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The rapid increase in the data volumes encountered in many applica-

tion domains has led to widespread adoption of parallel and distributed data

management systems like parallel databases and MapReduce-based frame-

works (e.g., Hadoop) in recent years. Use of such parallel and distributed

frameworks is expected to accelerate in the coming years, putting further

strain on already-scarce resources like compute power, network bandwidth,

and energy. To reduce total execution times, there is a trend towards in-

creasing execution parallelism by spreading out data across a large number

of machines. However, this often increases the total resource consumption,

and especially energy consumption, significantly because of process startup

costs and other overheads (e.g., communication overheads). In this disserta-
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tion, we develop several data management techniques to minimize resource

consumption through workload consolidation.

In this dissertation, we introduce a key metric called query span, i.e., num-

ber of machines involved in the execution of a query or a job. In order to

minimize the per query resource consumption we propose to minimize query

span. To that end, we develop several workload-driven data partitioning and

replica selection algorithms that attempt to minimize the average query span

by exploiting the fact that most distributed environments need to use replica-

tion for fault tolerance. Extensive experiments on various datasets show that

judicious data placement and replication can dramatically reduce the average

query spans resulting in significant reductions in resource consumption. We

show our results primarily on two applications, distributed data warehouse

system and distributed information retrieval. In the first case, we show that

minimizing average query spans can minimize overall resource consumption

for a given workload and can also improve the performance of complex ana-

lytical queries. In the second case, our approach minimizes the overall search

cost as well as effectively trades off search cost with load imbalance.

The best case of resource efficiency for any underlying data processing

system is achieved when the job or the query can be run efficiently on a single

machine (i.e., query span=1). In the final part of dissertation, we discuss an

in-memory MapReduce system optimized for performing complex analytics
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tasks on input data sizes that fit in a single machine’s memory. We argue

that systems like Hadoop that are designed to operate across a large number

of machines are not optimal in performance for small and medium sized

complex analytics tasks because of high startup costs, heavy disk activity,

and wasteful checkpointing. We have developed a prototype runtime called

HONE that is API compatible with standard (distributed) Hadoop. In other

words, we can take existing Hadoop code and run it, without modification, on

a multi-core shared memory machine. This allows us to take existing Hadoop

algorithms and find the most suitable runtime environment for execution on

datasets of varying sizes.

Overall, in this dissertation, our key contributions in this work include

identification of key metric query span and its relationship with overall re-

source consumption in scale-out architectures. We introduce several workload-

aware techniques to optimize this key metric. We go on to demonstrate the

effectiveness of query span minimization on different application scenarios.

In order to take advantage of scale-up architectures effectively we develop

novel in-memory MapReduce system HONE for single machine. Our thor-

ough experiments on real and synthetic datasets demonstrate the efficacy of

our proposed approaches.
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Chapter 1

Introduction

1.1 Big Data Architectures

Large-scale data management and analysis is rapidly gaining importance

because of an exponential increase in the data volumes being generated in

a wide range of application domains. The deluge of data (popularly called

“Big Data”) creates many challenges in storage, processing, and querying of

such data. There is also an overwhelming variety in the types of applications

and services that we are witnessing today. There is growing consensus that

a single system cannot cater to the variety of workloads, and different solu-

tions are being researched and developed for different application needs. For

example, column-stores are optimized specifically for data warehousing ap-

plications, whereas row-stores are better suited for transactional workloads.

There are also hybrid systems for applications that need support for both
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transactional workloads and data analytics. Other varied systems are being

developed to store different types of data, such as document data stores for

storing XML or JSON documents, and graph databases for graph-structured

or RDF data.

To handle the increasing volumes of data, two solutions are commonly

considered. One approach is to use a sufficiently powerful machine that

can handle the workload (called the scale-up approach), whereas the other

approach is to use a cluster of commodity machines to parallelize the compute

tasks (scale-out approach). The scale-up approach is attractive because it is

significantly easier to code for, whereas the scale-out approach requires one to

deal with the distributed nature of computation as well as distributed fault-

tolerance issues. However, the scale-up approach is limited in its ability to

scale to large volumes of data, and also is typically more expensive. There

has been much work on the scale-out approach over the last decade – several

high-level programming frameworks and abstractions (e.g., MapReduce) have

been proposed, and numerous systems have been developed for supporting

those frameworks over a large number of machines.

Scale-out is typically achieved by partitioning the data across multiple

machines. Machine failures present an important problem for scale-out archi-

tectures resulting in data unavailability. In order to tolerate machine failures

and to improve data availability traditionally data replication is employed.
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1.2 Resource Inefficiency in Scale-out Architectures

Although large-scale systems deployed over scale-out architectures enable

us to handle the data volumes, velocity and variety efficiently, we note that

these architectures are prone to resource inefficiencies. Also, the issue of

minimizing resource consumption in executing large-scale data analysis tasks

is not a focus of many data systems that are developed to date. In fact, it

is easy to see that many of the design decisions made, especially in scale-

out architectures, can typically reduce overall execution times, but can lead

to inefficient use of resources. As the field matures and the demands on

computing infrastructure grow, many of those design decisions need to be re-

visited with the goal of minimizing resource consumption. Another impetus

is provided by the increasing awareness that the energy needs of the comput-

ing infrastructure, typically proportional to the resource consumption, are

growing rapidly and are accounting for a large fraction of the total cost of

providing the computing services.

Let us take a look at an example of resource inefficiency in scale-out

architectures. Consider a query that takes 100 seconds to execute on a sin-

gle machine and consumes 100 joules of energy. Now consider a situation

where the data corresponding to the same query is spread equally on to two

machines and query is allowed to execute parallelly on these two machines.
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Ideally, this query should finish its execution in exactly half of the time (i.e.,

50 seconds) on each machine and should consume 50 joules energy on each

machine. But in practice as a result of several overheads and process startup

costs the query executes in > 50 seconds time and consumes > 50 joules of

energy on each machine. In summary, a job or query executing on multi-

ple machines can consume more energy when compared to the same query

executing on relatively fewer number of machines. In other words, in the

absence of super-linear speedups, more the number of machines a job or a

query touches, more energy it consumes. In order to minimize resource con-

sumption of given job or a query, we should minimize the number of machines

required for a job or a query for its execution.

1.3 Query Span: A Key Metric to Optimize

For a given query or analysis task, its span is defined to be the minimum

number of machines that contain the data needed to execute that query or

task. Minimizing query span has significant advantages that make it an

important metric for which to optimize.

Minimize the communication overhead: Query span directly impacts the to-

tal communication that must be performed to execute a query. This is clearly

a concern in distributed setups (e.g., grid systems [83] or multi-datacenter

deployments); however even within a datacenter, communication network is
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oversubscribed, and especially cross-rack communication bandwidth can be

a bottleneck [19, 37]. In cloud computing, the total communication directly

impacts the total dollar cost of executing a query.

Minimize the total amount of resources consumed: It is well-known that par-

allelism comes with significant startup and coordination overheads, and we

typically see sub-linear speedups as a result of these overheads and data

skew [68]. Although the response time of a query usually decreases in a

parallel setting, the total amount of resources consumed typically increases

with increased parallelism. Even in scenarios where we obtain super-linear

speedups due to higher aggregate memory across the machines, we expect

the total resource consumption to increase with the degree of parallelism.

Reduce the energy footprint: Computing equipment in US costs datacenter

operators millions of dollars annually for energy, and also impacts the envi-

ronment. Energy costs are ever increasing and hardware costs are decreasing

– as a result soon the energy costs to operate and cool a datacenter may ex-

ceed the cost of the hardware itself. Minimizing the total amount of resources

consumed directly reduces the total energy consumption of a task.

Illustrative Experiments: To support these claims and to motivate query

span as a key metric to optimize, we conducted a set of experiments analyzing

the effect of query span on the total resource and energy consumption under a

5
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Figure 1.1: Increasing the degree of parallelism may result in lower
execution times, but leads to higher resource and energy consump-
tion.

variety of settings. First setting is a horizontally partitioned MySQL cluster,

on which we execute four SQL queries against a TPC-H database. Two of the

queries are complex analytical join queries (TPC-H1, TPC-H2 in Figure 1.1),

whereas the other two are simple aggregation queries on a single table (TPC-

H3, TPC-H4). In the second setting, we implemented our own distributed

query processor on the top of multiple MySQL instances running on a cluster

where predicate evaluations are pushed on to the individual nodes and data is
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shipped to a single node for perform the final steps. On this setup we evaluate

two queries: a complex join query (Q-Join) and a simple aggregate query on

a single table (Q-Sum). In Figures 1.1a and 1.1b, we plot the execution times

and the energy consumed as the number of machines across which the tables

are partitioned (and hence query span) increases. The energy consumption is

estimated by using an Itanium server power model constructed by using the

Mantis full-system power modeling technique [29]. We use the dstat tool to

collect various system performance counters such as CPU utilization, network

reads and writes, I/O, and memory footprint, and then use the power model

to estimate the total energy consumed.

As we can see, the execution times of the TPC-H queries run on MySQL

cluster actually increased with parallelism, which may be because of nested

loop join implementation in MySQL cluster (a known problem that is being

fixed). In our implementation, the execution time remains constant. But

in all cases, energy consumption increased with query span. In the second

experiment with simpler queries (Figures 1.1c and 1.1d), though execution

times decrease as the query span increases, energy consumption increases

in all cases. From this simple set of experiments it is evident that, as the

number of machines involved in processing a query increases, total resources

consumed to process the query also rise. So in order to minimize overall

resource consumption of a given query/job, one should minimize number of
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machines involved in a processing of a query, that is query span.

Best case: Given a query or a job, when the data required by a job fits in the

memory of a single machine, then a job can be executed on a single machine

as efficiently as possible (query span = 1). This results in the highest resource

efficiency of the underlying system.

1.4 Central Technical Insight

In scale-out settings, an effective way to minimize the query span is to

co-locate the data items required by the queries on fewer machines. With

colocation, data items needed for a particular query or a job can be found in

lesser number of machines, consuming lesser resources often also improving

execution times. In order to perform data colocation certain information

about data access patterns is required. For example, if we know that the

data items d1 and d2 are being frequently accessed by the queries, then these

data items can be colocated and placed in single partition. In other words,

we want to understand the history of data access and partition the data

items such that frequently co-accessed data items are placed together and

when queries access these data items then query span is minimized.

In this dissertation, we develop a workload-driven approach that aims to

reduce the average query span in distributed data platforms by co-locating

data items that are frequently accessed together by queries. We observe that,
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for fault tolerance, load balancing, and availability, those systems typically

maintain several copies of each data item (e.g., Hadoop file system (HDFS)

maintains at least 3 copies of each data item by default [89]), and we propose

exploiting this inherent replication to achieve higher colocation by judicious

replica creation and placement. Our approach is workload-driven in that,

we propose capturing a historical query workload over a period of time, and

optimizing data placement and replication for that workload. Our techniques

work on an abstract representation of the query workload, and are applicable

to both multi-site data warehouses and general purpose data centers. we

represent the query workload as a hypergraph, where the nodes are the data

items and each query is translated into a hyperedge over the nodes. The

data items could be database relations, parts of database relations (e.g.,

tuples or columns), or arbitrary files. The goal is to store each data item

(node in the graph) onto a subset of machines/sites (also called partitions),

obeying the storage capacity requirements for the partitions. Note that the

partitions do not have to be machines, but could instead represent racks or

even datacenters. The span of a query is defined to be the smallest number of

partitions that contain all the data that the query needs. Our goal is to find

a layout that minimizes the average span over all queries in the workload.

Further, our algorithms can optimize for load or storage constraints, or both.
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1.5 Thesis Contributions

In the first part of the dissertation, we focus on the problem of minimizing

resource consumption through workload-aware data partitioning and repli-

cation in the context of distributed data warehouses. Our key contributions

include:

• Formulating and analyzing this problem, drawing connections to sev-

eral problems studied in the graph algorithms literature, and developing

efficient algorithms for data placement.

• Developing theoretical bounds for special classes of graphs that gives

an understanding of the trade-off between resource consumption and

storage.

• Identification of query span as having a direct and significant impact

on total resource consumption, and as being an important metric to

optimize for.

• A suite of novel algorithms for making data replication and placement

decisions that minimize average query span for a given workload.

• Building a trace-driven simulation framework that enables one to sys-

tematically compare different algorithms, by automatically generating

varying types of query workloads and by calculating the total energy
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cost of a query trace.

• Conducting an extensive experimental evaluation using this framework,

and results show that our techniques can result in high reductions in

query spans and resource consumption compared to baseline or random

data placement approaches.

In the second part of the dissertation, we solve the problem of assigning

topical document clusters to physical partitions with the goal to decrease

query span as much as possible, while minimizing load imbalance. Follow-

ing are the contributions of the work presented in the second part of the

dissertation:

• We propose highly effective workload-aware data partitioning techniques

to minimize search cost significantly. Our approach reduces search cost

up to 75% when compared to state-of-the-art distributed exhaustive and

selective search.

• We propose a novel scalable techniques for partitioning extremely large

and dense hypergraphs that represent query workload. Our novel hy-

pergraph partitioning technique achieved at least 40× times speed im-

provement over state-of-the-art (hMETIS-based) partitioning technique

in our experimental study.

• We develop load- and search cost-aware replication and routing tech-
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niques to minimize load imbalance and to opportunistically optimize

search cost. Our novel load-aware set cover routing technique gracefully

scales even when the partitions are subjected to tight load constraints.

• We implement an incremental repartitioning technique that repartitions

small subset of data to decrease in load variations caused by change

in workload while carefully trading the search cost. In the experimental

study, our workload-aware incremental repartitioning technique achieved

at max 171× times more effectiveness over the smart baseline (discussed

in Section 4.3.3).

Lastly, in the final part of the dissertation, we present a prototype run-

time called HONE that is intended to be API compatible with standard

(distributed) Hadoop, that allows us to take an algorithm implemented in

Hadoop and find the most suitable runtime environment for execution on

datasets of varying sizes—if the data fits into RAM, we can avoid network

latency and significantly decrease execution time in a shared-memory envi-

ronment. Contributions of our work are:

• HONE is a scalable MapReduce implementation for multi-core, shared-

memory machines. To our knowledge it is the first MapReduce im-

plementation that is both Hadoop API compatible and optimized for

scale-up architectures.
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• We propose and evaluate different approaches to implementing the data

shuffling stage in MapReduce, which is critical for achieving high per-

formance.

• We discuss key challenges in implementing HONE on the JVM, how we

addressed them, and lessons we learned along the way.

• We evaluate HONE on a number of real-world applications, comparing

it to Hadoop pseudo-distributed mode, a 16-node Hadoop cluster, and

several systems proposed in prior work for single-machine analytics.

• We propose a synthetic workload generator for evaluating HONE that

may be of independent interest for evaluating other systems.
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Chapter 2

Related Work

2.1 Data Colocation for Resource Minimization

First part of this thesis deals with data colocation and resource minimiza-

tion issues in various data domains (Chapter 3 and Chapter 4). There are a

vast number of papers that relate to these issues separately. In the following

subsections we discuss several related papers in the various subareas that are

related to our work.

2.1.1 Data Partitioning and Replication

Data partitioning and replication plays an increasingly important role

in large scale distributed networks such as content delivery networks (CDN),

distributed databases and distributed systems such as peer-to-peer networks.

Recent work [3, 26] has shown that judicious placement of data and replica-
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tion improves the efficiency of query processing algorithms. There has been

some recent interest in improving data co-location in large scale processing

systems like Hadoop. Recent work by Eltabakh et al. [30] on CoHadoop is

very close to our work, where they provide an extension for Hadoop with

a lightweight mechanism that allows applications to control where data is

stored. They focus on data colocation to improve the efficiency of many op-

erations, including indexing, grouping, aggregation, columnar storage, joins,

and sessionization. Our techniques are complementary to their work.

Hadoop++ [26] is another closely related work that exploits data pre-

partitioning and co-location. There is substantial work on replica placement

that focuses on minimization of network latency and bandwidth. Neves et

al. [65] propose a technique for replication in CDN where they replicate data

onto a subset of servers to handle requests so that the traffic cost in the

network is minimized. There has been a lot of work on dynamic/adaptive

replica management (e.g., [34, 72, 73, 79, 90, 94]), where replicas are dynam-

ically placed, moved, or deleted based on the read/write access frequencies

of the data items again with the goal of minimizing bandwidth and access

latency.

Our work is different from several other works on data placement [46,59,

66] where the database query workload is also modeled as a hypergraph and

partitioning techniques are used to drive data placement decisions. Tosun et
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al. [86, 87] and Ferhatosmanoglu et al. [32] propose using replication along

with declustering for achieving optimal parallel I/O for spatial range queries.

The goal of most prior work is typically minimization of query latencies by

spreading out the work over a large number of partitions or devices. For us,

that is exactly the wrong optimization goal – we would like to cluster data

required for each query on as few partitions as possible.

