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Chapter 1

Overview

1.1 Introduction

According to the U.S. Energy Information Administration (EIA), residential

and commercial buildings account for nearly 40% of total U.S. energy consumption

[1]. Regulations and minimum energy codes, such as the International Energy Con-

servation Code, help curb energy usage in new construction by setting minimum

levels of certain energy saving capabilities like insulation and infiltration. However,

significantly more energy savings can be achieved from existing buildings rather than

through new construction. When a retrofit is done on an existing house in order to

improve energy efficiency, it is called an Energy Conservation Measure (ECM). Ex-

amples include adding the interior insulation of an exterior wall or replacing Heating,

Ventilation, and Air Conditioning (HVAC) units. ECM’s are estimated to be able to

reduce more than 30% of a building’s current energy load [18]. However, the exact

savings vary depending on the building. A recent project by Newport Partners, as

part of the Building America Partnership for Improved Residential Construction re-

search team, achieved 50% energy improvement on a multi-family residential facility

through the use of insulation upgrade and HVAC upgrade ECMs. [18].

Energy auditing is a business that is rising in prominence from the increased
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demand for energy conservation. Energy auditors inspect homes and recommend a

series of ECMs that the homeowner can install to save energy. ECMs are commonly

justified by their payback period, which is the time it takes for savings from the

utility bill to equal the cost of the initial ECM. Property owners expect a certain

degree of confidence in the amount of energy savings and operational costs of the

proposed ECM. Energy auditors use a variety of tools to estimate the energy usage

of a home. Whole-Building Energy Modeling (WBEM), such as EnergyPlus [22],

allow for simulation of a building in a real world environment, taking into account a

variety of physical iterations within a building and its surroundings. While WBEM

can give reasonable estimates of the performance and expected life cycle cost (LCC)

of an ECM, the processes of analyzing the possible ECMs can be time-consuming

and challenging.

1.2 Problem Statement

Buildings are an inherently complex system that have multiple interactions

across multiple domains. Modeling buildings is incredibly challenging due to many

interconnected components in a building that form a complicated and dynamic

network of interactions. Each of these components can have different mathematical

functions that are evaluated at different scales, which makes evaluating the system,

as a whole, incredibly challenging [8].

To overcome these challenges, significant advancements will have to be made

in how complex systems are modeled so they can be constructed and analyzed
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more quickly and accurately while still preserving all the complexities inherent in a

building model [13]. The Department of Energy is aggressively pursuing and funding

research in simulation of complex systems, and advancements have been made in

the past 10 - 15 years. However, many of the advancements are still only available in

a very specialized and academic setting, and have yet to be presented to the public

in an efficient and understandable format for industry-wide impact [6]. The current

standard programs for energy modeling are EnergyPlus and DOE2. Many programs

extend the functionality of these tools. Some of the more recent advancements

include OpenStudio, Simergy and MLE+ [10, 17, 20]. OpenStudio and Simergy ease

the geometry and building model creation aspects of EnergyPlus. MLE+ allows for

co-simulation between EnergyPlus and MATLAB for HVAC controls.

There are 3 main contributions from this thesis. First, BeOpt is used for bi-

objective optimization of retrofit design options and attempts to create a workflow

model that extends the current level of detail available for analysis with EnergyPlus.

Second, multi-objective optimization is formulated for use with an optimization pro-

gram, Consol Optcad to demonstrate a more encompassing model of trade-off anal-

ysis that can be achieved in building design space exploration (DSE). This process

illustrates functionality that is currently lacking in WBEM. Third, JEPlus+EA is

used to to perform multi-objective optimization along with trade-off analysis to show

the best available option for detailed energy model DSE optimization. This work

is done in collaboration with the National Institute of Standards and Technology

(NIST) and utilizes the building models of their previous work with the Net-Zero

Energy Residential Test Facility (NZERTF).
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1.3 Objective and Assumptions

The objective of this thesis is to investigate currently supported programs

that optimize the design space exploration of ECMs in residential homes. A work-

flow is developed for BEopt [21] and EnergyPlus with the intent of reducing model

complexity for the DSE and optimization trade-off. Process results are examined

for validity, then expanded to include an expanded set of optimization objectives.

A more robust version of multi-objective optimization is performed to showcase

concepts for the next-generation of building DSE tools. The current best implemen-

tation of a building DSE optimization tool, jEPlus+EA, is used and discussed in an

example use case.

The use case for this scenario is that of a homeowner who currently has a

home that meets Maryland minimum energy code compliance (2012 IECC [4]). The

homeowner wishes to perform ECMs to achieve Net-Zero or Net-Positive status.

Net-Zero describes a facility that creates as much energy as it uses in one year.

Net-Positive describes a facility that creates more energy than is uses in one year.

BEopt performs an optimization of LCC and energy savings. This thesis seeks to

increase the detail at which results can be analyzed and change the analysis from

bi-objective optimization to multi-objective optimization. jEPlus supports multi-

objective optimization. Details of BEopt’s and jEPlus’s operation are discussed in

Section 3.1 and 3.3 respectively.

The building is the NZERTF and uses the work in [16] for the 2012 IECC base

model. The model is set in Gaithersburg, MD and uses actual meteorological year
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weather data from March 2012 to February 2013, along with energy tariff data from

the local utility, PEPCO.
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Chapter 2

Background

2.1 Net-Zero

Figure 2.1: BEopt Path to NZE [21]

NIST has been working on defining what is a Net-Zero Energy (NZE) build-

ing and constructing a framework for the advancement of building to NZE. Results

show that the path to NZE is a multi-step process utilizing a mix of active and pas-

sive changes [7, 9, 19]. Moreover, the order of these changes are important. The first

energy reductions should be made with ECMs that change the building properties

and behaviors. Once ECMs have minimized the building’s energy usage, the remain-

der is matched through renewable energies such as photovoltaics (PV). By following

this order, a smaller PV array is necessary to achieve NZE. This is desirable since
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upfront costs for PV can be prohibitively expensive. Figure 2.1 illustrates the LCC

considerations one needs to consider when attempting to achieve NZE as proposed

by BEopt. Detailed analysis of this figure is important since it justifies the necessity

of achieving optimal energy saving through the use of ECMs before PV is installed.

Lessons learned from this analysis yield designs with higher energy efficiency for

lower cost. It shows the costs associated with reducing a reference building (point

1) to NZE (point 4) as a function of Energy Savings. While many configurations of

building parameters will lead to different LCC vs Energy Savings, only the optimal

configurations will lie on the cash flow line. More inefficient configurations will be

above the cash flow line indicating that they achieve the same amount of energy

savings for more annual cost. In order to illustrate the two main costs (upfront

and operational), the Annual Utility Bill (operational) is plotted in black. As the

operational costs approach zero, more of the Total Annual Cost becomes upfront

cost. Eventually, at NZE, all costs are upfront costs. Point 2 is the optimal point

for minimum annual costs. Point 3 is the maximum Cost-Effective Energy Savings

possible without PV.

ECMs can be done in both new construction and retrofit situations. All ECMs

increase energy savings thus decreasing annual utility costs. Between points 1 and

2, ECMs are highly effective. The money saved in annual utility costs outweighs

the money spent for upfront costs for the ECM. These ECMs are highly justifiable

since they are easily explained from an economic standpoint.

Between points 2 and 3, ECMs are less effective, yet still worthwhile. An ECM

will cost more in upfront costs than the amount saved in utilities. This is effective
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until point 3, at which, any ECM will have a increase in annual cost that is greater

than the price of electricity for the amount of energy saved. In essence, past point 3,

it is more effective to generate the electricity on site rather than try to achieve the

Energy Savings through ECMs. Between points 3 and 4 is achieved with PV. Since

PV produces energy, it saves energy by reducing the amount of energy required from

the grid. The amount of energy created is proportional to the size of the array, so

between points 3 and 4 is linear with the slope being the dollars per kWh of PV.

The rise in popularity of PVs, and decrease in price, has made PVs a quick and

simple option to reducing home energy bills. However, this is not the optimal use of

PV. PV should only be used after all other ECMs have been performed. Otherwise,

the cost of achieving NZE is unreasonable and inflated.

Figure 2.2: Illustrates the overall increase of total cost caused by installing a PV
system before energy savings through ECMs are maximized by plotting PV

installed at different points on the path to NZE

Figure 2.2 demonstrates the negative aspects of installing PV too early in the
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energy conservation process. Annual costs can be exorbitant if PV is relied upon

solely for energy savings. Not maximizing energy savings through ECMs first will

also result in a higher annual cost for NZE.

