 90% of the total 

variance, and they were used to span the feature space where the anomaly detection 

would be performed. The healthy data were projected to the feature space. Dimension 

1, dimension 2, and dimension 3 correspond to the first 3 principal components. 
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The unimodality-based clustering method developed in this study identified the 

healthy data in the feature space has 4 clusters. This result is consistent with the fact 

that the data were generated under 4 different rotation speeds. The healthy data were 

partitioned accordingly, as shown in Figure 44. 
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Figure 44: Clustering Result of the Normal Reference Data 

 

Anomaly indicator values were calculated using the method introduced in Section IV. 

Using the KS test with a significance level of 0.05, the hypothesis that the healthy data 

anomaly indicator values follow a lognormal distribution was accepted. Using a 

significance level of 0.05 on the fitted lognormal distribution for the anomaly 

detection hypothesis testing, the anomaly threshold was set up. Then the test data were 

projected to the feature space for the calculation of their anomaly indicator values, as 

demonstrated in Figure 45, where the data from the pinion with 1 mm root crack were 

plotted. 
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Figure 45: Projecting Test Data to the Feature Space 

 

The anomaly detection method using unimodality-based clustering identified all the 

data from the faulty pinions as anomalies. Among the 60 test observations of normal 

data, 2 observations were misidentified as anomalies, resulting in a false positive rate 

of 3.3%. This is due to the choice of anomaly threshold using the significance level of 

0.05, which means the expected false positive rate is 5%. The details of the analysis 

results are listed in Table 10. 

 

Table 10: Results of Experimental Data Anomaly Detection 

Experimental UCAD 1-SVM KNN GMM

Mean accuracy 0.99 0.99 0.95 0.96

STD accuracy 0.02 0.03 0.06 0.04

False negative rate 0.00 0.00 0.01 0.00

False positive rate 0.03 0.03 0.10 0.10  
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4.4 Summary of Anomaly Detection 

Unimodality-based clustering developed in this research provides consistent result in 

different cases of cluster overlapping, dimensionality, and different types of 

distributions. In the simulation study, the clustering method was not the best in every 

case. However, it provided consistent result and it was one of the best methods in all 

cases. The anomaly detection method addresses the challenge from indeterminate 

operating conditions. In the analysis of simulated data, UCAD shows superiority over 

the conventional method without clustering the healthy reference data. In the analysis 

of benchmark data and experimental data, the anomaly detection method provided one 

of the best results in all cases. Although 1-SVM can also provide comparable results, it 

requires anomaly data for hyper-parameter optimization.  

 

As evaluated in the simulation study the unimodality-based clustering used in UCAD 

has the best performance, relative to other methods, when the healthy training data are 

high-dimensional and the clusters are non-Gaussian. Because machinery condition 

monitoring data are usually high-dimensional and non-Gaussian, UCAD is the best 

choice for machinery anomaly detection. In cases with different dimensions, different 

overlaps of clusters, and different distributions of clusters, the unimodality-based 

clustering does not have significant deterioration of performance but other methods do. 

Therefore, when the knowledge about the data to be processed is incomplete, UCAD 

is the best choice. 
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Since the training of UCAD depends on unimodality-based clustering that k-means 

clustering is performed iteratively, the training process is not efficient in computation 

when the actual number of clusters is large. Therefore, UCAD is not suitable for in-

situ training. Although it was not designed to accept data stream for training, the 

healthy model of UCAD can still be updated periodically when the data labeled as 

healthy become available. Thus, UCAD matches the application scenario of machinery 

maintenance that the labeled healthy data are not continuously flowing data stream but 

data samples collected after maintenance inspections. However, in cases where in-situ 

training is required, UCAD is not suitable.  

 

Chapter 5: Contributions and Future Work 

A feature selection method and an anomaly detection method were developed in this 

dissertation from different aspect of the task of anomaly detection under indeterminate 

operating conditions. It has following contributions. 

 

First, this dissertation developed a CTC feature selection method to identify fault 

sensitive features when some features are correlated, reducing false detection caused 

by improper selection of features. As shown in the evaluation, when the number of 

noise and redundant features increases, CTC consistently selects the smallest number 

of features and achieves the highest mean accuracy. Compared with PCA and 

manifold learning methods, the features selected by CTC maintain the original 

physical meaning. Moreover, the correlation tree and tree-cut method of CTC helps to 
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discover the redundant features, which is required in safety-critical applications. CTC 

sees a wide range of applications including variable interpretation, model 

simplification, and sensor system improvement.  