Graphs have been used as a tool to model various distributed storage

problems and to come up with replication strategies to achieve a specific ob-

jective. Du et al. [28] study Quality-of-Service (QoS)-aware replica placement

problem in a general graph model. In their model, vertices are the servers

with various weights representing node characteristics and edges represent-

ing the communication costs. Other work has modeled network topology

as a graph and developed replication strategies or approximations (replica

placement in general graphs is NP-complete) [91]. In contrast, we model

query workload as a hypergraph, and assume a uniform network topology

(i.e., identical communication costs between any pair of nodes); we believe

this better approximates current networks.

2.1.2 Graph Algorithms

The problems we study are closely related to several well-studied problems

in graph theory and can be considered generalizations of those problems.
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A basic special case of our main problem is the minimum graph bisection

problem (which is NP-Hard), where the goal is to partition the input graph

into two equal sized partitions, while minimizing the number of edges that

are cut [12]. There is much work on both that problem and its generalization

to hypergraphs and to k-way partitioning [40,43,63]. Another closely related

problem is that of finding dense subgraphs in a graph, where the goal is to

find a group of vertices where the number of edges in the induced subgraph

is maximized [31]. Finally, there is much work on finding small separators

in graphs. Several theoretical results are known about this problem. We

discuss these connections in more detail later when we describe our proposed

algorithms.

In the context of hypergraph partitioning, there is a vast literature of work

proposing variety of techniques and approaches to perform k-way balanced

min-cut hypergraph partitioning [16, 25, 41, 44, 77]. Some of these works are

available for public use in the form of popular softwares such as hMETIS [42],

PaToH [17], SCOTCH [69] and Zoltan [24]. These systems are considered

state-of-the-art and we note that although these systems provide very ef-

ficient hypergraph partitioning algorithms, none of these systems scale for

very dense hypergraphs that we deal with in this work.

17



2.1.3 Energy Efficiency and Data Management

Issues in energy-efficient computing are being increasingly studied at all

layers in today’s computing infrastructures. Harizopoulos et al. [36] reported

the first results on software-level optimizations to achieve better energy ef-

ficiency; they experiment with a system that was configured similarly to

an audited TPC-H server and show that making the right physical design

decisions can improve energy efficiency. Additionally, they use relational

scan operator as a basis to demonstrate that optimizing for performance is

different from optimizing for energy efficiency. It is also among the first pa-

pers [35, 36, 53] to practically show the importance of energy efficiency in

database systems. Graefe [36] also points out various research challenges

and promising approaches in energy-efficient database management. In his

paper he indicates various promising approaches and techniques to achieve

energy efficiency in database systems. He discusses two approaches in this

context: processor frequency control and explicit delays. Leverich et al. [55]

and Lang et al. [54] suggest approaches to conserving energy by powering

down Hadoop cluster nodes during periods of low load, and observe that the

default replica placement policy is highly inefficient in this regard. In par-

ticular, they observe that powering down any three nodes is likely to lead to

some data being unavailable, and instead suggest a replication policy such
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that a small set of cluster nodes cover (contain) at least one replica of each

data item.

Lang et al. [54] suggest and evaluate an alternative approach where all

cluster nodes are powered up (to answer queries), and powered down at the

same time, and show that their approach leads to better energy utilization.

The approach that we consider here is more fine-grained in that, we con-

sider shutting down individual disks (or nodes) during periods of low load,

and wake them up as needed. Tsirogiannis et al. [88] analyze the energy

efficiency of a single-node database server, and argue that the most energy-

efficient configuration is typically the highest performing one. However, this

assertion is valid only for single node database server, and does not hold

for scale-out architectures involving multiple machines where parallelization,

communication, and startup overheads come into play. From our experiments

over the TPC-H benchmark, it is evident that, as the number of machines

involved in processing a query increases, total resources consumed to process

the query also rise.

2.1.4 Distributed Search

Most prior research on web information retrieval assumes that documents

are already assigned to physical partitions [8, 15,80,84]. Simplest way of as-

signing documents to partitions is to distribute these documents randomly
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across the partitions. Query is sent to all the partitions to retrieve the doc-

uments of interest. This approach of distributed exhaustive search increases

the query cost significantly [47]. There have been few other studies that

have looked into partitioning of a document collection into topical clusters.

These studies have shown that search efficiency can be further increased by

document cluster selection, that is, by querying a small number of promising

document clusters for each query. Kulkarni et al., [47] present the topic-based

clustering and partitioning of documents into distributed index or document

clusters and show that this approach reduces the search cost significantly

when compared to the exhaustive search with no loss of accuracy, on av-

erage. Our work in part 2 of this dissertation (Chapter 4) is very close to

this work, important difference being that, they only partition documents

into topical clusters and do not discuss how to assign these topical docu-

ment clusters to physical partitions. In our work, we propose an effective

approach to assign document clusters to the underlying physical partitions

by analyzing the search workload history. On the other hand, given a topi-

cally clustered system, Aly et al., [6] present a vocabulary-based document

cluster selection algorithm that represents document clusters by statistics of

terms in the vocabulary. In their work, topical partitioning is given and hence

they do not deal with document partitioning or document cluster-machine

assignment.
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2.2 Mapreduce on Multi-core Shared Memory Systems

Next, we perform literature survey where we review various papers in the

literature related to our work presented in Chapter 5 and compare them with

our work on in-memory map reduce system.

A series of incremental advances on shared-memory MapReduce imple-

mentations have been presented by Kozyrakis et al. Their first system,

Phoenix [74], evaluates the suitability of MapReduce as a programming en-

vironment for shared-memory systems. Phoenix2 [92] makes improvements

over Phoenix system by identifying the inefficiencies in handling large-scale

data. It proposes user-tunable hash table-based data structure to store in-

termediate keys. Phoenix++ [82] makes further improvements by observing

that data structures for intermediate data storage cannot be fixed a priori, as

they depend on the nature of the application. Thus, they provide container

objects used to store map output as an abstraction to the user.

We observe several shortcomings of their approach that limits its broad

applicability. First, the Phoenix systems are implemented in C++ and are

not compatible with Hadoop API. Thus, scaling down Hadoop using Phoenix

involves essentially a full re-implementation. Second, hash table-based con-

tainers are not a feasible solution for a Java-based implementation, especially

for applications where intermediate data size is more than the input dataset
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size; Java objects tend to be heavyweight, and off-of-the-shelf Java contain-

ers tend to be inefficient for large datasets. We discuss this issue in more

detail in Chapter 5. In another related work, Mao et al. [61], in their system

Metis, propose using containers based on hash+B-trees to store intermediate

outputs. Chen et al. [18] proposed a tiled MapReduce approach to iteratively

process small chunks of data at a time with efficient use of resources. Jiang

et al. [39] build upon Phoenix and provide an alternate API for MapReduce.

Both these systems are implemented in C++ and are not Hadoop compat-

ible; moreover they modify the MapReduce API. Note that all the above

systems that are related do not scale their system on large datasets, their

datasets are mostly in the range of MBs, we evaluate our system for worst

case and scale for GBs of dataset on single shared-memory high-end machine.

Shinnar et al. [78] propose a main memory map-reduce (M3R) is a new

implementation of the Hadoop map-reduce API targeted at online analytics

on high mean-time-to-failure clusters. Although it is close to our system,

they mainly focus on scale-out architectures, whereas we focus explicitly

on scaled-up single shared memory machine. They do not provide insights

on single machine scalability and how does various workloads behave when

processed in-memory on single machine. Moreover, M3R is implemented in

X10 language, and X10 only supports concurrent constructs for only up to

four cores, and nowadays it is normal to have more than eight cores on a
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single machine. Single machine scalability is different from that of scalability

on scale-out architectures. In our work, we mainly focus on single machine

scalability and in-general distributed frameworks carry significant amount of

overheads because of all the distributed parallel programming layers in the

framework which limits their scalability on single machine.

23



Chapter 3

Minimizing Query Span

through Workload-aware Data

Replication and Placement

3.1 Introduction

A variety of complex analysis tasks and queries are being executed to-

day using parallel and distributed data management systems like paral-

lel databases and MapReduce-based systems (e.g., Hadoop). In parallel

databases, the queries typically consist of multiple joins, group-bys on multi-

ple attributes, and complex aggregations. On Hadoop, the tasks often have

similar flavor, with simplest of MapReduce programs being aggregation tasks

that form the basis of analysis queries. There have also been many attempts
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to combine the scalability of Hadoop and declarative querying abilities of

relational databases [67, 85].

Use of such parallel or distributed frameworks is expected to accelerate

in the coming years, putting further strain on already-scarce resources like

compute power, network bandwidth, and energy. For reducing total execu-

tion times, there is a trend towards increasing the execution parallelism by

spreading out data across a large number of machines. As we discussed in the

Chapter 1 and experimentally illustrated, the trend toward increasing paral-

lelism often increases the total resource consumption significantly. We argue

that, for most analytical workloads, minimizing the query1 latencies may not

be critically important since the queries are often not run in an interactive

mode. Instead, we argue that we should aim for reducing the total resource

consumption by decreasing the degree of single-query execution parallelism,

i.e., by trying to reduce the number of machines involved in the execution of

a query (called query span). Minimizing query span, in most cases, directly

leads to reduction in the total amount of resources consumed.

In this chapter, we address the problem of minimizing the average query

span for a query workload through judicious replica selection (by choosing

which data items to replicate and how many times), and data placement. Our

1We use the term query to denote both SQL queries and analysis tasks written using
map-reduce or analogous frameworks.
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techniques work on an abstract representation of the query workload, and

are applicable to both multi-site data warehouses and general purpose data

centers. We assume that a query workload trace is provided that lists the data

items that need to be accessed to answer each query. The data items could

be database relations, parts of database relations (e.g., tuples or columns),

or arbitrary files. We represent such a workload as a hypergraph, where

the nodes are the data items and each query is translated into a hyperedge

over the nodes. The goal is to store each data item (node in the graph)

onto a subset of machines/sites (also called partitions), obeying the storage

capacity requirements for the partitions. Note that the partitions do not

have to be machines, but could instead represent racks or even datacenters.

This specifies the layout completely. The cost for each query is defined to be

smallest number of partitions that contain all the data the query needs. Our

goal is to find a layout that minimizes the average cost over all queries. Our

algorithms can optimize for load or storage constraints, or both.

Our key contributions include formulating and analyzing this problem,

drawing connections to several problems studied in the graph algorithms lit-

erature, and developing efficient algorithms for data placement. In addition,

we examine the special case when each query accesses at most two data

items – in this case the hypergraph is simply a graph. For this case, we are

able to develop theoretical bounds for special classes of graphs that gives an
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understanding of the trade-off between energy cost and storage.

Significant work has been done on the converse problem of minimizing

query response times or latencies. Declustering refers to the approach of

leveraging parallelism in the partition subsystem by spreading out blocks

across different partitions so that multi-block requests can be executed in

parallel. In contrast, we try to cluster data items together to minimize the

number of sites required to satisfy a complex analytical query.

We have also built a trace-driven simulation framework that enables us

to systematically compare different algorithms, by automatically generating

varying types of query workloads and by calculating the total energy cost

of a query trace. We conducted an extensive experimental evaluation using

our framework, and our results show that our techniques can result in high

reduction in query span compared to baseline or random data placement

approaches that can help minimize distributed overheads.

3.2 Problem Definition; Analysis

We begin with a formal definition of the core problem of data partitioning

with replication, at an abstract level. We then draw connections to some

closely related prior work on graph algorithms. We also analyze a special

case of the problem formally, and show an interesting theoretical result.

Problem Definition: We are given a set of data items D and their sizes –
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the data items may be files, database relations, vertical or horizontal parti-

tions of database relations, or tuples. We are also given a set of partitions

with associated storage capacities, and an expected query workload in the

form of a set of queries over the data items. The queries may be read-only

queries, or update transactions. Our goal is to decide which data items to

replicate and how to place them on to the partitions so as to minimize the

average query span for the queries in the workload. In addition, we may be

given a constraint that specifies how much each item should be minimally

replicated for fault tolerance and availability. For simplicity, we assume for

now that we are given a total of N identical partitions each with capacity C

units, and further that the data items are all unit-sized (we will relax both

these assumptions later). Clearly, the number of data items must be smaller

than N ×C (so that each data item can be placed on at least one partition).

Further, let Ne denote the minimum number of partitions needed to place

the data items (i.e., Ne = ⌈|D|/C⌉).

Modeling Workload: The query workload is represented as a hypergraph,

H = (V,E), where the nodes are the data items and each (hyper)edge e ∈ E

corresponds to a query in the workload. Each hyperedge is associated with

an edge weight we which represents the frequency of such queries in the work-

load. Each vertex v ∈ V is associated with a weight wv representing either
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Figure 3.1: (i) Modeling a query workload as a hypergraph – di
denotes the data items, and ei denotes the queries represented as
hyperedges; (ii) A layout w/o replication onto 4 partitions – the
span of two of the hyperedges is also shown; (iii) A layout with
replication – span for both queries reduces by 1.

data size or access frequency or a combination of both providing balancing

in terms of size and load on each partition. Figure 3.1 shows an illustra-

tive example, where we have 6 queries over 8 data items, each of which is

represented as a hyperedge over the data items. The figure also shows two

layouts of the data items onto 4 partitions of capacity 3 each, without and

with replication.

Calculating Span: When there is no replication, calculating the span of

a query is straightforward since each data item is associated with a single

partition. However, if there is replication, the problem becomes NP-Hard in

general. In the simplest case, for read-only queries with strongly consistent
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replicas (i.e., if all replicas of a data item are kept up-to-date when it is

updated), it is identical to the minimum set cover problem [33] – where we

are given a collection of subsets of a set (in our case, the partitions) and

a query subset, and we are asked to find the minimum number of subsets

(partitions) required to cover the query subset.

As an example, for query e2 in Figure 3.1, the span in the first layout

is 3. However, in the second layout, assuming it is a read-only query, we

have to choose which of the two copies of d4 to use for the query. Using the

first copy (on second partition) leads to the lowest span of 2. Overall, the

average query span for the first layout is 13
6
, but use of replication in the

second layout reduces this to 8
6
.

We can use a standard greedy algorithm for choosing replicas to use for

a query and for calculating the span. For each of the partitions, we compute

the size of its intersection with the query subset. We choose the partition

with the highest intersection size, remove all items from the query subset

that are contained in the partition, and iterate until there are no items left

in the query subset. This simple greedy algorithm provides the best known

approximation to the set cover problem with approximation ratio of log |Q|,

where |Q| is the query size [31]. The algorithm can also be directly used for

queries that both read and write data items with strongly consistent replicas

– for data items that are updated, all replicas must be accessed, but the
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greedy algorithm can be used for the items that are only read.

Hypergraph Partitioning: Without replication, the problem we defined

above is essentially the k-way (balanced) hypergraph partitioning problem

that has been very well-studied in the literature. However, the optimization

goal of minimizing the average span is unique to this setting; prior work

has typically studied how to minimize the number of cut hyperedges in-

stead. Several packages are available for partitioning very large hypergraphs

efficiently [1, 2]. The proposed algorithms are typically heuristics or combi-

nations of heuristics, and most often the source code is not available. We use

one such package (hMETIS) as the basis of our algorithms [1].

Finding Dense Subgraphs of a specified size: Given a set of nodes S in

a graph, the density of the subgraph induced by S is defined to be the ratio

of the number of edges in the induced subgraph and |S|. The dense subgraph

problem is to find the densest subgraph of a given size. To understand the

connection to the dense subgraph problem, consider a scenario where we have

exactly one “extra” partition for replicating the data items (i.e., Ne = N−1).

Further, assume that each query refers to exactly two data items, i.e., the

hypergraph H is just a graph. One approach would then be to first partition

the data items into N − 1 partitions without replication, and then try to

use this extra partition optimally. To do this, we can construct a residual
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graph, which contains all edges that were cut in this partitioning. The spans

of the queries corresponding to these edges is exactly 2. Now, we find the

subgraph of size C such that the number of induced edges (among the nodes

of the subgraph) is maximized, and we place these data items on the extra

partition. The spans of the queries corresponding to these edges are reduced

from 2 to 1, and hence this is an optimal way to utilize the extra partition.

We can generalize this intuition to hypergraphs and this forms the basis of

one of our algorithms.

Unfortunately, the problem of finding the most dense subgraph of a spec-

ified size is NP-Hard (with no good worst case approximation guarantees), so

we have to resort to heuristics. One such heuristic that we adapt in our work

is as follows: recursively remove the lowest degree node from the residual

graph (and all its incident edges) till the size of the residual graph is exactly

C. This heuristic has been analysed by Asahiro et al. [9] who find that this

simple greedy algorithm can solve this problem with approximation ratio of

approximately 2( |V |
C

− 1) (when C ≤ |V |/3).

