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Chapter 1: Introduction and preliminary result

1.1 Preliminary literature review

Clustering is one of the most widely used techniques for exploratory data analysis in many

disciplines. From a statistical point of view, data points are drawn from an underlying probability

distribution, and the aim is to classify them into homogeneous groups, typically when no external

information is given. For historical references, we refer to [24, 28].

Classical methods as exploratory data analysis tools Classical clustering methods in-

clude K-means clustering [24] and hierarchical clustering [28]. While theoretical analysis is

often rudimentary in the early references, there has been good progress in the last few decades:

for K-means, we refer to the elegant work of David Pollard [43]; for hierarchical clustering, we

refer to [54] where the analysis is centered around the tree structure.

Modern algorithmic advances The computer age has led to the popularity of many effi-

cient and scalable clustering methods, e.g., spectral clustering [62] and convex clustering [12].

These methods are computationally efficient and well-suited to many modern applications where

the sample size is quite large. Some algorithms do have some theoretical guarantees (discussed

in the next section). At the same time, there have also been algorithmic advances on classical

methods such as K-means [14, 22, 31].

Clustering in scientific applications As data science approaches become more and more
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popular, there is an increasing literature of clustering in scientific applications, including but not

limited to neuroscience [46], genomics [61], and astronomy [57]. These applications demand

more theoretical understanding of the clustering problem, where it is not sufficient to merely

provide a clustering result, but one should also be able to answer further validation questions,

such as how significant are the clustering findings.

Current status of clustering theory

Machine learning literature Much of the modern clustering theory was pioneered by the

machine learning community. In [64], it was explained that the generalization bound from statis-

tical learning theory is not suitable in a general clustering framework, and proposed that conver-

gence proofs and stability considerations should play key roles. In [63], it was clarified that in a

statistical setting of clustering two questions need to be answered:

Question 1 Given a probability distribution over the data space, how is the data space

separated into clusters as a function of the probability distribution? (conceptual question)

Question 2 Given a finite sample of data from the probability distribution, how can the

clusters be approximated? (algorithmic and statistical question)

A well-studied line of this type of work is consistency theory in the context of spectral

clustering [58, 63]. The nature of these works in some sense follows Pollard’s earlier work about

consistency of K-means clustering, but they require more advanced proof techniques (related to

operator theory and calculus of variations).

Two methods for establishing clustering consistency can be distinguished. One starts from

an algorithmic procedure and then studies its limiting behavior, e.g., [58] studies the ideal limit of
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spectral clustering as a PDE problem. The other method starts from an ideal population problem,

but implements an analytical algorithm on data samples from the population, e.g., in model-based

clustering when the population is specified as a mixture of Gaussian distributions. The latter is

the point of view taken in classical statistics. We refer to a culminating discussion in section 2.2.1

regarding the issue of Pollard-type clustering consistency.

The topic of cluster stability is discussed in the tuning parameter selection section 3.8 in

Chapter 3.

Statistical literature In model-based clustering ([6], with Adrian Raftery being the main

early contributor), clusters are modeled as components in a statistical mixture model, e.g., Gaus-

sian mixtures. Recent literature has shifted from multivariate to high dimensional and nonpara-

metric settings [3, 8]. The importance of studying clustering from the nonparametric statistics

point of view should be emphasized here: when people use K-means or many modern machine

learning methods for clustering, they are working nonparametrically. As in classification, peo-

ple often do not want to impose parametric assumptions on the data (”Gaussian” or mixtures of

Gaussian or any other specific distribution). The use of nonparametric statistics has been suc-

cessful and mature in classification literature, leading to the so-called distribution free theory of

classification [15, 21]. For the unsupervised clustering problem, however, there is difficulty: a

nonparametric mixture model is not easy to make identifiable or to implement. For example,

mixture of sub-Gaussians is not an identifiable model [3]. High dimensional mixture models will

be discussed only briefly in Chapter 5 as they are not the focus of the thesis.

Geometric perspectives on clustering Geometric considerations arise from density-based

clustering [11, 48], as structures of the level sets of a density-estimate. There are also inter-

esting geometric models studied recently by applied mathematicians, for example, the Low-
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Dimensional Large Noise (LDLN) model in [33]. We believe statisticians could play a bigger

role here. The geometric perspective will become relevant in Chapter 2 of the thesis.

Statistical network clustering There are lines of research about clustering in the statistical

networks literature, sometimes under the name community detection [1]. The limit theorems

therein characterize the ranges for the network parameters (in stochastic block model, or more

generally, random dot product graphs) that lead to consistent clustering in the limit, see [32, 36].

These results are mathematically rigorous, but require some different concepts and definitions.

1.2 Problem formulation

Given a distribution PX on some data space X (we will mostly restrict attention to Eu-

clidean space), let Y be a random variable indicating class membership, Y ∈ {1, · · · , K}. To

simplify the notation, we write E[g] for E[g(X)] if there is no confusion that the expected value

is taken with respect to PX .

As pointed out in Question 1, we need first a reasonable definition of a clustering as a func-

tion of the underlying probability distribution PX . To this end, suppose the number of clusters is

known a priori to be K. We define a clustering of PX as the minimizer of the following general

criterion

min
Y |X∈G

{
min

f :X→{1,··· ,K}
E(X,Y )[l(Y, f(X))]

}
, (1.1)

where the two things to be minimized over are the conditional probability functions Y |X (i.e.,

P (Y = k|X = x), k = 1, · · · , K) and the mapping f . Both the set of conditional probability

functions (G) and set of classification rules (f ) can be further restricted in the minimization.

In this thesis we develop relevant theory when l is 0-1 loss (i.e., l(Y, f(X)) = I{Y 6=
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f(X)}), and G belongs to the class of Lipschitz functions with bounded Lipschitz constant.

Specifically, denote gk(x) = P (Y = k|X = x) (so
K∑
k=1

gk(x) = 1), pk = P (Y = k) =

E[gk(X)], k = 1, · · · , K, we study

GC,α = {Y |X : |gk(x)− gk(y)| ≤ C · d(x, y) for all x, y ∈ X , k = 1, · · · , K; min
k
pk ≥ α},

for some finite positive constants C, α, where C is a universal Lipschitz constant, and α is a lower

bound on the smallest class probability. The class GC,α also depends on PX through pk. We make

no further assumption on the set of classification rules here, in which case the inner minimum in

(1.1) can be derived to be EX [min
k

(1− gk(X))], achieved by

f(x) = arg max
k
gk(x). (1.2)

In particular for K = 2, we arrive at

minimize EX [g ∧ (1− g)] subject to L(g) ≤ C,E[g] ∈ [α, 1− α] (1.3)

for specified constants C > 0, α ∈ (0, 1). The presence of α excludes two trivial solutions: the

constant 0 and constant 1 function.

We will work with the penalized form of this optimization problem instead:

minimize EX [g ∧ (1− g)] + λ2L(g) + λ3 max{E[g], 1− E[g]}. (1.4)

At first glance, the problem might appear a bit unusual from the point of view of classical op-
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timization theory [7]: it is nonconvex and therefore hard to use the Lagrangian to characterize

the solution (in fact we will prove that it in general does not satisfy strong duality). However,

through some preliminary analysis and experiments, this formulation turns out to have some

good mathematical properties and special features. Therefore, we commit to this formulation in

the thesis.

(1.4) is a variational problem whose solution may be viewed as a Lipschitz-regularized

Bayes classifier. The term ”Bayes classifier” refers to the conventional name for the classification

rule (1.2) in the machine learning literature ([39]), and is not formulated directly in terms of

Bayesian decision theory ([18, 67]) in statistics.

Remark (motivation for (1.1)). In (1.1), the inner minimization is a classification problem (see

next remark). The outer minimization charaterizes clustering as the ”easiest” classification prob-

lem.

Remark (definition of a classification problem). The goal of classification is, under some joint

distribution PX,Y , to find a mapping f : X → {1, · · · , K} that minimizes the expected classifi-

cation error, possibly within some subclass F :

min
f∈F

E(X,Y )[l(Y, f(X))].

1.3 Outline of thesis

Chapter 1 will focus on preliminary results, including a preliminary optimality result (The-

orem 1.1), a Pollard-type consistency result (Theorem 1.3), and Theorem 1.5 which sets up the

basis for computation. Chapter 2 studies aspects of the variational problem in more depth. Im-
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portant aspects include: a further optimality result with geometric interpretation (Theorem 2.1),

a model-based consistency result (Theorem 2.3), and uniqueness (Theorem 2.6). Chapter 3 deals

with computational issues, including a main algorithm (Algorithm 1). Chapter 4 discusses possi-

ble extensions. Chapter 5 summarizes contribution and future work.

1.4 Necessary condition for optimal g, part 1

This section studies necessary condition for a minimizer of the variational problem for

K = 2. From now on denote

I1 = E[g ∧ (1− g)]

I2 = λ2L(g)

I3 = λ3 max{E[g], 1− E[g]}

I = I1 + I2 + I3,

where the expectation is with respect to the underlying distribution PX . The problem is

minimize
g: Rd→[0,1]

I(g). (1.5)

For results in this section we work with Rd instead of general metric space because of technical

reasons: version of Rademacher’s theorem [A.6] and the gradient formula [A.4] used in the proof

hold in Rd.

Throughout this section, assume λ3 < 1, support(PX) = Ω ⊂ Rd, where Ω can be Rd or
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some compact subset of Rd. Let g∗ ∈ arg min
g

I(g) be an optimal solution, L = L(g∗) denotes

its Lipschitz constant if there is no confusion.

Remark. For any measure µ on Rn, support(µ) = {x ∈ Rn : µ(Bρ(x)) > 0, ∀ρ > 0}.

First, we establish below a key lemma that will be used in the proof of several later results.

It comes from the particular form of the objective function (or energy functional) I(g).

Lemma 1.1 (comparison lemma). Let g ∈ [0, 1] be a Lipschitz function, and let U = {g =

1/2}, U1 = {g < 1/2}, U2 = {g > 1/2}. Suppose another Lipschitz function g′ ∈ [0, 1] satisfies

g′ ≤ g on U1, (1.6)

g′ ≥ g on U2, (1.7)

L(g′) ≤ L(g), (1.8)

and if λ3 < 1, then

I(g′) ≤ I(g).

The inequality becomes strict if any of the following holds: either (1.6) or (1.7) is strict for some

x ∈ U1 ∩ Ω or x ∈ U2 ∩ Ω, or L(g′) < L(g), or {g′ = 1/2} ∩ Ω ( U ∩ Ω.

The proof is in section 1.8.1.

Remark. (1.6)-(1.8) and the conditions where strict inequality holds indicate several ways to find

a local (or global) variation that reduces I(g).

Remark (several uses of Lemma 1.1). We list below several applications of Lemma 1.1 in the

thesis. For clarity, let us denote U = {g∗ = 1/2}, U1 = {g∗ < 1/2}, U2 = {g∗ > 1/2} where
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g∗ is an optimal solution of (1.5). That is, when applying Lemma 1.1, we are thinking of g as a

candidate for the optimal and g′ as a variation of g.

1. In Step 1 of proof of Theorem 1.1, g′ is a local variation of g where g′ < g at some point

x ∈ U1 ∩ Ω and g′ = g outside some neighborhood of x.

2. In Step 2 of proof of Theorem 1.1, Lemma 1.1 is used to show that U ∩Ω does not contain

any ball. A local variation g′ is constructed to satisfy {g′ = 1/2}∩Ω ( U ∩Ω if otherwise

a ball is contained in U ∩ Ω.

3. In Theorem 2.1, the form of g∗ in the theorem satisfies g∗ ≤ g < 1/2 on U1, g
∗ ≥ g > 1/2

on U2 and L(g∗) = L(g), for any g that shares the same U,U1, U2, which roughly explains

why it gives a necessary condition for optimality.

4. In Corollary 2.1, Lemma 1.1 is used to show that U is ”thin”, because a better function g′

can be found by reducing U to a smaller set if it is ”fat”.

5. In Step 4 of proof of uniqueness Theorem 2.6, it is shown that if g0, g1 are two solutions,

and if L0 > L1, then g0 > g1 on S1 = U1 ∩ Ω, g0 < g1 on S2 = U2 ∩ Ω. By Lemma 1.1,

we would have I(g0) > I(g1), which is a contradiction.

Now we present a first result regarding the form of g∗:

Theorem 1.1 (necessary condition 1, a.e. version).

For any x, g∗(x) = 0 or g∗(x) = 1 or ||∇g∗(x)|| = L, a.e. in Ω

9



The proof is in section 1.8.2.

Remark. ||∇g∗(x)|| is the local Lipschitz constant of g∗ at x. Note that a.e. is in Lebesgue

measure, not in PX .

Remark (Proof outline). Let U = {x : g∗(x) = 1/2}. We divide the proof into three steps:

Step 1. For any x ∈ Ω such that g∗(x) < 1/2 and differentiable, ||∇g∗(x)|| = L or

g∗(x) = 0; for any x ∈ Ω that g∗(x) > 1/2 and differentiable, ||∇g∗(x)|| = L or g∗(x) = 1.

Step 2. For any ball Br(x), x ∈ Ω, Br(x)\U has positive measure. By Rademacher’s

theorem [A.6], this implies there exists a differentiable point xr within any ball Br(x), r > 0.

Step 3. For any x ∈ U ∩ Ω where g∗(x) is differentiable, show ||∇g∗(x)|| = L. Thus the

statement of the theorem holds for all differentiable points in Ω, which, again by Rademacher’s

theorem, are almost everywhere in Ω.

Remark. In Theorem 1.1, ||∇g(x)|| can be understood as the local Lipschitz constant at a dif-

ferentiable point x. We make a more complete result below by extending the almost constant

local Lipschitz constant property to every point in the space, including nondifferentiable points.

In other words, the local Lipschitz constant at a nondifferentiable point is determined by those

of surrounding differentiable points, which, by Theorem 1.1, are always equal to the global Lip-

schitz constant L. For this purpose we need the concept of generalized gradient (denoted by ∂C)

for Lipschitz functions, a generalization of subgradient (usually denoted by ∂) for convex func-

tions, and gradient (denoted by∇) for differentiable functions. We refer to the definition [A.1.2]

and a list of properties that follows, including sum rule, mean value theorem and gradient formula

in the appendix section. A more comprehensive coverage of generalized gradient can be found

in Chapter 10 of [13].
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The gradient formula in nonsmooth analysis says, in Rn, the generalized gradient of a

Lipschitz function can be generated by gradients at nearby points where derivative exist [A.4].

The everywhere version below is a direct consequence of the a.e. version (Theorem 1.1) and the

gradient formula.

Theorem 1.2 (necessary condition 1, everywhere version).

For any x ∈ Ω, g∗(x) = 0 or g∗(x) = 1 or sup ||∂Cg∗(x)|| = L,

where sup ||∂Cg(x)|| can be understood as the local Lipschitz constant of a function g at point x.

The proof is in section 1.8.3.

Remark. Since g∗ is Lipschitz, ∂Cg∗ is well-defined. Note that ∂Cg∗(x) is a compact convex set

[A.1.2], so ||∂Cg∗(x)|| is a compact interval in R. If g∗ is locally convex, this reduces to ||∂g(x)||,

where ∂g(x) is the subgradient of g at x. When g∗ is differentiable at x, this further reduces to

||∇g(x)|| as in the differentiable case, and there is no supremum to take. See [A.6-A.9] for

relationship between these quantities and the Lipschitz constant.

We end this section by some remarks on the distributional assumptions of PX . We haven’t

made much assumption on PX in Theorem 1.1 and 1.2, only that PX has support Ω which is

either Rd or some compact set. When making these results, we are mostly interested in PX that

are absolutely continuous on Rd. The case Ω = Rd is typical for many statistical models for

clustering, such as the Gaussian mixture model. Another case that will be of interest in Chapter
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2 is when Ω = S1 ∪ S2 for some compact, connected disjoint sets S1, S2. In this case care needs

to be taken with what can be said about the behavior of g∗ outside the support.

A slightly different but interesting case is when PX is atomic, which is related to the data

problem we will start to consider later in Chapter 1. In this case the a.e. version (Theorem 1.1)

might be vacuous simply because the support is finite or countable, so is of measure 0 in Rd.

But the everywhere version still gives some restriction on the form of g∗, that the local Lipschitz

constant at each point of the support is always equal to the global, whenever g∗ is not 0 or 1. In

particular, the local variational argument in Step 1 within the proof of Theorem 1.1 works also at

these atoms, so that ”rigid” solutions are still encouraged.

1.5 Pollard’s consistency proof

In this section, we summarize Pollard’s contribution in his classical paper on the consis-

tency of K-means clustering [43]. This serves two purposes: first, the proof strategy for our

problem will be very similar to [43] (see next section); second, the proof itself is elegant and the

techniques therein can be generalized to study consistency of many other clustering or unsuper-

vised learning methods.

K-means clustering

For a set of points X1, ..., Xn in Rd, K-means clustering is based on the criterion of mini-

mizing the within cluster sum of squares:

minimize
K∑
k=1

∑
Xi∈Ck

||Xi − ck||2, (1.9)
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where C1, ..., CK are K distinct subsets of X1, · · · , Xn, with cluster centers c1, ..., cK , and the

minimization is taken with respect to both c1, · · · , cK and cluster memberships. This criterion is

the same as

min
c1,··· ,cK

1

n

n∑
i=1

min
k=1,...,K

||Xi − ck||2.

The paper [43] rewrites the above using the notation C = {c1, ..., cK} and the empirical measure

Pn = 1
n

n∑
i=1

δXi:

W (C,Pn) =

∫
min
c∈C
||x− c||2dPn, (1.10)

minimize
|C|≤K

W (C,Pn),

where |C| ≤ K is used instead of |C| = K, to allow the possibility that two cluster centers

coincide. A natural population version for (1.10) is

W (C,P ) :=

∫
min
c∈C
||x− c||2dP. (1.11)

Consistency of K-means clustering

The paper [43] shows under some general conditions that the set of optimal cluster centers

for the sample (the minimizer of (1.10)), converges to the set of centers that minimizes (1.11). The

measure of closeness used is the Hausdorff metric H(·, ·), which is defined for compact subsets

A,B of Rd by: H(A,B) < δ iff every point of A is within (Euclidean) distance δ of at least
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one point of B, and vice versa. The convergence is almost surely, that arg min
C

W (C,Pn)
a.s.−→

arg min
C

W (C,P ).

The proof is achieved by first showing the optimal sample cluster centers eventually lie in

some compact region EK of Rd, then the convergence result is derived following a uniform law

of large numbers statement. By strong law of large numbers, W (A,Pn) −W (A,P ) converges

almost surely to zero for any set A such that W (A,P ) < ∞; it turns out this difference also

converges to zero uniformly over all size-K subsets of EK . This is shown via techniques from

empirical process theory [A.2.1]. Similar technique is applied within the proof of [63].

Proof sketch

By strong law of large numbers, if W (C,P ) <∞, then

W (C,Pn)
a.s.−→ W (C,P ).

Let

Cn := arg min
C

W (C,Pn),

C0 := arg min
C

W (C,P ). (1.12)

Suppose C0 is unique, this is interpreted as true cluster centers. The major question is,

does Cn
a.s.−→ C0 hold?
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Step 1: When n large enough, one can show Cn eventually lies in some compact region E

of Rd.

Step 2: By a uniform law of large numbers

sup
C⊂E, |C|≤K

|W (C,Pn)−W (C,P )| a.s.−→ 0,

we have

W (Cn, Pn)−W (Cn, P )
a.s.−→ 0, (1.13)

W (C0, Pn)−W (C0, P )
a.s.−→ 0. (1.14)

By definition of Cn, C0,

W (Cn, Pn) ≤ W (C0, Pn),

W (C0, P ) ≤ W (Cn, P ),

so we have

0 ≤ W (Cn, P )−W (C0, P )

= W (Cn, P )−W (Cn, Pn) +W (Cn, Pn)−W (C0, Pn) +W (C0, Pn)−W (C0, P )

≤ (W (Cn, P )−W (Cn, Pn)) + (W (C0, Pn)−W (C0, P )).
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Therefore by (1.13)&(1.14),

W (Cn, P )
a.s.−→ W (C0, P ).

Then by continuity (in Hausdorff metric) of the map C −→ W (C,P ) on E and uniqueness of

C0,

Cn
a.s.−→ C0.

Remark (Algorithmic consideration). Because the memberships are also variables, (1.9) is not

a convex optimization problem, but a combinatorial one, thus finding its global minimum is

computationally difficult. In practice a heuristic algorithm is often carried out to find a locally

optimal partition (the most widely-used one is Lloyd’s algorithm [34]). There are also efficient

approximation algorithms now, see [14, 22, 31]. Pollard’s paper did not include these algorithmic

considerations. The result means if we can indeed find the global minimum of (1.9), then the

cluster centers attained by finite sample will converge to the true cluster centers (1.12) defined

only through the underlying distribution P that generates the data.

Remark (Drawback of Pollard-type consistency). The consistency result applies to any distribu-

tion P such that
∫
||x||2dP < ∞. It presumes the minimizer of the population criterion (1.11)

to be the truth, then the empirical minimizer will converge to it. We call this type of clustering

consistency ”Pollard-type consistency”. The drawback of such consistency is that even though

the result looks distribution free, the minimizer of (1.11) may not be interpretable, e.g. when

P has no clustering structure, or when the clusters are not spherical or convex. Consistency of
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a clustering method in some statistical model is harder to attain. We will consider this in later

chapters.

1.6 Consistency, part 1: general case

Consider a data-based version of (1.5). A positive feature of the formulation is that con-

sistency result follows in a similar way as in Pollard’s paper [43]. In [43], the optimal sample

cluster centers Cn converge to the optimal centers C0 derived from P , provided that the criterion

function (1.11) has unique minimum. Here we can similarly show that the estimated clustering

function gn converges to the optimal g derived from P , provided that the variational problem

(1.5) has unique solution.

1.6.1 Consistency for K = 2

Following the notation from the last section, let

W (g, P ) = E[g ∧ (1− g)] + λ2L(g) + λ3 max{E[g], 1− E[g]},

W (g, Pn) =
1

n

n∑
i=1

min{g(Xi), 1− g(Xi)}+ λ2L(g) + λ3 max{g(X), 1− g(X)},

where g(X) = 1
n

n∑
i=1

g(Xi).

Theorem 1.3. Suppose X is a totally bounded metric space. Let gn ∈ arg min
g:X→[0,1]

W (g, Pn). Sup-

pose W (g, P ) has unique minimum g0. Then ||gn − g0||L1(P )
a.s.−→ 0.

Remark. This result holds regardless of the dimension of X . The essential part is a finite cover-

ing number for the Lipschitz function ball on the metric space X , so that uniform law of large
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numbers applies on the function class {f ∈ Lip(X ) : L(f) ≤ C} for any positive constant C.

Remark (Proof outline). First, it can be shown that the Lipschitz constant of gn is bounded. We

have

λ2L(gn) ≤ W (gn, Pn) ≤ W (0, Pn) = λ3,

here 0 denotes the constant 0 function. Therefore

L(gn) ≤ λ3

λ2

, for any n.

Let C = λ3
λ2

. We can break down the proof into four parts (the norm L1(P ) in the theorem

is chosen so that (3) is convenient to show):

1. sup
g∈G
|Png − Pg|

a.s.−→ 0, where G = {g : X → [0, 1] | L(g) ≤ C}.

2. sup
g∈G
|W (g, Pn)−W (g, P )| a.s.−→ 0.

3. W (g, P ) is continuous in g with || · ||L1(P ).

4. W (gn, P )
a.s.−→ W (g0, P ), then by 3. and uniqueness of g0, ||gn − g0||L1(P )

a.s.−→ 0.

Step 4 is along the same lines as Step 2 of the last section (i.e., along the same lines as [43]):

continuity of the map g → W (g, P ) on G and uniqueness of g0 implies ||gn − g0||L1(P )
a.s.−→ 0.

Proofs of Step 1, 2, 3 are in section 1.8.4.

We immediately obtain the following two corollaries (from the proof of Theorem 1.3) about

consistency of the objective function value, and pointwise convergence of gn to g0 in supp(P ).
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Corollary 1.1 (Consistency of objective value). I(gn)
a.s.−→ I(g0).

This is within the statement of step 4 in the proof of Theorem 1.3.

Corollary 1.2 (From L1 consistency to pointwise). Suppose g0 is a unique solution for (1.5), then

for any x ∈ supp(P ), gn(x)
p−→ g0(x).

Theorem 1.3 is about gn being L1(P ) consistent to g0, if the latter is unique. This, along

with continuity of gn and g0, implies pointwise convergence. The statement may not hold outside

the support, where g0 is in general not unique.

1.6.2 Consistency for K > 2

For general K, we need to measure the distance between the set of K estimated func-

tions which minimizes the data-based formulation, and the set of K functions that minimizes the

population formulation. It is shown that their Hausdorff distance will converge to zero.

Theorem 1.4. Denote g = {g1, ..., gK} satisfying
K∑
k=1

gk = 1 and let

W (g, P ) = E[(1− g1) ∧ (1− g2) · · · ∧ (1− gK)] + λ2 max
k
L(gk) + λ3 max

k
(1− E[gk]),

W (g, Pn) =
1

n

n∑
i=1

(1− g1(Xi)) ∧ (1− g2(Xi)) · · · ∧ (1− gk(Xi)) + λ2 max
k
L(gk)

+ λ3 max
k
{1− gk(X)}

where gk(X) = 1
n

n∑
i=1

gk(Xi).
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Let gn ∈ arg min
g∈G

W (g, Pn), G = {{g1, · · · , gk}|g1, · · · , gk : X → [0, 1],
K∑
k=1

gk = 1}.

Suppose min
g∈G

W (g, P ) has unique minimum g0. Then

dH(gn, g0)
a.s.−→ 0,

where dH(·, ·) is the Hausdorff distance between two sets of functions with norm ||·||L1(P ). E.g., if

g(1) = {g(1)
1 , · · · , g(1)

k1
}, g(2) = {g(2)

1 , · · · , g(2)
k2
}, then dH(g(1), g(2)) = max

i
min
j
||g(1)

i −g
(2)
j ||L1(P ).

The proof is in section 1.8.6.

1.7 Computing with data

A representer theorem

Even though (1.5) is in general a variational problem, we show a data-based version of (1.5)

can be represented by finitely many parameters, which are the values of g on the data points.

Therefore with data we can solve a finite dimensional optimization problem, which makes the

method practical, providing the basis for an algorithm.

Theorem 1.5. The following two problems are equivalent:

min
g:X→[0,1]

{
1

n

n∑
i=1

min{g(xi), 1− g(xi)}+ λ2L(g) + λ3 max{g(x), 1− g(x)}

}
(1.15)

and

min
a1,··· ,an∈[0,1]

1

n

n∑
i=1

min{ai, 1− ai}+ λ2 max
d(xi,xj)6=0

ai − aj
d(xi, xj)

+ λ3 max{ā, 1− ā}. (1.16)
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The proof is in section 1.8.7.

R function implementation

Computation based on Theorem 1.5 is coded in R software. The actual algorithm, based

on linear programming and an alternating minimization strategy to deal with non-convexity (or,

to avoid combinatorial optimization schemes), will be introduced in Chapter 3.
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1.8 Proofs of chapter 1

1.8.1 Proof of Lemma 1.1

Notice that (1.6) and (1.7) implies g′ < 1/2 on U1 and g′ > 1/2 on U2, from which we

deduce

I1(g′)− I1(g) = E[g′ ∧ (1− g′)]− E[g ∧ (1− g)]

= E[g′IU1 ] + E[(1− g′)IU2 ]− (E[gIU1 ] + E[(1− g)IU2 ])

+ E[(g′ ∧ (1− g′)− 1

2
)IU ]

= E[(g′ − g)IU1 ] + E[(g − g′)IU2 ] + E[(g′ ∧ (1− g′)− 1

2
)IU ]

≤ 0 (by (1.6), (1.7)),

I3(g′)− I3(g) = λ3(max{E[g′], 1− E[g′]} −max{E[g], 1− E[g]})

≤ λ3|E[g′ − g]| (by [A.14])

≤ λ3(E|(g′ − g)IU1 |+ E|(g′ − g)IU2|+ E|(g′ − 1

2
)IU |)

= λ3(E|(g′ − g)IU1|+ E|(g′ − g)IU2|+ E|(g′ ∧ (1− g′)− 1

2
)IU |)

(for any number a, |a− 1

2
| = |a ∧ (1− a)− 1

2
|).
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For any function f ≤ 0, Ef +λ3E|f | = (1−λ3)Ef . Apply this separately to the three functions

f = (g′ − g)IU1 , (g − g′)IU2 , [g′ ∧ (1− g′)− 1
2
]IU respectively to obtain

I1(g′)− I1(g) + I3(g′)− I3(g) ≤ (1− λ3)(E[(g′ − g)IU1 ] + E[(g − g′)IU2 ]

+ E[(g′ ∧ (1− g′)− 1

2
)IU ])

= (1− λ3)(I1(g′)− I1(g)) ≤ 0.

Finally, since I2(g′)− I2(g) = λ2(L(g′)− L(g)) ≤ 0,

I(g′)− I(g) ≤ I1(g′)− I1(g) + I2(g′)− I2(g) + I3(g′)− I3(g) ≤ 0.

Now we look at when the inequality holds strictly. If g′ < g for some point in U1 ∩ Ω, then

E[(g′ − g)IU1 ] < 0; if g′ > g for some point in U2 ∩ Ω, then E[(g − g′)IU2 ] < 0; if {g′ =

1/2} ∩ Ω ( U ∩ Ω, then E[(g′ ∧ (1 − g′) − 1
2
)IU ] < 0; if L(g′) < L(g), then I2(g′) < I2(g).

When either of these happens, we have I(g′) < I(g).

1.8.2 Proof of Theorem 1.1

Step 1.

Let g be any Lipschitz function with values in [0, 1] such that there exists x ∈ Ω, 0 <

g(x) < 1/2 and ||∇g(x)|| < L.

Consider local variation gε(x) = g(x) + εη, where η, ||∇η|| are both bounded in a neigh-

borhood of x such that 0 < g < 1/2 and ||∇g|| < L, and η = 0 outside the neighborhood. When
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ε small enough, we have 0 < gε < 1/2 and ||∇gε|| < L in the neighborhood, so

I1(gε)− I1(g) = E[gε]− E[g] = εE[η],

I2(gε) = I2(g),

I3(gε)− I3(g) ≤ λ3|E[gε]− E[g]| = ελ3|E[η]|.

Thus I(gε) − I(g) = (I1(gε) − I1(g)) + (I3(gε) − I3(g)) ≤ ε(E[η] + λ3|E[η]|). As long as η is

chosen such that η < 0 on the neighborhood of x, since λ3 < 1, we have I(gε) < I(g). Therefore

g cannot be the minimizer.

In conclusion, g cannot be a minimizer unless for every x with ||∇g(x)|| < L and g(x) <

1/2, g(x) = 0. Similarly, g cannot be a minimizer unless for every x with ||∇g(x)|| < L and

g(x) > 1/2, g(x) = 1.

Remark. A particular construction for the local variation can be taken as

gε(y) =


g(y), y /∈ Bε(x)

inf
z∈Sε
{g(z)− L · d(y, z)}, y ∈ Bε(x)

,

for some ε small enough such that ||∇g(y)|| < L for any y ∈ Bε(x), and gε|Bε(x) > 0. This

can be seen as a Lipschitz extension of g
∣∣∣
Sε(x)

into Bε(x), where Sε is the boundary of Bε(x).

By Lemma 1.1, I(gε) < I(g). Such argument works also when PX has point mass at x and has

measure 0 in Bε(x)\{x}: since ||∇g(y)|| < L for any y ∈ Bε(x), we deduce gε(x) < g(x).

Step 2.
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Let us first show Br(x) * U for any point x ∈ Ω. Suppose Br(x) ⊂ U for some point

x ∈ Ω and for some r > 0, define a local modification g′ of g∗ within Br(x) (Figure 1.1) as

g′(y) =


g∗(y), y /∈ Br(x)

1/2− L · d(y, Sr(x)), y ∈ Br(x)

,

where Sr(x) is the boundary of Br(x). From the construction, I1(g′) < I1(g∗), L(g′) = L(g∗).

Figure 1.1: 1-d illustration of the local variation g′

By Lemma 1.1, I(g′) < I(g∗), a contradiction. This shows U = {g∗ = 1/2} does not contain

any ball.

Let m denote Lebesgue measure in Rd. Next we show m(Br(x)\U) > 0 for any x ∈

Ω, r > 0. It suffices to show by contradiction that U cannot have full measure in Br(x) for any

r > 0. Suppose m(U ∩ Br(x)) = m(Br(x)) for some r > 0 and x ∈ Ω, i.e., by definition of U ,

g∗ = 1/2 a.e. on Br(x). By continuity of g∗, we deduce g∗ ≡ 1/2 on Br(x). By the construction

of g′ above, such g∗ cannot be optimal, a contradiction. Therefore,m(U∩Br(x)) < m(Br(x)). In

other words, m(Br(x)\U) > 0, i.e., Br(x)\U has positive measure. By Rademacher’s theorem

[A.6], this allows us to pick a differentiable point xr ⊂ Br(x) such that g∗(xr) 6= 1/2. Further,

when r small enough, g∗ is bounded away from 0 and 1, i.e., there exists r0 > 0 such that for any

r < r0, 0 < g∗(xr) < 1. By Step 1, ||∇g∗(xr)|| = L for every r < r0.
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Step 3.

From Step 2, for any differentiable point x ∈ U , there is a sequence of differentiable points

xr → x as r → 0. Moreover, since the gradients ∇g(xr) are bounded, there is a convergent

subsequence∇g(xrn), n = 1, 2, · · · . By gradient formula [A.4], ||∇g(x)|| = || lim
n→∞

∇g(xrn)|| =

L.

This concludes the proof.

1.8.3 Proof of Theorem 1.2

By gradient formula [A.4], ∂Cg(x) = co{lim
n
∇g(xn) : lim

n
∇g(xn) exists, xn → x}, the

convex envelope of all limiting gradients arising from neighborhood of x. All differentiable

points are dealt with in the almost everywhere version. For non-differentiable points that are not

0 or 1, by [A.8],

sup ||∂Cg(x)|| = sup
lim
n
∇g(xn) exists,xn→x

|| lim
n
∇g(xn)|| = L.

1.8.4 Proof of Theorem 1.3

(1) Step 1 follows from the following lemma:

Lemma 1.2 (uniform law of large numbers for Lipschitz function class). Suppose (X , d) is a

totally bounded metric space. Let GC := {g : X → [0, 1] | L(g) ≤ C} for some constant C > 0,
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then for any probability measure P on X ,

sup
g∈GC
|Png − Pg|

a.s.−→ 0.

The proof is in section 1.8.5.

(2) The analysis can be broken down into two parts since

sup
g∈GC
|W (g, Pn)−W (g, P )| ≤ sup

g∈GC
|E[g ∧ (1− g)]− 1

n

n∑
i=1

min{g(Xi), 1− g(Xi)}|

+λ3 sup
g∈GC
|max{E[g], 1− E[g]} −max{g(X), 1− g(X)}|.

For the first part we can consider

H = {h : h = g ∧ (1− g), g ∈ GC}.

By [A.2], for any h ∈ H, L(h) ≤ C, soH is a subset of GC . It follows that

sup
h∈H
|Pnh− Ph|

a.s.−→ 0.

For the second part, by [A.14],

|max{E[g], 1− E[g]} −max{g(X), 1− g(X)}| ≤ |E[g]− g(X)| = |Pg − Png|,
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so it follows that

sup
g∈GC
|max{E[g], 1− E[g]} −max{g(X), 1− g(X)}| ≤ sup

g∈GC
|Pg − Png|

a.s.−→ 0.

(3) We have

|W (g1, P )−W (g2, P )| ≤
∫
|g1 ∧ (1− g1)− g2 ∧ (1− g2)|dP

+ λ3(max{E[g1], 1− E[g1]} −max{E[g2], 1− E[g2]})

≤
∫
|g1 − g2|dP + λ3

∫
|g1 − g2|dP

= (1 + λ3)E|g1 − g2|.

Therefore W (g, P ) is continuous in g with || · ||L1(P ). The proof is complete.

1.8.5 Proof of Lemma 1.2

Result of this type can be found in the empirical process theory literature, a brief exposition

of the background is given in the appendix section [A.2.1]. Here we refer to Example 19.11 of

[60] for the 1-d case; in the general metric space setting, the result basically follows from a

finite covering number for the Lipschitz function ball. The following only serves to address the

technical difference between these existing results and the version we need in Lemma 1.2.

Proof on R1: Suppose P has bounded support [a, b], then GC has bounded variation C(b−

a). Therefore GC is a subset of the bounded variation class. It suffices to show that the bounded

variation class is P -Glivenko-Cantelli. By [A.10], since || · ||L1(P ) ≤ || · ||L2(P ), the bounded

variation class has finite bracketing number in || · ||L1(P ) for any ε > 0. By [A.9], it is P -
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Glivenko-Cantelli.

Proof on general metric space: Suppose (X , d) is a totally bounded metric space. By

[A.12], N(ε,GC , || · ||∞) < ∞. Let F be the constant 1 function on X , then F is an envelope

function for GC (i.e., |g(x)| ≤ F (x) for any g ∈ GC and x ∈ X ) with ||F ||L1(Q) = 1 for any

probability measure Q on X . Note that N(ε,GC , || · ||L1(Q)) ≤ N(ε,GC , || · ||∞), since for any two

functions f, g ∈ GC , ||f − g||∞ < ε implies ||f − g||L1(Q) ≤ ||f − g||∞ < ε for any probability

measure Q. Therefore,

sup
Q
N(ε||F ||L1(Q),GC , L1(Q)) ≤ N(ε,GC , || · ||∞) <∞,

by [A.11], GC is P -Glivenko-Cantelli.

1.8.6 Proof of Theorem 1.4

For any k, we have

L(gk) ≤ max
k
L(gk) ≤ W (gn, Pn) ≤ W (0, Pn) = λ3,

Therefore

L(gk) ≤
λ3

λ2

:= C, k = 1, · · · , K.

Similar to Theorem 1.3, the proof contains four parts.

1. sup
L(gk)≤C

|Pngk − Pgk|
a.s.−→ 0, k = 1, · · · , K, by Lemma 1.2, as in Theorem 1.3. Let GC :=

{g ∈ G : L(gk) ≤ C, k = 1, · · · , K}.
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2. sup
g∈GC
|W (g, Pn) − W (g, P )| ≤ sup

h∈H
|Pnh − Ph| + λ3 sup

g∈GC
|max

k
(1 − E[gk]) − max

k
{1 −

gk(X)}|, whereH = {h : h = (1− g1) ∧ (1− g2) · · · ∧ (1− gK), {g1, · · · , gK} ∈ GC}.

By [A.2], for any h ∈ H, L(h) ≤ C. It follows that sup
h∈H
|Pnh− Ph|

a.s.−→ 0.

Also, by [A.14], |max
k

(1−E[gk])−max
k
{1−gk(X)}| ≤ max

k
|E[gk]−gk(X)| = max

k
|Pgk−

Pngk|, so

sup
g∈GC
|max

k
(1− E[gk])−max

k
{1− gk(X)}| ≤ max

k
sup

L(gk)≤C
|Pgk − Pngk|

a.s.−→ 0.