Figure 2.3: Example demonstrating the impact of optimized DSE of ECM. If the
proper ECMs are chosen to maximize cost per energy saved, then smaller PV

arrays are necessary and at an overall higher annualized cost

In any situation, it is important to evaluate the potential savings of the current

configuration. The most effective way of evaluating this is with the use of energy

modeling software such as EnergyPlus. However, if optimization is not included in

the DSE and coupled with the energy modeling software, then the design may not

be ideal. Figure 2.3 shows the path of configurations that has not been optimized.

While savings are achieved through the use of ECMs, better combinations of ECMs

exist that could save more. As previously stated, a necessary advancement in the

design and analysis of energy efficient buildings are tools that perform a DSE and

provide optimal designs with a high degree of certainty. BEopt is one program that
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provides this functionality. It’s drawbacks, discussed more in Section 3.1, are that

it lacks detailed results and multi-objective optimization. However, it is very useful

as a first attempt at trade-off for energy efficient building design.

For this thesis, the energy model developed by NIST of the NZERTF is used

as the basis of design. NIST developed the NZERTF to determine the feasibility

of building and operating an average American home to NZE. Details of the con-

struction are found in [15, 16]. Along with defining building parameters, the report

confirms some of the properties and challenges of NZE buildings covered in this

chapter. Details of components within the model that are studied in this work are

presented in section 4.1. The programs used in this thesis to model the NZERTF

are discussed in Chapter 3 and the models are discussed in Chapter 4.
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Chapter 3

Modeling Tools

3.1 BEopt

BEopt is a building design optimization tool designed to help users find the

most cost efficient building design in terms of energy savings. BEopt strengths are

its ability to quickly calculate the cost and energy savings of a given building design

and easily visualize results for the user.

During the course of design, there are many choices that have to be made, the

desired energy demand of the building, meeting local, state, and federal regulations,

and the overall cost of the building. These decision points lead to a cascading effect

of more design questions such as material choice, construction method, orientation,

and design. The scope and answers to these questions vary widely depending on

the type of construction. A retrofit project will have different constraints compared

to a new construction project. BEopt has the ability to simulate new construction

and retrofit projects, and quickly supply optimal designs that take into account the

design decisions above. BEopt does not actually perform the simulation, but rather,

creates custom input files for EnergyPlus and controls the scheduling of simulations

to run.

A weakness of BEopt is that it is not a highly detailed model. Its component

11



selection is limited and its configuration ability for building geometry and orientation

is limited. While BEopt uses EnergyPlus (or DOE2) as a simulation engine, it does

not utilize the full modeling capabilities of these engines. It sacrifices accuracy

for speed; however, its ability to perform multiple simulations quickly through an

intuitive GUI, select optimal building parameter configurations, and visualize results

easily, makes BEopt a powerful tool.

Figure 3.1: Example of BEopt’s geometry creation page [21]

An important mode in BEopt is the “Optimization” mode. For the ease of

retrofits, this allows for the user to define a base case that is the current configu-

ration of an existing home. The user can then select a series of available retrofit

options to simulate to find the best combinations of ECMs. Options are pulled

from the National Residential Efficiency Measure Database (NREMD), a component

cost database of common energy efficiency upgrades for commercial and residential

buildings. NREMD is operated and maintained by the Department of Energy. This
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connection with the nationally recognized and maintained database gives BEopt

high-quality data input.

While the component and cost data are reliable, the implementation in the

model is not always. While the geometry of the walls can be unique, the wall

properties are universally applied. Different wall areas can not be selected to have

different properties. This is an instance of the simplified model weakness. Once the

range of parametric values are selected, BEopt runs a series of simulations.

Figure 3.2: Example of BEopt’s component selection page for optimization [21]

One of BEopt’s strengths is its ability to optimize the simulation process. The

problem with trying to use simulation for finding the best combination of parameters

is the large number of computationally-costly simulations that must be run. As

discussed, buildings contain tens or hundreds of these variables depending on the

desired level of detail. BEopt has a sequential search algorithm which simulates a
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few of the combinations by varying a single component and measures the annual

cost and energy savings for the simulations. It then chooses the simulation with

the best combination of annualized cost and energy savings and moves to that

design configuration. From there, it chooses the next component and repeats the

process. This helps reduce the state space size and tests only the most influential

components, thus avoiding the configurations that are inferior, reducing the overall

simulation time. Figure 3.3 (a) shows the simulation progression as the program

finds optimal design configurations to NZE. Figure 3.3 (b)-(d) are special cases

that BEopt occasionally checks to make sure more optimal configurations were not

missed.
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Figure 3.3: (a) A graph of the progression of simulations from a BEopt
optimization run. Special Cases: (b) BEopt checks to see if a previously

disregarded component yields a more optimal solution when combined with newer
component option. (c) larger step sizes are checked for optima compared to the

normally traversed path. (d) synergistic interactions between components have a
net positive effect on building performance. [21]

Finally, BEopt provides easy results visualization. A user can interact with

the data by clicking on the optimal points to view their configuration and cost vs

energy data. More detailed reports can be generated upon request.

15



Figure 3.4: Results visualization and interaction in BEopt. The top left graph is
the plot of Energy Savings versus Annualized Cost. Grey points are simulations

performed while the black points are the optimal design configurations. The
bottom left plot compares the reference energy profile to to the energy profile of
the selected design from the top left graph. Meanwhile, the right side shows the

design configuration of the selected point. [21]

In Figure 3.4, The top left is the interactive display of all tested configurations,

with each dot representing a single configuration. Optimal designs are highlighted

along the curve. The bottom left shows the current design energy profile compared

to the selected optimized-design energy profile. The right shows the details of the

selected optimization design.

3.2 EnergyPlus

EnergyPlus is a whole building simulation program developed by the De-

partment of Energy. EnergyPlus can model heating, cooling, ventilation, and airflow

of zones and HVAC plants, along with other energy flows for lighting, photovoltaics,

water and more. EnergyPlus is highly adaptable and customizable allowing the
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designer to develop a model that reflects the real configuration of the building, as

much as possible. Detailed schedules of component operation and human occupancy

can be included.

For Windows OS, EnergyPlus has a few features that make it particularly

useful for detailed model development and analysis. The IDFEditor acts as a GUI

for quickly finding and adjusting building properties. Since the EnergyPlus input

file is a text file, this GUI makes it easier to navigate the model.

A parametric preprocessor allows for multiple simulations to be run over a

list of values for unique variables programmed into the model by the user. The

parametric preprocessor generates multiple input files for each configuration, then

automates the simulations until all files have been run. This significantly reduces

the labor required since a long list of parametric values can be simulated at once.

Figure 3.5: Snapshot of the IDFEditor for EnergyPlus. This particular shot is the
editor for geometries where coordinate points of the corners are input to create the

geometry of the walls
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While the IDFEditor is good for changing values of system, it is not very good

at building the geometries of the building since it has no visual geometry editor.

Programs such as SketchUp + OpenStudio and Simergy have developed even more

advanced GUIs for EnergyPlus that address this geometry problem. They also add

extra functionality for creating models and visualizing results, however, these details

are beyond the scope of this project.

For a given simulation, EnergyPlus requires an input file and a weather file.

After auto sizing various component values and “warming up” the model by sim-

ulating a few days to generate realistic initial values, the program simulates for

the specified run period. EnergyPlus can simulate a single day to multiple years

in timesteps of 1 minute to 60 minutes. The smaller the timestep, the more accu-

rate the result, but more computationally expensive. Highly detailed models have

realistic constructions, but these models take drastically longer to simulate.

EnergyPlus has a vast array of reporting capabilities. Each component has a

set of available outputs often consisting of electricity used, heat transferred, heat

lost, parasitic losses, temperature, setpoints, and more. These reports are at the

component level and can report the values at timestep, hourly, weekly, monthly,

or annual intervals. The Input/Output Documentation [23] gives a detailed list of

every reporting possibility for each component. EnergyPlus includes other reporting

means such as meters, where multiple component outputs are combined into one

output variable, and reports a concise tabular format of common metrics such as

utility bill reports or ASHRAE compliance reports.

An interesting development is that EnergyPlus might soon be rewritten in
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Modelica [11]. This will make it significantly easier to extend the optimization

functionality of simulation and design. Model has a buildings library of common

building component equations that are used to describe room, heat transfer, air flow,

and other common models. This, coupled with simulation optimizer like GenOpt

[26], can bring the optimization necessary for trade-off based DSE.