Sublinear Separators in Graphs: Consider the special case where H is

a graph, and further assume that there are only 2 partitions (i.e., N = 2).

Further, lets say that the graph has a small separator, i.e., a set of nodes

whose deletion results in two connected components of size at most n/2. In
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that case, we can replicate the separator nodes (assuming there is enough

redundancy) and thus guarantee that each query has span exactly 1. The key

here is the existence of small separators of bounded sizes. Such separators

are known to exist for many classes of graphs, e.g., for any family of graphs

that excludes a minor [4].

A separator theorem is usually of the form that, any n-vertex graph can

be partitioned into two sets A, B, such that |A∩B| = c
√
n for some constant

c, |A − B| < 2n/3, |B − A| < 2n/3, and there are no edges from a node in

A−B to a node in B−A. This directly suggests an algorithm that recursively

applies the separator theorem to find a partitioning of the graph into as many

pieces as required, replicating the separator nodes to minimize the average

span. Such an algorithm is unlikely to be feasible in practice, but may be

used to obtain theoretical bounds or approximation algorithms. For example,

we prove that:

Theorem 3.2.1 Let G be a graph with n nodes that excludes a minor of

constant size. Further, let Ne denote the number of partitions minimally

required to hold the nodes of G (i.e., Ne = ⌈n/C⌉). Then, asymptotically,

N1.73
e partitions are enough to partition the nodes of G with replication so

that each edge is contained completely in at least one partition.

Proof: The proof relies on the following theorem by Alon et al. [4]:

33



Theorem 3.2.2 Let G be a graph with n nodes that excludes a fixed minor

with h nodes. Then we can always find a separation (A,B) such that |A∩B| ≤

h
3

2n
1

2 , |A− B|, |B − A| ≤ 2
3
n.

Consider a recursive partitioning of G using this theorem. We first find a

separation of G into A and B. Since A and B are subgraphs of G, they also

exclude the same minor. Hence we can further partition A and B into two

(overlapping) partitions each. Now, both |A| and |B| are ≤ 2
3
n+ h

3

2n
1

2 . For

large n, the second term is dominated by ǫn, for any ǫ > 0. We choose some

such ǫ = 1/300. Then, we can write: |A|, |B| ≤ (2
3
+ ǫ)n = 0.67n for large

enough n.

Now we continue recursively for l steps getting us 2l subgraphs of the

original graph G, such that each of the subgraphs fits in one partition. Note

that, by construction, every edge is contained in at least one of these sub-

graphs; thus 2l partitions are sufficient for data placement as required. Since

the partition capacities are O(n), we can use the above formula to compute l.

We need: 0.67ln < C = n/Ne. Solving for l, we get: l > log2(N
1.73
e ). Hence,

the number of partitions needed to partition G with replication so that each

edge is contained in at least one partition is less than N1.73
e .

For general graphs, we show that:

Theorem 3.2.3 If the optimal solution uses βNe partitions to place the data
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items so that each edge is contained in at least one partition, then either we

can get an approximation with factor 2
2−α

for 0 ≤ α ≤ 1 using Ne partitions,

or a placement using CNeβ
2α

partitions with span 1 for each edge.

Proof: Given a graph G = (V,E) (special case when the hypergraph H

has size two edges) – our objective is to store the data items in a collection

of partitions, each of capacity C. For each edge the cost is either 1 or 2.

This gives rise to a trivial 2-approximation since |E| is a lower bound on the

optimal solution and 2|E| is a trivial upper bound on the solution that picks

an arbitrary layout. Note that replication is allowed, and we may store more

than one copy of each data item.

Assume that there is an optimal solution that creates at least one copy

of each data item – uses Ne(=
n
C
) partitions (for simplicity we assume that n

is a multiple of C). We now prove the bound for the following method. We

order the nodes in decreasing order by degree.

For each node vi, assume that Ei is the set of edges adjacent to vi that

go to nodes vj with j > i. We use Ni partitions to store vi where in the

first partition we store vi together with its first C − 1 neighbors, the second

partition with vi together with its next C − 1 neighbors etc. We thus use

Ni = ⌈ |Ei|
C−1

⌉ partitions for each node vi.

The total number of partitions used is
∑n

i=1Ni =
∑n

i=1⌈ |Ei|
C−1⌉.
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Now consider an optimal solution with cost OPT that stores the nodes of

G using N ′ partitions. Note that with N ′ partitions, each holding C nodes,

the maximum number of local edges (edges for which the optimal solution

incurs a cost of 1) within each partition is at most C(C−1)
2

. We thus get

|E∗| ≤ N ′C(C−1)
2

where E∗ is the set of local edges in an optimal solution.

Note that OPT = |E∗|+ 2(|E| − |E∗|) = 2|E| − |E∗| where OPT is the cost

of an optimal solution.

We first note that if |E∗| ≤ α|E| then we get a better lower bound on

OPT, namely that OPT ≥ (2 − α)|E|. Thus our solution, which has cost

at most 2|E| ≤ 2
2−α

OPT . This gives us a good approximation when α is

significantly smaller than 1.

If |E∗| > α|E| then we get α|E| < |E∗| ≤ N ′C(C−1)
2

. Dividing by α(C−1)

we get |E|
C−1

< |E∗| ≤ N ′ C
2α
. Since |E| = ∑

i |Ei| we get
∑

i
|Ei|
C−1

< |E∗| ≤

N ′ C
2α
.

Recall that the total number of partitions we used is
∑n

i=1Ni =
∑n

i=1⌈ |Ei|
C−1

⌉.

Ignoring the fact that we really need to take the ceiling, we can re-write this

as
∑n

i=1
|Ei|
C−1

< N ′ C
2α
. If N ′ = β n

C
for some constant β, then we get nβ

2α
as the

bound on the number of partitions

We thus conclude.
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3.3 Data Placement Algorithms

In this section, we present several algorithms for data placement with

replication, with the goal to minimize the average query span. We continue

to assume a homogeneous setup where each partition has capacity C units,

and each data item has size 1; we relax both these assumptions in Section

3.3.7. Instead of starting from scratch, we chose to base our algorithms on

existing hypergraph partitioning packages. As we discussed in the previous

sections, the problem of balanced and unbalanced hypergraph partitioning

has received a tremendous amount of attention in various communities, espe-

cially the VLSI community. Several very good packages are freely available

for solving large partitioning problems [1, 2, 14, 40]. We use a hypergraph

partitioning algorithm (denoted HPA) as a blackbox in our algorithms, and

focus on replicating data items appropriately to reduce the average query

span. An HPA algorithm typically tries to find a balanced partitioning (i.e.,

all partitions are of approximately equal size) that minimizes some opti-

mization goal. Usually, allowing for unbalanced partitions results in better

partitioning. In the algorithm descriptions below, we assume that the HPA

algorithm can return an exactly balanced partition, where all partitions are

of equal size, if needed.

Following the discussion in the previous section, we develop four classes
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avgDataItemsPerQuery(H): Suppose Vi is the set of data items covered by hyperedge
ei ∈ H. The Σei∈H|Vi|/|V | gives the average number of data items covered per query.

getSpanningPartitions(G, e): Given the current placement (during the course of the algo-
rithm) and a hyperedge e, find a minimal subset of partitions MDe ⊆ G, such that every node
in e is contained in at least one partition in MDe. We use the set cover-based algorithms
presented in Section 4.2.1 and Section 5 as appropriate.

getQuerySpan(G, e): Similar to above, but we only return the size of the minimal subset
of spanning partitions.

getAccessedItems(G, e, g ∈ G): Given a current placement G = {G1, · · · , GN}, a hyperedge
e and a partition g ∈ G, this returns the set of items that the query corresponding to e would
access from partition g, as computed by the greedy Set Cover algorithm. This may be empty
even if e ∩ g 6= φ.

pruneHypergraphBySpan(G,H, minSpan): Given a current placement G and a value
of minSpan, this routine removes all hyperedges from H with span less than or equal to
minSpan and any nodes with 0 incident hyperedges.

getKDensestNodes(H,K): Given a hypergraph H, this procedure returns a dense sub-
graph containing nodes having total weight of atmost K. We use the greedy algorithm
described in the previous section.

pruneHypergraphToSize(H,K): Given a current placement G and a value of K, this
routine uses the same algorithm as for getKDensestNodes to find a (dense) hypergraph over
nodes having total weight of K.

totalWeight(V ): Given a set of vertices V , return the total weight of vertices.

getHittingSet(MDe): This procedure takes the minimal subset of partitionsMDe returned
by getSpanningPartitions as input. Now, for hyperedge edi that is incident on a data item di,
let Gdi denote the set of partitions that edi spans. The procedure returns a set of partitions,
S, such that each of Gdi contains at least one partition from this set (i.e., S ∩ Gdi 6= φ).

Table 3.1: Description of subroutines used by the algorithms.
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of algorithms:

• Iterative HPA (IHPA): Here we repeatedly use HPA until all the extra

space is utilized.

• Dense Subgraph-based (DS): Here we use a dense subgraph finding

algorithm to utilize the redundancy.

• Pre-replication (PR): Here we identify a set of nodes to replicate a

priori, modify the input graph by replicating those nodes, and then run

HPA to get a final placement.

• Local Move-based (LM): Starting with a partitioning returned by HPA,

we improve it by replicating small groups of data items at a time.

As expected the space of different variants of the above algorithms is very

large. We experimented with many such variants in our work. We begin

with a brief listing of some of the key subroutines that we use in the pseu-

docodes. We then describe a representative set of algorithms that we use in

our performance evaluation.

3.3.1 Preliminaries; Subroutines

The inputs to the data placement algorithm are: (1) the hypergraph,

H(V,E), with vertex set V and (hyper)edge set E that captures the query

workload, and (2) the number of partitions, N and (3) the capacity of each
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partition C. We use Ne to denote the minimum number of partitions needed

to partition the hypergraph (Ne ≤ N).

Our algorithms use a hypergraph partitioning algorithm (HPA) as a

blackbox. HPA takes as input the hypergraph to be partitioned, the number

of partitions, and an unbalance factor (UBfactor). The unbalance factor is

set so that HPA has the maximum freedom, but the number of nodes placed

in any partition does not exceed C. For instance, if |V | = Ne × C and if

HPA is asked to partition into Ne partitions, then the unbalance factor is

set to be the minimum. However, if HPA is called with N ′ > Ne partitions

with H ′(V ′, E ′) as the hypergraph, then we appropriately set the unbalance

factor such that maximum imbalance does not exceed C. Specifically:

UBfactor =
N ′ −Ne

Ne
(3.1)

Finally, we modify the output of HPA slightly to ensure that the partition

capacity constraints are not violated. This is done as follows: if there is a

partition that has higher than maximum number of nodes, we move a small

group of nodes to another partition with fewer than maximum number of

nodes. We use one of our algorithms developed below (LMBR) for this

purpose.
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In the pseudocodes shown, apart from HPA, we also assume existence of

the subroutines shown in Table 3.1. We note that, because of the modularized

way our framework is designed, we can easily use different, more efficient

algorithms for solving these subproblems.

3.3.2 Iterative HPA (IHPA)

Here, we start by using HPA to get a partitioning of the data items into

exactly Ne partitions (recall that Ne is the minimum number of partitions

needed to store the data items). We then prune the original hypergraph

H(V,E) to get a residual hypergraph H′

(V
′

, E
′

) as follows: we remove all

hyperedges with low spans (specifically with span less than the average num-

ber of data items in a query) and we then remove all the data items that are

not contained in any hyperedge. If the number of nodes in H′ is less than

(N −Ne)C (i.e., if the data items fit in the remaining empty partitions), we

apply HPA to obtain a balanced partitioning of H′ and place the partitions

on the remaining partitions. This process is repeated if there are still empty

partitions (Algorithm 1).

If the number of nodes in H′ is larger than the remaining capacity, we

prune the graph further by removing the hyperedges with the lowest span

one at a time (these hyperedges are likely to see the least improvement by

replication) and the data items that now have 0 degree, until the number of
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Algorithm 1 Iterative HPA (IHPA)

Require: H(V,E), N, C
1: Run HPA(H, Ne) to get an initial partitioning: G = {G1, G2, . . . , GNe

};
2: edgeCost = avgDataItemsPerQuery(H);
3: while edgeCost 6= 0 and |G| 6= N do
4: H′

(V ′, E ′) = pruneHypergraphBySpan(G,H, edgeCost);
5: Ncur = totalWeight(V

′

)/C;
6: if |G|+Ncur ≤ N and |H′ | 6= 0 then
7: G = G ∪ HPA(H′

, Ncur);
8: else if |G|+Ncur > N then
9: increment edgeCost by 1;

10: else
11: decrement edgeCost by 1;
12: return final partitions G1, G2, · · · , GN

nodes inH′ becomes sufficiently low; then we apply HPA to obtain a balanced

partitioning of H′ and place the partitions on the remaining partitions.

IHPA, as described above, assumes that the cost of replicating any data

item is the same. There is unfortunately no natural way to modify the

algorithm to allow for different costs to replicate different items, say because

they have different write frequencies (aside from removing any data items

with write frequencies above a threshold from the residual graph). Hence,

we only use IHPA for read-heavy workloads.

3.3.3 Dense Subgraph-based (DS)

This algorithm directly follows from the discussion in the previous sec-

tion. As above, we use HPA to get an initial partitioning. We then fill the

remaining N −Ne partitions one at a time, by identifying a dense subgraph
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Algorithm 2 Dense Subgraph-based (DS)

Require: H(V,E), N, C,minSpan(default = 1)
1: Run HPA(H, Ne) to get an initial partitioning: G = {G1, G2, . . . , GNe

};
2: while |G| 6= N do
3: H′

= pruneHypergraphBySpan(G,H,minSpan);
4: if |H′| = 0 break;
5: denseNodes = getKDensestNodes(H′

, C);
6: Add a partition containing denseNodes to G;
7: return final partitions G1, G2, · · · , GN

of the residual hypergraph H′. This is done by removing the lowest degree

nodes and their incident hyperedges from H′ one-by-one until the number of

nodes in it reaches C (the partition capacity). These data items are then

placed on one of the remaining partitions, and the procedure is repeated

until all partitions are utilized (Algorithm 2). The hyperedges in the dens-

est subgraph found in one iteration thus have span = 1, and are not part

of the residual hypergraph in the next iteration. Like IHPA, DS cannot be

easily modified to handle variable replication costs, and is more suitable for

read-heavy workloads.

3.3.4 Pre-Replication-based Algorithm (PRA)

This algorithm is based on the idea of identifying small separators and

replicating them. However, we do not directly adapt the recursive algorithm

described in Section 4.2.1 for two reasons. First, since we have a fixed space

budget for replication, we must somehow distribute this budget to the vari-

ous stages. More importantly, the basic algorithm of bisecting a graph and
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then recursing is not considered a good approach for achieving good parti-

tioning [43,81].

We instead propose the following algorithm. We start with a partitioning

returned by HPA, and identify “important” nodes such that by replicating

these nodes, the average query span would be reduced the most. Then, we

create a new hypergraph by replicating these nodes (until we have enough

nodes to fill all the partitions), and run HPA once again to attain a final

partitioning. However, neither of these steps is straightforward.

Identifying Important Nodes:The goal is to decide which nodes will offer

the most benefit if replicated. We start with a partitioning obtained using

HPA, and then analyze the partitions to decide on this. We describe the

intuition first. Consider a node a that belongs to some partition Gi. Now

count the number of those hyperedges that contain a but do not contain any

other node in Gi; we denote this number by scorea. If this number is high,

then the node is a good candidate for replication since replicating the node is

likely to reduce the query spans for several queries. We use the partitioning

returned by HPA to rank all the nodes in the decreasing order by this count,

and then process the nodes one at a time.

Replicating Important Nodes: Let d be the node with the highest value

of scored among all nodes. We now have to decide how many copies of d
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Algorithm 3 Pre-replication-based Algorithm (PRA)

Require: H(V,E), N, C
1: Run HPA to get an initial partitioning into Ne partitions: G =

{G1, G2, . . . , GNe
};

2: for v ∈ V do
3: let v be contained in partition Gv;
4: compute scorev = |{e ∈ E | e ∩Gv = {v}}|;
5: Hr = H;
6: for v ∈ V in decreasing order by scorev do
7: Ev = {e ∈ E | v ∈ e};
8: Gv = {getSpanningPartitions(G, e) | e ∈ Ev};
9: S = getHittingSet(Gv);

10: for g ∈ S do
11: copyg = makeNewCopy(v);
12: for e ∈ Ev s.t. g ∈getSpanningPartitions(G, e) do
13: e = e− {v}+ {copyg};
14: G = HPA(Hr, N);
15: return final partitions G1, · · · , GN

to create, and more importantly, which copies to assign to which hyperedge.