Therefore, sup
g∈GC
|W (g, Pn)−W (g, P )| a.s.−→ 0.

3. When dH(g(1), g(2)) < δ,

|W (g(1), P )−W (g(2), P )| ≤
∫
|(1− g(1)

1 ) ∧ (1− g(1)
2 ) · · · ∧ (1− g(1)

K )

− (1− g(2)
1 ) ∧ (1− g(2)

2 ) · · · ∧ (1− g(2)
K )|dP

+ λ3(max
k

(1− E[g
(1)
k ])−max

k
(1− E[g

(2)
k ])).
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We have

∫
|(1− g(1)

1 ) ∧ (1− g(1)
2 ) · · · ∧ (1− g(1)

K )− (1− g(2)
1 ) ∧ (1− g(2)

2 ) · · · ∧ (1− g(2)
K )|dP

≤
∫

max
i

min
j
|g(1)
i (x)− g(2)

j (x)|dx

≤
∑
i

∫
min
j
|g(1)
i (x)− g(2)

j (x)|dx

≤
∑
i

min
j

∫
|g(1)
i (x)− g(2)

j (x)|dx

≤ K max
i

min
j

∫
|g(1)
i (x)− g(2)

j (x)|dx

= KdH(g(1), g(2)),

and

max
k

(1− E[g
(1)
k ])−max

k
(1− E[g

(2)
k ]) ≤ max

i
min
j
|g(1)
i − g

(2)
j | = dH(g(1), g(2)).

Therefore W (g, P ) is continuous in g with dH(·, ·).

4. By 2 &3, and uniqueness of g0, dH(gn, g0)
a.s.−→ 0.

1.8.7 Proof of Theorem 1.5

Suppose g(xi) = ai, i = 1, · · · , n. By [A.5] and [A.1], there exists a Lipschitz extension g̃

of g such that

g̃(xi) = g(xi) = ai, i = 1, · · · , n; min
i=1,··· ,n

ai ≤ g̃(x) ≤ max
i=1,··· ,n

ai, for any x, (1.17)
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given by

g̃(x) =
1

2
min

i=1,··· ,n
{ai + Ld(x, xi)}+

1

2
max
i=1,··· ,n

{ai − Ld(x, xi)}, (1.18)

where L = max
d(xi,xj) 6=0

ai−aj
d(xi,xj)

is the Lipschitz constant of g on {x1, · · · , xn}.

Let

I(1)(g) =
1

n

n∑
i=1

min{g(xi), 1− g(xi)}+ λ2L(g) + λ3 max{g(x), 1− g(x)},

I(2)(a) =
1

n

n∑
i=1

min{ai, 1− ai}+ λ2 max
d(xi,xj)6=0

ai − aj
d(xi, xj)

+ λ3 max{ā, 1− ā}, a = {a1, · · · , an},

and denote their minimizers by g∗1, a
∗
2, respectively. Let g∗2 be the interpolation function of a∗2

by the construction in (1.17), and a∗1 = {g1(x1), · · · , g1(xn)}. Note that I(2)(a∗1) ≤ I(1)(g∗1),

because max
d(xi,xj)6=0

g(xi)−g(xj)
d(xi,xj)

≤ L(g). Then,

I(2)(a∗2) ≤ I(2)(a∗1) ≤ I(1)(g∗1) ≤ I(1)(g∗2).

From (1.17), I(2)(a∗2) = I(1)(g∗2). It follows that I(2)(a∗2) = I(2)(a∗1) = I(1)(g∗1) = I(1)(g∗2), i.e.

the two minimizations are equivalent.

1.9 Appendix: no strong duality

We are interested in whether the constrained version (1.3) and the penalized version (1.4)

of the problem can be solved by each other. We prove a negative result: strong duality in general

does not hold for this problem. Therefore solving either version of the problem may lead to a

solution that does not come from solving the other version for any parameter. Note that strong
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duality and the KKT condition can sometimes hold for nonconvex problems ([7]).

We study a toy example below, which will be used soon to establish the difference between

the constrained problem and the penalized problem.

Let PX has density fX(x) = p(I[a1,b1] + I[a2,b2]), where a1 < b1 < a2 < b2, b1 − a1 =

b2 − a2, p = 1
2|b1−a1| . Let g(x) = L(x− b1)I[b1,a2)(x) + I[a2,∞)(x), where L = 1

a2−b1 .

Remark. PX is a uniform distribution on two disjoint intervals with equal probability mass and

”margin” 1/L . Such example with well-separated compact clusters will be an important gen-

erative model to study in Chapter 2, see C1. In general, suppose we have two well-separated

compact clusters S1, S2, we can define their margin to be 1
d(S1,S2)

.

Below we show that g is not the optimal solution of (1.5) for any λ. In fact, we can relax

the Lipschitz constant of g to get a better solution.

Let g′(x) = 1
1/L+2ε

(x− (b1 − ε))I[b1−ε,a2+ε)(x) + I[a2+ε,∞](x). When ε/(1/L+ 2ε) < 1/2,

I1(g′)− I1(g) = I1(g′) = 2

∫ b1

b1−ε
g′(x) p dx =

pL

1 + 2εL
ε2,

I2(g′)− I2(g) = λ2(
1

1/L+ 2ε
− L) =

−2λ2εL
2

1 + 2εL
,

I3(g′) = I3(g),

so I(g′)−I(g) = εL(pε−2λ2L)
1+2εL

< 0 when λ2 > 0 and ε is small enough. Therefore g is not optimal.

Strong duality does not hold

Suppose strong duality holds for (1.5), then the optimal solution can be characterized by

KKT condition (see e.g., section 5.5.3 in [7]). We show that such necessary condition for opti-
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mality does not apply here. Consider the constrained minimization problem:

min
g
I1(g) s.t. L(g) ≤ C,max{E[g], 1− E[g]} ≤ α. (1.19)

Let g∗, p∗ be the optimal function and optimal value for (1.19). The Lagrangian associated with

(1.19) is

L(g, λ2, λ3) = I1(g) + λ2(L(g)− C) + λ3(max{E[g], 1− E[g]} − α).

Define the dual function h(λ2, λ3) = inf
g
L(g, λ2, λ3). The dual problem associated with (1.19) is

max
λ2,λ3

h(λ2, λ3) s.t. λ2 ≥ 0, λ3 ≥ 0 (1.20)

Let λ∗2, λ
∗
3, d
∗ be the dual optimal variables and optimal value for (1.20). We always have d∗ ≤ p∗

(weak duality). To see whether strong duality holds in general, i.e., whether d∗ = p∗, con-

sider the uniform distribution example studied previously and let C ≥ 1
a2−b1 = L. In this

case g∗ = L(x − b1)I[b1,a2) + I[a2,∞) is an optimal function for (1.19) (though it may be not

unique) because I1(g∗) = 0, and so p∗ = 0. Suppose d∗ = p∗, and g∗, λ∗2, λ
∗
3 are the pri-

mal and dual optimal variables, then by ”complementary slackness” (see remark below), any

optimal function g∗ should also minimize L(g, λ∗2, λ
∗
3) (minimizing L(g, λ∗2, λ

∗
3) is equivalent to

minimizing I1(g) + λ∗2L(g) + λ∗3 max{E[g], 1 − E[g]}, after throwing out constants), and that

L(g∗, λ∗2, λ
∗
3) = 0. However, we have shown in the example that for any λ2, λ3, this g∗ cannot

be the minimizer of the Lagrangian under the uniform distribution setting. Therefore strong du-

ality does not hold in general, so the constrained problem and the penalized problem may have
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different properties.

Remark (complementary slackness). Suppose d∗ = p∗, then

I1(g∗) = h(λ∗2, λ
∗
3) = inf

g
L(g, λ∗2, λ

∗
3)

≤ L(g∗, λ∗2, λ
∗
3)

= I1(g∗) + λ∗2(L(g∗)− C) + λ∗3(max{E[g∗], 1− E[g∗]} − α)

≤ I1(g∗).

Therefore the two inequalities become equalities: the first one implies that g∗ is the minimizer of

L(g, λ∗2, λ
∗
3); the second one implies that L(g∗, λ∗2, λ

∗
3) = 0.
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Chapter 2: Optimal g under ideal population model, further results

This chapter focuses on the ideal problem

minimize E[g ∧ (1− g)] + λ2L(g) + λ3 max{E[g], 1− E[g]}

and attempts to characterize the optimal solution g∗ as clearly as we can. There are two main

directions. One is to give necessary conditions under general PX . The other is to assume that PX

is a probability measure supported on K sharp clusters (we focus on K = 2). In either case, the

main idea is that finding the optimal g reduces to first finding an optimal U - the level set of g∗ at

1/2, then g∗ is determined by U almost uniquely by a Lipschitz extension.

The motivation of this variational problem is described in Chapter 1, and Chapter 2 is

written in such a way that it can be read independently. Recall our variational problem (1.5) for

36



K = 2:

I1 = E[g ∧ (1− g)]

I2 = λ2L(g)

I3 = λ3 max{E[g], 1− E[g]},

I = I1 + I2 + I3

minimize
g:X→[0,1]

I(g).

Let g∗ ∈ arg min
g

I(g) be an optimal solution. When the dependence on λ2, λ3 is stressed,

it is denoted by g∗(·, λ2, λ3).

Organization. This chapter is organized as follows. In section 2.1, we give a better quali-

tative description of the optimal solution than in Theorem 1.1, and this will set up the foundation

for later results in the chapter. In section 2.2, we study consistency of our variational procedure in

recovering true clusters in a model with various cluster shapes. The difference between this and

the consistency result established in Chapter 1 (Theorem 1.3) is discussed in section 2.2.1. This

model will be used throughout later sections. A bipartite result (Theorem 2.4, which says 1
2
− g∗

has different signs on the clusters) is developed out of the consistency result, but allows for a

wider range of tuning parameters. In section 2.5, we study uniqueness of the variational problem

(1.5) under the model and under bipartite condition (that g∗ < 1/2 on one cluster and g∗ > 1/2

on the other). The remaining part in this line of results is essentially a geometric variational

problem – some toy examples with underlying symmetry are studied in section 2.4.
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2.1 Necessary condition for optimal g, part 2

The difficulty of the variational problem (1.5) is in its nonconvexity (in I1) and nonsmooth-

ness (in I2): classical method in calculus of variations such as the Euler Lagrange equation cannot

be directly applied, and general nonsmooth extensions of Euler-Lagrange [13] do not lead to use-

ful first order necessary conditions. In this section we take another route: to exploit the close

relation between Lipschitz functions and distance functions, and give a semi-constructive neces-

sary condition. Part of the motivation for results in this section comes from explicit constructions

of Lipschitz extension, such as Mcshane [A.1], and the fact that distance functions are in general

neither smooth nor convex.

We characterize g∗ in the following main theorem of the chapter, relating g∗ to its level set

at 1
2
:

Theorem 2.1. Suppose λ3 < 1, support(PX) = Ω ⊂ Rd. Let U = {x : g∗(x) = 1/2}, U1 = {x :

g∗(x) < 1/2}, U2 = {x : g∗(x) > 1/2}, L = L(g∗), then g∗ must have the form:

g∗(x) =


max{1

2
− Ld(x, U), 0}, x ∈ U1 ∩ Ω;

1
2
, x ∈ U ;

min{1
2

+ Ld(x, U), 1}, x ∈ U2 ∩ Ω.

Moreover, when Ω ( Rd, there is always an optimal g∗ that has the form:

g∗(x) =


max{1

2
− Ld(x, U), 0}, x ∈ U1;

1
2
, x ∈ U ;

min{1
2

+ Ld(x, U), 1}, x ∈ U2.
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and all other optimals can be modified (in the way given by (2.1) and (2.2)) to have this canonical

form.

The complete proof of Theorem 2.1 is in 2.7.1. See Remark (5) for motivation of the overall

plan of the proof.

Remark (1). Once L and U are determined, g∗ is uniquely determined on Ω. This turns the

main problem from minimizing over g to minimizing over L,U , a geometric variational problem.

Although in higher dimensions, solving the geometric variational problem of minimizing over U

can still be hard, Theorem 2.1 gives us a better mental picture of the optimal solution, see further

exposition in the end of this section.

Remark (2). Since g is continuous, and U is the preimage of {1/2} under g, then U must be a

closed set. Therefore for any x, its distance to U , d(x, U) = inf
u∈U
||x − u|| is always achieved at

some point u ∈ U , and d(x, U) = 0 iff x ∈ U .

Remark (3). Theorem 1.1 suggested that U cannot have positive measure. However, the measure

0 of U does not come out directly from the arguments here.

Remark (4). The form of g in the theorem satisfies previous necessary conditions (Theorem 1.1

and Theorem 1.2) on UC :

for a.e. x ∈ UC , g(x) = 0 or g(x) = 1 or ||∇g(x)|| = L;

for any x ∈ UC , g(x) = 0 or g(x) = 1 or sup ||∂Cg(x)|| = L,
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which follows from properties of distance functions [A.10]:

||∇d(x, U)|| = 1, a.e. in UC ;

sup ||∂Cd(x, U)|| = 1,∀x ∈ UC .

Moreover, suppose we are willing to assume that U has measure 0, then for any x ∈ U ,

∂Cg(x) = co{lim
n
∇g(xn), xn → x} = co{lim

n
∇g(xn), xn /∈ U, xn → x},

by the gradient formula [A.4] and the fact that generalized gradient ∂Cg(x) won’t change if

any set of measure 0 is excluded when building the sequence {xn} from neighborhood of x.

It follows that the property sup ||∂Cg(x)|| = L also extends (from UC) to any x ∈ U here.

Therefore, Theorem 2.1 improves the necessary condition in Theorem 1.1, giving a more detailed

description of optimal solution.

Remark (5). Below is motivation of the overall plan of the proof:

Suppose g is optimal but violates the above form on either U1 or U2 (U = {g = 1/2}, U1 =

{g < 1/2}, U2 = {g > 1/2}, L = L(g)), then let g∗ be a modification of g such that

g∗ = g,∀x ∈ U ; (2.1)

g∗(x) = max{1

2
− Ld(x, U), 0},∀x ∈ U1; g∗(x) = min{1

2
+ Ld(x, U), 1},∀x ∈ U2. (2.2)

The main arguments have two parts. First, it can be shown that L(g∗) = L(g), that is, doing

this modification does not change the Lipschitz constant.
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Then to see why I(g∗) < I(g), note that the first term in the objective is small when g is

close to either 0 or 1. The form of g∗ achieves this goal most ”efficiently” while preserving the

Lipschitz constant, among all functions that share the same level set U .

Specifically, we can show that

g∗(x) ≤ g(x) <
1

2
,∀x ∈ U1; g∗(x) ≥ g(x) >

1

2
,∀x ∈ U2. (2.3)

By Lemma 1.1, this implies I(g∗) ≤ I(g).

The following result makes the ”U” in Theorem 2.1 less mysterious.

Corollary 2.1 (U is ”thin”). Let g∗ be an optimal solution with the form specified by Theorem

2.1, and U = {g∗ = 1/2}. Suppose U ⊃M where M is a closed, connected (d−1) dimensional

manifold that separates Rd into two connected components M1 and M2, define

g∗∗(x) :=


max{1

2
− Ld(x,M), 0}, x ∈M1;

1
2
, x ∈M ;

min{1
2

+ Ld(x,M), 1}, x ∈M2.

Then L(g∗∗) = L(g∗), and I(g∗∗) ≤ I(g∗).

The proof is in section 2.7.2.

Remark. Corollary 2.1 shows, if one could first establish a result that U contains some simple,

separating manifold M (e.g., a hyperplane, a sphere), then M is ”essential”. However, this does

not prove such separating manifold exists.
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Theorem 2.1 gives us a better mental picture of the optimal solution. We give here a

glimpse of what U and g typically look like in a 2-cluster model, leaving the details to section 2.2-

2.4. Under suitable conditions on λ2, λ3, g
∗ is ”bipartite”, that is, w.l.o.g, g∗|S1 < 1/2, g∗|S2 >

1/2. By continuity of g∗, this implies that U must separate S1, S2, so the solution can then be

understood as follows: starting from a separating surface U (a (d − 1) dimensional manifold)

where g∗ = 1/2, on one side of U where S1 lies, the value of 1/2 − g∗ is proportional to the

distance from U when g∗ is positive, and g∗ stays at 0 on the far side; on the other side where

S2 lies, the value of g∗ − 1/2 is proportional to the distance from U when g∗ is less than 1, and

g∗ stays at 1 on the far side. U contains those most ambiguous points for clustering (since g∗

indicates membership probability), the further away from U the clearer membership becomes.

2.1.1 Result for arbitrary level set

We give a result that suggests the U in Theorem 2.1 may be replaced by other level sets.

This can be regarded as a refinement of Theorem 2.1.

Corollary 2.2. Let g∗ be an optimal solution that has the form in Theorem 2.1, where U = {g∗ =

1/2}, U1 = {g∗ < 1/2}, U2 = {g∗ > 1/2} as before. Then g∗ has the following property: for

any level set Uα = {g∗ = α}, α < 1/2, and corresponding lower level set U1,α = {g∗ < α},

g∗(x) = max{α− Ld(x, Uα), 0},∀x ∈ U1,α.

Further, we have

d(x, U)− d(x, Uα) =
1/2− α

L
,∀x ∈ U1,α.
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The proof is in section 2.7.3.

Remark. The upper α level set of g∗ (α < 1/2) may not be recovered in the same way. Suppose

gα(x) =


max{α− Ld(x, Uα), 0}, x ∈ {g∗ < α}

α, x ∈ Uα

min{α + Ld(x, Uα), 1}, x ∈ {g∗ > α}

,

then gα may not agree with g∗ on {g∗ > α}. In particular, {gα = 1/2} may not be equal to U ,

see Figure 2.1.

Figure 2.1: Counterexample: U ′ = {gα = 1/2} 6= U – the lower level sets can be recovered from
U by Corollary 2.2, but the reverse may not be true.

2.2 Consistency, part 2: under sharp cluster model

In this section we show that our objective function-based procedure is not only Pollard-type

consistent (Theorem 1.3), but also converges to meaningful solutions under some ideal models.

The two notions of consistency is distinguished in the next subsection. The next two subsections

define the model, and what we mean by clustering risk. The last subsection gives the main result.
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2.2.1 Pollard-type consistency v.s. consistency in statistical models

The Pollard-type consistency explained in section 1.5 and 1.6 tells only that the data prob-

lem is asymptotic to the ideal one, not that the ideal-problem solution is possible or useful. The

same thing is true in Luxburg’s theory surrounding spectral clustering [63]. These consistency

results do not imply consistency to the clusters in a particular statistical model with a meaningful

notion of clusters, while subsequent statistical inference is only possible for the latter notion of

consistency. In our case, the difference between the two notions of consistency can also be seen

in the proof: proving Theorem 2.3 takes more effort than Theorem 1.3.

Figure 2.2 illustrates issue of Pollard-type consistency: K-means with K = 2 cannot con-

sistently estimate the two clusters (disk and annulus) even with infinite amount of data (the figure

is generated by n = 100000).

Figure 2.2: Left: 2 clusters–disk and annulus. Right: clustering result by K-means.
This is not surprising, since by the form of K-means criterion, it can only give out linearly sepa-
rable clusters.
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2.2.2 Sharp cluster model

Throughout section 2.2-2.5, consider the generating distribution P to be two sharp

clusters S1, S2 ⊂ Rd with P (S1) = π1, P (S2) = π2 = 1− π1, where ”sharp” means:

(1) density exists for P and is lower bounded away from 0 on S1 ∪ S2, constant 0 on (S1 ∪ S2)C

(C1)

(2) S1, S2 are compact, connected and disjoint.

Denote α0 = max{π1, π2}, L0 = 1
d(S1,S2)

. Let g̃ be any Lipschitz function such that

g̃|S1 = 0, g̃|S2 = 1, and g̃|(S1∪S2)C is a Lipschitz extension [A.5] of g̃|S1∪S2 , so that L(g̃) = L0.

(2.4)

Remark. ”Sharp” density on the clusters may be a strong technical assumption. For some results

later in this chapter it will be enough to assume that support(PX) = S1∪S2. We make this strong

assumption here to avoid any potential technical issue we might run into – since our major interest

is having this geometric model with general cluster shapes, it will be a distraction to constantly

discuss what is the weakest smoothness assumption to make for every theorem and corollary.

Sharp clusters have also been considered in the density clustering literature, we refer to

[48] for some related background.

2.2.3 Clustering risk of a clustering function

Recall the classical 0-1 loss function in classification. Let Y be a {0, 1}-valued random

variable indicating class membership. Under PX,Y and 0-1 loss, the classification risk of a clas-
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sifier f that assigns point x to class 1 with probability g(x), class 0 with probability 1 − g(x)

(g : Rd → [0, 1], f : Ω× Rd → {0, 1}), is

R(g) = E[f(X) 6= Y ] = E[g(X)I[Y=0] + (1− g(X))I[Y=1]].

In clustering, the risk function should be invariant under permutation of class labels, so for a

clustering function g, the clustering risk ”induced” by the classification risk is

R(g) = min
π∈P2

E[f(X) 6= π(Y )], where P2 = {π : {0, 1} → {0, 1}} is a set of permutation functions,

or equivalently,

R(g) = min{E[f(X) 6= Y ], E[f(X) 6= (1− Y )]}.

In the sharp cluster model, we have P (Y = 0|X = x, x ∈ S1) = P (Y = 1|X = x, x ∈

S2) = 1, so

E[f(X) 6= Y ] = E[g(X)IS1(X)] + E[(1− g(X))IS2(X)] = E[|g − g̃|] = ||g − g̃||L1(P ),

it follows that

R(g) = min{||g − g̃||L1(P ), ||g − (1− g̃)||L1(P )}. (2.5)
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Empirical risk

We define empirical risk under the same setting as above. Let {(Xi, Yi)}ni=1 be a sample

from PX,Y , the corresponding empirical classification risk under 0-1 loss is

Rn(g) =
1

n

n∑
i=1

I{f(Xi) 6= Yi}.

The induced empirical clustering risk is

Rn(g) = min
π∈P2

1

n

n∑
i=1

I{f(Xi) 6= π(Yi)}. (2.6)

The clustering risk and its empirical version are ideal quantities (because they demand true la-

bels), and is not to be confused with I1 and its empirical version In,1 in the variational approach

we take, where

In,1(g) := Pn[g ∧ (1− g)], (2.7)

although we will sometimes call this the ”classification error term” in the objective function.

The latter may be understood as an ”unsupervised estimate” to the true (whether population or

empirical) risk.

2.2.4 Consistency of clustering risk

For model C1, we show the clustering risk of gn converges to 0, under some conditions on

tuning parameters.

Under model C1, and let C be any constant, the following two theorems holds.
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Theorem 2.2 (population version). Denote

I(g, λ2, λ3) = E[g ∧ (1− g)] + λ2L(g) + λ3 max{E[g], 1− E[g]},

and let

g∗(·, λ2, λ3) ∈ arg min
g:Rd→[0,1]

I(g, λ2, λ3),

then

lim
2L0
1−α0

λ2<λ3≤Cλ2,

λ3→0+

R(g∗(·, λ2, λ3)) = 0,

Remark. This is understood as: for any sequence of solutions g∗n that are individually optimal for

parameters λ2,n, λ3,n satisfying the bounds underneath this limit, the correspondingR(g∗n) values

must tend to 0.

Figure 2.3: consistency cone for (λ2, λ3)

Theorem 2.3 (sample version). Let

In(g, λ2,n, λ3,n) = Pn[g ∧ (1− g)] + λ2,nL(g) + λ3,n max{Pn[g], 1− Pn[g]},
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gn(·, λ2,n, λ3,n) ∈ arg min
g:Rd→[0,1]

In(g, λ2,n, λ3,n).

Suppose λ2,n and λ3,n are chosen such that

2L0

1− α0

λ2,n < λ3,n ≤ Cλ2,n, λ3,n
n→ 0, (C2)

then

lim
n
R(gn(·, λ2,n, λ3,n)) = 0 a.s..

Proofs of the two theorems is in section 2.7.4 and 2.7.5. Further, we have control on the

Lipschitz constant:

Under the same condition on (λ2,n, λ3,n),

lim sup
n

L(gn) ≤ L0,

and under some further smoothness assumption on PX ,

lim
n
L(gn) = L0.

We refer forward to section 2.7.6 for a formal corollary of this with a formal definition of

the smoothness assumption needed to establish the lower bound, which ensures convergence of

Lipschitz constant.
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2.3 Perfect separation

As λ2, λ3 goes to 0 in the way specified by Theorem 2.2, g∗ gets arbitrarily close to 0 on S1

and 1 on S2. This implies that g∗ will first appear as being ”bipartite” (g∗|S1 < 1/2, g∗|S2 > 1/2)

before it gets to 0 and 1 in the limit (either the large sample limit or its population counterpart).

This requires weaker condition than the last section.

Theorem 2.4 (Sufficient condition for bipartite g). Under model C1, suppose λ2, λ3 satisfies

L0

1− c− α0

<
λ3

λ2

≤ C, 0 < λ2L0 + λ3α0 ≤ c, (C3)

where C is any constant, and c is some sufficiently small constant depending on PX . Then 1
2
− g∗

has different signs on S1, S2.

The proof is in section 2.7.7.

Remark. The proof arguments are mostly borrowed from the proof of Theorem 2.2. Theorem 2.4

is thus a weaker result: here λ2, λ3 do not have to go to zero as in Theorem 2.2, it is sufficient

that they are reasonably small. One question is whether g∗ is unique in this case, this will be

addressed in section 2.5.

We do not pursue finding the optimal constants in the sufficient condition.

Discussion

Dependence of these conditions (C2, C3) on unknown constants is theoretical. In practice,

by resampling, stability plots of the solution against λ2, λ3 can be generated to select these tuning
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parameters, similar to the cross validation procedure in supervised problems. See section 3.8 in

Chapter 3.

2.4 Some examples

In this section, we show how to theoretically derive the optimal U and L assuming bi-

partition (λ2, λ3 satisfy C3) in simple examples. A general method to derive the optimal U and L

is not available at this time, some ideas will be discussed in the appendix section 2.9.

Throughout this section, assume that (λ2, λ3) satisfies bipartite condition (C3).

A particular nice property here is convexity. Observe that when g|S1 < 1/2, g|S2 > 1/2,

I1(g) = E[gIS1 ] + E[(1− g)IS2 ],

which becomes linear in g. By [A.3] and [A.13], the Lipschitz constant functional is convex, and

the third term is convex as well, so

I(g) = I1(g) + λ2L(g) + λ3 max{E[g], 1− E[g]}

is convex in g. Therefore any locally optimal g is globally optimal.

Remark. This may also be understood as ”restricted convexity”: a non-convex function can be

convex when restricted to a certain region. In particular, if the minimizer can be first shown to lie

in a region where the function is convex, we can then do convex analysis as usual.

By convexity, taking an average of two functions or a family of functions will produce a

function that gives a smaller I(g) value, if not equal. This is useful to determine U when PX has
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some underlying symmetry. The following gives a good example.

2.4.1 Example 2.1 (hyperplane separation)

Suppose PX is some distribution supported on S1, S2 symmetric about a hyperplaneH . We

would like to show a ”U” of the optimal g is indeed H .

Let g be a candidate function that

g(x) = max{1

2
− Ld(x, U), 0},∀x ∈ U1 ⊃ S1; g(x) = min{1

2
+ Ld(x, U), 1},∀x ∈ U2 ⊃ S2,

the goal is to construct another function extending from H that is better than g, unless U = H

already. We achieve this goal in two steps. Let σH denote rigid reflection about H , the reflection

of U about H is σH(U). Define a function g′ as

g′(x) = 1− g(σH(x)),

which is built by first reflecting g about H , then ”flipping” it (one may find it helpful to first

picture this in 1-d when H is a single point). The ”U” corresponding to g′ is σH(U), and g′

satisfies

g′(x) = max{1

2
− Ld(x, σH(U)), 0},∀x ∈ S1; g′(x) = min{1

2
+ Ld(x, σH(U)), 1},∀x ∈ S2.

By definition, U1, U, U2 denotes {g < 1/2}, {g = 1/2}, {g > 1/2}, respectively. The next ob-

servation is that σH(U2), σH(U), σH(U1) are {g′ < 1/2}, {g′ = 1/2}, {g′ > 1/2}, respectively.
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To see this, note that

g′(x) > 1/2 ⇐⇒ g(σH(x)) < 1/2 ⇐⇒ σH(x) ∈ U1 ⇐⇒ x ∈ σH(U1),

similarly,

g′(x) = 1/2 ⇐⇒ x ∈ σH(U), g′(x) < 1/2 ⇐⇒ x ∈ σH(U2).

By symmetry, g′ has the same I1, I2, I3 values as g. If U 6= H , then g+g′

2
is a better (if not equally

good) candidate, by convexity of I(g). The function g+g′

2
is the function to which we will apply

Theorem 2.1. Before that, we show the ”U” of g+g′

2
contains H .

Claim: H ⊂ {g+g′
2

= 1/2}.

Proof. Suppose x ∈ H and x ∈ U1, then σH(x) = x ∈ σH(U1). This implies g(x) <

1/2, g′(x) > 1/2, we have

g(x) = max{1

2
− Ld(x, U), 0}, g′(x) = min{1

2
+ Ld(x, σH(U)), 1}.

Note that d(x, U) = d(σH(x), U) = d(x, σH(U)), so

g + g′

2
(x) =

1

2
=⇒ x ∈ {g + g′

2
= 1/2}.

Similarly, we can prove the claim for any x ∈ H ∩ U2. The case for x ∈ H ∩ U is trivial.

By Corollary 2.1 (whereH plays the role ofM in the corollary), we can reconstruct another

function that extends fromH , shares the same ”L” with g+g′

2
, retains the same form as g (but with

different L and U ), and is better. Therefore, the ”U” of the optimal g is indeed H .
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2.4.2 Example 2.2 (1-d)

We characterize g∗ in 1-d. Let S1, S2 be two disjoint intervals, a, b be the boundary of

S1, S2 where d(a, b) = d(S1, S2), PX has density f(x). Under suitable conditions on λ2, λ3,

g∗ is bipartite, so we can assume w.l.o.g that g∗|S1 < 1/2, g∗|S2 > 1/2. In particular, g∗(a) <

1/2, g∗(b) > 1/2. For this case, U reduces to a single point x0, and the form of g∗ can be

re-expressed as

g∗(x) =


0, x ∈ (−∞, x0 − 1

2L
];

L(x− x0) + 1
2
, x ∈ (x0 − 1

2L
, x0 + 1

2L
);

1, x ∈ [x0 + 1
2L
,∞),

where x0 ∈ (a, b). Therefore we are able to write I(g∗) = I(x0, L), and equivalently optimize

for (x0, L) within the compact region x0 − 1
2L
≤ a ≤ x0 ≤ b ≤ x0 + 1

2L
, which may also be

written as x0 ∈ [a, b], L ∈ [0, 1
2(x0−a)

∧ 1
2(b−x0)

] , so I(x0, L) achieves its infimum. For L fixed,

we can then take the partial derivative of I with respect to x0 to find the optimal x0.

Corollary 2.3. For fixed L, letH(x0) = E[g∗], the expectation of g∗ with respect to PX expressed

by x0. Denote the ratio P ([x0− 1
2L
,a])

P ([b,x0+ 1
2L

])
:= r(x0), then the optimality condition for x0 is

r(x0) =



1−λ3
1+λ3

, H(x0) > 1
2

1+λ3
1−λ3 , H(x0) < 1

2

[1−λ3
1+λ3

, 1+λ3
1−λ3 ], H(x0) = 1

2

and there is a unique x∗0 that satisfies the above condition.

The detail is in section 2.7.8.
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Remark. 1. The three cases in the optimality condition come from taking the derivative of

max{H(x0), 1−H(x0)}, i.e., the I3 term.

2. One can continue to take partial derivative with respect to L to find the optimal L. We

will go through this computation in the next example in 2-d.

2.4.3 Example 2.3 (disk and annulus)

Let S1, S2 be a disk inside and an annulus outside (as in Figure 2.2, Left), and PX be

rotationally symmetric around origin. Suppose g is one optimal solution of the problem, then by

convexity, taking average over all rotations of g will produce another (if not the same) rotational

symmetric optimal solution. Therefore, an optimal U is a circle S1
r that lies in between the

annulus and disk. We have

∇d(y, U) =


−(y1, y2), y in annulus

(y1, y2), y in disk
,

d(y, U) =


||y|| − r, y in annulus

r − ||y||, y in disk
.

Denote the radius of U by rU . Then the optimal g and the objective I(g) has the form

g(x) =


0, r ≤ rU − 1

2L

1
2
− L(rU − r), r ∈ [rU − 1

2L
, rU + 1

2L
]

1, r ≥ rU + 1
2L

,

where r = ||x||.
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Finding optimal U

Fixing L, with some abuse of notation, we now write the objective function I as a function

of rU :

I(rU) = I1(rU) + λ2L+ I3(rU),

I1(rU) =

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP +

∫
y∈S2,||y||≤rU+ 1

2L

(
1

2
− L(||y|| − rU))dP,

E[g] =

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP +

∫
y∈S2,||y||≤rU+ 1

2L

(
1

2
− L(rU − ||y||))dP

+

∫
y∈S2,||y||>rU+ 1

2L

1dP

:= h(rU),

I3(rU) = max{E[g], 1− E[g]} = max{h(rU), 1− h(rU)}.

Next we will re-express I(rU) in polar coordinates. Denote the rotational symmetric den-

sity f(r cos θ, r sin θ) := f(r), let rd, ra be the radius of disk and radius of the inner circle of

annulus, respectively. For example,

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP =

∫ 2π

0

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdrdθ

= 2π

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdr,

taking derivative with respect to rU ,

d

drU

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdr = −

∫ rd

rU− 1
2L

Lf(r)rdr.
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Let A1(rU) = −2πL
∫ rd
rU− 1

2L
f(r)rdr, A2(L) = 2πL

∫ rU+ 1
2L

ra
f(r)rdr, then

I ′1(rU) = A1(rU) + A2(rU),

h′(rU) = A1(rU)− A2(rU) := A,

∂max{h(rU), 1− h(rU)} =


A, h(rU) > 1

2

−A, h(rU) < 1
2

[−|A|, |A|], h(rU) = 1
2

,

so we have

∂(I1 + I3)(rU) =


(1 + λ3)A1(rU) + (1− λ3)A2(rU), h(rU) = E[g] > 1

2

(1− λ3)A1(rU) + (1 + λ3)A2(rU), h(rU) = E[g] < 1
2

[min,max], h(rU) = E[g] = 1
2

,

[min,max] denotes min and max of the two expressions in the first two cases. A necessary

condition for local optimality is 0 ∈ ∂(I1 + I3)(rU), that is,

0 ∈


(1 + λ3)A1(rU) + (1− λ3)A2(rU), h(rU) = E[g] > 1

2

(1− λ3)A1(rU) + (1 + λ3)A2(rU), h(rU) = E[g] < 1
2

[min,max], h(rU) = E[g] = 1
2
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Let T (rU) = −A1

A2
=

∫ rd
rU−

1
2L

rf(r)dr

∫ rU+ 1
2L

ra rf(r)dr
, then the optimal rU satisfies

T (r∗U) ∈



1−λ3
1+λ3

, h(r∗U) > 1/2

1+λ3
1−λ3 , h(r∗U) < 1/2

[1−λ3
1+λ3

, 1+λ3
1−λ3 ], h(r∗U) = 1/2

.

Claim: There is a unique r that satisfies the above condition, i.e., one and only one of the

three cases can hold true.

Proof. Note that h(rU) = E[g], as rU increases, g will decrease, so will E[g], which implies

h(rU) is monotone decreasing in rU .

Since T (r) is monotone decreasing in r, ranges from [0,∞], there exist r1, r2, r3 s.t.

T (r1) =
1− λ3

1 + λ3

, T (r2) =
1 + λ3

1− λ3

, T (r3) ∈ [
1− λ3

1 + λ3

,
1 + λ3

1− λ3

].

As h(r) is monotone decreasing in r, we have

r1 ≥ r3 ≥ r2, h(r1) ≤ h(r3) ≤ h(r2).

Suppose case 1 in optimality condition holds, i.e., h(r1) > 1
2
, then 1

2
≤ h(r3) ≤ h(r2), which

implies the other two cases fail to hold. Similar for case 2. Suppose case 3 is true, i.e., h(r3) = 1
2
,

then h(r1) ≤ 1
2
, h(r2) ≥ 1

2
, which implies case 1 and 2 cannot hold. Uniqueness in case 3 follows

from strict monotonicity of h (so that there is one and only one r such that h(r) = 1
2
).

Finding optimal L
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The analysis is similar. Fixing rU ,

I(g) = I(L) = I1(L) + λ2L+ I3(L),

I1(L) =

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP +

∫
y∈S2,||y||≤rU+ 1

2L

(
1

2
− L(||y|| − rU))dP,

E[g] =

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP +

∫
y∈S2,||y||≤rU+ 1

2L

(
1

2
− L(rU − ||y||))dP

+

∫
y∈S2,||y||>rU+ 1

2L

1dP

:= h(L),

I3(L) = max{E[g], 1− E[g]} = max{h(L), 1− h(L)}.

Using polar coordinates,

∫
y∈S1,||y||≥rU− 1

2L

(
1

2
− L(rU − ||y||))dP =

∫ 2π

0

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdrdθ

= 2π

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdr.

So far, these are the same expressions as before, but viewed as functions of L. Now taking

derivative with respect to L, e.g.,

d

dL

∫ rd

rU− 1
2L

(
1

2
− L(rU − r))f(r)rdr = −

∫ rd

rU− 1
2L

(rU − r)f(r)rdr.

Therefore, let A1(L) = −2π
∫ rd
rU− 1

2L
(rU − r)f(r)rdr, A2(L) = −2π

∫ rU+ 1
2L

ra
(r − rU)f(r)rdr,
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similar to the analysis of rU , we have

∂(I1 + I3)(L) =


(1 + λ3)A1(L) + (1− λ3)A2(L), h(L) = E[g] > 1

2

(1− λ3)A1(L) + (1 + λ3)A2(L), h(L) = E[g] < 1
2

[min,max], h(L) = E[g] = 1
2

.

Combining I2 = λ2L, the first order optimality condition for L is

−λ2 ∈


(1 + λ3)A1(L) + (1− λ3)A2(L), h(L) = E[g] > 1

2

(1− λ3)A1(L) + (1 + λ3)A2(L), h(L) = E[g] < 1
2

[min,max], h(L) = E[g] = 1
2

.

Claim: ∂(I1 + I3)(L) (the R.H.S) is a monotone function of L, so that there is a unique L

that satisfies this condition.

Proof. First, note that A1(L), A2(L) are both monotone increasing in L. Denote

(1 + λ3)A1(L) + (1− λ3)A2(L) := (1), (1− λ3)A1(L) + (1 + λ3)A2(L) := (2),

we have

(1)− (2) = 2λ3(A1(L)− A2(L)).