3.3 jEPlus

jEPlus is a java-based parametric programming tool that uses EnergyPlus as

its simulation engine. jEPlus simplifies the parametric analysis part of EnergyPlus

by creating a GUI for the parametric components. Keys are written into the energy

model similarly to the native EnergyPlus parametric preprocesser, but jEPlus has a

much simpler interface and the ability to handle much larger studies [29]. Subsection

4.5.1.1 shows how it is necessary to copy and paste generated code into the input files

and then run them. jEPlus manages the code generation and simulation managing

through the entire process.
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Figure 3.6: Workflow Diagram illustrating how jEPlus handles parametric
processing with EnergyPlus. The user first defines the parameter options in the
jEPlus GUI. Then jEPlus uses this information to create multiple EnergyPlus

input files and simulate all the file. It automatically handles the simulation process
and gathers the results into a concise format for the user in the jEPlus interface.

[29]

They have also created a client called JESS (jEPlus Simulation Server) which

is a free service that gives designers access to a cluster designed specifically to

run EnergyPlus [28]. Input files are sent to the server and the high performance

computers quickly run multiple simulations. Depending on the complexity of the

model, JESS can complete approximately 20,000 simulations in one day [12]. These

tools greatly increase the productivity of energy modeling parametric analysis.
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Chapter 4

Part 1: BEopt and EnergyPlus Method

4.1 2012 IECC to NZERTF

The use case for this project is of a homeowner who wishes to implement

ECMs to reduce their annual utility bill while still maintaining a comfortable envi-

ronment in their existing home. The existing home is built to Maryland minimum

energy code (2012 IECC) and is built in Gaithersburg, MD. The building model is

based off the NZERTF and work done in [16] where the NZERTF building param-

eters were adjusted to satisfy 2012 IECC minimums. Table 4.1 shows the changes.

[16] quantifies the response of the model to the NZERTF set of parameters

versus the 2012 IECC set, with results as each ECM is implemented. However,

this does not capture the entire set of design configurations that exist between the

two sets of parameters. This setup does not give a homeowner much information

on what configuration would best meet their needs, nor is it optimized. Since the

components synergistically affect each other to varying degrees depending on their

value, it is important to observe the different combination’s results. This process is

a DSE. As mentioned before, the problem with doing a DSE with buildings is that it

is cumbersome to try to reduce the complexity of all physical interactions of compo-

nents into a succinct, mathematical model-based DSE. Therefore, simulation-based
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System Design Variable Unit 2012 IECC Model NZERTF

Exterior Wall Interior Insulation R Value 21 20

Exterior Wall Exterior Insulation R Value 0 24

Basement Interior Insulation R Value 0 12

Roof Exterior Insulation R Value 4 30

Window Windows U Factor/SHGC .35/.35 .2/.25

Air Leakage Infiltration Rate ACH 3 .61

Lighting High-Efficiency Lighting % High Efficiency Lamps 75% 100%

Heating/Cooling Heat Pump SEER/HSPF 13/7.7 15.8/9.05

Ventilation Mechanical Ventilator Type Min. Outdoor Air HRV

DHW Water Heater Tank Type Electric Heat Pump

DHW Solar Thermal # of Collectors 0 2

Solar PV Array Capacity kW 0 10.2

Table 4.1: Table of Design Variable changes from the 2012 IECC to NZERTF
energy models [16]

DSE is necessary which can be computationally expensive and time consuming.

Solving for every combination of Table 4.1 yields 4096 different simulations.

As discussed in Section 3.2, the Windows build of EnergyPlus allows for parallel

simulations up to to the number of threads on the machine. Even on a fast com-

puter (Intel i7 2.2 GHz Quad Core with Hyper-Threading) running 8 simulations in

parallel, a single simulation takes approximately 12 minutes to complete. Simula-

tion time is dependent on multiple parameters including the detail of the model and

especially the timestep. This model is reduced to four timesteps per hour, which is

considered a coarse measurement, and it still takes 12 minutes on this setup. One

machine would take over four days to complete the DSE.

Table 4.1’s parameters are only of minimum efficiency and extremely high effi-

ciency measure. This is not representative of the range of options that are available

on the market, of which, others might suit the homeowner’s needs more. A more
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Design Variable Parameter Values

Exterior Wall Interior Insulation 19 21

Exterior Wall Exterior Insulation 0 6 12 18 24

Basement Wall Interior Insulation 0 6 12

Roof Exterior Insulation 6 12 18 24 30

Windows .35/.35 .26/.65 .17/.25

Infiltration Rate 3 2 1 .5

High-Efficiency Lighting 75% 85% 95% 100%

Heat Pump 13/7.7 14/8 15/8.5 16/9

Mechanical Ventilator Min. Outdoor Air HRV ERV

Water Heater Tank Electric Heat Pump

Solar Thermal 0 1 2

Array Capacity 0 2.5 5.5 7.6 10.2

Table 4.2: Design Space for all NZERTF design variables given current
technologies

informative DSE would have intermediate parameters; however, this would greatly

increase the number of simulations required. Table 4.2 shows the original design

space created that would give an accurate portrayal of realistic combinations given

current technology. Such a DSE would require 2,592,000 simulations. Even on a

cluster computer designed specifically for running EnergyPlus would take 129 days

to complete [12]. This is an unfeasible method for DSE and is at the heart of the

issue. Programs must be able to reduce the simulation load yet still provide accurate

and meaningful results for the homeowner.

For simplicity, the design space is reduced by removing some of the variables

and limiting the maximum number of parameter options to 3 in order to save time.

Some variables are harder than others to parameterize. Those that are especially

cumbersome are removed, so long as their expected impact on the overall system
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is relatively negligible. This includes Lighting, Mechanical Ventilation, and Water

Heater Tank. Figure 4.3 shows the final DSE configuration.

Design Variable Parameter Values

Exterior Wall Interior Insulation 19 21

Exterior Wall Exterior Insulation 0 12 24

Basement Wall Interior Insulation 0 6 12

Roof Exterior Insulation 4 12 30

Windows .35/.35 .3/.3 .2/.25

Infiltration Rate 3 2 .6

High-Efficiency Lighting 100%

Heat Pump 15/9.05

Mechanical Ventilator HRV

Water Heater Tank Heat Pump

Solar Thermal 0 1 2

Array Capacity 0 5.5 10.2

Table 4.3: Final Design Space configuration

Section 4.2 describes the process for performing and analyzing a Detailed DSE

where all configurations are considered as well as the proposed reduced form utilizing

BEopt. Finally, I attempt to verify that the proposed method yields results that are

similar to the detailed method. I also take the optimal design configurations from

BEopt, and test their optimality with the objective of user comfort.

4.2 Detailed DSE Workflow

In order to quickly, and accurately perform this DSE, a heavy amount of

automation and code generation is written in MATLAB. The first step is to create
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a file with the system-level and component-level values of the design space.

4.2.1 System-Level versus EnergyPlus Component-Level

Section 3.2 describes the parametric preprocessor function of EnergyPlus.

System-level values are descriptions of the component on the level that is more

abstract and of common industry terminology. The tables in Section 4.1 are system-

level descriptions. In order to reflect this in EnergyPlus, system level components

need to be translated to values that the parametric preprocessor can parse. Con-

tinuing with the example, exterior wall insulation values are modeled by setting the

conductivity of the insulation material. EnergyPlus does not contain dependencies

between system-level and component-level values so this mapping between system

and component level values is not automatically understood by EnergyPlus and

must be calculated by the programmer.

Not all component-level parameterizations can be mapped to a single Ener-

gyPlus component value. The technology used sometimes require complete model

changes. Exterior Insulation, for example, is normally increased by adding multiple

layers of insulation on top of each other. In EnergyPlus, the most accurate way

to do this is to create multiple “Construction” components; a container of material

layers listed in order from exterior to interior. Each “Construction” component has

a unique name and a unique layering of material with multiple layers of the insula-

tion material depending on the desired R-Value. Then, in order to make use of the

parametric preprocessor, the name of the “Construction” component is passed to
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the “Building Geometry” components that represent the walls. Figure 3.5 in Section

3.2 shows the highlighted key that is placed in the geometry object’s construction

name field. This key is replaced by the name of the “Construction” component

where each name has a different number of exterior layers.

This process is different for every system. Creating a model that is parametric

preprocessor compatible can require in-depth knowledge of the subject area, the

inner workings of EnergyPlus, and creativity. Such a process makes it difficult for

designers with limited detailed knowledge of the subject areas to produce accurate

results.

4.2.2 Workflow

Once the State Space file has been created, a MATLAB script reads and

generates all possible combinations of the variables. The EnergyPlus parametric

preprocessor works by reading in a row of values and inserting the values into the

model for each simulation. For the entire design space, it would be unreasonable to

enter in each simulation combination individually. That is why the script generates

the EnergyPlus code necessary to run the multiple simulations. This code is copied

into the EnergyPlus text input file and simulated. The parametric preprocessor

takes effect and all simulations are automatically run. On 11 computers, 13,133

simulations takes approximately 1.8 days.

