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The study presents a series of alternative ANOVA-based methods which offered 

a remedy to the traditional F test to accommodate violations of normality and 

sphericity assumptions. Specially Robust Means Modeling (RMM), developed from 

structured means modeling (SMM), a branch of structural equation modeling (SEM), 

is introduced to circumvent the sphericity assumption while alleviating the violation 

of normality assumption. Maximum likelihood, Satorra-Bentler scaled chi-square, 

asymptotic distribution-free (ADF) methods and its corrections, as well as 

residual-based ADF methods (RES) and its corrections, are included in this RMM 

category.  

A Monte Carlo simulation is designed to evaluate Type I error robustness and 

power of the ANOVA-based methods and the proposed RMM methods under the fully 

crossed conditions including degree of non-sphericity, degree of non-normality, 

sample size, and the number of levels of the repeated measures. The study gains 

strong ground for RMM methods to be recommended over ANOVA-based methods 

under almost all conditions except when the model was complex (i.e. 8 levels) and 

sample size was small (15, 30).
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Chapter 1: Introduction 

Understanding the sources of stability and change in variables is of interest in 

virtually every discipline in the social sciences. For example, a psychologist may want 

to map the development of cognitive abilities in children. In this case, he/she may 

measure the outcomes of interest repeatedly across time in order to study the change 

over time and gather enough information to form a trajectory for the development of 

cognitive abilities in children. On the other hand, each subject can also be measured 

multiple times on the same dependent variables when he/she is exposed to two or 

more conditions, such as competing treatments, to test for a difference in those 

conditions. Both designs are known as repeated measures designs, also called 

within-subjects designs, which can be summarized as N subjects who are observed on 

each of K successive occasions corresponding to different conditions or different time 

points (Jensen, 1982). The repeated measures design typically requires far fewer 

subjects than the between-subject design, which makes the repeated measures design 

appealing in real world applications. The reason for this benefit is that measurements 

within the same subject are virtually always positively correlated. If this dependence 

among these measurements can be accounted for properly by statistical analysis, 

greater precision of parameter estimates, and more efficient inferential analyses can 

be achieved than in between-subject designs (Lix & Keselman, 2010), and increased 

power to detect true treatment effects can be obtained (Maxwell & Delaney, 1990).  



 
 
 
  

2 
 

For testing data gathered in such repeated measure designs, traditional analysis 

of variance (ANOVA) is still commonly used. Unfortunately, this approach requires 

stringent assumptions routinely violated with real world data, including normality of 

score distributions and sphericity. 

Sphericity is a condition assumed in repeated measures ANOVA that is required 

for the resulting test statistic to follow an F distribution. It refers to the homogeneity 

of the treatment-difference variances, or the variances for differences between all the 

possible pairs of treatment scores of the repeated measures (Huynh & Feldt, 1970; 

Keselman, Keselman, & Shaffer, 1991). Suppose the repeated measures contain K 

levels of treatments, the variance of a difference between any two levels of treatments 

can be defined as 

 

2 2 2( ) 2l j l j l j ljY Y         (1) 

  

where 1, 2, ...,l K , 1, 2, ...,j K  and l j ; Yl is one set of treatment scores with

2
l  being its variance, Yj is another set of treatment scores with 2

j  being its 

variance, and lj  is the covariance of the two set of scores.  

The violations of the assumptions of normality and sphericity can render the 

validity of inferences from the traditional repeated measures ANOVA test somewhat 

questionable. To address such violations, various adjustments to the ANOVA test 

have been proposed, but they too have various limitations.  
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In recent decades, structural equation modeling (SEM) has gained increasing 

attention across fields such as education, psychology, sociology, and economics due to 

its versatility in modeling relations among both measured and latent variables. For the 

proposed study, two aspects of SEM are directly relevant for repeated measures 

designs. First, approaches within SEM does not need to make assumptions about 

variances in order to yield a proper test statistic, thereby circumventing the sphericity 

assumption altogether. Second, a branch of SEM called structured means modeling 

(SMM) can be used with robust rescaling corrections to estimate parameters in 

repeated measures designs precisely while alleviating the violation of the normality 

assumption. 

During the past few decades, researchers have been taking great endeavors to 

find the best method for repeated measures designs as they have been widely used in 

social and behavioral studies. The current dissertation study aims to compare the 

performance of the adjusted ANOVA-based methods with those derived from the 

robust SMM framework to determine the optimal strategies for analysis within 

repeated measures designs. The current study is a simulation, requiring the integration 

of multiple software packages, and examining a wide variety of real world data 

scenarios. As such, the current study provides a useful guideline for practitioners in 

various fields to carry out repeated measures designs or longitudinal studies in a more 

modern, and more importantly, a more versatile and valid way. 
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Chapter 2: Literature Review 

Traditional Procedures for One-way Repeated Measure Designs 

As mentioned earlier, a repeated measures design can be used to either study the 

change over time (the same subjects receive the same treatment repeatedly across time) 

or to test for differences in different conditions (the same subjects are measured 

multiple times on the same dependent variables when they are exposed to two or more 

conditions). It can be used with only one variable measured repeatedly overtime or in 

different conditions (one-way repeated measures design) or combined with other 

conditions (i.e. combined with between-subject design, multivariate repeated 

measures, etc.). The former is the focus of the current study.  

Traditional Unadjusted F Test. Suppose in the one-way repeated measures 

design, the repeated measures factor contains K levels (k = 1, 2,…, K) and N subjects 

(i = 1, 2, …, N) are observed and measured repeatedly on this factor, the model can be 

defined as 

   Yik = μ.. + β.k + eik (2) 

 

where μ.. is the grand mean of the scores; Yik is the score for the ith subject in the 

kth treatment level; β.k is the treatment effect of the kth level; eik is the error effect for 

Yik. The hypothesis to be tested is  

H0: μ.1= μ.2 =, …, = μ.K   (3) 
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where μ.K is the mean of Kth treatment level.  

With the level of significance (), the critical value for the traditional unadjusted 

F test is: 

 

[ ; 1, ( 1)( 1)]F K N K     (4) 

 

with 1numeratordf K   and ( 1)( 1)denominatordf N K   . 

The validity of this test rests on the assumptions of normality, independence of 

errors, and sphericity. If all of these assumptions are satisfied, the traditional 

unadjusted F test is believed to be most powerful for detecting treatment effects 

(Keselman, Algina, & Kowalchuk, 2001). However, in reality, assumptions such as 

normality and sphericity are typically violated.  

Sphericity is defined as the homogeneity of all treatment difference score 

variances; that is, the variances for all possible differences between K levels of 

treatment are equal. This assumption is almost impossible to be satisfied in real-world 

data as when repeated measures are used, the variances actually tend to increase over 

time. Moreover, a test of sphericity assumption is also sensitive to violation of the 

normality assumption (Lix & Keselman, 2010). When the sphericity assumption is 

violated, the traditional F test becomes inflated, causing too many false rejections of 

the null hypothesis, or increased Type I error rate (e.g., Algina & Keselman, 1997; 

Keselman et al., 2001; Lix, Keselman, & Keselman, 1996; Maxwell & Delaney, 1990). 
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And as the degree of deviation from sphericity escalates, the Type I error rate 

becomes increasingly inflated (Keselman et al., 2001). Therefore, the traditional F test 

fails to be robust to the violation of sphericity assumption (Box, 1954; Huynh & Feldt, 

1980; McCall & Appelbaum, 1973; Quintana & Maxwell, 1994). Similarly, when the 

normality assumption is violated, the traditional F test also yields inflated Type I error 

rates and the power discreases. 

In order to provide a remedy to the traditional F test, many other ANOVA-based 

methods believed to be insensitive to violations of the assumptions were proposed, 

including adjusted degrees of freedom univariate F tests, multivariate approach, as 

well as robust estimator.  

Adjusted Degrees of Freedom Univariate F Tests. In order to alleviate the 

violation of the sphericity assumption when using the traditional analytic approach, 

Box（1954） suggested that the degrees of freedom be adjusted by a reduction factor 

  

 
2

..)

2 22 2
. ..

(

( 1)[ ] (2 ) ( )

jj

jjl

K

K K K

 
  




    
 (5) 

 

where jl  is an element in row j  and column l  of the population covariance 

matrix, jj  is the mean of the variances (the diagonal elements) in the population 

covariance matrix, .j  is the mean of the entries in the jth row of the population 

covariance matrix, and ..  is the mean of all elements in the population covariance 
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matrix. The population sphericity parameter is denoted as   which indicates the 

extent to which the covariance matrix departs from sphericity. It falls between 

1 / ( 1)K   and 1 where 1 denotes no violation of sphericity assumption while lower 

values imply a departure from the assumption (see, e.g., Algina & Keselman, 1997; 

Quintana & Maxwell, 1994). However, as a population parameter,   is usually 

unknown and therefore must be estimated from a sample (Keselman, Algina, 

Kowalchuk, & Wolfinger, 1999; Quintana & Maxwell). Therefore, an approximate 

critical value based on the altered df  is 

 

[ ;( 1) , ( 1)( 1) ]F K N K      (6) 

 

with ( 1)numeratordf K    and ( 1)( 1)denominatordf N K    . 

Three df adjustments, widely available in statistical packages, were proposed to 

estimate this sphericity parameter, including Geisser-Greenhouse (GG) lower-bound 

adjustment (Geisser & Greenhouse, 1958), Box’s   adjustment (Box, 1954), and the 

Huynh-Feldt (HF)   adjustment (Huynh & Feldt, 1976), which were described 

below. 

Geisser - Greenhouse Lower–Bound Adjustment (GG). Geisser and Greenhouse 

(1958) acknowledged that the lowest possible population value for   would be 

1 / ( 1)K   (Maxwell & Delaney, 1990). For example, if 3K  ,   is larger than or 

equal to 0.5. Therefore, the smallest possible degree of freedom achieved through this 
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lower-bound adjustment equals 1 for the numerator and 1N   for the denominator. 

Because a larger F critical value could be obtained with smaller degrees of freedom, 

the critical value corresponding to these degrees of freedom can be determined as 

[ ; 1, 1]F N   with 1numeratordf   and 1denominatordf N  . Using this GG lower 

bound adjustment makes a conservative test of the null hypothesis, leading to fewer 

rejections of the null hypothesis than expected at a nominal  level. The simplicity in 

calculating the GG lower bound adjustment has led to its widespread use. 

Box’s Adjustment (BOX). Proposed by Box (1954) and implemented by Geisser 

and Greenhouse (1958), Box’s   adjustment employed observed sample data to 

estimate the population value of   based on the approximate distribution of F  

presented by Box (1954). Therefore, this adjustment is usually called Box’s   

adjustment. As the sample value is generally larger than the theoretical lower bound, 

it is a less conservative adjustment for df (Maxwell & Delaney, 1990).    can be 

calculated as  

 


2

..)

2 22 2
. ..

(

( 1)[ ] (2 ) ( )

jj

jjl

K X X

K X K X K X
 


    
 (7) 

 

where jlX  is an element in row j  and column l  of the sample covariance matrix, 

jjX  is the mean of the variances (the diagonal elements) in the sample covariance 

matrix, .jX  is the mean of the entries in the jth row of the sample covariance matrix, 

and ..X  is the mean of all elements in the sample covariance matrix. Thus, the 
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critical value will be approximated as  [ ;( 1) , ( 1)( 1) ]F K N K     with 

( 1)numeratordf K   and ( 1)( 1)denominatordf N K   .  

Due to the complexity in its calculation,   was not widely used until the 

mid-1980s when statistical packages were developed that included it. Compared with 

the GG lower bound adjustment, Box’s   adjustment is able to control Type I error 

rates better and is more powerful than GG (Maxwell & Delaney, 1990). The 

disadvantage of the   adjustment, however, is that it tends to over-adjust the 

degrees of freedom and underestimate population  . In an attempt to correct this 

bias in  , Huynh and Feldt (1976) developed another adjustment, which is referred 

to as the Huynh-Feldt (HF)   adjustment. 

Huynh-Feldt Adjustment (HF). The Huynh-Feldt   adjustment is similar to 

Box’s   adjustment in the way that it also relies on the observed sample data. It can 

be expressed as function of   as 

 

 


( 1) 2

( 1)[ 1 ( 1) ]

N K

K N K




 


   
, 

(8) 

 

thereby adjusting   upward. However, it tends to overestimate   and can 

sometimes be larger than 1; in such cases it is set equal to 1 given that the upper 

bound of   is 1 (Maxwell & Delaney, 1990). Thus, the critical value can be 

approximated as  [ ;( 1) , ( 1)( 1) ]F K N K      with ( 1)numeratordf K   and

( 1)( 1)denominatordf N K   . Among the three adjustments, the HF   adjustment 
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yields the smallest critical value and thus can lead to more rejections of the null 

hypothesis. 

As mentioned earlier, these three df adjustments are mainly designed to 

accommodate violations of the sphericity assumption. In real world conditions, 

violations of both sphericity and normality are the main challenges practitioners face 

when they use repeated measures ANOVA. In fact, non-normality seems more of a 

rule than an exception (Micceri, 1989), and when coupled with sphericity assumption 

violations may distort the analytic results even further. Regarding the degree to which 

sphericity assumption is violated, when  ≥.75, it is considered as moderate 

violation of sphericity assumption.  = .41 is regarded as the lower limit of values 

often found in the beharioral literature. Even though  =0.08 theoretically exists, 

they are very unlikely to occur in real world research (Quintana & Maxwell, 1994).  

The Multivariate Approach. While the traditional ANOVA approach treats 

several measurements over time/occasions as a single dependent variable repeatedly 

measured, the multivariate approach treats the repeated measures as separate 

dependent variables by creating difference variables based on repeated measurements 

(Kieffer, 2002). In this way, heterogeneous covariance structures are allowed to exist 

and thus the sphericity assumption is able to be circumvented (Keselman et al., 1999). 

For example, for a one-way repeated measures design with K levels, the multivariate 

approach creates 1K   difference variables or contrasts based on the original K  
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levels and then analyzes the new variable set. The null hypothesis to be tested, using 

Hotelling’s 2T , is that the vector of population means of these 1K   difference 

variables equals a zero vector (McCall & Appelbaum, 1973). The test statistic is 

 21

1

N K
F T

K

 



, (9) 

 

and is compared to the critical value obtained with ( 1)numeratordf K   and 

( 1)denominatordf N K   . 

The multivariate approach has less stringent requirements than the conventional 

test in that it is not dependent on the sphericity assumption, but only requires that the 

covariance matrix be positive definite (Keselman et al., 2001). But it does tend to 

require a larger sample size than the univariate approach to detect an effect given that 

it regards each measurement by an individual as a separate dependent variable 

(Kieffer, 2002), which can offset the advantage of repeated measures design. When 

sample size is not large enough relative to the number of the levels of the repeated 

measures, the multivariate approach is not as powerful as univariate approach. 

Moreover, if the sample size is smaller than the number of repeated measures minus 

one, multivariate statistic cannot be calculated (Fernándes, Vallejo, Livacic-Rojas, 

Herrero, & Cuesta, 2009). However, the most important disadvantage of the 

multivariate approach is that it rests on the normality assumption and is quite sensitive 

to extreme skew (e.g., Berkovits, Hancock, & Nevitt, 2000; Harwell & Serlin, 1977; 

Kieffer, 2002; Lix & Keselman, 2010), which is relatively common in real data 
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analysis. 

ANOVA-Based Robust Estimator. The trimmed means method has been 

widely used to derive robust measures of central tendency and variability to deal with 

the issue of non-normality. A trimmed mean is obtained by removing a predetermined 

portion of the largest and smallest observations on each measurement occasion and 

computing the mean of the remaining observations (Lix & Keselman, 2010). For 

example,  -trimmed means are means calculated from ordered data with the desired 

  proportion of data removed from both tails of the distribution. Usually 20% (i.e., 

 trimming is recommended (Wilcox, 1995).  

Some researchers have called for caution in the use of trimmed means because 

instead of testing the equality of the usual population means, the trimmed means 

method actually modifies the null hypothesis pertaining to the equality of the 

population trimmed means across repeated measures (e.g., Berkovits et al., 2000). On 

the other hand, Wilcox (1993) explored the robustness of the trimmed means method 

against non-normality and found that inferences based on trimmed means method 

could be more powerful than those based on the traditional means method. Wilcox 

(1997, 1998) further concluded that the results from the trimmed means method are 

more robust and may therefore be more accurate and replicable, which should be 

preferable over conventional statistics. This conclusion was also supported by 

Berkovits et al. (2000), who found that when the sphericity assumption was violated, 
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trimmed mean methods were able to offer reasonable Type I error control.  

Due to the limitations of the ANOVA-based methods exhibited in the previous 

studies, more endeavors were taken to develop new methods to deal with the 

violations of the assumptions of normality and sphericity. Structual means modeling is 

one of the alternatives that can be used for repeated measures design, based on which, 

robust means modeling (RMM) could be developed.  

 

Introduction to Robust Means Modeling 

Structured Means Modeling (SMM). Structured means modeling is a branch 

of structural equation modeling (SEM) that has become an ever-increasingly popular 

data analytic method across a wide variety of fields due to its versatility in modeling 

relations among both measured and latent variables. Growing out of, but more 

powerful and flexible than, multiple regression, SEM can be treated as a more general 

and flexible model subsuming methods such as canonical correlation, multiple 

regression, MANOVA, ANOVA, and t-tests, and is able to deal with complex 

situations involving, for example, interactions, measurement error, multilevel models, 

and correlated error terms. 

Covariance is generally regarded as the basic statistic of SEM as the main goal 

of SEM is to understand patterns of covariances among a set of observed variables 

using a proposed model. If only covariances are analyzed, means of observed 



 
 
 
  

14 
 

variables are irrelevant and the intercepts are typically omitted from the structural 

equations (Hancock, 1997). Some researchers, especially those who use ANOVA 

heavily in their analysis, therefore, are under the impression that SEM deals solely 

with covariances. However, this view is too limited as means can also be estimated 

and analyzed in SEM for both latent and observed variables (Kline, 2011) and this can 

be achieved with SMM. SMM aims to model variables’ mean structure along with the 

covariance structure in order to facilitate inference regarding populations’ underlying 

construct means (Hancock, 2001). SMM uses equations involving means along with 

the accompanying variable intercepts and these new equations constitute the mean 

structure, which is added to the model’s basic covariance structure and estimated in 

addition to covariance structure. Therefore, SMM includes intercept parameters as 

well as variances, covariances, and path coefficients (Thompson & Green, 2006). In 

other words, by using SMM, variables’ mean structure and covariance structure can 

be modeled simultaneously, and tests of hypotheses about means on a latent variable 

or observed variable, as well as the error covariance structure, can be achieved. This 

actually makes ANOVA a special case of SEM given that ANOVA is only concerned 

with means of observed variables.  

To understand how SMM operates, assume latent variable   has p observed 

variables as indicators, 1 2, , ..., px x x  in vector x; x  values for a given individual 

may be expressed in a 1p  vector as 
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  x Τ Λ δ , (10) 

 

where Τ  is a 1p  vector of intercept values, Λ  is a 1p  vector of loadings 

relating   to its indicators, and δ  is a 1p  vector of random measurement errors. 

Thus, the expected values for the indicators can be derived as 

 

E[ ]   x μ Τ Λ , (11) 

 

where μ  is the 1p  population mean vector for the observed variables, and   is 

the mean of  . Assuming   is independent of the measurement errors, the model 

implied variance-covariance matrix can be derived as 

 

Σ=ΛΦΛ΄+Θ, (12) 

 

where Φ is the variance for   and Θ is the p p  error variance-covariance matrix. 

For repeated measures design, two aspects of SMM are directly relevant. First, 

similar to SEM, SMM makes no assumptions about (co)variances and allows errors to 

correlate with each other if necessary, thereby circumventing the sphericity 

assumption altogether. Second, a special case of SMM is that there is no latent factor

 , and only the observed variables are in the model. In this case, the original SMM 

with a latent variable can be simplified to a measured variable mean structure model 

 

 x Τ δ . (13) 
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Accordingly, the expected values for the indicators can be derived as 

 

E[ ]  x μ Τ , (14) 

 

and the model implied (co)variance can be derived as 

 

Σ= Θ. (15) 

 

Graphically, this model can be presented as a constant number of one, as well as the 

error terms, having direct bearing on the observed variables (See Figure 1).  

 

 

 

 

 

 

 

Figure 1: The path diagram of null hypothesis 

The null hypothesis for the omnibus test for repeated measures thus becomes 

  

0H :  1 2 ... p     . (16) 

 

To test the equality of the means/intercepts, a constraint can be imposed forcing 
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intercepts equal across time points/measure occasions while allowing for covariances 

among variables/errors. The maximum likelihood (ML) estimator is the traditional 

method used in SMM estimation and it assumes that the observed variables are 

continuous and multivariate normal.  

Robust Means Modeling (RMM). For SEM, obtaining parameter estimates 

(estimation) and evaluating the estimates’ sampling variability as well as the behavior 

of test statistics (evaluation) are the two major statistical tasks (Satorra, 1990). The 

conclusions gained in the statistical analysis need to be justified by two types of 

assumptions: structural and distributional. Structural assumptions are related to the 

specifications of the models. Usually it is assumed that the model is correctly 

specified, which is fairly reasonable in the current study given the simplicity of the 

measured variable mean structure models. Distributional assumptions are mainly 

concerned with the form of the distribution of the observed variables. For example, it 

is typically assumed that the observed variables are normally distributed, but in reality 

this assumption does not hold in most cases (e.g., Micceri, 1989). Violation of 

assumptions may make some conclusions of precision of the estimators and the 

calculation of the level of significance invalid, or it may distort the analysis (Satorra, 

1990). In the present study, it is assumed that the structural assumptions hold, while 

the issues related with violation of distributional assumption will be the focus. 

In order to introduce and compare various estimators, a general condition of 
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SEM can be laid out as follows: For a one-way repeated measures design with p 

measured variables (or occasions), assume the sample mean vector X  and the 

p p  covariance matrix S  are obtained from a random sample of size n  from a 

population with mean vector μ  and covariance matrix 0Σ . This model yields

* ( 3) / 2p p p   unique means, variances, and covariances. For the ith individual 

this random sample can be written as 1 2( , ,..., ) 'i i i ipx x xX  for 1, 2, ...,i n  which is 

obtained from 1 2( , ,..., ) 'px x xX . The general null hypothesis for SEM to be tested 

is 0H : 0Σ = Σ(θ) , where Σ(θ)  is a covariance matrix written as functions of q  

free model parameters in vector θ . For simplicity, for any vector of model parameter 

estimates θ , the corresponding model-implied covariance matrix Σ(θ)  can be 

written as Σ . The purpose in the parameter estimation is to yield a vector of 

parameter estimates that minimize the function denoted as F(S, Σ)  capturing the 

discrepancy between elements in Σ  and S . Meanwhile, the goodness-of-fit test 

statistics are also formulated as a function of this discrepancy and are of the form

( 1)T c n F  , where F  is the minimum value of F(S, Σ) , n  is the sample size, 

and c  is a scaling factor. When the null hypothesis is true, the asymptotic 

distribution of T is a 2  distribution with *p q  degrees of freedom (e.g., Fouladi, 

2000). However, there are also some other test statistics proposed whose distribution 

is not approximated by a 2  distribution. For example, the distributions of two 

corrected test statistics proposed by Yuan and Bentler (1997, 1998, 1999) which will 
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be addressed in later section are approximated by an F distribution. 

If the maximum likelihood (ML) method is used for SMM estimation, the fit 

function to be minimized is  

    1 1
ln | | ( ) ln | | [ ]' [ ]MLF tr p

 
      Σ SΣ S X μ Σ X μ , (17) 

and the test statistic associated with this fitting function is 

( 1)ML MLT n F  . (18) 

In this case, the scaling factor c is 1. The asymptotic distribution of MLT  can be 

approximated by a 2  distribution with *p q  degrees of freedom when null 

hypothesis 0H  is true and when data are multivariate normal.  