 

Second, UCAD is the first semi-supervised method to perform anomaly detection 

under indeterminate operating conditions without anomaly training data, without 

monitoring operating conditions, and without human interference. It expands the 

application range with increased performance of current anomaly detection practices 

and contributes to the automation of PHM. 

 

Third, this dissertation developed a unimodality-based clustering method that provides 

a formal definition of the clusters contained in the machinery health monitoring data 

that clusters are samples of unimodal distributions. It thereby expands the normality 

assumption from one that has been conventionally employed to one that is more 

general. As a result, clustering is feasible for more applications.  

 

Finally, both CTC and UCAD are carried out automatically without human 

intervention. Since setting up feature selection and anomaly detection methods usually 

requires human intervention, CTC and UCAD reduces man hours and makes feature 

selection and anomaly detection easier to implement. Moreover, through this research, 

the industry can benefit from machine learning in the automation of maintenance 

practices. 
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Both methods are designed to work under certain scenarios: CTC feature selection has 

the best performance compared with available methods when some features are 

correlated with each other. It does not have significant advantage if the features are not 

correlated. The application of CTC is also limited by the availability of training data. If 

training data for some classes are missing, CTC cannot be used. UCAD works best 

when the healthy data form unimodal clusters. If the clusters are not unimodal, UCAD 

does not have significant advantage over other clustering-based methods. Although 

UCAD does not require training data from anomalies, it requires a full coverage of 

healthy training data. 

 

Future work includes improving the CTC feature selection method for semi-supervised 

learning, adapting the UCAD for online updating, and the integration of domain 

knowledge. The CTC feature selection method only work in the supervised mode and 

therefore both healthy and faulty training data are required. This requirement may not 

be an issue at any early stage when the experiment can be carried out to generate the 

data, but for systems not affordable to get faulty training data, a semi-supervised CTC 

feature selection is needed. The current version of UCAD trains the model for the 

healthy data only once or periodically updates the model with newly collected healthy 

data. This property is appropriate for machinery condition-based maintenance but does 

not satisfy the needs of applications where in-situ updating of models is required. 

Therefore, a UCAD with in-situ updating capability using data stream should be 

developed in the future work. Both CTC and UCAD work without domain knowledge 
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of the machinery. They are useful when the domain knowledge is not available. 

However, in real applications usually some domain knowledge is available. For 

example, for a given failure mode, the physics-of-failure model has been established. 

Physics-of-failure model can be used to identify sensitive features. Such domain 

knowledge has been used to narrow the search range of the subset of features. That is, 

a subset of features was selected using domain knowledge, and then a feature selection 

method such as CTC is applied to perform the final selection. This procedure requires 

human intervention and the domain knowledge is not integrated with the data-driven 

method. If the domain knowledge can be integrated automatically with CTC and 

UCAD, the errors in the analysis are expected to be reduced.  

 

During the research of the dissertation, following papers were published and two more 

papers were completed. These papers describe specific aspects related to the 

dissertation and together they depict the roadmap of the research, which is helpful for 

researchers interested in doing research in machinery anomaly detection. 

J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, “Motor bearing fault detection 

using spectral kurtosis-based feature extraction coupled with K-nearest neighbor 

distance analysis,” IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 

1793–1803, 2016. 

J. Tian, M. H. Azarian, M. Pecht, G. Niu, and C. Li, “An ensemble learning-based 

fault diagnosis method for rotating machinery,” in Prognostics and System Health 

Management Conference (PHM-Harbin), 2017, 2017, pp. 1–6. 
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J. Tian, M. H. Azarian, and M. Pecht, “Rolling element bearing fault detection using 

density-based clustering,” in Prognostics and Health Management (PHM), 2014 

IEEE Conference on, 2014, pp. 1–7. 

J. Tian, M. H. Azarian, and M. Pecht, “Anomaly Detection Using Self-Organizing 

Maps-Based K-Nearest Neighbor Algorithm,” in Proceedings of the European 

Conference of the Prognostics and Health Management Society, 2014. 

J. Tian, C. Morillo, and M. G. Pecht, “Rolling element bearing fault diagnosis using 

simulated annealing optimized spectral kurtosis,” in 2013 IEEE Conference on 

Prognostics and Health Management (PHM), 2013, pp. 1–5. 
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