It suffices to prove that for any neighborhood of L where A1(L) > A2(L), ∂(I1 + I3)(L) is

monotone, and the same hold for neighborhoods where A1(L) < A2(L).
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Note that

d

dL
h(L) = A1(L)− A2(L),

so in any neighborhood of L where A1(L) > A2(L) (which means (1) > (2)), h(L) is monotone

increasing, so there is at most one ”turning point” Lt on this neighborhood where

∂(I1 + I3)(L) =


(2), L < Lt

[(2), (1)], L = Lt

(1), L > Lt

which is monotone increasing since (1) > (2) on this neighborhood. Otherwise if there is no

turning point, then ∂(I1 + I3)(L) coincides with either (1) or (2) on the entire neighborhood, and

monotonicity follows from monotonicity of (1) and (2).

Remark. We may denote the optimal rU for a fixed L by rU,L, and plug in to solve for L, but the

difficulty is that since rU,L does not have closed form in general, the derivative with respect to L

will not be explicit. The analysis carried out here basically gives a first order system for L and r,

the optimal pair (L, r) (or (L,U), equivalently) can be found by solving this system.

So far, these uniqueness results are special cases. In section 2.5, we will prove a general

uniqueness result using a convex combination trick. It shows that in general dimension, the

solution is unique up to the part of g∗ that comes into (1.5) – e.g., in example 2.1, we may

”bend” the hyperplane U (which was proven to be an optimal) from some far-away place without
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changing any part of (1.5).

2.5 Uniqueness

This section investigates uniqueness of solution under sharp cluster model (C1) and bipar-

tite condition (C3). As explained in section 2.4, I(g) is convex in G := {g : g|S1 < 1/2, g|S2 >

1/2}. Therefore any locally optimal g ∈ G is globally optimal. Suppose I(g) is strictly convex

(i.e., for any 0 < t < 1, g1 6= g2, I(tg1 + (1 − t)g2) < tI(g1) + (1 − t)I(g2)), then we can

conclude that the optimal g is unique. However, it is not clear that this property will hold here, so

we instead work on an alternative idea, borrowing strength from our existing results on necessary

conditions: to establish uniqueness in a subset containing only the functions that have the form

in necessary conditions 1.1 and 2.1. This approach appears well-suited for this problem, leading

to a short uniqueness proof in 1-d.

Let g∗ ∈ arg min I(g). Recall that we have the following necessary condition for g∗ (The-

orem 1.1) when λ3 < 1 and support(PX) = Ω:

N.C.1 g∗(x) = 0 or g∗(x) = 1 or ||∇g∗(x)|| = L, a.e. in Ω, where L is the Lipschitz constant of

g∗.

A more precise result is (Theorem 2.1):

N.C.2 Let U = {x : g∗(x) = 1/2}, U1 = {x : g∗(x) < 1/2}, U2 = {x : g∗(x) > 1/2},

L = L(g∗), then g∗ must have the form:

g∗(x) = max{1

2
−Ld(x, U), 0},∀x ∈ U1∩Ω; g∗(x) = min{1

2
+Ld(x, U), 1},∀x ∈ U2∩Ω.
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In the sharp cluster model (C1), Ω = S1∪S2. The two necessary conditions will be used heavily,

denoted by N.C.1 and N.C.2, respectively.

2.5.1 Uniqueness in 1-d

Theorem 2.5. Assume one-dimensional sharp cluster model C1 where S1, S2 are two disjoint

intervals. Let G = {g : g|S1 < 1/2, g|S2 > 1/2, g : R → [0, 1]}. Suppose λ2, λ3 satisfy (C3),

then g∗ is unique in G. In 1-d, this means the optimal Lipschitz constant L and optimal U are

both unique (U reduces to a single point in 1-d).

Proof. For i = 0, 1, let

gi(x) =


0, x ∈ (−∞, xi − 1

2Li
];

Li(x− xi) + 1
2
, x ∈ (xi − 1

2Li
, xi + 1

2Li
);

1, x ∈ [xi + 1
2Li
,∞)

be two candidate functions that I(g0) = I(g1) = I , g0, g1 ∈ G, xi’s are some points for which

gi(xi) = 1/2. Let gt = tg0 + (1− t)g1, 0 < t < 1, then gt ∈ G. Suppose g0, g1 are both optimal

solutions and are distinct–i.e., either x0 6= x1 or L0 6= L1, then gt won’t have the above form any

more (see Figure 2.4).

On the other hand, by convexity (more precisely, restricted convexity of I(g) in G),

I(gt) ≤ tI(g0) + (1− t)I(g1) = I.

This will imply I(gt) is another optimal, but it does not satisfy N.C.1 (applied to here–any optimal

should have only one non-zero derivative value), a contradiction.
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Figure 2.4: gt = tg0 + (1− t)g1: gt will be a ”5-piece” function which violates N.C.1

In fact, let xt be the point where gt(xt) = 1
2
, then using the same extension procedure as in

(2.1) and (2.2) , we can produce a function g (such that g(xt) = 1
2
, L(g) = L(gt), possesses the

”3-piece” form above) with a strictly smaller I(g) value, a further contradiction.

Remark. We have not really used all 0 < t < 1 to establish the contradiction above. Indeed,

pick any 0 < t < 1, the proof argument will still work. For the more difficult uniqueness proof

in general dimension below, the strategy becomes: as long as there exists one t that leads to

contradiction, it is a contradiction.

2.5.2 Uniqueness in general dimension

Theorem 2.6. Assume sharp cluster model C1. Let G = {g : g|S1 < 1/2, g|S2 > 1/2}, S =

S1 ∪ S2, where S1, S2 have nonempty interior in Rd, and suppose λ2, λ3 satisfy (C3). Consider

any

g∗ ∈ arg min
g∈G

I(g).

Then

1. The optimal Lipschitz constant is unique.

2. The function value on the clusters g∗
∣∣∣
S

is unique.
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3. Any function that agrees with an optimal g∗ in the first two respects is optimal.

The proof is in section 2.7.9.

Remark. Statement 3. identifies the optimal solution as a unique equivalence class in G according

to Lipschitz constant and function value on the clusters.

Remark (about condition on S1, S2). The extra condition on S1, S2 that they have nonempty

interior in Rd is used in Step 2 of the proof. A remark at the end of Step 2 describes the possibility

of generalizing the assumption to having interior in a k-dimensional subspace where k < d and

P has k-density, and what are the pieces needed to be modified in the proof.

The following corollary shows that, uniqueness property on clusters can be extended to

”in-between” cluster regions, more or less by ”rigidity” of our Lipschitz solution. For example,

in the disk and annulus case (Example 2 in section 2.4), this implies uniqueness of solution also

in the middle annulus which separates the two clusters.

Corollary 2.4. Suppose the assumptions in Theorem 2.6 hold (so solution is unique on S by

Theorem 2.6). Let g∗ be any solution (possibly nonunique outside S) with U = {g∗ = 1/2} and

L = L(g∗). Let A = B 1
2L

(U). For each point x in A∩ S (the union of A∩ S1 and A∩ S2), draw

the line segment between x and yx = projU(x). If yx is not unique, draw all such line segments.

Consider the collection of points on U which are shared end points of a pair of line segments

drawn respectively from the two clusters in this way, and the region formed by these pairs of line

segments. Then g∗ is also unique on this ”swept over” region.

The proof is in section 2.7.10.

Remark. The corollary offers an additional ”in-between” region of uniqueness on top of Theorem

65



2.6: starting from any solution, we can form a further region of uniqueness shared by all solutions

from these ”sweeping normals”.

Remark. By Theorem 2.6, A ∩ S is unique even though U may not be unique. Corollary 2.4

specifies the part of U that is necessarily unique.

Example of nonuniqueness

Figure 2.5 provides a counterexample where the solution is nonunique everywhere outside

the region specified by Corollary 2.4, showing that the result is sharp.

Figure 2.5: Shaded areas (including the two rectangles and the region ”between” them) indicate
region of uniqueness. The line PQ satisfies d(x, U) = 1

2L(g)
. U ′ is constructed such that it shares

a common segment with U , and g′ = g everywhere exactly on S1 ∪ S2. It can be checked (by
elementary geometry) that g and g′ have different values everywhere outside the shaded region.

2.6 Summary of uniqueness and consistency results

This section collects and clarifies several uniqueness and consistency results in the thesis.
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Proved uniqueness

(1) (Major result) Uniqueness on well-separated clusters in general dimension (Chapter 2,

Theorem 2.6) is proved under bipartite condition C3. Corollary 2.4 extends the uniqueness to

certain ”in-between” cluster regions.

(2) (Preliminary result for future direction) For well-separated clusters with noise (Chapter

4), uniqueness is proved in 1-d under a ratio condition on the density lower bound on clusters

and density upper bound of noise density (Theorem 4.3). However, this condition requires a gap

between the two bounds, and thus does not apply to examples like Gaussian mixtures. A result

in general dimension is desired but not yet available.

Nonuniqueness

Figure 2.5 provides a counterexample that for well-separated clusters, the solution can

be nonunique everywhere except on or in between clusters. This nonuniqueness is due to the

noiseless feature of a well-separated cluster model.

The above rigorously established uniqueness/nonuniqueness results mostly cover the ideal

case with well-separated clusters.

Assumed uniqueness

The Pollard-type consistency theorem (Theorem 1.3) states that: assume solution to the

variational problem is unique, then the data-based solution is consistent to the (unique) ideal

solution.

Remark. The possibly confusing situation lies for example in the implementation of a confidence
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band (Figure 3.4) for a presumably unique U (there numerical study goes beyond what has been

proved). In such cases (not necessarily Gaussian) where clusters are not well-separated, and

which are more realistic situations for a real data set, uniqueness needs to be more or less assumed

(to do further things like confidence band) as a general proof argument is not available. This may

be confusing because, on the other end, it is also not clear whether there can be nonuniqueness,

and we are still anticipating a proof for these noise cases.

Consistency

(1) Pollard-type consistency (Theorem 1.3): the data-based solution is consistent to the

ideal solution if the latter is unique. When ideal solution is not unique, the statement becomes

convergence to one of the solutions, or convergence to the set of solutions (see [45] Chapter 2

Problem 1). This theorem does not place any condition on PX .

(2) Model-based consistency (Theorem 2.3): the clustering risk converges to 0 for the sharp

cluster model, under some conditions on the tuning parameters.

(3) L1 consistency vs. pointwise consistency: the consistency in Theorem 1.3 is in L1.

Corollary 1.2 says for any point x ∈ supp(P ), gn(x)
p→ g∗(x) given that g∗ is unique. The

pointwise consistency can be extended to some region outside the support by Corollary 2.4 for

well-separated clusters.

Subsampling version

Later in Chapter 3, a subsampling version of the solution will be proposed where consis-

tency is maintained for suitable choice of m,B (size of subsample and number of subsamples),
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whenever consistency/uniqueness is justified or assumed in the several cases above. See Theorem

3.1 and remarks therein.

2.7 Proofs of chapter 2

2.7.1 Proof of Theorem 2.1

Since g is continuous, and U is the preimage of {1/2} under g, then U must be a closed

set. Therefore for any x, its distance to U , d(x, U) = inf
u∈U
||x − u|| is always achieved at some

point u ∈ U , and d(x, U) = 0 iff x ∈ U .

Suppose a Lipschitz function g does not have the form specified in Theorem 2.1. Let

U = {g = 1/2}, U1 = {g < 1/2}, U2 = {g > 1/2}, L = L(g). Let g∗ be a modification of g

such that

g∗ = g,∀x ∈ U ;

g∗(x) = max{1

2
− Ld(x, U), 0},∀x ∈ U1; g∗(x) = min{1

2
+ Ld(x, U), 1},∀x ∈ U2.

We will show that I(g∗) < I(g).

First let us show L(g∗) = L(g) (so g∗ is Lipschitz continuous).

Claim: For any two points x1, x2,
|g∗(x1)−g∗(x2)|

d(x1,x2)
≤ L.

• Suppose x1, x2 ∈ U1, let u1, u2 ∈ U satisfy d(x1, u1) = d(x1, U), d(x2, u2) = d(x2, U),

g∗(x1)− g∗(x2)

d(x1, x2)
=

max{1/2− Ld(x1, U), 0} −max{1/2− Ld(x2, U), 0}
d(x1, x2)

.

When g∗(x1) = max{1/2 − Ld(x1, U), 0} = 0, g
∗(x1)−g∗(x2)
d(x1,x2)

≤ 0; when g∗(x1) = 1/2 −
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Ld(x1, U),

g∗(x1)− g∗(x2)

d(x1, x2)
=

1/2− Ld(x1, U)−max{1/2− Ld(x2, U), 0}
d(x1, x2)

≤ 1/2− Ld(x1, U)− (1/2− Ld(x2, U))

d(x1, x2)

=
L(d(x2, U)− d(x1, U))

d(x1, x2)

≤ L
d(x2, u1)− d(x1, u1)

d(x1, x2)

(since d(x2, U) ≤ d(x2, u1), d(x1, U) = d(x1, u1))

≤ L
d(x1, x2)

d(x1, x2)
= L.

Therefore g∗(x1)−g∗(x2)
d(x1,x2)

≤ L. Similarly, g
∗(x2)−g∗(x1)
d(x1,x2)

≤ L, so |g
∗(x1)−g∗(x2)|
d(x1,x2)

≤ L,∀x1, x2 ∈

U1.

• Suppose x1, x2 ∈ U2, again let u1, u2 ∈ U satisfy d(x1, u1) = d(x1, U), d(x2, u2) =

d(x2, U),

g∗(x1)− g∗(x2)

d(x1, x2)
=

min{1/2 + Ld(x1, U), 1} −min{1/2 + Ld(x2, U), 1}
d(x1, x2)

.

When g∗(x2) = min{1/2 + Ld(x2, U), 1} = 1, g∗(x1)−g∗(x2)
d(x1,x2)

≤ 0. When g∗(x2) =
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min{1/2 + Ld(x2, U), 1} = 1/2 + Ld(x2, U),

g∗(x1)− g∗(x2)

d(x1, x2)
=

min{1/2 + Ld(x1, U), 1} − (1/2 + Ld(x2, U))

d(x1, x2)

≤ (1/2 + Ld(x1, U))− (1/2 + Ld(x2, U))

d(x1, x2)

= L
d(x1, U)− d(x2, U)

d(x1, x2)

≤ L
d(x1, u2)− d(x2, u2)

d(x1, x2)

≤ L
d(x1, x2)

d(x1, x2)
= L.

Therefore g∗(x1)−g∗(x2)
d(x1,x2)

≤ L. Similarly, g
∗(x2)−g∗(x1)
d(x1,x2)

≤ L, so |g
∗(x1)−g∗(x2)|
d(x1,x2)

≤ L,∀x1, x2 ∈

U2.

• Suppose x1 ∈ U1, x2 ∈ U2. Note that since g(x1) < 1/2, g(x2) > 1/2, we have

g∗(x2)− g∗(x1)

d(x1, x2)
> 0.

g∗(x2)− g∗(x1)

d(x1, x2)
=

min{1
2

+ Ld(x2, U), 1} −max{1
2
− Ld(x1, U), 0}

d(x1, x2)

≤
1
2

+ Ld(x2, U)− (1
2
− Ld(x1, U))

d(x1, x2)

= L
d(x1, U) + d(x2, U)

d(x1, x2)
.

Consider the line segment between x1, x2. Since g(x1) < 1/2, g(x2) > 1/2, by continuity
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of g this line segment must intersect U at some point xu. We have

d(x1, x2) = d(x1, xu) + d(xu, x2) ≥ d(x1, U) + d(x2, U).

Therefore

g∗(x2)− g∗(x1)

d(x1, x2)
≤ L

d(x1, xu) + d(xu, x2)

d(x1, x2)
= L,

This proves |g
∗(x2)−g∗(x1)|
d(x1,x2)

≤ L,∀x1 ∈ U1, x2 ∈ U2.

Finally, note that in all of the above arguments, we can extend either U1 or U2 to U1∪U and

U2 ∪ U . This is because for any x ∈ U,max{1
2
− Ld(x, U), 0} = min{1

2
+ Ld(x, U), 1} = 1/2.

We have proved for any two points x1, x2,
|g∗(x1)−g∗(x2)|

d(x1,x2)
≤ L, so L(g∗) ≤ L(g).

For the other direction of inequality, note that if U = Rd, then g ≡ 1/2, so L(g∗) =

L(g) = 0. When U ( Rd, one of U1 or U2 must be nonempty, let us assume U1 6= ∅. Take

any point x1 ∈ U1 such that g∗(x1) = 1/2 − Ld(x1, U). Such a point must exist, otherwise

g∗(x) = 0 whenever g∗(x) < 1/2, which violates continuity of g∗. Now let u1 ∈ U satisfy

d(x1, u1) = d(x1, U), then

|g∗(x1)− g∗(u1)|
d(x1, u1)

=
|1/2− Ld(x1, U)− 1/2|

d(x1, u1)
=
Ld(x1, u1)

d(x1, u1)
= L.

Therefore the Lipschitz constant L is achieved by g∗, so L(g∗) ≥ L = L(g). Putting these

together, we can conclude L(g∗) = L(g).

Now we are ready to show I(g∗) < I(g).
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For any point x ∈ U1, xu ∈ U , note that

g(xu)− g(x)

d(x, xu)
≤ L,

1

2
− g(x) ≤ Ld(x, xu),

g(x) ≥ 1

2
− Ld(x, xu).

Taking supremum over all xu ∈ U on the R.H.S of the above gives

g(x) ≥ 1

2
− L inf

xu∈U
d(x, xu) =

1

2
− Ld(x, U).

Since g(x) ∈ [0, 1], we get

g(x) ≥ max{1

2
− Ld(x, U), 0} = g∗(x).

Apply similar argument on any point x ∈ U2, together this shows

g∗(x) ≤ g(x) <
1

2
,∀x ∈ U1; g∗(x) ≥ g(x) >

1

2
,∀x ∈ U2.
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Therefore, combining with L(g∗) = L(g),

I(g∗)− I(g) = I1(g∗)− I1(g) + I3(g∗)− I3(g)

= E[g∗ ∧ (1− g∗)]− E[g ∧ (1− g)] + max{E[g∗], 1− E[g∗]}

−max{E[g], 1− E[g]}

≤ E[g∗IU1 ] + E[(1− g∗)IU2 ]− (E[gIU1 ] + E[(1− g)IU2 ]) + λ3|E[g∗ − g]|

(by [A.14])

≤ E[(g∗ − g)IU1 ] + E[(g − g∗)IU2 ] + λ3(|E[(g∗ − g)IU1 ]|+ |E[(g∗ − g)IU2 ]|)

= (1− λ3)E[(g∗ − g)IU1 ] + (1− λ3)E[(g − g∗)IU2 ]

(since g∗ − g ≤ 0 on U1, g − g∗ ≤ 0 on U2)

≤ 0,

when λ3 < 1. Suppose g disagrees with g∗ in either U1 or U2 at some point x in the support

Ω, then by continuity, g will disagree with g∗ at least on some neighborhood Bε(x), ε > 0. By

definition of support, PX(Bε(x)) > 0, then the above inequality is strict.

2.7.2 Proof of Corollary 2.1

SinceM is closed, and g∗∗ is well defined on entire Rd, L(g∗∗) = L can be proved similarly

as in Theorem 2.1. Since M ⊂ U , we have d(x,M) ≥ d(x, U), so

g∗∗ ≤ g∗ < 1/2,∀x ∈ U1 ∩M1; g∗∗ ≥ g∗ > 1/2,∀x ∈ U2 ∩M2.
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Note that

S1 ⊂ U1 ∩M1, S2 ⊂ U2 ∩M2,

I1(g∗∗)− I1(g∗) = E[(g∗∗ − g∗)IS1 ] + E[(g∗ − g∗∗)IS2 ]

= E[(g∗∗ − g∗)IU1∩M1 ] + E[(g∗ − g∗∗)IU2∩M2 ],

I3(g∗∗)− I3(g∗) ≤ λ3|E[g∗∗ − g∗]|

= λ3|E[(g∗∗ − g∗)IU1∩M1 ] + E[(g∗∗ − g∗)IU2∩M2 ]|

= λ3(−E[(g∗∗ − g∗)IU1∩M1 ]− E[(g∗ − g∗∗)IU1∩M1 ]),

I(g∗∗)− I(g∗) = I1(g∗∗)− I1(g∗) + I3(g∗∗)− I3(g∗)

≤ (1− λ3)E[(g∗∗ − g∗)IU1∩M1 ] + (1− λ3)E[(g∗ − g∗∗)IU1∩M1 ]

≤ 0,

because the two expectations are both nonpositive.

2.7.3 Proof of Corollary 2.2

First define gα as

gα(x) = g∗(x), ∀x ∈ UC
1,α;

gα(x) = max{α− Ld(x, Uα), 0}, ∀x ∈ U1,α.

The goal is to show for any x ∈ U1,α, we have both gα(x) ≥ g∗(x) and g∗(x) ≥ gα(x). One

technical point is to justify L(gα) = L (specifically, in the neighborhood of Uα), this part is

proved last.
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Part 1. gα(x) ≥ g∗(x) comes from optimality of g∗ proved in Theorem 2.1, we go through

the derivation again because the other case is similar:

For any x ∈ U1 and y ∈ U , since

gα(y)− gα(x)

d(x, y)
≤ L,

we have

gα(x) ≥ gα(y)− Ld(x, y)

=
1

2
− Ld(x, y), (by definition of gα, {gα = 1/2} = {g∗ = 1/2} = U)

taking supremum over all y ∈ U on R.H.S.:

gα(x) ≥ 1

2
− L inf

y∈U
d(x, y)

=
1

2
− Ld(x, U).

Since gα(x) ∈ [0, 1], we get

gα(x) ≥ max{1

2
− Ld(x, U), 0} = g∗(x).

Part 2. For any xα ∈ Uα, x ∈ U1,α, since

g∗(xα)− g∗(x)

d(x, xα)
≤ L,
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we have

g∗(x) ≥ g∗(xα)− Ld(x, xα)

= α− Ld(x, xα),

taking supremum over all xα ∈ Uα:

g∗(x) ≥ α− L inf
xα∈Uα

d(x, xα)

= α− Ld(x, Uα).

Since g∗(x) ∈ [0, 1], we get

g∗(x) ≥ max{α− Ld(x, Uα), 0} = gα(x).

Part 3. Now, for any x ∈ U1,α ∩ A where A := {x : d(x, U) ≤ 1
2L
},

g∗(x) = 1/2− Ld(x, U),

gα(x) = α− Ld(x, Uα)

g∗(x) = gα(x),

thus d(x, U)− d(x, Uα) = 1/2−α
L

,∀x ∈ U1,α ∩ A.

Instead of the truncated functions, applying the proof argument to g∗(x) = 1/2−Ld(x, U)
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and gα(x) = α− Ld(x, Uα) for any x ∈ U1,α yields

d(x, U)− d(x, Uα) =
1/2− α

L
,∀x ∈ U1,α.

Part 4. Lastly, we confirm that L(gα) = L. Since the Lipschitz constant of gα is L when

restricted to either the region U1,α or UC
1,α, it suffices to look at the case x1 ∈ U1,α, x2 ∈ U1∩UC

1,α

and check gα(x2)−gα(x1)
d(x1,x2)

≤ L. First,

gα(x2)− gα(x1) = max{1/2− Ld(x2, U), 0} −max{α− Ld(x1, Uα), 0}

≤ max{1/2− Ld(x2, U)− α + Ld(x1, Uα), 0}

(since max{a1, b1} −max{a2, b2} ≤ max{a1 − a2, b1 − b2})

= max{1/2− α− L(d(x2, U)− d(x1, Uα)), 0}. (2.8)

It remains to obtain a lower bound for d(x2, U)− d(x1, Uα). For any yα ∈ Uα, y ∈ U , we have

d(U,Uα) ≤ d(y, yα) ≤ d(x2, y) + d(x2, yα),
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taking infimum over y ∈ U :

d(U,Uα) ≤ inf
y∈U

d(x2, y) + d(x2, yα)

= d(x2, U) + d(x2, yα).

Also, we have

d(U,Uα) = inf
y∈U,yα∈Uα

d(y, yα)

≥ inf
y∈U,yα∈Uα

g∗(y)− g∗(yα)

L
(since

g∗(y)− g∗(yα)

d(y, yα)
≤ L)

=
1/2− α

L
.

Consider the line segment between x1, x2. By continuity of g∗, there is a point on the line segment

where g∗ = α. Now take yα to be this point (or one of these points), so that d(x1, yα)+d(yα, x2) =

d(x1, x2), then

d(x2, U)− d(x1, Uα) = d(x2, U)− d(U,Uα) + d(U,Uα)− d(x1, Uα)

≥ −d(x2, yα) + d(U,Uα)− d(x1, Uα)

≥ −d(x2, yα) + d(U,Uα)− d(x1, yα)

= d(U,Uα)− d(x1, x2)

≥ 1/2− α
L

− d(x1, x2).
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Plug this back to (2.8) to obtain

gα(x2)− gα(x1) ≤ 1/2− α− L(
1/2− α

L
− d(x1, x2))

= L · d(x1, x2),

so gα(x2)−gα(x1)
d(x1,x2)

≤ L. This proves the inequality needed to check Part 4 and completes the proof.

2.7.4 Proof of Theorem 2.2

Denote g∗ = g∗(·, λ2, λ3) for convenience. We have

I(g̃) = λ2L0 + λ3α0 := ε,

I(g∗) = arg min
g

I(g) ≤ I(g̃) = ε,

and ε→ 0 as λ2 → 0, λ3 → 0. The proof is divided into 3 parts:

When ε is small enough,

1. There exists a point x in Si such that g∗ ∧ (1− g∗)(x) < ε/πi.

2. 1
2
− g∗ does not change sign within each cluster.

3. 1
2
− g∗ has different signs on the two clusters.

By 1,2,3, we can assume w.l.o.g that g∗|S1 ≤ 1/2, g∗|S2 ≥ 1/2, when ε is small enough.

Therefore R(g∗) = E[g∗IS1 ] + E[(1 − g∗)IS2 ] = E[g∗ ∧ (1 − g∗)] ≤ I(g∗) ≤ I(g̃) = ε → 0,

proving the theorem.
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1. Suppose g∗ ∧ (1 − g∗) ≥ ε/π1 on S1, then E[g∗ ∧ (1 − g∗)IS1 ] ≥ ε/π1 · P (S1) = ε, so

I(g∗) > I(g̃), a contradiction. Similarly for S2.

The Lipschitz constant of g∗ is bounded. When λ3 < Cλ2, we have

λ2L(g∗) ≤ I(g∗) ≤ I(g̃) = λ2L0 + λ3α0 < λ2L0 + λ3 < λ2L0 + Cλ2,

so L(g∗) ≤ L0 + C.

2. Define a smoothness parameter on S1 asC(L, a, b) = inf{
∫
S1
fdP : f(x1) = a, f(x2) =

b for some x1, x2 ∈ S1, L(f) ≤ L, f : X → [0, 1]}. By sharpness of S1, C(L, a, b) = 0 iff

a = b = 0. Suppose 1
2
− g∗ changes sign on S1, then by conclusion of 1, continuity of g∗

and connectedness of S1, there exist two points x1, x2 ∈ S1 such that g∗ ∧ (1 − g∗)(x1) =

ε1/π1, g
∗(x2) = 1/2 = g∗ ∧ (1 − g∗)(x2). Let ε be small enough such that ε < min{C(L0 +

C, 1/4, 1/2), 1
4
π1}. By [A.2], L(g∗ ∧ (1− g∗)) ≤ L(g∗) ≤ L0 + C, so

I(g∗) ≥ E[g∗ ∧ (1− g∗)IS1 ] =

∫
S1

g∗ ∧ (1− g∗)dP

≥ C(L0 + C, ε/π1, 1/2) ≥ C(L0 + C, 1/4, 1/2) > ε.

Therefore I(g∗) > I(g̃), a contradiction. Similarly for S2.

3. Suppose 1
2
− g∗ have the same sign on S1, S2, assume w.l.o.g that 1

2
− g∗ > 0, then

I(g∗) = E[g∗∧(1−g∗)]+λ2L(g∗)+λ3 max{E[g∗], 1−E[g∗]} = E[g∗]+λ2L(g∗)+λ3(1−E[g∗]).

Therefore we have E[g∗] < I(g∗) ≤ I(g̃) = ε. Let C2 = 1+α0

2
. In fact, choose any 0 < C2 < 1
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that satisfies

C2λ3 > λ2L0 + λ3α0.

Since 0 < C2 < 1, we can let ε be small enough so that 1− ε > C2. It follows that

I(g∗) ≥ λ3(1− E[g∗]) > λ3(1− ε) > C2λ3 > λ2L+ λ3α0 = I(g̃),

a contradiction. When C2 = 1+α0

2
, by rearranging C2λ3 > λ2L0 + λ3α0 we obtain the lower

bound assumption on the ratio (which appears in the theorem)

λ3

λ2

>
2L0

1− α0

.

2.7.5 Proof of Theorem 2.3

In(g̃) = λ2,nL0 + λ3,n
max{number of pts in S1, number of pts in S2}

n

≤ λ2,nL0 + λ3,n := εn.

To simplify the notation, we denote gn(·, λ2,n, λ3,n) by gn.

Since gn ∈ arg min
g

In(g), we have In(gn) ≤ In(g̃).

The proof is divided into 3 parts:

1. There exists a data point xn in Sk such that gn ∧ (1 − gn)(xn) < 2In(g̃)/πk, when n

large enough, a.s., and lim
n
Pn[gn ∧ (1− gn)] = lim

n
P [gn ∧ (1− gn)] = 0.

82



2. 1
2
− gn does not change sign within each cluster, when n large enough, a.s.

3. 1
2
− gn has different signs on the two clusters, when n large enough, a.s.

By 1,2,3, we can assume w.l.o.g that gn|S1 ≤ 1/2, gn|S2 ≥ 1/2, when n large enough, a.s..

Therefore R(gn) = P [gnIS1 ] + P [(1− gn)IS2 ] = P [gn ∧ (1− gn)]→ 0, a.s., proving the claim.

1. By law of large numbers,

n∑
i=1

I{Xi∈Sk}

n

a.s.−→ πk.

For any δ > 0, let n be large enough that

n∑
i=1

I{Xi∈Sk}

n
≥ πk − δ. Suppose for every data point

Xi ∈ Sk, gn ∧ (1− gn)(Xi) ≥ 2In(g̃)/πk, then

In(gn) ≥ 1

n

n∑
i=1

gn ∧ (1− gn)(Xi)I{Xi∈Sk} ≥
2In(g̃)

πk
·

n∑
i=1

I{Xi∈Sk}

n
≥ 2In(g̃)

πk
· (πk − δ) > In(g̃),

by choosing any δ < πk/2. This is a contradiction since gn is a minimizer of In.

Since In(g̃)→ 0, and Pn[gn ∧ (1− gn)] ≤ In(gn) ≤ In(g̃), we get Pn[gn ∧ (1− gn)]→ 0.

The Lipschitz constant of gn is bounded. In fact, when λ3,n ≤ Cλ2,n, we have

λ2,nL(gn) ≤ In(gn) ≤ In(g̃) ≤ λ2,nL0 + λ3,n ≤ λ2,n(L0 + C),

L(gn) ≤ L0 + C,
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so L(gn ∧ (1− gn)) ≤ L(gn) ≤ L0 + C by [A.2].

Let F = {f : X → [0, 1], L(f) ≤ L0 +C}, where X is some bounded domain on Rd such

that ∪kSk ⊂ X . Then by Lemma 1.2,

sup
f∈F

(Pn − P )[f ]→ 0 a.s..

Therefore Pn[gn∧ (1− gn))]−P [gn∧ (1− gn))]→ 0, a.s., it follows that P [gn∧ (1− gn))]→ 0.

2. If any function f (in particular, gn ∧ (1 − gn)) with a bounded Lipschitz constant takes

on two different values (one close to 0 by argument 1, one being 1/2 suppose 1/2 − f changes

sign) within a sharp cluster Sk, then its integral
∫
fISkdP will be lower bounded (lower bound

depends only on the Lipschitz constant, and P |Sk), contradictory to P [gn ∧ (1− gn)]→ 0.

Specifically, for any a ∈ [0, 1], b ∈ [0, 1], L > 0, define

CSk(L, a, b) := inf{
∫
Sk

fdP : f(x1) = a, f(x2) = b for some x1, x2 ∈ Sk, (2.9)

L(f) ≤ L, f : X → [0, 1]}.

This quantity measures regularity of P , it is decreasing in L, increasing in a and b. By sharpness

of Sk, CSk(L, a, b) = 0 iff a = b = 0.

Suppose 1
2
− gn changes sign within Sk, then by continuity of gn and connectedness of Sk,

there exists a point x1 ∈ Sk such that gn(x1) = 1
2
. By argument 1, there exists another point

x2 ∈ Sk such that gn ∧ (1− gn)(x2) < 2In(g̃)/πk. For any ε < 1
2
, let n be large enough such that

2In(g̃)/πk < ε, we have, by definition of CSk , P [gn ∧ (1 − gn)ISk ] ≥ CSk(L0 + C, ε, 1
2
) > 0, a
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contradiction to P [gn ∧ (1− gn)]→ 0.

3. Proof is shown by contradiction. Suppose 1
2
− gn have the same sign on S1, S2, note that

we can always switch the role of k = 1, k = 2 and in turn switch g, 1− g accordingly, so we can

assume w.l.o.g that 1
2
− gn > 0. Then

In(gn) = Pn[gn ∧ (1− gn)] + λ2,nL(gn) + λ3,n max{Pn[gn], 1− Pn[gn]}

= Pn[gn] + λ2,nL(gn) + λ3,n(1− Pn[gn]).

Therefore we have Pn[gn] < In(gn) ≤ In(g̃) ≤ εn = λ2,nL0 + λ3,n.

For the rest of proof, note that when Pn[gn] goes to 0, the third term λ3,n(1−Pn[gn]) ≈ λ3,n,

so this term is much larger than the corresponding term for g̃ (≈ λ3,nα0 a.s., where α0 is the true

proportion). When λ2,n is controlled by λ3,n, this indicates In(gn) > In(g̃), a contradiction.

Specifically, for some δ > 0, let n be large enough that Pn[gn] < δ, and

∣∣∣max{number of pts in S1, number of pts in S2}
n

− α0

∣∣∣ < δ.

We have

λ2,nL0 + λ3,n(α0 + δ) ≥ λ2,nL0 + λ3,n
max{number of pts in S1, number of pts in S2}

n

= In(g̃) ≥ In(gn) ≥ λ3,n(1− Pn[gn]).

85



On the other hand,

λ3,n(1− Pn[gn])− (λ2,nL0 + λ3,n(α0 + δ)) = λ3,n(1− Pn[gn]− α0 − δ)− λ2,nL0

> λ3,n(1− 2δ − α0)− λ2,nL0,

where the last line is non-negative as long as λ3,n
λ2,n
≥ L0

1−2δ−α0
, and a contradiction will follow.

Choose δ = 1−α0

4
(which is quite arbitrary) to obtain the constant 2L0

1−α0
in the theorem.

Remark. The continuous nature of P in model C1 is used in proving the claim in Step 2, see

appendix 2.8 for related discussion, and why the same proof may not be applied directly to a

discrete P . Here although the data are discrete, but in the limit we are concerned with P [gn ∧

(1− gn)], a quantity involving the continuous P . This is also relevant because the true risk R(gn)

in the statement of the theorem is evaluated on P .

2.7.6 Corollary 2.5 and proof

Corollary 2.5. For any sequence of (λ2,n, λ3,n) satisfying condition (C2),

lim sup
n

L(g∗(·, λ2,n, λ3,n)) ≤ L0,

lim sup
n

L(gn(·, λ2,n, λ3,n)) ≤ L0.

Assume further that there exists 0 < δ < 1,M > 0 such that

P (B(x, h) ∩ Si)
M

≥ µ(B(x, h) ∩ Si) ≥ δµ(B(x, h)), ∀x ∈ Si, 0 < h < diam(Si), i = 1, 2,

(2.10)
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then

lim
n
L(g∗(·, λ2,n, λ3,n)) = L0,

lim
n
L(gn(·, λ2,n, λ3,n)) = L0.

Remark. The two inequalities in (2.10) holds if we ”thicken” any clusters in the following two

ways.

The first inequality holds by taking Pδ = (1− δ)P + δUnif(S1 ∪ S2), so for any E ⊂ Si,

Pδ(E) ≥ δ

µ(S1 ∪ S2)
µ(E).

The second inequality holds by taking Pδ = P ∗ Unif(B(0, δ)) (where ∗ denotes convolution),

supported on Sδ1 ∪ Sδ2 . To see this, for any x ∈ Sδi , there exists a ball B(x′, δ) such that x ∈

B(x′, δ) and B(x′, δ) ⊂ Sδi . We then have two cases:

1. If B(x′, δ) $ B(x, h), then

µ(B(x, h) ∩ Sδi ) ≥ µ(B(x′, δ)) = (
δ

h
)dµ(B(x′, h)) ≥ (

δ

diam(Sδi )
)dµ(B(x′, h)).

2. If the two spheres S(x′, δ) ∩ S(x, h) 6= ∅, take x′′ ∈ S(x′, δ) ∩ S(x, h), so d(x′′, x) =

h. Then, the ball with diameter xx′′ is contained in both B(x′, δ) and B(x, h), therefore

contained in B(x, h) ∩ S. The radius of this ball is h
2
, and

µ(B(x, h) ∩ S) ≥ µ(B(0,
h

2
)) = (

1

2
)dµ(B(0, h)).
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Proof of Corollary 2.5.

Step 1. We first show that L(g∗) ≤ L(g̃) + O(ε), where ε = ε1L0 + ε2α0 = λ2L0 + λ3α0,

when λ3
λ2

= O(1).

We cannot show the opposite direction in general without further smoothness assumptions.

To see a counterexample, consider two disjoint, closed disks D1, D2, and extend one of them by

a line-segment spike on its boundary which points to the in-between area of the two disks. In this

case L(g̃) will be much larger than 1
d(D1,D2)

, because of the spike. On the other hand, L(g∗) can

be close to 1
d(D1,D2)

, by allowing g∗ to take positive value on the spike which does not change the

value of I1 and I3.

By Theorem 2.2, when ε small enough, we can assume w.l.o.g. that g∗|S1 < 1/2, g∗|S2 >

1/2. We have

I1(g∗) = E[g∗IS1 ] + E[(1− g∗)IS2 ] < ε,

0 ≤ E[g∗IS1 ] < ε, π2 − ε < E[g∗IS2 ] ≤ π2,

π2 − ε < E[g∗] = E[g∗IS1 ] + E[g∗IS2 ] < π2 + ε,

π1 − ε < 1− E[g∗] < π1 + ε.

Therefore

max{π1, π2} − ε < I3(g∗) = max{E[g∗], 1− E[g∗]} < max{π1, π2}+ ε,

|I3(g∗)− I3(g̃)| = |I3(g∗)− α0| < ε.
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Since I(g∗) = I1(g∗) + λ2L(g∗) + λ3I3(g∗) ≤ I(g̃) = λ2L0 + λ3α0, we have

λ2L(g∗) + λ3I3(g∗) ≤ λ2L0 + λ3α0,

λ2L(g∗) ≤ λ2L0 + λ3(α0 − I3(g∗)),

L(g∗) ≤ L0 +
λ3(α0 − I3(g∗))

λ2

≤ L0 +
ε2 · ε
ε1

= L0 +O(ε) (since
ε2
ε1

=
λ3

λ2

= O(1))

Step 2. Under assumption (2.10), g∗ ∧ (1 − g∗)(x) = O(ε1/(d+1)) for any x ∈ Si, and

L(g∗) ≥ L0 −O(ε1/(d+1)), where d is the dimension.