EnergyPlus outputs two variables into a .csv file: “Facility Net Purchased

Electric Energy” and “Facility Thermal Comfort ASHRAE 55 Simple Model Sum-
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mer or Winter Clothes Not Comfortable Time.” The first output is a vector of the

total amount of energy at every timestep. If the value is positive then energy is

purchased from the utility; if negative, then it is sold as excess PV generation. The

second variable is a binary vector at each timestep where 0 means comfortable con-

ditions and 1 means uncomfortable conditions in the building. The comfort metric

is defined in ASHRAE Standard 55. For this output variable, the model is simplified

to a look-up table since the actual standard has many factors [2].

Another MATLAB script loops through all of the simulation’s output files

and post-processes them into a set of single metrics for the trade-off analysis. The

metrics are: annual utility cost, upfront cost, annualized cost, and user discomfort.

4.2.2.1 Annual Utility Cost

Determining the annual utility cost requires the amount of energy used at each

timestep (Facility Net Purchased Electric Energy) and the price of energy at the

timestep. The energy price is gathered from the PEPCO Time-Of-Use Residential

Tariff Schedule [24]. In order to produce compatible results with BEopt, the 2008

Time-Of-Use Residential Tariff Schedule for the District of Columbia is used. This

tariff schedule is in the BEopt database.

The annual utility cost is defined as

CostUtility =


n∑

i=1

(Ei · cn,i) Et > 0

Et · cp Et ≤ 0

(4.1)
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where

Et =
n∑

i=1

E[i] (4.2)

cn,i = (cg,i + ctd,i) + cf,i (4.3)

and n = 35040 because it is a year-long simulation with 4 timesteps per hour. Ei is

the energy used at timestep i. Equation 4.3 represents the tariff and includes cost

of generation (cg), cost of transmission and distribution (ctd) and a fixed monthly

cost. Each cost is broken up by timestep. However, when the overall energy use for

the year is negative, indicating the customer created more energy than they used,

then cp is a fixed rate calculated by taking the average price of generation at all

timesteps where the energy consumption was negative. This yields a return rate for

energy at approximately 2/3 the value of consumption.

4.2.2.2 Upfront Costs

Upfront Costs are initial costs associated with performing the retrofit. This in-

cludes the cost of labor and materials for instillation along with overhead and profit.

Values for specific retrofits are gathered from the NREMD. Most design variable’s

upfront costs are in the NREMD; however, those that are not are taken from the

BEopt library in order to have more comparable results. It is expected that the

retrofit upfront costs should be similar between the two programs, however, because

of the difference in model detail, we expect the energy savings and operational costs

to differ slightly.
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4.2.2.3 Annualized Costs

Annualized costs is a metric BEopt uses to compare the different configura-

tions. It divides the upfront cost by the lifetime of the system and adds that to the

Annual Utility Cost. This easily captures the LCC of the retrofit.

4.2.2.4 User Discomfort

The user discomfort metric is the total number of hours in a year that the zones

of the home are considered uncomfortable based off ASHRAE Standard 55. User

discomfort is calculated simply by summing the output variable “Facility Thermal

Comfort ASHRAE 55 Simple Model Summer or Winter Clothes Not Comfortable

Time.” The metric is user discomfort rather than comfort so the objective function

is a minimization.

This metric is not something that is calculated by BEopt, nevertheless, this is

an important metric since one of the goals of a building is to provide a comfortable

environment for the occupants. If changes made to the system decrease its effec-

tiveness at this goal yet decrease overall energy, then the retrofit is not necessarily

an optimal configuration for the entire system.

The final step in the workflow is the trade-off of the metrics. MATLAB reads

in the database of configurations along with their calculated metric values and plots

them in objective space, then identifies the non-dominated solutions and returns

their configurations [3]. Examples of this will be shown in the next chapter.
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4.3 BEopt Model

BEopt is a design tool that allows for streamlined geometry creation and pa-

rameter design by simplifying some of the model detail and flexibility. This results in

some creative workarounds to achieve a model relationship between the EnergyPlus

model and the BEopt model that fits within BEopt’s constraints.

(a) The detailed EnergyPlus model of the
NZERTF Kneifel 2012

(b) A simplified geometric model of the
NZERTF in BEopt

Figure 4.1: A comparison of Building Models between EnergyPlus and BEopt

Another difference is the construction of the building materials. EnergyPlus

allows for a unique material sequence to be assigned to every surface. This means

that in the basement, one wall can be fully insulated with interior and exterior insu-

lation while another wall could have just interior insulation, as if it was a walk out

basement with half of the basement under grade. However, in BEopt, all basement

walls are the same construction.

BEopt also has a dependency feature which can be both useful and detrimental

to the modeling process. BEopt has a list of building parameter values and types

and is aware of the limits that each type of construction involves. For instance,
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if a designer wanted to add more cellulose insulation they could do that relatively

easily, and BEopt has a pricing scheme specifically for this situation. If the designer

wanted to replace the insulation material to spray foam, this is a significantly more

cumbersome retrofit since it is not merely adding more of the existing material. The

relationship between these two configurations is captured in the retrofit cost, since

it should be higher. Finally, BEopt also prohibits certain retrofits depending on the

base configuration. If the designer wishes to add more exterior roof insulation, they

would not be able to do this since BEopt considers this too drastic a retrofit. In

practice, the entire roof would have to be removed to add more insulation. This

retrofit becomes a new construction situation. BEopt is aware of these dependen-

cies and relationships between components and retrofits. This is a powerful design

feature, however, it is not always applicable especially with some ECMs that can be

extremely drastic. In order to model some of the ECMs of the NZERTF, the BEopt

model has some new construction parameters rather than all retrofits.

4.4 BEopt DSE Workflow

BEopt has the optimization feature which significantly reduces the amount

of simulations run. It also runs simulations much more quickly partially due to

its simplified model. However it is important for NZE homes that all interactions

be considered, given that even parasitic internal heat gains can have drastic effects

on heating and cooling to tight-envelope buildings. The proposed workflow utilizes

BEopt’s optimization mode to choose only the optimal configurations to simulate
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in the detailed model where simulations are computationally expensive.

For this model, architectural drawings and the EnergyPlus model itself were

used to generate the necessary information for the BEopt model. Once the geome-

try is created, the existing configuration programmed, and the parametric options

selected, then the optimization mode can be selected and run. Once the simulations

are complete, the optimal designs are identified. The values are then taken by the

designer and translated into an EnergyPlus model. Results can be analyzed similar

to section 4.2.2. Detailed simulations should be run and detailed reports generated

for the optimal designs so the designer can validate the system response for the

customer.

4.5 Results

4.5.1 Annualized Cost versus Energy Savings

Annualized Cost versus Energy Savings is the default trade-off option for

BEopt. BEopt is limited in its options for trade-off, all of which revolve around this

cost versus energy setup. The Y-axis can be changed to Modified Internal Rate of

Return and other cost based metrics, while the X-axis can be changed to Source,

Site Energy Savings, or Consumption. Savings are calculated based on the percent

decrease in energy usage between the evaluated model and the existing conditions

model. This should yield something similar to the characteristic curve shown in

Figure 2.1.
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4.5.1.1 Detailed DSE

Figure 4.2: EnergyPlus results from Trade-off analysis

Figure 4.2 shows the objective space for the Detailed DSE. The points in red

are the optimal points. A representative portion of the configurations are listed in

Table 4.4. Three distinct clusters appear. The clusters are grouped by the PV array

size with all other parameter combinations. Those combinations with no PV array

are closer towards zero energy saved. Note that the large 10.2 kW array meets the

entire house load and generates extra energy to be sold back to the grid since it has

+120% energy savings. The optimal curve formed by these simulations is similar

to the characteristic curve expected. Point B would be around (20, 2000), point C

would be around (32, 3200), and point D would be around (150, 5200).
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Optimal Points

Design Variable 1-3 4-6 7-8 9-11 12-14 15-17 18-19 20-21 22-23 24-25

Exterior Wall Interior Insulation 19 19 19 19 19 19 19 19 19 19

Exterior Wall Exterior Insulation 0 0 0 0 0 0 0 0 0 0

Basement Wall Interior Insulation 0 6 12 0-12 0 6 12 0 6 0-6

Roof Exterior Insulation 4 4 4 4 4 4 4 4 4 4

Windows 0 0 0 0 0 0 0 0 0 0

Infiltration Rate 3-0.6 3-0.6 3-0.6 0.6 3-0.6 3-0.6 3-2 2-0.6 2-0.6 0.6

Array Capacity 0 0 0 5 0 0 0 5 5 10

Solar Thermal 0 0 0 0 0 0 0 0 0 0

Energy Management 0 0 0 0 1 1 1 1 1 1

Table 4.4: Optimal Points from EnergyPlus simulation

4.5.1.2 BEopt

Figure 4.3: BEopt Results from Trade-off analysis

Figure 4.3 shows the objective space results from BEopt. The dark black

points are the optimal points along the path to net zero. The optimal configurations

are listed in Table 4.5. The BEopt results give a pretty fair representation to all

the different stages of net zero design. Again, there are three distinct clusters that
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Design Variable Optimal 1 Optimal 2 Optimal 3 Optimal 4 Optimal 5 Optimal 6 Optimal 7