The robustness of ML to violations of distributional assumptions has been the 

focus of a number of studies. To start, it has been observed that under certain 

conditions of distribution violations, ML behaves reasonably well. For example, Chou, 

Bentler, and Satorra (1991) found that the ML test statistics and standard errors were 

quite robust to the violation of the normality assumption when data were either 

symmetric and platykurtic, or asymmetric with zero kurtosis. Across a broader class 

of nonnormal distributions, however, ML test statistics and standard errors have been 

found to be biased even though the ML estimates are fairly consistent (e.g., Chou et 

al., 1991; Curran, West, & Finch, 1996; Finney & DiStefano, 2013; Fouladi, 2000; Hu, 
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Bentler, & Kano, 1992; Nevitt & Hancock, 2001, 2004; Powell & Schafer, 2001; Yuan 

& Bentler, 1997, 1998, 1999), with the direction of bias appearing to be dependent on 

whether the data are leptokurtic or platykurtic (e.g., Browne, 1984; Chou et al., 1991; 

Finney & Stefano, 2013). Therefore, it is usually recommended that robust estimators 

be used when the normality assumption does not hold. The use of robust estimators in 

SMM then leads to what is termed here robust means modeling (RMM) (Fan & 

Hancock, 2012). 

Application of RMM to one-way repeated measures design.  

Originally, robust estimators were applied to traditional SEM where means were 

unrestricted (i.e., ignorable) and covariance structures were the focus. But with SMM, 

both means and covariance structures need to be taken into account. In order to 

employ conventional SEM software for covariance structures to analyze both means 

and covariance, Satorra (1992) and Browne and Arminger (1995) suggested modeling 

mean and covariance structure simultaneously by replacing the sample covariance 

structure S  with an augmented moment matrix  

*
' 1

 
   

S XX' X
S

X
. (19) 

Correspondingly, the population augmented moment matrix can be specified as 
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'
*

' 1

 
 
 

Σ μμ μ
Σ

μ
. (20) 

Then the newly augmented matrices can be used to analyze the means and covariance 

structure simultaneously. 

The robust estimators relevant to the current study generally fall into two 

categories: (a) using ML for parameter estimates but adjusting the test statistic; (b) 

and abandoning ML for distribution-free estimators to account for the non-normality.  

ML-Based Adjusted Test Statistics. Both the Satorra-Bentler scaled 2  test 

statistic and adjusted 2  test statistic were developed based on the ML test statistics.  

Satorra-Bentler scaled Chi-square test statistic (SB1). It is now generally 

accepted that whether or not the normality assumption holds, ML parameter estimates 

are consistent. However, this robustness does not apply to test statistics obtained 

under non-normality (e.g., Satorra, 1992). Therefore, Satorra and Bentler (1988, 1994) 

developed a scaled 2 test statistic (TSB1) to adjust the ML-based 2  by taking into 

account the observed data’s distributional characteristics so that the test statistic’s 

distribution behavior should more closely approximate the theoretical 2  reference 

distribution.  

Let ( )vech   be an operator that transforms a symmetric matrix into a vector by 

stacking the columns of the non-redundant (diagonal and lower triangular) elements 

of the matrix so that ( *)vechs S  and  ( *)vechσ Σ . Let σ  be the *p q  matrix 
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of partial derivatives of the *p  elements in σ  evaluated at the vector of final 

model parameter estimates θ (i.e., Jacobian matrix ), W be the normal theory ML 

weight matrix at the minimum of MLF obtained by the function of  1 1 
Σ Σ (  

denotes the Kronecker product) , and  

    1( ' ) ' U W Wσ σ Wσ σ W    . (21) 

The test statistic can be obtained by 


1 [( * ) / ( )]SB MLT p q tr T  UΓ  (22) 

where Γ  is the population matrix of s  which is a symmetric * *p p  

fourth-order moment weight matrix. Γ  is a consistent estimator of Γ  and is 

obtained when the population moments are replaced by the corresponding sample 

moments. Let [( )( ) ']i vech  i iY X X X X  and YS  be the corresponding sample 

covariance matrix of iY . Then an estimator for Γ  is YS . Thus, the test statistic can 

be expressed as 


1 [( * ) / ( )]SB MLT p q tr T  YUS , (23) 

which is evaluated as a 2  distribution with *p q  degrees of freedom when H0 is 

true. In this way, the mean of the sampling distribution of 1SBT  is adjusted closer to 

the expected mean under the model (Bentler, 1996).   
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The advantage of this adjustment is that it takes the covariance matrix of the 

sample (co)variances, which captures the degree of non-normality of the sample data, 

into consideration and therefore performs better in controlling Type I error rates under 

a wide variety of distribution conditions, including normal data (Chou et al., 1991; 

Curran et al., 1996; Fouladi, 2000; Hu et al., 1992; Nevitt & Hancock, 2004). But 

there are also some cautions against this statistic. Chou et al. (1991) pointed out that 

because the model evaluated in their study was simple and the non-normality 

conditions investigated were limited, the performance of the S-B scaled test statistic 

with more complex models and more conditions of non-normality needed further 

investigation. Yuan and Bentler (1998) claimed that this statistic worked well when 

distribution assumptions were violated, but its asymptotic distribution was generally 

unknown. Hu et al. (1992) and Bentler and Yuan (1999) suggested using the S-B 

scaled test statistic in medium to large samples ( 120n  ), but not in small samples.  

Satorra-Bentler adjusted Chi-square test statistic (SB2). Besides adjusting the 

mean of the sampling distribution, Satorra and Bentler (1988, 1994) also proposed 

adjusting both the mean and the variance of the statistic to better approximate a 2  

distribution. This statistic is then called adjusted 2  statistic and can be obtained as 

 
2 [ '/ ( )]SB MLT d tr T UΓ , (24) 

where 
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   2 2' [ ( )] / [( ) ]d tr tr UΓ UΓ . (25) 

The studies on the behavior of the adjusted 2  statistic were limited due to lack of 

available software. Based on the result from their simulation study, Satorra and 

Bentler (1994) concluded that this adjusted 2  statistic performed “remarkably well” 

(p. 413). However, the findings in Nevitt and Hancock (2004) did not favor this 

adjusted statistic and indicated comparably low power and attenuated Type I error 

rates across most conditions in their study. Based on these findings, Nevitt and 

Hancock decided not to recommend this method. Fouladi (2000) also indicated that 

this adjusted statistic was less powerful than the S-B scaled 2  test statistic. 

Distribution-free Methods.  

Browne’s asymptotic distribution-free (ADF) test statistic. Distribution-free 

methods form another large category of robust estimators. Among them, Asymptotic 

Distribution-free (ADF) estimation, which is a generalized least squares analysis, was 

introduced by Browne (1984) to remedy the problems associated with distribution 

misspecifications since ADF makes minimal or no assumptions about the population 

distribution of the observed variables. The weight matrix it uses is based on the 

inverse of the matrix formed by the sample fourth-order moments and sample 

covariances (Yuan & Bentler, 1997).  

Briefly, the discrepancy function to be minimized is 
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  1
( ) ' ( )ADFF


 s -σ Γ s-σ . (26) 

The resulting test statistic under the null hypothesis is 

( 1)ADF ADFT n F   (27) 

which is referred to as a 2  distribution with *p q  degrees of freedom when 0H  

is true.  

This estimator has received a great deal of attention ever since it was proposed. 

Numerous simulation studies (e.g., Anderson & Gerbing, 1984; Chou et al., 1991; 

Curran et al., 1996; Hoogland & Boomsma, 1998; Hu et al., 1992; Muthen, 1989; 

Muthen & Kaplan, 1992; Nevitt & Hancock, 2004) confirmed that the ADF statistic 

was insensitive to the violation of the normality assumption and performed very well 

when the sample size was very large (e.g., larger than 2500). Unfortunately, however, 

if the sample size was small to moderate or if the model was complex, it behaved 

poorly and yielded distorted conclusions about the adequacy of the model.  

The fact that ADF uses the inverse of the fourth-order moments of the measured 

variables to compute parameter estimates, standard errors, as well as test statistics 

might be the reason why ADF is highly unstable in small to moderate sample sizes 

(Satorra & Bentler, 1994). Based on the findings of the previous studies and their own 

meta-analysis, Powell and Schafer (2001) concluded that the ADF test statistic should 
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not be recommended. 

Yuan and Bentler adjusted ADF I (YBADF). Because the ADF test statistic has 

been found to over-reject correct models in small to moderate samples, Yuan and 

Bentler (1997, 1999) proposed a corrected test statistic which has the same asymptotic 

distribution as the ADF test statistic 

1
( ) / [1 ( 1) ]YB ADF ADF ADFT T n T    (28) 

and is also referred to as a 2  distribution with *p q  degrees of freedom when 

0H  is true. It can be seen that ( )YB ADFT  gets closer to ADFT  when the sample size 

increases, but it eases the inflation problem ADFT  has at smaller samples sizes. 

Generally, it performs very well at the smaller sample sizes, but this statistic tends to 

overcorrect the inflation of ADFT  (Bentler, 2006, EQS Manual) and it is consistently 

conservative (Fouladi, 2000).  

Yuan and Bentler adjusted ADF II (FADF). Intrigued by the similarity 

between the quadratic form of ADFT  and Hotelling’s 2T statistic, Yuan and Bentler 

(1999) proposed to scale ADFT  so that ADFT  can be approximated by an F 

distribution as 

( ) [ ( * )] / [( 1)( * )]F ADF ADFT T n p q n p q      (29) 

with degrees of freedom *p q  and ( * )N p q   for numerator and denominator, 
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respectively, when 0H  is true. ( )F ADFT  is asymptotically equivalent to ADFT . 

Yuan and Bentler (1999) used Monte Carlo simulation to compare the 

performance of ADFT , ( )YB ADFT , and ( )F ADFT  under various distributional forms and 

sample sizes and concluded that both ( )YB ADFT  and ( )F ADFT  behaved better than 

ADFT and yielded adequate power. They also contended that between ( )YB ADFT  and 

( )F ADFT , because F distribution approximations are much better than the large sample 

theory based 2  approximations, it is understandable why ( )F ADFT  had improved 

performance relative to ( )YB ADFT .  

Residual-based ADF test statistic (RES) and its corrections (YBRES, FRES). 

Besides the aforementioned ADF test statistics, Browne (1984) proposed a 

residual-based ADF test statistic as 

   1( 1) '[ ( ' ) ' ]cREST n   -1 -1 -1 -1
Y Y Y Ye S S σ σ S σ σ S e     , (30) 

where e s - σ  is a * 1p   column vector of residual variances and covariances. 

REST  can be computed more easily than the ADF test statistics, but as Yuan and 

Bentler pointed out, similar to the ADF test statistic, REST  is also inflated and at the 

same time sensitive to model degrees of freedom rather than number of parameters in 

the model, thus rejecting correct models far too frequently when models are large 

while sample sizes are small to moderate. In order to solve the issues related to REST , 

Yuan and Bentler (1998) proposed corrections to REST  that are similar to the 
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corrections they proposed to adjust ADFT . They proposed replacing the fourth-order 

moments YS  by a new estimate of Γ  which has good finite sample properties. The 

resulting new statistic is  

2
( ) / [1 / ( 1) ]YB RES RES REST T nT n   , (31) 

following a 2  distribution with *p q  degrees of freedom when 0H  is true. 

( )YB REST  is asymptotically equivalent to REST . Also, ( )YB REST  is numerically smaller 

than REST  and, therefore, it is expected that the inflated rejection rate of REST  for 

models with smaller sample sizes can be lessened.  

Yuan and Bentler (1998) also noted that the quadratic form of ( )YB REST  

resembles that of Hotelling’s 2T , therefore proposing to rescale REST  to an F 

distribution as  

( ) [ ( * )] / [( 1)( * )]F RES REST T n p q n p q     , (32) 

with degrees of freedom *p q  and ( * )N p q   for numerator and denominator 

respectively. The distribution of ( )F REST  is also asymptotically equivalent to REST . 

Yuan and Bentler (1998) and Bentler and Yuan (1999) employed Monte Carlo 

simulations to compare the performances of REST , ( )YB REST , and ( )F REST  under 

various distributional and sample size conditions and concluded that both ( )YB REST  

and ( )F REST  were able to correct the over-rejection of REST  for correct models in 
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finite samples. Among the three, ( )YB REST  behaved most stably across different 

conditions but similar to its ADF analog ( )YB ADFT ; it also tended to overcorrect the 

inflation of REST .  Of all test statistics, ( )F REST  performed best over the range of the 

conditions. Based on their findings, Bentler and Yuan recommended that ( )F REST  

should be the first choice for practitioners if the sample size is smaller than the 

number of nonduplicated elements of the sample covariance (i.e., *n p ).  

Nevitt and Hancock (2004) were among the few studies that compared all the 

aforementioned nine test statistics in one study. First of all, their study supported that 

MLT  was not robust to departures to multivariate normality. The comparison between 

1SBT  and 2SBT  revealed that even though 1SBT  did not perform very well when the 

ratio of sample size to the number of free parameters was : 10 :1n q  , generally 

speaking, 1SBT  outperformed 2SBT . Therefore, they recommended 1SBT  in applied 

modeling situations. This finding is in line with that discovered by Bentler and Yuan 

(1999) where they found that 1SBT  broke down under the smallest sample size 

conditions. At the same time, similar conclusion regarding the performance of ADFT  

and REST  were obtained that these two statistics were not useful for realistic sample 

sizes. ( )F ADFT , ( )YB ADFT , and ( )YB REST  were able to control Type I error rates under 

some conditions but failed under others. When they failed, the Type I error rates 

became inflated under some conditions but attenuated under others. ( )F ADFT  and 

( )F REST  performed differentially, showing similar behaviors under some conditions 
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but diverging from one another under other conditions. Under certain conditions, 

( )F REST  showed better performance than ( )F ADFT .  But ( )F ADFT , ( )YB ADFT , ( )YB REST , 

and ( )F REST  unanimously behaved poorly at their respective sample size lower 

bounds.  

Fan and Hancock (2012) was among the few studies that compared somewhat 

different sets of ANOVA-based methods (F test, Welch’s test, the Brown-Forsythe test, 

James’ second-order test, and the Alexander-Govern test) and RMM methods (ADF, 

SB1,YBADF, FADF, and Bartlett’s correction to the ML) applied to between-subjects 

designs. The study found that RMM was robust in terms of controlling Type I error 

rates across range of distribution shapes and sample sizes and variance conditions and 

outperformed ANOVA-based methods for between-subjects designs. Among the 

RMM methods, both ADF- and ML-based statistics performed well in terms of 

controlling Type I error rates and power and FADF and YBADF were singled out 

among RMM methods. Based on their findings, they called for future study on 

repeated measures designs, which was the focus of the current study. 
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Chapter 3: Methods 

Previous studies showed the potential advantages and disadvantages of 

ANOVA-based methods as well as RMM methods. The current study then compares 

all the aforementioned methods except SB2 using a simulation study specified as 

below.  

Test Statistics Examined 

The current RMM study not only examines the behavior of the maximum 

likelihood estimator MLT  and the RMM test statistics  (i.e, 1SBT , ADFT , ( )F ADFT , 

( )YB ADFT , REST , ( )YB REST , ( )F REST ), but also compares their performance with other 

methods proposed in the field of ANOVA to determine whether RMM estimators 

outperform ANOVA-based methods or vice versa in terms of Type I error rates and 

power in a one-way repeated measures design. To be more specific, ANOVA-based 

methods to be examined in this study include the traditional F test (F), the 

Geisser-Greenhouse adjusted F test (GG), Box’s adjusted F test (Box), the 

Huynh-Feldt adjusted F test (HF), the  -trimmed method using   = 0.2 (TR), and 

the one-sample multivariate 2T  test (FM).  

Variables Investigated 

A Monte Carlo simulation was designed to evaluate Type I error robustness for 

each aforementioned method under the following fully crossed conditions in a 

one-way repeated measures design: number of levels (K), sample size (N), degree of 
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non-sphericity ( ), and degree of non-normality. 

Number of levels (K). Different researchers used different numbers of levels for 

different reasons given that there were no rules of thumb for the number of levels (K) 

used. For example, Quintana and Maxwell (1994) used 5 and 13 because (a) the 

univariate approach is most valuable when the number of levels is large relative to 

sample size and (b) so previous research could be paralleled. A series of studies done 

by Keselman and his colleagues (e.g., Algina, & Keselman, 1997; Keselman, & 

Keselman, 1988, 1990; Keselman, Keselman, & Shaffer, 1991; Keselman, Kowalchuk, 

Algina, Lix, & Wilcox, 2000; Lix, Algina, & Keselman, 2003) have used 4 and/or 8 

levels. 

Therefore, for the current study, the number of levels was set at 4, 8K   to 

reflect those used in past simulation designs that investigated repeated measures 

designs (see, e.g., Algina, & Keselman, 1997; Berkovits et al., 2000; Keselman, 

Carriere, & Lix, 1993; Keselman et al., 1991; Keselman, & Keselman, 1988, 1990; 

Lix, Algina, & Keselman, 2003; Keselman, Kowalchuk, Algina, Lix, & Wilcox, 2000) 

so that the results are more comparable between the current study and these previous 

studies. 

Sample size (N). One of the benefits of repeated measures designs is that they 

typically require smaller number of subjects in the study relative to between-subjects 

designs. Quintana and Maxwell (1994) suggested using smaller sample size (e.g., 5, 
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10, or 20) per level because the univariate approach outperformed the multivariate 

approach in these situations. 

Maxwell and Delaney (1990), on the other hand, suggested a “rough rule of 

thumb” (p. 603) that sample size should be at least larger than K+10 if the 

multivariate approach is to be used. Based on this guideline, Algina and Keselman 

(1997) set the sample size as K+5, K+10, K+15, K+20, K+30, and K+40 to investigate 

the power of univariate and multivariate approaches.  

In this study, the behavior of robust estimators from SEM would also be 

examined. SEM was often regarded as large sample technique because increases in 

sample size would increase the likelihood of proper model convergence, enhance the 

accuracy of parameter and standard errors estimates, and improve statistical power. 

Lei and Lomax (2005) recommended using sample sizes of 100 or more for accurate 

parameter estimates.  

Combining all the factors mentioned above, the sample size of this study will be 

fixed at N = 15, 30, 60, 100, and 200 to reflect various sample size conditions.  

Degree of violation of sphericity assumption. The population sphericity index 

( ) was set at 1  , 0.96  , 0.75  , and 0.48  , indicating conditions 

ranging from perfect sphericity to a severe violation of sphericity. Covariance 

matrices for various sphericity conditions were obtained from Keselman and 

Keselman (1990).  
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1   was included as a baseline because 1   indicates that the sphericity 

assumption was satisfied. 0.96   was picked because covariance matrices with 

0.96   exhibit small departures from sphericity. 0.75   represents moderate 

departures from sphericity, which echo the characteristics of data found in the field of 

educational and behavioral research (Algina & Keselman, 1997). 0.48   was also 

included in this study as it corresponds “roughly with the lower limits of values often 

reported in the behavior literature” (Quintana & Maxwell, 1994, p. 62). 

Table 1  

Covariance matrices for k=4 (Keselman & Keselman, 1990) 

=1  10.0 5.0 5.0 5.0 
  10.0 5.0 5.0 
   10.0 5.0 
    10.0 

=0.96  12.0 6.0 5.0 5.0 
  10.0 5.0 4.0 
   10.0 5.0 
    8.0 

=0.75  18.0 8.0 6.0 4.0 
  8.0 5.0 4.0 
   7.0 3.0 
    7.0 

=0.48  22.3 10.8 6.5 1.9 
  8.3 5.2 3.1 
   4.7 2.5 
    4.7 

 

Table 1 and Table 2 listed the population covariance matrices for the 

aforementioned levels of sphericity, which were the same as those in Keselman and 

Keselman (1990) so that the results were more comparable between the current study 
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and previous studies. These matrices were used to guide data generation. Both of the 

tables used a constant diagonal value of 10 and a constant off-diagonal value of 5 for 

the covariance matrices to depict the differenct levels of sphericity (Keselman & 

Keselman, 1990).  

Table 2  

Covariance matrices for k=8 (Keselman & Keselman, 1990) 

=1  10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
  10.0 5.0 5.0 5.0 5.0 5.0 5.0 
   10.0 5.0 5.0 5.0 5.0 5.0 
    10.0 5.0 5.0 5.0 5.0 
     10.0 5.0 5.0 5.0 
      10.0 5.0 5.0 
       10.0 5.0 
        10.0 

=0.96  11.0 7.0 6.0 6.0 6.0 5.0 5.0 5.0 
  11.0 6.0 5.0 5.0 5.0 5.0 5.0 
   10.0 5.0 5.0 5.0 5.0 5.0 
    10.0 5.0 5.0 5.0 4.0 
     10.0 5.0 5.0 4.0 
      10.0 4.0 4.0 
       9.0 4.0 
        9.0 

=0.75  18.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0 
  12.0 8.0 7.0 6.0 5.0 5.0 2.0 
   10.0 6.0 6.0 5.0 5.0 2.0 
    10.0 5.0 5.0 4.0 4.0 
     9.0 5.0 5.0 3.0 
      8.0 4.0 4.0 
       7.0 1.0 
        6.0 

=0.48  26.1 10.7 10.2 9.9 9.3 6.0 5.9 2.0 
  15.8 9.3 8.1 7.9 4.2 3.4 -0.4 
   10.8 7.0 6.0 5.5 3.2 2.2 
    9.8 5.2 5.6 3.4 2.1 
     6.0 3.4 2.6 1.1 
      4.7 2.4 2.2 
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       4.0 1.6 
        2.8 

Degree of non-normality. As previously mentioned, the traditional F test as 

well as ML estimation rely on the assumption of normality even though ML 

estimation tends to be robust to normality violations in terms of bias of parameter 

estimates. Different degrees of non-normality can be represented by different skew 

and kurtosis values. Lei and Lomax (2005) suggested that the skew and kurtosis 

values be selected between -2.0 and +3.5. If both values are less than 1.0, the 

distribution can be regarded as slightly nonnormal, between 1.0 and about 2.3 as 

moderately nonnormal, and beyond 2.3 as severely nonnormal. Kline (2011) defined 

non-normality by separating skewness and kurtosis. He suggested that absolute skew 

values greater than 3 indicate extreme skew and absolute kurtosis values ranging from 

8.0 to over 20.0 indicate extreme kurtosis. He further pointed out that absolute 

kurtosis values greater than 20 may indicate serious problem. Based on Kline’s 

perspective, the skew and kurtosis values proposed by Lei and Lomax can be regarded 

as fairly mild.  

Based on the above, four levels of non-normality were assessed: (a) normal 

(skewness = 0, kurtosis = 0); (b) moderately non-normal (skewness = 2, kurtosis = 7); 

(c) severely non-normal (skewness = 3, kurtosis = 21); and (d) elliptical (skewness = 

0, kurtosis = 7). Though it is not possible for four conditions to cover the full range of 

non-normal distributions, these represent a range of conditions encountered in 
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methodological and applied research. In order to generate data for these combined 

levels of skewness and kurtosis, Fleishman’s (1978) polynomial transformation was 

used. Vale and Maurelli (1983) outlined the procedure to generate the intermediate 

correlation matrix that accommodated the effect of nonnormalizing on the correlation 

since non-normal data had intercorrelatons different from the normal data. Then this 

intermediate correlaton matrix could be applied to the procedures of the data 

generation of multivariate normal random numbers using 

Y = -c2 + c1Z + c2Z
2 + c3Z

3 (33) 

where Y was the non-normal data generated; c1, c2, and c3 are the coeffieints 

determined by the intermediae correlation matrix. Each data set was generated by 

sampling from a population with the skewness and kurtosis as well as other properties 

listed above.  