Subproof of Step 2: Suppose there exists a point xi ∈ S1 such that g∗(xi) > ε′, let h = ε′

3L0
,

then h < ε′

2L(g∗)
since L(g∗) ≤ L0 + O(ε). By Lipschitzness of g∗, for any x ∈ B(xi, h) ∩

Si, g
∗(x) ≥ g∗(xi)− L(g∗) · h > ε′ − L(g∗) ε′

2L(g∗)
= ε′

2
, so we have

I(g∗) ≥ E[g∗IS1 ] ≥
ε′

2
P (B(xi, h) ∩ Si)

≥ ε′

2
Mµ(B(xi, h) ∩ Si)

≥ δMε′

2
µ(B(xi, h))

= O(ε′hd)

= O(ε′d+1).

Therefore choosing ε′ = Cε1/(d+1), for some constant C depending only on δ,M, d, will lead to

I(g∗) > ε = I(g̃), a contradiction. Apply the same argument to S2, we have for every point
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x ∈ S1, g
∗(x) < Cε1/(d+1) and for every point x ∈ S2, g

∗(x) > 1− Cε1/(d+1), so

L(g∗) ≥ 1−O(ε1/(d+1))−O(ε1/(d+1))

d(S1, S2)
= L0 −O(ε1/(d+1)).

This proves the statement in Step 2.

The corollary is proved by letting ε→ 0+ in Step 1 and Step 2.

2.7.7 Proof of Theorem 2.4

The proof arguments are mostly adapted from Theorem 2.2 and 2.3.

a. There exists a point x in Sk such that g∗ ∧ (1 − g∗)(x) < I(g̃)/πk. Otherwise I(g∗) ≥

E[g∗ ∧ (1− g∗)IS1 ] ≥ I(g̃), a contradiction.

b. Note that λ2L(g∗) ≤ I(g∗) ≤ I(g̃) = λ2L0 +λ3α0, so L(g∗) ≤ L0 + λ3
λ2
α0 ≤ L0 +Cα0,

and also L(g∗ ∧ (1− g∗)) ≤ L(g∗) ≤ L0 + Cα0.

c. Suppose 1
2
− g∗ changes sign on Sk, then by a., b. and definition of CSk(L, a, b) (2.9),

we have

I(g∗) > E[g∗ ∧ (1− g∗)] ≥ CSk(L0 + Cα0,
I(g̃)

πk
,
1

2
).

Define a ”normalized” version of this constant

C̄Sk(L, a, b) := inf{
∫
Sk

fdP, f(x) = |b− a| for some x ∈ Sk, L(f) ≤ L, f : X → [0, 1]},

(2.11)
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for any a, b ≥ 0. We have C̄Sk(L, a, b) ≤ CSk(L, a, b). Now consider the two functions

h1(x) = C̄Sk(L0 + Cα0,
x

πk
,
1

2
), h2(x) = x, x ∈ [0,

πk
2

].

Since h1(0) > 0, decreasing in x and continuous, h1(πk
2

) = 0; h2(0) = 0, increasing in x, there

is a point where h1(x) = h2(x), denote that point by ck. For any x < ck, h1(x) > h2(x).

Therefore as long as λ2, λ3 are small enough that

λ2L0 + λ3α0 = I(g̃) < ck,

we have

I(g∗) ≥ CSk(L0 + Cα0,
I(g̃)

πk
,
1

2
) ≥ C̄Sk(L0 + Cα0,

I(g̃)

πk
,
1

2
) = h1(I(g̃)) > h2(I(g̃)) = I(g̃),

a contradiction.

Let c = min{c1, c2} be the constant that appears in the theorem.

d. Suppose 1
2
− g∗ have the same sign on S1, S2, assume w.l.o.g that g∗ < 1

2
.

I(g̃) ≥ I(g∗) = E[g∗] + λ2L(g∗) + λ3(1− E[g∗]) > E[g∗],

so E[g∗] < I(g̃) ≤ c. On one hand,

λ2L0 + λ3α0 ≥ I(g∗) ≥ λ3(1− E[g∗]).
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On the other hand,

λ3(1− E[g∗])− (λ2L0 + λ3α0) = λ3(1− E[g∗]− α0)− λ2L0

≥ λ3(1− c− α0)− λ2L0

> 0,

when λ3
λ2
> L0

1−c−α0
. This is a contradiction.

c. and d. together shows when λ3
λ2

is bounded and λ2, λ3 small enough, it must be that g < 1
2

on one cluster and g > 1
2

on the other.

2.7.8 Proof of Corollary 2.3

From the form of g∗, we may write I(g∗) = I(x0, L),

I(x0, L) =

∫ a

x0− 1
2L

[L(x− x0) +
1

2
]f(x)dx+

∫ x0+ 1
2L

b

[
1

2
− L(x− x0)]f(x)dx+ λ2L

+ λ3 max{H(x0), 1−H(x0)},

where H(x0) =
∫ a
x0− 1

2L

(
L(x− x0) + 1

2

)
f(x)dx+

∫ x0+ 1
2L

b

(
L(x− x0) + 1

2

)
f(x)dx+

∫∞
x0+ 1

2L
1 ·

f(x)dx.
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Fix L and take partial derivative with respect to x0, using Leibniz integral rule,

∂I

∂x0

=

(
L · (− 1

2L
) +

1

2

)
f(x0 −

1

2L
) +

∫ a

x0− 1
2L

−Lf(x)dx

+ (
1

2
− L · 1

2L
)f(x0 +

1

2L
) +

∫ x0+ 1
2L

b

Lf(x)dx+ λ3h(x0)

= −L
∫ a

x0− 1
2L

f(x)dx+ L

∫ x0+ 1
2L

b

f(x)dx+ λ3h(x0),

where h(x0) =


H ′(x0), H(x0) > 1/2

−H ′(x0), H(x0) < 1/2

[H ′(x0),−H ′(x0)], H(x0) = 1/2

,

H ′(x0) =

∫ a

x0− 1
2L

(−L)f(x)dx+ (L · 1

2L
+

1

2
)f(x0 +

1

2L
) +

∫ x0+ 1
2L

b

(−L)f(x)dx

+ f(x0 +
1

2L
) · (−1)

= −L(

∫ a

x0− 1
2L

f(x)dx+

∫ x0+ 1
2L

b

f(x)dx) < 0.

We obtain ∂I
∂x0

=



(1 + λ3)
∫ a
x0− 1

2L
f(x)dx− (1− λ3)

∫ x0+ 1
2L

b
f(x)dx, H(x0) > 1/2

(1− λ3)
∫ a
x0− 1

2L
f(x)dx− (1 + λ3)

∫ x0+ 1
2L

b
f(x)dx, H(x0) < 1/2

[(1− λ3)
∫ a
x0− 1

2L
f(x)dx− (1 + λ3)

∫ x0+ 1
2L

b
f(x)dx,

(1 + λ3)
∫ a
x0− 1

2L
f(x)dx− (1− λ3)

∫ x0+ 1
2L

b
f(x)dx], H(x0) = 1/2

=



(1 + λ3)P ([x0 − 1
2L
, a])− (1− λ3)P ([b, x0 + 1

2L
]), H(x0) > 1/2

(1− λ3)P ([x0 − 1
2L
, a])− (1 + λ3)P ([b, x0 + 1

2L
]), H(x0) < 1/2

[(1− λ3)P ([x0 − 1
2L
, a])− (1 + λ3)P ([b, x0 + 1

2L
]),

(1 + λ3)P ([x0 − 1
2L
, a])− (1− λ3)P ([b, x0 + 1

2L
])], H(x0) = 1/2.
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Denote the ratio P ([x0− 1
2L
,a])

P ([b,x0+ 1
2L

])
:= r(x0), then the optimality condition is

r(x0) =



1−λ3
1+λ3

, H(x0) > 1
2

1+λ3
1−λ3 , H(x0) < 1

2

[1−λ3
1+λ3

, 1+λ3
1−λ3 ], H(x0) = 1

2

.

Claim: There is a unique x∗0 that satisfies the above condition, i.e., one and only one of the

three cases can hold true.

Proof of claim. Since r(x0) is monotone decreasing in x0, ranges from [0,∞], H(x0) is mono-

tone decreasing in x0 (as x0 increases, g as a function of x0 will decrease, thus H(x0) = E[g]

will decrease), let r(x1
0) = 1−λ3

1+λ3
, r(x2

0) = 1+λ3
1−λ3 , r(x

3
0) ∈ [1−λ3

1+λ3
, 1+λ3

1−λ3 ], then

x1
0 ≥ x3

0 ≥ x2
0, H(x1

0) ≤ H(x3
0) ≤ H(x2

0).

Suppose case 1 in optimality condition holds, i.e., H(x1
0) > 1

2
, then 1

2
≤ H(x3

0) ≤ H(x2
0),

which implies the other two cases fail to hold. Similar for case 2. Suppose case 3 is true, i.e.,

H(x3
0) = 1

2
, then H(x1

0) ≤ 1
2
, H(x2

0) ≥ 1
2
, which implies case 1 and 2 cannot hold. Uniqueness

in case 3 follows from strict mononicity of H (so that there is one and only one x0 such that

H(x0) = 1
2
).

2.7.9 Proof of Theorem 2.6

For i = 0, 1, let g0, g1 be two candidate functions that have the form in N.C.2 withU (0), U (1)

be their corresponding level sets at 1/2, and L0, L1 be their Lipschitz constants, respectively. Let
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gt = tg0 + (1 − t)g1, 0 < t < 1. By convexity, for any 0 < t < 1, gt is optimal for I(g). We

prove uniqueness by contradiction: if U (0), U (1) do not ”agree to some extent”, then there exists

0 < t < 1 such that gt violates N.C.2. The proof is divided into 4 steps, which are successively

stronger statements that make ”agree to some extent” more precise. The final conclusion is made

after step 4.

To get an analogue of the ”5-piece” argument in the 1-d proof, we are going to use the

property of the gradient of distance functions given by [A.10], along with N.C.2.

For r > 0, denote Br(U) := {x : d(x, U) ≤ r}. Let A = B 1
2L0

(U (0)), B = B 1
2L1

(U (1)).

Let 4 denote symmetric difference between sets, and ◦ denote the interior of a set. By N.C.2,

0 < g0(x) < 1 iff x ∈ A◦, 0 < g1(x) < 1 iff x ∈ B◦. Let S := S1 ∪ S2.

Step 1: P (A4B) = 0.

(Sketch of proof of Step 1) Divide Rd into the following regions A\B,A ∩ B,B\A,AC ∩

BC . It can be shown that

||∇gt(x)|| =


tL0, a.e. in A\B

||tL0∇d(x, U (0))± (1− t)L1∇d(x, U (1))||, a.e. in A ∩B

tL1, a.e. in B\A

,

and gt(x) = 0 or 1 on AC ∩ BC . By N.C.1, gt cannot be optimal for every t in [0, 1] unless A

and B coincide within the support of PX . This extends the proof argument in 1-d (Figure 2.4)
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to general dimension. The formal proof is given below, taking into account that some of these

regions may have zero measure.

(Formal proof of Step 1) Suppose P (A4B) > 0, assume w.l.o.g that P (A\B) > 0. We

deal separately with three cases (at least one of which must hold): P (A∩B) > 0 or P (B\A) > 0

or P (B) = 0.

When x ∈ (A\B) ∩ S1,

g0(x) =
1

2
− L0d(x, U (0)), g1(x) = 0, gt(x) = tg0(x) =

1

2
t− tL0d(x, U (0));

in general, for any x ∈ A\B,

g0(x) =
1

2
± L0d(x, U (0)), g1(x) = 0 or 1,

gt(x) = tg0(x) + (1− t)g1(x) =
1

2
t± tL0d(x, U (0)) or 1− 1

2
t± tL0d(x, U (0)),

so in either case we have, by [A.10],

||∇gt(x)|| = tL0, a.e. in A\B. (2.12)

We argue in the following paragraphs that when either P (A ∩ B) > 0 or P (B\A) > 0,

there is a contradiction to N.C.1 (that non-zero gradient norms must be equal almost everywhere)

because of different gradient norms in different regions.
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For any x ∈ B\A, similar to A\B, we have

||∇gt(x)|| = (1− t)L1, a.e. in B\A. (2.13)

Since tL0 and (1 − t)L1 cannot be equal for all 0 < t < 1, it follows that when P (A\B) > 0,

there exists t such that N.C.1 is violated.

When x ∈ A ∩B ∩ S1,

g0(x) =
1

2
− L0d(x, U (0)), g1(x) =

1

2
− L1d(x, U (1)),

gt(x) =
1

2
− {tL0d(x, U (0)) + (1− t)L1d(x, U (1))};

in general, for any x ∈ A ∩B,

g0(x) =
1

2
± L0d(x, U (0)), g1(x) =

1

2
± L1d(x, U (1)),

gt(x) =
1

2
± {tL0d(x, U (0))± (1− t)L1d(x, U (1))},

so

||∇gt(x)|| = ||tL0∇d(x, U (0))± (1− t)L1∇d(x, U (1))||, a.e. in A ∩B. (2.14)

When P (A ∩ B) > 0, by N.C.1, the gradient norm in (2.12) and (2.14) should be equal. That is,

||∇gt(x)|| = tL0, a.e. in A ∩B, so for each t,

||tL0∇d(x, U (0))± (1− t)L1∇d(x, U (1))|| = tL0, a.e. in A ∩B.
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Letting t→ 0 on both sides of the equality to obtain

||L1∇d(x, U (1))|| = 0, a.e. in A ∩B, (2.15)

a contradiction to a property of the distance function [A.10] since (U (1))C has positive probability.

Lastly, in the case P (B) = 0, contradiction follows from comparing local gradient norms

with the global Lipschitz constant. Note that L0, L1 < ∞, so A and B have positive Lebesgue

measure. Therefore eitherA∩B orB\A has positive Lebesgue measure, even though P (A∩B) =

P (B\A) = 0. Since P (A\B) > 0, by N.C.1,

tL0 = L(gt).

Now because B\A and A ∩B are no longer in the support of PX , we cannot deduce from N.C.1

that the gradient norms in these two regions needs to equal L(gt). Nevertheless, we always have

that the local gradient norms are bounded by the global Lipschitz constant:

(1) If m(B\A) > 0, then

tL0 = L(gt) ≥ ||∇gt(x)|| = (1− t)L1, a.e. in B\A,

which cannot be ture for every t.

(2) If m(A ∩B) > 0, then

tL0 = L(gt) ≥ ||∇gt(x)|| = ||tL0∇d(x, U (0))± (1− t)L1∇d(x, U (1))||, a.e. in A ∩B,
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from which we deduce, by letting t→ 0,

0 = ||L1∇d(x, U (1))||, a.e. in A ∩B.

As in (2.15), this contradicts [A.10].

This completes the proof of Step 1.

It follows from Step 1 that, for P (A ∩ B) = 0, both g0, g1 satisfy g
∣∣∣
S1

= 0, g
∣∣∣
S2

=

1, L(g) = 1
d(S1,S2)

, and any g that satisfies these is optimal. Therefore, g is optimal iff g
∣∣∣
S1

=

0, g
∣∣∣
S2

= 1, L(g) = 1
d(S1,S2)

. The theorem is proved for the case P (A ∩B) = 0.

When P (A∩B) 6= 0 (the two balls ”peek into the clusters”), we obtain further information

connecting U (0), U (1) in Step 2, 3, 4.

Step 2: Suppose P (A ∩B) 6= 0, then∇d(x, U (0)) = ∇d(x, U (1)) a.e. in A ∩ S.

Our proof of Step 2 uses the assumption about S1, S2 in the statement of the theorem: S1, S2

have nonempty interior in Rd (e.g., S1, S2 are closures of open sets in Rd). See remark at the end

of the proof of Step 2 for how it may be modified to extend to S1, S2 having nonempty interior in

an affine subspace in Rd with dimension k < d.

By Step 1, P ((A◦∩S◦1)4(B◦∩S◦1)) = P ((A◦4B◦)∩S◦1) ≤ P (A4B) = 0, which, since

P has support on S1 ∪ S2 with density lower bounded, implies m((A◦ ∩ S◦1)4(B◦ ∩ S◦1)) = 0

where m is the Lebesgue measure. Since two open sets with Lebesgue-null symmetric difference

must be equal, we actually haveA◦∩S◦1 = B◦∩S◦1 , so their closures are also the same. Therefore,

A ∩ S1 = B ∩ S1, ∂A ∩ S1 = ∂B ∩ S1. The same assertion can be made on S2.
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The organization in the remaining proof of step 2 will be: In Lemma 2.1, it is shown that

we can choose some point from ∂A ∩ S◦ (which justifies the figure above). Further, in Corollary

2.8, it is shown we are able to choose such a point from ∂A∩S◦ at which dU(0)(·) is differentiable,

while Corollary 2.6 and 2.7 gives the intermediate construction, that there is a ball around this

point with certain good properties (which will also be used later in Step 3). The desired equality

in the statement of Step 2 will first be shown to hold at the differentiable point we pick on ∂A∩S◦,

and then extended to A ∩ S using N.C.1.

Lemma 2.1. Suppose g0 is an optimal solution, and P (A) 6= 0, then ∂A ∩ S◦ is nonempty.

The proof of Lemma 2.1 is long and a bit technical. It will be postponed to section 2.7.11.

By Lemma 2.1, assume w.l.o.g below that there exists a point x ∈ ∂A ∩ S◦1 . For some

δ > 0, Bδ(x) ⊂ S◦1 , we have A ∩Bδ(x) = B ∩Bδ(x), ∂A ∩Bδ(x) = ∂B ∩Bδ(x).

The following corollary is a preparation for the ball construction corollary that follows:

Corollary 2.6. For any point in AC such that dU(0)(·) is differentiable, we have ∇d(·, U (0)) =

∇d(·, ∂A).
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Proof of Corollary 2.6. Apply [A.11] with x ∈ AC , S = U (0), ∂Br(S) = ∂A (r = 1
2L0

), y =

projU(0)(x), and with z defined as the point of intersection of line segment xy with ∂A. We have

∇d(x, U (0)) = ∇d(x, ∂A) = x−y
||x−y|| .

In the next corollary we introduce our ball construction around the point x chosen above.

It is mainly a consequence of Lemma 2.1 and [A.11]:

Corollary 2.7 (ball construction). Pick any point x ∈ ∂A∩S◦1 , and δ > 0 such that Bδ(x) ⊂ S◦1 .

Consider the ball Bδ/3(x). For any point in Bδ/3(x) ∩ AC , we have

• its closest point to A (or equivalently, ∂A) must lie inside Bδ(x), so the closest point is

inside S1.

• if the point is differentiable, then ∇d(·, U (0)) = ∇d(·, U (1)).

Proof of Corollary 2.7. Any two points inBδ/3(x) have distance at most 2δ/3. On the other hand,

for a point in Bδ/3(x), its distance to any point outside Bδ(x) is larger than 2δ/3. Therefore, for

points in Bδ/3(x) ∩ AC , its closest point to A cannot be outside Bδ(x). See Figure 2.6 for the

picture.

For any differentiable point (at which both dU(0) and dU(1) are differentiable) in Bδ/3(x) ∩

AC , by Corollary 2.6,∇d(·, U (0)) = ∇d(·, ∂A). SinceBδ/3(x)∩AC ⊂ S1∩AC = S1∩BC ⊂ BC ,

we have, similarly, ∇d(·, U (1)) = ∇d(·, ∂B). Note that ∂A ∩ S = ∂B ∩ S, and ∇d(·, ∂A) (or

∇d(·, ∂B)) only depends on the closest point to A (or B), which, by the first part of corollary,

is inside S. We therefore have ∇d(·, ∂A) = ∇d(·, ∂B), so ∇d(·, U (0)) = ∇d(·, U (1)), for any

x ∈ Bδ/3 ∩ AC .

Remark. The construction around the set Bδ/3 ∩ AC here will also be used later in Step 3.

101



Figure 2.6: Idea behind construction of the ball with radius δ/3: for any point y ∈ Bδ/3(x)∩AC ,
the closest point of y to A must be in Bδ(x).

Now we are ready to say that we are able to choose a differentiable point in ∂A ∩ S◦1 :

Corollary 2.8. There exists a point in ∂A ∩ S◦1 at which dU(0)(·) is differentiable.

Proof of Corollary 2.8. Since x ∈ ∂A, both Bδ(x) ∩A and Bδ(x) ∩AC have nonempty interior.

Note that dU(0)(·) is differentiable a.e. on Bδ(x)∩AC , this implies dU(0)(·) is differentiable on all

the line segments connecting these differentiable points and their unique projection on U (0) (see

[A.11]), which will include some points on ∂A ∩ Bδ(x). To see this, look at the restriction of

the function d(·, U (0)) to any of these line segments, by its continuity, we have d(·, U (0)) = 1
2L0

at some point on the line segment, so these line segments intersect ∂A. It suffices to show that

some of these intersections lie in ∂A ∩Bδ(x). This follows from Corollary 2.7.

To summarize, we are able to first pick a differentiable (for both dU(0) and dU(1)) point w in

AC ∩ S, whose characteristic (line segment) to U (0) will intersect ∂A ∩ S at some point x. By
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[A.11], all points on this line segment are differentiable, with the same gradient. Since the two

gradients ∇d(·, U (0)) and ∇d(·, U (1)) are equal for w, they are also equal for x. Therefore, we

have

∇d(x, U (0)) = ∇d(x, U (1)), (2.16)

and since x ∈ A ∩ B (A,B are defined as closed balls, and we have shown ∂A ∩ S = ∂B ∩ S),

by analysis in Step 1 and (2.16),

||∇gt(x)|| = ||tL0∇d(x, U (0)) + (1− t)L1∇d(x, U (1))|| = tL0 + (1− t)L1,

L(gt) ≥ ||∇gt(x)|| = tL0 + (1− t)L1. (2.17)

We are ready to extend (2.16) from this particular point x to almost everywhere in A ∩ S1.

Denote ~n0(·) := ∇d(·, U (0)), ~n1(·) := ∇d(·, U (1)). For almost every point x′ ∈ A ∩ S1,

||∇gt(x′)|| = ||tL0~n0(x′) + (1− t)L1~n1(x′)|| ≤ tL0||~n0(x′)||+ (1− t)L1||~n1(x′)||

= tL0 + (1− t)L1

= ||∇gt(x)|| ≤ L(gt) (by (2.17)),

where the first inequality holds equal iff ~n0(x) = ~n1(x). By N.C.1, for any optimal solution,

the nonzero gradient norms should be equal to the Lipschitz constant almost everywhere. Thus,

equality holds almost everywhere. Similar argument holds for points in A ∩ S2.

This concludes the proof of Step 2.

Remark (lower dimesional clusters). Our proof of Step 2 relies on S1, S2 to have interior in the
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ambient space Rd. This may be extended to S1, S2 being manifolds of dimension k < d lying

in Rd. In particular, S1, S2 can be closures of open regions in an affine subspace, while PX is

absolutely continuous in that subspace. E.g., S1, S2 are two line segments living in R2, each has

interior in a one dimensional affine subspace, while PX has one-dimensional support on S1, S2.

This could be done formally by replacing all interiors appearing in the proof, such as in

Lemma 2.1, by interiors in a k dimensional affine subspace; replacing all balls Bδ(x), such as the

ball construction in Corollary 2.7 by k-balls; and replacing Lebesgue measure m by Hausdorff

measure Hk, e.g., the statement of Step 2 should be changed to ”Hk a.e. in A ∩ S” accordingly.

Finally, we remark that from the point of view of modeling, one can think of ”fattening”

the lower dimensional clusters to a narrow tube around it, or consider clusters with a little noise

in the ambient space, to circumvent the above mathematical technicality.

Step 3: Suppose P (A ∩B) 6= 0. For any x ∈ A ∩ S, d(x, U (0))− d(x, U (1)) ≡ 1
L0
− 1

L1
.

By Corollary 2.2, for any optimal g with the form in N.C.2 and its corresponding U , we

have, for any α > 0,

d(x, U)− d(x, Uα) =
1/2− α

L
,∀x ∈ U1,α,

whereUα = {g = α}, U1,α = {g < α}. Let α→ 0, and note that lim
α→0

d(x, Uα) = d(x, ∂B 1
2L

(U)),

we obtain

d(x, U)− d(x, ∂B 1
2L

(U)) =
1

2L
, for any x ∈ B 1

2L
(U)C .

Apply this to both g0 and g1 (or equivalently, U (0) and U (1)):

d(x, U (0))− d(x, ∂A) =
1

2L0

, for any x ∈ AC ,
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d(x, U (1))− d(x, ∂B) =
1

2L1

, for any x ∈ BC ,

so

d(x, U (0))− d(x, U (1)) =
1

2L0

− 1

2L1

, for any x ∈ AC ∩BC s.t. d(x, ∂A) = d(x, ∂B). (2.18)

Recall the set Bδ/3(x) ∩ AC in Corollary 2.7 within Step 2, where every point satisfies (2.18)

(because by Corollary 2.7, their closest points to ∂A or ∂B are inside S1, and ∂A∩S1 = ∂B∩S1):

d(x, U (0))− d(x, U (1)) =
1

2L0

− 1

2L1

, for any x ∈ Bδ/3(x) ∩ AC .

Now it suffices to extend the property from this small open region toA∩S1. This is justified

by the following lemma:

Lemma 2.2. Let Ω be an open connected set (or its closure), suppose g is Lipschitz, equal to zero

a.e. on an open subset D of Ω, and satisfies∇g = 0 a.e. in Ω. Then g ≡ 0 on Ω.

The proof will be postponed to section 2.7.12.

Applying Lemma 2.2 with Ω = (Bδ/3(x) ∪A) ∩ S1, D = Bδ/3(x) ∩AC , g = d(x, U (0))−

d(x, U (1))− ( 1
L0
− 1

L1
) yields g|Ω = 0.

This concludes the proof of Step 3.

Step 4: Suppose P (A ∩ B) 6= 0. We can show L0 = L1, and thus for any x ∈ A ∩ S,

d(x, U (0)) = d(x, U (1)).
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For any x ∈ A ∩B ∩ S1, g0(x) = 1
2
− L0d(x, U (0)), g1(x) = 1

2
− L1d(x, U (1)), so

g0(x)− g1(x) = L1d(x, U (1))− L0d(x, U (0))

= L1d(x, U (1))− L1d(x, U (0)) + L1d(x, U (0))− L0d(x, U (0))

= L1(d(x, U (1))− d(x, U (0))) + (L1 − L0)d(x, U (0))

= L1(
1

L1

− 1

L0

) + (L1 − L0)d(x, U (0)) (by Step 3)

= (L0 − L1)(
1

L0

− d(x, U (0))).

Since d(x, U (0)) ≤ 1
2L0

, we have g0 ≥ g1 on S1 ⇐⇒ L0 ≥ L1. Similarly, g0 ≤ g1 on

S2 ⇐⇒ L0 ≥ L1. Suppose L0 > L1 (which means I2(g0) > I2(g1)), then I1(g0) > I1(g1). By

Lemma 1.1, I(g0) > I(g1), so g0 and g1 cannot be both optimal. We conclude that L0 = L1, and

again by Step 3, d(x, U (0)) = d(x, U (1)), ∀x ∈ A ∩ S.

This concludes Step 4.

To summarize, note that Step 4 implies g0(x) = g1(x),∀x ∈ S. In another words, suppose

g0 and g1 are both optimal solutions, then g0

∣∣∣
S

= g1

∣∣∣
S

, and L(g0) = L(g1). On the other

hand, since I(g) depends on g only through these (function value on the clusters and Lipschitz

constant), any function that agrees with g0 in these two respects are optimal.

2.7.10 Proof of Corollary 2.4

Let U ′ = {g′ = 1/2} be the level set at 1/2 of another solution g′, we argue that U ′ must

coincide with U within the prescribed region.

Step 1. By Theorem 2.6, L is unique.
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Figure 2.7: Left: illustration of proof of corollary in the disk and annulus case; dashed lines
denotes boundaries of A. Right: data illustration of ”sweeping normals” and inferred region of
uniqueness.

Step 2. For any point x ∈ A ∩ S, g∗(x) has the form g∗(x) = 1/2− Ld(x, U) (on A ∩ S1)

or g∗(x) = 1/2 + Ld(x, U) (on A ∩ S2). Suppose U ′ intersects with any line segment from x

outside U , and suppose x′ is one such intersection, then d(x, U ′) ≤ d(x, x′) < d(x, U), which

implies (if x ∈ A ∩ S1) g′(x) = 1/2− Ld(x, U ′) > 1/2− Ld(x, U) = g∗(x), a contradiction to

Theorem 2.6 which states that g∗ and g′ should have the same function value on the clusters.

Step 3. Let UN be the collection of points on U which are shared end points of a pair of

line segments drawn respectively from the two clusters. Any element in UN is an intermediate

point on a path p (formed by the union of the two line segments) between S1 and S2. By Step 2,

U ′ cannot intersect p outside U ; on the other hand, U ′ ∩ p cannot be empty by intermediate value

theorem, so it must be that U ′ intersects with p exactly on UN , i.e., U ′ coincides with U on p. It

follows that function values of g′ and g∗ are the same everywhere on the pair of line segments.

This concludes the proof.
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2.7.11 Proof of Lemma 2.1

We show that the objective function I is linear in LwhenA ⊃ S1∪S2. This implies that for

any fixed U (0), suppose A ⊃ S1 ∪ S2, then either increasing or decreasing the Lipschitz constant

of g0 alone will give a better solution.

When A ⊃ S1 ∪ S2, the expression of I simplifies to

I1 =

∫
S1

(
1

2
− Ld(x, U (0)))dP +

∫
S2

(
1

2
− Ld(x, U (0)))dP,

I2 = λ2L,

E[g0] =

∫
S1

(
1

2
− Ld(x, U (0)))dP +

∫
S2

(
1

2
+ Ld(x, U (0)))dP

=
1

2
+ L(

∫
S2

d(x, U (0))dP −
∫
S1

d(x, U (0))dP ),

I3 = max{E[g0], 1− E[g0]} =
1

2
+

L(
∫
S2
d(x, U (0))dP −

∫
S1
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP >

∫
S1
d(x, U (0))dP

0,
∫
S2
d(x, U (0))dP =

∫
S1
d(x, U (0))dP

−L(
∫
S2
d(x, U (0))dP −

∫
S1
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP <

∫
S1
d(x, U (0))dP.

For U (0) fixed, the relation between
∫
S2
d(x, U (0))dP and

∫
S1
d(x, U (0))dP is fixed, so when

A◦ ⊃ S1 ∪ S2 (need A◦ instead of A in order to take derivative, this restriction will be removed a

few paragraphs later), we obtain the derivative of I1 with respect to L:

I ′1(L) = −
∫
S1

d(x, U (0))dP −
∫
S2

d(x, U (0))dP, (2.19)
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the derivative of I3 with respect to L:

I ′3(L) =


λ3(
∫
S2
d(x, U (0))dP −

∫
S1
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP >

∫
S1
d(x, U (0))dP

0,
∫
S2
d(x, U (0))dP =

∫
S1
d(x, U (0))dP

λ3(
∫
S1
d(x, U (0))dP −

∫
S2
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP <

∫
S1
d(x, U (0))dP,

(2.20)

the derivative of I with respect to L:

I ′L = λ2 +



(λ3 − 1)
∫
S2
d(x, U (0))dP − (λ3 + 1)

∫
S1
d(x, U (0))dP,

when
∫
S2
d(x, U (0))dP >

∫
S1
d(x, U (0))dP ;

−
∫
S1
d(x, U (0))dP −

∫
S2
d(x, U (0))dP,

when
∫
S2
d(x, U (0))dP =

∫
S1
d(x, U (0))dP ;

(λ3 − 1)
∫
S1
d(x, U (0))dP − (λ3 + 1)

∫
S2
d(x, U (0))dP,

when
∫
S2
d(x, U (0))dP <

∫
S1
d(x, U (0))dP.

In any case, this derivative does not depend on L, so we have, depending on the value of λ2 and

the relation between
∫
S2
d(x, U (0))dP and

∫
S1
d(x, U (0))dP , either I ′L > 0 or I ′L < 0 or I ′L = 0.

This shows linearity with respect to LwhenA◦ ⊃ S1∪S2. Note that when I ′L = 0, as we decrease

L all the way to 0 the I value is not changed, and eventually we arrive at the constant function

g ≡ 1/2, which cannot be optimal (since the optimal g should satisfy g|S1 < 1/2, g|S2 > 1/2).

The analysis is not yet complete because when ∂A just touches the boundary S1 ∪ S2,

further increasing L will let ∂A intersect the interior of S1 ∪ S2, so the right derivative may have

a different expression. We analyze this case below.
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When 1
2L0

= sup
x∈S1∪S2

d(x, U (0)), that is, when ∂A just touches the boundary S1 ∪ S2 ,

further increasing L will let ∂A intersect the interior of S1 ∪ S2. For such L0, with other things

being fixed, view I as a function of L and look at lim
ε→0+

I(L0+ε)−I(L0)
dε

(note that in this case,

lim
ε→0−

I(L0+ε)−I(L0)
dε

is still equal to the expression for I ′L given above). Denote S = S1∪S2, AL0 :=

A = B 1
2L0

(U (0)), AL0+ε = B 1
2(L0+ε)

(U (0)) be the shrunk ball when increasing L by ε, and gL0+ε

be the corresponding g function. Note that for any g function such that

g(x) =


max{1

2
− Ld(x, U), 0}, x ∈ S1

min{1
2

+ Ld(x, U), 1}, x ∈ S2

,

we have

g ∧ (1− g)(x) = max{1

2
− Ld(x, U), 0}, x ∈ S,

and

I1 = E[g ∧ (1− g)]

=

∫
max{1

2
− Ld(x, U), 0}dP

=

∫
S

max{1

2
− Ld(x, U), 0}dP.
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Therefore (whether AL0+ε just touches the interior of S1, or S2, or both),

I1(L0 + ε)− I1(L0) =

∫
S

max{1

2
− (L0 + ε)d(x, U (0)), 0}dP −

∫
S

(
1

2
− L0d(x, U (0)))dP

=

∫
S∩AL0+ε

(
1

2
− (L0 + ε))d(x, U (0))dP −

∫
S

(
1

2
− L0d(x, U (0)))dP

= −
∫
S∩AL0+ε

ε · d(x, U (0))dP −
∫
S∩ACL0+ε

(
1

2
− L0d(x, U (0)))dP.

The second term is o(ε): for any x ∈ ACL0+ε, d(x, U (0)) ≥ 1
2(L0+ε)

, so 1
2
− L0d(x, U (0)) ≤

1
2
− L0 · 1

2(L0+ε)
= ε

L0+ε
, and

∫
S∩ACL0+ε

(
1

2
− L0d(x, U (0)))dP ≤ ε

L0 + ε
P (S ∩ ACL0+ε),∫

S∩ACL0+ε
(1

2
− L0d(x, U (0)))dP

ε
≤ 1

L0 + ε
P (S ∩ ACL0+ε)

ε→0−→ 0 (by absolute continuity of P ).

Since
∫
S∩AL0+ε

d(x, U (0))dP
ε→0−→

∫
S
d(x, U (0))dP , we have

I1(L0 + ε)− I1(L0)

ε

ε→0−→ −
∫
S

d(x, U (0))dP.

This agrees with the derivative of I1 with respect to L in (2.19). Next we analyze the I3 term,
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note that

E[gL0+εI{x∈S1}]− E[g0I{x∈S1}] =

∫
S1

max{1

2
− (L0 + ε)d(x, U (0)), 0}dP

−
∫
S1

(
1

2
− L0d(x, U (0)))dP

= −
∫
S1∩AL0+ε

ε · d(x, U (0))dP

−
∫
S1∩ACL0+ε

(
1

2
− L0d(x, U (0)))dP,

E[gL0+εI{x∈S2}]− E[g0I{x∈S2}] =

∫
S2

min{1

2
+ (L0 + ε)d(x, U (0)), 1}dP

−
∫
S2

(
1

2
+ L0d(x, U (0)))dP

=

∫
S2∩AL0+ε

(
1

2
+ (L0 + ε)d(x, U (0)))dP +

∫
S2∩ACL0+ε

1 dP

−
∫
S2∩AL0+ε

(
1

2
+ L0d(x, U (0)))dP

−
∫
S2∩ACL0+ε

(
1

2
+ L0d(x, U (0)))dP

=

∫
S2∩AL0+ε

ε · d(x, U (0))dP +

∫
S2∩ACL0+ε

(
1

2
− L0d(x, U (0)))dP.

From the analysis of I1 term, we know both
∫
S1∩ACL0+ε

(1
2
− L0d(x, U (0)))dP and

∫
S2∩ACL0+ε

(1
2
−

L0d(x, U (0)))dP are o(ε), thus

E[gL0+ε]− E[g0]

ε

ε→0+−→
∫
S2

d(x, U (0))dP −
∫
S1

d(x, U (0))dP.

When either E[g0] < 1/2 or E[g0] > 1/2, we have E[gL0+ε] < 1/2 or E[gL0+ε] > 1/2 accord-

ingly when ε small enough. When E[g0] = 1/2, note that the g0 we are considering here still
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satisfies A ⊃ S1 ∪ S2, so

E[g0] =
1

2
+ L(

∫
S2

d(x, U (0))dP −
∫
S1

d(x, U (0))dP ),

and

E[g0] =
1

2
⇐⇒

∫
S2

d(x, U (0))dP =

∫
S1

d(x, U (0))dP,

in which case

E[gL0+ε]− E[g0]

ε

ε→0+−→ 0,

and ∣∣∣I3(L0 + ε)− I3(L0)

ε

∣∣∣ ≤ λ3

∣∣∣E[gL0+ε]− E[g0]

ε

∣∣∣ ε→0+−→ 0.

Similarly,

E[g0] >
1

2
⇐⇒

∫
S2

d(x, U (0))dP >

∫
S1

d(x, U (0))dP,

E[g0] <
1

2
⇐⇒

∫
S2

d(x, U (0))dP <

∫
S1

d(x, U (0))dP,

we obtain

I3(L0 + ε)− I3(L0)

ε

ε→0+−→


λ3(
∫
S2
d(x, U (0))dP −

∫
S1
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP >

∫
S1
d(x, U (0))dP

0,
∫
S2
d(x, U (0))dP =

∫
S1
d(x, U (0))dP

λ3(
∫
S1
d(x, U (0))dP −

∫
S2
d(x, U (0))dP ),

∫
S2
d(x, U (0))dP <

∫
S1
d(x, U (0))dP

,
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which also agrees with the derivative of I3 with respect to L in (2.20). Therefore,

lim
ε→0+

I(L0 + ε)− I(L0)

ε
= λ2 + lim

ε→0+

I1(L0 + ε)− I1(L0)

ε
+ lim

ε→0+

I3(L0 + ε)− I3(L0)

ε

has exactly the same form as before. This means the right derivative agrees with the left, so

the limit exists and from linearity with respect to L, we can conclude when A ⊃ S1 ∪ S2, the

corresponding g function can’t be optimal.

2.7.12 Proof of Lemma 2.2

First, consider the following easier problem:

Lemma 2.3. Let Ω be a nonempty open bounded subset of Rn. Suppose that the function g :

Ω̄ → R is Lipschitz, equal to zero on the boundary of Ω, and satisfies ∇g = 0 a.e. in Ω. Then g

is identically zero.