Figure 3.2(ii) illustrates the problems with an arbitrary assignment. Here we

replicate the node d to get one more copy d′, and then we assign these two

copies to the hyperedges e1, e2, e3, e4 as shown (i.e., we modify some of the

hyperedges to remove d and add d′ instead). However, the assignment shown

is not a good one for a somewhat subtle reason. Since e1 and e3 (which are

assigned the original d) do not share any other nodes, it is likely that they

will span different sets of partitions, and one of them is likely to still pay

a penalty for node d. On the other hand, the assignment shown in Figure

3.2(iii) is better because here the copies are assigned in a way that would

reduce the average query span.
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We formalize this intuition in the following algorithm. For node d, let

Ed = {ed1 , ed2 , · · · , edk} denote the set of hyperedges that contain d. For

hyperedge edi , let Gdi denote the set of partitions that edi spans. We then

identify a set of partitions, S, such that each of Gdi contains at least one

partition from this set (i.e., S ∩ Gdi 6= φ). Such a set is called a “hitting

set”. We then replicate d to make a total of |S| copies. Finally, we assign

the copies to the hyperedges according to the hitting set, i.e., we uniquely

associate the copies of d with the members of S, and for a hyperedge edi , we

assign it a copy such that the associated element from S is contained in Gdi

(if there are multiple such elements, we choose one arbitrarily).

The problem of finding the smallest hitting set is NP-Hard. We use

a simple greedy heuristic. We find the partition that is common to the

maximum number of sets Gdi , include it in the hitting set, remove all sets

that contain it, and repeat. Algorithm 3 depicts the pseudocode for this

technique.

3.3.5 Local Move Based Replication (LMBR)

Finally, we consider algorithms based on local greedy decisions about

what to replicate, starting with a partitioning returned by HPA. For sim-

plicity and efficiency, we chose to employ moves involving two partitions.

More specifically, at each step, we copy a small group of data items from one
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Figure 3.2: When replicating a node, distribution of the copies to the
hyperedges must be done carefully. Distribute the replica copies
such that it results in entanglement of the incident hyperedges.

partition to another. The decisions are made greedily by finding the move

that results in the highest decrease in the average query span (“benefit”)

per data item copied (“cost”). For this purpose, at all times, we maintain

a priority queue containing the best moves from partitioni to partitionj, for

all i 6= j. For two partitions partitioni, partitionj, the best group of data

items to be copied from partitioni to partitionj is calculated as follows. Let

Eij = {eij1 , · · · , eijl} denote the hyperedges that contain data items from

both the partitions. We construct a hypergraph Hi→j on the data items of

partitioni as follows: for every edge eijk , we add a hyperedge to Hi→j on the

data items common to eijk and partitioni. Figure 3.3 illustrates this with an

example.

Now, if we were to copy a group of data items X from partitioni to

partitionj, the resulting decrease in total span (across all edges) is exactly

the number of hyperedges in Hi→j that are completely contained in X. Thus,
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the problem of finding the best move from partitioni to partitionj is similar

to the problem of finding a dense subgraph, with the main difference being

that, we want to minimize the cost/benefit ratio and not maximize the benefit

alone. Hence, we modify the algorithm for finding dense subgraph as follows.

We first compute the cost/benefit ratio for the entire group of nodes in Hi→j.

The cost is set to ∞ if the number of nodes to be copied is more than the

empty space in partitionj. We then remove the lowest degree node fromHi→j

(and any incident hyperedges), and again compute the cost/benefit ratio. We

pick the group of items that results in the lowest cost/benefit ratio.

After finding the best moves for every pair of partitions, we choose the

overall best move, and copy the data items accordingly. We then recompute

the best moves for pairs that were affected by this move (i.e., pairs containing

the destination partition), and recurse until all partitions are full.

Improved LMBR: Although the above looks like a reasonable algorithm, it

did not perform very well in our first set of experiments. As described above,

the algorithm has a serious flaw. Going back to the example in Figure 3.3,

say we chose to copy data item d6 from partition1 to partition2. In the

next step, the same move would still rank the highest. This is because the

construction of hypergraph H1→2 is oblivious to the fact that d6 is also now

present in partition2. Further, it is also possible that, because of replication,
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Figure 3.3: Constructing H1→2: e.g., corresponding to hyperedge e1
that spans both partitions, we have a hyperedge e′1 over d1 and d3.

neither of the partitions is actually accessed at all when executing the queries

corresponding to e4, e5 or e6. To handle these issues, during the execution

of the algorithm, we maintain the exact list of partitions that would be

activated for each query; this is calculated using the Set Cover algorithm

described in Section 4.2.1. Now when we consider whether to copy a group

of items from partitioni to partitionj, we make sure that the benefit reflects

the actual query span reduction given this mapping of queries to partitions.

Pseudocode for this algorithm is given in Algorithms 4 and 6.

3.3.6 k-Way Replication Algorithms

For fault tolerance, load balancing, and availability, many data manage-

ment systems usually keep several copies of each data item (e.g., Hadoop file

system (HDFS) maintains at least 3 copies of each data item by default [89]).
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Algorithm 4 Improved LMBR

Require: H(V,E), N, C
1: Run HPA to get initial partitions G = {G1, G2, . . . , GN} into N parti-

tions;
2: Compute the set cover MDe for each query e;
3: Initialize PQ (priority queue) to empty;
4: for g = G1 to GN do
5: for g′ = G1 to GN , g 6= g′ do
6: PQ.insert(g → g′, maxGain(G, g, g′));
7: while all partitions are not full do
8: (gsrc → gdest) = PQ.bestMove();
9: copy appropriate items from gsrc to gdest;

10: for g = G1 to GN , g 6= gdest do
11: PQ.update(g → gdest, maxGain(G, g, gdest));
12: PQ.update(gdest → g, maxGain(G, gdest, g));
13: return final partitions G1, · · · , GN ;

Here we briefly discuss how the algorithms described above can be modified

to handle k-way replication, where each data item must be replicated exactly

k times.

PRA-Based k-Way Replication: We identify PRA as the most suitable

algorithm to do this effectively, and modify PRA as follows. Considering that

we are interested in replicating all the nodes k-way, we eliminate the step of

finding important nodes from PRA and we replicate each node k times.

Simple Distribution Algorithm: In this algorithm, for each node d in the

hypergraph we find the set of incident hyperedges Ed. We assign k copies of d

among |Ed| edges randomly, by assigning every |Ed|
k

hyperedges single copy of

d. Only difference between this algorithm and PRA-based k-way replication

algorithm is that PRA-based algorithm makes best effort to distribute the
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Algorithm 5 Improved LMBR maxGain Method

Require: G = {G1, · · · , GN},H(V,E), Gsrc ∈ G, Gdest ∈ G
1: Esrc = {e ∈ E | getAccessedItems(G, e, Gsrc) 6= φ};
2: Edest = {e ∈ E | getAccessedItems(G, e, Gdest) 6= φ};
3: E = Esrc ∩ Edest;
4: if |E| 6= 0 then
5: V ′ = ∪e∈E getAccessedItems(G, e, Gsrc);
6: E ′ = {getAccessedItems(G, e, Gsrc)|e ∈ E};
7: create hypergraph H′(V ′, E ′);
8: Cdest = C − |Gdest|;
9: if Cdest 6= 0 then
10: H ′ = pruneHypergraphToSize(H ′, Cdest);
11: while |H ′| > 0 do
12: compute gain = |E ′|/|V ′|
13: remove lowest degree node from H ′ and incident edges;
14: return the best value of gain found in the process and the corresponding

V ′;

copies of node d among incident hyperedges Ed.

IHPA-Based Algorithm: In IHPA for k-way replication we run HPA to

get partitioning without replication. We remove all the hyperedges with

span 1 from the input graph, and run HPA again on the residual graph to

get additional partitions. We repeat this process k−2 more times to replicate

each node exactly k times.

3.3.7 Discussion

We presented four heuristics for data placement with replication. There

are clearly many other variations of these algorithms, some of which may

work better for some inputs, that can be implemented quickly and efficiently

using our framework and the core operations that it supports (e.g., finding
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dense subgraphs). In practice, taking the best of the solutions produced by

running several of these algorithms would guarantee good data placements.

Further, while describing the algorithms, we assumed a homogeneous

setup where all partitions are identical and all data items have equal size.

We have also extended the algorithms to the case of heterogeneous data items.

The hMETIS package that we use, and also other hypergraph partitioning

packages, allow the nodes to have weights. For heterogeneous case the dense

subgraph algorithm is modified to account for the weights, by removing the

node with the lowest value of degree till we have nodes having total specified

weight (for both DS and LMBR). Similarly, PRA is modified by allowing the

replication in the original hypergraph such that total weight of replicated

nodes is no greater than the sum of all extra available partition capacities.

Finally, we note that for read-write workloads, where data item replicas

are generated based on read-write frequencies of the data items, PRA is the

best suited algorithm as it is capable of assigning the custom number of repli-

cas per data item to incident hyperedges in a systematic way. On the other

hand, for read-only workloads any of the proposed algorithms can be used

as per scalability and partitioning quality requirements of the application

domain.
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3.4 Experimental Setup

Our experiments are performed on Amazon EC2 medium instances. Each

EC2 medium instance has Intel Xeon 64 bit processor, 3.75 GB memory with

410 GB storage. We use MySQL cluster 7.0 and MySQL 5.5 as the database

servers. We conduct two experiments on analytical data stores:

First, we conducted a set of experiments on TPC-H dataset with scale

factor 25, analyzing the effect of query span on the total amount of resources

consumed, and the total energy consumed, under a variety of settings. We

performed this experiment on 20 Amazon EC2 medium instances. We use the

same two settings and the same set of queries that we used in the experiments

presented in Section 1.3 in Chapter 1. The first setting is a horizontally

partitioned MySQL cluster, where we evaluate two complex analytical join

queries (TPC-H1, TPC-H2), and two single-table aggregate queries (TPC-

H3, TPC-H4), on a TPC-H dataset. The second setting is a homegrown

distributed query processor that sits atop multiple MySQL instances running

on a cluster where predicate evaluations are pushed on to the individual nodes

and data is shipped to a single node to perform the final steps. We evaluate

a complex join query (Q-Join) and a single-table aggregate query (Q-Sum)

on that setup.

Second, we evaluate effectiveness of our proposed algorithms by building
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a trace-driven simulator to experiment with different data placement poli-

cies. The simulator instantiates a number of partitions as needed by the

experimental setup, uses a data placement algorithm for distributing the

data among the partitions, and replays a query trace against it to measure

the query span profiles.

Datasets: We conducted an extensive experimental study to evaluate our

algorithms, using several real and synthetic datasets. Specifically, we used

the following three datasets:

• Random: Instead of generating a query workload completely randomly, we

use a different approach to better understand the structure of the problem.

We first generate a random data item graph of a specified density (edges

to nodes ratio). We then randomly generate queries such that the data

items in the query form a connected subgraph in the data item graph.

For low density data item graphs, this induces significant structure in the

query workload that good data placement algorithms can exploit for better

performance.

• Snowflake: This is a special case of the above where the data item graph

is a tree. This workload attempts to mimic a standard SQL query work-

load. We treat each column of each relation as a separate data item. An

SQL query over such a schema that does not contain a Cartesian product
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corresponds to a connected subgraph in this graph.

• ISPD98 Benchmark Data Sets: In addition to the above synthetic datasets,

we tested our algorithms on standard ISPD98 benchmarks [5]. ISPD98 is a

standard VLSI circuit hypergraph benchmark, used heavily in VLSI com-

munity for evaluating performance of hypergraph partitioning algorithms.

ISPD98 circuit benchmark suite contains 18 circuits ranging from 12,752

to about 210,000 nodes. Hypergraph density (hyperedges to nodes ratio)

in all the ISPD98 circuit benchmarks is close to 1, i.e., these graphs are

quite sparse. We show results for the first 10 circuit datasets, that contain

12,752 to 69,429 nodes.

We compare the performance of six algorithms: (1)Random, where the data

is replicated and distributed randomly, (2) HPA, the baseline hypergraph

partitioning algorithm, (3-6) the four algorithms that we propose, IHPA,

PRA, DS, and LMBR (Section 3.3). We use the hMETIS hypergraph

partitioning algorithm [1, 40] as our HPA algorithm. All plotted numbers

(except the numbers for the ISPD98 benchmark) are averages over 10 ran-

dom runs. For reproducibility, we list the values of the remaining hMETIS

parameters: Nruns = 20, CType = 2, RType = 1, VCycle = 1, Reconst = 1,

dbglvl = 0.

The key parameters of the dataset that we vary are: (1) |D|, the number
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of data items, (2-3) minQuerySize and maxQuerySize, the bounds on the

query sizes that are generated, (4) NQ, the number of queries, (5) C, the

partition capacity, (6) numPartitions (NPar), the number of partitions, and

(7) density of the data item graph (defined to be the ratio of the number

of edges to the number of nodes). The default values were: |D| = 1000,

minQuerySize = 3, maxQuerySize = 11, NQ = 4000, C = 50, NPar = 40,

and density = 20.

In several of the plots, we also show the average number of data items

per query, denoted ADI.

3.4.1 Query Span and Resource Consumption

To compare the cost of our best colocation scheme LMBR, we run around

10000 additional queries with TPC-H1, TPC-H2, TPC-H3, TPC-H4 , Q-join

and Q-Sum on our setup (described in Section 3.4), so that we can construct

the hypergraph of these queries. We then perform min-cut partitioning over

this hypergraph to get a 20-way partitioning, and then we apply LMBR on

this setup. Based on placement given by LMBR, we place the data items

across the 20 machines. Then we execute our test queries and carefully make

sure that each query is executed on the set of machines that it spans. Query

span is calculated by using set-cover algorithm on the placement suggested

by LMBR. Average span over these test queries was 3, i.e., data needed for
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these queries were located on an average of 3 machines using LMBR.

In Figure 3.4a, we plot the query response times of our test queries on the

horizontal partitioning placement on 20 machines and we compare it with the

query response times when executed on LMBR-suggested placement. We no-

tice that query response times for complex analytical test queries TPC-H1,

TPC-H2 and Q-join decrease significantly when executed on LMBR sug-

gested placement. This is because of minimization of overheads caused by

distributed analytical processing, e.g., communication overheads in process-

ing complex joins. On the other hand, query response times for test queries

TPC-H3, TPC-H4 and Q-Sum increase with colocation. This confirms our

intuition that parallelism is more effective for simple queries than for complex

queries.

Figure 3.4b shows that, irrespective of the type of the query, energy con-

sumption decreases significantly with colocation of accessed data items. It

shows that most reduction in energy consumption for complex analytical

query is for TPC-H1 that is almost 79%, whereas for Q-Join we observe

94.24% reduction. For simple aggregate queries, we observe that there can

be a tradeoff between query response time and energy consumption on coloca-

tion. For queries TPC-H3, TPC-H4 we observe that the reduction in energy

consumption is 78% and 33% and for Q-Sum there is a 70% reduction. De-

pending upon the optimization goal such as query response time or energy
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Figure 3.4: Experiments on a TPC-H benchmark showing an effect
of colocation on query response times and resource consumption
(normalized). Y-axis for both plots is in log scale.

minimization or both, one may choose to colocate the data items or not. In

this work, we specifically focus at opportunities where colocation is applica-

ble and provides us significant benefits in terms of minimization of energy

consumed per query, it may also minimize query response times, for example:

in case of complex analytical queries.

This experiment highlights the fact that, query response time may in-

crease or decrease with colocation depending up on the nature of the query

(complex analytical or simple aggregate). But in all cases, energy costs

reduces with a good data colocation, for example: colocation provided by

LMBR.
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Figure 3.3: (a)−(e) Experiments on the Random dataset with homo-
geneous data items illustrate the benefits of intelligent data place-
ment with replication; the LMBR algorithm produces the best data
placement in almost all scenarios. Note that, for clarity, the y-axes
for several of the graphs do not start at 0. (f)−(h) 3-way replication
results with replication factor of each node RF = 3.

3.4.2 Experiments on Random Dataset

We study the effectiveness of our data placement and replica selection

algorithms in reducing the query span by varying the parameters such as

number of partitions, query size, number of queries and graph density.

We begin with showing the results for the Random dataset with homo-

geneous data items.

Increasing Number of Partitions (ND): First, we run experiments with

increasing the number of partitions. With the default parameters, a mini-

mum of 20 partitions are needed to store the data items. We increase the

number of partitions from 20 to 45, and compute the average query spans,
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and average execution times, for the six algorithms over 10 runs. Figures

3.5a, and 3.5b show the results of the experiment. HPA does not do repli-

cation, and hence the corresponding plot is a straight line. The performance

of the rest of the algorithms, including Random, improves as we allow for

replication. Among those, LMBR performs the best, with IHPA a close sec-

ond. We saw this behavior consistently across almost all of our experiments

(including the other datasets). LMBR’s performance does come with a sig-

nificantly higher execution times as shown in Figure 3.5b. This is because

LMBR tends to do a lot of small moves, whereas the other algorithms tend

to have a small number of steps (e.g., DS runs the densest subgraph algo-

rithm a fixed number of times, whereas PRA only has three phases). Since

data placement is a one-time offline operation, the high execution time of

LMBR may be inconsequential compared to the reduction in query span it

guarantees.