Design and Execution 

The decision regarding the number of replications should be made based on the 

purpose of the study, the desire to reduce the variance of estimated parameters and the 

need for adequate power (Harwell, Stone, Hsu, & Kirisci, 1996). If the behavior of 

standard errors is of interest, more replications may be needed. The number of 

replications has direct impact on the precision of estimated parameters and more 

replications produce higher precision in parameter estimates (Bandalos, 2006). Most 
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of the previous studies explicitly indicated the number of replications but provided no 

justification and the number of replications used ranged from 500 (e.g., Yuan & 

Bentler, 1998) to 10000 (e.g., Algina & Keselman, 1997). Some studies used 1000 

replications (e.g., Fan & Hancock, 2012; Keselman, Algina, Wilcox, & Kowalchuk, 

2000; Yuan & Bentler, 1999). Others used 2000 replications (e.g., Nevitt, & Hancock, 

2004). For each of the 2× 5 ×4×4 cells of this design, 2000 simulated data sets or 

replications as the average of the previous studies were generated in SAS (2011). The 

test statistics for ANOVA-based methods were all calculated and analyzed in SAS. 

The test statistics for the ML estimator MLT and RMM estimators were obtained from 

EQS 6.2.  

Type I error rate. The rate of false rejection (i.e., Type I error rate) was 

employed to define test statistic robustness. For each cell of the design, all tests were 

conducted at 0.05   level. Type I error robustness were evaluated using Bradley’s 

liberal criterion (Bradley, 1978) where the test’s empirical Type I error rate 𝛼ො must 

fall in the interval .5α≤ 𝛼ො ≤1.5α to be considered robust. Therefore, for α =.05, the 

robustness interval corresponding to Bradley’s liberal criterion was .025≤ 𝛼ො ≤.075. 

For all methods under all conditions, the empirical Type I error rate 𝛼ො was computed 

as the number of false rejections out of 2,000 replications or 

( ) / 2000r number of rejections  and an estimated standard error of 𝛼ො could be 

determined as 
1

2[ (1 ) / 2000]SE r r  . Thus, when 𝛼ො =.05, SE = .0049, which is less 
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than 10% of the estimated value.  

Power Analysis. In order to understand fully the performance of all these 

methods, the power of the test statistics investigated was also examined in addition to 

Type I error rate analysis. Power analysis was carried out based on the results 

obtained from the Type I error rate analysis. Under Bradley’s (1978) liberal criterion, 

test statistics that yielded empirical Type I error rates between 0.025 and 0.075 were 

regarded as robust and hence eligible for comparison in a power analysis. Test 

statistics under some study conditions that maintained Type I error rate beyond the 

upper bound of 7.5% were removed from power analyses under those conditions. The 

rationale for this elimination is that a liberal Type I error rate indicates inflated test 

statistics, which in turn will lead to inflated power estimates which are not 

comparable with power estimates from the test statistics producing reasonable Type I 

error rate. On the other hand, test statistics under some study conditions that yielded 

empirical Type I error rates below the lower bound of 2.5% were retained for power 

analyses in that these test statistics could potentially maintain acceptable power under 

those conditions. The results obtained for Type I error rates showed that out of 160 

cells (2×4×5×4) for the  -trimmed method using   = 0.2, only four cells showed 

the Type I error rates between 2.5% and 7.5%. Therefore, the  -trimmed method 

using  =0.2 was removed from power analysis. Even though 75% of the Type I 

error rates obtained for the Geisser-Greenhouse adjusted F test for k=4 (60 cells out of 
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80 cells, all for sphericity levels over 0.48) and 100% of the Type I error rates for k=8 

were below 2.5%, this method was still kept for power analysis. For the rest of the 

methods where sporadic cells provided Type I error rates that were beyond 7.5%, 

power analysis was carried out for all cells but the results for those cells whose Type I 

error rates were above 7.5% were removed from further analysis.  

For those test statistics that entered the power analysis, a new series of data was 

generated using the same sample sizes, distributions, (co)variances, and sphericity 

levels as the Type I error analysis. For each of the cells, 1000 simulated data sets 

(replications) were generated in SAS (2011). In order to create the nonnull condition, 

the first group’s means was moved by an amount that induced a difference between 

the first and second group equivalent to a specific Cohen’s d. In order to determine a 

target Cohen’s d, a pilot study was done with 500 replications. It was found out that 

when the Cohen’s d was larger than 0.2, the results of power for the large sample sizes 

(n > 60) were very close to or equaled 100% (i.e., 1.00), and thus were not useful for 

discriminating the performance of different methods. When the Cohen’s d was 0.1 and 

0.2, the power levels at all sample sizes became distinguishable, with Cohen’s d of 0.1 

predictably yielding generally lower power than the Cohen’s d of 0.2. Therefore, in 

this study, Cohen’s d of 0.2 was used to guide the generation of the data. 
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Chapter 4: Results 

Non-convergence 

In the Type I error portion of the study, rates of non-convergence of all test 

statistics were tracked for all cells. The results were summarized in Table 3 and Table 

4. Overall, no non-convergence occurred for ANOVA-based methods examined in this 

study, although some SEM-based methods did fail to converge in some cases. Among 

all SEM-based methods, MLT  and 1SBT  did not encounter any non-convergence 

across all conditions. Because the test statistics ( )F ADFT  and ( )YB ADFT  are derived 

based on ADFT , then ( )F ADFT  and ( )YB ADFT should produce the same non-convergence 

rates as ADFT . Similarly, because the test statistics ( )YB REST  and ( )F REST  are derived 

from REST , they should behave the same with respect to convergence.  

Table 3 shows the rates of non-convergence when k =4 and n =15 and 

convergence existed for all methods at all higher sample sizes in this study. It can be 

seen that non-convergence only occurred when n =15 for distribution-free test 

statistics ( ( )F ADFT , ( )YB ADFT , ADFT ) across all distributions and sphericity levels 

specified in this study. Generally speaking, the rates of non-convergence increased 

when the violation of sphericity assumption becames more severe (i.e., when   gets 

smaller) across all distributions, with the exceptions of moderately non-normal 

distribution (skewness = 2, kurtosis = 7) and elliptical distribution (skewness = 0, 

kurtosis = 7). The rates of non-convergence also increased when the violation of 
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normality assumption became more severe across all sphericity levels. The highest 

rate of non-convergence (42.0%) occurred when the distribution was severely 

non-normal (skewness = 3, kurtosis = 21) and population covariance matrices 

departed from sphericity most severely ( = 0.48); conversely, as expected, the lowest 

rate of non-convergence (3.1%) occurred when the distribution was normal and the 

sphericity assumption was satisfied or is violated to the least extent ( = 0.96). 

Table 3 

Rates of non-convergence (%) for k=4, n =15 

ε  skew=0, kurt=0 skew=0, kurt=7 skew=2, kurt=7 skew=3, kurt=21 

  ADF ADF ADF ADF 

1 3.4 6.4 9.2 18.4 

0.96 3.1 5.2 8.3 19.7 

0.75 3.8 7.9 7.5 24.0 

0.48 6.6 17.3 20.8 42.0 

 

When k=8, Table 4 shows that non-convergence only occurred for all 

distribution-free test statistics ( ( )F ADFT , ( )YB ADFT , ADFT ) and all residual-based ADF test 

statistics ( REST , ( )YB REST , ( )F REST ) when sample sizes were 15 and 30 across all 

distributions and sphericity levels specified in this study. No distribution-free test 

statistics converged when sample sizes were 15 and 30 across all distribution 

conditions and all sphericity levels, which indicated that these test statistics failed to 

converge when the sample size was small. For the residual-based ADF test statistics, 

generally speaking, the rates of non-convergence decreased when the sample size got 

larger. When the sample size was 15, there was a general trend for the rates of 
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convergence to increase when the departure from normality became greater, but this 

trend was not very consistent across distribution conditions. For example, the rates of 

non-convergence for severely non-normal distributions and moderately non-normal 

distributions were greater than those for normal distributions and elliptical 

distributions. But the rates of non-convergence for severely non-normal distributions 

(20.5%, 20.7%, 18.8%, and 16.0%) were smaller than those for moderately 

non-normal distributions across all sphericity levels (22.2%, 22.1%, 20.0%, and 

18.2%). When sample size was 30, there seems to have been no obvious influence by 

either the distribution conditions or sphericity levels on the rate of non-convergence 

for each sample size condition. But the non-convergence rates when n = 30 were 

much smaller than those when n = 15.  

Table 4 

Rates of non-convergence (%) for ADF and RES and their corrections with k=8 

 

       skew=0, kurt=0    skew=0, kurt=7    skew=2, kurt=7 skew=3, kurt=21 

ε ADF RES ADF RES ADF RES ADF RES 

n=15 

1 100 15.5 100 17.2 100 22.2 100 20.5 

0.96 100 16.9 100 16.9 100 22.1 100 20.7 

0.75 100 16.5 100 15.3 100 20 100 18.8 

0.48 100 16.1 100 14.7 100 18.2 100 16.0 

n=30 

1 100 15.4 100 8.9 100 12.2 100 11.0 

0.96 100 12.5 100 9.3 100 12.7 100 9.0 

0.75 100 13.2 100 10.4 100 11.7 100 8.6 

0.48 100 12.8 100 9.2 100 8.4 100 6.4 
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Type I Errors rates 

There are four types of distributions under investigation in this study: normal, 

elliptical, moderately non-normal, and severely non-normal. Tables 5, 7, 9, and 11 

present the results of the Type I error rates under these four types of distributions 

when the number of levels k equals 4. Tables 6, 8, 10, and 12 present the results of the 

Type I error rates under the four types of distributions when the number of levels k 

equals 8. Among these eight tables, Table 5 and Table 6 present the results of the Type 

I error rates for the normal distribution, while Table 7 and Table 8 present the results 

of the Type I error rates for elliptical distribution under sphericity levels of 

1, .96, .75, .48 and sample sizes of 15, 30, 60, 100, 200. Table 9 and Table 10 present 

the results for the moderately non-normal distribution, while Table 11 and Table 12 

present the results for severely the non-normal distribution under four sphericity 

levels (1, .96, .75, .48) and five sample sizes (15, 30, 60, 100, 200).  
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Table 5: Empirical Type I Error Rates (%) for Normal Distribution with k=4 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0 4.6  3.6  4.4  0.9  4.9  6.7  6.2  13.3  1.2  4.7  6.2  11.8  0.8  4.1  

 
1.0 4.9  3.8  4.5  0.5  4.0  10.3  5.0  12.4  1.3  4.0  5.0  10.2  0.8  3.4  

 
0.8 6.6  4.4  5.7  1.4  5.7  11.5  6.8  14.2  1.7  5.4  6.8  13.2  1.1  4.6  

  0.5 9.2  5.2  5.6  3.1  4.9  15.3  6.4  14.9  1.2  5.0  6.4  12.7  0.6  4.3  

n=30 1.0 5.4  4.3  5.3  1.0  4.8  8.3  5.5  8.7  3.2  4.8  5.5  7.9  3.0  4.7  

 
1.0 5.5  4.6  5.3  0.7  5.4  12.9  6.0  9.2  3.4  5.4  6.0  8.4  3.0  4.9  

 
0.8 6.1  4.5  4.9  1.7  5.6  13.5  6.0  9.1  4.1  5.6  6.0  8.2  3.2  5.2  

  0.5 9.2  4.9  5.1  3.7  4.7  15.8  5.0  8.4  3.5  4.7  5.0  7.7  3.0  4.3  

n=60 1.0 4.6  4.3  4.5  0.7  5.0  9.6  5.1  6.3  4.3  5.0  5.1  6.0  4.1  4.9  

 
1.0 5.5  5.3  5.5  1.5  5.3  15.6  5.5  7.1  4.4  5.3  5.5  6.8  4.1  4.9  

 
0.8 6.9  4.9  5.1  1.9  5.3  16.6  5.5  7.1  4.7  5.3  5.5  6.5  4.2  5.2  

  0.5 8.0  4.9  4.9  3.8  5.3  15.7  5.6  7.1  4.5  5.4  5.6  6.8  4.2  5.2  

n=100 1.0 4.9  4.6  4.8  0.9  5.2  8.8  5.3  6.2  4.7  5.2  5.3  6.1  4.5  5.0  

 
1.0 4.7  4.2  4.4  1.0  4.8  15.4  5.0  5.8  4.3  4.8  5.0  5.7  4.0  4.6  

 
0.8 6.5  4.8  4.9  1.6  5.1  15.4  5.3  6.4  4.7  5.1  5.3  6.3  4.5  5.1  

  0.5 9.7  5.8  5.8  4.2  5.0  17.1  5.0  5.9  4.5  5.0  5.0  5.8  4.2  4.7  

n=200 1.0 5.7  5.4  5.7  1.0  5.3  9.9  5.4  5.9  5.1  5.3  5.4  5.8  5.0  5.2  

 
1.0 5.3  5.0  5.2  0.9  5.0  16.0  5.2  5.5  4.8  5.0  5.2  5.4  4.6  5.0  

 
0.8 5.8  4.2  4.2  1.6  5.6  16.1  5.7  6.1  5.3  5.6  5.7  6.1  5.1  5.5  

  0.5 8.5  4.9  4.9  3.6  5.3  17.1  5.5  5.9  5.2  5.4  5.5  5.9  5.1  5.3  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 5 for normal distributions for k=4, the Box’s adjusted F 

test (Box), the Huynh-Feldt adjusted F test (HF), and the one sample multivariate 2T

test (FM) were robust across all sample sizes and all sphericity levels, while the 

traditional F test (F) provided inflated Type I error rates (9.2%, 9.15%, 8%, 9.65%, 

and 8.5%) across all sample sizes when the sphericity assumption was severely 

violated ( =.48). Among F, Box, and HF, F provided largest Type I error rates while 

Box provided the smallest Type I error rates. The performance of the 

Geisser-Greenhouse lower bound adjusted F test (GG) was opposite of the traditional 

F test, performing well only when   equaled .48 across all sample size conditions 

(3.1%, 3.7%, 3.75%, 4.2%, and 3.6%). The Type I error rates for the rest of the 

conditions were below the lower bound of Bradley’s liberal criterion (2.5%) for GG. 

The  -trimmed method using   = 0.2 (TR), however, displayed another extreme 

result, with Type I error rates higher than the upper bound of Bradley’s liberal 

criterion (7.5%) and with only one cell providing robust result when n = 15 and when 

there was no violation of the sphericity assumption.  

Among all SEM-based methods, the maximum likelihood method (ML), the 

Yuan and Bentler adjusted ADF II test (FADF), the Satorra-Bentler scaled 2  test 

(SB1), and the Yuan and Bentler adjusted RES II test (FRES) delivered robust Type I 

error rates across all sample size conditions and all sphericity levels. Browne’s 

asymptotic distribution-free test (ADF) and Residual-based ADF test (RES) provided 
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inflated Type I error rates larger than the upper bound of Bradley’s liberal criterion 

(7.5%) when sample sizes were 15 and 30 across all sphericity levels but provided 

robust results with sample sizes of 60, 100, and 200 across all sphericity levels. 

Meanwhile, the Yuan and Bentler adjusted ADF I test (YBADF) and Yuan and Bentler 

adjusted RES II test (YBRES) provided Type I error rates below the lower boundary 

of the robustness range with sample size of 15 across all sphericity levels but were 

robust with sample sizes of 30, 60, 100, and 200 across all sphericity levels. Across all 

Type I error rates provided by these RMM tests, the order of the magnitude came out 

with ADF > RES > ML/SB1 > FADF > FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  

 
 



 
 
 
  

49 
 

Table 6: Empirical Type I Error Rates (%) for Normal Distribution with k=8 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  4.9  2.4  4.6  0.0  5.1  13.3  15.9  NC NC NC 15.9  98.7  0.0  92.4  

 
1.0  5.6  3.9  5.1  1.0  5.6  7.5  16.1  NC NC NC 16.1  98.4  0.0  92.5  

 
0.8  7.2  3.5  5.6  0.1  5.1  17.3  16.1  NC NC NC 16.1  98.5  0.0  92.9  

  0.5  5.7  3.0  5.3  0.1  4.3  15.3  14.7  NC NC NC 14.7  98.6  0.0  93.0  

n=30 1.0  4.7  3.6  4.4  0.0  4.6  18.8  8.8  NC NC NC 8.8  54.0  24.8  33.2  

 
1.0  4.5  4.1  4.5  0.9  4.9  8.0  8.1  NC NC NC 8.1  52.4  23.9  33.2  

 
0.8  7.5  4.2  5.6  0.3  5.0  19.3  8.3  NC NC NC 8.3  52.4  25.6  33.4  

 
0.5  5.3  3.6  5.1  0.0  5.4  18.9  8.1  NC NC NC 8.1  52.1  23.3  32.6  

n=60 1.0  4.0  3.3  3.9  0.0  4.1  19.0  5.6  9.8  2.6  4.1  5.6  9.4  2.5  3.8  

 
1.0  4.9  4.4  4.8  0.6  4.8  8.4  7.0  11.8  4.1  5.6  7.0  11.1  3.5  5.3  

 
0.8  7.3  4.9  5.5  0.3  5.0  20.3  6.6  10.9  3.7  5.0  6.6  10.5  3.1  4.6  

  0.5  5.8  4.6  5.6  0.1  4.9  20.1  6.1  9.9  3.4  4.9  6.1  9.5  3.2  4.7  

n=100 1.0  4.8  4.5  4.8  0.0  5.1  19.8  6.0  8.2  4.3  5.1  6.0  7.9  4.0  4.7  

 
1.0  5.6  5.5  5.6  1.2  5.5  9.0  5.3  7.3  4.3  5.0  5.3  7.0  4.1  4.9  

 
0.8  7.5  5.2  5.3  0.3  4.6  24.3  5.5  8.2  4.0  4.6  5.5  7.7  3.9  4.5  

 
0.5  5.6  4.7  5.2  0.1  4.5  21.3  5.4  8.2  3.8  4.6  5.4  7.9  3.8  4.3  

n=200 1.0  4.9  4.7  4.9  0.0  4.8  22.2  5.1  6.3  4.6  4.8  5.1  6.3  4.5  4.7  

 
1.0  5.8  5.7  5.8  0.9  5.7  10.1  5.6  6.7  4.7  5.0  5.6  6.6  4.6  5.0  

 
0.8  6.4  4.4  4.7  0.3  5.3  21.4  5.5  6.9  4.7  5.3  5.5  6.8  4.7  5.1  

  0.5  6.3  5.7  5.9  0.2  5.9  22.1  6.4  7.4  5.4  5.9  6.4  7.4  5.3  5.7  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 6 for normal distributions for k=8, the traditional F test, 

Box, HF, and FM were robust across all sample sizes and all sphericity levels. Among 

F, Box, and HF, F provided largest Type I error rates while Box provided the smallest 

Type I error rates. All the Type I error rates provided by GG were below the lower 

bound of Bradley’s liberal criterion (2.5%). TR, however, displayed another extreme 

result, with Type I Error rates all higher than the upper bound of Bradley’s liberal 

criterion (7.5%).  

All SEM based methods behaved poorly when sample sizes equaled 15 and 30. 

ADF and its corrections did not converge, thus providing no Type I error rates across 

all sphericity levels. RES and their corrections (YBRES and FRES) encountered some 

non-convergence but were able to provide the Type I error rates. When sample size 

equaled 15, RES and FRES provided the Type I Error rates close to 100% while the 

Type I error rates provided by YBRES were all 0s. When sample size equaled 30, 

RES provided the Type I error rates of around 50%, FRES around 30%, and YBRES 

around 20%. ML and SB1, similarly, delivered inflated rejection rates across all 

sphericity levels. When n =15, ML and SB1 provided Type error rates greater than 

14.5% across sphericity levels. When n =30, they Type error rates started to become 

smaller but still greater than 7.5% across sphericity levels. This might be due to the 

fact that the model became more complicated.  

When sample sizes were larger than 30 (60, 100, and 200), ML, YBADF, FADF, 
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SB1, YBRES and FRES were robust across conditions and all sphericity levels. But 

ADF and RES only provided robust Type I error rates with a sample size of 200. 

When the sample sizes equaled 60 and 100, the Type I error rates for both ADF and 

RES were inflated across all sphericity levels with only one cell being robust when 

the sample size was 100 and sphericity level was 0.96. Among all Type I error rates 

provided by these RMM tests, the order of the magnitude came out with ADF > RES > 

SB1 > FADF > FRES > YBADF >YBRES.  
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Table 7: Empirical Type I Error Rates (%) for Elliptical Distribution with k=4 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  4.8  3.4  4.2  0.5  4.2  7.1  5.2  11.7  1.1  4.3  5.2  10.0  0.6  3.5  

 
1.0  4.8  3.0  3.9  0.7  4.0  14.7  5.1  12.9  1.1  4.0  5.1  11.1  0.5  3.1  

 
0.8  5.1  3.2  4.1  1.0  4.4  9.0  5.8  13.1  1.2  4.3  5.8  10.9  0.9  3.6  

  0.5  9.1  4.6  5.2  3.0  4.1  17.5  5.3  13.7  1.2  4.3  5.3  11.6  0.7  3.6  

n=30 1.0  4.5  3.7  4.3  0.6  4.5  8.3  5.0  8.1  2.6  4.5  5.0  7.5  2.2  3.8  

 
1.0  5.5  4.4  4.9  1.0  4.6  18.4  4.8  8.5  3.4  4.6  4.8  7.6  2.8  4.4  

 
0.8  6.1  4.1  4.6  1.7  4.0  11.2  4.4  7.2  2.7  4.0  4.4  6.4  2.3  3.4  

 
0.5  7.7  4.2  4.4  2.5  4.5  19.5  4.7  8.2  2.8  4.6  4.7  7.3  2.1  3.9  

n=60 1.0  4.9  4.0  4.4  1.0  4.1  9.4  4.2  5.7  3.3  4.2  4.2  5.5  3.0  3.9  

 
1.0  5.3  4.4  4.9  1.2  4.9  22.6  5.1  6.6  4.3  4.9  5.1  6.3  3.8  4.6  

 
0.8  6.1  4.2  4.6  1.2  4.7  11.6  4.8  6.2  3.9  4.7  4.8  6.0  3.7  4.5  

  0.5  10.1  5.7  5.8  3.6  5.1  23.1  5.2  6.9  4.6  5.1  5.2  6.6  4.0  4.9  

n=100 1.0  4.9  4.5  4.7  0.8  4.7  10.2  4.9  5.8  4.4  4.7  4.9  5.4  4.1  4.5  

 
1.0  4.7  4.1  4.5  0.9  4.4  22.8  4.5  5.5  3.7  4.4  4.5  5.1  3.6  4.1  

 
0.8  6.6  5.3  5.4  2.1  4.9  12.1  4.9  6.2  4.5  4.9  4.9  5.8  4.4  4.8  

 
0.5  8.5  4.4  4.5  3.3  4.6  23.6  4.7  5.5  4.0  4.6  4.7  5.3  3.9  4.4  

n=200 1.0  4.5  4.4  4.4  1.0  4.4  9.8  4.5  4.8  4.3  4.4  4.5  4.8  4.3  4.3  

 
1.0  4.8  4.5  4.6  0.9  4.4  24.0  4.5  5.3  4.3  4.4  4.5  5.1  4.3  4.4  

 
0.8  6.7  4.9  5.0  2.3  5.7  11.3  5.8  6.3  5.4  5.8  5.8  6.3  5.3  5.6  

  0.5  10.5  6.5  6.5  4.6  4.8  24.3  4.8  5.5  4.6  4.8  4.8  5.4  4.5  4.6  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 7 for elliptical distributions for k=4, Box, HF, and FM 

were robust across all sample sizes and all sphericity levels while F provided inflated 

Type I error rates across all sample sizes when the sphericity assumption was severely 

violated ( =.48) based on Bradley’s criteria. Among F, Box, and HF, F provided 

largest Type I error rates while Box provided the smallest Type I error rates. GG was 

the opposite of the traditional F test, providing robust Type I error rates only when the 

sphericity assumption was severely violated ( =.48) across all sample size conditions. 