Proof of Lemma 2.3. Since g is equal to 0 on the boundary of Ω, one may extend g to all of

Rn where g|ΩC = 0. Let E = {x : ∇g(x) 6= 0 or g is not differentiable at x},m denotes n

dimensional Lebesgue measure. By Rademacher’s theorem, m(E) = 0. Let IE be indicator

function of E, let (x1, · · · , xn) denotes the n coordinates and y = (x2, · · · , xn), we may write

m(E) =

∫
Rn
IEdm =

∫
Rn−1

dy

∫
R
IE(·, y)dx1.

By Fubini’s theorem [A.7], m1(Ey) =
∫
R IE(·, y)dx1 = 0, a.e. y ∈ Rn−1, where m1 is Lebesgue

measure in one dimension, and Ey is the one dimensional slice of E by fixing the last (n − 1)

coordinates to be y. This says for almost every line in a fixed direction (here in the direction of
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the first coordinate), the set of points in E has 0 measure in 1-d. Taking any such line, which

must intersect either the boundary of Ω or ΩC , so that there exists some point x on the line where

g(x) = 0. For any other point z on the same line, by the fundamental theorem of calculus in 1-d,

let v = (1, 0, · · · , 0), tz = z1 − x1,

g(z)− g(x) =

∫ tz

0

dg

dt
(x+ tv)dt =

∫ tz

0

∇g(x+ tv) · vdt = 0,

since ∇g is almost everywhere 0 on the line. Thus g(z) = g(x) = 0. This shows g ≡ 0 on the

line {x ∈ Rn : (x2, · · · , xn) = y}, for any y such that m1(Ey) = 0. Since m1(Ey) = 0 holds for

almost every y ∈ Rn−1, we get g ≡ 0 a.e. on Rn. By continuity of g, g ≡ 0 on all of Rn.

Remark (Remark on the use of Fubini’s theorem). Fubini’s theorem reduces the n dimensional

measure 0 set E to one dimensional measure 0 slices of E, so fundamental theorem of calculus

can be applied in that one dimension. In higher dimension, it is unclear whether a Lipschitz

function is always absolutely continuous so that versions of fundamental theorem of calculus or

Lebesgue decomposition theorem holds.

Remark. Pondering on the above proof, similar technique can be used to deal with situations

where the boundary condition is changed to some other conditions. Here is a simple version in

R2 that also works using the Fubini arguments:

Let Ω be a rectangle. If g is Lipschitz and∇g = 0 a.e. on Ω, g = 0 on the intersection of a

vertical line with the rectangle (a line segment that ”separates” the rectangle), then g ≡ 0 on Ω.

Now we are ready to prove Lemma 2.2 using similar idea.

Main proof of Lemma 2.2:
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The result holds if Ω is a hyperrectangle (a1, b1) × · · · × (an, bn): it suffices to take an

open rectangle A inside D. For simplicity, we can choose A such that its edges are all aligned

with Ω, that is, A = (a′1, b
′
1) × · · · × (a′n, b

′
n). Let A1 = (a1, b1) × (a′2, b

′
2) · · · × (a′n, b

′
n) be the

expansion of A in the first coordinate. Using g|A = 0 and applying the Fubini argument to A1,

we get g|A1 = 0. Similarly, by expanding the second coordinate in A1, and so on until we arrive

at Ω after n-steps, yields g|Ω = 0.

Back to the general case. For any point x ∈ D, y ∈ Ω\D, there is a continuous path

p(t), t ∈ [0, 1] from x to y such that p(0) = x, p(1) = y. We start from an open rectangle in D

surrounding xwhere g = 0, then build a chain of rectangles to extend this property to point y. For

every t ∈ [0, 1] there is an open hyperrectangular neighborhood Rt of the point p(t) that lies in Ω.

Since p[0, 1] is closed and bounded, the collection of all these rectangles, which covers the path,

has a finite subcover {Rtk}, k = 0, 1, · · · , N . Assume w.l.o.g. that t0 < · · · < tN , in addition, we

may require that t0 = 0, tN = 1. Note that this subcover forms a chain: all successive rectangles

(Rti and Rti+1
) intersect pairwise and Rti ∩Rti+1

is open. Take Rt1 for example, since R0 can be

chosen such that g|R0 = 0, R0 ∩Rt1 is an open set in Rt1 where g = 0. By the rectangle result in

the last paragraph, g|Rt1 = 0. Do this sequentially along the chain, we eventually get g|RtN = 0.

Since y ∈ RtN , g(y) = 0.

2.8 Appendix: difference between discrete and continuous measure

This section shows that not all results using Lebesgue densities and positive Lebesgue

density can extend to discrete PX . It also draws distinctions between ideal-clustering results and

those based on data.
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We do a simple 1-d analysis below to show that g̃ (2.4) can be optimal for discrete PX , but

is never optimal for continuous PX . This also agrees with numerical findings (Figure 2.8).

Figure 2.8: Optimal solution under a discrete PX (left), and a continuous PX (right).
Parameters: (left) p(0) = 0.2, p(1) = 0.3, p(2) = 0.5, λ2 = 0.1, λ3 = 0.5; (right) λ2 =
exp(−3), λ3 = 0.5.

Continuous case

Suppose PX is absolutely continuous with density f(x) supported on two disjoint intervals

S1, S2. For simplicity, assume further that f(x) is symmetric about x0. Then g̃ is not optimal.

Proof. Rotate g̃ around x0, so that the Lipschitz constant decreases from L0 to L0 − ε, for some

small ε > 0. By symmetry, both the rotated function and g̃ has equal proportions, so the difference

in I(g) is

I(grotate)− I(g̃) = 2

∫ x0− 1
2L0

x0− 1
2(L0−ε)

[(L0 − ε)(x− x0) +
1

2
]f(x)dx+ λ2(L0 − ε− L0)

≤ [(L0 − ε) · −
1

2L0

+
1

2
] · P ([x0 −

1

2(L0 − ε)
, x0 −

1

2L0

])− λ2ε

= O(ε2)− λ2ε, (the first term is roughly
ε

2L0

· f(x0 −
1

2L0

) · ε

L0(L0 − ε)
)

which is negative as ε→ 0+, so rotating g̃ locally alone would decrease I(g). Therefore g̃ is not
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optimal.

Discrete case

Suppose PX has positive probability mass on the boundary of S1, S2, so P ([x0− 1
2(L0−ε) , x0−

1
2L0

])
ε→0−→ P ({a}) > 0, where a = x0 − 1

2L0
is a boundary point. Still consider a symmetric dis-

tribution, now

I(grotate)− I(g̃) = 2P ({a}) · ε

2L0

− λ2ε,

which is positive as long as λ2 <
P ({a})
L0

.

Remark. This does not say g̃ is optimal yet, only that I(grotate) > I(g̃) when λ2 is small enough.

Nevertheless, the situation for g̃ being optimal is much better than in the continuous case, and

numerical results suggest that this is often the case.

Continuous case, general dimension

We generalize the argument in the above 1-d analysis for continuous case to the general

sharp cluster model (C1) with P symmetric about an hyperplane H .

Let g̃ be any function such that g̃
∣∣∣
S1

= 0, g̃
∣∣∣
S2

= 1, L(g̃) = L0. By Theorem 2.1, we can

further require g̃ to satisfy

g̃(x) = max{1

2
−L0 d(x,H), 0}, ∀x ∈ H1 ⊃ S1; g̃(x) = min{1

2
+L0 d(x,H), 0}, ∀x ∈ H2 ⊃ S2,

(2.21)

with d(S1, H) = d(S2, H) = 1
2L0

, where H1, H2 are the two half spaces separated by H . Similar
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to the 1-d case, we ”relax” the Lipschitz constant of g̃ by ε:

g̃ε(x) = max{1

2
− (L0 − ε)d(x,H), 0}, ∀x ∈ H1 ⊃ S1;

g̃ε(x) = min{1

2
+ (L0 − ε)d(x,H), 0}, ∀x ∈ H2 ⊃ S2.

It suffices to show that the increase in I1 when relaxing the Lipschitz constant by ε is of order

O(εp) for some p > 1. We have

I1(g̃ε)− I1(g̃) =

∫
x∈S, 1

2L0
≤d(x,H)≤ 1

2(L0−ε)

ε · d(x,H)dP

= ε

∫
x∈S, 1

2L0
≤d(x,H)≤ 1

2(L0−ε)

d(x,H)dP,

where d(x,H)
ε→0−→ 1

2L0
in the domain of integration {x ∈ S : 1

2L0
≤ d(x,H) ≤ 1

2(L0−ε)}.

Therefore,

lim sup
ε→0+

ε−1(I(g̃ε)− I(g̃)) ≤ 1

2L0

lim sup
ε→0+

P ({x ∈ S :
1

2L0

≤ d(x,H) ≤ 1

2(L0 − ε)
}),

where the probability mass on the R.H.S is of order O(εk) if P has k-dimensional density (in

another word, P is absolutely continuous on S = S1∪S2 where S1, S2 are k-dimensional in Rd).

Thus we obtain

I1(g̃ε)− I1(g̃) = O(ε1+k),

which establishes that g̃ as in (2.21) is not optimal. This also means that any function g such that

g
∣∣∣
S1

= 0, g
∣∣∣
S2

= 1, L(g) = L0 is not optimal, because they all have the same I value as I(g̃).
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Comment on the use of connectedness of Sk in the consistency/bipartition result

Proofs of Theorem 2.2-2.4 rely on the fact that if 1/2− g∗ changes sign on a single cluster,

in particular, if g∗(x1) = 0, g∗(x2) = 1 for some x1, x2 ∈ Sk, then by Lipschitz continuity of

g∗ and intermediate value theorem (and that Sk is connected), we have g∗(x) = 1/2 for some

x ∈ Sk. This implies I1(g∗) is large, and so such g∗ cannot be optimal, after comparison with

some other functions such as g̃. It is not the case for discrete PX . For example, if S1 contains

only two support points x, y, and g∗(x) = 0, g∗(y) = 1, then I1(g∗) = 0.

2.9 Appendix: determine optimal surface U

The results here are incomplete, so it is put in appendix.

Now that some special cases are dealt with in section 2.4, we would really like to step to-

wards a general method to characterize the surfaces or curves U for an optimal g-function. One

idea is to find useful one-dimensional perturbations leading to necessary conditions for optimal-

ity. Here we consider the simplest perturbation: rigid motions.

Let S1, S2 denote the (well-separated) clusters in d dimensions, and suppose U is a (d−1)-

dimensional oriented manifold separating them.

Translation:

Consider for any unit vector v ∈ Rd,

Uv(ε) ≡
{
u + ε · v : u ∈ U

}
,
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and look at the integrals

Hk(U,L, fX) :=

∫
Sk

max{0,min{1, 1

2
+ (−1)kL · d(x, U)}} fX(x) dx,

when U is replaced by Uv(ε). This replacement corresponds to a small rigid motion of U by

translation. Because the rigid motion is a distance-preserving map on Rd, its effect can be handled

by a change of variables in the integrals. When the cluster S2 is everywhere more than ε distant

from U ,

Hk(Uv(ε), L, fX) =

∫
Sk

max{0,min{1, 1

2
+ (−1)kL · d(x, U + ε · v)}}fX(x)dx

=

∫
Sk

max{0,min{1, 1

2
+ (−1)kL · d(y + ε · v, U + ε · v)}}fX(y + ε · v)dy

= Hk(U,L, fX(·+ εv)),

because d(y + ε · v, U + ε · v) = d(y, U). Therefore as ε→ 0

1

ε
(Hk(Uv(ε), L, fX) − Hk(U,L, fX)) →

∫
Sk

v′∇ fX(y) max{0,min{1, 1

2
+ (−1)kL · d(y, U)}} dy,

and this leads to an equation combining these limits to express (a necessary condition for) the

optimality of U . When k = 1,

dH1(Uv(ε), L, fX)

dε

∣∣∣
ε=0

=

∫
Sk

v′∇ fX(y) max{0, 1

2
− L · d(y, U)} dy.
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Note that the I1 term is now expressed as I1(Uv(ε), L, fX) = H1(Uv(ε), L, fX)+H2(Uv(ε), L, fX),

so

dI1

dε

∣∣∣
ε=0

=
dH1

dε
+
dH2

dε

=
∑
k=1,2

∫
Sk

max{1

2
− Ld(y, U), 0}v · ∇fX(y)dy.

In order to illustrate the method clearly, from now on, we will set dI1
dε

∣∣∣
ε=0

= 0 to serve as a

first order optimality condition for U , although it should really be 0 ∈ ∂I
∂ε

∣∣∣
ε=0

. In fact, from the

one dimensional analysis in the examples from 2.2, we have

∂I

∂ε

∣∣∣
ε=0

=
∂(I1 + I3)

∂ε

∣∣∣
ε=0

=


(1 + λ3)H ′1(0) + (1− λ3)H ′2(0), E[g] > 1

2

(1− λ3)H ′1(0) + (1 + λ3)H ′2(0), E[g] < 1
2

[min,max], E[g] = 1
2

,

where E[g] =
∫
S1
gdP +

∫
S2
gdP =

∫
S1
gdP + (

∫
S2

1dP −
∫
S2

(1− g)dP ) = H1 +P (S2)−H2.

Thus all the necessary information is H1, H2 and their derivatives at ε = 0. For simplicity of

illustration, we will not include the I3 part, which complicates the discussion in this section.

Assume that fX(x) ∈ C1
c , denote f1(x) = fX(x)I{x∈S1}, so f1 has compact support S1, we
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can proceed with integration by part [A.2]. Let fU(y) := max{1
2
− Ld(y, U), 0},

dH1

dε

∣∣∣
ε=0

=

∫
S1

〈fU(y)v,∇fX(y)〉dy

=

∫
Rd
〈fU(y)v,∇f1(y)〉dy

= −
∫
Rd

(∇ · (fU(y)v)) f1(y)dy

= −
∫
Rd
〈∇fU(y), v〉f1(y)dy (v is a fixed vector)

= L

∫
y: d(y,U)≤ 1

2L

〈∇d(y, U), v〉f1(y)dy

= L

∫
y∈S1: d(y,U)≤ 1

2L

〈∇d(y, U), v〉fX(y)dy.

Rotation:

Let Ug = {g(u), u ∈ U}, where g(u) = R(u − u0) + u0 (RTR = 1, det(R) = 1) is a

rotation around u0. Let

H(Ug, L, fX) :=

∫
Sk

max{1

2
− Ld(x, g(U)), 0}fX(x)dx

x=g(y)
=

∫
Sk

max{1

2
− Ld(g(y), g(U)), 0}fX(g(y))det(Dg)dy

=

∫
Sk

max{1

2
− Ld(y, U), 0}fX(g(y)) · 1dy

=

∫
Sk

fU(y)fX(g(y))dy.
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For simplicity, consider rotation in R2. Denote Rθ =

 cos θ sin θ

− sin θ cos θ

, we have

Hθ =

∫
Sk

fU(y)fX(Rθ(y − u0) + u0)dy,

H ′θ =

∫
Sk

fU(y)
dfX(Rθ(y − u0) + u0)

dθ
dy,

where

dfX(Rθ(y − u0) + u0)

dθ

∣∣∣
θ=0

= R′θ(y − u0) · ∇fX(Rθ(y − u0) + u0)
∣∣∣
θ=0

= 〈

 − sin θ cos θ

− cos θ − sin θ

 (y − u0),∇fX(Rθ(y − u0) + u0)〉
∣∣∣
θ=0

= 〈

 0 1

−1 0

 (y − u0),∇fX(y)〉.

So far we have obtained two types of balance equations for optimal U :

Balance equation from translation with v:

∑
k=1,2

∫
Sk

〈fU(y)v,∇fX(y)〉dy = 0, ∀v;

Balance equation from rotation around u0 in R2:

∑
k=1,2

∫
Sk

fU(y)〈

 0 1

−1 0

 (y − u0),∇fX(y)〉dy = 0, ∀u0.
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Reduce the number of equations:

It suffices to look at v = (1, 0), (0, 1), which spans all possible balance equations from

translation. Let u0 = (0, 0), i.e. rotation around the origin, we have

 0 1

−1 0

 y = (y2,−y1).

Since for any other rotation u0 = (a, b),

 0 1

−1 0

 (y − u0) =

 0 1

−1 0

 (y1 − a, y2 − b) =

(y2 − b, a − y1) = (y2,−y1) + (−b, a), so the balance equation from rotation around (a, b) can

be reproduced by summing up the balance equation from rotation around (0, 0) and translation

with (−b, a). Therefore there are essentially only 3 equations above, for v = (1, 0), (0, 1), and

u0 = (0, 0).

Apply integration by part on the 3 equations (we have seen how this is done in the transla-

tion case, see remark below for the rotation case) to obtain

∑
k=1,2

∫
Sk

〈(y2,−y1),∇fU(y)〉fX(y)dy = 0,

∑
k=1,2

∫
Sk

〈(1, 0),∇fU(y)〉fX(y)dy = 0,

∑
k=1,2

∫
Sk

〈(0, 1),∇fU(y)〉fX(y)dy = 0;

or equivalently,

∑
k=1,2

∫
y∈Sk,d(y,U)≤ 1

2L

〈(y2,−y1),∇d(y, U)〉fX(y)dy = 0, (1)
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∑
k=1,2

∫
y∈Sk,d(y,U)≤ 1

2L

〈(1, 0),∇d(y, U)〉fX(y)dy = 0, (2)

∑
k=1,2

∫
y∈Sk,d(y,U)≤ 1

2L

〈(0, 1),∇d(y, U)〉fX(y)dy = 0. (3)

Remark (Integration by part details for rotation around (0, 0)).

∫
Sk

〈fU(y)(y2,−y1),∇fX(y)〉dy = −
∫
Sk

∇ · (fU(y)(y2,−y1)) fX(y)dy

= −
∫
Sk

(
dfU(y)y2

dy1

− dfU(y)y1

dy2

)
fX(y)dy

= −
∫
Sk

〈(y2,−y1),∇fU(y)〉fX(y)dy

= −L
∫
y∈Sk,d(y,U)≤ 1

2L

〈(y2,−y1),∇d(y, U)〉fX(y)dy.

Remark. These equations illustrate how one can use one dimensional perturbations to find neces-

sary conditions. Given fX and for fixed L, the three balance equations (1), (2), (3) are sufficient

to find an optimal hyperplane U in R2. However, the scope of the analysis is still limited to find

a complete set of equations for a general U surface. We propose that further tools from geo-

metric measure theory (GMT, [37, 52]) should be utilized to answer this question. This future

direction will be described in Chapter 5. Results in this chapter are then regarded as preliminary

constructions and preparations before applying GMT.
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Chapter 3: Computational aspects

Chapter 1 and 2 focus on theoretical aspects of the problem. In this chapter, various com-

putational questions are discussed when implementing the method in practice. This includes the

development of a main algorithm, illustration of solutions to the ideal and data problem using

the algorithm, and handling questions and models that are not covered by available theory. Some

additional conceptual questions are involved.

Organization of the chapter: The main algorithm, Algorithm 1, is based on the idea of

alternating minimization. In section 3.4, we explore remedies for the scalability issue using sub-

sampling ideas. In section 3.3, we distinguish different settings for classification/clustering in

a population or a data-based problem, which the reader should keep in mind in any simulation

experiment. Conceptual issues in tuning parameter selection are discussed in section 3.8, by clar-

ifying the notion of cross-validation and cross-stability. Other elements of the chapter, including

Monte Carlo studies, are chosen selectively for mathematical and statistical insights – such as ef-

fect of dimension and shape (section 3.6), relation between clustering and classification (section

3.9), and statistical inference in terms of variability of the decision boundary U (section 3.5). A

real data example is given in section 3.10.
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3.1 Main algorithm

Implementation of the main algorithm is based on Theorem 1.5 from Chapter 1. Theorem

1.5 shows that with data, the variational problem (1.15) is equivalent to a finite dimensional

(n dimensional) optimization problem (1.16). The optimal g in the original problem (1.15) is

obtained by Lipschitz extension of a function whose values at data points are the optimal a in

(1.16), in particular, (1.18) ensures that the range of the extended function is in [0, 1]. However,

(1.16) is still non-convex, because the function x ∧ (1− x) appearing in the first term is concave

in [0, 1]. Fortunately, the other two terms can be turned into linear programming form:

min
a1,··· ,an∈[0,1]

{
1

n

n∑
i=1

min{ai, 1− ai}+ λ2 max
d(xi,xj)6=0

ai − aj
d(xi, xj)

+ λ3 max{ā, 1− ā}

}

is equivalent to

minimize
1

n

n∑
i=1

min{ai, 1− ai}+ λ2ρ+ λ3r (3.1)

subject to
ai − aj
d(xi, xj)

≤ ρ, i 6= j

ā ≤ r, 1− ā ≤ r

0 ≤ ai ≤ 1, i = 1, 2, ..., n.

This first step turns the second and third term in (1.16) into linear programming form.

We further rewrites (3.1) into a mixed-integer program by introducing an auxiliary vector

variable z. Let z be a vector variable, where each zi, i = 1, · · · , n is binary. The following
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program about (a, z) is equivalent to (3.1):

minimize
1

n

n∑
i=1

{
I[zi=0]ai + I[zi=1](1− ai)

}
+ λ2ρ+ λ3r (3.2)

subject to
ai − aj
d(xi, xj)

≤ ρ, i 6= j; ā ≤ r, 1− ā ≤ r; 0 ≤ ai ≤ 1, i = 1, 2, ..., n;

zi ∈ {0, 1}, i = 1, · · · , n.

We propose to use alternating minimization to solve (3.2), leading to Algorithm 1. In the

context of clustering and classification, it can be understood as combining Lloyd’s algorithm for

K-means clustering [34] with Luxburg’s linear program for Lipschitz classifier [65], see section

3.11.1.

Alternating minimization

Alternating minimization is a very general principle that has been used to solve a variety of

nonconvex optimization problems, especially optimization problems arising from unsupervised

learning, see e.g. [25]. Often, these problems are not jointly convex in (x, y) (for two vector

variables x and y), but are convex or have closed-form solutions whenever x or y is fixed. Each

alternating step is sometimes reduced to solving a known or well-resolved optimization problem.

A generic alternating minimization algorithm minimizes an objective function f : X×Y →

R in the following way: start with an initialization (x0, y0), then for t = 0, 1, 2, · · · , do

xt+1 ← arg min
x∈X

f(x, yt), yt+1 ← arg min
y∈Y

f(xt+1, y), (3.3)
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until convergence.

Remark. Lloyd’s algorithm for K-means clustering is one example of the alternating minimiza-

tion principle, which, in terms of the K-means formulation (1.9), can be seen as alternating min-

imization between cluster assignments C1, · · · , CK and cluster centers c1, · · · , cK .

Basic property of alternating minimization

The following monotonicity lemma always holds for an alternating minimization algo-

rithm.

Lemma 3.1 (monotonicity of alternating minimization). Suppose the current solution (xt, yt) is

updated according to (3.3), then

f(xt+1, yt+1) ≤ f(xt, yt),

and equality holds iff (xt, yt) is a bistable point: xt ∈ arg min
x∈X

f(x, yt), yt ∈ arg min
y∈Y

f(xt, y).

Remark. In other words, Lemma 3.1 ensures strict improvement of f value as long as the current

point is not bistable. This is a routine result, see e.g. [25]. Monotonicity implies convergence, at

least to a local optimal point.

Algorithm 1

The following iterative procedure is proposed to solve (3.2):

1. Randomly pick a starting point z0, and start multiple times to avoid locally optimal solu-

tions. Or, use another clustering algorithm to initialize, e.g., spectral clustering.
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2. Fix z, so that (3.2) becomes a linear program. The solution is the update for a.

3. Fix a, update z. It suffices to

minimize
{
I[zi=0]ai + I[zi=1](1− ai)

}

for each i with ai fixed. Therefore zi = 0 if ai < 1/2; zi = 1 if ai > 1/2; when ai = 1/2,

zi can be either 0 or 1.

4. Repeat 2&3 until the decrease in the objective value is smaller than some ε, or until z and

a do not change any more.

The above steps are summarized into Algorithm 1.

Algorithm 1 Alternating Minimization

1. Initialize z ∈ Rn.

while not converged, do

2. For fixed z, update a ∈ Rn as the solution of the linear program (3.2).

3. For fixed a, update z as zi = I{ai≥1/2}, i = 1, · · · , n.

end while

4. return a, z. The clustering function gn is expressed by a as

gn(x) =
1

2
min

i=1,··· ,n
{ai + Ld(x, xi)}+

1

2
max
i=1,··· ,n

{ai − Ld(x, xi)}, (3.4)

where L = max
d(xi,xj) 6=0

ai−aj
d(xi,xj)

.
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Remark (1). (3.2) can be further formulated into a bilinear program:

minimize
1

n

n∑
i=1

{ai(1− zi) + (1− ai)zi}+ λ2ρ+ λ3r

subject to
ai − aj
d(xi, xj)

≤ ρ, i 6= j; ā ≤ r, 1− ā ≤ r; 0 ≤ ai ≤ 1, i = 1, 2, ..., n;

0 ≤ zi ≤ 1, i = 1, 2, ..., n.

This is because ai(1− zi) + (1− ai)zi is linear in zi, thus the optimal zi’s should be either 0 or 1.

Remark (2). Why choose Algorithm 1 instead of other alternatives, such as solvers for mixed-

integer quadratic programming or bilinear programming? A reason is that alternating minimiza-

tion is a general principle that may also generalize to the other formulations of the problem. LP

is used here because of the Lipschitz formulation, while different algorithms may be involved if

other nonparametric or parametric formulations are considered.

Computational complexity

Two important complexities (that are not to be confused) in Algorithm 1 are:

• z-iteration: number of alternating steps in alternating minimization. This number is usually

small in most synthetic and real datasets we have run (Table 3.2), but the general perfor-

mance deserves more comprehensive empirical study.

• Iterations within LP for fixed z: the complexity of a linear program done via simplex

algorithm is often small in practice, despite its exponential complexity in the worst case.

This can be partly explained by the theory of linear programming via random inputs [56],

which leads to polynomial-time performance in expectation. Empirically, the complexity
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of this particular LP is about O(n3) using a general purpose LP solver (Table 3.3), this is

similar to the average case bound [56]. Note that we can only give a rough sense of the

complexity because even for a fixed dataset, we have a different LP for every different z.

Remark. A maybe related linear programming problem is the optimal transportation problem,

which typically has O(n2) variables and O(n) constraints. The optimal transportation problem

has a long history, so various algorithmic ideas developed therein (see [40]) may be borrowed to

better solve our particular problem. We do not pursue this direction in the thesis.

computing distance matrix O(n2) for Euclidean distance, see remark

number of z-iterations see ”theoretical issue of alternating minimization”

linear program for each fixed z ≈ O(n3) *

evaluating function value at given point O(n) (searching for minimum among n points)

memory complexity O(n2) by sparse matrix representation of constraints

Table 3.1: computational complexity in different parts of algorithm; *: the rate O(n3) is an aver-
age case bound for linear programming ([56]), which better agrees with empirical performance
(compared to a worst case bound), see Table 3.3.

The linear programming formulation of the Lipschitz term enforces constraints for every

pair of points, therefore storing the full constraint matrix (the A matrix in a canonical form

Ax ≤ b) has memory complexity O(n3) (O(n2) constraints of O(n) variables), which can be

too large to handle for a linear programming software even before the computational bottleneck.

Fortunately, the number of nonzero entries of this matrix is onlyO(n2), so a sparse matrix routine

can resolve this issue, such as the ”dense constraint” option in R package ”lpSolve”.

Tables 3.2 and 3.3 provide a brief empirical overview of the possible effect of shape, degree

of separation, noise level and sample size on (1) actual number of iterations and (2) actual running

time of each LP solver. The results will be further explained in the next section 3.2.
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Distribution number of z-iterations

average worst case SD

two piece uniform ε = 1 2.73 12 1.19

ε = 0.5 2.99 9 1.27

ε = 0.1 3.87 12 1.83

ε = 0 (uniform on [0, 2]) 4.13 15 2.04

ε = 1, δ = 0.1 3.45 12 1.31

ε = 1, δ = 0.3 4.15 14 2.27

ε = 1, δ = 0.5 4.28 17 2.50

disk and annulus ε = 1 7.73 27 3.96

ε = 0.5 7.36 20 3.50

ε = 0.1 6.8 18 2.79

ε = 0 (uniform on B[0,2]) 6.22 15 2.34

ε = 1, δ = 0.1 8.07 25 4.23

ε = 1, δ = 0.3 7.59 17 3.25

ε = 1, δ = 0.5 7.03 19 3.38

Table 3.2: average/worst case/standard deviation of the number of z-iterations over 100 runs for
different problems, n = 200;
ε = d(S1, S2); δ: noise probability, equal to 0 by default.
Two piece uniform data: 1-d uniform distribution on [0, 1] ∪ [1 + ε, 2 + ε] when δ = 0; when
δ > 0, observe noise (uniform distribution on [1, 1 + ε]) with probability δ.
Disk and annulus data: 2-d uniform distribution on B[0,1] ∪ B[1+ε,2+ε] when δ = 0; when δ > 0,
observe noise (uniform distribution on B[1,1+ε]) with probability δ.
For two piece uniform data, the number of z-iterations increases when the clusters become closer
or when the noise level is increased. The reverse phenomenon is seen for the disk and annulus
data.

Remark in higher dimension

In principle, dimension may affect number of iterations and actual running time of LP as

well. However, numerical experience suggests that the additional cost in these two respects is

not as important as the growth of cost for increasing sample size. These observations are further
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sample size running time of LP (sec)

average worst case SD

50 0.02 0.05 0.01

100 0.13 2.12 0.14

150 0.90 39.39 3.23

200 4.08 242.72 19.09

250 21.46 1311 99.34

Table 3.3: average/worst case/standard deviation of running time of an LP solver for different
sample sizes in 100 Monte Carlo samples, under random initialization of Algorithm 1. Since a
linear program is run for each z-iteration, the average is taken over 100×”average number of z-
iteration” (as displayed in Table 3.2 for n = 200) linear programming runs. Data: Unif([0, 1] ∪
[2, 3]).

distance average number of iterations average running time of LP (sec)

Euclidean distance 5.5 2.4

Wasserstein distance 4.2 2.5

Table 3.4: Average number of iterations and average running time of LP for a random unlabeled
sample of size 200 from digit 0 and digit 1 in the MNIST dataset. The input dimension here is
256, but the running time does not increase much from the 1-d and 2-d datasets in Table 3.2 and
3.3.

supported by real data examples, see Table 3.4. Therefore, for Algorithm 1, higher dimension

may be more of theoretical concern rather than computational (the additional computational cost

is mainly in computing a distance matrix, which for Euclidean distance is O(n2d)). Whether the

algorithm finds the global optimum (Table 3.5) is a notable issue because local optima can be

more abundant in higher dimension.

Though it is not possible to exhaust all possible problem characteristics, some selected

examples are presented in section 3.6, where three problem characteristics are considered: di-

mension, degree of separation and shape of the clusters.

135



Theoretical issues of alternating minimization

The monotonicity Lemma 3.1 is not able to explain the empirically small number of z-

iterations (see Table 3.2) of Algorithm 1. It also does not address the question that to what extent

a global optimum can be found by Algorithm 1 on top of a local optimum. For example, table

3.5 shows that simple random initialization can lead to a large number of local optima, which

may prevent the algorithm from finding the global optimum. This will be further discussed in the

future direction section in Chapter 5.

Initialization

By default we will run the Algorithm 1 under 10 random initializations, and the final solu-

tion is one that yields the smallest objective value in the end. Alternatively, the output of another

clustering algorithm, such as spectral clustering, can be used initially. Such choices often lead

to more rapid convergence of Algorithm 1. This practice can be also seen as a postprocessing

step upon other clustering algorithms – since one shortcoming of many machine learning algo-

rithms is that the output is not smooth: either clustering is done only on the data points or the

memberships are categorical.

Initialization within subsampling

Later in Algorithm 2, one method uses output from the previous subsample as the initial

for running algorithm on the next subsample. This is helpful, as can be seen in Table 3.9, the

number of iterations is substantially decreased.
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3.2 Illustration of the method

In this section we present a pure illustration of the method on simple synthetic datasets.

More complicated examples and real datasets will be considered in later sections.

Two piece uniform

The data is generated from a uniform distribution on [0, 1] ∪ [2, 3], sample size n = 200.

Let D be the distance matrix computed from data. Implementation of Algorithm 1 is coded in R

function ”Lclust”. The only necessary input is the distance matrix. Default tuning parameters are

λ2 = 0.1∗mean(D), λ3 = 0.5, wheremean(D) denotes sample average of entries of the distance

matrix. This choice ensures invariance of clustering under uniform scaling of the variables.

output = Lclust(D=D, one d = TRUE)

Figure 3.1: Left: fitted clustering function values at data points; data: Unif [0, 1]∪[2, 3], n = 200.
Right: clustering membership (z values) at data points by color; data: Unif(B[0,1] ∪ B[2,3]),
n = 200

The function “Lclust” will return a list of outputs. The main output of the algorithm con-

tains:
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a: length n vector, function values of g at data points;

z: length n binary vector, cluster membership;

L: Lipschitz constant of the fitted solution,

where ”a” and ”L” determines the clustering function gn by (3.4), based on which the

prediction at any future point can be computed. Other output includes the estimated proportion

of the clusters, number of iterations, optimal value of the objective function, and a classification

error which is value of the first term of the objective function under the optimal g. Below is the

output list from the two piece uniform data:

a: 0 0 1 0.972 0 ...

z: 0 0 1 1 0 1 1 1 1 0 ...

L: 0.679

proportion: 0.5

num of iterations: 2

objective: 0.35

classification error: 0.0188

Remark. If the original data is supplied rather than a distance matrix, then the function will first

compute a Euclidean distance matrix by default, and the output list will contain the original data

as well. This is useful later to develop subsampling functionality on top of the basic function.

In function “predict.Lclust”, “a” and “L” will be extracted from an Lclust object and they

are used to construct the fitted g function. For example, we can do prediction at a new data point:

predict.Lclust(output, newdata = 1.5)

0.6943509
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We can also do prediction for a data matrix (n by p):

newdata = matrix(seq(0, 3, 0.1), ncol = 1)

predict.Lclust(output, newdata = newdata)

The choice of uniform distribution is not significant, see Figure 3.10 for some empirical

results on other choice of distributions.

Disk and annulus

The data is generated from a uniform distribution on the union of disk B1/2(0) and annulus

B[1,3/2], where B[a,b] = Bb(0)\Ba(0) denotes an annulus, sample size n = 200.

output = Lclust(x=x, two d = TRUE)

L: 1.176801

proportion: 0.5

num of iterations: 7

objective: 0.4036826

classification error: 0.02245751

Table 3.5 lists several local optima for this problem and their relative frequency. For d = 3

(ball and annulus), random initialization fails to find the global optimum in 100 runs among a

large number of local optima (so a table is not displayed), possibly due to the annulus structure

is less clear in higher dimension for a small sample. This can be overcome by using the output of

another clustering algorithm, such as spectral clustering to initialize Algorithm 1.
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objective value percentage

0.47193 8%

0.40687* 20%

0.45013 15%

0.5** 14%

0.47362 14%

other 29%

Table 3.5: Objective values and percentage of local optima by running Algorithm 1 using random
initialization for 100 times. Data: disk and annulus in 2d, n = 200. *: global optimum; **: flat
solution; other: other local optima that appear less than 3 times in 100 runs. If spectral clustering
is used initially instead, then the global optimum can always be found for this example.

3.3 Three simulation settings

In this section we distinguish between three simulation settings described in Table 3.6: a

population problem, a classification problem and a clustering problem. They are equally impor-

tant scenarios, serving different purposes in the simulations, see Table 3.7. The three settings are

dealt with by related but slightly different algorithms, contrasted in Table 3.8.

Table 3.6: Three settings

1 population clustering/classification know PX , derive/compute ideal clustering function

2 supervised-classification {Xi}ni=1 i.i.d drawn from PX , Yi observed.

3 unsupervised-clustering {Xi}ni=1 i.i.d drawn from PX , Yi not observed.

The three settings are ubiquitous in clustering and classification. One can consider the three

settings simultaneously for other ideal population models (such as the Gaussian mixture model)

along with methods and algorithms developed under that model.

Setting 1 (population clustering/classification): Suppose PX is known, and is generated

from C1. The goal is to find either a mathematical or numerical solution to the variational prob-
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Table 3.7: purpose served for three settings

setting 1 understand the method – what is the clustering function (as the optimal
solution of the variational problem) when the distribution PX is known

setting 2& 3 show that there is a unifying framework for clustering and classification
with Lipschitz decision functions; also as a way to assess performance
of setting 3 under ideal conditions (illustrated in section 3.9)

setting 3 + tuning relevant to real data applications of clustering
parameter selection

Table 3.8: methods for three settings

setting 1 sample directly from the model, then solve by LP (3.5).

setting 2 LP, similar to [65].

setting 3 alternating LP (Algorithm 1). Works well (in a few iterations) empirically when
clusters are well-separated.

lem (1.5). In this chapter we desire a numerical solution. First, sample points x1, · · · , xn from

the model. For these sampled points, we know which are from S1, and which are from S2.

Then we can use theoretical results developed in Chapter 2 to make reduction. By Theorem

2.4, under suitable choice of λ’s, we can assume w.l.o.g that the optimal solution g satisfies

g|S1 < 1/2, g|S2 > 1/2. The problem is then reduced to a convex problem, as explained in sec-

tion 2.4, the only difference being that here we are dealing with a discrete version. In fact, it can

be written as the linear program:

minimize
1

n

[∑
xi∈S1

ai +
∑
xi∈S2

(1− ai)

]
+ λ2ρ+ λ3r (3.5)

subject to
ai − aj
d(xi, xj)

≤ ρ, i 6= j; ā ≤ r, 1− ā ≤ r;

0 ≤ ai ≤ 1/2, xi ∈ S1; 1/2 ≤ ai ≤ 1, xi ∈ S2.
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Remark. Suppose the optimal solution can be proved to lie in a certain subset of the feasible

region, then we can reduce the search space. In this case, we have convexity in the reduced

space.

Setting 2 (Classification): A natural classification algorithm arises as a byproduct from

Algorithm 1. In Algorithm 1, the vector z can be regarded as an indicator of cluster membership.

In classification, where we observe (Xi, Yi) pairs, we can replace the zi’s in step (2) by Yi’s. This

gives the optimization problem in the classification context:

minimize
1

n

n∑
i=1

{
I[Yi=0]ai + I[Yi=1](1− ai)

}
+ λ2ρ+ λ3r (3.6)

subject to
ai − aj
d(xi, xj)

≤ ρ, d(xi, xj) 6= 0; ā ≤ r, 1− ā ≤ r; 0 ≤ ai ≤ 1, i = 1, 2, ..., n.

This is a linear program, equivalent to running step 2 of Algorithm 1 once with z = Y . The

output classification function is still given by the Lipschitz extension (3.4). In other words, (3.6)

is solved by running Algorithm 1 with initial labels Y and with exactly one iteration. This allows

us to write the optimization program for clustering and classification together.