Exterior Wall Interior Insulation 19 19 19 21 19 21 21

Exterior Wall Exterior Insulation 0 24 24 24 24 24 24

Basement Wall Interior Insulation 0 0 12 12 12 12 12

Roof Exterior Insulation 4 4 30 30 30 30 30

Windows .35/.35 .35/.35 .35/.35 .35/.35 .35/.35 .35/.35 .35/.35

Infiltration Rate 3 0.6 0.6 0.6 0.6 0.6 0.6

Array Capacity 0 0 0 0 0 5 10

Solar Thermal 0 0 0 0 0 0 0

Energy Management 1 1 1 1 1 1 1

Table 4.5: Optimal Points from BEopt simulation

represent the different PV array values. For the designs that have a PV array, there

is only one optimal point for each PV array value.

4.5.1.3 Comparison of Methods

To generate Figure 4.2, 13,133 simulations were run taking approximately

1.8 days with 11 computers running 60 simulations in parallel. Meanwhile, BEopt

ran only approximately 108 simulations on one computer taking approximately 45

minutes. BEopt provides a much more reasonable time frame for analysis. The

sequential search algorithms significantly improves the efficiency of the DSE. Simu-

lations using parametric mode were performed to analyze without a search optimizer,

but results were inconclusive.
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Figure 4.4: Overlapping results

Figure 4.4 has the optimal points from BEopt plotted over the EnergyPlus

output in magenta. Upon first glace, the results seem to indicate that the workflow

is validated; that the BEopt solutions indicate the combinations that are close to

optimal. EnergyPlus, having more detailed models along with a wider variety of

configurations, ultimately leads to the most optimal points. Upon inspection, this

is not the case.

The EnergyPlus points that surround the BEopt points are not similar to the

configurations of the BEopt points. In fact, all of the optimal points for Energy-

Plus seem to be vastly different than the BEopt optimal points. The BEopt optimal

points are as expected, with design configurations that have significant retrofits such

as high insulation and lower infiltration. These types of designs would have signifi-

cant energy savings. The EnergyPlus optimal points indicate that the only retrofits

that should be done are infiltration and, occasionally, insulation in the exterior wall.
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This is counter intuitive and I believe the issue comes from the upfront cost model.

Any retrofit in the EnergyPlus model seems to have a penalty that instantly invali-

dates any combination as a candidate optimal point. Thus, the optimal points are

all those that have had very minimal amounts of retrofits performed. This is not

realistic. The BEopt model uses a cash flow model that takes into account more

than just the material and labor cost of a retrofit. Despite trying to replicate the

model from the documentation, I have been unable to replicate the results. There-

fore, these results will give us insight into the behavior of the two programs and

some high-level relationships, but feasibility of the workflow cannot be established

due to an inferior upfront cost model created to analyze the EnergyPlus results.

4.5.2 Energy Savings versus User Discomfort

In an effort to isolate the issue above and show that it lies within the upfront

cost models, and not the physical models, I perform a bi-objective optimization

where the objectives are solely performance based. Energy Savings is a result of

the performance of the house as a whole, and user discomfort should be minimized

as the performance of the home increases. Neither metric is a function of the cost

model.

Since BEopt does not report user discomfort, the approach for this section

is to plot the same optimal design configurations that BEopt produced in Section

4.5.1.2 with the Energy Savings versus User Discomfort data from EnergyPlus. If

these design configurations are close to optimal and surrounded by similar design
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configurations, then that validates the performance aspects of the models.

Figure 4.5: Energy Savings versus User Discomfort results

Figure 4.5 is the plot of the results where blue dots indicate a design con-

figuration result, empty red dots indicate the EnergyPlus optimal configurations,

and the solid red dots indicate the BEopt optimal configurations plotted with the

EnergyPlus data. The results are positive.

First, the EnergyPlus optimal points are at the maximum of Energy Saving

and minimum of User Discomfort. These configurations result in significant energy

efficiency, so much so that extra energy is produced. They also have more time

where the conditioned space is considered comfortable. The configuration for these

points are ones where the maximum of the retrofits has been installed across all

design parameters. This is as expected.

Furthermore, the BEopt points, which also have many of the maximum retrofits

installed, are closer to the minimum, in their respective PV clusters, than many of
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the other possible combinations. The local points are similar to the BEopt configu-

rations as well.

These results indicate that the performance of the models are compatible and

helps provide a justification for the conclusion that the upfront cost model is the

source of the error in Subsection 4.5.1.3. Overall, this method that was applied to

the Energy Savings and User Discomfort is similar to the process and results that

would be expected for LCC and Energy Savings. This serves as justification for the

validity of the performance models, and illustrates the potential for the proposed

method.
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Chapter 5

Part 2: Multi-Objective Optimization Problem

BEopt achieves great improvements in speed, but is limited to LCC versus

Energy Savings. Buildings have significantly more objectives that require attention

and trade-off in the design process. A better solution would be one that can handle

true multi-objective optimization. Consol Optcad is a multi criteria optimization

tool that uses a Feasible Sequential Quadratic Programming (FSQP) algorithm. The

program works by defining an optimization problem with design variables, objective

functions and constraints. One advantage Consol Optcad has is the ability to define

functional constraints. These constraints can be based off free parameters such as

time, or some of the design parameters. Consol Optcad runs the simulation with

the initial design configuration. It then adjusts the design variables and re-runs the

simulation. This process iterates until a design satisfies all of the objectives. The

benefit of the FSQP algorithm is that once a design satisfies all objectives, con-

secutive iterations will also satisfy the objectives. Spropoulos used Consol Optacd

to create a model of a microgrid [25]. This model is now adapted for energy effi-

cient buildings. Consol Optcad was unable to run on my system, therefore, results

and functionality provided by Consol Optcad are recreated in MATLAB to demon-

strate the abilities of the method. The building model is a simplified version of the

NZERTF with the same footprint but only one story with windows on the south
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facade.

5.1 Design Parameters

Design Parameters Description Constraint Initial Unit

x1 Exterior Wall Insulation (R-Value) 19 ≤ x1 ≤ 44 x1 = 19 ft2·◦F·hr
Btu

x2 Roof Insulation (R-Value) 50 ≤ x2 ≤ 75 x2 = 50 ft2·◦F·hr
Btu

x3 Window (U-Value) 0.2 ≤ x3 ≤ 0.35 x3 = 0.35 Btu
ft2·◦F·hr

x4 Window (SHGC) 0.25 ≤ x4 ≤ 0.35 x4 = 0.35 Unit-less

x5 Infiltration (ACH) 0.6 ≤ x5 ≤ 3 x5 = 3 ACH

x6 HRV/Ventilation (% Energy Recovered) 0% ≤ x6 ≤ 85% x6 = 0% %

x7 Lighting (% Efficient Lighting) 75% ≤ x7 ≤ 100% x7 = 75% %

x8 PV (Capacity) 0 ≤ x8 ≤ 10240 x8 = 0 W

Table 5.1: Design Parameters

5.2 Objective Functions

5.2.1 Initial Cost

The equation governing initial cost is

Minimize

IC =
∑

(ICWall + ICRoof + ICWin + ICInf + ICV ent + ICLight + ICPV , (5.1)
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where

ICWall = AWall (.0666 (x1 − 19) + 0.7)

ICRoof = ARoof (0.1 (x2 − 49) + 2.5)

ICWin = AWin (456.2− 2633 x3 − 216.6 x4 + 3863 x23 + 942 x3 x4

ICInf =
Vroom

8
(0.52 x−0.7462

5 )

ICV ent = 42(8.571 x26 + 0.8571 x6) + 1300

ICLight = 0.2237 (1281− (−2676 x7 + 3288))

ICPV = 2.6 x8

5.2.2 Net Energy Use

The equation governing net energy use is

Minimize

EU =
24∑
t=0

(PPV (t) + PLighting(t) + βtP
op
HV AC)

60000
, (5.2)

where PPV is the power generated by the PV system, PLighting is the power

used for lighting, βt is the On/Off factor for the HVAC unit at timestep t, and

P op
HV AC is the operational power draw of the HVAC unit, and is defined as

PPV (t) =
−x8

10240
(6970e−( t−14.66

3.014
)2 + 6870e−( t−10.55

2.954
)2). (5.3)
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Figure 5.1: PPV Curve Fit

PPV is generated by curve fitting the EnergyPlus PV output data for 7/21/2012.