The Type I error rates for the rest of the conditions were below the lower bound of 

Bradley’s liberal criterion (2.5%) for GG. TR, however, displayed another extreme 

result, with Type I Error rates higher than the upper bound of Bradley’s liberal 

criterion (7.5%) with only one cell proving robust result when n=15 and when there 

was no violation of sphericity assumption).  

Among all SEM based methods, ML, FADF, SB1, and FRES were robust across 

all sample size conditions and all sphericity levels. ADF delivered inflated Type I 

error rates larger than the upper bound of Bradley’s liberal criterion (7.5%) when 

sample sizes were 15 and 30 across all sphericity levels but were robust when sample 

sizes were 60, 100, and 200 across all sphericity levels. RES provided inflated Type I 

error rates with sample size of 15 across all sphericity levels but was robust with 

sample sizes of 60, 100, and 200 across all sphericity levels. When sample size was 

30, RES was robust except for one cell providing inflated Type I error rate (7.6%) 
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when  =.96. Meanwhile, YBADF delivered Type I error rates below the lower 

boundary of the robustness range with sample size of 15 across all sphericity levels 

but was robust across all sphericity levels with sample sizes of 30, 60, 100, and 200. 

YBRES provided Type I error rates below the lower boundary of the robustness range 

with sample sizes of 15 and 30 across all sphericity levels with only one exception 

with sphericity level of .96 (Type I error rate = 2.8%) but was robust across all 

sphericity levels with sample sizes of 30, 60, 100, and 200. Among all Type I error 

rates provided by these RMM tests, the order of the magnitude came out with ADF > 

RES > SB1 > FADF > FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Table 8: Empirical Type I Error Rates (%) for Elliptical Distribution with k=8 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  5.0  1.8  4.0  0.0  3.9  22.3  14.3  NC NC NC 14.3  98.3  0.0  93.4  

 
1.0  5.8  2.5  4.2  0.0  4.5  22.5  15.1  NC NC NC 15.1  98.7  0.0  93.4  

 
0.8  5.7  2.4  4.0  0.5  4.8  21.4  15.1  NC NC NC 15.1  98.5  0.0  93.3  

  0.5  8.1  3.0  4.1  0.3  3.8  21.9  14.2  NC NC NC 14.2  98.9  0.0  93.3  

n=30 1.0  4.5  2.8  3.8  0.1  4.0  28.9  6.7  NC NC NC 6.7  62.5  31.1  42.0  

 
1.0  4.9  3.0  3.8  0.0  4.3  28.4  8.0  NC NC NC 8.0  63.1  29.0  40.9  

 
0.8  6.5  2.8  3.8  0.2  4.9  28.1  8.0  NC NC NC 8.0  65.3  30.5  43.4  

 
0.5  8.1  3.7  4.8  0.8  4.5  28.2  7.5  NC NC NC 7.5  63.0  31.1  42.1  

n=60 1.0  5.3  3.9  4.7  0.0  5.0  33.3  5.9  10.1  3.3  5.0  5.9  9.3  3.0  4.3  

 
1.0  5.3  3.8  4.4  0.1  4.5  32.9  5.4  8.9  3.1  4.5  5.4  8.3  2.7  4.3  

 
0.8  7.0  3.9  4.8  0.3  4.6  33.6  5.7  10.3  2.7  4.6  5.7  9.5  2.5  4.1  

  0.5  8.9  5.1  5.5  0.5  3.9  32.0  5.5  10.6  2.7  4.0  5.5  9.9  2.5  3.7  

n=100 1.0  4.5  3.5  4.2  0.1  4.7  38.1  5.5  8.0  3.9  4.7  5.5  7.5  3.8  4.5  

 
1.0  5.7  4.1  4.7  0.1  4.5  36.0  5.4  8.0  3.9  4.5  5.4  7.9  3.7  4.3  

 
0.8  6.4  4.4  4.8  0.3  4.3  34.5  4.7  7.7  3.5  4.3  4.7  7.0  3.4  4.2  

 
0.5  8.4  4.5  4.9  0.5  4.4  34.6  4.8  6.8  3.6  4.4  4.8  6.2  3.3  4.2  

n=200 1.0  5.2  4.6  4.8  0.1  5.3  38.6  5.6  6.4  4.7  5.3  5.6  6.3  4.6  5.1  

 
1.0  5.3  4.6  4.8  0.0  4.5  38.1  4.7  5.8  4.0  4.5  4.7  5.6  3.8  4.3  

 
0.8  5.7  3.7  3.8  0.2  3.6  36.3  3.8  4.9  3.4  3.6  3.8  4.7  3.3  3.5  

  0.5  8.2  4.5  4.6  0.4  4.4  35.5  4.8  5.8  3.9  4.4  4.8  5.5  3.8  4.2  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 



 
 
 
  

58 
 

F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 8 for elliptical distributions for k=8, HF and FM were 

robust across all sample sizes and all sphericity levels while F provided inflated Type 

I error rates across all samples sizes when the sphericity assumption was severely 

violated ( =.48). Box was robust across all sample sizes and all sphericity levels 

except when sample size equaled 15 without any violation of sphericity assumption 

( =1). Among F, Box, and HF, F provided largest Type I error rates while Box 

provided the smallest Type I error rates. All the Type I error rates provided by GG 

were below the lower bound of Bradley’s liberal criterion (2.5%). TR, however, 

displayed another extreme result, whose Type I Error rates were all higher than the 

upper bound of Bradley’s liberal criterion (7.5%).  

All SEM based methods behaved poorly when sample sizes equaled 15 and 30. 

ADF and its corrections (YBADF and FADF) did not converge, thus providing no 

Type I error rates across all sphericity levels. RES and its corrections (YBRES and 

FRES) encountered some non-convergence but were able to provide the Type I error 

rates. When sample size equaled 15, RES and FRES provided the Type I Error rates 

close to 100% while the Type I error rates provided by YBRES were all 0s. ML and 

SB1, on the other hand, provided inflated Type I error rates higher than the upper 

bound of Bradley’s liberal criterion (7.5%). When sample size equaled 30, RES 

provided the Type I error rates of around 60%, FRES around 40%, and YBRES 

around 30%. ML and SB1 delivered robust Type I error rates when the sphericity 
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levels were 1 and 0.48 and inflated Type I error rates when the sphericity levels 

were .96 and .75.   

When sample size was larger than 30 (60, 100, and 200), ML, YBADF, FADF, 

SB1, YBRES, and FRES were robust across sample size conditions and all sphericity 

levels. But ADF and RES only delivered robust Type I error rates across sphericity 

levels when the sample size is 200. When the sample sizes equaled 60 and 100, ADF 

provided inflated Type I error rates across all sphericity levels with only one cell 

being robust when the sample size was 100 and sphericity level was 0.48 (Type I error 

rate = 6.8). Meanwhile, RES delivered inflated rejection rates across all sphericity 

levels with only two cells providing robust results when the sample size was 100 and 

sphericity level was .75 and .48. Among all Type I error rates provided by these RMM 

tests, the order of the magnitude came out with ADF > RES > SB1 > FADF > FRES > 

YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Table 9: Empirical Type I Error Rates (%) for Moderately Non-normal Distribution with k=4 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  4.3  2.6  3.5  0.5  5.0  6.5  6.2  14.3  1.8  5.2  6.2  11.8  0.9  4.1  

 
1.0  4.2  2.4  3.4  0.3  4.0  11.4  5.1  11.4  1.4  4.1  5.1  9.4  0.9  3.1  

 
0.8  5.5  3.1  4.0  1.0  4.4  8.1  5.6  12.2  11.5  4.0  5.6  11.5  0.5  3.5  

  0.5  10.7  6.5  6.8  4.3  8.8  19.0  10.3  18.6  4.0  8.7  10.3  16.2  2.6  7.8  

n=30 1.0  5.1  3.7  4.2  0.9  4.6  9.7  5.1  8.2  3.3  4.6  5.1  7.2  2.9  4.1  

 
1.0  4.5  3.2  3.7  0.7  4.6  15.9  4.9  8.2  3.0  4.6  4.9  7.5  2.6  4.0  

 
0.8  6.1  3.9  4.5  1.2  4.3  10.4  4.8  7.8  3.2  4.4  4.8  7.0  2.7  4.0  

 
0.5  10.3  7.0  7.0  5.2  7.3  22.1  7.4  11.4  5.4  7.3  7.4  10.7  4.7  6.7  

n=60 1.0  4.7  3.9  4.1  1.0  5.1  9.1  5.3  6.6  4.4  5.1  5.3  6.3  4.3  4.8  

 
1.0  4.4  3.7  3.9  0.9  5.0  19.6  5.2  6.2  4.3  5.0  5.2  5.9  4.1  4.9  

 
0.8  7.3  4.7  5.0  1.7  4.5  11.5  4.6  6.3  3.7  4.5  4.6  6.1  3.6  4.2  

  0.5  9.0  4.6  4.8  3.1  5.7  24.6  6.0  7.6  4.8  5.7  6.0  7.4  4.6  5.6  

n=100 1.0  5.2  4.6  4.8  0.9  5.7  8.2  5.7  6.6  5.1  5.7  5.7  6.4  5.0  5.4  

 
1.0  5.1  4.0  4.4  0.8  4.3  22.8  4.4  5.4  3.5  4.3  4.4  5.1  3.3  4.1  

 
0.8  7.4  5.3  5.4  1.8  4.9  11.3  4.9  5.7  4.4  4.9  4.9  5.5  4.2  4.7  

 
0.5  9.8  5.5  5.6  3.6  5.7  28.4  5.8  6.7  5.2  5.7  5.8  6.5  5.1  5.6  

n=200 1.0  4.8  4.4  4.6  0.6  5.1  9.5  5.2  5.5  5.0  5.2  5.2  5.4  4.9  5.1  

 
1.0  4.7  4.4  4.4  0.9  4.7  22.7  4.7  5.2  4.4  4.7  4.7  5.1  4.4  4.6  

 
0.8  6.4  4.6  4.8  1.7  4.0  11.8  4.0  4.2  4.0  4.0  4.0  4.2  4.0  4.0  

  0.5  8.0  4.4  4.4  3.3  5.5  33.9  5.7  5.8  5.4  5.6  5.7  5.8  5.4  5.5  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 9 for moderately nonnormal data for k=4, HF was robust 

across all sample sizes and all sphericity levels while F provided inflated Type I error 

rates (10.7%, 10.3%, 9%, 9.75%, 8%) when the sphericity assumption was severely 

violated ( =.48). GG was to the opposite of the traditional F test which was robust 

only when the sphericity level equaled .48 across all sample size conditions (4.25%, 

5.2%, 3.1%, 3.55%, and 3.25%). Box delivered robust Type I error rates across all 

sample sizes and sphericity levels except when the sample size equaled 15 with 

sphericity level of 0.96 (Type I error rate = 2.4%). One sample multivariate 2T test 

(FM) was robust across all sample sizes and sphericity levels except one cell 

delivering inflated rejection rate (8.75%) when the sample size equaled 15 with 

sphericity level of 0.48. Among F, Box, and HF, F provided largest Type I error rates 

while Box provided the smallest Type I error rates. TR, however, displayed another 

extreme result, whose Type I Error rates were higher than the upper bound of 

Bradley’s liberal criterion (7.5%) with only one exception (Type I error rate equaled 

7.1% when n=15 and  =1).  

Among all SEM based methods, ML, FADF, SB1, and FRES controlled the 

Type I error rates well across all sample size conditions and all sphericity levels with 

only one inflated rejection rate when sample size was 15 at the sphericity level of .48. 

Browne’s asymptotic distribution-free test (ADF) delivered inflated Type I error rates 

when sample sizes were 15 and 30 across all sphericity levels but provided robust 
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Type I error rates with sample sizes of 60, 100, and 200 across all sphericity levels 

with only one cell providing inflated rejection rate when n=60,  =0.48. Meanwhile 

the Type I error rates of RES were inflated with sample size of 15 across all sphericity 

levels but provided robust Type I error rates with sample sizes of 30, 60, 100, and 200 

across all sphericity levels with only one cell yielding inflated rejection rate when 

n=30,  =.48. Conversely, YBADF and YBRES provided Type I error rates below 

the lower boundary of the robustness range with sample size of 15 across all 

sphericity levels except one robust cell at  =0.48. These two tests were robust with 

sample sizes of 30, 60, 100, and 200 across all sphericity levels. Among all Type I 

error rates provided by these RMM tests, the order of the magnitude came out with 

ADF > RES > SB1 > FADF > FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Table 10: Empirical Type I Error Rates (%) for Moderately Non-normal Distribution with k=8 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  3.7  1.4  2.4  0.0  4.9  15.7  15.3  NC NC NC 15.3  97.9  0.0  92.7  

 
1.0  5.3  1.5  3.0  0.1  5.6  18.5  16.5  NC NC NC 16.5  99.1  0.0  94.6  

 
0.8  7.6  3.2  4.8  0.1  8.5  20.9  22.7  NC NC NC 22.7  99.1  0.0  93.7  

  0.5  8.8  3.7  4.7  0.5  9.2  22.0  24.4  NC NC NC 24.4  99.0  0.0  95.1  

n=30 1.0  4.7  2.3  3.2  0.0  4.6  25.4  8.1  NC NC NC 8.1  65.8  36.0  46.5  

 
1.0  4.4  2.5  3.5  0.0  4.7  24.9  8.3  NC NC NC 8.3  67.7  32.7  45.0  

 
0.8  6.7  3.5  4.3  0.1  8.3  26.5  12.1  NC NC NC 12.1  68.4  34.5  47.9  

 
0.5  7.6  3.9  4.4  0.6  9.7  27.2  13.6  NC NC NC 13.6  68.0  36.3  49.1  

n=60 1.0  5.2  3.8  4.2  0.0  5.1  29.1  6.2  10.3  3.9  5.1  6.2  9.7  3.4  4.9  

 
1.0  5.8  3.9  4.2  0.0  4.8  30.8  5.9  11.0  3.2  4.8  5.9  10.1  2.8  4.6  

 
0.8  7.4  4.1  4.8  0.2  7.4  31.5  8.4  12.7  5.8  7.4  8.4  11.9  5.3  7.0  

  0.5  9.6  5.2  5.5  0.5  7.8  33.8  9.1  15.2  6.1  7.8  9.1  14.2  5.5  7.2  

n=100 1.0  4.7  3.6  4.0  0.0  5.0  31.8  5.8  8.1  3.9  5.0  5.8  7.8  3.8  4.8  

 
1.0  5.3  4.4  4.7  0.1  4.9  33.7  5.5  7.9  4.0  4.9  5.5  7.5  3.6  4.6  

 
0.8  6.3  4.3  4.7  0.2  6.5  33.4  7.1  9.2  5.2  6.5  7.1  8.8  4.9  6.2  

 
0.5  8.9  5.4  5.8  0.6  8.1  35.6  9.0  11.5  7.2  8.1  9.0  11.2  6.8  8.0  

n=200 1.0  5.4  4.7  4.8  0.0  4.9  33.2  5.1  6.7  4.3  4.9  5.1  6.5  4.1  4.9  

 
1.0  5.2  3.9  4.2  0.1  5.0  32.3  5.1  6.4  4.4  5.1  5.1  6.4  4.2  4.7  

 
0.8  5.4  3.9  3.9  0.2  5.4  36.8  5.7  6.6  4.8  5.4  5.7  6.5  4.7  5.2  

  0.5  7.6  4.1  4.1  0.5  6.0  39.7  6.3  7.3  5.7  6.0  6.3  7.2  5.6  6.0  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 10 for moderately nonnormal data for k=8, Box and HF 

were robust across all sphericity levels when sample sizes were larger than 15. When 

n=15, Box and HF provided model rejection rates smaller than the lower boundary of 

Bradley’s liberal criterion (2.5%) for some cells. FM was robust across all sample 

sizes when there was no or little violation of sphericity assumption ( =1, .96). On the 

other hand, the Type I error rates for FM tended to be inflated when the violation of 

sphericity assumption became more serious (ε=.75, .48) but when sample sizes 

increased, this test became more robust when the sample sizes were smaller than 200. 

When n=200, FM was robust across all spheriticy levels. F, similar to the previous 

conditions, was robust across all conditions except when there was a serious violation 

of sphericity assumption ( =.48). Among F, Box, and HF, F provided largest Type I 

error rates while Box provided the smallest Type I error rates. All the Type I error 

rates provided by GG were below the lower bound of Bradley’s liberal criterion 

(2.5%). TR, however, displayed another extreme result, whose Type I Error rates were 

all higher than the upper bound of Bradley’s liberal criterion (7.5%).  

All SEM based methods performed poorly when sample sizes equaled 15 and 30. 

ADF and its corrections (YBADF and FADF) did not converge, thus providing no 

Type I error rates across all sphericity levels. RES and their corrections (YBRES and 

FRES) encountered some non-convergence but were able to provide the Type I error 

rates. ML and SB1, on the other hand, provided inflated Type I error rates higher than 
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the upper bound of Bradley’s liberal criterion (7.5%). When sample size equaled 15, 

RES and FRES provided the Type I error rates close to 100% while the Type I error 

rates provided by YBRES were all 0s. When sample size equaled 30, RES provided 

the Type I error rates of close to 70%, FRES close to 50%, and YBRES around 30%. 

When sample size was larger than 30 (60, 100, and 200), YBADF and YBRES were 

robust across all sphericity conditions. ML, FADF, SB1, and FRES controlled the 

Type I error rates well with only one or two inflated rejection rates when there was 

serious violation of sphericity assumption with sample sizes of 60 and 100 and all of 

these tests were robust when the sample size was 200. Contrary to the performance of 

the other RMM methods, ADF and RES only provided robust Type I error rates across 

sphericity levels when the sample size is 200 but delivered inflated rejection rates 

with sample sizes of 60 and 100. Among all Type I error rates provided by these 

RMM tests, the order of the magnitude came out with ADF > RES > SB1 > FADF > 

FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Table 11: Empirical Type I Error Rates (%) for Severely Non-normal Distribution with k=4 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  3.5  2.1  2.6  0.3  3.3  6.2  4.5  12.1  0.9  3.5  4.5  9.9  0.4  2.8  

 
1.0  4.4  2.1  2.8  0.4  4.4  15.5  5.6  14.0  1.4  4.4  5.6  12.1  0.8  3.7  

 
0.8  7.1  4.2  5.1  1.8  6.6  12.1  7.9  16.0  3.1  6.6  7.9  14.5  1.8  5.7  

  0.5  10.8  6.9  7.4  4.4  8.4  24.1  10.1  20.0  4.4  9.9  10.1  18.7  3.2  8.3  

n=30 1.0  4.1  2.6  3.0  0.4  3.9  8.3  4.5  8.0  2.5  4.0  4.5  6.9  2.0  3.4  

 
1.0  3.6  2.3  2.6  0.5  4.0  23.7  4.4  7.7  3.0  4.1  4.4  7.1  2.3  3.7  

 
0.8  7.7  5.6  6.0  2.1  6.9  17.6  7.5  11.1  4.7  7.0  7.5  10.5  3.8  6.3  

 
0.5  10.2  6.0  6.3  4.5  8.3  27.7  8.6  12.1  6.5  8.4  8.6  11.1  5.9  7.8  

n=60 1.0  4.8  3.6  3.9  0.6  4.9  8.6  4.5  6.7  4.0  5.0  4.5  6.9  2.0  3.4  

 
1.0  4.5  3.3  3.5  0.6  3.6  28.2  3.7  5.0  3.2  3.6  3.7  4.7  2.9  3.5  

 
0.8  7.1  5.5  5.5  2.0  5.7  23.2  6.0  7.8  5.2  5.8  6.0  7.4  4.8  5.5  

  0.5  8.9  5.4  5.5  3.4  7.5  36.1  7.8  9.0  6.8  7.5  7.8  8.6  6.5  7.3  

n=100 1.0  3.9  3.2  3.3  0.5  4.1  9.6  4.1  5.1  3.6  4.1  4.1  5.0  3.5  3.9  

 
1.0  5.2  4.2  4.2  0.8  5.3  33.8  5.4  6.4  5.1  5.4  5.4  6.3  4.8  5.2  

 
0.8  6.6  5.0  5.0  1.9  5.7  28.9  5.8  7.0  5.0  5.7  5.8  6.7  4.6  5.4  

 
0.5  9.6  5.7  5.7  4.3  7.4  38.8  7.6  8.5  6.8  7.4  7.6  8.4  6.7  7.1  

n=200 1.0  4.6  3.9  3.9  0.8  3.8  11.2  4.0  4.3  3.6  3.9  4.0  4.3  3.5  3.8  

 
1.0  4.8  4.2  4.3  1.4  5.1  36.1  5.1  5.4  4.9  5.1  5.1  5.4  4.9  5.1  

 
0.8  6.9  5.5  5.5  2.0  5.7  43.5  5.8  6.1  5.5  5.7  5.8  6.1  5.4  5.6  

  0.5  8.9  5.5  5.5  4.0  5.8  44.2  5.9  6.5  5.5  5.8  5.9  6.4  5.4  5.7  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 11 for severely nonnormal data for k=4, HF was robust 

across all sample sizes and all sphericity levels while F provided inflated Type I error 

rates (10.8%, 10.2%, 8.9%, 9.6%, 8.9%) when the sphericity assumption was severely 

violated ( =.48). GG was to the opposite of the traditional F test which provided 

robust Type I error rates only when the sphericity level equaled .48 across all sample 

size conditions (4.4%, 4.5%, 3.4%, 4.25%, and 4%). Box and FM controlled the Type 

I error rates well with only one or two cells providing inflated rejection rates when 

sample sizes equaled 15 and 30. FM delivered inflated Type I errors when there was 

serious violation of sphericity assumption ( =.48) but Box produced inflated Type I 

error when the sphericity assumption was not violated or little violated (  =1, .96). 

Among F, Box, and HF, F provided largest Type I error rates while Box provided the 

smallest Type I error rates. TR, however, displayed another extreme result, whose 

Type I error rates were higher than the upper bound of Bradley’s liberal criterion 

(7.5%) with only one robust cell (n=15,  =1) as an exception. 