Remark. In classification, we can set λ3 = 0 (constraint on proportion is not necessary), in which

case the method will have only one tuning parameter λ2, and can be seen as a variant of Luxburg’s

linear program (3.13) for Lipschitz classifier, with a different loss function and a different range

for the classifier.

Setting 3 (Clustering): This is implemented by Algorithm 1, where the output is a Lips-

chitz clustering function. Contrasted with classification (3.6), it can be viewed as searching for
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labelings that minimize the (empirical) Lipschitz regularized risk.

3.4 Scaling up the algorithm

For very large n, the original program becomes infeasible because it involves solving a

large linear program, with O(n) variables and O(n2) constraints. See also Table 3.1 and several

remarks that follows. In order to make the algorithm scalable, we explore several ideas using

subsampling ([42]). Generally speaking, each time the algorithm is run on a random subsam-

ple of the original data with sample size m much smaller than n. The process is carried on B

subsamples either repeatedly (so is purely parallelizable) or iteratively (for better subsamples or

better estimate), then a final solution is proposed by aggregating the B solutions.

Other than dealing with computational bottleneck, subsampling can also answer important

questions about our ideal and data problems. For the ideal problem, it allows us to get a better

numerical solution of the variational problem by sampling more points from a model. For the data

problem, it comes with inferential advantages. In section 3.5, we use it to construct a confidence

band for the decision boundary U . Consistency of such a subsampling scheme is addressed in

section 3.11.4.

Subsampling and aggregation

In classical empirical bootstrap, each bootstrap sample of size n is drawn from the empirical

distribution Pn, which amounts to sampling n points with replacement from the original data

X1, · · · , Xn. In our case, m-out-of-n bootstrap is used instead. This is necessary because of

computational constraints: for large n, running the original program on full data, more precisely,
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the large linear program (with n variables and O(n2) constraints) in Algorithm 1, is infeasible.

Using subsampling, we need only to solve a linear program with m variables each time, where

m can be a data-adaptive choice such as
√
n. Such choice has much supportive theory in the

subsampling literature [41] (m → ∞,m/n → 0). In practice, m can be set to a small number

(e.g., m = 100) for which the program has efficient and reliable computational performance on

the given machine.

Alignment in clustering

For a clustering problem, the aligning step is necessary when aggregating, because by

symmetry (and here when K = 2), if g is a solution, then 1 − g is also a solution, and an

algorithmic procedure alone cannot tell the two solutions apart. Therefore, a simple average of

B solutions g1, · · · , gB would be meaningless if they are not ”aligned”. This is detailed in step 2

of Algorithm 2.

Algorithm 2

In short, the subsampling version of the algorithm runs Algorithm 1 on B subsamples of

size m, then aligns the B solutions to get an aggregated solution (”aggregating” can be imple-

mented in ways other than simple averaging, see, e.g., step 3 of Algorithm 2).
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Algorithm 2 subsample + aggregate

1. Take B random subsamples of X of size m, denoted by X(1), · · · , X(B).

Method = parallel:

Run Algorithm 1 ”in parallel” on the B subsamples, g(1), · · · , g(B) denote the B solutions.

Method = sequential:

For i = 1, · · · , B − 1, use the prediction of ith clustering function on (i+ 1)th subsample,
g(i)(X(i+1)), as the initial z value when running Algorithm 1 on the (i+ 1)th subsample.

2. Let v = (v1, · · · , vB) be an alignment indicator vector, where v1 = 1, and for i = 2, · · · , B,
vi = I{d(g(1), g(i)) < d(g(1), 1 − g(i))} for some distance metric between g’s, such as the
L1 distance (3.8) on the merged sample X(1) ∪X(i).

3. Let g̃(i)(x) = {vig(i)(x) + (1 − vi)(1 − g(i)(x))} denote the ith aligned solution. The
aggregated clustering function is

Method = average:

g(x) =
1

B

B∑
i=1

g̃(i)(x);

Method = pointwise median:

g(x) = sample median{g̃(1)(x), · · · , g̃(B)(x)}.

Choice of m and B

A good choice of m and B should balance statistical and computational performance. Sup-

pose the LP run on original sample with size n has complexity O(n3), then the complexity of

step 1 (running Algorithm 1 on all B subsamples of size m) is O(m3B)× average number of

z iterations, the complexity of step 2 (alignment) is O(mB), evaluating the function value at

future point takes O(mB) steps. Memory complexity (mainly to store the linear programming

constraint matrix) is O(m2). Suppose m =
√
n,B =

√
n, then the total computational cost

is reduced to O(n2). On the other hand, a reasonably large m and B ensures good statistical

performance.
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number of z-iterations 1 2 3 4 5 7

frequency 0 14 65 14 5 2

method = parallel

1 2 3 4 5 6

18 60 19 2 0 1

method = sequential

Table 3.9: comparing number of iterations in a single run of step 1 of Algorithm 2 using the
parallel and the sequential approach, B = 100. The sequential approach has fewer number of
iterations, many converge in a single iteration, illustrating the usefulness of initialization from
the output of earlier subsamples.

Repeated observations in subsample

A typical random subsampling procedure involves sampling with replacement, therefore

there is a positive probability that some points in the subsample are repeated observations. For

certain clustering methods such as hierarchical clustering, this will change the combinatorics and

cause potential issues. The situation is much better here, except for a technical modification of

the linear program: in (3.1) or (3.2), the constraints ai−aj
d(xi,xj)

≤ ρ should be changed to ai − aj ≤

ρ · d(xi, xj) (so the pair of constraints for i, j enforces ai = aj whenever d(xi, xj) = 0). Thus,

the repeated observations play a part in the first and third term in (3.1) and (3.2), but does not

contribute to the Lipschitz term.

Retain necessary condition of solution

The averaged solution in the aggregation stage of Algorithm 2 violates optimality condition

(Theorem 1.1), see left plot in Figure 3.2. This is expected: when proving uniqueness of solution

(section 2.5), we have already used the fact that the average of two different solutions (both satisfy

N.C.1) does not satisfy the optimality condition anymore (Figure 2.4 illustrates this observation in

dimension one). Besides loss of theoretical property, such issue also brings up practical questions:

if a solution solved by the subsampling version of the algorithm does not behave the same way
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as the original version, then it hinders a unified interpretation of the solution under the method.

For this reason, pointwise median of the functions (method = pointwise median in Algo-

rithm 2) is proposed in place of the average. The right plot in Figure 3.2 shows that N.C.1 is

roughly satisfied.

Figure 3.2: Left: method = average; Right: method = pointwise median. PX : two piece uniform
on [0, 1] ∪ [2, 3], n = 1000,m = 50, B = 100.

Subsample discriminating points

For clustering and classification, an alternative strategy to scale up the algorithm is to run

the algorithm on a set of discriminating points rather than on full data, under the assumption that

a small amount of discriminating points near the decision boundary determines the clustering

result, and deleting points far-away from the boundary does not change problem structure much.

Such a procedure can proceed as follows: based on an initial solution g(0) or any later solu-

tion g(i), estimate an uncertainty level of each point in the current clustering, then resample from

the original data with sampling probability proportional to the uncertainty level. By repeating

this resampling procedure for a number of times, more important points close to the decision

boundary are gathered in the subsample.

147



For example, suppose we use min{g(x), 1 − g(x)} as an uncertainty level, then for many

points whose g values are 0 or 1 (optimality conditions suggest that such points are abundant)

indicating that they are perfectly-clustered, they will have 0 probability to appear in the new

sample. The size of each new sample can be set to be a constant for which computational cost is

reasonable. No aggregation stage is needed here. See Figure 3.3 for an illustration of the idea.

Figure 3.3: Illustration of subsampling discriminating points. Left: two-spheres data, n = 2000.
Middle: discriminating points estimated from a preliminary run on a random subsample of size
200. Right: resample 200 points with sampling probability proportional to the estimated uncer-
tainty level p(xi) ∝ min{gn(xi), 1− gn(xi)}. The algorithm is run on this new subsample in the
next iteration.

3.5 Confidence band for decision boundary U

A natural mathematical object of interest in this method is the decision boundary U , whose

importance can be seen from Theorem 2.1: the optimal solution is almost uniquely determined by

U and the Lipschitz constant (up to a sign at each point). Therefore it will be nice to quantify the

variability of the data-based estimate of U , which gives much information about the variability

of the solution. More precisely, the goal is to find a set Cα based on data such that P (Cα ⊃ U) =

1 − α, for some confidence level α. The concept of confidence band differs from a pointwise

confidence interval for g∗ in the sense that it asks for uniform coverage of the target set U , rather
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than pointwise coverage of the function value at a particular point.

Since U is the level set of the optimal solution g at 1/2, the problem of finding a confidence

band for the decision boundary is related to the general problem of constructing a confidence

region for the level set of a function estimate [38]. Such a method was originally developed in

pursuit of a confidence region for the level set of a kernel density estimator. It was later used in the

density-estimate-based clustering literature, where clusters are formed by connected components

of the level set of density estimates.

The method

We elaborate the general methodology proposed in [38] in a simplified manner, at the cost

of losing some mathematical rigor. Then we show how this leads to a practical confidence band

for U in our problem. The remark at the end explains what are the additional technical details

one needs to take care to treat this more rigorously. The method is based on bootstrap and has

the advantage that it does not require particular geometric assumptions on U .

Suppose U is the set of zeros of a function h, i.e., U := {x : h(x) = 0} (it may be

helpful to mentally think of U as a (d− 1)-manifold in the preceding discussion). Based on data

X1, · · · , Xn and an estimate ĥn of h, the goal is to construct a confidence band for U . In our

case we require that both h and ĥn are Lipschitz. We can proceed by relating this question to the

statistic Zn = sup
x∈U
|ĥn(x) − h(x)|, whose distribution may be hard to derive explicitly but can

be approximated using (Efron’s nonparametric) bootstrap: let X∗1 , · · ·X∗n be a bootstrap sample

drawn with replacement from {X1, · · · , Xn}, and ĥ∗n(·) := ĥn(· ;X∗1 , · · ·X∗n) is the estimate of

h using the bootstrap sample. Then Z∗n := sup
x: ĥn(x)=0

|ĥ∗n(x)− ĥn(x)| is an estimate of Zn. Let F
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denote CDF of Zn, and F ∗ the corresponding CDF of Z∗n.

The set Cα = {x : |ĥn(x)| ≤ F−1(1 − α)} is a (1 − α) confidence band for U , from the

following derivation

P (Zn ≤ F−1(1− α)) = 1− α

⇐⇒ P (sup
x∈U
|ĥn(x)− h(x)| ≤ F−1(1− α)) = 1− α

(1)⇐⇒ P ({x : |ĥn(x)| ≤ F−1(1− α)} ⊃ {x : h(x) = 0}) = 1− α

⇐⇒ P (Cα ⊃ U) = 1− α,

where (1) is because the two events are equivalent: sup
x∈U
|ĥn(x) − h(x)| ≤ F−1(1 − α) implies

for any x ∈ U = {x : h(x) = 0}, |ĥn(x) − 0| ≤ F−1(1 − α), so x ∈ Cα, therefore Cα ⊃ U ;

conversely, suppose Cα ⊃ U , by definition of Cα, for any x ∈ U ⊂ Cα, |ĥn(x)| ≤ F−1(1 − α),

this implies sup
x∈U
|ĥn(x)− h(x)| ≤ F−1(1− α).

Replacing F with F ∗ inCα gives a practical approximate confidence band. The justification

of the bootstrap approximation here depends on the smoothness of the random function ĥn and

appropriate (functional) central limit theorem holding for ĥn − h.

Now back to our problem, since U is the 1
2
-level set of g0 (where g0 is the solution of a

variational problem). Write h = g0 − 1
2

(so that U = {h = 0}) and use the confidence set Cα

described above. Let ĝn denote the data-based estimate of g0 and F be the CDF of sup
x∈U
|ĝn(x)−

g0(x)|, we arrive at the following (1− α) confidence band for U

Cα = {x : |ĝn(x)− 1

2
| ≤ F−1(1− α)}.
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By optimality condition of the variational problem (assume it holds also for the data-based ĝn):

ĝn(x) =


max{1

2
− L̂nd(x, Ûn), 0}, x ∈ Ûn,1

1
2
, x ∈ Ûn

min{1
2

+ L̂nd(x, Ûn), 1}, x ∈ Ûn,2

,

where Ûn = {x : ĝn(x) = 1/2}, Ûn,1 = {x : ĝn(x) < 1/2}, Ûn,2 = {x : ĝn(x) > 1/2}; L̂n =

L(ĝn), plugging into Cα:

Cα = {x : d(x, Ûn) ≤ F−1(1− α)

L̂n
}. (3.7)

The derived confidence band thus has the form

{x : d(x, Ûn) ≤ c}.

The confidence band (3.7) can be made practical by approximating F by a suitable bootstrapped

version

sup
x∈Ũn
|ĝ∗n(x)− ĝn(x)|,

where Ũn is some approximating set of Ûn (such as a finite set of points whose ĝn values are close

to 1/2). This is possible because all the g functions involved are Lipschitz continuous.

Remark (technical details). A more rigorous treatment of this subject would at least involve re-

laxing the level sets in Zn and Z∗n over which the supremum is taken to a small tube around

them with an adaptive choice of bandwidth, e.g., consider {x : |gn(x) − 1/2| ≤ an} instead
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of Un = {x : gn(x) = 1/2}, where an
n→ 0, followed by a careful analysis of the coverage

probability under suitable convergence rate of an, plus the approximation error of the bootstrap

approximation Z∗n to Zn, see Lemma 2.1 in [38]. Theorem 3.1 in [38] did a case analysis on level

sets of kernel density estimator using bootstrap approximations.

Remark (compactness). The confidence region for the entire surface U can be very large, because

there is a lot of variability in the tails of U where data are sparse (for noiseless models, the tails

are not even uniquely defined). Therefore in practice, we only consider confidence band for the

restriction of U within certain compact region D. It is then expected that as we narrow down the

region of interest, the resulting confidence band for U ∩D will become narrower.

Remark (implementation). It requires a good amount of data to have a uniform confidence band

that is not too wide. On the other hand, computational problems can arise when sample size is

large, as explained in section 3.4. In this case, gn and each bootstrapped estimate g∗b are computed

from algorithm 2 using B subsamples of size m.

Remark (nominal coverage probability). It will be desirable to do a numerical experiment or sim-

ulation to verify that the confidence band has the approximate nominal coverage probabilities.

However, such an experiment requires many (100 or more) such confidence band implementa-

tions. At the moment, computing one confidence band such as in Figure 3.4 already takes about

3 hours.

Example

Figure 3.4 illustrates the confidence band method through a Gaussian mixture example.

However, these apparently plausible numerical results given here go beyond what can so far be
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proven rigorously, or verified computationally by nominal coverage probability.

Figure 3.4: Left: Ũn = {x ∈ {x1, · · · , xn} : |gn(x) − 1/2| ≤ 0.01}, as an approximation set
to Un = {x : gn(x) = 1/2}. Middle: histogram for the empirical distribution of the statistic
Z∗n = sup

x∈Ũn
|gn(x)−g∗b (x)|. Right: a 90% confidence band for U based on (3.7), within the region

[−2, 2] × [−2, 2], supplemented by widths of pointwise confidence intervals for g∗ (greyscale
values). Data: mixture of two gaussians with mean vector µ1 = −µ2 = (0.5, 0.5) and common

covariance matrix
(

0.05 0
0 0.5

)
, n = 1000,m = 50, B = 100, B′ = 100. Here gn and each

g∗b (b = 1, · · · , B′) are computed from algorithm 2 using B subsamples of size m, and by the
pointwise median method.
Implications for clustering (last figure): dark grey regions on the tail within confidence band:
pointwise CIs are wide and clustering is confused; dark grey regions on the tail outside confidence
band: pointwise CIs are wide but clustering is clear; white regions at bottomleft and topright: at
least 90% of the empirical bootstrap solutions has value exactly 0 (or 1) at these points (so that
CI reduces to a single point, at either 0 or 1).

3.6 Monte Carlo study 1: effect of dimension, shape and degree of separation

In this section we conduct a Monte Carlo study on the effect of dimension, shape and de-

gree of separation on computation (number of iterations, run time of linear program) and quality

of solution (smoothness, correctness). Table 3.10 lays out the empirical behavior for selected

models. The interpretation of the columns should take account of how the dimension grows. The

disk annulus data are generated by uniform distribution on B[0,3]\B[1,2] (notation defined in sec-

tion 3.2), i.e., with fixed radius and growing dimension. The d-dimensional two-spheres data are

generated in two ways (both uniform distributions): (1) two d-dimensional unit spheres centered
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at 1d and −1d; (2) distance between the two d-dimensional unit spheres is fixed to be
√

2. It

is worth mentioning that these spherical shell clusters are nonconvex. In the first two-spheres

case, it is clear that clustering is easier in higher dimension, as can be seen from smaller Lips-

chitz constant and less classification error, while the same phenomenon is not quite clear for the

second case and for the disk and annulus data. The differences in computation time for higher

dimensions is not large.

In the last two columns, the two quantities In,1 and Rn (see definition in (2.6) and (2.7)) are

both related to classification/clustering errors, but should be carefully distinguished, see section

2.2.3. They are the same (which is in several rows of Table 3.10) when bipartition (C3) holds for

gn. In general, In,1 is smaller than Rn.

Notions of margin

There are two types of notions of margin: population-based and data-based ([59]). A

population-based notion of margin is a function of the joint distribution of (X, Y ) which quanti-

fies the degree of separation between clusters. Natural candidates are distance between compact

sets for well-separated compact clusters, and Mahalanobis distance for Gaussian mixture model.

Historically, the data-based notion of margin came from the support vector machine liter-

ature – geometrically it is the distance (or twice the distance) from any ”support vector” to the

optimal hyperplane, and from functional analysis point of view is the norm of the linear decision

functional [50]. This notion is generalized to the metric space setting by [65], where the corre-

sponding quantity is the reciprocal of the Lipschitz constant. We refer to the many discussions in

[65] about this generalization, especially the functional analysis point of view.
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Distribution dimension z-iterations run time L In,1(gn) Rn(gn)

Disk and annulus 2 5 3.22 0.57 0.03 0.03

3 6 3.42 0.58 0.03 0.05

5 3 2.74 0.55 0.07 0.15

10 5 2.12 0.49 0.02 0.22

Two spheres 2 3 21.56 0.57 0.06 0.06

3 5 2.17 0.41 0.02 0.02

(fixed distance along 5 4 2.53 0.28 0.009 0.009

each coordinate) 10 3 2.67 0.18 0.003 0.003

20 2 2.45 0.12 0.002 0.002

Two spheres 2 3 21.56 0.57 0.06 0.06

3 3 3.69 0.51 0.04 0.04

(fixed distance 5 6 3.63 0.47 0.02 0.02

between centers) 10 1 3.01 1.12 0.04 0.46

20 1 2.98 0.96 0.02 0.41

Table 3.10: dimension effect in some ideal models. Sample size n = 200, solution is computed
under 10 random initializations. The iteration and run time columns show relatively little effect on
computing time in higher dimension (even under random initialization). The estimated Lipschitz
constant indicates how smoothness of the clustering change with dimension.
For an estimated clustering function gn, the second last column is the ”classification error” given
by value of the first term in the objective function In,1(gn); the last column is the empirical
clustering risk of gn evaluated from true labeling. The latter (Rn) can only be available in a
Monte carlo study when the truth is known for validation, and is not accessible to real data. In,1
and Rn are equal when gn satisfies bipartite condition C3, which can be confirmed in a Monte
Carlo study. The bold-faced numbers indicate cases when In,1 underestimates the true clustering
error, sometimes severely due to reasons such as convergence to local optimum.

There is an asymptotic agreement of the two notions for well-separated clusters for our

case: convergence of 1/Ln (data-based margin) to d(S1, S2) (population margin) by Corollary

2.5, when tuning parameters are selected appropriately.

Table 3.11 illustrates that 1/Ln can be a data-based indicator of ”degree of separation”

only weakly depending on dimension and shape. But it is well-defined even when clusters are
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not well-separated and in which case ”population margin” may not have a clear definition.

Distribution dimension 1/Ln d(S1, S2)

Disk and annulus 2 1.75 1.41

d(S1, S2) =
√
d 3 1.72 1.73

5 1.82 2.24

10 2.04 3.16

Two separated spheres 2 1.75 0.83

d(S1, S2) = 2
√
d− 2 3 2.44 1.46

5 3.57 2.47

10 5.56 4.32

20 8.33 6.94

Table 3.11: 1/Ln as a notion of margin. This table is computed from the examples in Table 3.10,
with n = 200 for data randomly sampled from each PX model.

Table 3.11 is a bit crude in the sense that Ln can depend on other quantities. Table 3.16 in

the appendix shows that, in particular, it can depend on the distribution within the clusters.

3.7 Monte Carlo study 2: 6-component Gaussians, visualization and diagnos-

tics

We provide a dataset distributed according to a mixture of 6 bivariate-Gaussian components

(top figure in Figure 3.5, n = 200) as an additional example where nonlinear shape is present.

The 6 Gaussian components are created to resemble ”two crescents” (the left 3 Gaussians as one

cluster and the right 3 Gaussians as another). Figure 3.5 presents several locally optimal solutions

discovered by Algorithm 1 based on the dataset. This example is further used to illustrate several

visualization and diagnostic tools.

We provide several tools for visualization and diagnostics after the solution is fitted. These
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Figure 3.5: The 6-component mixed Gaussian data (top) and several locally optimal solutions
found by Algorithm 1 (from different random starting points). Objective values of these solutions
are displayed in the title. The number of z-iterations are 4, 4, 7 respectively. These local optima
each correspond to a certain (but different) decomposition of the 6 Gaussian components. Even
though the algorithm is intended for K = 2, the similar objective values for these apparently
different locally optimal clusterings suggest multiple clusters.

tools are suggested by theory in previous chapters, but would implicitly assume the U or other

level sets have sufficient regularity to work well.

Level sets and gradient vector field

The piecewise linear solution in 1-d is easy to imagine, but is much less easy to visualize

in higher dimension. In view of N.C.1, a multiple-path plot (Figure 3.6) is used to visualize

the approximate gradient directions, where each path roughly shows how the clustering function

increases from 0 to 1 (or decreases from 1 to 0).
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Figure 3.6: Visualization in 2-dimension. The arrows indicate approximate local gradient di-
rections. Dashed curves are level sets plotted as contours of the g function. The three plots
correspond to the three solutions in Figure 3.5.
The level sets and gradient-paths are drawn separately – level sets are created from contour plots
of gn, and each arrow is a continuation of the previous arrow on the same path in the following
way: for a prescribed step size, determine the steepest descent/ascent direction from a list of an-
gles. Theoretically, the level sets and the gradient directions should be orthogonal, as step sizes
go to zero, and if the steepest direction could be computed exactly.

Check necessary condition for optimality empirically

We can check empirically whether the solution computed from Algorithm 1 satisfies N.C.2,

by comparing function value with the prediction by N.C.2 based on an approximate set U . Specif-

ically, let Ln be the estimated Lipschitz constant of a solution gn computed from Algorithm 1,

and Ũ be a finite set of points as an approximation to Un = {gn = 1/2}. Suppose N.C.2

is satisfied for gn, then for any point x we should have either gn(x) ≈ max{d(x, Ũ), 0} or

gn(x) ≈ min{d(x, Ũ), 1}. For convenience, we check this on data points, and compute the dif-

ference between actual function values and the prediction given by N.C.2 (Table 3.12). In fact,

there is no reason not to check at some other points.

158



type of difference median mean max

solution 1 0 0.0018 0.0182

solution 2 0 0.0015 0.0093

solution 3 0 0.0030 0.0592

Table 3.12: Each row presents median/average/maximum difference (among n = 200 data
points) between function values of a candidate solution with the prediction by N.C.2, using
an approximate U set and the estimated L. The three solutions correspond to the ones pos-
tulated in Figure 3.5 for the 6-component Gaussian data. Here Ũ := {x : |gn(x) − 1/2| ≤
0.01, x is on the grid [−2, 2] × [−2, 2.5] with cell length 0.05}. All three solutions agree closely
with N.C.2, while solution 1 and solution 2 appear better.

Margin plot

The variational problem (1.5) is mathematically well-defined for any PX . This, however,

means we could still get the same kind of solution as in Figure 3.1 for a 1-d uniform distribution

on a compact interval. Therefore, it is important to develop further diagnostic tools to answer the

question: does the solution suggest there is a strong/weak clustering structure for the underlying

distribution?

Figure 3.7 offers a natural way to visualize empirical probability measure according to

distance from the decision boundary U . The x-axis represents d(·, U)/L, the distance to U nor-

malized by the Lipschitz constant, and y-axis represents Pn({x : d(x, U)/L ≤ t}). It suffices

to plot normalized distance within [0, 1/2), outside which function values will be either 0 or 1

by N.C.2 (where points are perfectly clustered). A positive feature of such a ”margin” plot is

that it is always a 1-d plot, regardless of the data dimension. Ideally or as sample size tends to

infinity, for uniform distribution the plot will be exactly a slope. For well-separated clusters, the

y-coordinate will be 0 for small distances.
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Figure 3.7: Margin plots of the three solutions in Figure 3.5 for 6-Gaussians data. ”Normalized”
means the distances are divided by the Lipschitz constant, so that the plot is independent of scale.
Ideally, a curve that stays close to 0 at the beginning and goes up rapidly when x-coordinate
approaches 1/2 would indicate a strong clustering structure.

3.8 Tuning parameter selection

In previous sections we adopted preliminary choice of tuning parameters: λ2 = 0.1 ∗

mean(D), λ3 = 0.5, where mean(D) denotes average of the entries of distance matrix D. This

choice makes the procedure invariant under uniform scaling of variables, but is at best an empir-

ical choice. In this section we first discuss the conceptual problem of tuning parameter selection

related to cross validation and stability ideas. Much of the discussion is generic for clustering

regardless of the method being used (some literature review is supplied at the end). Then we

propose a practical procedure to select tuning parameters in our case.
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Cross validation and cross stability

This section discusses the conceptual question of tuning parameter selection. We illustrate

through the notion of cross validation (for classification), cross stability (for clustering), and

another intermediate notion, with the goal of clarifying their differences and relations.

For simplicity and clarity of illustration, consider randomly splitting a dataset X (size n)

into two subsetsX(1) andX(2), where (1) and (2) denote two subsets of {1, · · · , n}. Let Y(1), Y(2)

denote vectors of true classes associated with X(1), X(2). The two subsets are not necessarily

equal-sized, and more generally, they can be pairs of random subsamples whose union is only

part of the original dataset. For a given tuning parameter set λ, let ĝ(1) and ĝ(2) denote the

clustering functions computed from X(1), X(2) respectively by Algorithm 1.

1. Cross-stability of clustering for a given λ: When Y(1), Y(2) are not observed, we may

evaluate the stability or sensitivity of clustering by comparing the two clustering functions esti-

mated from the two data subsets. The comparison is based on either some function norm (we use

L1 below) of the difference between g-functions, or a binary-based metric applied to the vector

of cluster labels. We refer to [68] for related definitions.

L1 cross-stability: let

d(ĝ(1), ĝ(2)) := E|ĝ(1)(X)− ĝ(2)(X)|, (3.8)

with the empirical version 1
n

n∑
i=1

|ĝ(1)(Xi) − ĝ(2)(Xi)|. The L1 cross-stability measure for the
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clustering, after alignment of the classes, is defined as

Instab(λ) := min{d(ĝ(1), ĝ(2)), d(ĝ(1), 1− ĝ(2))}, (3.9)

named ”instability” [5] because larger difference between ĝ(1) and ĝ(2) indicates less stability.

Binary-based cross-stability: a binary clustering rule f can be obtained from a continuous

clustering function g by f(x) = I{g(x) > 1/2} (or some other thresholding), then define

d(f̂ (1), f̂ (2)) := E[I{f̂ (1)(X) = f̂ (2)(X)}], (3.10)

with the empirical version 1
n

n∑
i=1

I{f̂ (1)(Xi) = f̂ (2)(Xi)}. The corresponding cross-stability mea-

sure is

Instab(λ) := min{d(f̂ (1), f̂ (2)), d(f̂ (1), 1− f̂ (2))}.

2. Cross-validation error of clustering for a given λ: This is an intermediate stability

measure between cross-stability and cross-validation. Suppose we fit a clustering rule f̂ (1) using

X(1), and validate by (X(2), Y(2)); fit a clustering rule f̂ (2) using X(2), and validate by (X(1), Y(1))

(i.e., have access to Y(1), Y(2) for testing but not training), then a binary-based cross-validation

error is

1

n

n∑
i=1

∑
i∈(2)

I{f̂ (1)(Xi) = Yi}+
∑
i∈(1)

I{f̂ (2)(Xi) = Yi}

 . (3.11)

It is important to note that the f̂ here depends on X only and not on Y . Expression (3.12) looks

the same, but in it f̂ depends on both X and Y .

This measure offers a theoretical way to justify clustering. It is only available in a Monte
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Carlo study. The main purpose of introducing this measure is to provide a bridge between the

purely unsupervised cross-stability (above) and the purely supervised cross-validation error (be-

low).

Remark. This setting is not to be confused with a ”semi-supervised” setting where the training

set is partially labeled. Here the training set is still unlabeled.

3. Cross-validation error of classification for a given λ: In the classification setting,

Y(1), Y(2) are observed. In our case, the classification function g(1), g(2) are obtained from (3.6)

followed by (3.4), and the binary classification rule f (1), f (2) can be obtained from g(1), g(2) in

the same way as above. The cross validation error is

1

n

n∑
i=1

∑
i∈(2)

I{f̂ (1)(Xi) = Yi}+
∑
i∈(1)

I{f̂ (2)(Xi) = Yi}

 . (3.12)

Although (3.11) and (3.12) have the same expression, the classifier f̂ (1) in (3.12) is a function of

(X(1), Y(1)), while in (3.11) the clustering function f̂ (1) is a function of X(1) only.

The Monte Carlo study in section 3.9 implements these measures, with a comparison in

Table 3.14.

Discussion about cross validation and clustering stability literature

Early work about theory of cross-validation type procedures includes [53]. A paper by

Jun Shao [51] studies cross-validation in the context of linear model selection. Much later work

surrounds using cross validation to select tuning parameters in nonparametric classification and

regression, see [70, 71], and [21].

While the literature for supervised problems is mathematically rigorous, the same cannot
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be said for unsupervised problems such as clustering. Although there are analogous definitions

of cross-validation error [68], and other practically useful metrics such as rand index [47], there

seems no way internally to provably tell the quality of clustering by a stability approach alone.

Some attempts in the context of clustering, often under the name ”clustering stability”, include

[5, 66] in the machine learning literature, and [68] in the statistics literature, among others, but

the extent of these results are limited. In some sense, the limit theorem in [5] is not so useful,

because any clustering with a unique population solution has stability going to zero in the large

sample limit. The issue in [68] is that it relies on an extra definition, that the true clustering is the

one that maximizes stability.

Overall, cluster stability is an important conceptual question that cries out for further in-

vestigation, although perhaps the question of consistency should be addressed first before any

procedure to select the tuning parameter is proposed. That is, these stability questions should

only be rendered within a set of consistent clustering rules under the model, and talking about

tuning parameter selection alone without appropriate model restriction can be a void question.

As an example, consider a ”constant clustering” that gives out the same clustering regardless of

data. Such a procedure is stable, which already questions the validity of many stability measures,

but a constant solution will not be statistically consistent in the first place.

A stability-based selection procedure

Practically, one could find λ values that minimize the stability measure (3.9). To deal with

multiple tuning parameters, we minimize ”coordinate-wise”, in Algorithm 3.

Some justification for this stability-based selection is given in the next Monte Carlo section
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Algorithm 3 Tuning Parameter Selection

1. Initialize or use preliminary choice of (λ0
2, λ

0
3);

For k = 0, 1, · · · , and let sk2, s
k
3 be finite sets (may or may not depend on k) where λ2, λ3

are chosen from.

2. Fix λk3, λ
k+1
2 ← min

λ2∈sk2
Instab(λ2, λ

k
3), where Instab is the cross stability measure defined

in (3.9);

3. Fix λk+1
2 , λk+1

3 ← min
λ3∈sk3

Instab(λk+1
2 , λ3);

Repeat step 2 and 3, stop when Instab(λk+1
2 , λk+1

3 ) ≈ Instab(λk2, λ
k
3).

3.9, where the value of this stability statistic is shown to be close to the cross validation error in

the supervised case under the same choice of λ.

Checking theoretical conditions for tuning parameters

In Chapter 2, theoretical conditions for tuning parameters are given under which consis-

tency and bipartition holds. We give a basic example to check these conditions in practice: the

uniform distribution on [0, 1] ∪ [2, 3], with tuning parameters λ2 = 0.01, λ3 = 0.04. In this case

the quantities involved in the conditions can be exactly computed.

In order to check for bipartition (C3), recall that the parameter c involved in the condition

depends on the following quantity about PX :

CSk(L, a, b) = inf{
∫
Sk

fdP : f(x1) = a, f(x2) = b, x1, x2 ∈ Sk, L(f) ≤ L, 0 ≤ f ≤ 1}.

Let ck be the number such that CSk(L0 + Cα0,
ck
πk
, 1

2
) = ck, k = 1, 2, then c := min{c1, c2}.

In the given uniform case, α0 = π1 = π2 = 1/2, L0 = 1. By symmetry, CS1(L, a, b) =
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CS2(L, a, b) and c1 = c2. Now suppose 0 ≤ a < b ≤ 1
2
, L > 1, then

CS1(L, a, b) =

∫ b/L

0

(b− Lx)dx =
b2

2L
,

so we obtain in this case c = CS1(L0 + Cα0,
c
π1
, 1

2
) ≡ 1/4

2+C
. Let C = 4, then c = 1

24
.

Check C2 (condition for consistency): 2L0/(1− α0) = 2/0.5 = 4 = λ3
λ2

= C.

Check C3 (bipartite condition): L0

1−c−α0
< L0

1−α0
= 2 < λ3

λ2
= C, and λ2L0 + λ3α0 =

0.01 + 0.02 = 0.03 < c.

Therefore, both conditions are satisfied.

3.9 Monte Carlo study 3: classification and clustering in two-component Gaus-

sian mixture model

In this section we consider a two-component Gaussian mixture in 2-d, with class proportion

π = (0.4, 0.6), mean vectors µ1 = (−1, 1), µ2 = (1,−1), and common covariance matrix Σ1/2 = 1.5 0

0 2

 , n = 80. One goal of this section is to illustrate the two notions: cross-stability for

clustering and cross-validation for classification introduced in the last section.

Classification and clustering

For fixed λ, we compute clustering (without labels) and classification (with labels) based

on the same (many) training set/testing set split, compare the misclustering error (an average

cross-stability error) and misclassification error (an average cross-validation error), also with the

monte carlo truth for probability of ”correct” clustering.
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Part 1

The average confusion matrix from 100 Monte Carlo simulations for clustering and classi-

fication (use corresponding algorithm under setting 2 and setting 3 in Table 3.8) is given in Table

3.13, using λ = (0.5, e−1, 0.5). The label ”1” and ”2” denotes true labels for the two gaussians

centered at µ1 and µ2. To make sure clusters are aligned, one should either choose the same ini-

tial z each time or align each simulation (find the best confusion matrix, i.e., closest to diagonal,

among all permutations of columns).

0 1

1 0.3432 0.0486

2 0.1562 0.4519

0 1

1 0.3564 0.0355

2 0.1481 0.4600

Table 3.13: Left: average confusion matrix for clustering; Right: average confusion matrix for
classification.

In Table 3.13, the average confusion matrix for clustering is close to the one for classifi-

cation, indicating that in this normal mixture example, the clustering approach works reasonably

when labels are unobserved in the sense that it achieves similar performance as the supervised

setting.

Part 2

In Part 1, clustering error and classification error are evaluated using the true labels in the

monte carlo sample. Since these monte carlo estimates of the clustering/classification errors are

not available for a real dataset, moreover, in the clustering setting the labels are not observed,

we need some internal measures (based on available data) to evaluate these errors – in particular,

cross validation error (for classification) and cross stability (for clustering) as an “estimate” of

167



the true error. Definition of these measures are given in section 3.8.

In Table 3.14, the same λ value is used as part 1 and the four measures are compared based

on 50 equal-sized random splits of the data. The four measures are comparable, indicating that

cross-stability for clustering (in the unsupervised setting) is closely resembles the cross-validation

error for classification.

L1 cross-stability binary cross-stability intermediate cv error

average 0.2798 0.3105 0.2995 0.2680

SD 0.0979 0.1260 0.0788 0.0623

Table 3.14: Four stability/validation measures (described in section 3.8) computed from 50 equal-
sized random splits of a two-component Gaussian mixture data with sample size 80, using the
same tuning parameter λ: (1) L1 cross-stability for clustering; (2) binary cross-stability for clus-
tering; (3) cross-validation error under the intermediate setting; (4) the familiar “K-fold” cross-
validation error for classification with K = 2.
There is a natural order among the last three: the purely supervised cross-validation error is the
smallest, then the intermediate one, the purely unsupervised binary cross-stability is largest. In-
terestingly, the same order also holds for standard deviation.
The four measures in the table are comparable, indicating that cross-stability for clustering (in
the unsupervised setting) closely resembles the cross-validation error for classification.

Remark. The order among the standard deviations for the last three measures may suggest a

theorem to prove under certain conditions.

3.10 Real data analysis: Boston housing data

In this section, we apply our method to the Boston housing dataset. This dataset was used

as an illustrative example in [23], and is available in R package ”MASS”. The sample size is

n = 506, with p = 13 variables. We use the same variable transformations following [23]:

x(1,3,5,6,8,9,10,14) = log(x(1,3,5,6,8,9,10,14)), x7 = x2.5
7 , x11 = exp(0.4x11), x13 =

√
x13. After the

transformation, all variables are then scaled. The river variable (binary) is deleted from the study.
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In [23], hierarchical clustering with Wald’s method is presented, and interpretation of the result

shows evidence for two clusters: towns with high living quality and towns with low living quality.

We run Algorithm 1 on full data using default tuning. Four initialization procedures are

compared: (1) 10 random initializations; (2) hierarchical clustering (Wald’s method); (3) K-

means clustering; (4) spectral clustering. From Figure 3.8 and 3.9, except for the random ini-

tialization, all other three initialization methods give sensible but slightly different clusterings

indicating high and low living quality, each as a local optimum of the objective function found

by Algorithm 1.

Ordering among solutions

By looking at several variable pairs in Figure 3.8 and 3.9, the clusterings given by the

three initializations (hierarchical, K-means and spectral) can be seen as successively adding more

towns to the high living-quality group (more red dots replacing the black ones in the figure),

leading to more unbalanced clusters. A further investigation shows that this seemingly clear

order in the plot comes from comparison between the labelings (z values), while such order is

not clearly present when values of the clustering function (g values) are compared instead.