Increasing Query Size (ADI): Second, we vary the number of data items

per query from 2 to 10 (by setting minQuerySize = maxQuerySize), choosing

the default values for the other parameters. As expected (Figure 3.5c), the

average span increase rapidly as the query size increases. The relative per-

formance of the different algorithms is largely unchanged, with LMBR and

IHPA performing the best.
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Increasing Number of Queries (NQ): Next, we vary the number of queries

from 1,000 to 11,000, thus increasing the density of the hypergraph (Figure

3.5d). The average query span increase rapidly in the beginning and much

more slowly beyond 5,000 queries. Once again the LMBR algorithm finds

the best solution by a significant margin compared to the other algorithms.

Increasing Data Item Graph Density: Finally, we vary the data item

graph density from 2 (very sparse) to 20 (dense). The number of partitions

was set to 40. As we can see in Figure 3.5e, for low density graphs, the av-

erage span of the queries is quite low, and it increases rapidly as the density

increases. Note that the average query size did not change, so the perfor-

mance gap is entirely because of the structure of the query hypergraph for

low density data item graphs. Further, we note that the curves flatten out

as the density increases, and don’t change significantly beyond 10, indicating

that the query workload essentially looks random to the algorithms beyond

that point.

3.4.3 Effectiveness of 3-Way Replication Algorithms

Figures 3.5f, 3.4g and 3.4h show a set of experimental results comparing

the 3-way replication algorithms that we have discussed in Section 3.3.6.

Increasing Number of Queries (NQ): Increasing the number of queries,

thus increasing the density of the graph, we observe that PRA-based 3-way
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replication algorithm performs the best. This is in comparison with HPA (no

replication), Random 3-way replication, and simple distribution algorithm

(SDA). As the average number of incident hyperedges per node increases, it

is more likely that SDA, which distributes the 3 copies of a node randomly to

the hyperedges incident on it, will make bad decisions. Hence SDA’s average

span increases with the number of queries. On the other hand, PRA employs

the hitting set technique to do a more judicious replica distribution among

the incident hyperedges. Increase in the number of queries doesn’t seem to

affect the query span for PRA, which indicates the effectiveness of the PRA

approach. Hence, PRA-based technique performs consistently better than

SDA in this experiment.

Increasing Query Size (ADI): Query span for all the algorithms increases

with an increase in average data items per query. PRA again performs con-

sistently better than SDA and other algorithms.

Increasing Data Item Graph Density: PRA performs much better than

Random and SDA when density of the graph is varied. Analysis is similar to

what we have discussed before in Section 3.4.2.

We do not compare with LMBR for this scenario due to its high running

time, and because it cannot guarantee the replication constraint of 3-way

replication.
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3.4.4 Experiments on Snowflake Dataset

We further show our results on Snowflake dataset to corroborate our

observations and claims.

Figures 3.4a and 3.4b show a set of experimental results for the Snowflake

dataset. Each of the plotted numbers corresponds to an average over 10

random query workloads. The data item graph itself was generated with the

following parameters: the number of levels in the graph was 3, the degree of

each relation (the maximum number of tables it may join with) is set to 5,

and the number of attributes per table is set to 15. The total number of data

items was 2000, requiring a minimum of 20 partitions to store them. Note

that we assume homogeneous data items in this case. We plot the average

query spans, and the average execution times as the number of partitions

increases from 20 to 45.

We also conducted a similar set of experiments with heterogeneous data

item sizes, where we generated TPC-H style queries with data item sizes

adhering to the TPC-H benchmark. We chose the scale factor of 25, which

means the highest data item size is 28 GB and smallest data item size is

25KB. This results in a high skew among the table column sizes. Data item

size is calculated as Size(columnDatatype) ∗ noRows. The partition capacity

was fixed at 100 GB, and we once again plot the average query spans and
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Figure 3.4: Results of the Experiments on the Snowflake Dataset

the average execution times as the number of partitions increases from 20 to

45. The results are shown in Figures 3.5a and 3.5b.

Our results here corroborate the results on the Random dataset. We once

again see that LMBR performs the best, finding significantly better data

layouts than the other algorithms. The performance differences are quite

drastic with homogeneous data item sizes – with 45 partitions, LMBR is able

to achieve an average query span of just 1.5, whereas the baseline HPA results

in an average span of 3.5. However, we observe that with heterogeneous data

item sizes, the advantages of using smart data placement algorithms are

lower. With an extreme skew among the data item sizes, the replication and

data placement choices are very limited.
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Figure 3.5: Results of the Experiments on a TPC-H style Benchmark
with unequal data item sizes. The relation sizes were calculated
assuming a scale factor of 25.

3.4.5 Experiments on ISPD98 Benchmark Dataset

Finally, Figure 3.6 shows the comparative results for first ten of hyper-

graphs from the ISPD98 Benchmark Suite, commonly used in the hypergraph

partitioning literature. The number of hyperedges in the datasets range from

14111 to 75196 and number of nodes range from 12752 to 69429. Here we

set the partition capacity so that exactly 20 partitions are sufficient to store

the data items, and we plot the results with number of partitions set to 35.

The hypergraphs in this dataset tend to have fairly low densities, resulting in

low query spans. In fact, LMBR is able to achieve an average query span of

close to the minimum possible (i.e., 1) with 35 partitions. Most of the other

algorithms perform about 20 to 40% worse compared to LMBR.

66



3.4.6 Discussion

Our experimental evaluation corroborates our claim that intelligent data

placement with replication can significantly reduce the coordination over-

heads in data centers. We also observe a trade-off between scalability of

the data placement algorithms and the quality of data colocation. LMBR

provides the best data colocation, but the performance comes with signifi-

cantly higher execution times. This is because LMBR tends to do a lot of

small moves, whereas the other algorithms tend to have a small number of

steps (e.g., DS runs the densest subgraph algorithm a small number of times,

whereas PRA only has three phases). Also with increase in number of data

items, LMBR’s execution time degrades sharply. On the other hand, since

data placement is a one-time offline operation, the high execution time of

LMBR may be inconsequential compared to the reduction in query span it

guarantees.

The selection of data placement algorithm should primarily be based on

the requirements of the application scenario at hand and the granularity of

data items. On the other hand, in analytical workloads where the data

items are relations or files, LMBR may be more appropriate given it usually

results in best colocation.
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3.5 Summary of Contributions

We develop a workload-driven approach that aims to reduce the aver-

age query span in distributed data management systems by co-locating data

items that are frequently accessed together by queries. We observe that,

for fault tolerance, load balancing, and availability, those systems typically

maintain several copies of each data item (e.g., Hadoop file system (HDFS)

maintains at least 3 copies of each data item by default [89]), and we propose

exploiting this inherent replication to achieve higher colocation by judicious

replica creation and placement. Our approach is workload-driven in that,

we propose capturing a historical query workload over a period of time, and

optimizing data placement and replication for that workload. Our techniques

work on an abstract representation of the query workload, and are applica-
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ble to both multi-site data warehouses and general purpose data centers. we

represent the query workload as a hypergraph, where the nodes are the data

items and each query is translated into a hyperedge over the nodes. The data

items could be database relations, parts of database relations (e.g., tuples or

columns), or arbitrary files. The goal is to store each data item (node in the

graph) onto a subset of machines/sites (also called partitions), obeying the

storage capacity requirements for the partitions. Note that the partitions do

not have to be machines, but could instead represent racks or even datacen-

ters. The span of a query is defined to be the smallest number of partitions

that contain all the data that the query needs. Our goal is to find a layout

that minimizes the average span over all queries in the workload. Further,

our algorithms can optimize for load or storage constraints, or both.

Our key contributions include formulating and analyzing this problem,

drawing connections to several problems studied in the graph algorithms

literature, and developing efficient algorithms for data placement. In ad-

dition, we examine the special case when each query accesses at most two

data items – in this case the hypergraph is simply a graph. For this case,

we are able to develop theoretical bounds for special classes of graphs that

gives an understanding of the trade-off between resource consumption and

storage. We have also built a trace-driven simulation framework that enables

one to systematically compare different algorithms, by automatically gener-
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ating varying types of query workloads and by calculating the total energy

cost of a query trace. We conducted an extensive experimental evaluation

using this framework, and results show that our techniques can result in high

reductions in query spans and resource consumption compared to baseline or

random data placement approaches.

A recent system, CoHadoop [30], also aims at co-locating related data

items to improve performance of Hadoop; the algorithms that we develop here

can be used to further guide the data placement decisions in their system. We

can use similar techniques as discussed in this work to partition large graphs

across a distributed cluster; smart replication of some of the (boundary)

nodes can result in significant savings in the communication cost to answer

queries (e.g., to answer subgraph pattern queries). More recently, Curino et

al. [21] also proposed a workload-aware approach for database partitioning

and replication to minimize the number of sites involved in distributed trans-

actions; our algorithms can be applied to that problem as well. However, we

note that replication costs become critical in that case. Our techniques are

also applicable in partition farms such as MAID [20], PDC [70], or Rabbit [7],

that utilize a subset of a partition array as a workhorse to store popular data

so that other partitions could be turned off or sent to lower energy modes.

Minimizing average query spans through replication and data placement

raises two concerns. First, does it adversely affect load balancing? Focusing
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simply on minimizing query spans can lead to a load imbalance across the

partitions. However, in many cases this may not be a major concern and can

be solved by employing smart routing of queries to physical partitions, so

we believe total resource consumption should be the key optimization goal.

Most analytical workloads are typically not latency-sensitive, and we can use

temporal scheduling (by postponing certain queries) to balance loads across

machines. We can also easily modify our algorithms to incorporate load

constraints. A second concern is the cost of replica maintenance. However,

most distributed systems do replication for fault tolerance, and hence we do

not add any extra overhead. Secondly, most systems focused on large-scale

analytics do batch inserts, and the overall cost of inserts is relatively low.
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Chapter 4

WAFEL: Data Placement

Framework for Cost Effective

Distributed Information

Retrieval

Minimizing query spans has wide applicability and benefits. In this chap-

ter, we discuss one such application, namely, distributed information retrieval

where minimizing query spans can have a major impact. We also note that,

minimizing query spans through data colocation can often lead to increased

load imbalance. To mitigate that problem, we propose several techniques to

effectively trade search cost with load imbalance.
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4.1 Introduction

Information retrieval (IR) has never been as important and essential as it

is in this age of Big Data. We have witnessed IR applications being brought

out of the confines of libraries to our personal computers, laptops, tablets

and mobile phones for everyday usage. The volume of search requests that

commercial search engines service daily is an attestation of our increasing

search requirements. For the largest search engine by volume, the figures are

in the order of few billion queries per day. Figure 4.1 shows the architecture

of distributed information retrieval system where users interact with the IR

system through a search engine interface. User query is sent to query fed-

erator which then dispatches this query to distributed repositories of search

indexes. Ranked document lists from each repository are sent back to query

federator and final results are then sent back to the user.

This increased reliance on and need for search has been driven by many

factors, one of which is the growing availability of large, information-rich,

and search-friendly collections. The Web is its most prominent example but

it is not the only one. More and more organizations and businesses are

digitizing all types of internal data in order to make it searchable. The infor-

mation that can be mined from these large collections is often invaluable to

the organizations. This deluge of data and increasing importance and need
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Figure 4.1: Distributed Information Retrieval

to search demands scalable search mechanisms to effectively and efficiently

search, analyze and gain insights from the data. Typically, partitioning of

web documents onto a large number of machines is done to scale up infor-

mation retrieval.

Simplest way of partitioning the web documents is through random par-

titioning where documents are randomly hashed to partitions. In this, search

engine indexes for large document collections are distributed across multi-

ple physical partitions and searched in parallel to provide rapid interactive

search. This means that each query has to hit every partition to retrieve all

the relevant documents. Typically this leads to distributed exhaustive search
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where all partitions are searched for each query, which means that queries

will have large query spans. This can be problematic for both large and small

organizations in terms of overall amount of resources spent to cater to search

queries. Today, most of the large search giants are aware of seriousness of

resource wastage which has direct influence on overall energy consumption,

and are making every effort to improve per query energy efficiency. Google

already is measuring per search-query cost [38] and is being very careful

about it, as several billion search queries hit Google in a very short time

frame. Even for small organizations with modest computing resources the

high query processing cost of this exhaustive search setup can be a deterrent

to working with large collections. On the brighter side, this approach also

naturally leads to low load imbalance.

So to deal with high processing cost of distributed exhaustive search, a

while back, researchers had the idea — why not cluster documents by topic,

and then only search top p% of clusters. This approach is termed distributive

selective search [48]. The previous implementation of selective search was to

assign clusters to physical partitions randomly, which leads to high query

span. This approach reduces the search cost to certain extent, but is not

optimal. Let us consider an example where we have 1 billion web documents

spread across 100 physical partitions, then in distributed exhaustive search

setting, search query is shipped to all the physical partitions. Now lets say, we
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cluster these million documents to 10000 document clusters and spread these

clusters randomly or in a round robin fashion on to the physical partitions.

If we consider that each query accesses top 50 clusters, then in most cases

query span will be 50. But if we analyze the workload and carefully place the

clusters on to physical partitions, then query spans can be much less than

50, reducing the search cost significantly.

The topic-based partitioning of the collection is central to the success

of distributed selective search approach. However, this topically skewed ar-

rangement of documents can make the task of balancing the computing load

on the cluster difficult. This might be especially challenging in search envi-

ronments where the query stream exhibits high fluctuations in the popularity

of topics, as is often observed in Web search. In such scenarios, the resources

assigned to a few of the currently popular document clusters could be over-

utilized while the other document clusters’ resources may idle. We solve this

problem by considering query frequency (as a proxy for topic popularity)

into account in our solution model so that document clusters are assigned to

resources in a load-balanced way.

In this work, our goal is to reduce the per query search cost by trying

to reduce the number of physical partitions involved in the execution of a

search query (i.e., query span). Minimizing query span can have multiple

advantages in distributed IR setting, firstly, because this approach allows

76



search queries to be shipped to only a few physical partitions overall search

cost reduces drastically. Secondly, from Google’s experience [22] we know

that as search query touches large number of physical partitions for relevant

document retrieval, service latency increases drastically because of variability

in execution times. From this observation, we can naturally deduce that

minimizing search query span can improve search service latencies. Thirdly,

we note that total amount of resources consumed typically increases with

increased query span as demonstrated in Chapter 1. Lastly, minimizing

the total amount of resources consumed directly reduces the total energy

consumption of the task.

While minimizing overall search cost, we also need to guarantee load

balancing. However, these two optimization goals have inherently different

dynamics – search cost minimization is tied to minimizing query span which

requires clustering of the data, such that search query accesses minimum

number of physical partitions, whereas load balancing is usually tied with

de-clustering of the data. Hence, we decouple the overall problem into two

phases: (1) we cluster the web documents into document clusters and then

by analyzing workload history we assign these document clusters to parti-

tions (data partitioning), such that overall search cost can be minimized,

and (2) then make the load-aware replication and routing decisions to min-

imize load imbalance. Data partitioning to minimize average query spans is
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a computationally expensive process, and we expect that the partitioning,

once performed, will be useful for a long period of time with incremental par-

titioning to handle minor changes in the workload. So, in this work, in order

to handle variations in the workload we also provide techniques to incremen-

tally repartition the document clusters by moving only subsets of document

clusters across the partitions to minimize the load imbalance without com-

promising on search cost.

4.2 Overview

We begin with providing preliminaries, our experimental setup and a

high-level overview of WAFEL’s architecture.

4.2.1 Definitions and Notations

Definitions of hypergraph, N-way partitioning, query span and cut are

same as described in Chapter 3. Below are the definitions and notations that

are useful in the current context.

Partition degree dPi
of Pi is equal to the sum of the weights of the hyper-

edges that contain at least one vertex in Pi and one vertex in P −Pi. can be

denoted as:

dPi
=

∑

e∈Ei|qse>1

w(e)

where Ei is the set of hyperedges incident on partition Pi. Then set of
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partition degrees can be denoted by dP = {dP1
, dP2

, . . . , dPN
}.

Load (Lp): Partition load can be defined as the number of queries incident

on a partition in a given time window.

Load Imbalance (LI): Load imbalance is defined as ratio of maximum load

and minimum load that is denoted by LI = max(Lp)
min(Lp)

.

Load Constraint: Load constraint is defined as ratio of total number of

queries to the maximum number of queries allowed to serve a partition.