Among all SEM based methods, YBADF controlled the Type I error rates well 

with only two cells providing inflated rejection rates when there was no or little 

violation of sphericity assumption ( =1, .96) with sample size of 15. FADF and 

FRES performed well with only two inflated rejection rates when there was serious 

violation of sphericity assumption ( =.48) with sample size of 15 and 30. ML and 

SB1 were robust across all sample sizes except when there was serious violation of 
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sphericity assumption ( =.48). ADF and RES did not control Type I error rates well 

except when the sample size was 200. ADF provided inflated rejection rates across all 

sphericity levels when sample sizes were small (15 and 30) and when there was 

serious violation of sphericity assumption ( =.48) when the sample sizes were 60 

and 100. RES delivered inflated Type I error rates when sample size was 15 across all 

sphericity levels as well as when the sphericity assumption was seriously violated 

with sample sizes larger than 15. YBRES was robust across all conditions with large 

sample sizes (100 and 200) but provided Type I error rates below the lower boundary 

of the robustness range when there was no or little violation of sphericity assumption 

with sample sizes of 30 and 60. When sample size equaled 15, YBRES was robust 

only when the sphericity assumption was seriously violated. Among all Type I error 

rates provided by these RMM tests, the order of the magnitude came out with ADF > 

RES > SB1 > FADF > FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Table 12: Empirical Type I Error Rates (%) for Severely Non-normal Distribution with k=8 
 

    F Box HF GG FM TR ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.0  3.1  0.6  1.3  0.0  3.1  23.2  13.4  NC NC NC 13.4  98.1  0.0  93.3  

 
1.0  4.2  1.2  2.2  0.0  3.9  24.6  13.9  NC NC NC 13.9  98.0  0.0  92.8  

 
0.8  5.1  1.1  1.9  0.0  5.6  26.0  18.2  NC NC NC 18.2  99.0  0.0  95.0  

  0.5  8.1  2.9  3.9  0.2  9.4  30.4  24.5  NC NC NC 24.5  99.2  0.0  95.8  

n=30 1.0  4.2  1.0  1.7  0.0  3.1  39.7  6.3  NC NC NC 6.3  78.7  48.4  61.4  

 
1.0  4.1  1.6  2.0  0.0  4.0  37.0  7.3  NC NC NC 7.3  79.2  48.6  69.1  

 
0.8  5.7  2.1  2.7  0.0  6.9  38.8  10.2  NC NC NC 10.2  80.7  50.5  62.8  

 
0.5  9.1  4.1  4.8  0.6  11.3  42.3  15.4  NC NC NC 15.4  82.8  53.7  66.1  

n=60 1.0  4.8  2.5  2.9  0.0  5.0  48.6  6.1  10.2  3.5  5.0  6.1  9.5  3.2  4.6  

 
1.0  5.9  3.4  3.7  0.0  4.9  48.7  5.8  9.9  3.1  5.0  5.8  9.4  3.0  4.5  

 
0.8  6.0  2.9  3.4  0.2  7.3  48.0  8.8  13.7  5.8  7.3  8.8  12.9  5.1  6.9  

  0.5  7.8  3.4  3.8  0.3  8.7  45.8  10.5  15.8  6.8  8.4  10.5  15.5  6.2  8.4  

n=100 1.0  4.3  3.3  3.4  0.0  5.2  5.4  5.9  8.5  4.3  5.2  5.9  8.1  4.0  4.9  

 
1.0  4.5  3.0  3.2  0.0  5.0  52.2  5.5  8.1  4.1  5.5  5.5  7.7  3.6  4.9  

 
0.8  6.0  3.4  3.6  0.0  7.0  52.8  7.8  10.6  5.8  7.1  7.8  10.3  5.6  6.7  

 
0.5  8.9  5.2  5.5  0.7  9.1  52.7  9.8  12.5  7.8  9.1  9.8  12.2  7.4  8.8  

n=200 1.0  6.2  4.6  4.9  0.1  5.3  55.2  5.7  7.0  5.0  5.3  5.7  6.8  4.7  5.3  

 
1.0  5.8  4.2  4.5  0.0  5.7  54.8  6.3  7.4  4.9  5.7  6.3  7.2  4.8  5.6  

 
0.8  6.7  4.3  4.4  0.2  6.8  57.6  7.1  8.2  6.3  6.8  7.1  8.1  6.3  6.7  

  0.5  6.8  4.2  4.3  0.4  7.1  56.4  7.3  8.5  6.8  7.1  7.3  8.3  6.5  7.1  

Note. 1. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted 
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F test. TR = the  -trimmed method using   = 0.2 (TR).  FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. 

ADF = Browne’s asymptotic distribution-free test. YBADF = Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II 

test. SB1 = Satorra-Bentler scaled 2  test. RES = Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and 

Bentler adjusted RES II test. 

2. The underlined values indicated robust Type error rates which fell between 2.5% and 7.5%.  
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As is shown in Table 12 for severely nonnormal data for k=8, Box and HF were 

robust across all sphericity levels when sample sizes were larger than 30. When 

sample sizes equaled 15 and 30, Box and HF provided model rejection rates smaller 

than the lower boundary of Bradley’s liberal criterion (2.5%) for some cells and were 

robust when there was severe violation of sphericity assumption (  =.48). FM tended 

to provide inflated Type I error rates when there was severe violation of sphericity 

assumption but remained robust for the rest of the conditions when the sample sizes 

were smaller than 200. When n=200, FM was robust across all spheriticy levels. F, 

similar to the previous conditions, was robust across all conditions except when there 

was a serious violation of sphericity assumption (  =.48) when the sample sizes were 

smaller than 200 but provided robust rejection rates across all sphericity levels when 

sample size equaled 200. Among F, Box, and HF, F provided largest Type I error rates 

while Box provided the smallest Type I error rates. All the Type I error rates provided 

by GG were close to 0 and below the lower bound of Bradley’s liberal criterion 

(2.5%). TR, however, displayed another extreme result, whose Type I Error rates were 

all higher than the upper bound of Bradley’s liberal criterion (7.5%).  

All SEM based methods performed poorly when sample sizes equaled 15 and 30. 

ADF and its corrections (YBADF and FADF) did not converge, thus providing no 

Type I error rates across all sphericity levels. RES and their corrections (YBRES and 

FRES) encountered some non-convergence but were able to provide the Type I error 
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rates. ML and SB1, on the other hand, provided inflated Type I error rates higher than 

the upper bound of Bradley’s liberal criterion (7.5%) under the majority of the 

conditions. When sample size equaled 15, RES and FRES provided the Type I Error 

rates close to 100% while the Type I error rates provided by YBRES were all 0s. 

When sample size equaled 30, RES provided the Type I error rates of close to 80%, 

FRES around 60%, and YBRES around 50%. When sample sizes were larger than 30 

(60, 100, and 200), YBRES was robust across all sphericity conditions. YBADF, 

FADF, FRES controlled Type error rates well with one or two cells providing inflated 

rejection rates when there was severe violation of sphericity assumption. ML and SB1 

were robust across all sphericity levels when sample size equaled 200 but did not 

perform well when sample sizes were 60 and 100, which provided inflated rejection 

rates when  =.75 and  =.48. Contrary to the performance of the other RMM 

methods, ADF and RES performed poorly by providing inflated rejection rates across 

all conditions with only two cells proving robust result when the sample size equaled 

200 and when there was no or little sphericity assumption violation. Among all Type I 

error rates provided by these RMM tests, the order of the magnitude came out with 

ADF > RES > SB1 > FADF > FRES > YBADF >YBRES.  

Among all the methods that provided robust Type I error rates, most of them 

provided Type I error rates of around 5%.  
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Empirical Power 

Based on the results from Type I error rates analysis conducted above, it was 

discovered that Type error rates GG yielded were smaller than the lower boundary of 

Bradley’s liberal criterion (2.5%), even close to 0 in most conditions. However, this 

method was still included in power analysis. On the other hand, the majority of Type I 

error rates produced by TR were beyond the upper boundary of Bradley’s liberal 

criterion (7.5%), thus being removed from the power analysis.  

Tables 13, 15, 17, and 19 present the results of power analysis under the four 

types of distributions when the number of levels k equals 4. Tables 14, 16, 18, and 20 

show the results of power analysis under the four types of distributions when the 

number of levels k equals 8. Among these eight tables, Table 13 and Table 14 present 

the results of power analysis for the normal distribution, while Table 15 and Table 16 

show the results of power analysis for elliptical distribution under sphericity levels of 

1, .96, .75, .48 and sample sizes of 15, 30, 60, 100, 200. Table 17 and Table 18 present 

the results for the moderately non-normal distribution, while Table 19 and Table 20 

show the results for severely the non-normal distribution under four sphericity levels 

(1, .96, .75, .48) and five sample sizes (15, 30, 60, 100, 200).  
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Table 13: Empirical Power (%) for Normal Distribution with k=4 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00 11.0  9.2  10.5  2.7  9.2  14.7    5.0  12.3  14.7    20.3  10.3  

 
0.96 9.9  7.4  9.3  2.4  9.3  12.5  

 
4.3  10.3  12.5  

 
20.5  8.3  

 
0.75 11.6  9.0  10.4  4.3  8.6  12.4  

 
4.0  9.8  12.4  

 
21.1  8.2  

  0.48   10.8  11.7  7.6  12.3  18.3    8.2  17.6  18.3    29.3  13.2  

n=30 1.00 17.1  15.9  16.8  4.8  16.5  16.6  
 

3.4  10.1  16.6  
 

29.0  13.4  

 
0.96 18.5  16.9  17.8  6.1  15.2  15.2  

 
4.3  9.9  15.2  

 
27.8  12.5  

 
0.75 20.4  17.7  18.1  10.7  14.7  14.2  

 
4.2  9.8  14.2  

 
26.0  12.1  

 
0.48 

 
15.4  16.1  12.1  22.9  13.5  

 
3.3  9.7  13.5  

 
26.7  11.7  

n=60 1.00 28.3  27.5  28.1  11.0  27.9  34.9  43.2  37.6  38.7  34.9  34.9  37.2  32.5  

 
0.96 32.1  30.4  31.1  13.8  28.8  36.4  39.8  33.2  33.6  36.4  36.4  39.3  32.6  

 
0.75 39.8  33.8  34.7  20.8  28.4  30.4  36.1  27.4  29.8  30.4  30.4  34.6  28.3  

  0.48   31.2  31.3  25.0  42.8  50.1  52.8  49.3  49.4  50.1  50.1  54.1  49.8  

n=100 1.00 49.8  48.8  49.5  25.3  48.8  52.3  54.6  51.1  51.9  52.3  52.3  54.2  51.7  

 
0.96 55.6  53.9  54.8  30.9  51.5  56.1  57.1  53.2  54.9  56.1  56.1  56.9  54.3  

 
0.75 56.5  50.9  51.0  35.8  45.5  46.2  48.7  44.6  45.9  46.2  46.2  47.9  44.1  

 
0.48 

 
46.1  46.6  41.5  68.6  69.7  72.4  68.1  69.5  69.7  69.7  71.2  67.8  

n=200 1.00 84.3  84.0  84.2  63.3  83.3  84.7  85.1  84.8  85.4  84.7  84.7  85.2  82.3  

 
0.96 87.5  86.6  87.2  68.8  85.3  87.7  87.9  86.7  87.3  87.7  87.7  87.9  87.5  

 
0.75 85.6  82.0  82.1  70.9  77.1  83.4  82.3  82.1  83.1  83.4  83.4  84.3  83.1  

  0.48   76.6  76.6  72.0  93.6  95.5  95.4  95.2  95.3  95.5  95.5  96.0  95.3  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
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= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled 2  test. RES = 

Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 13 for normal data for k=4, the results for some cells were 

removed from power analysis because these cells provided Type I error rates larger 

than 7.5%. Therefore, the results for the traditional F test across all sample sizes when 

the sphericity assumption was severely violated ( =.48) and those for ADF and RES 

when sample sizes equal 15 and 30 across all sphericity levels were removed from the 

final analysis for the same reason.   

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power in the majority of the cells was less than 20% while the 

majority of the cells provided power greater than 80% except some cells from 

ANOVA based methods with n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG and HF > FM across all sample 

sizes. When  =0.48, with F being removed from comparison, FM provided strongest 

power and the order of the strength of power estimates came out with FM > HF > 

BOX > GG across all sample sizes. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by YBADF across 

all conditions. The order of the strength of power estimates for YBRES, SB1/ML, and 

FRES yielded YBRES > SB1/ML > FRES across all sample sizes and sphericity 
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levels. Both YBRES and ML/SB1 provided comparatively higher power estimates 

than FADF across all sample sizes and sphericity levels except when n=60,  =1 and 

n=200,  =1. Therefore, except when n=60,  =1 and n=200,  =1, the order of the 

magnitude of power estimates could come out with YBRES > ML/SB1 > FADF > 

YBADF across all sample sizes and sphericity levels.  

When n=15, YBRES provided the highest power among all methods that 

entered into analysis across all sphericity levels with a range from 20.3% to 29.3%. 

Except for  =0.48, the order of the strength of power was obtained as YBRES > 

SB1/ML > F > HF > FRES > YBADF across all other sphericity levels. F yielded the 

highest power estimates among all ANOVA-based methods and the power estimates 

for YBRES were more than twice those for F. When  =0.48, FM (12.3%) yielded 

the highest power estimates among all ANOVA-based methods and the power 

estimate for YBRES (29.2%) was more than twice that for FM. BOX provided larger 

power estimates than YBADF across all sphericity levels, and FRES was more 

powerful than BOX except when  =.75, thus having YBRES > SB1/ML > FADF > 

FM > BOX > YBADF.  

When n=30, power estimates provided by ANOVA-based methods increased by 

a greater percentage (more than 50%) than those provided by RMM methods. But 

YBRES still provided the highest power estimates ranging from 26% to 29% while 

YBADF provided the lowest power estimates between 3.3% and 4.2% among all 
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methods that entered into analysis across all sphericity levels. Except for  =0.48, the 

order of the strength of power was obtained as YBRES > F > HF > FM > SB1/ML > 

FRES > FADF > YBADF across all sphericity levels. F (ranging from 17.1% to 

20.4%) yielded the highest power estimates among all ANOVA-based methods and 

the power estimates for YBRES were less than twice those for F. When  =0.48, FM 

yielded the highest power estimates among (22.9%) all ANOVA-based methods and 

the power estimate for YBRES (26.7%) was only 3.8% larger than that for FM. 

Compared with FADF, GG provided smaller power estimates when the data were 

normal or close to normal but provided larger power estimates when  =.48 and 

=.75, thus having YBRES > F > HF > FM > SB1/ML > FRES > GG > YBADF.  

When n=60, GG (ranging from 11% to 25%) provided the lowest power 

estimates among all methods that entered into analysis across all sphericity levels. 

Except for GG, all other methods provided power estimates of more than 27%. RES 

provided the equal power estimates as ML and SB1 across all conditions. ADF 

delivered the highest power estimates levels when  =1 and  =.96 and the power 

estimates came out as 43.2% and 36.4% respectively. The order of the strength of 

power thus was obtained as ADF > YBRES > RES/SB1/ML > FRES > F > HF > 

BOX > GG. When  =.75, F became the most powerful method (39.8%) and the 

order of the magnitude of power estimates came out with F > ADF > HF > YBRES > 

BOX > RES/SB1/ML > FM > FRES > GG with empirical power estimates falling 
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between 20.8% to 39.8%. When  =0.48, the power estimates provided by RMM 

methods (ranging from 49.3% to 54.1) were much greater than those provided by 

ANOVA-based methods (between 25% and 42.8%) with the order of strength of 

power of YBRES > ADF > RES/SB1/ML > FRES > FADF > BADF > FM > HF > 

BOX > GG. The power estimate provided by YBRES (54.1%) was more than twice 

that of GG (25%).  

When n=100, ADF delivered the highest power estimates (between 48.7% and 

72.4%) while GG provided the lowest power estimates (between 25.3% and 41.5%) 

among all methods that entered into analysis across all sphericity levels except when 

 =.75 and the order of the strength of power was obtained as ADF > YBRES > 

RES/SB1/ML > FADF > HF > BOX > GG. RES provided the equal power estimates 

as ML and SB1 across all conditions. When  =.75, F provided largest power 

estimates (56.5%) and the order of the magnitude of power estimates became F > 

FRES > HF > BOX > ADF > YBRES > RES/SB1/ML > FADF > FM > YBADF > 

GG and these methods provided empirical power estimates between 35.8% and 

56.5%.  

When n=200, generally speaking, RMM methods (ranging from 82.1% to 

95.6%) were more powerful than ANOVA-based methods (ranging from 63.3% to 

93.6%). GG provided the lowest power estimates across all conditions. The empirical 

power estimates provided by RMM methods were consistently larger than 80% across 
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all sphericity levels. When  =.48, all empirical power estimates delivered by RMM 

methods were greater than 95% while the power estimates provided by 

ANOVA-based methods except FM were below 80%. The same as n=60 and n=100, 

YBRES delivered the highest power among all methods that entered into analysis 

across all sphericity levels except when  =.75. When  =.75, F became the most 

powerful method and provided a power estimate of 95.6%. 
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Table 14: Empirical Power (%) for Elliptical Distribution with k=4 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  9.5  7.5  8.2  2.2  11.1  13.5    4.3  11.4  13.5    19.9  9.4  

 
0.96  12.3  9.6  10.9  3.3  8.7  11.4  

 
4.1  9.2  11.4  

 
19.8  7.4  

 
0.75  13.5  9.7  10.9  4.8  9.2  11.7  

 
3.5  9.3  11.7  

 
19.8  7.5  

  0.48    13.1  14.0  9.4  14.4  16.9    7.5  15.3  16.9    28.5  12.9  

n=30 1.00  17.3  14.9  16.3  3.9  17.3  18.3  
 

13.1  17.4  18.3  18.3  24.1  16.1  

 
0.96  20.3  17.9  19.1  6.2  17.3  18.9  

 
14.1  17.4  18.9  18.9 25.6  16.3  

 
0.75  25.1  21.0  21.3  12.0  20.1  20.8  27.9  15.3  20.5  20.8  20.8  26.9  18.3  

 
0.48  

 
18.1  19.1  14.0  24.8  26.2  

 
20.9  24.8  26.2  26.2  32.7  23.5  

n=60 1.00  32.2  30.7  31.6  14.6  33.2  33.5  38.0  30.7  33.2  33.5  33.5  36.6  32.1  

 
0.96  34.2  31.8  32.8  14.0  31.6  32.4  35.8  28.7  31.7  32.4  32.4  35.5  31.0  

 
0.75  36.4  31.2  32.2  19.8  28.8  29.8  34.9  27.0  28.9  29.8  29.8  33.9  27.9  

  0.48    30.0  30.4  25.0  49.2  49.6  54.5  47.1  49.3  49.6  49.6  53.4  48.7  

n=100 1.00  52.3  51.6  52.0  28.6  52.4  52.4  55.3  51.3  52.5  52.4  52.4  54.9  52.0  

 
0.96  56.0  54.3  54.7  31.2  55.6  56.2  58.1  53.9  55.6  56.2  56.2  57.7  54.7  

 
0.75  56.7  51.8  52.4  37.1  46.7  46.9  49.3  45.3  46.7  46.9  46.9  48.7  46.5  

 
0.48  

 
48.1  48.1  42.6  69.7  70.0  72.8  68.4  69.7  70.0  70.0  72.1  68.9  

n=200 1.00  82.1  81.5  81.6  62.9  82.4  82.6  83.2  81.4  82.5  82.6  82.6  83.1  81.9  

 
0.96  85.8  85.2  85.3  67.5  83.4  83.6  84.0  82.8  83.4  83.6  83.6  83.8  83.2  

 
0.75  85.7  82.7  82.8  71.4  78.0  78.2  79.2  77.5  78.0  78.2  78.2  78.7  77.9  

  0.48    78.3  78.4  74.7  94.6  94.6  95.0  94.3  94.6  94.6  94.6  95.0  94.6  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
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= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled 2  test. RES = 

Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 14 for Elliptical Distribution for k=4, the results for some 

cells were removed from the power analysis because these cells provided Type I error 

rates larger than 7.5%. Therefore, the results for the traditional F test across all sample 

sizes when the sphericity assumption was severely violated ( =.48) and those for 

ADF and RES when sample size equals 15 across all sphericity levels were removed 

from the final analysis. Some of the results for ADF were also removed when n=30 

( =1,  =.96, and  =.48) and the results for RES when n=30 and  =.96 were 

also removed from the analysis for the same reason. 

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power observed in the majority of the cells was less than 20% 

while the majority of the cells provided power greater than 80% when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG and F > FM > GG across all 

sample sizes. When  =0.48, with F being removed from comparison, FM provided 

strongest power and the order of the strength of power estimates came out with FM > 

HF > BOX > GG across all sample sizes. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by FADF across all 

conditions (YBRES > FADF > YBADF). The order of the strength of power estimates 
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for YBRES, SB1/ML, and FRES yielded YBRES> SB1/ML >FRES across all sample 

sizes and sphericity levels. ML/SB1 provided comparatively higher power estimates 

than FADF across all sample sizes and sphericity levels except when n=100,  =1 and 

n=200,  =.48. Therefore, except when n=100,  =1 and n=200,  =.48, the order of 

the magnitude of power estimates came out with YBRES > ML/SB1 > FADF > 

YBADF across all sample sizes and sphericity levels.  

When n=15, YBRES provided the highest power estimates (between 19.8% and 

28.5) while GG provided the lowest power estimates (between 2.2% and 9.4%) 

among all methods that entered into analysis across all sphericity levels. Except for 

=0.48, the order of the strength of power was obtained as YBRES > F > FRES > 

YBADF > GG across all other sphericity levels. F yielded the highest power 

estimates among all ANOVA-based methods and the power estimates for YBRES 

were around twice those for F. When  =0.48, FM yielded the highest power 

estimates (14.4%) among all ANOVA-based methods and the power estimate for 

YBRES (28.5%) was around twice that for FM. Both BOX and HF provided larger 

power estimates than YBADF across all sphericity levels, and BOX was more 

powerful than FRES except when  =1, thus having YBRES > SB1/ML > FADF > 

FM > HF > BOX > YBADF > GG.  

When n=30, power estimates provided by ANOVA-based methods increased by 

a greater percentage (at least 50%) than those provided by RMM methods. YBRES 
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provided the highest power estimates (ranging from 24.1% to 32.7%) across all 

sphericity levels except for  =.75 and GG provided the smallest power estimates 

(ranging from 3.9% to 14%) across all conditions and the order of the magnitude of 

power estimates came out with YBRES > ML/SB1 > FM > FADF > FRES. When 

=.75, ADF became the most powerful method with an estimate of 27.9%, thus having 

ADF > YBRES > F > HF > BOX > ML/RES/SB1 > FM > FRES > YBADF.  

When n=60, ADF provided the highest power estimates (between 34.9% to 54.5) 

across all sphericity levels except for  =.75 and the order of the strength of power 

was obtained as ADF> YBRES> RES/SB1/ML > BOX > GG. GG provided the 

smallest power estimates (ranging from 14% to 25%) across all conditions. When 

=.75, F (36.4%) became the most powerful and the order of the magnitude of power 

estimates became F > ADF > YBRES > HF > BOX > RES/SB1/ML > FADF > FM > 

FRES > GG and these methods provided empirical power estimates between 19.8% to 

36.4%. When  =.48, RMM methods provided higher power estimates (between 47.1% 

and 54.5%) than ANOVA-based methods (between 25% and 49.2%) with the order of 

strength of power of ADF > YBRES > RES/SB1/ML > FADF > FM > FRES > 

YBADF > HF > BOX > GG and the empirical power estimates fell in the range 

between 30% to 54.5%.  

When n=100, ADF delivered the highest power with estimates between 49.3% 

to 72.8% while GG provided the lowest power estimates with power estimates 
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between 28.6% and 42.6% among all methods that entered into analysis across all 

sphericity levels except when  =.75 and the order of the strength of power was 

obtained as ADF > YBRES > RES/SB1/ML > HF > BOX > GG. RES provided the 

equal power estimates as ML and SB1 across all conditions ranging from 46.9% and 

70%. When  =.75, F (56.7%) became the most powerful method and the order of the 

magnitude of power estimates was obtained as F > HF > BOX > ADF > YBRES > 

RES/SB1/ML > FADF/FM > FRES > YBADF > GG and these methods provided 

empirical power estimates between 37.1% and 56.7%. When  =.48, RMM methods 

provided higher power estimates (ranging from 68.4% to 72.8%) than ANOVA-based 

methods (ranging from 42.6% to 69.7). 

When n=200, GG provided the lowest power across all conditions with 

estimates between 62.9% and 74.7%. The majority of the empirical power estimates 

provided were close to or larger than 80%. When  =.48, all empirical power 

estimates delivered by RMM methods were greater than 90% while those provided by 

ANOVA-based methods except FM were below 80%. YBRES delivered the highest 

power among all methods that entered into analysis when  =1 (83.2%) and  =.48 

(95%) and RMM based methods were more powerful than ANOVA based methods. 