Trade-offs among solutions

In Table 3.15, the classification problem found by spectral initialization has the lowest clas-

sification error and is most smooth (smallest Lipschitz constant) among the methods presented,

but the unbalanced estimated proportions and an extreme grouping of several variables such as

”rad”, ”tax” and ”pratio” in Figure 3.8 and 3.9 may need further investigation. The second and
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third row under the hierarchical and K-means column show a typical trade-off between Lipschitz

constant (smoothness) and classification error: the solution from K-means is smoother, but has a

larger classification error.

initialization method random (10) hclust K-means spectral

objective value 0.490 0.440* (0.444) 0.449 (0.462) 0.509 (0.509)

classification error 0.094 0.065 (0.068) 0.086 (0.078) 0.045* (0.045)

Lipschitz constant 0.308 0.265 (0.264) 0.238 (0.229) 0.237* (0.237)

proportion 0.50 0.50 (0.50) 0.50 (0.45) 0.30* (0.30)

number of iterations 10 3 6 1

Table 3.15: Clusterings found by different initializations. Several output quantities of interest
are displayed. Data: Boston housing. Initializing by hierarchical clustering gives the smallest
objective value among the methods presented here. * indicates the smallest number within each
row. The values inside brackets are ”initial input values” from the output of another clustering
algorithm, by passing only one iteration to turn a discrete clustering into a Lipschitz continuous
one. Not all quantities are improved from the initial, as our objective function tries to find a
certain balance among them.
It is important to note that, as mentioned in section 3.6 and Table 3.10, the ”classification error”
here refers to In,1(gn), and since there is no ”true label” for this dataset, the ”true classification
error” Rn(gn) is not possible to get.

3.11 Appendix

3.11.1 Lloyd’s algorithm and Luxburg’s linear program

Lloyd’s algorithm for K-means clustering

We briefly recall Lloyd’s algorithm [34] because the alternating minimization steps therein

bear much high-level resemblance to the our main algorithm. Since exact minimization of K-

means (1.9) requires combinatorial optimization, in practice often a heuristic algorithm is imple-

mented. The most common one is Lloyd’s algorithm, which proceeds by iterative refinement of
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(a) initial = random (b) initial = hclust

(c) initial = kmeans (d) initial = spectral

Figure 3.8: Pairwise clustering plot using different initialization algorithms. Data: Boston hous-
ing. Variable 1-6.

the cluster centers and cluster assignments:

Step 1 Pick K data points randomly as initial cluster centers c0
1, · · · , c0

k. Then for t = 0, 1, 2, · · · :

Step 2 Given the cluster centers ct1, ..., c
t
k, update the membership of Xi’s: Xi ∈ Ct+1

j iff ctj =

arg min
c∈{ct1,...,ctk}

||Xi − c||2.

Step 3 Given the membership information, i.e. {i : Xi ∈ Ct+1
j } where Ct+1

j denotes jth cluster,
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(a) initial = random (b) initial = hclust

(c) initial = kmeans (d) initial = spectral

Figure 3.9: Pairwise clustering plot continued: variable 7-13.

update the cluster centers by ct+1
j =

∑
Xi∈C

t+1
j

Xi

|Ct+1
j | , j = 1, · · · , k.

Step 4 Repeat steps 2& 3 until certain convergence criteria is met: when decrease in the objective

value (1.9) is smaller than some tolerance, or when cluster assignments no longer change.

Now we explain the high-level resemblance of these steps to our main algorithm (Algorithm 1).

In terms of the mixed-integer formulation (3.2), the integer variable z resembles memberships
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of data points, while the continuous variable a resembles values of the clustering function. Each

iteration of Algorithm 1 can be understood in this way: when the membership of data points

are fixed, the problem becomes a classification problem, in our case it is essentially a Lipschitz

classifier known in the literature (introduced next), which yields a fitted classification/clustering

function (corresponding to step 3 above); when the classification/clustering function is fixed, data

points are then relabeled (corresponding to step 2 above).

Luxburg’s linear program for Lipschitz classifier

A Lipschitz classifier [65] minimizes the classification error while controlling the Lipschitz

constant of the decision function:

inf
f∈Lip(X )

l(yif(xi)) + λL(f)

where yi ∈ {−1, 1}, and l is the hinge loss for classification: l(yif(xi)) = max{0, 1− yif(xi)}.

[65] fits the Lipschitz classifier by solving

min
a1,··· ,an

n∑
i=1

l(yiai) + λmax
i,j

ai − aj
d(xi, xj)

, (3.13)
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which can be written into a linear program:

min
a1,··· ,an

n∑
i=1

ξi + λρ

subject to ξi ≥ 0,

yiai ≥ 1− ξi,

ρ ≥ ai − aj
d(xi, xj)

.

Remark. In [65], the range for the classifier f is all real numbers, while the range of the clustering

function g we adopt is in [0, 1].

3.11.2 Additional simulations on distributional effects

Figure 3.10 shows the effect of distribution on the clustering result over a family of beta

distributions, replacing the uniform density in the two-piece uniform example. Figure 3.11 and

Table 3.16 shows the effect of radial distribution on 1/Ln in the disk and annulus data.

radial distribution 1/Ln

beta(5,1) 1.22

beta(1,1) 1.75

beta(1,3) 2.27

Table 3.16: Distribution effect on margin, under the three disk and annulus data described in
Figure 3.11, using different beta distributions in the radial direction. The ”margin” 1/Ln becomes
larger when the distribution on the clusters concentrate away from each other, which matches
intuition: degree of separation is higher from left to right in Figure 3.11.
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3.11.3 Subsampling inference for computationally infeasible problems

Consider estimating a statistical functional θ(P ) by an estimator θ̂n (often formulated as so-

lution to an optimization problem), where θ̂n is hard to compute for very large n (either infeasible

or the complexity grows too fast with n). Using classical empirical bootstrap for statistical infer-

ence, such as constructing CI for θ(P ), requires computing θ̂n repeatedly for resamples of size n,

which becomes even more computationally prohibitive. On the other hand, m-out-of-n bootstrap

is often able to produce equally valid inference under the condition that m→∞,m/n→ 0 [41].

Such subsampling procedure can involve more postprocessing steps than empirical bootstrap, but

doing so are worthwhile as much more computational cost is saved by computing θ̂m instead of

θ̂n. This may turn an infeasible problem to a feasible one, or reduce the complexity significantly.

For example, when the complexity of the optimization problem is O(n3), then taking m =
√
n

reduces each run to O(n1.5), and if B =
√
n subsamples are taken then the total cost is O(n2),

which is a solid reduction in computation. Computing was not one of the main motives to use

subsampling in [41, 42] at that time, instead these approaches were advocated so as to weaken

the assumptions to apply bootstrap methods for valid inference, or as a remedy in cases when

empirical bootstrap fails.

3.11.4 Consistency of aggregated solution

This section studies consistency of a solution computed from the subsample-aggregate ap-

proach proposed in Algorithm 2, which may be of independent interest. The main technical tool

is U-statistics.

Suppose the original dataset has size n while we utilize B repeated subsamples with size
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m to estimate gn, the original solution at sample size n, because of computational constraints.

We study consistency of such an estimate when both m and B grow with n, but possibly slowly.

In summary, consistency follows from two parts:

1. the aggregated solution is close to the ”average behavior” at size m;

2. the ”average behavior” at size m is consistent as long as m grows with n.

The first part will be dealt with under a specific subsampling scheme introduced below (see

later remark for the difference between this scheme and the usual m-out-of-n bootstrap). The

second part is straightforward.

For any m < n, conditioning on data X1, · · · , Xn, let gm,1, gm,2, · · · , gm,(nm) denote any

(fixed) ordered solutions from all
(
n
m

)
data subsets of sizem. Consider the following subsampling

and aggregating scheme: Let g∗1, · · · , g∗B be i.i.d and for any b = 1, · · · , B, g∗b = gm,i with

probability 1

(nm)
, i = 1, · · · ,

(
n
m

)
. Define the aggregated solution

ĝag :=
1

B

B∑
b=1

g∗b .

Under this scheme, the randomness in this average is split into two parts: one involving the

symmetric dependence structure among all subsamples of size m, which will be dealt with by a

U-statistics result; the other is about an average of B independent random variables, conditioning

on the fixed order of
(
n
m

)
solutions.

In the preceding theorem, we assume the alignment problem in clustering can be dealt with

separately. One could choose a base point in the data space (e.g., a point far-away from all data

points) and require that all g functions have the same value (0 for example) at this point.

Theorem 3.1. Suppose the variational problem (1.5) has solution g∗, and consider any point x
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at which the data problem is consistent: gn(x)
p−→ g∗(x). When B ↗ ∞,m ↗ ∞,m = o(n),

the subsample-aggregate scheme above is also consistent at this point: ĝag(x)
p−→ g∗(x).

Remark (1). Section 2.6 summarizes various forms of uniqueness/consistency results around

the original population/data problem, indicating different extents to which consistency property

holds. The focus here is to show what are the additional analysis needed to justify a subsampling

procedure. With suitable choice of m,B, subsampling can be applied where consistency and

uniqueness is justified or assumed for the original data and population problem, and where the

major concern is computation.

Remark (2). There is some difference between the subsampling studied here and what is usually

implemented in an m out of n bootstrap with replacement. Here although some of B subsamples

may be repeated, there are no repeated observations within each subsample. This difference can

be handled by the difference between U-statistic and V-statistic discussed in the next section.

Proof. Let Un(x) := 1

(nm)

(nm)∑
i=1

gm,i(x). Then Un(x) is a U -statistic with degreem. By an exponen-

tial inequality for U -statistic [A.8] which dates back to Hoeffding, and the fact that all g values

lies in [0, 1], we have, unconditionally,

P (Un(x)− E[Un(x)] ≥ t) ≤ exp(−2bn/mct2), (3.14)

where E[Un(x)] = E[gm,i(x)].

Note that conditioning on X1, · · · , Xn, under the subsampling scheme we have

E[g∗b (x)|X1, · · · , Xn] = Un(x),
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and by Hoeffing inequality for i.i.d sum,

P (
1

B

B∑
b=1

g∗b (x)− Un(x) ≥ t|X1, · · · , Xn) ≤ exp(−2Bt2).

We also have, unconditionally,

P (
1

B

B∑
b=1

g∗b (x)− Un(x) ≥ t) = E[E[I(
1

B

B∑
b=1

g∗b (x)− Un(x) ≥ t)|X1, · · · , Xn]]

= E[P (
1

B

B∑
b=1

g∗b (x)− Un(x) ≥ t|X1, · · · , Xn)]

≤ exp(−2Bt2). (3.15)

Combining (3.14) and (3.15),

P (
1

B

B∑
b=1

g∗b (x)− E[Un(x)] ≥ t) = P (
1

B

B∑
b=1

g∗b (x)− Un(x) + Un(x)− E[Un(x)] ≥ t)

≤ P (
1

B

B∑
b=1

g∗b (x)− Un(x) ≥ t/2)

+ P (Un(x)− E[Un(x)] ≥ t/2)

( using P (X + Y ≥ t) ≤ P ({X ≥ t/2}∪{Y ≥ t/2}) ≤ P (X ≥ t/2) + P (Y ≥ t/2) )

≤ exp(−Bt2/2) + exp(−bn/mct2/2).

This shows when B ↗∞,m = o(n), the value of the aggregated solution at any point x, ĝag(x)

is close to E[Un(x)] = E[gm,i(x)], the average behavior at sample size m. This finishes the first

part.

For the remaining part, note that whenever the original solution (at size n) is consistent,
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then as long as m grows with n (which can grow slowly), the average behavior at size m will also

be consistent. Specifically, suppose gn(x)
p→ g∗(x), then by [A.12], E[Un(x)] = E[gm,i(x)]

n→∞−→

g∗(x).

Further remarks on Theorem 3.1:

Remark (1). From this analysis, m,B can even grow as slowly as log(n) to be consistent. How-

ever, the actual performance at any given sample size needs to be checked by Monte Carlo.

Remark (2). The aggregation method studied here is pointwise average. An averaged solution,

however, no longer satisfies the optimality conditions. Another method implemented is pointwise

median (see step 3 of Algorithm 2 and Figure 3.2), which seems to yield finite sample solutions

that roughly satisfy optimality conditions. The proof could be a bit different for the median

approach.

Remark (3). Different tools will be needed to prove consistency for m fixed, or under an adap-

tive scheme other than pure random subsampling, such as described previously in ”subsample

discriminating points”.

3.11.5 U-statistics and V-statistics

Definition: for any ”kernel” h, a permutation symmetric function of its arguments,

U-statistic: Un = 1

(nm)

∑
c

h(Xi1 , · · · , Xim), where c denotes all combinations of m distinct

elements {i1, · · · , im} from {1, · · · , n}.

V-statistic: Vn = 1
nm

n∑
i1=1

· · ·
n∑

im=1

h(Xi1 , · · · , Xim).

It can be seen from the two definitions that the difference is in sampling with or without

replacement. Suppose we adopt the aggregated solution from the classical m-out-of-n bootstrap

179



(sampling with replacement), then the U-statistic Un(x) appeared in section 3.11.4 will be re-

placed by the corresponding V-statistic with the same kernel.

A result from Serfling ([49], section 5.7.3) says the asymptotic behavior of U-statistic and

V-statistic are very similar–in particular, they share the same central limit theorem. However, one

needs to take caution when applying this result, because Serfling’s proof argument treats m as a

fixed number – while in our case m grows with n.

3.11.6 Other subsampling schemes

Subsample the constraints

The computational bottleneck of Algorithm 1 depends a lot on the large constraint matrix in

the linear program, in terms of both running time and storage. A natural thought is to subsample

the constraint matrix. However, it appears that subsampling rows of constraints uniformly can

lead to very unstable performance. Further knowledge regarding the potential active constraints

is needed to prevent them from being deleted, while getting rid of redundant constraints.

Subsample the variables

Another different idea is to subsample the variables when the number of variables is large,

and consider subsampling in both directions (both the data and the variables) when both the

sample size and the dimension are large. This direction is out of scope here.

180



(a) beta(2,2) (b) beta(0.5,0.5) (c) beta(5,1)

(d) beta(1,3) (e) beta(2,5)

Figure 3.10: Fitted values on the data points from beta distributed clusters with different parame-
ters. Actual distribution on each cluster does not show much effect on the form of solution, only
the ”turning points” are changed.
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(a) beta(5,1) (b) beta(1,1) (c) beta(1,3)

Figure 3.11: Disk and annulus data with different radial distributions, generated by the product
of two independent random variables γ and β, where γ denotes uniform distribution on S1, and β
denotes the radial distribution specified by a beta family: β follows beta(a, b) or (3− beta(a, b))
each with probability 1/2, for some a > 0, b > 0. The case beta(1, 1) corresponds to the uniform
case used in Table 3.11. Each subfigure (a) (b) (c) has the same support (on the same disk and
annulus), but the distribution concentrates differently.
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Chapter 4: Generalizations

In this chapter, we initiate three major extensions of (1.5): general penalty function, mul-

ticlass, and model with noise – while still under Lipschitz regularization. Section 4.4 discusses

possible variants of the formulation other than Lipschitz function spaces for the decision func-

tions g.

Many results for K > 2 do not involve new proof ideas, and only require finding the right

analogue statements, some can even be repeated verbatim. The emphasis on K = 2 in previous

chapters is not a limitation: while multiple clusters can be an important practical question, the

case K = 2 captures the essence of the theory (also more clear for theoretical understanding).

The extension from 2 to K is more of an engineering step. We also refer back to section 3.7

for an approach to still use the 2-cluster formulation to explore multiple clusters from further

knowledge of multiple local optima.

4.1 General penalty function

In this section we show that N.C.2 holds for general penalty function ρ when K = 2.

The proof of Theorem 2.1 relies on I3 only through the comparison Lemma 1.1, and only in the

last step. Therefore it suffices to show that such a comparison lemma holds for general penalty

functions, with modified requirement on λ3.
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Let ρ(·) be a nonnegative function on [0, 1], and we change I3 = λ3 max{E[g], 1 − E[g]}

in (1.5) used in previous chapters to I3 = λ3 · ρ(E[g]), with other terms fixed.

Suppose ρ is Lipschitz with constant C:

|ρ(x)− ρ(y)| ≤ C|x− y|,

then for any two functions g, g′, we have I3(g′)− I3(g) ≤ λ3 ·C|E[g′]−E[g]|. From the proof of

Lemma 1.1, this inequality would lead us to the same conclusion in the lemma when λ3 < 1/C.

Examples covered by this case include ρ(x) = (1− x)2 + x2 or max{(1− x)2, x2}.

Corollary 4.1. The statements in Theorem 2.1 hold for general penalty function ρ (replacing

max{E[g], 1 − E[g]}) satisfying |ρ(x) − ρ(y)| ≤ C|x − y| for some constant C, for any x, y ∈

[0, 1], when the condition λ3 < 1 is replaced by λ3 < 1/C, with other things fixed.

Remark. For penalty functions such as ρ(x) = 1
x

+ 1
1−x , which are not Lipschitz on the whole

interval [0, 1], one could first use a competitor (such as a nonzero constant function) to obtain

a positive lower bound on E[g∗] for any optimal solution g∗ (i.e., excluding the possibility of

extreme proportions). Suppose the lower bound is δ, then ρ is Lipschitz within [δ, 1 − δ], and

the same argument above can be applied within this interval. In other words, the solution is

unchanged if ρ(·) is replaced by min{ 1
x

+ 1
1−x , C} for some constant C, which reduces to the

case in Corollary 4.1.
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4.2 Some multiclass theory

A Pollard-type consistency theorem for K > 2 was already provided in Theorem 1.4. Here

we consider an analogue of Theorem 2.3 about model-based consistency for K > 2, with general

penalty function ρ. First we define an extension of the sharp cluster model C1 in Chapter 2.

K sharp clusters

Consider the generating distribution P to be K sharp clusters S1, · · · , Sk ⊂ Rd with

P (Sk) = πk > 0, k = 1, · · · , K, where ”sharp” means:

(1) density exists for P and is lower bounded away from 0 on ∪kSk, constant 0 on (∪kSk)C ;

(C4)

(2) Sk’s are compact, connected, disjoint.

Denote L0 = max
i 6=j

1
d(Si,Sj)

, π0 = (π1, · · · , πK). Let GK := {{g1, ..., gK} :
K∑
k=1

gk = 1, gk ≥

0, k = 1, · · · , K} denote the collection of sets of K clustering functions.

For k = 1, · · · , K, let g̃k be any function such that g̃k|Sk = 1, g̃k|Sj = 0 for any j 6= k,

and g̃k|(∪Kj=1Sj)
C is a Lipschitz extension of g̃k|∪Kj=1Sj

, so that L(g̃k) = max
j 6=k

1
d(Sj ,Sk)

. Let g̃ =

{g̃1, · · · , g̃K}. Define the clustering risk (as in section 2.2.3) of g under K sharp clusters as

R(g) := dH(g, g̃),

where dH(g1, g2) = max
i

min
j
||g1

i − g2
j ||L1(P ) for any g1, g2 ∈ GK , as in Theorem 1.4.

Now we state some technical conditions on ρ needed in Theorem 4.1 below. Let ρ(x1, · · · , xK)
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be a nonnegative function on the probability simplex {(x1, · · · , xK) :
∑
k

xk = 1, xk ≥ 0}, satis-

fying the following conditions:

1. ρ is continuous, symmetric in its arguments, i.e., ρ(x1, · · · , xK) = ρ(x′1, · · · , x′K) for

any x = (x1, · · · , xK) and any permutation x′ = (x′1, · · · , x′K) of x.

2. ρ(x1, · · · , xK) <∞, for any x1 6= 0, · · · , xK 6= 0.

3. ρ(0, x2, · · · , xK) > ρ(y1, · · · , yK), for any x2, · · · , xK , and y1 6= 0, · · · , yK 6= 0.

Examples of ρ include
K∑
k=1

1
xk
,max

k

1
xk
,max

k
(1−xk),max

k
(1−xk)2. In practice, this should

be chosen for computational tractability.

Remark. For the first two examples, ρ(0, x2, · · · , xK) =∞; for the latter two, ρ(0, x2, · · · , xK) <

∞ (e.g., for max
k

(1− xk), ρ(0, x2, · · · , xK) = 1). The effect of this difference is discussed in the

last part of the proof of Theorem 4.1.

Consistency under sharp cluster model with K > 2

With all notations and conditions stated above, we give a generalization of Theorem 2.3.

Under model C4,

Theorem 4.1. Let the generalized data-based objective function be

In(g) = Pn[min
k
{1− gk(X)}] + λ2,n max

k
L(gk) + λ3,nρ(Pn[g1], · · · , Pn[gk]),

where ρ satisfies the conditions stated above. Denote any minimizer

gn(·, λ2,n, λ3,n) ∈ arg min
g∈GK

In(g).
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Suppose λ2,n and λ3,n are chosen such that L0

min
x2,··· ,xk

ρ(0,x2,··· ,xk)−ρ(π0)
λ2,n < λ3,n ≤ Cλ2,n, λ3,n →

0, C is any constant, then

lim
n
R(gn(·, λ2,n, λ3,n)) = 0 a.s..

In the case when ρ(0, x2, · · · , xk) = ∞, it is sufficient that C1 ≤ λ3,n
λ2,n
≤ C2 for some constants

0 < C1 ≤ C2 (which does not depend on L0 and π0).

The proof is in section 4.5.1.

4.3 Sharp cluster model with noise

In this section we consider the sharp cluster with noise model

PX = (1− δ)Ps + δPε, (C5)

where Ps is a sharp cluster model with K = 2 (C1), where Ps(S1) = π1, Ps(S2) = π2, and Pε is

some noise model in the ambient space, δ is the probability of observing noise. We prove a 1-d

uniqueness result in such noise case, as an extension to Theorem 2.5.

First, we show that a ”bipartite” theorem (Theorem 2.4) is still attainable, with some extra

condition involving the noise probability δ.

Perfect separation under noise

Under model C5,

Theorem 4.2. Let α0 = max{π1, π2}. When δ < (1−α0)2

8α0
, there exists a range for (λ2, λ3)

depending on δ under which any optimal solution g∗ for (1.5) satisfies that 1
2
− g∗ has different
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signs on S1, S2.

Remark. The analysis is similar to the noiseless case (Theorem 2.4). Here there is an extra

condition on δ, requiring the noise probability to be small.

The proof is in section 4.5.2.

Uniqueness under noise in 1-d for fixed L

Under model C5,

Theorem 4.3. Let the density of PX in S1, S2 be bounded below by εs, and the noise density

(density outside S) be bounded above by εnoise. Suppose εs/εnoise > 4/(1−λ3), and δ, λ2, λ3 satisfy

the condition in Theorem 4.2. Then (1.5) has unique solution in G = {g : g|S1 < 1/2, g|S2 >

1/2}.

The proof is in section 4.5.3.

Remark (Proof strategy). For i = 0, 1, let

gi(x) :=


0, x ∈ (−∞, xi − 1

2L
];

L(x− xi) + 1
2
, x ∈ (xi − 1

2L
, xi + 1

2L
);

1, x ∈ [xi + 1
2L
,∞).

Then define

g◦t (x) :=


0, x ∈ (−∞, xt − 1

2L
];

L(x− xt) + 1
2
, x ∈ (xt − 1

2L
, xt + 1

2L
);

1, x ∈ [xt + 1
2L
,∞)

where xt = tx0 + (1− t)x1.
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The main proof strategy for uniqueness in the noise model is to replace the role of gt in

Theorem 2.5 by g◦t . Note that g◦t is not a convex combination of g0, g1. In the proof, we will

sometimes use the function gt = tg0 + (1 − t)g1 as an intermediate function to compare. By

Theorem 2.1, when λ3 < 1, we have I(g◦t ) < I(gt). Therefore, even though I(gt) < tI(g0) +

(1−t)I(g1) no longer holds because of the presence of noise (specifically, the restricted convexity

argument no longer holds), it is still possible that I(g◦t ) < tI(g0) + (1 − t)I(g1), which would

enable us to replace the role of gt in Theorem 2.5 by g◦t . This will be the main idea in the noise

case: show that I(g◦t ) ≤ tI(g0) + (1− t)I(g1) under some condition on the density. Uniqueness

then follows: if g0, g1 are both assumed to be optimal solutions, then we can find a better solution

g◦t unless g0 = g1.

Remark on other possible extensions

Other possible extensions may span different combinations of general penalty function,

multiclass and noise model on top of the three demonstrated extensions in this chapter. We do

not pursue all these extensions, but give an example of how to think about any of them, say,

”uniqueness for multiple K under general penalty function in general dimension”. In Chapter 2,

uniqueness was a final product built upon a series of previous results. First one needs an analogue

of N.C.2 such as Corollary 4.1, and a consistency theorem such as Theorem 4.1 followed by an

extension of the bipartite condition C3 (this condition in Chapter 2, which comes out of the proof

of a consistency theorem, is needed in the statement of the uniqueness theorem). Then one finds

the analogue uniqueness statement of Theorem 2.6 (note that any uniqueness result forK-clusters

should be indifferent to permutations). Technical efforts are still needed to carefully check that
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each step of proof of Theorem 2.6 can be generalized seamlessly. In particular, whether key

referring results such as N.C.2 and Lemma 1.1 can be utilized in a similar manner in proof as

before, and whether technical lemmas such as Lemma 2.1 are still valid in a general sense.

4.4 Some variants of the formulation

This thesis has been focused on the development of the Lipschitz formulation (1.5). Other

formulations under the general criterion (1.1) might be possible. For example, one that has been

studied in the imaging literature is the total variation norm ([9, 20, 55]). This assumes the clus-

tering function g lives in the function space BV (bounded variation).

Total variation formulation

We analyze a total variation variant of (1.5) in one-dimension:

minimize
g:Rd→[0,1], g∈BV

E[g ∧ (1− g)] + λ2

∫
|g′|dP + λ3 max{E[g], 1− E[g]}.

For any candidate solution g, consider any point x0 such that 0 < g(x0) < 1/2, and a local

variation g̃ of g around the neighborhood of x0, g̃ = g−η, where η is differentiable, nonnegative,

and equal to zero outside the neighborhood. Suppose λ3 < 1, then

I(g)− I(g̃) = E[η] + λ2(

∫
|g′|dP −

∫
|(g − η)′|dP ± λ3

∫
ηdP )

≥
∫
ηdP − λ2

∫
|η′|dP ± λ3

∫
ηdP

≥ (1− λ3)

∫
ηdP − λ2

∫
|η′|dP.
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Suppose we let η = ε e
1−λ3
λ2

x (which is a solution to (1 − λ3)η = λ2|η′|), and choose ε small

enough such that g− η > 0 in a neighborhood of x0. Then I(g)− I(g̃) ≥ 0, so g̃ is variation that

improves g. This offers a necessary condition for optimality: let g∗ be any optimal solution, then

for any point x such that g∗(x) < 1/2, it must be that g∗(x) = 0; similarly, for any point such

that g∗(x) > 1/2, it must be that g∗(x) = 1. Therefore, the total variation formulation starts with

a continuous formulation, but always yields 0-1 valued solutions.

The above can be contrasted with the necessary condition in the Lipschitz formulation

(Theorem 1.1), the difference being that the Lipschitz solution has an additional ”transition”

region.

Parametric formulation: the logistic case

We give an example of a parametric formulation of (1.5) that may be more tractable:

minimize E[g ∧ (1− g)] + λ2L(g) + λ3 max{E[g], 1− E[g]}

subject to the parametric constraint that g(x) = 1
1+e〈β,x〉

, where β ∈ Rd.

Since logistic functions are differentiable, L(g) = max
x
||∇g(x)||2 = max

x
| e〈β,x〉

(1+e〈β,x〉)2
| ·

||β||2 = max
y>0
| y
(1+y)2

| · ||β||2 = ||β||2
4

, where the Lipschitz constant is achieved when y = e〈β,x〉 =

1, i.e. when 〈β, x〉 = 0 (so is achieved along the hyperplane which is the level set of the logistic

function at 1/2).
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Consequence for theory and computing

The previous two examples shows that a different formulation for (1.5) may lead to different

solution properties. Difference can also be expected in computing. A proposal here is to still use

alternating minimization as a general principle, while within each ”z-iteration step” (see Chapter

3) computation is to be done using method specific to the formulation: linear programming for

Lipschitz, existing algorithms for total variation, and logistic regression for the parametric case.

It is also possible that alternative forms motivated from PDE or optimal control theory may

offer better theoretical properties or are more convenient to optimize.

4.5 Proofs of chapter 4

4.5.1 Proof of Theorem 4.1

In(g̃) = λ2,n max
k
L(g̃k) + λ3,nρ(Pn[g̃1], · · · , Pn[g̃K ])

= λ2,nL0 + λ3,nρ(Pn[IS1 ], · · · , Pn[ISK ]).

Since Pn[ISk ]
a.s.−→ πk, k = 1, · · · , K, and ρ is continuous, we have ρ(Pn[IS1 ], · · · , Pn[ISK ])

a.s.−→

ρ(π1, · · · , πK) <∞. Therefore when λ2,n, λ3,n → 0, In(g̃)→ 0.

To simplify the notation, denote gn(·, λ2,n, λ3,n) by gn, gn = (gn,1, · · · , gn,K). Since gn ∈

arg min
g

In(g), we always have In(gn) ≤ In(g̃).
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The proof is divided into 3 parts:

1. There exists a data point xn in Sk such that min
k
{1−gn,k}(xn) < In(g̃)

Pn[ISk ]
, and lim

n
Pn[min

k
{1−

gn,k}] = lim
n
P [min

k
{1− gn,k}] = 0.

2. For any k = 1, · · · , K, arg min
j

(1 − gn,j(x)) is constant on Sk, when n large enough,

a.s.

3. For any k = 1, · · · , K, there is exactly one k∗ ∈ {1, · · · , K} such that arg min
j

(1 −

gn,j(x))|Sk∗ ≡ k, when n large enough, a.s.

By 1,2,3, we can assume w.l.o.g that arg min
j

(1 − gn,j(x))|Sk ≡ k, when n large enough,

a.s.. Therefore

R(gn) = max
i

min
j
P [|g̃i − gn,j|]

= max
i

min
j
{P [(1− gn,j)ISi ] + P [gn,jISCi ]}

≤ max
i
{P [(1− gn,i)ISi ] +

∑
j 6=i

P [(1− gn,j)ISj ]}

=
K∑
k=1

P [(1− gn,k)ISk ]

= P [min
k

(1− gn,k)] (use arg min
j

(1− gn,j(x))|Sk ≡ k)

−→ 0, a.s.,

proving the claim.

1. Suppose for every Xi ∈ Sk, min
k
{1− gn,k}(Xi) ≥ In(g̃)

Pn[ISk ]
, then
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In(gn) ≥ Pn[min
k
{1 − gn,k}ISk ] > 1

n

∑
i:Xi∈Sk

In(g̃)
Pn[ISk ]

= In(g̃), a contradiction as gn is a

minimizer of In.

Since In(g̃)→ 0, and Pn[min
k
{1−gn,k}] ≤ In(gn) ≤ In(g̃), we get Pn[min

k
{1−gn,k}]→ 0.

The Lipschitz constant of gn,k is uniformly bounded almost surely. In fact, when λ3,n ≤

Cλ2,n, we have

λ2,nL(gn,k) ≤ In(gn) ≤ In(g̃) = λ2,nL0 + λ3,nρ(Pn[IS1 ], · · · , Pn[ISK ])

≤ λ2,n(L0 + Cρ(Pn[IS1 ], · · · , Pn[ISK ]))

L(gn,k) ≤ L0 + Cρ(Pn[IS1 ], · · · , Pn[ISK ])
a.s.−→ L0 + Cρ(π0).

By [A.2], for any δ > 0, L(min
k
{1− gn,k}) ≤ max

k
L(gn,k) ≤ L0 + C(ρ(π0) + δ), when n large

enough, a.s.. Below we fix some δ > 0 and denote L0 + C(ρ(π0) + δ) := LC .

LetF = {f : X → [0, 1], L(f) ≤ LC}, whereX is some bounded domain on Rd such that ∪k

Sk ⊂ X . Then by Lemma 1.2,

sup
f∈F

(Pn − P )[f ]→ 0 a.s..

Therefore Pn[min
k
{1−gn,k}]−P [min

k
{1−gn,k}]→ 0, a.s., it follows that P [min

k
{1−gn,k}]→ 0.

2. For any a ∈ [0, 1], b ∈ [0, 1], L > 0, consider again the quantity (2.9) used when K = 2:

CSk(L, a, b) := inf{
∫
Sk

fdP : f(x1) = a, f(x2) = b for some x1, x2 ∈ Sk, L(f) ≤ L, f : X → [0, 1]},
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which measures regularity of P on Sk. By sharpness of Sk, CSk(L, a, b) = 0 iff a = b = 0.

Suppose arg min
j

(1− gn,j(x)) is not constant on Sk. By argument 1, there exists a point x∗

such that min
k
{1 − gn,j(x∗)} < In(g̃)

Pn[ISk ]
. Denote arg min

j
(1 − gn,j(x∗)) = k∗. Then there exists

another point x∗∗ ∈ Sk such that arg min
j

(1 − gn,j(x∗∗)) = k∗∗ 6= k∗. For some ε > 0, let n be

large enough that In(g̃)
Pn[ISk ]

< ε.

Consider h(x) = (1 − gk∗)(x)−min
j 6=k∗

(1− gj)(x). Since
K∑
j=1

gj(x) ≡ 1, 1− gn,k∗(x∗) < ε,

we have min
j 6=k∗

(1− gj)(x∗) = 1−max
j 6=k∗

gj(x
∗) ≥ 1−

∑
j 6=k∗

gj(x
∗) = gk∗(x

∗) > 1− ε. Therefore

h(x∗) < ε− (1− ε) = 2ε− 1, h(x∗∗) > 0.

When ε < 1/2, by continuity of h(x) and connectedness of Sk, there is a point x̃ ∈ Sk such that

h(x̃) = 0. This implies gj∗(x̃) = max
j 6=k∗

gj(x̃), 1 =
∑
j

gj(x̃) ≥ gk∗(x̃) + max
j 6=k∗

gj(x̃) = 2gk∗(x̃), so

gk∗(x̃) ≤ 1/2.

Note that for the two points x∗ and x̃ above, we have min
j

(1− gj)(x∗) = (1− gk∗)(x∗) < ε

and min
j

(1 − gj)(x̃) = (1 − gk∗)(x̃) ≥ 1/2. For any ε < 1
2
, again, by continuity of min

j
(1 − gj)

and connectedness of Sk, there are two points a and b that min
j

(1 − gj) is equal to ε and 1/2,

respectively. Then, by definition of CSk , P [min
k

(1−gk)ISk ] ≥ CSk(LC , ε,
1
2
) > 0, a contradiction

to P [min
k

(1− gk)]→ 0.

3. Suppose there exists k∗∗ such that arg min
j

(1− gn,j(x))|Sk 6= k∗∗ for any k = 1, · · · , K.

Since we can always switch the roles of k = 1, · · · , k = K and in turn switch g1, · · · , gK
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accordingly, we can assume w.l.o.g that k∗∗ = 1. We have

Pn[arg min
k

(1− gn,k)] < In(gn) ≤ In(g̃) := εn.

Denote k∗ = arg min
k

(1− gn,k)(x), x ∈ Sk. By argument 2, k∗ is uniquely defined,

Pn[gn,1] =
K∑
k=1

Pn[gn,1ISk ]

≤
K∑
k=1

Pn[(1− gn,k∗)ISk ]

= Pn[min
k

(1− gn,k)] < εn.

Therefore observe that when εn goes to 0,

ρ(Pn[gn]) = ρ(Pn(gn,1), · · · , Pn(gn,K)) ≈ ρ(0, x2, · · · , xk),

for some x2, · · · , xk. Choose some δ > 0, let n be large enough that |ρ(Pn[IS1 ], · · · , Pn[ISK ])−

ρ(π0)| < δ and ρ(Pn[gn]) = ρ(Pn(gn,1), · · · , Pn(gn,K)) > min
x2,··· ,xk

ρ(0, x2, · · · , xk) − δ (replace

by ρ(Pn[gn]) > M for large M if ρ(0, x2, · · · , xk) =∞). We have

λ2,nL0 + λ3,n(ρ(π0) + δ) ≥ λ2,nL0 + λ3,nρ(Pn[IS1 ], · · · , Pn[ISK ])

= In(g̃) ≥ In(gn) ≥ λ3,nρ(Pn(gn)).
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On the other hand,

λ3,nρ(Pn(gn))− (λ2,nL0 + λ3,n(ρ(π0) + δ)) = λ3,n(ρ(Pn(gn))− ρ(π0)− δ)− λ2,nL0

> λ3,n( min
x2,··· ,xk

ρ(0, x2, · · · , xk)− 2δ − ρ(π0))

− λ2,nL0,

where the last line is non-negative as long as λ3,n
λ2,n
≥ L0

min
x2,··· ,xk

ρ(0,x2,··· ,xk)−ρ(π0)−2δ
, and a contradic-

tion will follow. When ρ(0, x2, · · · , xk) = ∞, the above becomes λ3,n
λ2,n
≥ L0

M−ρ(π0)−δ . The claim

then follows by letting δ → 0,M →∞.

4.5.2 Proof of Theorem 4.2

Denote the constant 0 function by 0X . The proof is done by contrasting I(g0) with I(g̃)

and I(0X). We have

I(0X) = λ3,
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I1(g̃) =

∫
g̃ ∧ (1− g̃)d((1− δ)P + δPε)

= (1− δ)
∫
g̃ ∧ (1− g̃)dP + δ

∫
g̃ ∧ (1− g̃)dPε

≤ 0 + δ = δ,

E(g̃) = (1− δ)
∫
g̃dP + δ

∫
g̃dPε

= (1− δ)
∫
S2

1dP + δ

∫
g̃dPε

≤ (1− δ)π2 + δ,

1− E(g̃) ≤ (1− δ)π1 + δ

max{E[g̃], 1− E[g̃]} ≤ (1− δ) max{π1, π2}+ δ,

I(g̃) ≤ δ + λ2L0 + λ3[(1− δ)α0 + δ].

a. There exists a point x on Sk such that g0 ∧ (1 − g0)(x) < λ3/πk. Otherwise I(g0) ≥

E[g0 ∧ (1− g0)ISk ] ≥ λ3/πk · πk = I(0X), a contradiction.

b. g0∧(1−g0) has bounded Lipschitz constant, thus continuous. This is because λ2L(g0) ≤

I(g0) ≤ I(0X) = λ3, so L(g0) ≤ λ3/λ2, L(g0 ∧ (1− g0)) ≤ L(g0) ≤ λ3/λ2 ≤ C.

c. Consider the two functions

h1(x) = C̄Sk(C,
x

πk
,
1

2
), h2(x) =

1

1− δ
x, x ∈ [0,

πk
2

],

where C̄Sk(C, ·, ·) is the normalized constant defined in (2.11). Since h1(0) > 0, decreasing in
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x and continuous, h2(0) = 0, increasing in x, there is a point where h1(x) = h2(x), denote that

point by ck. When x < ck, C̄Sk(C,
x
πk
, 1

2
) > 1

1−δx.

Claim: When λ3 < ck, 1
2
− g0 cannot change sign within each Sk.

Suppose 1
2
− g0 changes sign on Sk, then by a. there is a continuous path in Sk such that g0

continuously change from λ3/πk to 1/2. By definition of CSk(L, a, b) (2.9) and by b., we have

I(g0) > (1− δ)
∫
Sk

g0 ∧ (1− g0)dP

≥ (1− δ)CSk(C,
λ3

πk
,
1

2
)

≥ (1− δ)C̄Sk(C,
λ3

πk
,
1

2
)

> (1− δ) · 1

1− δ
λ3 = I(0X),

a contradiction.
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d. Suppose 1
2
− g0 have the same sign on S1, S2, assume w.l.o.g that g0 <

1
2
.