4.2.2 WAFEL Architecture

In this work, we develop a system WAFEL, that facilitates the data par-

titioning, repartitioning, replication and routing for cost effective distributed

information retrieval. We begin with providing a high-level overview of

WAFEL’s architecture. The key components of WAFEL are shown in Fig-

ure 5.1, and can be functionally divided into four groups: clustering of web

documents and workload modeling, data partitioning and replication, search

cost and load-aware routing and incremental repartitioner. We briefly discuss

the key functionality of the different components next.

Clustering Component: This module takes the web documents as an in-

put and using appropriate settings runs the topical clustering algorithm such

as k-means clustering over these documents to come up with document clus-

ters. This module makes use of Apache Mahout software to cluster the
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documents. These document clusters are then passed on to the workload

modeling component. Additional information about clusters is also passed

onto workload analyzer and statistical module, so that given the workload

history, the statistical module can analyze the query access patterns to these

clusters.

Workload Analyzer: As information retrieval engine serves queries, this

module records the statistics regarding the relevant documents accessed by

each query. It also records per document access frequencies. Once this mod-

ule receives document clusters from clustering component, based on query-

documents access statistics it re-calculates the query-clusters access statistics

with per cluster access frequencies.

Workload Modeler: This module primarily interacts with workload ana-

lyzer and statistical module, and clustering component to get information

about document clusters and query-clusters access patterns. After collect-

ing required information, this module generates a model that represents the

workload. Once this workload model is generated it is passed onto data

partitioner.

Data Partitioner: Primary objective of the data partitioner is to partition

the given clusters such that search cost is minimized. Once data partitioner

module receives the workload model from workload modeler module, it par-
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titions these clusters and places them onto multiple partitions.

Replicator: Once data is partitioned on to multiple partitions, replicator

module gets the cluster access frequency information from statistical mod-

ule and performs K-way load-aware replication. This data partitioning and

replication information is then collectively passed onto the routing module.

Search Cost and Load-aware Router: This module smartly routes the

queries to the partitions such that it effectively minimizes search cost and load

imbalance whenever possible. The router determines the document clusters

accessed by the search query, their replicas, and their location information

using the mappings provided by the data partitioner. The router then uses

a load-aware set-cover based algorithm to compute the minimum number of

partitions that the search query needs to be executed on (i.e., query span),

to access all the required clusters and replicas.

Search Cost and Load-aware Repartitioner: The workload monitoring

and statistical module monitors the workload changes and maintains statis-

tics on the workload access patterns. It provides this input to the incremental

repartitioning module which identifies when the current partitioning is sub-

optimal and triggers data migration to deal with workload changes. The data

migration is done in incremental steps through the data placement module

during periods of low activity.
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Figure 4.2: WAFEL Architecture

4.3 System Design

In this section, we first discuss our document cluster assignment strategy.

We then present our proposed techniques for minimizing search cost through

scalable workload-aware partitioning. We then discuss various techniques

for achieving load-imbalance minimization where we discuss our load-aware

replication and routing techniques. Finally, we discuss incremental reparti-

tioning to cater to workload variations.

4.3.1 Minimizing Search Cost

In this work, we minimize per query cost by minimizing number of phys-

ical partitions accessed by the query.
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Minimizing query span: One of the important objectives of this work is to

assign search engine indexes document clusters to physical partitions so that

per query cost is minimized. We model our query workload as hypergraph

where vertices represent document clusters and hyperedges represent search

queries accessing the documents in these document clusters. N -way min-

cut balanced partitioning over this hypergraph gives us the partitions that

minimizes the number of hyperedges that span the multiple partitions.

4.3.1.1 Workload-aware Data Partitioning

Figure 4.3 shows the set of documents DC that are clustered into M

document clusters by a standard clustering algorithm such as K-means or

any topical clustering technique. By analyzing query logs, query workload

containing query frequencies and query-document cluster access statistics is

retrieved. Given a set of search engine document clusters D and a set of

partitions, our goal is to decide which document clusters to replicate and

how to place them on the partitions to minimize the average span of an

expected query workload. For simplicity, we assume that we are given a total

of N identical partitions each with capacity C units, and further that the

data items are all homogenous in terms of size (we will relax this assumption

later). Clearly, the number of document clusters must be smaller than N×C

(so that each data item can be placed on at least one partition). Further,
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let Ne denote the minimum number of partitions needed to place the index

document clusters (i.e., Ne = ⌈|D|/C⌉).
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Figure 4.3: Proposed document cluster assignment framework idea

Creating a Hypergraph Once we get the topical clusters by applying K-

means clustering on web documents, we select top x% of clusters according

to the relevance per search query and regard these clusters as the nodes V

and queries themselves become hyperedges E. By default, in this work, we
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assume top 10% of clusters according to the relevance per search query.

4.3.1.2 Novel Scalable Hypergraph Partitioning

State-of-the-art hypergraph partitioning approaches do not scale to large

hypergraphs with millions of hyperedges with at least tens of thousands of

nodes that we deal with in this work. In this work, we provide an effective

and generic heuristic to scale current hypergraph partitioners to partition

massive hypergraph.

Parallel Partitioning: To solve this problem, let us consider a hypergraph

partitioning algorithm (HPA) that partitions a given hypergraph H = (V,E)

in to K balanced partitions to give mapping of nodes to partitions V P =

{V → P}. Now given a massive hypergraph Hm = (V m, Em) that contains

millions of hyperedges, our goal is to partition Hm into N partitions. But be-

cause of massive scale of the hypergraph in terms of number of hyperedges,

current hypergraph partitioning packages fail to partition this hypergraph

which we have verified through our experiments on different hypergraph par-

titioning packages like hMetis, and PaToH. In order to scale partitioning of

extremely dense hypergraphs the key idea behind our approach is to split

the hyperedges into M disjoint pieces: Hm = {Hm
1 ,Hm

2 , . . . ,Hm
M}. We

then run HPA on each smaller hypergraph, Hm
i independently, to get a set

of mappings, V Pi, between nodes and partitions. To determine the node to
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partition mapping we come up with several approaches:

• Maximum Membership Approach (MMA): First approach isMax-

imum Membership Approach (MMA). For a node nj, given the M map-

pings, we find the partition that it is mapped to most often, i.e., Pnj
=

mode{V P1, .., V Pi}. Key idea here is to choose the partition Pnj
which

is mapped to this node maximum number of times. MMA decides the

membership of a node in a partition with certain membership confi-

dence. If ntj is the maximum number of times a node nj is mapped

to a partition, then membership confidence of a node nj is defined

as MCj = ntj
M

× 100. Average membership confidence over all nodes

MC = ΣN
nj=1MCj/N .

Constraints: In order for this heuristic to give maximum benefits, fol-

lowing are the constraints that have to be followed: 1) Each hypergraph

piece Hm
i , should contain all the data nodes. (For extremely dense

graphs, this is mostly true). 2) M should always be greater than N ,

(M > N), bigger the M (satisfying the constraint 1.) better the parti-

tioning quality. Key intuition behind requiring that M > N is that, it

helps to ensure that, for every node nj, there is a single partition that

dominates among the mappings of nj.

Figure 4.5 shows that as we increase the number of hypergraph splits
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M , after a certain threshold, the average query span starts to increase.

This happens because as hypergraph granularity increases, density of

each hypergraph split decreases; because of this, when HPA is applied,

partition membership confidences for the nodes are low. For very high

M , MMA starts to assign nodes to partition randomly because of very

low node to partition membership confidence.
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Figure 4.5: a) Effect of hypergraph granularity (M) on average query
span, b) Effect of M on membership confidence.

Problem: This approach of splitting the large hypergraph and execut-

ing HPA on smaller hypergraphs parallely and heuristically determining

the final mapping between node to partitions only works if HPA assigns

partition ids deterministically to the partitions for every individual run.

Figure 4.6 shows a simple example of this problem. In this example

figure, a hypergraph with 5 hyperedges and 5 nodes are shown. Lets
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consider executing a variant of MMA on this example, where we apply

HPA on this hypergraph in 3 different runs. In this example, for each

run, HPA assigns partition id to partitions randomly and places data

items into partitions according to min-cut partitioning. In this hyper-

graph one can notice that nodes d1 and d2 have strong co-occurrence,

so we expect them to be assigned to the same partition. But MMA

approach assigns d1 and d2 to different partitions because they appear

in three different partitions in three different runs and there is no clear

majority of node to partition mapping. In short, when HPA assigns par-

tition ids randomly to partitions, then MMA fails to make meaningful

assignments of node to partitions.
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• Hypergraph-based Membership Approach (HMA): To solve the

problem of random partition id assignment, our second approach is to

develop a membership technique that is not dependent on partition id

assignment performed by HPA. Main idea is to analyze each nodes to

partitions mapping V Pi, and build a hyperedge ek on the set of nodes

that lie in same partition Pk such that ∪kek = E ′
i. By combining all the

hyperedges for every V Pi we build an hypergraph H′
i = (V,E ′), where

∪iE
′
i = E ′. We have |E ′| = N×M . Once we haveH′, we perform N -way

min-cut partition over this hypergraph to get the final node to partition

assignments. Advantage of this approach is that the node assignments

are not partition id dependent. On the other hand, main disadvantage

of this approach is that, in most cases we note |E ′| << V which means

that the hypergraph H′ is very sparse and that may adversely affect the

partitioning quality.

• Graph-based Membership Approach (GMA): Another approach

is to preserve the collocation of the nodes in same partitions by creating

the clique between the nodes within a partition. So by looking at all

the nodes to partition mappings, we can create a graph representation

of this as shown in Figure 4.4 (left bottom). So when we partition

this graph representation then the nodes that are densely connected are
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placed onto same partition. This approach also solves the sparsity issue

in HMA, where the hypergraph H′ in HMA can be converted to a graph

G where each hyperedge in H′ is converted to a clique connecting every

node with every other node within a hyperedge. Finally, N-way min-

cut partitioning is applied on G to partition the graph into N pieces.

This approach inherits the advantage of HMA where node to partition

assignments are not partition id dependent and moreover this approach

is free from sparsity issue and can give very good partitioning quality.

4.3.2 Minimizing Load Imbalance

Load imbalance is a serious issue to consider in our problem, because

it can cause a drop in overall throughput as few of the physical partitions

will be overloaded by query accesses whereas some of them will be grossly

underutilized. When a load on a particular partition Lp is significantly higher

than load on other partitions then there is said to be load imbalance. We

need to balance number of query accesses across the physical partitions.

In our hypergraph partitioning model, where partitions represents physical

partitions and hyperedges represent the queries, we would want to balance

the number of hyperedges incident on partitions.

In hypergraph theory, number of hyperedges that are cut by a particular

partition is termed partition degree. Since, maximum partition degree is the
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lower bound on the amount of routing resources that are required, being able

to find partitions that both minimize the number of interconnects (queries

spanning multiple partitions) which is achieved by minimizing the cut and

also evenly distribute these interconnects across the physical partitions to

eliminate high density interconnect regions (which is achieved by minimizing

the maximum partition degree) can significantly reduce the peak demand of

routing resources and thus, help in reducing the peak congestion. Partition

degree and load are formally defined in Section 4.2.1.

4.3.2.1 Replication

Workload-aware partitioning of data document clusters essentially helps

to minimize query cost through data co-location. In addition, in this work,

to achieve our second objective which is minimization of load-imbalance we

perform r-way replication of data items. Replication also helps in improving

data availability and fault tolerance. In this section, we will describe our

load-aware r-way replication algorithm. Let PL be the mapping between

partition and its load and CL be the mapping between cluster and its access

frequency. PL and CL are created by analyzing the workload history. Let

C be the set of clusters and RF be the replication factor that is equal to r.

Also, let NRc be the current number of replicas made of cluster c. Key idea

is to replicate the clusters by making copy of cluster from a maximum load
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partition to minimum load partition and repeat this till total load imbalance

is minimized, i.e., LI is approximately equal to 1. At every iteration, we

identify two partitions, denoted Pmax and Pmin, that respectively have the

maximum and the minimum load. For each partition we sort the clusters

in it in ascending order according to their access frequencies. At every step

we pick the cluster with highest access frequency from Pmax and make a

copy of it in Pmin. As we make copies of clusters, we adjust the load values

of Pmax and Pmin and also adjust the access frequency of copied cluster c

with CLc

NRc
. As we make copies of clusters and adjust the partition loads, the

partitions with maximum and minimum load tend to change, so at every

iteration we pick updated Pmax and Pmin. Algorithm terminates when ratio

between maximum load and minimum load is close to 1.

4.3.2.2 Routing

Routing is an important part of the WAFEL, where for each query a

decision is made to route the query to appropriate partitions. In this work,

we come up with three types of routing.

• Set-cover based Routing (S-Routing):When a query arrives at WAFEL,

this routing algorithm essentially selects the minimum set of partitions

that contains all the data needed to satisfy the given query. Given the

data and its replicas placed on multiple partitions, selecting the mini-
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Algorithm 6 Load-aware r-Way Replication Algorithm

Require: PL,CL,C = V,RF = r,NRC , N
1: while (loadImbalance(PL) 6≈ 1) do
2: PL = sortByValue(PL);
3: P = keys(PL);
4: Pmin = P [0];
5: Pmax = P [N − 1];
6: CL = sortByValue(CL);
7: for (c ∈ CL) do
8: if (NRc < RF and c ∈ CPmax

and c /∈ CPmin
and CLc < (PLPmax

−
PLPmin

)) then
9: NRc+ = 1;

10: load = CLc

NRc
;

11: CPmin
∪ = c;

12: PLPmin
+ = load;

13: PLPmax
− = CLc;

14: PLPmax
+ = load;

15: break;
16: return CP ;

mum of partitions to satisfy a query can be mapped to set cover problem

which is a NP-Hard problem. Hence, we implement greedy set cover al-

gorithm where at each step partition that covers maximum number of

uncovered document cluster is selected till all the data items needed by

the query is covered. Then given query is routed to these minimum

number of partitions selected by the greedy set cover algorithm.

• Round Robin Set-cover based Routing (S-Routing-RR):Although

S-Routing results in smaller query spans, main problem with S-Routing

is that, if there are 3 copies of each partition content, then for each

query type only one out of three copies is accessed which results in high
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load imbalance. To solve this problem, set cover algorithm selects the

replicas in a round robin fashion which gives the exactly same query

spans as S-Routing but with relatively lower load imbalance.

• Simple Load-aware Routing (LA-Routing): In this routing scheme,

given a set of nodes or document document clusters Ve accessed by the

query e and their replicas Re; a set of partitions {P e
RV | Ve ∪ Re ⊆

P e
RV , P

e
RV ⊆ P}, a query e is routed to random set of partitions Pe ⊂

P e
RV . A partition is not considered if its current load exceeds the max

load.

• Load-aware Set-cover based Routing (LAS-Routing): Let Lmax
Pi

be the max load constraint on each partition Pi. Also, let LPi
be the

current load on partition Pi where LPi
∈ LP . The minimum set-cover

problem to minimize the query span can be defined as follows: given a

query e, a universe Ue is the set of elements required to satisfy query e,

that is Ue = {Ve|Ve ⊆ V }; Let V ′
e be the set of elements so far covered

by the set cover algorithm, that is Se = {V ′
e | V ′

e ⊆ Ve}; determine the

minimum number of partitions S ⊆ P e
RV that cover the universe Ue. In

each iteration, the algorithm determines the partition Pi whose current

load LPi
≤ Lmax

Pi
and which covers the maximum uncovered elements

UCe in the universe Ue given by max({Ue\Se} ∩ Pi). {Ue\Se} denotes
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the operation wherein the counts of the elements in the universe Ue′

are decremented by the count of the corresponding elements in Se. As

we include partition Pi into the set-cover, the partition load LPi
is up-

dated by one. If current partition load exceeds the max load, that is

LPi
> Lmax

Pi
then partition will be evicted and will not be considered

for further routing of queries, that is P = P − Pi. The set-cover S is

updated with the partition Pi, i.e., S = S ∪ Pi, Se = Se + Pi which

increases the count of common elements in the set-cover map by one.

The uncovered elements are updated by UCe′ = Ue\Se which reduces

the counts of common elements in Ue by the counts of the correspond-

ing elements in Se. The algorithm terminates when the counts of all

elements in UCe = 0 and outputs S. The algorithm for computing the

set-cover is shown in Algorithm 7.

Algorithm 7 Load-aware Set-cover Algorithm

Require: H, e ∈ E,Pi ∈ PRV ,Ue = {Ve|Ve ⊆ V },Se = {V ′
e | V ′

e ⊆ Ve}, LP , L
max
Pi

1: while UCe 6= 0 do

2: pindex =argmaxi({Ue\Se} ∩ Pi)
3: S ∪ = Ppindex

4: Se + = Ppindex

5: UCe = Ue\Se
6: LPpindex

+ = 1
7: if LPpindex

> Lmax
Ppindex

then

8: P = P − Ppindex

9: return S
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4.3.3 Cost and Load-Aware Incremental Repartitioning

Although it is easier to guarantee certain amount of load balancing while

minimizing hyperedge cuts during initial partitioning stage through hMetis,

but it is certainly a non-trivial problem to deal with workload changes.