When  =.96 and  =.75, F became the most powerful method among all the 

methods that entered into analysis with the power estimates of 85.8% and 85.7% 

respectively and the order of the magnitude of power estimates came out with F > HF > 
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BOX > ADF > YBRES > ML/SB1/RES > FM > FRES > FADF > YBADF > GG and 

these methods provided empirical power estimates between 71.4% and 85.7% when 

 =.75 and between 67.5% and 85.8% when  =.96. 
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Table 15: Empirical Power (%) for Moderately Non-normal Distribution with k=4 
 

    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  11.1  7.5  9.8  2.6  10.5  13.3    3.9  10.1  13.3    24.7  9.0  

 
0.96  8.5  6.4  7.3  1.9  7.2  9.3  

 
2.1  6.9  9.3  

 
17.1  5.9  

 
0.75  13.5  9.5  10.3  3.9  8.9  10.3  

  
9.4  10.3  

 
18.6  7.8  

  0.48    7.7  7.9  4.7        5.6        26.6    

n=30 1.00  17.5  14.8  16.1  4.9  18.4  18.9  
 

14.3  18.7  18.9  18.9  24.6  17.2  

 
0.96  18.0  14.4  16.1  4.6  14.4  15.6  

 
10.6  14.5  15.6  15.6  22.3  12.8  

 
0.75  23.7  19.1  19.8  9.9  17.0  17.9  

 
13.3  17.1  17.9  17.9  24.2  15.7  

 
0.48  

 
12.5  13.1  9.5  22.6  24.1  

 
17.4  18.0  24.1  

 
30.6  21.3  

n=60 1.00  32.2  30.4  31.2  13.5  32.8  33.3  38.0  30.3  32.8  33.3  33.3  36.6  32.1  

 
0.96  35.5  32.7  32.9  14.7  33.9  34.2  38.4  31.4  33.9  34.2  34.2  37.9  32.9  

 
0.75  40.4  35.3  36.0  21.8  31.2  31.6  35.0  28.5  31.2  31.6  31.6  34.3  30.1  

  0.48    25.5  26.4  20.9  44.5  45.1    41.0  44.5  45.1  45.1  49.7  43.4  

n=100 1.00  52.0  50.6  51.0  29.0  54.1  54.4  57.0  53.4  54.1  54.4  54.4  56.2  53.5  

 
0.96  55.0  53.0  53.6  32.8  52.8  53.5  55.8  51.3  53.0  53.5  53.5  55.0  52.6  

 
0.75  57.6  53.2  53.4  40.3  46.9  47.4  50.4  45.1  46.9  47.4  47.4  49.7  46.4  

 
0.48  

 
47.2  47.6  39.7  71.6  71.8  74.9  70.7  71.6  71.8  71.8  74.1  71.2  

n=200 1.00  83.9  83.3  83.5  64.1  85.1  85.1  86.1  84.7  85.1  85.1  85.1  86.1  84.9  

 
0.96  85.2  84.2  84.4  68.1  84.6  84.7  85.5  84.1  84.6  84.7  84.7  85.4  84.4  

 
0.75  87.8  84.5  84.7  72.9  79.2  79.3  80.1  79.0  79.2  79.3  79.3  80.0  79.2  

  0.48    84.0  84.0  78.3  97.2  97.2  97.3  97.2  97.2  97.2  97.2  97.3  97.2  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
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= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled 2  test. RES = 

Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 15 for Moderately Non-normal Distribution for k=4, the 

results for some cells were removed from the power analysis because these cells 

provided Type I error rates larger than 7.5%. Therefore, the results for the traditional 

F test across all sample sizes when the sphericity assumption was severely violated 

( =.48) and those for ADF and RES when sample size equaled 15 and those for ADF 

when sample size equaled 30 across all sphericity levels were removed from the final 

analysis. The results for SB1, ML, FRES, and FM (n=15,  =.48), the results for RES 

(n=30,  =.48), and the result for FADF (n=15,  =.48) was also removed from the 

analysis for the same reason. 

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates seen in the majority of the cells except YBRES 

were less than 20% while the majority of the cells showed power greater than 80% 

when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG and F > FM > GG across all 

sample sizes. When  =0.48, with F being removed from comparison, FM provided 

strongest power and the order of the strength of power estimates came out with FM > 

HF > BOX > GG across all sample sizes. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF is consistently more powerful than YBADF and the power 
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estimates provided by YBRES were consistently higher than those by FADF across all 

conditions so that the order of magnitude of power estimates was obtained as YBRES > 

FADF > YBADF. Meanwhile the order of the strength of power estimates for ADF, 

YBRES, SB1/ML, and FRES yielded ADF > YBRES > SB1/ML > FRES across all 

sample sizes and sphericity levels. ML/SB1 provided comparatively higher power 

estimates than FADF across all sample sizes and sphericity levels except when n=200, 

 =1 and n=200,  =.48 (FADF= ML/SB1). Therefore, except when n=200,  =1 and 

n=200,  =.48, the order of the magnitude of power estimates could come out with 

ADF > YBRES > ML/SB1 > FADF > YBADF across all sample sizes and sphericity 

levels.  

When n=15, YBRES provided the highest power estimates (between 17.1% and 

26.6%) while GG provided the lowest power estimates (between 1.9% and 4.7%) 

among all methods that entered into analysis across all sphericity levels. The order of 

the strength of power was obtained as YBRES > F > FRES > YBADF > GG across all 

sphericity levels. F yielded the highest power estimates among all ANOVA-based 

methods and the power estimates for YBRES were around twice those for F. ML was 

more powerful than HF and BOX. Both BOX and HF provided larger power estimates 

than YBADF across all sphericity levels and the order of strength of power became 

HF > BOX > YBADF > GG.  

When n=30, YBRES provided the highest power estimates (ranging from 22.3% 
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to 30.6%) while GG provided the smallest power estimates (ranging from 4.9% to 

9.9%) across all conditions. When  =1, the order of the strength of power came out 

with YBRES > SB1/ML/RES > FADF > FM > F > FRES > HF > BOX > YBADF 

ranging from 41.9% to 24.6%. When  =.96 and  =.75, the order of the strength of 

power yielded YBRES > F > HF > SB1/ML/RES > FADF > FRES > YBADF > GG 

with power estimates falling between 4.6% and 22.3% for  =.96 and between 9.9% 

and 24.2% for  =.75. Meanwhile, both HF and BOX were more powerful than 

FRES. When  =.48, the order of the magnitudes of power estimates became 

YBRES > SB1/ML/RES > FM > FRES > FADF > HF > BOX > GG with power 

estimates falling between 9.5% and 30.6% .  

When n=60, GG provided the smallest power across all conditions with 

estimates ranging from 13.5% to 21.8%. ADF provided the highest power estimates 

when  =1 and  =.96 with an estimate of power of 38% and 38.4% respectively and 

the order of the strength of power was obtained as 

ADF>YBRES>RES/SB1/ML>HF>BOX>GG. When  =.75, F was the most 

powerful method with power estimate of 40.4% and the order of the magnitude of 

power estimates became F>HF>BOX>ADF>YBRES>RES/SB1/ML> 

FM/FADF>FRES>GG and these methods provided empirical power estimates 

between 21.8% to 40.4%. When  =0.48, the power estimates provided by RMM 

methods were all larger than 40% ranging from 41% to 49.7% while the power 
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estimates for all ANOVA-based methods except FM were smaller than 30% ranging 

from 20.9% to 44.5%.  

When n=100, GG provided the lowest power estimates (ranging from 29% to 

40.3%) among all methods across all conditions while ADF delivered the highest 

power estimates (ranging from 50.4% to 74.9%) among all methods that entered into 

analysis across all sphericity levels except when  =.75 and the order of the strength 

of power was obtained as ADF>YBRES>RES/SB1/ML>HF>BOX>GG. RES 

provided the equal power estimates as ML and SB1 across all conditions. When 

=.75, F became the most powerful method with an estimate of 57.6% and the order of 

the magnitude of power estimates became F > HF > BOX > ADF > YBRES > 

RES/SB1/ML > FADF/FM > FRES > YBADF > GG and these methods provided 

empirical power estimates between 40.3% and 57.6%.  

When n=200, generally speaking, RMM methods were more powerful than 

ANOVA-based methods. GG provided the lowest power estimates across all 

conditions ranging from 64.1% to 78.3%. The majority of the empirical power 

estimates provided were close to or larger than 80%. When  =.48, all empirical 

power estimates delivered by RMM methods were greater than 95% while those 

provided by ANOVA-based methods except FM were around 80%. YBRES delivered 

the highest power among all methods that entered into analysis across all sphericity 

levels except when  =.75. When  =.75, F became the most powerful method and 
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the order of the magnitude of power estimates became F > HF > BOX > ADF > 

YBRES > RES/SB1/ML > FADF/FM/FRES > YBADF > GG and these methods 

provided empirical power estimates between 72.9% to 87.8%.  
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Table 16: Empirical Power (%) for Severely Non-normal Distribution with k=4 
 

    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  11.6  7.2  8.5  2.5  10.9  14.3    4.5  10.6  14.3    26.0  9.3  

 
0.96  10.6  7.7  8.7  2.4  12.4  15.0  

 
3.6  11.3  15.0  

 
25.6  10.3  

 
0.75  10.5  5.6  7.2  2.5  6.3  

  
3.0  5.5  

  
17.6  5.2  

  0.48    4.9  5.6  3.1        5.3        32.3    

n=30 1.00  20.6  16.2  18.0  6.5  22.0  23.3  
 

17.6  22.9  23.3  23.3  29.2  20.2  

 
0.96  18.7  14.6  15.3  5.6  19.2  20.4  

 
14.3  19.6  20.4  20.4  25.3  17.4  

 
0.75  

 
11.7  12.8  5.8  14.1  14.9  

 
10.5  14.8  14.9  

 
20.0  12.9  

 
0.48  

 
9.4  9.9  6.6  

   
24.3  

  
31.0  37.8  

 
n=60 1.00  35.9  33.6  34.0  15.1  39.3  23.3  45.2  38.0  40.0  23.3  23.3  39.5  20.2  

 
0.96  36.4  32.6  33.3  17.9  37.4  38.3  44.0  35.1  37.7  38.3  38.3  42.9  36.0  

 
0.75  38.2  29.3  30.4  18.0  27.6  28.3  

 
25.0  28.0  28.3  28.3  32.5  25.9  

  0.48    25.9  25.9  20.0  50.6      47.8  50.9      56.7  49.5  

n=100 1.00  50.6  48.6  49.5  27.1  54.7  55.2  58.6  53.5  55.1  55.2  55.2  57.7  54.6  

 
0.96  58.4  55.7  55.9  32.0  57.8  58.0  61.0  56.5  58.2  58.0  58.0  60.0  57.0  

 
0.75  60.4  54.4  54.5  37.0  51.8  52.4  56.0  50.5  52.0  52.4  52.4  54.8  51.1  

 
0.48  

 
50.7  51.2  42.9  77.8  

  
76.0  77.9  

  
79.6  77.5  

n=200 1.00  83.6  82.1  82.5  62.7  88.1  88.3  89.4  87.7  88.1  88.3  88.3  89.0  87.7  

 
0.96  86.9  85.8  85.9  67.8  88.3  88.4  89.0  88.0  88.3  88.4  88.4  88.9  88.3  

 
0.75  89.4  86.6  86.6  74.5  85.1  85.4  86.0  83.9  85.1  85.4  85.4  86.0  84.6  

  0.48    84.0  84.1  77.5  96.8  96.8  97.4  96.8  96.8  96.8  96.8  97.3  96.8  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled chi-square test. RES = 
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Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 16 for Severely Non-normal Distribution for k=4, the 

results for some cells were removed from the power analysis because these cells 

provided Type I error rates larger than 7.5%. Therefore, the results for the traditional 

F test across all sample sizes when the sphericity assumption was severely violated 

( =.48) and those for ADF and RES when sample size equaled 15 and those for ADF 

when sample size equaled 30 across all sphericity levels were removed from the final 

analysis. The cells for SB1, ML (n=15,  =.48 and .75; n=30,  =.48; n=60,  =.48; 

n=100,  =.48), for RES (n=30,  =.75; n=60,  =.48; n=100,  =.48), for FADF , 

FRES and, FM (n=15,  =.48; n=30,  =.48), for ADF (n=60,  =.48 and .75; 

n=100,  =.48), and for F (n=30,  = .75) were also removed from the analysis for 

the same reason. 

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates provided by all the methods except YBRES 

were less than 20% while the all the methods except GG provided power estimates 

greater than 80% when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG across all sample sizes. FM, 

however, provided larger power estimates than F in numerous conditions (n=15, 

= .96; n=30,  =1 and .96; n=60,  =1 and .96; n=60,  =1 and .96; n=100; n=200, 

 =1 and .96). When  =0.48, with F being removed from comparison, FM provided 
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strongest power and the order of the strength of power estimates came out with FM > 

HF > BOX > GG. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by FADF across all 

conditions and thus having YBRES > FADF > YBADF. The order of the strength of 

power estimates for ADF, YBRES, SB1/ML, and FRES yielded ADF > YBRES > 

SB1/ML > FRES across all sample sizes and sphericity levels. ML/SB1 provided 

comparatively higher power estimates than FADF across all sample sizes and 

sphericity levels except when n=100,  =.96 and n=200,  =.48 (FADF= ML/SB1). 

Therefore, except when n=100,  =.96 and n=200,  =.48, the order of the 

magnitude of power estimates was obtained as YBRES > ML/SB1 > FADF > YBADF 

across all sample sizes and sphericity levels.  

When n=15, YBRES provided the highest power estimates (ranging from 17.6% 

to 32.3%) while GG provided the lowest power estimates (ranging from 2.4% to 3.1%) 

among all methods that entered into analysis across all sphericity levels. The order of 

the strength of power was obtained as YBRES > F > FM > FRES > YBADF > GG 

across all sphericity levels. F and sometimes, FM yielded the highest power estimates 

among all ANOVA-based methods and the power estimates for YBRES were around 

twice those for F and FM. Both BOX and HF provided larger power estimates than 
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YBADF across all sphericity levels. 

When n=30, YBRES provided the highest power estimates (between 20% and 

37.8) while GG provided the smallest power estimates (between 5.6% and 6.6%) 

across all conditions. When  =1, .96, and .75, YBRES, SB1/ML, FADF provided the 

largest power estimates and the order of strength of power was obtained as 

YBRES>ML/SB1>FADF>FM>F>HF>BOX>GG. FM provided the strongest power 

among all ANOVA-based methods. When  =.48, YBRES, RES, and YBADF with 

power estimates falling above 24.3% were more powerful than all the ANOVA-based 

methods with power estimates falling below 10%. 

When n=60, GG provided the smallest power estimates across all conditions 

with power estimates falling between 15.1% to 20%. ADF was the most powerful 

method when  =1 and  =.96 and provided power estimates of 45.1% and 44% 

respectively. When  =1, YBRES, and FADF provided the largest power estimates 

among all methods, followed by FM, F, HM and BOX, with power estimates being 

larger than 33.6%. The rest methods provided power estimates lower than 30%. When 

 =.96, ADF, YBRES, ML/SB1/RES, and FADF provided the largest power estimates 

which were greater than 37.3%, followed by FM and F. When  =.75, F became the 

most powerful method with a power estimate of 38.2% and the order of the magnitude 

of power estimates became F > YBRES > HF > BOX > RES/SB1/ML > FADF > FM > 

FRES > YBADF > GG and these methods provided empirical power estimates 
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between 18% and 38.2%. When  =0.48, YBRES and FADF provided the largest 

power estimates with power estimates of 56.7% and 50.9% respectively and FM 

provided the third largest power estimate with an estimate of 50.6% . Except for FM, 

RMM methods were much more powerful than ANOVA-based methods and the 

power estimates provided by RMM methods were around two times the estimates 

provided by ANOVA-based methods. 

When n=100, GG provided the lowest power estimates among all methods 

across all conditions with power estimates falling between 27.1% and 42.9%. ADF 

delivered the highest power when  =1 and  =.96 with power estimates being 58.6% 

and 61% respectively. When  =1, the power estimates for all RMM methods were 

over 50%. Among ANOVA methods, only FM and F provided power estimates 

greater than 50%. The power estimate for ADF was more than twice that of GG. The 

order of magnitude of power estimates became ADF > YBRES > RES/SB1/ML > 

FM > FRES > YBADF > F > HF > BOX > GG and the power estimates ranged from 

27.1% to 58.6%. When  =0.96, the power estimates for all methods except GG were 

greater than 50% and the power estimate for ADF (61%) was almost the twice that of 

GG (32%). The order of magnitude of power estimates became ADF > YBRES > F > 

FADF > RES/SB1/ML > FM> FRES > YBADF > HF > BOX > GG. When  =.75, 

the power estimates for all methods were greater than 50% except GG, F became the 

most powerful method with a power estimate of 60.4% and the order of the magnitude 



 
 
 
  

105 
 

of power estimates came out with F > ADF > YBRES > HF > BOX > ML/SB1/RES > 

FADF > FM > FRES > GG. When  =0.48, all the RMM methods that entered into 

analysis provided power estimates greater than 70%, among which YBRES yielded 

the largest power estimate of 79.6% and the order of power strength was obtained as 

YBRES > FADF > FM > HF > BOX > GG. All ANOVA-based methods except FM 

provided power estimates lower than 52%. 

When n=200, generally speaking, RMM methods were more powerful than 

ANOVA-based methods. ADF provided the highest power estimates (ranging from 86% 

to 97.4%) across all conditions and GG provided the lowest power estimates (ranging 

from 62.75% to 77.5%) across all conditions except when  =.75. All methods except 

GG provided the empirical power estimates larger than 80%. RMM methods tended 

to yield larger power estimates than ANOVA-based methods except when  =.75 

where F became the most powerful method with a power estimate of 89.4% and the 

order of power strength came out with F > HF/BOX > ADF > YBRES > 

ML/SB1/RES > FM/FADF > FRES > YBADF > GG. When  =.48, all empirical 

power estimates delivered by RMM methods were greater than 95% while the power 

estimates provided by ANOVA-based methods except FM were between 77.5% and 

84.1%.  
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Table 17: Empirical Power (%) for Normal Distribution with k=8 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  8.6  4.4  7.9  0.0  7.8                  

 
0.96  10.1  5.6  9.7  0.0  7.6  

        

 
0.75  13.7  8.5  11.5  0.4  6.5  

        
  0.48  14.6  8.7  13.8  0.4  10.9                  

n=30 1.00  14.3  11.2  14.0  0.3  11.6  
        

 
0.96  14.2  11.4  13.9  0.4  14.8  

        

 
0.75  21.2  15.0  17.3  1.5  11.4  

        

 
0.48  26.0  20.1  24.8  0.7  24.5  

        
n=60 1.00  27.8  25.5  27.4  1.5  25.5  29.2    20.5  25.5  29.2    37.0  19.9  

 
0.96  29.1  26.2  28.3  1.0  29.4  33.7  

 
24.9  29.4  33.7  

 
42.2  23.2  

 
0.75  34.8  28.2  29.6  5.2  17.6  20.9  

 
14.6  17.6  20.9  

 
29.4  13.3  

  0.48  54.9  51.7  54.2  6.1  57.3  61.5    50.2  57.3  61.5    70.2  48.2  

n=100 1.00  46.0  44.5  45.9  4.2  42.8  44.7  
 

39.9  42.8  44.7  
 

50.5  39.1  

 
0.96  44.7  41.3  43.1  4.7  49.2  51.6  60.0  46.1  49.2  51.6  51.6  69.6  45.3  

 
0.75  58.1  50.6  52.1  14.0  36.0  38.7  

 
32.3  36.1  38.7  

 
43.8  31.3  

 
0.48  84.8  82.9  84.3  24.5  88.0  88.7  

 
86.0  88.0  88.7  

 
91.3  85.5  

n=200 1.00  78.6  78.3  78.6  20.6  77.3  79.1  81.2  76.2  77.3  79.1  79.1  80.5  75.8  

 
0.96  81.4  80.6  81.1  27.5  87.0  87.5  90.2  85.9  87.0  87.5  87.5  89.9  85.7  

 
0.75  83.9  79.9  80.2  43.1  66.1  67.0  70.2  65.1  66.1  67.0  67.0  69.8  64.7  

  0.48  99.3  99.3  99.3  79.8  99.5  99.5  99.7  99.5  99.5  99.5  99.5  99.6  99.5  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled chi-square test. RES = 
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Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 17 for Normal Distribution for k=8, the results for some 

cells were removed from the power analysis because these cells provided Type I error 

rates larger than 7.5%. The results for all RMM methods when n=15 and 30 were 

removed from final analysis. All the results for ADF and RES with sample sizes of 60 

and 100 across all sphericity levels except when  =.96 were removed as well for the 

same reason.  

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates provided by all the methods were less than 15% 

while the all the methods except GG provided power estimates greater than 60% 

when n=200.  

For ANOVA based methods, the order of the strength of power estimates came 

out with F > HF > BOX > GG across all sample sizes. FM, however, provided larger 

power estimates than F in numerous conditions (n=30,  =.96; n=60,  =.96 and .48; 

n=100,  =.96 and .48; n=200,  =.96 and .48).  

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by FADF across all 

conditions, thus having the order of YBRES > FADF > YBADF. ML/SB1 provided 

comparatively higher power estimates than FADF across all sample sizes and 

sphericity levels. Therefore, the order of the magnitude of power estimates came out 
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with YBRES > ML/SB1 > FADF > YBADF > FRES across all sample sizes and 

sphericity levels.  

When n=15, no RMM methods entered into analysis. F provided the highest 

power estimates ranging from 8.6% to 14.6% while GG provided the lowest power 

estimates with power estimates ranging from 0% to 0.4%.  

When n=30, no RMM methods entered into analysis. F provided the highest 

power estimates (ranging from 14.2% to 26%) except when  =.96 where FM 

became the most powerful method with an estimate of 14.8%. GG provided the 

lowest power estimates with power estimates ranging from 0.3% to 1.5%.  

When n=60, GG provided the smallest power estimates (ranging from 1% to 

6.1%) across all conditions. YBRES was the most powerful across all conditions 

except when  =.75 (ranging from 29.4% to 70.2%). When  =1 and  =.96, the 

order of magnitude of power estimates came out to be YBRES > SB1/ML > F > HF > 

BOX > YBADF > FRES > GG with power estimates ranging from 1.5% to 37% and 

from 1% to 42.2% respectively. Meanwhile, FADF was more powerful than YBADF. 

The majority of the power estimates was greater than 20%. When  =.75, F yielded 

the greatest power estimate (34.8%) and ANOVA-based methods tended to be more 

powerful than RMM methods and the order of magnitude of power estimates became 

F > HF > YBRES > BOX > ML/SB1 > FM/FADF > YBADF > FRES > GG. When 

 =.48, RMM methods tended to be more powerful than ANOVA-based methods and 
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the order of strength of power came out to be YBRES > ML/SB1 > FM/FADF > F > 

HF > BOX > YBADF > FRES > GG and power estimates ranged from 6.1% to 

70.2%. 

When n=100, GG provided the lowest power estimates (between 4.2% and 

24.5%) among all methods across all conditions. YBRES was the most powerful 

across all conditions except when  =.75 with power estimates falling between 43.8% 

and 91.3%. All methods except GG provided power estimates greater than 30%. 

When  =1, the order of magnitude of power estimates came out to be YBRES > F > 

HF > SB1/ML > BOX > YBADF > FRES > GG with power estimates falling between 

4.2% to 50.5%. When  =.96, RMM methods tended to be more powerful than 

AVOVA-based methods and the order of magnitude of power estimates came out to be 

YBRES >ADF > SB1/ML/RES > FADF/FM > YBADF > FRES > F > HF > BOX > 

GG, among which YBRES, ADF, SB1/ML/RES yielded power estimates greater than 

50%. The power estimates for the rest methods were lower than 50% but greater than 

40% except GG. When  =.75, F yielded the greatest power estimate (58.1%) and 

ANOVA-based methods tended to be more powerful than RMM methods and the 

order of magnitude of power estimates became F > HF > BOX > YBRES > ML/SB1 > 

FM/FADF > YBADF > FRES > GG. When  =.48, RMM methods tended to be more 

powerful than ANOVA-based methods. The power estimates for RMM methods were 

all greater than 86% and the order of strength of power came out to be YBRES > 
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ML/SB1 > FM/FADF > YBADF > FRES > F > HF > BOX > GG and power 

estimates ranged from 24.5% to 91.3%. 