I(g̃) ≥ I(g0) = (1− δ)
∫
g0 ∧ (1− g0)dP + δ

∫
g0 ∧ (1− g0)dPε + λ2L(g0)

+ λ3 max{E[g0], 1− E[g0]}

= (1− δ)
∫
g0dP + δ

∫
g0dPε − δ(

∫
g0dPε −

∫
g0 ∧ (1− g0)dPε)

+ λ2L(g0) + λ3 max{E[g0], 1− E[g0]}

≥
∫
g0d((1− δ)P + δPε)− δ

∫
|g0 − g0 ∧ (1− g0)|dPε

+ λ2L(g0) + λ3(1− E[g0])

= E[g0]− δ + λ2L(g0) + λ3(1− E[g0]).

so we have E[g0] < I(g̃) + δ and I(g0) ≥ λ3(1− E[g0])− δ. On one hand,

δ + λ2L0 + λ3[(1− δ)α0 + δ] ≥ I(g̃) ≥ I(g0) ≥ λ3(1− E[g0])− δ.

On the other hand,

λ3(1− E[g0])− δ − (δ + λ2L0 + λ3[(1− δ)α0 + δ]) = λ3(1− E[g0]− (1− δ)α0 − δ)

− 2δ − λ2L0

≥ λ3(1− I(g̃)− δ − (1− δ)α0 − δ)

− 2δ − λ2L0,

leading to a contradiction if the above expression is positive.
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c. and d. together gives a range under which g < 1
2

on one cluster and g > 1
2

on the

other: λ3 < min{c1, c2}, λ3/λ2 ≤ C, 2δ+λ2L0

1−C−2δ−(1−δ)α0
< λ3 <

C−δ−λ2L0

(1−δ)α0+δ
, where C is a constant

satisfying δ < C < 1− 2δ − (1− δ)α0.

The last condition suggests that λ2 and λ3 should not be too small when the model includes

noise: if λ2 and λ3 both go to 0, the last expression will converge to −2δ < 0, and we would not

have the above guarantee. Also for the range to exist, δ cannot be too large. The condition in the

theorem δ < (1−α0)2

8α0
gives a rough estimate.

4.5.3 Proof of Theorem 4.3

Part 1. analysis of I1

Claim: When the density in S1, S2 is bounded below by εs, and the noise density (density

outside S) is bounded above by εnoise, then

(1) tE[g0IS1 ] + (1− t)E[g1IS1 ]− E[g◦t IS1 ] � εs(x1 − x0)2,

(2) |tE[(g0 ∧ (1 − g0))ISC ] + (1 − t)E[(g1 ∧ (1 − g1))ISC ] − E[(g◦t ∧ (1 − g◦t ))ISC ]| �

εnoise(x1 − x0)2, where the remaining constants depend on L and t.

Subproof of (1): Suppose x0 < x1. From the bipartition result in Theorem 4.2, we also
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have that x0 lies to the right of S1 and x1 to the left of S2.

tE[g0IS1 ] + (1− t)E[g1IS1 ]− E[g◦t IS1 ] =

∫
S1

[tmax{1

2
+ L(x− x0), 0}

+ (1− t) max{1

2
+ L(x− x1), 0}

−max{1

2
+ L(x− xt), 0}]dPX

=

∫
[x0− 1

2L
,xt− 1

2L
]

t[
1

2
+ L(x− x0)]dPX

+

∫
[xt− 1

2L
,x1− 1

2L
]

[tL(xt − x0)− (1− t)(1

2
+ L(x− xt))]

= t

∫
[x0− 1

2L
,xt− 1

2L
]

[
1

2
+ L(x− x0)]dPX

+ (1− t)
∫

[xt− 1
2L
,x1− 1

2L
]

(L(x1 − x)− 1

2
)dPX .

We have 0 ≤ 1
2

+ L(x − x0) ≤ L(xt − x0) = (1 − t)L(x1 − x0),∀x ≤ xt − 1
2L

, and 0 ≤

L(x1 − x)− 1
2
≤ L(x1 − xt) = tL(x1 − x0),∀x ≥ xt − 1

2L
. Note that (see Figure 4.1)

Figure 4.1: lower and upper bound for A1 and A2 are chosen such that the two integrands are
lower bounded (by half the height of the triangle) on A1, A2

1

2
+ L(x− x0) ≥ 1

2
(1− t)L(x1 − x0),∀x ∈ [x0 −

1

2L
+

1− t
2

(x1 − x0), xt −
1

2L
] := A1 ⊂ S1,
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L(x1 − x)− 1

2
≥ 1

2
tL(x1 − x0),∀x ∈ [xt −

1

2L
, x1 −

1

2L
− t

2
(x1 − x0)] := A2 ⊂ S1,

where m(A1) = 1−t
2

(x1 − x0),m(A2) = t
2
(x1 − x0).

So a lower bound for LHS of (1) is

t · (1− t)L
2

(x1 − x0)P (A1) + (1− t) · tL
2

(x1 − x0)P (A2)

≥ t(1− t)
2

L(x1 − x0) [εs(P (A1) + P (A2))]

=
t(1− t)

2
L(x1 − x0)εs

[
1− t

2
(x1 − x0) +

t

2
(x1 − x0)

]
∝ εs(x1 − x0)2,

as long as t is bounded away from 0 and 1.

Subproof of (2): Since x0 < x1, we have SC = R1 ∪R2 ∪R3, where

R1 = {x ∈ SC : g0(x) <
1

2
, g1(x) <

1

2
}, R2 = {x ∈ SC : g0(x) >

1

2
, g1(x) >

1

2
},

R3 = {x ∈ SC : g0(x) ≥ 1

2
, g1(x) ≤ 1

2
} = [x0, x1].

From now on, for some subset D ⊂ Rd, denote ED[g] := E[gID]. Note that all four functions

1/2− g0, 1/2− g1, 1/2− g◦t , 1/2− gt are positive on R1, negative on R2, and

ER1 [g
◦
t ] ≤ ER1 [gt] = tER1 [g0] + (1− t)ER1 [g1],

ER2 [g
◦
t ] ≥ ER2 [gt] = tER2 [g0] + (1− t)ER2 [g1],
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so we have

ERi [g
◦
t ∧ (1− g◦t )]− tERi [g0 ∧ (1− g0)]− (1− t)ERi [g1 ∧ (1− g1)] ≤ 0, i = 1, 2.

Therefore,

ESC [g◦t ∧ (1− g◦t )]− tESC [g0 ∧ (1− g0)]− (1− t)ESC [g1 ∧ (1− g1)]

≤ ER3 [g
◦
t ∧ (1− g◦t )]− tER3 [g0 ∧ (1− g0)]− (1− t)ER3 [g1 ∧ (1− g1)],

that is, it suffices to control the expectation within R3.

When restricted to R3, g◦t is a linear combination of g0 and g1:

g◦t (x) = tg0(x) + (1− t)g1(x), x ∈ R3,

we have

tER3 [g
◦
t ∧ (1− g◦t )]− tER3 [g0 ∧ (1− g0)]

≤ tER3 |tg0 + (1− t)g1 − g0|

= t(1− t)ER3|g1 − g0|

≤ t(1− t)ER3|
1

2
+ L(X − x0)− 1

2
− L(X − x1)|

= t(1− t)LER3|x1 − x0|

= t(1− t)L(x1 − x0)PX([x0, x1])

≤ t(1− t)L · εnoise(x1 − x0)2, (since [x0, x1] ∩ S = ∅)
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and similarly,

(1− t)ER3 [g
◦
t ∧ (1− g◦t )]− (1− t)ER3 [g1 ∧ (1− g1)] ≤ t(1− t)L · εnoise(x1 − x0)2.

Therefore

ESC [g◦t ∧(1−g◦t )]− tESC [g0∧(1−g0)]−(1− t)ESC [g1∧(1−g1)] ≤ 2t(1− t)L ·εnoise(x1−x0)2.

Part 2. analysis of I3

The three functions g0, g1, g
◦
t have the same Lipschitz constant. It remains to control I3

(I3(g) = max{E[g], 1 − E[g]}). By convexity of I3(g) in g, I3(gt) ≤ tI3(g0) + (1 − t)I3(g1).

Therefore

tI3(g0) + (1− t)I3(g1)− I3(g◦t ) ≥ I3(gt)− I3(g◦t )

≥ −λ3|E[gt − g◦t ]|

= −λ3|ES1 [gt − g◦t ]− ES2 [g
◦
t − gt]|

= −λ3(ES1 [gt − g◦t ] + ES2 [g
◦
t − gt])

(gt ≥ g◦t on S1, gt ≤ g◦t on S2)

= −λ3(tES1 [g0] + (1− t)ES1 [g1]− ES1 [g
◦
t ]

+ ES2 [g
◦
t ]− tES2 [g0]− (1− t)ES2 [g1]).

Part 3. combining I1 and I3

The last expression appears also in the analysis of I1, so we can combine terms when
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analyzing I(g):

tI(g0) + (1− t)I(g1)− I(g◦t ) = tI1(g0) + (1− t)I1(g1)− I1(g◦t )

+ tI3(g0) + (1− t)I3(g1)− I3(g◦t )

≥ tES1 [g0] + (1− t)ES1 [g1]− ES1 [g
◦
t ]

+ tES2 [1− g0] + (1− t)ES2 [1− g1]− ES2 [1− g◦t ]

+ tESC [g0 ∧ (1− g0)] + (1− t)ESC [g0 ∧ (1− g0)]

− ESC [g◦t ∧ (1− g◦t )]

− λ3(tES1 [g0] + (1− t)ES1 [g1]− ES1 [g
◦
t ]

+ ES2 [g
◦
t ]− tES2 [g0]− (1− t)ES2 [g1])

= (1− λ3)(tES1 [g0] + (1− t)ES1 [g1]− ES1 [g
◦
t )

+ (1− λ3)(ES2 [g
◦
t ]− tES2 [g0]− (1− t)ES2 [g1])

+ tESC [g0 ∧ (1− g0)] + (1− t)ESC [g0 ∧ (1− g0)]

− ESC [g◦t ∧ (1− g◦t )].

Let t = 1/2, we have

(1): tES1 [g0] + (1− t)ES1 [g1]− ES1 [g
◦
t ] ≥ 1

16
L · εs(x1 − x0)2, and similarly,

ES2 [g
◦
t ]− tES2 [g0]− (1− t)ES2 [g1] ≥ 1

16
L · εs(x1 − x0)2;

(2): ESC [g◦t ∧(1−g◦t )]−tESC [g0∧(1−g0)]−(1−t)ESC [g1∧(1−g1)] ≤ 1
2
L·εnoise(x1−x0)2,

so tI(g0) + (1− t)I(g1)− I(g◦t ) ≥ 1
8
(1− λ3)Lεs(x1 − x0)2 − 1

2
Lεnoise(x1 − x0)2, and

I(g◦t ) < tI(g0) + (1− t)I(g1) as long as εs/εnoise > 4/(1− λ3).
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Chapter 5: Conclusion and future work

5.1 Contribution of this work

Contributions made in this thesis beyond [65] (Lipschitz classifier) include: consideration

of the population (variational) problem and (statistical) consistency issue (Theorem 1.3), two

optimality conditions (Theorem 1.1, 2.1), a model (C1) which the method adapts to (Theorem

2.3), the uniqueness problem (Theorem 2.6), and further computational developments on top of

the original linear program in [65] (Chapter 3). Lastly, our approach can be seen as a step forward

from classification to clustering.

Contribution of the thesis to the clustering literature include the following. This work

proposes a general criterion where clustering is viewed as the easiest classification problem (1.1).

The corresponding data problem has natural consistency property. The Lipschitz formulation

offers a novel approach for continuous clustering with good mathematical properties, but is also

different from traditional model-based clustering.

Overall, we hope this work can offer necessary preparations for further mathematical anal-

ysis and algorithmic development.
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5.2 Future directions

We describe some major future directions for data and ideal problem.

Ideal variational problem

By Theorem 2.1, the remaining question in finding optimal g is now a geometric variational

problem: how to find an optimal surface U for a fixed Lipschitz constant L. The first step may

be to use the fact that almost every level set of a Lipschitz function is (d − 1)-rectifiable [2], in

company with Corollary 2.2. There are also results specifically applied to distance functions [30]

that may extend to all level sets. The next direction is to establish regularity result ([37, 52]) of

U possibly under addition assumptions such as convexity of clusters.

An equally interesting question is to characterize mathematical (regularity) properties of

Un = {gn = 1/2} in the data problem. This may also help to determine optimal U in the ideal

problem, either numerically or theoretically (asymptotically).

Algorithm

Convergence guarantee for alternating minimization An important problem about al-

gorithmic guarantee is to explain the empirically small number of z-iterations (see, e.g., Table

3.2) in Algorithm 1, and to what extent a global optimum can be found, under certain ideal

models.

There are existing general and problem-specific results for alternating minimization along

this line. We refer to Theorem 4.3 and 5.5 in the review paper [25] for general results in the

machine learning literature, and [4] for such result in the statistical literature, in particular for
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the EM algorithm (which is a special case of the alternating minimization principle). These

results have the common flavor: first, certain initialization procedures are proposed to ensure the

algorithm starts in a ”basin of attraction” (often come with convexity of objective function within

this region), within which the global optimum can then be approached at a linear rate. This in

turn implies log(1
ε
) iterations are sufficient to solve the optimization problem to ε accuracy.

Core set/sparse representation Lipschitz extension from n data points may be deter-

mined by a much smaller set of data points. Specifically, in (3.4), we call [s] ⊂ {1, · · · , n} a

”core set” for gn if for any x,

gn(x) =
1

2
min
i∈[s]
{gn(xi) + Ld(x, xi)}+

1

2
max
i∈[s]
{gn(xi)− Ld(x, xi)}.

In the 1-d case in Figure 3.1 when gn is piecewise linear, [s] can be reduced to only the two

turning points of gn. This reduction can be important for prediction at future points. For coreset

in K-means clustering, see [22].

Distributional result

A (functional) limit theorem for gn would provide a more complete understanding of this

approach. For example, it will further justify the subsampling and confidence band calculation in

Chapter 3. A central limit theorem for K-means clustering was proved by Pollard [44]. However,

the technique relies on the parametric and differentiable nature of K-means objective function,

while (1.5) is both nonparametric and nonsmooth.
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Real data illustration

More real data illustrations of the computational developments in Chapter 3 will be helpful,

such as using the visualization and diagnostic ideas in section 3.7. For implementation on large-

scale datasets, more progress would be required on (1) making the algorithm more scalable; (2)

have better understanding of the algorithm, such as the earlier discussion in this section.

Some general questions in clustering

Clusterable models As discussed in section 1.1, a theory that applies to both traditional

model-based statistical methods and modern machine learning approaches for clustering would

be desirable. We propose that future work should begin with clarifying the concept of ”clusterable

models”, followed by theoretical study of clusterable models on one hand, and design of efficient

clustering algorithms under corresponding models on the other hand. This will also set up the

basis for a tuning parameter selection theory (see section 3.8). The meaning of ”clusterable”

can be more general than an identifiable statistical mixture model. Modeling considerations are

important for other extensions of the clustering problem as well, such as bi-clustering [17].

High-dimensional clustering problem Intuitively speaking, high dimensional classifica-

tion problem is relatively simple because in higher dimension it becomes easier to find hyper-

planes to separate the classes. The remaining question in high dimensional classification is then

to find an optimal hyperplane. For unlabeled data, however, the abundance of hyperplanes be-

comes an obstacle: hyperplane cuts are very arbitrary, so that clustering is not always possible or

meaningful. Thus the more important question for high dimensional clustering is to study statis-

tical limits under various distributional assumptions. We refer to [8, 27] for the Gaussian case.

210



Recent works [10, 35] consider high dimensional regimes where both the number of clusters K

and number of variables are comparable to sample size n. Comprehensive study on canonical

models like Gaussian mixture models will remain important for these problems.
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Appendix A:

A.1 Analysis results

A.1.1 Non-smooth analysis

Results in this section can be found in Chapter 10 of [13], which is a generalization of

differential calculus for smooth functions, and subdifferential calculus for convex functions. The

function class considered is locally Lipschitz functions. In the main thesis, we will mostly work

with (globally) Lipschitz functions, which are locally Lipschitz everywhere. This includes, in

particular, distance functions to a closed set.

X denotes a Banach space. Let f : X → R be Lipschitz of rank K near a given point

x ∈ X , that is, for some ε > 0, we have

|f(y)− f(z)| ≤ K||y − z||,∀y, z ∈ B(x, ε).

That is, f is Lipschitz on some (sufficiently small) neighborhood around x, which implies conti-

nuity at x. We will mostly work with Euclidean space X = Rn.

Definition A.1.1. The generalized directional derivative of f at x in the direction v, denoted
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f ◦(x; v), is defined as:

f ◦(x; v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
,

where y ∈ X, t > 0.

E.g., the generalized directional derivative of a distance function dS at x in the direction v

is denoted by d◦S(x; v).

Definition A.1.2. The generalized gradient of the function f at x, denoted ∂Cf(x), is the unique

nonempty weak* compact convex subset of X∗ whose support function is f ◦(x; ·), that is,

ζ ∈ ∂Cf(x) ⇐⇒ f ◦(x; v) ≥ 〈ζ, v〉 ∀v ∈ X,

f ◦(x; v) = max{〈ζ, v〉 : ζ ∈ ∂Cf(x)} ∀v ∈ X.

We will mostly work with the case when X = X∗ = Rn.

The concepts above are indeed a generalization of gradients in the smooth and convex case,

as can be seen from the following:

Theorem A.1. If f is continuously differentiable near x, then ∂Cf(x) = {f ′(x)}. If f is convex

and lower semi-continuous, and if x ∈ int domf , then ∂Cf(x) = ∂f(x), the subgradient of f at

x.

As in calculus, we usually work with generalized gradients through their properties, rather

than from the definition.
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Calculus of generalized gradients

Theorem A.2 (Sum rule). Let f and g be Lipschitz near x. Then

∂C(f + g)(x) ⊂ ∂Cf(x) + ∂Cg(x).

If g is convex, then

∂C(f + g)(x) = ∂Cf(x) + ∂g(x).

Theorem A.3 (Mean value theorem). Let x and y belong to X , and suppose that f is Lipschitz

on a neighborhood of the line segment [x, y]. Then there exists a point z in (x, y) such that

f(y)− f(x) ∈ 〈∂Cf(z), y − x〉.

Definition A.1.3 (convex envelope). Let S be a subset of X . The convex envelope of S, denoted

co S, is the smallest convex subset of X containing S.

The convex envelope has the following charaterization:

Lemma A.1. co S = {
m∑
i=1

tixi : m ≥ 1, xi ∈ S, ti ≥ 0,
m∑
i=1

ti = 1}.

Theorem A.4 (Gradient formula). Let x ∈ Rn, and let f : Rn → R be Lipschitz near x. Let Ef

be the set of points at which f fails to be differentiable. Then

∂Cf(x) = co{ lim
n→∞

∇f(xn) : xn → x, xn /∈ Ef}.

Remark. One property of ∂Cf is that it is ”blind to sets of measure 0” [13]: this means that
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any measure 0 set can be ignored in the construction of all limiting sequences, without changing

∂Cf(x).

A.1.2 Lipschitz functions

Many results in this section can be found in [69] and [13]. In the finishing stage of this

work, we discovered that Lipschitz analysis plays a fundamental role in geometric measure the-

ory, two good references are [37] and [52].

Lemma A.2. For any function g, L(g∧ (1−g)) ≤ L(g). In general, for K functions g1, · · · , gK ,

L(g1 ∧ · · · ∧ gK) ≤ max
k
L(gk).

Lemma A.3. L(g) is convex in g.

Proof. For any two functions g1, g2 and any 0 ≤ t ≤ 1,

L(tg1 + (1− t)g2) = max
x,y

|tg1(x) + (1− t)g2(x)− tg1(y)− (1− t)g2(y)|
d(x, y)

≤ max
x,y

t|g1(x)− g1(y)|+ (1− t)|g2(x)− g2(y)|
d(x, y)

= max
x,y

{
t
|g1(x)− g1(y)|

d(x, y)
+ (1− t) |g2(x)− g2(y)|

d(x, y)

}
≤ tmax

x,y

|g1(x)− g1(y)|
d(x, y)

+ (1− t) max
x,y

|g2(x)− g2(y)|
d(x, y)

= tL(g1) + (1− t)L(g2)

Theorem A.5 (Kirszbraun Theorem, Lipschitz extension). Let E ⊂ Rn, f : E → Rm such that

Lip(f, E) = L <∞. Then there exists f̄ : Rn → Rm, f̄ is L-Lipschitz, f̄ |E = f .
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There are many constructions for Lipschitz extension. For example,

(m = 1) Mcshane extension

f̄(y) := inf
x∈E
{f(x) + L|y − x|}

¯̄f(y) := sup
x∈E
{f(x)− L|y − x|}

These two constructions generalize to metric space:

f̄(y) := inf
x∈E
{f(x) + Ld(x, y)} (A.1)

¯̄f(y) := sup
x∈E
{f(x)− Ld(x, y)} (A.2)

Therefore

Lemma A.4. Let (X , d) be a metric space and E ⊂ X , f : E → R is Lipschitz with Lipschitz

constant L. Then there exists f̄ : X → R, f̄ is L-Lipschitz, f̄ |E = f .

The following lemma gives a family of constructions for Lipschitz extension from finite

data points, which is a consequence of the two constructions (A.1) and (A.2), if we let E =

{x1, · · · , xn}.

Lemma A.5 (Lemma 7 from [65]). Given a function f defined on a finite subset x1, · · · , xn of

X , there exists a function f̄ which coincides with f on x1, · · · , xn, is defined on the whole space

X , and has the same Lipschitz constant as f . Additionally, it is possible to explicitly construct f̄
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in the form

f̄(x) = α min
i=1,··· ,n

(f(xi) + L(f)d(x, xi)) + (1− α) max
i=1,··· ,n

(f(xi)− L(f)d(x, xi)),

for any α ∈ [0, 1], with L(f) = max
i,j=1,··· ,n

(f(xi)− f(xj))/d(xi, xj).

Corollary A.1. When α = 1
2
, the construction in the above lemma also implies min

i=1,··· ,n
f(xi) ≤

f̄(x) ≤ max
i=1,··· ,n

f(xi).

Proof. Since

f̄(x) ≤ 1

2
(f(xi0) + L(f)d(x, xi0)) +

1

2
(f(xi0)− L(f)d(x, xi0)) = f(xi0) ≤ max

i=1,··· ,n
f(xi),

where i0 is the index for which the max part is maximized: f(xi0)−L(f)d(x, xi0) = max
i=1,··· ,n

(f(xi)−

L(f)d(x, xi)). The other side of the inequality can be similarly shown.

Theorem A.6 (Rademacher’s theorem). Let f : Rn → R be Lipschitz. Then f is differentiable

almost everywhere, and its gradient vector field is essentially bounded with || |∇f | ||∞ = L(f).

Corollary A.2 (integration by part). Let f : Rn → Rm be Lipschitz, then

∫
Rn
〈∇f, φ〉 = −

∫
Rn
〈f, ∇φ〉,∀φ ∈ C1

c (Rn),

where C1
c (Rn) denotes the class of continuously differentiable compactly supported functions

on Rn. Since integration by part always figures the right dimension, ∇ is understood as either

gradient or divergence according to the dimension.
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The remaining lemmas in this section relate the global Lipschitz constant with local ones

by norm of (classical or generalized) gradients.

Lemma A.6. Suppose g is differentiable, then L(g) = sup
x
||∇g(x)||2.

Lemma A.7. Suppose g is Lipschitz, thenL(g) = sup
ζ∈∂Cg

||ζ|| (∂Cg := {ζ : ζ ∈ ∂Cg(x) for some x}).

Lemma A.8. Suppose g is Lipschitz, then sup
ζ∈∂Cg(x)

||ζ|| = sup
ζ=lim

n
∇g(xn),xn→x

||ζ|| (the supremum is

determined by differentiable points).

The following is a consequence of the previous two lemmas:

Lemma A.9. Suppose g is Lipschitz, then L(g) = sup
x differentiable

||∇g(x)||.

Proof of Lemma A.2. It suffices to show that |min{g(y), 1 − g(y)} − min{g(x), 1 − g(x)}| is

bounded by |g(y) − g(x)|. Note that in the case when g(y) ≤ 1 − g(y), g(x) ≤ 1 − g(x) or

g(y) > 1 − g(y), g(x) > 1 − g(x), we have |min{g(y), 1 − g(y)} − min{g(x), 1 − g(x)}| =

|g(y)− g(x)|. When g(y) ≤ 1− g(y), g(x) > 1− g(x),

g(y)− g(x) ≤ g(y)− (1− g(x)) ≤ 1− g(y)− (1− g(x)) = g(x)− g(y),

|min{g(y), 1− g(y)} −min{g(x), 1− g(x)}| = |g(y)− (1− g(x))| ≤ |g(y)− g(x)|.

The other case g(y) > 1− g(y), g(x) ≤ 1− g(x) is similar. Therefore L(g ∧ (1− g)) ≤ L(g).

In general, |min{g1(y), · · · , gK(y)} − min{g1(x), · · · , gK(x)}| ≤ max
k
|gk(y) − gk(x)|.

The lemma thus follows.
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Proof of Lemma A.6. By Taylor’s theorem,

g(y)− g(x) = ∇g(x)(y − x) + o(||y − x||2), y → x

≤ ||∇g(x)||2||y − x||2 + o(||y − x||),

lim sup
y→x

g(y)− g(x)

||y − x||2
≤ ||∇g(x)||2.

Let y = x+ h∇g(x),

g(y)− g(x) = ∇g(x)(h∇g(x)) + o(h||∇g(x)||2), h→ 0

= h||∇g(x)||22 + o(h||∇g(x)||2),

lim
h→0

g(x+ h∇g(x))− g(x)

||h∇g(x)||2
= ||∇g(x)||2.

Therefore

lim sup
y→x

g(y)− g(x)

||y − x||2
= ||∇g(x)||2,

L(g) = sup
x 6=y

g(y)− g(x)

||y − x||2
≥ sup

x
lim sup
y→x

g(y)− g(x)

||y − x||2

= sup
x
||∇g(x)||2.
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On the other hand, by mean value theorem,

g(y)− g(x) = ∇g(ξ)(y − x), ξ = x+ θ(y − x), θ ∈ (0, 1),

≤ ||∇g(ξ)||2||y − x||2,

g(y)− g(x)

||y − x||2
≤ ||∇g(ξ)||2 ≤ sup

x
||∇g(x)||2,

L(g) ≤ sup
x
||∇g(x)||2,

so L(g) = sup
x
||∇g(x)||2.

Proof of Lemma A.7. By definition, the generalized directional derivative of g at x (A.1.1) is

g◦(x, v) = lim sup
t↓0

g(x+ tv)− g(x)

t
,

so for any direction v, we can extract a sequence tn ↓ 0 such that lim
n

g(x+tnv)−g(x)
tn

= g◦(x, v).

The generalized gradient ∂Cg(x) (A.1.2) is characterized by directional derivatives:

g◦(x, v) = max{〈ζ, v〉, ζ ∈ ∂Cg(x)}.

Choose v = ζ for some ζ ∈ ∂Cg(x), we have

lim
n

g(x+ tnζ)− g(x)

tn
= g◦(x, ζ) ≥ 〈ζ, ζ〉 = ||ζ||2,
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lim
n

g(x+ tnζ)− g(x)

||tnζ||
= lim

n

g(x+ tnζ)− g(x)

tn
· 1

||ζ||

= g◦(x, ζ) · 1

||ζ||

≥ ||ζ||2 · 1

||ζ||
= ||ζ||.

The local Lipschitz constant at x

lim sup
||y−x||→0

g(y)− g(x)

||y − x||
≥ lim

n

g(x+ tnζ)− g(x)

||tnζ||
≥ ||ζ||,∀ζ ∈ ∂Cg(x),

lim sup
||y−x||→0

g(y)− g(x)

||y − x||
≥ sup

ζ∈∂Cg(x)

||ζ||.

On one hand, the global Lipschitz constant dominates the local ones,

L(g) = sup
x 6=y

g(y)− g(x)

||y − x||
≥ sup

x
lim sup
||y−x||→0

g(y)− g(x)

||y − x||
≥ sup

x
sup

ζ∈∂Cg(x)

||ζ|| = sup
ζ∈∂Cg

||ζ||;

On the other hand, by mean value theorem [A.3],

g(y)− g(x) ∈ 〈∂Cg(z), y − x〉,

for some point z on the line segment [x, y]. Therefore

g(y)− g(x) ≤ sup
ζ∈∂Cg(z)

||ζ||||y − x||

≤ sup
ζ∈∂Cg

||ζ||||y − x||,

g(y)− g(x)

||y − x||
≤ sup

ζ∈∂Cg
||ζ||,
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so L(g) = sup
x 6=y

g(y)−g(x)
||y−x|| ≤ sup

ζ∈∂Cg
||ζ||. We conclude L(g) = sup

ζ∈∂Cg
||ζ||.

Proof of Lemma A.8. Denote Ex = {ζ : ζ = lim
n
∇g(xn), xn → x}. By gradient formula

[A.4] and [A.1], any ζ ∈ ∂Cg(x) can be written as ζ =
m∑
i=1

ciζi, where 0 ≤ ci ≤ 1,
m∑
i=1

ci =

1, ζ1, · · · , ζm ∈ Ex. It follows that

||ζ|| ≤
m∑
i=1

cm||ζi|| ≤ (
m∑
i=1

ci) max
i=1,··· ,m

||ζi|| = max
i=1,··· ,m

||ζi|| ≤ sup
ζ∈Ex
||ζ||.

A.1.3 Distance functions

Definition A.1.4. S denotes a nonempty closed subset of a Banach space X . The distance

function associated with the set S is defined by

dS(x) = inf
y∈S
||y − x||,

which is globally Lipschitz of rank 1.

Lemma A.10 (Exercise 10.40, [13]). S is a nonempty closed subset of Rn, and projS(x) denotes

the set of points u ∈ S satisfying dS(x) = ||x− u||. Then

• dS is Lipschitz and L(dS) = 1.

• dS is differentiable a.e.. For any x /∈ S such that d′S(x) exists, projS(x) is unique, and

∇dS(x) =
x− y
||x− y||

, where y = projS(x).
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Therefore, ||∇dS(x)|| = 1 a.e. in SC (and equality holds for any x where dS is differen-

tiable).

Lemma A.11. Let S be a closed set. Suppose dS is differentiable at x /∈ S, and y = projS(x),

then dS is differentiable on the open line segment xy (but may not be differentiable on the ray

that leaves x). All points on this line segment share the same gradient, equal to∇dS(x) = x−y
||x−y|| .

Suppose the line segment xy intersects ∂Br(S) at point z for some 0 < r < d(x, y), then

z = projBr(S)(x) (z is also the closest point from x to Br(S)). Therefore,∇dBr(S)(x) = x−z
||x−z|| =

x−y
||x−y|| = ∇dS(x).

Proof of Lemma A.10. Let y ∈ projS(x), which implies inf
u∈S
||x− u|| = ||x− y||.

If d′S(x) exists, then for any v ∈ Rn

d′S(x; v) = lim
t↓0

dS(x+ tv)− dS(x)

t

= lim
t↓0

inf
u∈S
||x+ tv − u|| − inf

u∈S
||x− u||

t

≤ lim
t↓0

||x+ tv − y|| − ||x− y||
t

=
d

dt
||x+ tv − y||

∣∣∣
t=0

=
2〈x− y, v〉

2||x+ tv − y||

∣∣∣
t=0

= 〈 x− y
||x− y||

, v〉.

By property of gradient, d′S(x; v) ≥ 〈∇dS(x), v〉,∀v ∈ Rn, we have

〈 x− y
||x− y||

, v〉 ≥ 〈∇dS(x), v〉,∀v ∈ Rn.
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Replace v by −v, we deduce 〈 x−y
||x−y|| , v〉 ≤ 〈∇dS(x), v〉, and so

〈 x− y
||x− y||

, v〉 = 〈∇dS(x), v〉,∀v ∈ Rn.

It follows that∇dS(x) = x−y
||x−y|| .

From this we also see that suppose d′S(x) exists, then y must be the unique point in projS(x)

(otherwise gradient will be non-unique).

Proof of Lemma A.11. By Lemma A.10, it suffices for the second sentence of the assertion to

show that for any x′ on the line segment xy (not including y), y = projS(x′). For any y′ ∈ S,

d(x′, y′) ≥ d(x, y′)− d(x, x′)

≥ d(x, y)− d(x, x′)

= d(x′, y),

where the second inequality follows from y = projS(x), and equality is achieved only when

y′ = y.

For the second part, suppose d(x, z′) ≤ d(x, z) for some z′ ∈ Br(S). Let y′ ∈ projS(z′)
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(so d(z′, y′) ≤ r), and look at the triangle with endpoints x, z′, y′. We have

d(x, y′) ≤ d(x, z′) + d(z′, y′)

≤ d(x, z) + r

= d(x, z) + d(z, y)

= d(x, y).

Since y = projS(x), we have d(x, y) ≤ d(x, y′), ” = ” iff y′ = y. Thus all the inequalities should

be equality, and y′ = y, z′ is on the line segment xy′ (now the same as line segment xy) to achieve

the first equality. Therefore, z′ = z.

A.1.4 Other

Theorem A.7 (Fubini’s theorem). Let (X,M, µ), (Y,N, ν) be measure spaces. If E ⊂ X × Y ,

for x ∈ X, y ∈ Y define the x-section Ex and y−section Ey of E by

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E}.

If E ∈M ×N and µ× ν(E) = 0, then ν(Ex) = µ(Ey) = 0 for a.e. x and y.

The reference is [19].
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A.2 Statistical results

Theorem A.8. Let Un be a U-statistic with degree d, i.e., Un = 1

(nd)

∑
c

f(ξi1 , · · · , ξid) where

ξ1, · · · , ξn are i.i.d random variables, f is permutation symmetric in its arguments, and c denotes

all combinations of d distinct elements {i1, · · · , id} from {1, · · · , n}. Suppose a ≤ ξi ≤ b, i =

1, · · · , n, then

P (Un − E[Un] ≥ t) ≤ exp(−2bn/dct2/(b− a)2).

The reference is (2.4) in [41] or (4.3) in [26].

Lemma A.12. Suppose Xn
p→ µ, and Xn’s are bounded uniformly, then E[Xn]

n→∞−→ µ.

Proof. We have |Xn| ≤ C for some constant C. For any ε > 0, P (|Xn − µ| > ε)→ 0.

EXn = E[XnI(|Xn − µ| > ε)] + E[XnI(|Xn − µ| ≤ ε)]

≤ CP (|Xn − µ| > ε) + (µ+ ε)P (|Xn − µ| ≤ ε)

n→∞−→ µ+ ε,

the inequality on the other side can be shown similarly, so

µ− ε ≤ lim inf EXn ≤ lim supEXn ≤ µ+ ε.

Let ε→ 0 to obtain E[Xn]→ µ.

In fact, this is a trivial consequence of the bounded convergence theorem (or dominated

convergence theorem) and the fact that convergence in probability implies for every subsequence
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there is a further subsequence along which a.s. convergence holds (and that common limits for

the subsequences implies the original sequence has the same limit). See [16] Theorem 2.3.4.

A.2.1 Empirical process theory

In this section we will follow the notation in chapter 19 of [60].

Let X1, · · · , Xn be a random sample from a probability distribution P on space X . Let Pn

denote the empirical measure on X1, · · · , Xn. Given a measurable function f : X → R, write

Pf =

∫
fdP, Pnf =

1

n

n∑
i=1

f(Xi).

Let F be a class of functions.

Definition A.2.1 (bracketing number). Given two functions l and u, the bracket [l, u] is the set of

all functions f with l ≤ f ≤ u. An ε-bracket in || · || is a bracket [l, u] with ||u − l|| < ε. The

bracketing number N[](ε,F , || · ||) is the minimum number of ε-brackets needed to cover F .

A function class that satisfies uniform law of large numbers under distribution P is called

P -Glivenko-Cantelli:

Definition A.2.2. A class F of measurable functions f : X → R is called P -Glivenko-Cantelli

if

||Pnf − Pf ||F = sup
f∈F
|Pnf − Pf |

a.s.→ 0.

The following gives a user-friendly condition for a function class to be P -Glivenko-Cantelli:

finite bracketing number for every ε > 0 implies uniform law of large numbers holds.
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Theorem A.9 (Glivenko-Cantelli, [60] Theorem 19.4). Every class F of measurable functions

such that N[](ε,F , || · ||L1(P )) <∞ for every ε > 0 is P -Glivenko-Cantelli.

Theorem A.10 ([60] Example 19.11). Let F be the collection of all monotone functions f : R→

[−1, 1], or bigger, the set of all functions that are of variation bounded by 1. Then there exists a

constant K such that, for every r ≥ 1 and probability measure P ,

logN[](ε,F , || · ||Lr(P )) ≤ K(
1

ε
).

An alternative condition for P -Glivenko-Cantelli is based on covering number:

Definition A.2.3 (covering number). The covering number N(ε,F , || · ||) is minimum number of

open balls {f : ||g − f || < ε} of radius ε and center g needed to cover F .

Theorem A.11. Let F be a class of measurable functions with an envelope function F , i.e.,

|f(x)| ≤ F (x) <∞ for every x and f . Suppose

sup
Q
N(ε||F ||L1(Q),F , || · ||L1(Q)) <∞,

for every ε > 0, where sup is taken over all probability measures Q such that ||F ||L1(Q) > 0. If

PF <∞, then F is P -Gilvenko-Cantelli.

Theorem A.12 (covering number for Lipschitz function balls, [29]). For a totally bounded metric

space (X , d) and the unit ball B of (Lip(X ), || · ||L),

N(X , 4ε, d) ≤ log2N(ε, B, || · ||∞) ≤ N(X , ε/4, d) log2(2b2diam(X )

ε
c+ 1),
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where N(X , ε, d) is the minimum number of balls with centers in X and radius d to cover X . If,

in addition, X is connected and centred,

N(X , 2ε, d) ≤ log2N(ε, B, || · ||∞) ≤ N(X , ε/2, d) + log2(2b2diam(X )

ε
c+ 1))

Remark. only metric properties of the underlying space X is involved.

A.3 Other elementary facts

Lemma A.13. The maximum of a family of convex functions (finite or infinite) is convex.

See, for example, [7].

Lemma A.14.

max{a1, a2} −max{b1, b2} ≤ max{a1 − b1, a2 − b2}.

In general,

max{a1, · · · , ak} −max{b1, · · · , bk} ≤ max{a1 − b1, · · · , ak − bk}.

229



Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments.
The Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Giovanni Alberti, Stefano Bianchini, and Gianluca Crippa. Structure of level sets and Sard-
type properties of Lipschitz maps. Annali della Scuola Normale Superiore di Pisa-Classe
di Scienze, 12(4):863–902, 2013.

[3] Bryon Aragam, Chen Dan, Eric P Xing, and Pradeep Ravikumar. Identifiability of
nonparametric mixture models and Bayes optimal clustering. The Annals of Statistics,
48(4):2277–2302, 2020.

[4] Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for
the EM algorithm: From population to sample-based analysis. The Annals of Statistics,
45(1):77 – 120, 2017.
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