Changes in workload might result in higher average query spans and also may

adversely affect load balancing. A naive way to deal with workload changes

is to remodel the updated query workload as hypergraph and then perform

complete repartitioning using hMetis. Complete repartitioning is extremely

inefficient, and may not be practical in large distributed settings. Instead,

we will focus on in-place repartitioning similar to the approach adopted by

Sword system [71]. In Sword, focus is mainly on minimizing affected cuts due

to workload changes and they do not consider load-balancing issues at all in

their approach. But in this work, we perform in-place swapping of appropri-

ate nodes to minimize both hyperedges cut and load imbalance. Intuitively,

minimizing cuts should minimize maximum partition degree too, but this

has been disproved by Karypis et al., in their paper [76]. So we combine

these two objectives and model this problem as a bi-objective repartitioning

problem. These two objectives are defined as: (Obj1) is:

Obj1 = min(cut) = min(
∑

e∈E|qse>1

w(e))
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Obj2 = min(Load) = min(max(dP ))

In general, N -way balanced hypergraph partitioning is a NP-Hard prob-

lem. Adding multiple objectives makes it an even harder problem. For the

same reason, repartitioning problem is also NP-Hard. Therefore, in this sec-

tion, we will discuss several repartitioning heuristic algorithms that will aim

to minimize both hyperedge cuts and load.

Let P be initial partitioning obtained after running multi-level k-way

partitioning algorithm (MHPA) on initial workload hypergraph H(V,E).

H′(V,E ′) be the changed workload with additional hyperedges such that E ⊆

E ′. Let d′Pi
be of new partition degree of Pi such that: d′Pi

=
∑

e∈E′
i
|qse>1w(e)

where E ′
i is the set of hyperedges in the changed workload incident on

partition Pi. Then set of updated partition degrees can be denoted by

d′P = {d′P1
, d′P2

, . . . , d′PN
}. Let P ′

max = Pargmax(d′
P1

,d′
P2

,...,d′
PN

) be the parti-

tion with current maximum load, E ′
max ⊂ E ′ be the new set of hyperedges

incident on P ′
max. P ′

sub ⊂ P denotes the subset of partitions that are incident

by set of hyperedges E ′
max.

More formally, we are given a set {C | C ⊆ P ′
sub} of movable nodes and a

set P ′
sub of partitions. Each node n ∈ C has a size, denoted by size(c), and

each partition p ∈ P ′
sub has a capacity, denoted by cap(p). Moreover, for each

pair (c, p) ∈ C×P ′
sub we know the costs dcut((c, p)) and dload((c, p)) of moving
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node c to region p. Cost dcut((c, p)) represents the total hyperedge cut and

dload((c, p)) is the total load after moving node c to partitions p. The task is

to find a re-mapping g : C → P ′
sub such that

∑

c∈C:g(c)=r size(c) ≤ cap(p) for

all p ∈ P ′
sub, minimizing

∑

c∈C dcut((c, g(c))) and
∑

c∈C dload((c, g(c))). Un-

fortunately, even for single cost function, to decide if this problem has any

feasible solution is NP-complete even if |P ′
sub| = 2.

Key idea in our approach is to incrementally move K nodes across the

partitions in order to disperse the load from maximum load partition P ′
max

to other partitions in {P − P ′
max}. Figure 4.7 shows the working example of

Algorithm 8. In this Figure, (i) initial partitioning through MHPA gives fairly

load-balanced partitions (ii) Over the time, change in workload can result in

load-imbalance, which triggers Algorithm 8 that in the first iteration selects

partition with maximum load P ′
max and corresponding connected partitions

in {P−P ′
max} (shaded in grey). (ii), (iii) and (iv) Load is dispersed from P ′

max

to across partitions in partitions in {P −P ′
max}. In the second iteration, new

P ′
max is selected and load is dispersed, this is continued till load can no more

be dispersed. In our approach we handle two important cases, first is the case

of unbalanced partitioning where some of the partitions have more data than

other, for an instance lets say number the of nodes in P ′
max is much greater

than the number of nodes in P ′ ∈ {P − P ′
max}, that is |V ′

P ′
max

| >> |V ′
P ′ |.

Second is the case of balanced partitioning when the number of nodes in
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Figure 4.7: Key idea of local load dispersion approach.

P ′
max is almost equal to the number of nodes in P ′ ∈ {P − P ′

max}, that is

|V ′
P ′
max

| ≃ |V ′
P ′ |.

Simple Load Dispersion Algorithm (SimpleIncRep):We first develop

a simple load dispersion algorithm to handle the variations in the load re-

sulted by workload changes. Key idea of this algorithm is, in the case of

|V ′
P ′
max

| >> |V ′
P ′ | we move high degree nodes from partition P ′

max to partition
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P ′ ∈ {P − P ′
max} so that load can be shifted from P ′

max to P ′. For the case

|V ′
P ′
max

| ≃ |V ′
P ′ |, high degree nodes in P ′

max are swapped with low degree nodes

in P ′, so that load on P ′
max is reduced. Although intuitively this algorithm is

effective in terms of reducing load imbalance, but this approach is not search

cost-aware, so it does not have control over search cost while incrementally

repartitioning. To achieve both search cost and load awareness we need to

make this approach workload-aware.

Workload-aware Load Dispersion Algorithm (WAIncRep): We im-

prove the previous algorithm by carefully analyzing the workload while in-

crementally repartitioning the data across the partitions. In this approach,

we incrementally move K nodes across the partitions in order to disperse the

load from maximum load partition P ′
max to other partitions P ′

sub connected

through hyperedges E ′
max incident on P ′

max where P ′
sub ⊆ {P − P ′

max}. Intu-

ition behind choosing partitions that are connected to P ′
max is that, swapping

nodes between P ′
max and partitions in P ′

sub allows us to minimize cuts or at

least reduce average query span that may have been affected by change in

workload and at the same time dispersing the load from P ′
max to other con-

nected partitions in {P ′
sub−P ′

max}. Key intuition here is that, when we move

a high degree node d from P ′
max to P ′

sub to minimize the load on P ′
max, there

are three possibilities regarding the search cost, 1) query span of subset of

101



queries incident on cmight decrease by one, 2) query span of subset of queries

incident on c may remain same, and 3) query span of subset of queries inci-

dent on d might increase by one. In order to minimize the variation in search

cost while moving the nodes across the partitions, we want to maximize 1)

and 2) and minimize 3) for majority of the queries incident on c. To achieve

this objective, we assign a gain score to each data node c. We sort these

data items in P ′
max in descending order. For the case |V ′

P ′
max

| >> |V ′
P ′
sub

|, we

move K such data items at a time equally to the partitions in P ′
sub. Whereas

for the case |V ′
P ′
max

| ≃ |V ′
P ′
sub

|, top K high gain nodes are swapped with top

low degree nodes in the partition belonging the set P ′
sub. Such movement of

data nodes, not only disperses the load from P ′
max to the partitions in P ′

sub

but also carefully trades the load balancing with the search cost unlike the

previous approach.

Calculating Gain:We begin by explaining our gain function. LetH′′(V ′′, E ′′)

be the sub-hypergraph such that V ′′ = V
⋂P ′

sub and E ′′ = E ′
P ′
max

∩ E ′
P ′
sub

.

If we want to move a data item c from P ′
max to P ′

sub ∈ P ′
sub, then let |Ec|

be the degree of c, in other words the number of hyperedges incident on c.

Let H′′
common(V

′′
comm, E

′′
comm) be the sub-hypergraph with the hyperedges that

are incident on both P ′
max and P ′

sub where H′′
common ⊆ H′′. Then |E ′′

commc
| be

the number of hyperedges incident on both P ′
max and P ′

sub. Let Euncommc
be
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the hyperedges that are incident on c but are not incident on P ′
sub, that is

E ′′
uncommc

= Ec − E ′′
commc

. So gain Gc can be calculated as:

Gc =
|E ′′

commc
|

|E ′′
uncommc

| (4.1)

Algorithm 8 shows the pseudocode of our algorithm. Algorithm runs un-

til change in load as a result of algorithm steps shown in lines 1-8 is no more

than small value ǫ. In line 2, we build a sub-hypergraph H′′(V ′′, E ′′). Then

if K is the fixed number of data nodes that we want to move around per

iteration and if there are #P ′
sub number of partitions in P ′

sub then we move

K
#P ′

sub

number of nodes across P ′
max and P ′

sub for each P
′
sub ∈ P ′

sub. For each

P ′
sub ∈ P ′

sub we calculate the common hyperedges E ′′
comm that are incident on

both P ′
max and P ′

sub. Also we calculate V ′′
P ′
max

as number of nodes in P ′
max

incident by hyperedges in E ′′
comm. Next, we sort the nodes in V

′′
P ′
max

according

to the gain values calculated according to Equation 4.1 in descending order

using sortByGain method. Similarly, we calculate V ′′
P ′
sub

as number of nodes

in P ′
sub incident by hyperedges in E ′′

comm. In this case, we sort the nodes in

V ′′
P ′
sub

according to the node degrees in ascending order using sortByDe-

gree method. In lines 9-21, based on the nature of partitioning, we decide

whether to just move nodes from P ′
max to P ′

sub or swap nodes across these

two partitions. After repartitioning the nodes in P ′
sub and P

′
max, to deal with
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uneven load dispersion we update current P ′
max and calculate updated P ′

sub

and repeat the whole process until the current load imbalance is expected to

be less than user defined threshold τ .

Algorithm 8 Workload-aware Load Dispersion Algorithm

Require: H(V,E), H′(V,E ′), N,C,P = {P1, P2, . . . , PN} obtained after ini-
tial partitioning, P ′

max, E
′
max, P ′

sub ⊂ P , Lcurr, K.
1: while △Lcurr

> ǫ do
2: H′′ = buildSubHypergraph(P ′

sub, E
′);

3: #nodesToMove = K/#P ′
sub;

4: for (P ′
sub ∈ P ′

sub) do
5: E ′′

comm = E ′
P ′
max

∩ E ′
P ′
sub

;

6: V ′′
P ′
max

= sortByGain(V ′
P ′
max

∩ E ′′
common, descending);

7: V ′′
P ′
sub

= sortByDegree(V ′
P ′
sub

∩ E ′′
common, ascending);

8: i = 0;
9: if ((|V ′

max| − |V ′
sub|) >= #nodesToMove) then

10: for (v ∈ V ′′
P ′
max

&& i++< #nodesToMove) do
11: P ′

sub∪ = v; P ′
max− = v;

12: else
13: for (vl ∈ V ′′

P ′
max

, vm ∈ V ′′
P ′
sub

; i++< #nodesToMove) do

14: P ′
sub∪ = vl; P

′
sub− = vm;

15: P ′
max∪ = vm; P

′
max− = vl;

16: Lcurr =
max(d′

P
)

avg(d′
P
)
;

17: if Lcurr <= τ then
18: break;
19: P ′

max = Pargmax(d′
P1

,d′
P2

,...,d′
PN

);

20: P ′
sub = P(E ′

max);
21: if P ′

sub is hot then
22: wait for lean activity period;
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4.4 Experiments

4.4.1 Setup

WAFEL is a prototype for smart and effective web document document

clusters-machine assignment framework for large-scale information retrieval.

We conduct our experiments on single scaled-up machine with dual Intel

Xeon quad-core processors (E5620 2.4 GHz) and 128 GB RAM. This archi-

tecture has a 64KB L1 cache per core, a 256KB L2 cache per core, and a

12MB L3 cache shared by all cores of a single processor. With hyperthread-

ing, this machine can support up to 16 threads concurrently. The machine

has six 2TB 7200 RPM disks, each with 64MB cache, arranged in a RAID6

configuration. On this machine, we create several logical disk partitions and

regard them as individual physical partitions. This setup does not take away

the generality of our system when deployed in distributed setting as our tech-

niques are not network communication intensive as web queries are simple

in nature and do not involve data joins in them.

We perform our experiments on real-word dataset and queries. For real-

world dataset, we work with TREC Category B Section 1 dataset which

consists of 50 million English pages. For queries we consider 40 million AOL

search queries. In order to process these 50 million documents to clusters,

we perform K-means clustering using Apache Mahout where K=10000. We

105



consider each cluster as a data item in this work. Also, we divide our query

dataset into two parts, first part has 30 million queries that is used as his-

tory for analyzing and applying techniques discussed in this work. Then we

evaluate our techniques on test dataset which is the second part containing

10 million queries. We use hMETIS 1.5 for state-of-the-art hypergraph par-

titioning algorithm (HPA). Unless specified we use unbalanced factor of 35

for HPA.

4.4.2 Effectiveness of our Scalable Dense Hypergraph Partition-

ing

Figure 4.4 shows the example of HMA and GMA approaches where a

dense hypergraphHm is split into three smaller hypergraphsHm = {Hm
1 ,Hm

2 ,Hm
3 }.

HPA is then run on these smaller hypergraphs individually to get three dif-

ferent node to partition mappings shown in different colors in the Figure. For

HMA, these node to partition mappings are then converted to a single hy-

pergraph where each partition is a hyperedge and data items are the nodes.

For GMA, node to partition mappings are modeled as a graph, where nodes

in a partition form a clique.

We conduct an experiment to evaluate effectiveness of our scalable par-

titioning approaches where M=120. Our first result shows that our scalable

partitioning approaches (MMA, HMA, and GMA) are atleast 40X times
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faster than HPA, Figure 4.8a) shows the result. This speedup is because

of parallel executions of HPA on smaller hypergraph splits. Figure 4.8b)

shows that MMA and GMA approaches result in better average query spans

when compared to HMA; this happens because of sparsity problem in HMA

whereas GMA solves this problem.
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Figure 4.8: a) Comparison of our novel scalable hypergraph parti-
tioning approaches with state-of-the-art HPA b) Comparison be-
tween our scalable hypergraph partitioning approaches.

Next, we evaluate the performance of our workload-aware data placement

framework. For this evaluation, we increase the number of partitions from 10

to 50 and measure the average query span (AQS) for the random data place-

ment and distributed exhaustive search comparing with our workload-aware

data placement and distributed selective search. In distributed exhaustive

search, query is shipped to all the partitions and ranked list of documents
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is returned from each partition, therefore we note that average query span

equals the number of partitions at each step. In short, our experiment shows

that the distributed exhaustive search result in very high search costs. In

WAFEL’s distributed selective search, because each search query is sent to

relatively fewer machines when compared with distributed exhaustive ap-

proach, as we vary number of partitions, our approach gives up to 75% re-

duction in the search cost.

We also compare WAFEL’s selective search with state-of-the-art selective

search where after performing K-means clustering on the web documents to

get documents clusters, these clusters are then partitioned randomly into

partitions. Then, for each query top x% of the document clusters are selected,

this is accomplished by sending the query to the partitions that contains the

clusters relevant to the query. In this experiment, x = 10%. To find out

relevant clusters for a given query, we maintain a separate index consists of

all centroid documents of the clusters. Given a query we obtain a ranked

list of these centroids and send the query to the partitions containing the

top 10% clusters corresponding to the centroids. Our results demonstrates

that WAFEL’s selective search significantly performs well and gives up to

74% reduction in search cost or average query span when compared with

distributed selective search baseline. Figure 4.9 shows the result.
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Figure 4.9: Effect of distributed exhaustive search and WAFEL’s
selective search on the overall search cost.

4.4.3 Study of Different Routing Techniques

As we experiment with different routing schemes as shown in the Fig-

ure 4.10, we measure two important metrics, first is average query span

(AQS) for the given set of queries and second is load imbalance (LI) at the

partitions. In order to evaluate effectiveness of these schemes, we come up

with a metric called as load constraint. Load constraint is defined as ratio of

total number of queries to the maximum number of queries allowed to serve

per partition. As we perform set-cover based routing (S-Routing) of queries

over workload-aware partitioning with replication, we note that query costs

are minimized significantly. This scheme only minimizes the query spans

and is not at all load-aware which leads to severe load imbalance. Also, as
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this scheme is not load-aware, varying load constraint has no effect on this

routing scheme. Whereas S-Routing-RR scheme because of its round robin

access of replicas achieves exactly same average query span as S-Routing but

with relatively lower load imbalance.

Next we experiment with load-aware set-cover based routing scheme (LAS-

Routing). In this scheme, because they have high load, some of the parti-

tions are not considered in the set-cover computation which causes increase

in query span for some of the queries. We observe that as load constraint

on the partitions is increased, this routing scheme chooses next best set of

partitions (in-terms of query span) containing all the data items required for

the query which increases the average query span gradually. With increase

in load constraint, we observe the trade-off between query span and the load

imbalance where as query span increases load imbalance starts to decrease.