When n=200, GG provided the lowest power estimates among all methods 

across all conditions between 20.6% and 79.8%. Generally speaking, RMM methods 

tended to be more powerful than ANOVA-based methods except when  = .75. 

Among all methods, ADF provided the greatest power estimates across all conditions 

except when  =.75 with power estimates ranging from 70.2% to 99.7%. When  =1 

and .96, the power estimates for all methods except GG were greater than 75%. When 

 =.48, the power estimates for all methods except GG were greater than 99%. When 

 =.75, the power estimates for all methods except GG were greater than 65% and the 

order of power strength came out to be F > HF > BOX > ADF > YBRES > 

ML/SB1/RES > FADF/FM > YBADF > FRES > GG, with power estimates falling 

between 43.1% and 83.9%. 
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Table 18: Empirical Power (%) for Elliptical Distribution with k=8 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  7.7  3.9  5.9  0.1  6.5                  

 
0.96  9.5  4.4  7.6  0.0  7.1  

        

 
0.75  11.5  5.1  7.6  0.5  6.9  

        
  0.48    5.6  8.7  0.4  7.3                  

n=30 1.00  14.0  9.8  12.5  0.1  11.6  20.2  
   

20.2  
   

 
0.96  15.8  10.7  12.6  0.4  17.5  

        

 
0.75  17.5  11.7  13.1  0.9  11.9  

        

 
0.48  

 
11.9  13.7  1.8  16.7  24.8  

   
24.8  

   
n=60 1.00  26.7  22.6  24.5  0.8  25.0  30.5    20.8  25.0  30.5    37.0  23.9  

 
0.96  26.9  21.7  24.1  1.0  32.3  36.5  

 
27.5  32.6  36.5  

 
46.6  31.3  

 
0.75  31.9  24.7  26.4  3.3  24.4  28.4  

 
20.5  24.4  28.4  

 
36.2  23.7  

  0.48    26.9  28.3  5.7  37.7  41.7    32.6  37.7  41.7    51.3  36.5  

n=100 1.00  41.5  38.6  40.3  3.7  42.0  44.3  
 

39.9  42.1  44.3  44.3  50.4  41.6  

 
0.96  47.4  42.9  44.6  5.3  56.8  58.8  

 
53.1  56.8  58.8  

 
62.9  55.7  

 
0.75  47.7  39.6  41.2  8.2  38.6  40.3  

 
35.1  38.6  40.3  40.3  45.1  37.9  

 
0.48  

 
43.7  44.4  14.2  59.3  61.4  67.8  56.9  59.5  61.4  61.4  66.6  58.5  

n=200 1.00  76.1  74.2  75.2  19.8  76.4  77.3  79.7  75.0  76.5  77.3  77.3  79.5  75.7  

 
0.96  82.6  81.0  81.4  24.4  90.0  90.4  91.1  89.1  90.0  90.4  90.4  91.1  89.8  

 
0.75  81.2  76.2  76.6  30.8  71.9  72.7  75.7  70.9  71.9  72.7  72.7  75.5  71.8  

  0.48    80.6  80.9  45.5  90.8  91.9  93.3  90.2  90.8  91.9  91.9  92.9  90.7  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled chi-square test. RES = 
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Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 18 for Elliptical Distribution for k=8, the results for some 

cells were removed from the power analysis because these cells provided Type I error 

rates larger than 7.5%. Therefore, the results for the traditional F test across all sample 

sizes when the sphericity assumption was severely violated ( =.48) and those for all 

RMM methods when sample size equaled 15 and those for all RMM methods when 

sample size equaled 30 across all sphericity levels except for ML and SB1 methods 

 =1 and .48 were removed from the final analysis for the same reason.  

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates provided by all the methods except YBRES 

were less than 15% while the all the methods except GG provided power estimates 

greater than 70% when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG across all sample sizes. FM, 

however, provided larger power estimates than F in numerous conditions (n=15, 

= .96; n=30,  =.96; n=60,  =1 and .96; n=100,  =1 and .96; n=200,  =1 

and .96). When  =0.48, with F being removed from comparison, FM provided 

strongest power and the order of the strength of power estimates came out with FM > 

HF > BOX > GG. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 
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estimates provided by YBRES were consistently higher than those by FADF across all 

conditions, thus yielding YBRES > FADF > YBADF. The order of the strength of 

power estimates for ADF, YBRES, SB1/ML, and FRES yielded ADF > YBRES > 

SB1/ML > FRES for all the cells that entered into analysis. ML/SB1 provided 

comparatively higher power estimates than FADF across all conditions. Therefore, the 

order of the magnitude of power estimates could come out with YBRES > ML/SB1 > 

FADF > YBADF across all conditions that entered into final analysis.  

When n=15, no RMM methods entered into analysis. F provided the highest 

power estimates (between 7.7% and 11.5%) while GG provided the lowest power 

estimates with power estimates ranging from 0% to 0.5%.  

When n=30, ML/SB1 became the most powerful methods when  =1 and .48 

with an estimate of 20.2% and 24.8% respectively and all the other RMM methods 

had been removed from analysis. GG provided the lowest power estimates across all 

conditions and the power estimates ranged from 0.1% to 1.8%.  

When n=60, GG provided the smallest power estimates (between 0.8% and 

5.7%) while YBRES was the most powerful across all conditions (between 37% and 

51.3%). RMM methods tended to be more powerful than ANOVA-based methods. 

The power estimates for RMM methods ranged from 20.5% to 51.3% while those for 

ANOVA-based methods ranged from 0.8% to 37.7%. When  =1 and .96, YBRES, 

ML and SB1 were three most powerful methods and the order of power strength was 
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obtained as YBRES > ML/SB1 > FADF/FM > FRES > F > HF, with power estimates 

ranging from 0.8% to 37% and from 1% to 46.6% respectively. When  =.75, the 

order of power strength yielded YBRES > F > ML/SB1 > HF > BOX > FM/FADF > 

FRES > YBADF > GG with power estimates falling between 3.3% and 36.2%. When 

 =.48, RMM methods were more powerful than all ANOVA-based methods and the 

order of strength of power came out to be YBRES > ML/SB1 > FM/FADF > FRES > 

YBADF > HF > BOX > GG and power estimates ranged from 5.7% to 51.3%. All 

RMM methods provided power estimates greater than 30% while all ANOVA-based 

methods except FM provided power estimates lower than 30%.    

When n=100, GG provided the lowest power estimates among all methods 

across all conditions (between 3.7% and 14.2%). YBRES was the most powerful 

across all conditions when  =1 and .96 with power estimates of 50.4% and 62.9% 

respectively. All methods except GG provided power estimates greater than 30%. The 

order of power strength yielded YBRES > ML/SB1/RES > FADF > FM > FRES > F > 

HF > BOX > GG and the power estimates fell between 3.7% and 50.4% for  =1 and 

between 5.3% and 62.9% for  =.96. When  =.75, F yielded the greatest power 

estimate (47.7%) and the order of magnitude of power estimates became F > YBRES > 

HF > ML/SB1/RES > BOX > FM/FADF > FRES > YBADF > GG. When  =.48, 

RMM methods were more powerful than ANOVA-based methods. The power 

estimates for RMM methods were all greater than 55% and the order of strength of 
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power came out to be ADF > YBRES > ML/SB1 > FADF > FM > FRES > YBADF > 

HF > BOX > GG and power estimates ranged from 14.2% to 67.8%. 

When n=200, GG provided the lowest power estimates among all methods 

across all conditions (between 19.8% and 45.5%). Generally speaking, RMM methods 

tended to be more powerful than ANOVA-based methods except when  =.75. 

Among all methods, ADF provided the greatest power estimates across all conditions 

except when  =.75 (between 75.7% and 93.3%). When  =1, .96 and 0.48, the 

power estimates for all methods except GG were greater than 74% and the order of 

the magnitudes of power estimates became ADF > YBRES >  ML/SB1/RES > 

FADF/FM > FRES > YBADF > F > HF > BOX > GG. When  =.75, the power 

estimates for all methods except GG were greater than 70% and the order of power 

strength came out to be F > HF > BOX > ADF > YBRES > ML/SB1/RES > 

FADF/FM > FRES > YBADF > GG with power estimates ranging from 30.8% and 

81.2%. 
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Table 19: Empirical Power (%) for Moderately Non-normal Distribution with k=8 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  7.8  2.5  4.8  0.2  7.2                  

 
0.96  8.9  3.0  6.4  0.0  10.0  

        

 
0.75  12.0  4.2  6.8  0.3  6.8  

        
  0.48    5.1  6.9  1.0                    

n=30 1.00  13.6  8.2  10.9  0.3  14.2  
        

 
0.96  13.5  8.2  10.8  0.2  17.0  

        

 
0.75  17.3  8.8  11.0  0.5  10.3  

        

 
0.48  

 
8.6  9.6  0.9  

         
n=60 1.00  25.4  20.7  22.8  0.8  28.9  32.7    22.3  29.0  32.7    42.0  27.5  

 
0.96  25.8  20.4  22.6  1.1  31.1  35.7  

 
25.7  31.3  35.7  

 
45.4  30.3  

 
0.75  29.6  21.5  23.4  2.7  18.2  

  
14.9  18.3  

  
31.3  17.8  

  0.48    20.9  21.8  4.4        31.9        49.5  35.9  

n=100 1.00  42.5  38.9  40.2  4.0  44.1  47.5  
 

40.3  44.2  47.5  
 

53.1  43.3  

 
0.96  45.7  41.2  42.6  3.6  56.5  59.2  

 
51.5  56.5  59.2  59.2  66.1  56.0  

 
0.75  49.2  41.3  42.4  7.6  34.2  37.4  

 
30.3  34.3  37.4  

 
41.3  33.3  

 
0.48  

 
40.7  41.7  11.4  

   
54.9  

   
66.5  

 
n=200 1.00  77.4  76.2  76.7  20.9  81.0  81.9  84.2  79.8  81.0  81.9  81.9  84.0  80.7  

 
0.96  82.8  79.8  80.5  21.2  92.4  92.7  93.4  91.6  92.4  92.7  92.7  93.4  92.0  

 
0.75  79.2  73.0  73.4  30.5  71.7  72.5  76.3  70.1  71.7  72.5  72.5  75.6  71.1  

  0.48    76.8  77.6  42.1    92.1  93.4  91.0  91.4  92.1  92.1  93.2  91.4  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled chi-square test. RES = 
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Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 19 for Moderately Non-normal Distribution for k=8, the 

results for some cells were removed from the power analysis because these cells 

provided Type I error rates larger than 7.5%. Therefore, the results for the traditional 

F test and FM across all sample sizes when the sphericity assumption was severely 

violated ( =.48) and those for all RMM methods when sample size equaled 15 and 

30 were removed from the final analysis. All cells for ADF when n=60 and 100, for 

RES when n=60, for RES when n=100 except when  = .96 were also removed from 

the analysis. The results for ML and SB1 (n=60,  = .75 and .48, n=100,  = .48) 

and those for FRES and FADF (n=100,  = .48) were also eliminated for the same 

reason.   

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates provided by all the methods except YBRES 

were less than 15% while the all the methods except GG provided power estimates 

greater than 70% when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG across all sample sizes. FM, 

however, provided larger power estimates than F in numerous conditions (n=15, 

= .96; n=30,  =1 and .96; n=60,  =1 and .96; n=100,  =1 and .96; n=200,  =1 

and .96). When  =0.48, with F being removed from comparison, FM provided 

strongest power and the order of the strength of power estimates came out with FM > 
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HF > BOX > GG. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by FADF across all 

conditions. ML/SB1 provided comparatively higher power estimates than FADF 

among all the cells available for analysis. Therefore, the order of the magnitude of 

power estimates could come out with YBRES > ML/SB1 > FADF > FRES > YBADF 

across all the conditions that entered in to analysis.  

When n=15, no RMM methods entered into analysis. F provided the highest 

power estimates except when  =.96 (ranging from 7.8% to 12%) while GG provided 

the lowest power estimates with power estimates falling between 0.2% and 1%. When 

 =.96, FM became the most powerful method with a power estimate of 10%. 

When n=30, no RMM methods entered into analysis. GG provided the lowest 

power estimates (between 0.2% and 0.9%). FM provided the highest power estimates 

when  =1 and .96 with power estimates being 14.2% and 17% respectively and F 

was the most powerful method when  =.75 with an power estimate of 17.3%.  

When n=60, GG provided the smallest power estimates across all conditions 

(between 0.8% and 4.4%) while YBRES was the most powerful across all conditions 

(between 31.3% and 49.5%). When  =1 and  =.96, RMM methods tended to more 

powerful than ANOVA-based methods and the power estimates provided by all 
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methods except GG were greater than 20%. The order of magnitude of power 

estimates came out to be YBRES > SB1/ML > FADF > FM > FRES > F > HF > 

BOX > GG with power estimates falling between 0.8% and 42% for  =1 and 

between 1.1% and 45.4% for  =.96. When  =.75, the order of magnitude of power 

estimates became YBRES > F > HF > BOX > FADF > FM > FRES > GG with power 

estimates ranging from 2.7% to 31.3%. When  =.48, RMM methods tended to be 

more powerful than ANOVA-based methods and the order of strength of power came 

out to be YBRES > FRES >YBADF > HF > BOX > GG and power estimates ranged 

from 4.4% to 49.5%. 

When n=100, GG provided the lowest power estimates among all methods 

across all conditions (ranging from 1% to 11.4%). YBRES was the most powerful 

across all conditions except when  =.75 (ranging from 41.3% to 66.5%). All 

methods except GG provided power estimates greater than 30%. When  =1 and .96, 

RMM methods tended to be more powerful than ANOVA-based methods. The power 

estimates for RMM methods ranged from 43.3% to 66.1% and those for 

ANOVA-based methods ranged from 38.9% to 45.7%. The order of magnitude of 

power estimates turned out to be YBRES > SB1/ML/RES > FADF > FM > FRES > F > 

HF > BOX > GG. When  =.75, F yielded the greatest power estimate (49.2%) and 

ANOVA-based methods tended to be more powerful than RMM methods and the 

order of magnitude of power estimates became F > HF > BOX/YBRES > ML/SB1 > 
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FADF > FM > FRES > YBADF > GG. When  =.48, RMM methods tended to be 

more powerful than ANOVA-based methods. The power estimates for RMM methods 

were all greater than 50% and the order of strength of power came out to be YBRES > 

YBADF > HF > BOX > GG and power estimates ranged from 11.4% to 66.5%. 

When n=200, GG provided the lowest power estimates among all methods 

across all conditions (between 20.9% and 42.1%). Generally speaking, RMM methods 

tended to be more powerful than ANOVA-based methods when  =1, .96 and .48 and 

ANOVA-based methods tended to be more powerful than RMM methods when 

=.75. Among all methods, ADF provided the greatest power estimates across all 

conditions except when  =.75 and the power estimates fell between 76.3% and 

93.4%. When  =1 and .96, the power estimates for all methods except GG were 

greater than 75% and the order of power strength came out with ADF > YBRES > 

ML/SB1/RES > FADF/FM > YBADF > FRES > F > HF > BOX > GG and the power 

estimates fell between 20.9% and 84.2% for  =1 and between 21.2% and 93.4% for 

 =.96 respectively. When  =.48, the power estimates for all methods except GG 

were greater than 90% and the order of magnitude of power estimates was obtained as 

ADF > YBRES > ML/SB1/RES > FADF > YBADF > FRES > HF > BOX > GG. 

When  =.75, the power estimates for all methods except GG were greater than 65% 

and the order of power strength came out to be F > ADF > YBRES > HF > BOX > 

ML/SB1/RES > FADF/FM > FRES > YBADF > GG and power estimates ranged 
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from 30.5% to 79.2%. 
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Table 20: Empirical Power (%) for Severely Non-normal Distribution with k=8 
 
    F Box HF GG FM ML ADF YBADF FADF SB1 RES YBRES FRES 

n=15 1.00  7.5  2.4  3.8  0.1  9.9                  

 
0.96  7.8  1.8  3.2  0.1  9.9  

        

 
0.75  9.9  2.9  4.5  0.2  7.6  

        
  0.48    4.0  6.4  0.5  17.3                  

n=30 1.00  13.2  7.2  8.9  0.1  16.3  22.3  
   

22.3  
   

 
0.96  15.3  7.0  9.7  0.1  17.6  27.9  

   
27.9  

   

 
0.75  16.8  8.5  9.6  1.1  10.3  

        

 
0.48  

 
7.3  8.7  0.8  20.8  

        
n=60 1.00  23.4  17.0  19.2  1.0  28.9  33.5    25.2  30.9  33.5    42.2  28.7  

 
0.96  24.7  17.4  19.2  0.6  37.9  43.4  

 
33.2  39.0  43.4  

 
54.0  36.9  

 
0.75  26.8  17.3  19.1  2.6  18.8  

  
14.0  

   
29.9  17.8  

  0.48    20.3  21.7  3.5  37.3      31.5        52.2    

n=100 1.00  44.0  38.7  39.3  2.6  50.3  49.9  
 

44.3  47.9  49.9  
 

56.1  46.6  

 
0.96  43.4  38.2  39.6  3.8  58.3  61.1  

 
56.0  59.2  61.1  

 
66.7  57.3  

 
0.75  45.4  36.6  37.9  7.7  36.2  

  
33.4  36.8  

  
46.1  35.1  

 
0.48  

 
38.3  39.9  8.3  53.5  

      
61.5  

 
n=200 1.00  73.6  70.3  71.4  17.8  81.4  82.7  85.2  79.9  81.1  82.7  82.7  85.0  80.6  

 
0.96  78.7  74.1  75.0  18.7  90.2  90.6  92.7  89.8  90.3  90.6  90.6  92.3  90.0  

 
0.75  76.4  71.0  71.5  28.1  67.2  68.3  

 
66.3  67.5  68.3  

 
71.6  66.7  

  0.48    77.2  77.5  39.7  88.1  88.5    87.3  88.1  88.5    90.6  88.0  

Note. F = traditional F test. Box = Box’s adjusted F test. HF = Huynh-Feldt adjusted F test. GG = Geisser-Greenhouse lower bound adjusted F 

test. FM = one-sample multivariate 2T  test. ML = the maximum likelihood method. ADF = Browne’s asymptotic distribution-free test. YBADF 
= Yuan and Bentler adjusted ADF I test. FADF = Yuan and Bentler adjusted ADF II test. SB1 = Satorra-Bentler scaled chi-square test. RES = 
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Residual-based ADF test. YBRES = Yuan and Bentler adjusted RES I test. FRES = Yuan and Bentler adjusted RES II test. 
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As is shown in Table 20 for Severely Non-normal Distribution for k=8, the 

results for some cells were removed from the power analysis because these cells 

provided Type I error rates larger than 7.5%. Therefore, the results for the traditional 

F test across all sample sizes when the sphericity assumption was severely violated 

( =.48) and those for all RMM methods when sample size equaled 15 and those for 

all RMM methods when sample size equaled 30 across all sphericity levels except for 

ML and SB1 methods  =1 and .96 were removed from the final analysis. All cells 

for ADF and RES across all sample sizes except when n=200,  = 1 and .96, were 

also removed from the analysis. The results for ML and SB1 (n=60,  = .75 and .48; 

n=100,  = .75 and .48) and those for FADF (n=60,  = .75 and .48; n=100, 

= .48) , for YBADF (n=100,  = .48), and for FRES (n=60,  = .48; n=100,  = .48) 

were also eliminated for the same reason.   

Generally speaking, when sample sizes increased, all the methods became more 

powerful. For n=15, power estimates provided by all the methods except YBRES 

were less than 10% while the all the methods except GG provided power estimates 

greater than 65% when n=200.  

For ANOVA based methods, except for  =0.48, the order of the strength of 

power estimates came out with F > HF > BOX > GG across all sample sizes. FM, 

however, provided larger power estimates than F in numerous conditions ( = 1 

and .96 across all sample sizes). When  =0.48, with F being removed from 



 
 
 
  

128 
 

comparison, FM provided strongest power and the order of the strength of power 

estimates came out with FM > HF > BOX > GG. 

For RMM methods, ML and SB1 yielded the same power estimates across all 

conditions. FADF was consistently more powerful than YBADF and the power 

estimates provided by YBRES were consistently higher than those by FADF across all 

conditions. ML/SB1 provided comparatively higher power estimates than FADF 

across all sample sizes. Therefore, the order of the magnitude of power estimates 

came out with YBRES > ML/SB1 > FADF > FRES > YBADF across all the 

conditions entering into final analysis.  

When n=15, no RMM methods entered into analysis. FM provided the highest 

power estimates (ranging from 7.6% to 17.3%) except when  =.75 where F became 

the most powerful method with a power estimate of 9.9%, while GG provided the 

lowest power estimates with power estimates ranged from 0.1% to 0.5%.  

When n=30, ML/SB1 became the most powerful methods when  =1 and .96 

with an estimate of 22.3% and 27.9% respectively and all the other RMM methods 

had been removed from analysis. GG provided the lowest power estimates across all 

conditions and the power estimates ranged from 0.1% to 1.1%. When  =.75, F was 

the most power method with an estimate of 16.8%. When  =.48, with F being 

removed from analysis, FM became the most powerful method with an estimate of 

20.8%.  
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When n=60, GG provided the smallest power estimates (between 0.6% and 

3.5%) and YBRES was the most powerful (between 29.9% and 54%) across all 

conditions. RMM methods tended to be more powerful than ANOVA-based methods. 

When  =1 and  =.96, the order of magnitude of power estimates came out to be 

YBRES > SB1/ML > FADF > FM > FRES > YBADF > F > HF > BOX > GG. The 

power estimates for RMM methods ranged from 25.2% to 54% while those for 

ANOVA-based methods ranged from 17% to 37.9%. When  =.75, the order of 

magnitude of power estimates became YBRES > F > HF > FM > FRES > BOX > 

YBADF > GG with power estimates ranging from 2.6% to 292.9%. When  =.48, the 

order of strength of power came out to be YBRES > FM > YBADF > HF > BOX > 

GG and power estimates ranged from 3.5% to 52.2%. 

When n=100, GG provided the lowest power estimates (between 2.6% and 

8.3%) and YBRES was the most powerful among all methods (between 46.1% and 

61.5%) across all conditions. All methods except GG provided power estimates 

greater than 30%. When  =1 and  =.96, RMM methods tended to be more 

powerful than ANOVA-based methods and the order of power strength yielded 

YBRES > ML/SB1 > FADF > FRES > YBADF > F > HF > BOX > GG and the 

power estimates fell between 2.6% and 56.1% for  =1 and between 3.8% and 66.7% 

for  =.96. When  =.75, the order of magnitude of power estimates became 

YBRES > F > HF > FADF > BOX > FM > FRES > YBADF > GG and the power 
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estimates ranged from 7.7% to 46.1%. When  =.48, the order of strength of power 

came out to be YBRES > FM > HF > BOX > GG with power estimates ranging from 

8.3% to 61.5%. 