This is also the same day that all weather data is gathered for this optimization

problem.

PLighting(t) =



0 for 0 ≤ t < 6 & 8 ≤ t < 18

(0.25)(−2676 x7 + 3288), for 6 ≤ t < 7 & 22 ≤ t ≤ 24

(0.5)(−2676 x7 + 3288), for 18 ≤ t < 19

(0.75)(−2676 x7 + 3288), for 7 ≤ t < 8 & 21 ≤ t < 22

(−2676 x7 + 3288), for 19 ≤ t < 21

(5.4)

For PLighting, (−2676 x7 + 3288) is the wattage level given the percentage

of lights converted to efficient bulbs. It is merely a linear interpolation from the
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minimum and maximum points given by the 2012 IECC and NZERTF models.

From there a multiplier is included to account for the lighting schedule. The lighting

schedule is loosely based on the lighting schedule for the NZERTF, however, much

more simplified. Figure 5.2 shows the simplified schedule.

Figure 5.2: PLighting Schedule

Finally, the HVAC unit is a 2 Ton unit. We assume that it is a single-stage,

constant-volume A/C Unit which means it can produce approximately 7 kW of

cooling capacity using 1 kW (P op
HV AC = 1000) of electricity. Modeling the behavior

is more challenging. The basic operation is that the HVAC unit will run at max

power if the room goes past a temperature threshold (Tthresh). Since this use case

is for cooling only, this threshold is 2 ◦F warmer than the setpoint temperature

Tset. If the temperature in the room, Troom, deviates past the threshold, then the

HVAC is turned on until the room temperature returns to the setpoint temperature.

Once the setpoint temperature is met, then the HVAC unit is turned off until the
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room temperature crosses the threshold temperature, at which point the process is

repeated. To determine if the HVAC unit is operational, βt is used to indicate if the

HVAC is on (1) or off (0) at every timestep, t.

The operation is described in pseudo-C code in Table 5.2.

if βt−1 = 0 && Troom,t−1 ≥ Tthresh

then βt = 1

else if βt−1 = 1 && Troom,t−1 ≤ Tthresh

then βt = 0

else

βt = βt−1

Table 5.2: Pseudo C code for the formulation of βt

For this optimization problem, Tset = 72 and Tthresh = 74. With this infor-

mation, we have enough to solve Equation 5.2. The only part missing is solving for

Troom which will be discussed in Section 5.3.

5.2.3 Operational Cost

The equation governing operational cost is

Minimize

OC =
24∑
t=0

Ctariff (t)[PPV (t) + PLighting(t) + βtP
op
HV AC ]

60000
, (5.5)

where
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Ctariff (t) =



0.0978, for 0 ≤ t < 8

0.1124, for 8 ≤ t < 12 & 20 ≤ t ≤ 24

0.1341, for 12 ≤ t < 20

The schedule for the Tariff is the Time-Of-Use Schedule taken from the PEPCO

R-TM Schedule. The schedule values are the sum of all energy related charges, that

is the sum of all $
kWh

charges. Figure 5.3 shows the final schedule.

Figure 5.3: CTariff Schedule

5.2.4 User Comfort

The equation governing user comfort is

Maximize

UC =
24∑
t=0

γt, (5.6)

where
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γ =


1, for Troom,t < Tthresh

0, for Troom,t ≥ Tthresh

This objective function counts the amount of time the system stayed within

the temperature threshold over the 24 hour simulation. Larger values means more

time is spent within a comfortable temperature range, therefore, providing user

comfort.

5.2.5 Home Performance

The equation governing home performance is

Minimize

HP =
24∑
t=0

βt. (5.7)

This objective function counts the amount of time the HVAC system was

turned on over the 24 hour simulation. A smaller value indicated the HVAC system

was not utilized often. If User Comfort is optimally maximized and Home Perfor-

mance is optimally minimized, then the home can be considered of high performance

since active means of temperature regulation are not relied upon to maintain com-

fortable conditions. This can be thought of as a measure of quality passive systems,

i.e. the synergy of the passive design parameters (insulation, windows, infiltration).
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5.3 Heat Flow

A vital part of this optimization problem is the calculation of the current room

temperature, Troom. The basis for this calculation is that the net heat transfer in

and out of the room will yield a temperature change over a given time. This can be

written as

Troom[t] =
Qnet,t−1

Cp · ρ · Vroom
+ Troom[t− 1], (5.8)

where Qnet,t−1 is the net heat transfer in the room from the previous timestep,

Cp is the specific heat capacity of air, ρ is the density of air, Vroom is the volume of

the room, and Troom,t−1 is the temperature of the room from the previous timestep.

Since Troom is recursive and the initial temperature is 72 ◦F, Troom can be represented

as a set

Troom = {72, Troom,1, Troom,2, Troom,3, · · · , Troom,24}. (5.9)

The static parameters in Equation 5.8 are as follows:

Cp = 0.24
Btu

◦F · lbm

,

ρ = 0.075
lbm

ft2
,

Vroom = 12800 ft3.
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5.3.1 Qnet

Qnet is the sum of the heat flow introduced by each component, usually in the

form of a simplified conduction or radiation model. The definition for this problem

is as follows

Qnet = Qwall +Qroof +Qwin +Qwinrad +Qinfil +Qvent +Qint +QHV AC . (5.10)

Each of heat transfer equations will require the exterior temperature. This

data has been gathered from the same weather data used to create the PV Output

data. The data is approximated as a Fourier series

Text(t) = 81.96− 6.614 cos(0.2594t)− 7.6 sin(0.2594t)

+1.347 cos(0.5188t) + 1.306 sin(0.5188t)

−0.1291 cos(0.7702t) + 0.3703 sin(0.7702t).
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Figure 5.4: Text Curve Fit

Figure 5.4 shows the curve fit overlaid with the weather file data.

5.3.2 Qwall

Qwall is the heat transfer due conduction through the walls, defined as

Qwall =
Awall

x1
(Text(t)− Troom[t]), (5.11)

where Awall = 1280ft2

5.3.3 Qroof

Qroof is the heat transfer due conduction through the roofs, written as

Qroof =
Aroof

x2
(Text(t)− Troom[t]), (5.12)

50



where Aroof = 2240ft2

5.3.4 Qwin

Qwin is the heat transfer due conduction through the window, written as

Qwin = Awin x3 (Text(t)− Troom[t]), (5.13)

where Awin = 137.5ft2

5.3.5 Qwinrad

Qwinrad is the radiation heat transfer due sunlight entering through the win-

dows

Qwinrad =
Awin EDN(t) x4 cos θ

3.15
, (5.14)

where EDN is the Direct Normal Radiation reaching a vertical surface. This

data is also taken from the weather file and is approximated by a piece-wise poly-

nomial function

EDN(t) =


−0.1729t4 + 8.591t3 − 166.7t2 + 1497t− 4346, for 5.17 < t < 19.93

0, otherwise

and
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θ = 65.85 sin 0.2. (5.15)

Figure 5.5: EDN Curve Fit

Figure 5.5 shows the curve fit overlaid with the weather file data.

5.3.6 Qinf

Qinf is the heat transfer due to the flow of air from infiltration, defined as

Qinf = ρ Cp x5 (Text(t)− Troom[t]). (5.16)

5.3.7 Qvent

Qvent is the heat transfer due to the forced flow of air from the ventilation

system. The ventilation is assumed to always be approximately 42 CFM, however,
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the presence of an HRV mixes in the conditioned and non-conditioned air before the

air is ventilated. This captures energy lost from the conditioned air and re-supplies

it back to the room. If no HRV is present (x6 = 0) then all energy is removed from

the room. However, if an HRV is present (x6 > 0), then the amount of energy lost

is reduced.

Qvent = 60 V̇vent ρ Cp (1− x6) (Text(t)− Troom[t]), (5.17)

where V̇vent = 42.32 CFM

5.3.8 Qint

Qint is the heat transfer due to internal loads. The internal loads included are

the heat generated by lighting and occupants.

Qint =
(PPeople + PLighitng)

3.412
, (5.18)

where PLighitng is shown in Equation 5.4 and

PPeople(t) =


400, for 0 ≤ t < 8 & 18 ≤ t ≤ 24

0, for 8 ≤ t < 18

53



Figure 5.6: PPeople Schedule

Figure 5.6 shows the occupancy schedule.

5.3.9 QHV AC

QHV AC is the heat transfer due to HVAC system.