When n=200, GG provided the lowest power estimates (between 17.8% and 

39.7%) among all methods at all combinations of distributional forms and sphericity 

levels. Generally speaking, RMM methods tended to be more powerful than 

ANOVA-based methods when  =1, .96, and .48 and ANOVA-based methods tended 

to be more powerful than RMM methods when  =.75. Among all methods, ADF 

provided the greatest power estimates when  =1 and .96 with power estimates of 

85.2% and 92.7% respectively. When  =1 and .96, the power estimates for all 

methods except GG were greater than 70% and the order of power strength came out 

with ADF > YBRES > ML/SB1/RES > FM > FRES > F > HF > BOX > GG with 

power estimates falling between 17.8% and 85.2% for  =1 and between 18.7% and 

92.3% for  =.96.  When  =.75, F became the most powerful method and the 

power estimates for all methods except GG were greater than 65%. The order of 

power strength came out to be F > YBRES > HF > BOX > ML/SB1 > FADF > FM > 

FRES > GG with power estimates falling between 28.1% and 76.4%. When  =.48, 

RMM methods tended to be more powerful than ANOVA-based methods. The power 

estimates for RMM methods were greater than 87% and the order of power strength 

came out to be YBRES>ML/SB1>FADF/FM>FRES>HF>BOX>GG with power 
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estimates ranging from 39.7% to 90.6%. 

  



 
 
 
  

132 
 

Chapter 5: Discussion and Conclusion 

The current study was focusd on comparing the ANOVA-based methods and 

RMM methods to determine the best methods for repeated measures designs. The 

results of the comparision were summarized first, followed by discussion. The 

conclusion was then drawn and recommendations were made.   

None-convergence Summary 

In the current study, ANOVA-based methods examined were not encountered 

with any non-convergence issue. Among RMM methods, only ADF and RES as well 

as the methods derived based on them including YBADF, FADF, YBRES, and FRES 

yielded non-convergence. The non-convergence rates tended to get greater when the 

violation of normality assumption became more seriously. When sample size got 

bigger, the non-convergence rates became smaller. RES-based methods (RES, 

YBRES, and FRES) performed better than ADF-based methods (ADF, YBADF, and 

FADF) in terms of convergence rates. The reason why these methods encountered 

non-convergence should be tied to the fact that these methods needed to employ the 

inverse of the fourth-order moments of the measured variables to compute parameter 

estimates, standard errors, as well as test statistics (Satorra & Bentler, 1994), which 

put smaller samples under very challenged situation. 

Type I Error Rates Results Summary 

When k=4, among all the ANOVA-based methods, generally speaking, the Type 
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I error rates provided by Geisser-Greenhouse lower bound adjusted F test (GG) 

tended to be below the lower bound of Bradley’s liberal criterion (2.5%). On the 

contrary, the  -trimmed method using   = 0.2 (TR) tended to provide inflated 

Type I error rates that were beyond the upper bound of Bradley’s liberal criterion 

(7.5%). For F test, as the degree of deviation from sphericity increased, the Type I 

error rates had a tendency of becoming increasingly inflated. When the sphericity 

assumption was seriously violated ( =.48), F test was not robust any longer. 

However, under most circumstances, across different sample sizes and different 

sphericity levels and distributional shapes, the Box’s adjusted F test (BOX) and 

Huynh-Feldt adjusted F test could provide robust Type I error rates with only a few 

exceptions where the Type I error rates were below the lower bound of Bradley’s 

liberal criterion.  

The majority of the RMM methods, encouragingly, did provide comparatively 

robust Type I error rates across different sample sizes and different sphericity levels 

and distributional shapes especially when the sample size was over 15, with the 

notable exceptions of Browne’s asymptotic distribution-free test (ADF) and 

residual-based ADF test (RES) which started to perform well when the sample size 

was over 60. The maximum likelihood method (ML) provided robust Type I error 

rates when the distribution was normal, or elliptically nonnormal with skewness and 

kurtosis of (0,7), or moderately nonnormal with skewness and kurtosis of (2, 7). 
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When the distribution was severely nonnormal with skewness and kurtosis of (3, 21), 

ML started to yield inflated Type I error rates when the sphericity assumption was 

seriously violated ( =.48) (Note that non-normality can come from discreteness, too, 

such as Likert scales.) Derived from ML, Satorra-Bentler scaled 2  test (SB1) 

yielded similar Type I error rates and mirrored ML closely. Yuan and Bentler adjusted 

ADF I test (YBADF) and Yuan and Bentler adjusted RES I test (YBRES) could 

provide robust Type I error rates when the sample size was over 15 under most 

circumstances with only a few exceptions where the Type I error rates were below the 

lower bound of Bradley’s liberal criterion. Yuan and Bentler adjusted ADF II test 

(FADF) and Yuan and Bentler adjusted RES II test (FRES), however, could provide 

robust Type I error rates when the sample size was over 15 under most circumstances 

with only a few exceptions where the Type I error rates were inflated and beyond the 

upper bound of Bradley’s liberal criterion. Both ADF and RES provided inflated Type 

I error rates when sample size equaled 15 and 30 and started to perform well when 

sample size was over 60.  

When k=8, among all the ANOVA-based methods, the Type I error rates 

provided by GG were close to 0. On the contrary, TR tended to provide greatly 

inflated Type I error rates that were beyond the upper bound of Bradley’s liberal 

criterion. For F test, as the degree of deviation from sphericity increased, the Type I 

error rates tended to become increasingly inflated. When the sphericity assumption 
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was seriously violated ( =.48), F test provided inflated Type I error rates that were 

off the range of robustness. Under most circumstances across different sample sizes 

and different sphericity levels and distributional shapes, both BOX and HF were 

robust except when the distribution was severely nonnormal with skewness and 

kurtosis of (3, 21) and sample size was small (n=15, 30) where their Type I error rates 

were lower than the lower bound of Bradley’s liberal criterion. 

The majority of the RMM methods, encouragingly, did provide comparatively 

robust Type I error rates across different sample sizes and different sphericity levels 

and distributional shapes especially when the sample size was over 60, except ADF 

and RES which were robust only when the sample size was 200, which was in line 

with previous findings. ML, SB1, FADF, and FRES provided robust Type I error rates 

when the distribution was normal, or elliptically nonnormal with skewness and 

kurtosis of (0, 7) or when the distribution was moderately nonnormal with skewness 

and kurtosis of (2, 7) or severely nonnormal with skewness and kurtosis of (3, 21) 

when the sphericity assumption was met or slightly violated (ε =.96). When the 

sphericity assumption was seriously violated ( =.48) and the distribution was 

moderately nonnormal or severely nonnormal, these methods started to yield inflated 

Type I error rates. All these methods were robust when the sample size was 200. 

YBADF and YBRES could provide robust Type I error rates when the sample size 

was over 60 across different sample sizes and different sphericity levels and 
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distributional shapes.  

Empirical Power Results Summary 

Generally speaking, RMM methods were more powerful than ANOVA-based 

methods with only a few exceptions. Since those cases where the Type I error rates 

were greater than the upper boundary of Bradley’s liberal criterion were removed 

from power analysis, the tables 13-20 didn’t show all the results of the empirical 

power estimates. If those cases were shown in the tables, it can be seen that RMM 

provided the largest power estimates in most cases except that TR did exceed RMM 

methods in numerous cases. But with those cased being removed, RMM still took the 

lead in terms of magnitude of power estimates.  

When k=4, except that most cells for ADF when sample sizes were small (n=15 

and 30) were removed due to inflated Type I error rates, ADF yielded the greatest 

power estimates under most circumstances where ADF entered into analysis. When 

ADF was removed, YBRES became the most powerful method in the majority of 

conditions. One of the exceptions was that F tended to be the most powerful method 

when  =.75 when sample size got larger (n=60, 100, 200). Under the majority of the 

conditions, ADF, YBRES, ML/SB1, FADF, and RES provided largest power estimates 

among all methods. 

When k=8, all asymptotic distribution-free tests including ADF, YBADF, FADF, 

RES, FRES, and YBRES didn’t converge when sample sizes were small (n=15 and 
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30). Meanwhile, the majority of the cells of RMM methods were removed when 

sample sizes were 15 and 30 due to inflated Type I error rates. ADF yielded the 

greatest power estimates under most circumstances where ADF entered into analysis. 

When ADF was removed, YBRES became the most powerful method across the 

majority of conditions. One of the exceptions was that F tended to be the most 

powerful method when  =.75 when sample size got larger (n=60, 100, 200). Under 

the majority of the conditions when sample sizes were larger than 60, ADF, YBRES, 

ML/SB1, FADF, and RES provided largest power estimates among all methods. 

Discussion and Conclusion 

Some of the key findings of the current study include the following: 

 Among the three distribution-free methods, ADF performed very well 

when the sample size was large, but if the sample size was small to 

moderate and also if the model was complex, it was not able to control 

Type I error very well and tended to over-reject the correct models. When 

k=4, ADF tended to be the most powerful method when sample size was 

60 or above and was able to control Type I error rates well. But when k=8 

where the model became more complex, ADF became the most powerful 

method only when sample size was 200 across majority of distribution 

forms and sphericity levels . As discussed earlier, when the sample size 

was larger than 60, the distribution-free methods did not encounter 
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non-convergence issues. But when the sample sizes were not as large as 

200, ADF tended to provide inflated Type I error rates and thus was 

removed from power analysis in the majority of conditions. On the other 

hand, the two adjusted methods FADF and YBADF proposed by Yuan 

and Bentler (1997, 1999) were more conservative and performed much 

better than ADF in terms of controlling Type I error rates. YBADF tended 

to over correct the inflation of ADF and yielded the smallest Type I error 

rates among the three methods. As sample size increased, the Type I error 

rates provided by the three methods got closer. At the same time, YBADF 

and FADF yielded adequate power but FADF outperformed YBADF over 

a range of conditions. This result matched up with findings from previous 

studies (Yuan & Bentler, 1997, 1999; Nevitt & Hancock, 2004). Therefore, 

ADF was not recommended when the sample size was small and model 

was complex.  

 Among the three residual-based methods, similar to ADF, RES performed 

comparably well when the sample size was large but if the sample size 

was small to moderate, it provided inflated Type I error rates, thus 

rejecting correct models far too frequently. On the other hand, the two 

adjusted methods FRES and YBRES proposed by Bentler and Yuan (1999) 

were more conservative and able to correct the over-rejection of RES for 
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correct models in finite samples. YBRES tended to over-correct the 

inflation of ADF and yielded the smallest Type I error rates among the 

three methods. As sample size increased, the Type I error rates provided 

by the three methods got closer. This finding was also in line with 

previous studies (Yuan & Bentler, 1998; Bentler and Yuan, 1999; Nevitt 

& Hancock, 2004). However, among the three methods, YBRES behaved 

most stably across different conditions and provided the largest power 

estimates, thus making YBRES very recommendable. This finding was 

different from the results of Yuan and Bentler (1998) and Bentler and 

Yuan (1999), which indicated that FRES performed better than YBRES 

and was recommended as the first choice by Bentler and Yuan (1999). 

However, the current study also showed that YBRES performed better 

than FRES under most circumstances except some rare cases, which 

makes YBRES even more attractive. At the same time, YBRES also 

consistently outperformed FADF, which distinguished YBRES as the 

most recommendable method among all the RMM methods.   

 Some previous studies (e.g., Wilcox, 1993, 1997, 1998) concluded that 

the trimmed mean method (TR) was more powerful than the traditional F 

test. This finding was also supported by the current study. As a matter of 

fact, TR was more powerful than all the other ANOVA-based methods 
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that entered into analysis. However, TR was not able to control Type I 

error well and yielded inflated Type I error rates under the majority of 

conditions, which was different from the finding from Berkovits et al. 

(2000) that the trimmed mean method was able to control Type I error 

rate well. And considering the fact that TR actually tested the equality of 

the population trimmed means instead of population means, and thus 

modified the null hypothesis, this method is not recommended based on 

the findings of this study. 

 Thanks to the simplicity in calculation, the GG lower bound adjustment 

method has been used widely. However, the current study indicated that 

GG was very conservative in controlling Type I error rates and provided 

the smallest power estimates among all methods across almost all 

conditions. GG performed especially poorly when the number of the 

levels was large (k=8), providing power estimates that were almost 1/30 

the magnitude the power estimates other methods provided. Therefore, 

GG is not recommended. 

 ML’s performance was affected by the increasing departure from 

multivariate normality, decreasing sample size, and the increasing number 

of repeat measures as well as the degree of violation of sphericity 

assumption. ML tended to produce inflated Type I error when distribution 
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form deviated from normality with small sample size and when there was 

severe violation of sphericity. When the number of repeated measures 

increased to 8 (k=8), ML started to provide inflated Type I error rates 

much more frequently when sample size was small and when the 

sphericity assumption was seriously violated. The same also held true to 

ML’s adjusted method, SB1. Therefore, ML and SB1 are only 

recommended when there is no or little violation of sphericity assumption 

but not recommended when the model is complex (k=8) and the sample 

size is small (15, 30). 

 Both BOX and HF provided a small number of attenuated Type I error 

rates when sample size was small and distribution was non-normal. 

Though they were not as powerful as RMM methods in most cases, they 

were able to provide robust Type I error rates under most conditions 

including when the sphericity assumption and normality assumption were 

severely violated. FM, on the other hand, provided inflated Type I error 

rates with non-normal distribution and severe violation of sphericity 

assumption and it tended to be more powerful than F when the 

distribution deviated more from normality except when  =.75. Therefore, 

HF should be preferred among ANOVA-based methods if the distribution 

was severely non-normal and sphericity assumption was severely violated 
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since HF was consistently more powerful than BOX.  

Generally speaking, this study suggests that RMM methods tended to be more 

powerful than ANOVA-based methods. It is worth noting that sphericity levels, 

sample sizes, as well as the number of repeated measures, could be used as the 

baseline for practitioners to decide which method to choose when they encounter real 

data. Table 21 shows the best methods to be recommended under each condition. As 

mentioned previously, the cells that produced inflated Type I error rates had been 

removed from power analysis. Therefore, the methods recommended for each 

distribution were identified based on the power estimates each method provided 

which entered into the final analysis. Tables 21-24 present the recommended methods 

for each of the four distribution conditions investigaged in the current study: normal 

distribution, elliptical distribution, moderately non-normal distribution, and severely 

non-normal distribution. In these tables, sample sizes were combined into two 

categories (15, 30) and (60, 100, 200) as RMM methods were encountered with some 

non-convergence issues when the sample size was smaller than 60. For each condition, 

five methods with the greatest power estimates were identified and then the common 

methods were picked based on the sample size category. The methods shown in the 

tables were ordered based on the magnitudes of power estimates; that is, the first 

method was the one with highest power estimate among all the methods listed for 

each condition.   
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Table 21 

Recommended Methods for Normal Distribution 

Degree of Non-sphericity Number of Levels Sample Size Most Powerful/Recommended Methods 

1 

K=4 
15, 30 YBRES, ML/SB1, F 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1, F, HF 

0.96 

K=4 
15, 30 YBRES, ML/SB1, F 

60, 100, 200 ADF, YBRES,  ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.75 

K=4 
15, 30 YBRES, F, HF 

60, 100, 200 F, YBRES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 F, HF, BOX, YBRES 

0.48 

K=4 
15, 30 YBRES, ML/SB1, FM 

60, 100, 200 YBRES, ADF, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1, FADF/FM 

 

Table 21 shows that the majority of the methods recommended were RMM 

methods. Except for k = 8 with small sample sizes (15, 30), YBRES was 

recommended for all conditions. F, however, was mostly likely to be recommended 

when sample size was small. When the sphericity assumption was seriously violated 

(ε =.48), F was not recommended. This finding is interesting and of great significance 

as it has long been accepted that it is safe to use F when normality assumption is not 

violated. This study, however, shows that F is not a good choice for normal data when 

the sphericity assumption is seriously violated. 
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Table 22 

Recommended Methods for Elliptical Distribution 

Degree of Non-sphericity Number of Levels Sample Size Most Powerful/Recommended Methods 

1 

K=4 
15, 30 YBRES, ML/SB1 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.96 

K=4 
15, 30 YBRES, ML/SB1, F, HF 

60, 100, 200 ADF, YBRES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.75 

K=4 
15, 30 YBRES, F, HF 

60, 100, 200 F, HF,  BOX, ADF, YBRES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 F, YBRES 

0.48 

K=4 
15, 30 YBRES, ML/SB1, FADF, FM 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 FM, HF, BOX 

60, 100, 200 YBRES, ML/SB1 

 

Table 22 shows that the majority of the methods recommended were RMM 

methods. Except for k = 8 with small sample sizes (15, 30), YBRES was 

recommended for all conditions. F, however, was mostly recommended when sample 

size was small and k = 8 except for when the sphericity assumption was seriously 

violated (ε =.48). When ε =.75, F seemed to be a favored method. ADF was 

recommended when the sample size got large (60, 100, 200) with k =4.  
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Table 23 

Recommended Methods for Moderatly Non-normal Distribution 

Degree of Non-sphericity Number of Levels Sample Size Most Powerful/Recommended Methods 

1 

K=4 
15, 30 YBRES, ML/SB1 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.96 

K=4 
15, 30 YBRES, ML/SB1, F, HF 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.75 

K=4 
15, 30 YBRES, F, HF, ML/SB1 

60, 100, 200 F, HF, BOX, ADF, YBRES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 F, YBRES, HF, BOX 

0.48 

K=4 
15, 30 YBRES 

60, 100, 200 YBRES, ML/SB1/RES 

K=8 
15, 30 HF, BOX 

60, 100, 200 YBRES 

 

Table 23 shows that the majority of the methods recommended were RMM 

methods. Except for k = 8 with small sample sizes (15, 30), YBRES was 

recommended for all conditions. F, however, was mostly recommended when sample 

size was small and k = 8 except for when the sphericity assumption was seriously 

violated (ε =.48). When ε =.75, F and HF seemed to be the favored methods. 
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Table 24 

Recommended Methods for Severely Non-normal Distribution 

Degree of Non-sphericity Number of Levels Sample Size Most Powerful/Recommended Methods 

1 

K=4 
15, 30 YBRES, ML/SB1 

60, 100, 200 ADF, YBRES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.96 

K=4 
15, 30 YBRES, ML/SB1, FADF 

60, 100, 200 ADF, YBRES, ML/SB1/RES 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, ML/SB1 

0.75 

K=4 
15, 30 YBRES, FM 

60, 100, 200 F, YBRES, HF, BOX 

K=8 
15, 30 F, FM, HF 

60, 100, 200 YBRES, F. HF 

0.48 

K=4 
15, 30 YBRES, YBADF, HF, BOX 

60, 100, 200 YBRES, FADF, FM, FRES, YBADF 

K=8 
15, 30 FM, HF, BOX 

60, 100, 200 YBRES, FM 

 

Table 24 shows that the majority of the methods recommended were RMM 

methods. Except for k = 8 with small sample sizes (15, 30), YBRES was 

recommended for all conditions. F, however, was mostly recommended when sample 

size was small and k = 8 except for when the sphericity assumption was seriously 

violated (ε =.48). When ε =.75, F and HF seemed to be the favored methods.  

Then the four tables were combined to come up with a summary table for 

recommended methods for all distribution conditions as is shown in Table 25. 
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Table 25 

Recommended Methods for Conditions across Distributions 

Degree of 

Non-sphericity 

Number of 

Levels 
Sample Size Most Powerful/Recommended Methods 

1 

K=4 
15, 30 YBRES, ML/SB1 

60, 100, 200 ADF, YBRES 

K=8 
15, 30 F, HF, FM 

60, 100, 200 YBRES, ML/SB1 

0.96 

K=4 
15, 30 YBRES, ML/SB1 

60, 100, 200 ADF, YBRES 

K=8 
15, 30 F, HF, FM 

60, 100, 200 YBRES, ML/SB1 

0.75 

K=4 
15, 30 YBRES 

60, 100, 200 F, YBRES 

K=8 
15, 30 F, HF, FM 

60, 100, 200 F, YBRES 

0.48 

K=4 
15, 30 YBRES 

60, 100, 200 YBRES 

K=8 
15, 30 HF 

60, 100, 200 YBRES 

 

Table 25 shows that the majority of the methods recommended were RMM 

methods. Except for k =8 with small sample sizes (15, 30), YBRES was 

recommended for all conditions. F, however, was mostly recommended when 

sample size was small and k = 8 except for when the sphericity assumption 

was seriously violated (ε =.48). Of course, it is clear that no one method 

performs consistently well under all situations and outperforms all the other 

methods. But the current study carried out on combinations of 5 sample size 

conditions, 4 distributions, 4 levels of sphericity conditions, and 2 levels of 

repeated measures provided strong support for applying RMM methods to 

one-way repeated measure design. Based on the previous analysis, RMM 
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methods were recommended under almost all conditions except when the 

model was complex (k=8) and sample size was small (15, 30), and among all 

the RMM methods, YBRES outperformed all the other methods. When there 

were 8 levels of repeated measures and the sample size was small (15, 30), 

ANOVA-based methods were recommended, among which HF became a safe 

choice as it performed most stably among all the ANOVA-based methods.  

It is worth noting that when the sphericity assumption was seriously violated 

( =.48), the traditional F test tended to over-reject the correct model and thus got 

inflated Type I error rates, despite the distribution form. Thus, F test was not 

recommended for ε =.48 even when the data were normal.  This leads to the 

suggestion that the tests for both normality and sphericity should precede the analysis 

of data collected for the one-way repeated measure design. If both normality and 

sphericity assumptions are met, of course F can be used for the sake of simplicity. If 

the sphericity assumption is violated, Tables 21-25 can be employed to facilitate the 

choice of the methods to be used. However, a potential issue with the guideline 

provided in Tables 21-25 could be that  is the population sphericity parameter and is 

usually unknown. Even though it can be estimated from a sample, practitioners need 

to take some cautions especially when sample size is small.   

The findings obtained in this study echoed those in Fan and Hancock (2012) 

which compared somewhat different sets of ANOVA-based methods (F test, Welch’s 

test, the Brown-Forsythe test, James’ second-order test, and the Alexander-Govern test) 

and RMM methods (ADF, SB1,YBADF, FADF, and Bartlett’s correction to the ML) 
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applied for between-subjects designs. The findings for the between-subjects designs 

indicated that RMM methods not only provided robust Type I error rates across 

different conditions specified, but also were more powerful than AVOVA-based 

methods. Among all the RMM methods, YBADF and FADF outperformed the other 

RMM methods. This study, however, added RES, YBRES, and FRES to comparison 

and found that YBRES became the most recommended method but FADF also 

performed comparably well among all the RMM methods. Fan and Hancock called 

for the study to be extended to repeated mesures, which was the focus of this study.  

Though this study has gained ground for RMM methods to be applied in 

one-way repeated measure design, the findings from this study warrant many future 

investigations. First, this study used only two levels of repeated measure, 4 and 8. 

There seemed to be some drastic differences in performance for RMM methods 

between these two levels. Therefore, some additional levels (e.g., 3, 6) may be added 

in future studies to investigate the ideal conditions of applying RMM models to 

analysis. In addition, more distribution forms and more sample sizes can also be 

included in the future studies to gain a more comprehensive picture of RMM’s 

performance. Second, because this study only examined the one-way repeated 

measure design, in order to generalize the conclusion to a broader scenario, a 

between-subject factor can also be included in the study so that the performance of 

RMM methods can be investigated in the balanced and unbalanced designs containing 
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one between-subjects and one within-subject factor. Third, this study can also be 

extended to perform with more complex models like multivariate repeated measures 

designs.  
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Appendix 

Sample EQS Codes 

/SPECIFICATIONS   

VAR=3; cases=n; ME=AGLS; MA=RAW; DATA='Path1’; 

ANAL=MOMENT; 

/EQUATIONS 

V1 = *V999 + 1.000 E1; 

V2 = *V999 + 1.000 E2; 

V3 = *V999 + 1.000 E3; 

/VAR 

E1 to E3= *; 

/CONSTRAINT 

(V1,V999)=(V2,V999)=(V3,V999)= )=(V4,V999); 

/PRINT 

FIT=ALL; COV=YES; 

/END 
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