QHV AC =
3500 : βt

3.412
, (5.19)

where βt is described in Table 5.2.

5.4 Results

Figure 5.7 shows the time dependent results of the simulation. In the top

figure, the green lines are the functional constraints for the setpoint. The purple line

shows the temperature inside the room while the red line is the exterior temperature.

The periodic behavior of the interior temperature is a result of the HVAC system
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activating when the temperature falls outside the setpoint constraints. This is seen

in the bottom graph where the blue line is the cooling energy of the HVAC and

the red line is the cooling load required. Around hour 17, the cooling load becomes

larger than cooling capacity of the HVAC system and begins to drift outside the

threshold.

Design Parameters Description Value

x1 Exterior Wall Insulation (R-Value) 19

x2 Roof Insulation (R-Value) 50

x3 Window (U-Value) 0.35

x4 Window (SHGC) 0.35

x5 Infiltration (ACH) 3

x6 HRV/Ventilation (% Energy Recovered) 0%

x7 Lighting (% Efficient Lighting) 75%

x8 PV (Capacity) 0

Table 5.3: Parameter values for the first iteration

Figure 5.7: Simulation results for the first iteration
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Figure 5.8: Objective function results for the first iteration

Figure 5.8 shows the current values of the objective functions with the current

design. Good and bad values are set for each objective. If the problem is a mini-

mization, then the objective is not satisfied is the value is above the bad value. This

is shown with a red line while the green line is the good value. If the objective is

satisfied, then the color of the graph is switch to green, otherwise it is red and the

design must be adjusted. At this point, Consol Optcad would choose new values for

the design variables based off its FSQP algorithm. However, for this project values

were chosen manually based off observation.
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Design Parameters Description Value

x1 Exterior Wall Insulation (R-Value) 30

x2 Roof Insulation (R-Value) 50

x3 Window (U-Value) 0.35

x4 Window (SHGC) 0.35

x5 Infiltration (ACH) 3

x6 HRV/Ventilation (% Energy Recovered) 0%

x7 Lighting (% Efficient Lighting) 75%

x8 PV (Capacity) 0

Table 5.4: Parameter values for the next iteration

Figure 5.9: Simulation results for the next iteration
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Figure 5.10: Objective function results for the next iteration

In this iteration, the exterior wall insulation has been increased. Figure 5.9 still

has the interior temperature drifting outside the setpoint threshold; however, it is

not as severe as before. Figure 5.10 confirms that this is a better design configuration

than before, since three out of five objectives are satisfied, rather than two. Since

all objectives are not satisfied, the iterations continue.

Design Parameters Description Value

x1 Exterior Wall Insulation (R-Value) 30

x2 Roof Insulation (R-Value) 50

x3 Window (U-Value) 0.25

x4 Window (SHGC) 0.25

x5 Infiltration (ACH) 3

x6 HRV/Ventilation (% Energy Recovered) 0%

x7 Lighting (% Efficient Lighting) 75%

x8 PV (Capacity) 0

Table 5.5: Parameter values for the final iteration
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Figure 5.11: Simulation results for the final iteration

Figure 5.12: Objective function results for the final iteration

After multiple iterations, a configuration is achieved that satisfies all objec-

tives. This process can continue to find other designs that are also satisfactory.

Another key feature of Consol Optcad is the real time interaction the user has with

the progression of the simulation. The user has the ability to change the values of
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the objective function to set new upper and lower limits. This allows the user to

influence the final design configuration based as the simulation is running to produce

a more applicable result to the designers needs as needs change. The results visual-

ization, fast and powerful solving algorithm, and ability to interact with the solver

in real time are aspects of Consol Optcad that set it apart from other simulators.
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Chapter 6

Part 3: jEPlus+EA

6.1 jEPlus+EA

While Section 5.4 does provide a way to satisfy multiple objectives, it is

using a custom made energy simulator. A much better solution would be one that

uses previously established energy simulator such as EnergyPlus. Section 3.3 de-

scribes jEPlus and how it is a java shell for EnergyPlus that handles parametric

analysis. This means that the energy simulator is inherently EnergyPlus, thus,

any results will be the detailed model, rather than BEopt which creates a simpli-

fied input for EnergyPlus. This would yield the same issue before where no time

is saved since the detailed EnergyPlus model take significantly longer to simulate.

However, the creators of jEPlus have created an extension called jEPlus+EA that

allows for Evolutionary Algorithms to optimize the progression of simulations run

in order to find the optimal solutions. While, BEopt is using a sequential search

algorithm to determine which design configurations to simulate, jEPlus+EA is using

the Nondominating Sorting Genetic Algorithm 2 Evolutionary Algorithm to make

these decisions. This method can greatly reduce the number of simulations neces-

sary to result in the optimal configurations. One example problem has a state space

of over one million combinations where the optimal design configuration was found
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after only 20,000 simulations [27]. This type of algorithm is considered one of the

state-of-the-art solvers for multi-objective optimization problems [5]. In order to

demonstrate the current leading tool available, I used jEPlus+EA with the Energy-

Plus energy model from Chapter 4 and the optimization objectives from Chapter 5.

With jEPlus, values are directly gathered from EnergyPlus results output.

Figure 6.1: Screenshot of jEPlus’s progress view

Figure 6.1 shows each objectives functions value at the optimal design as the

algorithm progresses through iterations. At some iteration, or “Epoch,” the values

converge at the Pareto points where a decrease in one objective value increases the

others. At these points, design configurations are considered to be the best. This

can be seen more clearly when the design configurations are plotted in objective

space.
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Figure 6.2: Plot of simulation results for Operational Cost vs Initial Cost
objectives. The red dots are the Pareto points across all five objective functions.

Figure 6.3: Plot of simulation results for User Comfort vs Initial Cost objectives.
The red dots are the Pareto points across all five objective functions.

The red dots in Figures 6.2 and 6.3 are the Pareto points across all 5 objectives.
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Figure 6.4: Histogram plot of each design variable value for the Pareto points

Figures 6.2 and 6.3 allow a user to interpret the minimums of the objective

functions that can be achieved with the given design variables while Figure 6.4 gives

more data on the type of design configurations that lead to the best functioning

designs. Each design variable has its own histogram plot where the frequency of

appearances of a value in a Pareto point is tracked. With this view, it is very easy

to spot design trends and highly influential parameters. For example, it is clear

that a low infiltration rate retrofit is necessary for an optimal design, while a roof

insulation retrofit is not advised since the base value is the most frequent. These is

a very useful view to a designer and one of the strength of jEPlus+EA. However, it

does not allow me to identify a single option that meets the homeowner’s needs. In

order to do this, I apply a weighted sum method to the list of Pareto points from

jEPlus+EA in order to narrow the design choices, where the weights add importance
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to objectives that reflect the homeowner’s desired goals.

HVAC Performance (w1) 0.025

Net Electricity (w2) 0.90

Operational Cost (w3) 0.025

User Comfort (w4) 0.025

Initial Cost (w5) 0.025

Table 6.1: Use Case 1: Weighted Values

In this case, the homeowner is environmentally conscious and wishes to em-

phasize the reduction on their energy load. With these weights, the best design

configuration is shown in table 6.2 and the final objective values are shown in figure

6.3.

Roof Insulation (R Value) 57.00

Exterior Wall Exterior Insulation (R Value) 24

Exterior Wall Interior Insulation (R Value) 21

Windows (U-Value/SHGC) 0.25 / 0.25

PV (Watts) 10240.00

Infiltration (ACH) 0.61

Ventilation (% Heat Recovered) 0.85

Lighting (% Energy Efficient Bulbs) 1.00

Table 6.2: Use Case 1: Best Design

HVAC Performance (Minutes In Operation) 5648.75

Net Electricity (Annual kWh) -25577.29

Operational Cost (Annual $) -2874.57

User Comfort (Minutes Uncomfortable) 56805.00

Initial Cost ($) 45122.54

Table 6.3: Use Case 1: Objective Function Values
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However, if a homeowner has different priorities, such that they are on a budget

and wish to emphasis a lower upfront cost then the optimal design changes.

HVAC Performance (w1) 0.025

Net Electricity (w2) 0.025

Operational Cost (w3) 0.025

User Comfort (w4) 0.025

Initial Cost (w5) 0.90

Table 6.4: Use Case 2: Weighted Values

Roof Insulation (R Value) 50.00

Exterior Wall Exterior Insulation (R Value) 12

Exterior Wall Interior Insulation (R Value) 19

Windows (U-Value/SHGC) 0.25 / 0.25

PV (Watts) 10240.00

Infiltration (ACH) 0.61

Ventilation (% Heat Recovered) 0.85

Lighting (% Energy Efficient Bulbs) 1.00

Table 6.5: Use Case 2: Best Design

HVAC Performance (Minutes In Operation) 5808.25

Net Electricity (Annual kWh) -24276.32

Operational Cost (Annual $) -2738.10

User Comfort (Minutes Uncomfortable) 69780.00

Initial Cost ($) 42307.57

Table 6.6: Use Case 2: Objective Function Values

66



Chapter 7

Conclusions

7.1 Findings

The proposed method uses BEopt to find optimal configurations to create

configurations in EnergyPlus for a more detailed trade-off analysis. This method

reduces the number of necessary simulations for EnergyPlus and allows for faster

analysis since detailed simulations are computationally expensive. Work done in

this thesis has been inconclusive as to the validity of this method since the upfront

cost model created for the EnergyPlus postprocessing is missing factors that are

captured in the BEopt upfront cost model. Should this disconnect be fixed, it would

be possible to conclusively state the validity of the proposed workflow. Nevertheless,

there are similarities between the models. The characteristic path to net zero energy

curve is present in both. Further analysis in performance shows that the models

are comparable in their energy outputs and the proposed method does apply to the

performance. Multi-Objective Optimization is performed in Consol Optcad that

demonstrate the ability of multi-objective optimization and trade-off in building

DSE. The quick analysis and view of satisfied constraints and objectives along with

behavior plot of the system provide critical insight for designers and should be

included in future tools. Finally, examples are discussed that show that trade-off in
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building DSE yields more effective designs.

A full systems approach to streamlined, detailed energy modeling in buildings

is currently a topic that requires a lot research. Whole Building simulators are a rel-

atively new tool and their processes and methods require some optimization. Other

functionality needs to be built in to many of these tools such as model dependencies

and multi-objective optimization with trade-off analysis. Most simulators are also

steady state models while many of the optimization methods require continuous

functions that are more common with dynamic models. Kim lists many of these

pain points within the energy modeling community and describes and architecture

for the required framework for a full systems approach [14]. A strong emphasis is

placed on the importance of model interconnections and being able to easily in-

tegrate multiple programs together for seamless model development and analysis.

These methods can lead to easier optimization in building DSE.

BEopt and jEPlus has been used exhaustively in this work and its weaknesses

and strengths have been analyzed. Overall, BEopt is an excellent tool for the build-

ing design industry and has some novel approaches to some of the barriers that

impede design progress. There is a rapid development in software that is enhanc-

ing functionality to the building design process, as well as enhancing the ability

to quickly and accurately gather and interpret large amounts of parametric data.

jEPlus is currently the best at detailed parametric handling and, when used with

Evolutionary Algorithms, is an effective tool at quick, detailed multi-objective op-

timization. However, it still has some room for improvement as demonstrated by

the Consol Optcad and BEopt examples. The ability to select a Pareto design point
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on the graph and see the location of the point on the other objective space graphs

is a simple yet worthwhile adjustment for the designer. Also, the ability for real

time interaction with the simulator could be added to jEPlus. Functionality like

this gives the designer an opportunity to alter the path of convergence to global

optima more suited to the homeowner’s needs. jEPlus allows for EA properties to

be changed (like population or max generations) mid optimization, however, this

does not change the properties of the system being simulated and does not have

the same effect. Such dynamic functionality will enhance the capabilities of the de-

signer. Finally, current multi-objective optimization tools do not integrate complex

controllers very well into the energy model. MLE+ [20] is a new tool that allows for

MATLAB controllers to be written for EnergyPlus components and co-simulated.

Not only does this bring the capabilities of MATLAB for controller design, but it

allows for component level optimization inside the simulation with MATLAB Opti-

mization Toolbox. Up until now, we have been optimizing the way the simulations

are run rather than the simulation itself. Currently, jEPlus, BEopt, and MLE+ are

not compatible, however, it will be necessary to merge these capabilities, especially

as more complex systems are develop in and around the home.

All of these programs show a trend towards easing the entire design process

through simplification of modeling elements, enhancing simulation completion time,

and assisting in the the transition from model to deployment. Yet it is not currently

enough to rely on one tool to achieve a full and accurate picture of the building

being modeled. As has been shown, BEopt significantly improves the design and

simulation time, however, it lacks in model detail and customization of components.
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For this, EnergyPlus is required in order to better understand the nature of the

performance of components, especially when working with NZE buildings. However,

a new tool will be necessary that brings capabilities from each of these programs

together to perform efficient, multi-objective optimization and trade-off for building

DSE.

70



Bibliography

[1] U.S. Energy Information Administration. Annual Energy Outlook 2013. Tech-
nical report, U.S. Department of Energy, 2013.

[2] ANSI/ASHRAE. Standard 55-2013 – Thermal Environmental Conditions for
Human Occupancy. Standard Standard 55-2013, ANSI/ASHRAE, 2013.

[3] Yi Cao. Pareto Front. MATLAB Exhange, July 2008. MATLAB Code.

[4] International Code Council, editor. 2012 International Energy Conservation
Code. International Code Council, 2012.

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION, 6(2), April 2002.

[6] Bryan Eisnenhower. Modeling Challenges for High Performance Buildings.
Conference for Mathematical and Computational Challenges in the Control,
Optimization, and Design of Energy-Efficient Buildings, June 2013.

[7] B. Griffith et. al. Assessment of the Technical Potential for Achieving Net Zero-
Energy Buildings in the Commercial Sector. Technical Report NREL/TP-550-
41957, NREL, December 2007.

[8] David Brown et. al. Applied Mathematics at the U.S. Department of Energy:
Past, Present and a View to the Future. Technical report, Applied Mathematics
Research Community, 2008.

[9] Joan Pellegrino et. al. Measurement Science Roadmap for Net-Zero Energy
Buildings Workshop Summary Report. Technical Note NIST Technical Note
1660, NIST, March 2010.

[10] David Goldwasser. SketchUp Plug-in Getting Started. NREL, 2013.

[11] Brent T. Griffith. Energyplus Software: Current Status, Challenges and Op-
portunities. Conference for Mathematical and Computational Challenges in the
Control, Optimization, and Design of Energy-Efficient Buildings, June 2013.

[12] jeplus.services@gmail.com. Jess trial. Personal Correspondence, November
2013.

[13] Chai Wah Wu John Burns, Satish Narayanan, editor. Mathematical and Com-
putational Challenges in the Control, Optimization, and Design of Energy-
Efficient Buildings. University of Minnesota Institute for Mathematics and its
Applications, June 2013.

71



[14] Sean Hay Kim. Automating Building Energy System Modeling and Analy-
sis: An approach based on SysML and model transformations. Automation in
Construction, 2013.

[15] Joshua Kneifel. Annual Whole Building Energy Simulation of the NIST Net
Zero Energy Residential Test Facility Design. Technical Report NIST Technical
Note 1767, NIST, September 2012.

[16] Joshua Kneifel. Energy Performance of the NIST Net Zero Energy Residential
Test Facility relative to a Maryland Code-Compliant Design. Technical Report
NIST Technical Note XXXX, NIST, September 2013. Currently Unreleased.

[17] Lawrence Berkeley National Laboratory. Simergy, 2013.

[18] James Lyons. Short-Term Test Results: Multifamily Home Deep Energy Effi-
ciency Retrofit. Technical report, Building America Partnership for Improved
Residential Construction (BA-PIRC), 2013.

[19] Nancy McNabb. Strategies to Achieve Net-Zero Energy Homes: A Framework
for Future Guidelines Workshop Summary Report. Special Publication NIST
Special Publication 1140, NIST, April 2013.

[20] Truong X. Nghiem. MLE+: a Matlab-EnergyPlus co-simulation interface. Elec-
tronically Published.

[21] NREL. BEopt Help, 2.0.0.6 edition.

[22] U.S. Department of Energy. Getting Started with EnergyPlus, 2013.

[23] U.S. Department of Energy. Input/Output Reference, 2013.

[24] PEPCO. Maryland Residential Time Metered Service Schedule RTM. Tariff
schedule, PHI, August 2013.

[25] Dimitrios Spyropoulos. Integration of SysML with Trade-Off Analysis Tools.
Master’s thesis, University of Maryland, 2012.

[26] Michael Wetter. GenOpt eneric Optimization Program. Lawrence Berkeley
National Laboratory, 2011.

[27] Yi Zhang. Use jEPlus as an efficient building design optimisation tool. Technical
report, CIBSE ASHRAE Technical Symposium, 2012.

[28] Yi Zhang. The jEPlus Simulation Server (JESS). De Montfort University,
version 1.4 edition, 2013.

[29] Yi Zhang. jEPlus User’s Manual. De Montfort University, version 1.4 edition,
2013.

72