In other words, when load constraint is very flexible then LAS-Routing is

able to achieve minimum query cost, whereas when load constraint is ex-

tremely tight, then this scheme achieves best load imbalance while trading

query cost/span. When compared to S-Routing-RR, the LAS-Routing re-

sults in 27× times lower load imbalance by increasing the query spans by

just 2× times.

We compare our techniques with two baseline routing techniques, Random-

Exaustive and Random-Selective techniques. Routing-Exaustive approach
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sends the query to all the partitions. Routing-Selective approach sends the

query to the partitions containing top p% clusters and their replicas. Both

baselines give very high query spans with perfect load balancing. On the

other hand, we observe that simple load-aware routing with no set-cover

computation (LA-Routing) on a smart workload-aware partitioned system

performs almost same as a system with random partitioning and routing.

When compared to the baseline techniques our smart LAS-Routing can give

2.2× times lower query spans with almost same load imbalance that too

under very tight load constraints (LC=2).
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Figure 4.10: Comparison between different routing techniques. Note
that y-axis is in log-scale.

111



4.4.4 Effect of Cost- and Load-aware Incremental Repartitioning

To demonstrate the true potential of our incremental repartitioning al-

gorithms, we perform our workload-aware data partitioning with replica-

tion as discussed in Section 4.3.1.1 to minimize query spans and then route

the queries using our set-cover based router (S-Routing). As we know that

S-Routing only focuses on selecting the minimum number of partitions to

minimize query spans significantly and completely ignores the load imbal-

ance, we witness a very high load imbalance. Now over this partitioning

and routing, we apply our incremental repartitioning techniques where our

goal is to minimize the load imbalance and variation in query spans while

moving only subset of nodes. Plots in Figure 4.11 show our experimental re-

sult. Figure 4.11 a) shows the effect of incremental data movement on search

cost or average query span (AQS) whereas Figure 4.11 b) shows the effect

on load imbalance (LI). We observe that although SimpleIncRep approach

minimizes the load imbalance significantly even for very small percentage of

data movement, but it abruptly increases the average query span. Whereas

our workload-aware approach WAIncRep carefully trades the load imbalance

minimization with search cost AQS as we perform incremental data move-

ment.

To understand this result more carefully we introduce a metric known as
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Figure 4.11: Comparison of incremental repartitioning algorithms,
a) Effect of amount of data movement on average query span, b)
Effect of amount of data movement on load imbalance.

Gain Index (GI). Key idea behind Gain Index (GI) is that, it indicates an

effectiveness of incremental repartitioning technique regarding how effectively

it has traded load balancing with the search cost. GI can be calculated as

following:

Gain Index (GI) =
% decrease in load imbalance

% increase in search cost
(4.2)

In short, bigger the GI better the effectiveness of the incremental repartition-

ing algorithm. If LIbefore and LIafter is the load imbalance before and after

performing incremental repartitioning, then % decrease in load imbalance can

be calculated by:

% decrease in load imbalance =
(LIbefore − LIafter)

LIbefore
× 100 (4.3)
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Similarly % increase in search cost can be calculated by:

% increase in search cost =
(AQSafter − AQSbefore)

AQSbefore

× 100 (4.4)
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Figure 4.12: Comparison of incremental repartitioning strategies in
terms of Gain Index (GI). Note that Y-axis is in log scale.

Figure 4.12 shows that comparison of incremental repartitioning strate-

gies that we have developed in terms of Gain Index (GI). We make several ob-

servations, first is that, as the algorithm progresses, the number of iterations

increase, in-turn increasing % of data movement we note that Gain Index GI

sub-linearly decreases and remains constant after a certain point. Second is,

we note that from 1− 15% data movement, WAIncRep is 4× to 171× times

effective than SimpleIncRep approach, whereas for 15 − 30% data move-

ment, WAIncRep is 2× to 4× times effective than SimpleIncRec. Finally,
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for 30 − 45% data movement, our workload-aware approach is 1.3× to 2×

times effective in terms of GI when compared to SimpleIncRec approach. In

conclusion, our workload-aware incremental repartitioning technique (WAIn-

cRep) consistently performs better than SimpleIncRep in minimizing the load

imbalance while carefully trading the search cost.

4.5 Summary of Contributions

In this chapter, we presented the design of WAFEL, a data placement

framework for cost effective distributed information retrieval. This system

optimizes two metrics, first is, search cost and second is, load imbalance. To

minimize these two metrics, WAFEL takes a two pronged approach, firstly

to minimize the search cost it implements a workload-aware data partition-

ing to minimize the average query span of the queries. We show that our

novel scalable workload-aware data partitioning atleast 40× times faster than

state-of-the-art techniques and it minimizes the search cost atleast 75% when

compared to distributed exaustive search. Secondly, to minimize the load im-

balance, our system implements a load-aware replication and load-aware set

cover algorithm for routing. Finally, in order to handle workload changes

or abrupt load-imbalances, our system provides a smart and effective frame-

work for incrementally repartitioning the documents clusters K clusters at a

time where load-balancing is carefully traded with search cost. We show that
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our workload-aware incremental repartiitoning approach is 171× times more

effective in trading search cost and load imbalance than the smart baseline.

We believe that our approaches are general enough to be applied in data

placement scenarios in several different data domains.

116



Chapter 5

HONE: “Scaling Down”

Hadoop on Shared-Memory

Systems

Till here, we have seen that by minimizing query spans, overall resource

consumption of a given workload can be minimized. As we have discussed in

Chapter 1, underlying system achieves highest resource efficiency when the

data required by a job fits in single machine’s memory and the job can be

executed on a single machine (i.e., query span=1) as fast as possible. In this

chapter, we discuss one such system called HONE that we have developed

which is a multi-threaded in-memory map reduce system that is intended

to be Hadoop API compatible. Using HONE one can execute an existing
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Hadoop job on a single machine efficiently.

5.1 Introduction

The Hadoop implementation of MapReduce [23] has become the tool of choice

for “Big Data” processing (whether directly or indirectly via higher-level

tools such as Pig or Hive). Among its advantages are the ability to hori-

zontally scale to petabytes of data on thousands of commodity servers, easy-

to-understand programming semantics, and a high degree of fault tolerance.

There has been much activity in applying Hadoop to problems in data man-

agement as well as data mining and machine learning. Over the past several

years, the community has accumulated a significant amount of expertise and

experience on how to recast traditional algorithms in terms of the restrictive

primitives map and reduce.

Computing environments have evolved substantially since the introduc-

tion of Hadoop. For example, in 2008, a typical Hadoop node might have two

dual-core processors with a total of 4 GB of RAM. Today, a high-end com-

modity server might have two eight-core processors and 256 GB of RAM—

such a server can be purchased for roughly $10,000 USD. This means that

a single server today has more cores and more memory than did a small

Hadoop cluster from a few years ago. The assumption behind Hadoop and

the need for distributed processing is that the data to be analyzed cannot
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be held in memory on a single machine. Today, this assumption needs to be

re-evaluated.

Although it is true that petabyte-scale datastores are becoming increas-

ingly common, it is unclear whether datasets used in “typical” analytics

tasks today are really too large to fit in memory on a single server. Of

course, organizations such as Yahoo, Facebook, and Twitter routinely run

Pig or Hive jobs that scan terabytes of log data, but these organizations

should be considered outliers—they are not representative of data analytics

in most enterprise or academic settings. Even still, according to the anal-

ysis of Rowstron et al. [75], at least two analytics production clusters (at

Microsoft and Yahoo) have median job input sizes under 14 GB and 90% of

jobs on a Facebook cluster have input sizes under 100 GB. Holding all data

in memory does not seem too far-fetched.

There is one additional issue to consider: over the past several years, the

sophistication of data analytics has grown substantially. Whereas yesterday

the community was focused on relatively simple tasks such as natural joins

and aggregations, there is an increasing trend toward data mining and ma-

chine learning. These algorithms usually operate on more refined, and hence,

smaller datasets—typically in the range of tens of gigabytes.

These factors suggest that it is worthwhile to consider in-memory data an-

alytics on modern servers—but it still leaves open the question of how we or-
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chestrate computations on multi-core, shared-memory machines. Should we

go back to multi-threaded programming? That seems like a step backwards

because we embraced the simplicity of MapReduce for good reason—the com-

plexity of concurrent programming with threads is well known. Our proposed

solution is to “scale down” Hadoop to run on shared-memory machines [51].

In this paper, we present a prototype runtime called HONE (“Hadoop One”)

that is API compatible with standard (distributed) Hadoop. That is, we can

take an existing Hadoop algorithm and efficiently run it, without modifica-

tion, on a multi-core, shared-memory machine using HONE. This allows us

to take an existing application and find the most suitable runtime environ-

ment for execution on datasets of varying sizes—if the data fit in memory,

we can avoid network latency and significantly increase performance in a

shared-memory environment.

Hadoop API compatibility is the central tenet in our design. Although

there are previous MapReduce implementations for shared-memory environ-

ments, taking advantage of them would require porting Hadoop code over

to another API. In contrast, HONE is able to leverage existing implemen-

tations. In this paper, we present experiments on a number of “standard”

MapReduce algorithms (word count, PageRank, etc.) as well as a Hadoop

implementation of Latent Dirichlet Allocation (LDA). This implementation

represents a major research effort [93] and demonstrates API compatibility
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on a non-trivial application.

5.2 Hadoop on Single Machine

We begin by discussing why Hadoop does not perform well on a single

machine. To take advantage of multi-core architectures, Hadoop provides

pseudo-distributed mode (PDM henceforth), in which all daemon processes

run on a single machine (on multiple cores). This serves as a natural point of

comparison, and below we identify several disadvantages of running Hadoop

PDM.

Multi-process overhead: In PDM, mapper and reducer tasks occupy sep-

arate JVM processes. In general, multi-process applications suffer from inter-

process communication (IPC) overhead and are typically less efficient than

an equivalent multi-threaded implementation that runs in a single process

space.

I/O Overhead: Another disadvantage of Hadoop PDM is the overhead as-

sociated with reading from and writing to HDFS. To quantify this, we mea-

sured the time it takes to read and write a big file (8 GB) and a single split

of the file (64 MB) using HDFS as well as directly using Java file I/O (on

the server described in Section 5.4.1). These results are shown in Table 5.1.

We find that direct reads from disk are much faster than reads from HDFS

for both the 8 GB and 64 MB conditions. Performance improvements are
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Write 8 GB Read 8 GB

Cold
Cache

Warm
Cache

Cold
Cache

Warm
Cache

HDFS 178.0s 32.7s 81.4s 28.9s
Disk 194.0s 25.3s 27.1s 1.7s

Write 64 MB Read 64 MB

Cold
Cache

Warm
Cache

Cold
Cache

Warm
Cache

HDFS 5.10s 1.72s 5.64s 2.12s
Disk 0.47s 0.11s 3.27s 0.20s

Table 5.1: Performance comparisons between HDFS and direct disk
access.

observed under both cold and warm cache conditions, and the magnitude

of improvement is higher under a warm cache. Interestingly, we find that

writing 8 GB is faster using HDFS, but in all other conditions HDFS is

slower. In the small data case (64 MB), writes are over a magnitude faster

under both cold and warm cache conditions. These results confirm that

disk I/O operations using HDFS can be extremely expensive [27, 60] when

compared to direct disk access. In Hadoop PDM, mappers read from HDFS

and reducers write to HDFS, even though the system is running on a single

machine. Thus, Hadoop PDM suffers from these HDFS performance issues.

Framework overhead: Hadoop is designed for high-throughput process-

ing of massive amounts of data on potentially very large clusters. In this

context, startup costs are amortized over long-running jobs and thus do not
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have a large impact on overall performance. Hadoop PDM inherits this de-

sign, and in the context of a single machine running on modest input data

sizes, job startup costs become a substantial portion of overall execution

time.

Hadoop PDM on a RAM disk provides negligible benefit: One ob-

vious idea is to run Hadoop PDM using a RAM disk to store intermediate

data. RAM disks tend to help most with random reads and writes, but since

most Hadoop I/O consists of sequential operations, it is not entirely clear how

much a RAM disk would help. Our initial experiments with Hadoop PDM

did explore replacing rotational disk with RAM disk. We ran evaluations on

the applications in Section 5.4.2, but results showed no benefits when using

a RAM disk. Moreover, previous studies have shown that a RAM disk is at

least four times slower than raw memory access [45,62]. We expected greater

benefits by moving completely to managing memory directly, so we did not

pursue study of Hadoop PDM on RAM disks any further.

5.3 HONE Architecture

The overall architecture of HONE is shown in Figure 5.1. Below, we provide

an overview of each processing stage.

Mapper Stage: As in Hadoop, this stage applies the user-specified mapper

to the input dataset to emit intermediate (key, value) pairs. Each mapper
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is handled by a separate thread, which consumes the supplied input split

(i.e., portion of the input data) and processes input records according to

the user-specified InputFormat. Like Hadoop, the total number of mappers

is determined by the number of input splits. This stage uses a standard

thread-pooling technique to control the number of mapper tasks that exe-

cute in parallel. Mappers in HONE accept input either from disk or from a

namespace residing in memory (see Section 5.3.2 for more details).

Data Shuffling Stage: In MapReduce, intermediate (key, value) pairs need

to be shuffled from the mappers where they are created to the reducers where

they are consumed. In Hadoop, data shuffling is interwoven with sorting,

but in HONE these are two separate stages. The next section describes

three different approaches to data shuffling. Overall, we believe that efficient

implementations of this process is the key to a high-performance MapReduce

implementation on multi-core, shared-memory systems.

Sort Stage: As with Hadoop, HONE sorts intermediate (key, value) pairs

emitted by the mappers. Sorting is handled by a separate thread pool with

a built-in load balancer, on streams that have already been assigned to the

appropriate reducer (as part of the data shuffling stage). If the sort streams

grow too large, then an automatic splitter divides the streams on the fly and

performs parallel sorting on the split streams. The split information is passed
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Figure 5.1: HONE system architecture.

to the reducer stage for proper stream assignment. The default stream split

size can be set as part of the configuration.

Reducer stage: In this stage, HONE applies the user-specified reducer on

values associated with each intermediate key, per the standard MapReduce

programming model. A reducer either writes output (key, value) pairs to

disk or to memory via the namespace abstraction for further processing.

Combiners: In a distributed setting, combiners mimic the functionality of
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reducers locally on every node, serving as an optimization to reduce network

traffic. Proper combiner design is critical to the performance of a distributed

MapReduce algorithm, but it is unclear whether combiners are useful when

the entire MapReduce application is running in memory on a single machine.

For this reason, HONE currently does not support combiners: since they

are optional optimizations, we can ignore them without affecting algorithm

correctness.

Namespace Manager: This module manages memory assignment to en-

able data reading and writing for MapReduce jobs. It converts filesystem

paths that are specified in the Hadoop API into an abstraction we call a

namespaces: output is directed to an appropriate namespace that resides in-

memory, and, similarly, input records are directly consumed from memory

as appropriate.

5.3.1 In-Memory Data Shuffling

We propose three different approaches to implement data shuffling between

mappers and reducers: (1) the pull-based approach, (2) the push-based ap-

proach, and (3) the hybrid approach. These are described in detail below.

Pull-based Approach: In the pull-based approach, each mapper emits keys

to r streams, where r is the number of reducers. Each mapper applies the par-

titioner to assign each intermediate (key, value) pair to one of the r streams
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based on the key (per the standard MapReduce contract). Ifm is the number

of mappers, then there will be a total m × r intermediate streams. In the

sort stage, these m × r intermediate streams are sorted in parallel. In the

reducer stage, each reducer thread pulls from m of the m × r streams (one

from each mapper). Figure 5.2 shows an example with three mappers and

six reducers, with eighteen intermediate streams.

With this approach we encounter an interesting issue regarding garbage

collection. In Java, a thread is its own garbage collection (GC) root. So

any time a thread is created, irrespective of creation context, it will not be

ready for garbage collection until its run method completes. This is true

even if the local method which created the thread completes. In HONE, we

maintain a pool of mapper threads containing tpm threads (usually for large

jobs, tpm ≪ m, where m is the number of mappers, determined by the split

size). Thus, tpm mappers are running concurrently, and the objects that each

creates cannot be garbage collected until the mapper finishes. Increasing this

thread pool size allows us to take advantage of more cores, but at the same

time this increases the amount of garbage that cannot be collected at any

given time. HONE needs to contend with the characteristics of the JVM,

and garbage collection is one re-occurring issue we have faced throughout

this project.
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Figure 5.2: Pull-based approach

Push-based Approach: In this approach, HONE creates only r intermedi-

ate streams, one for each reducer. This is shown in Figure 5.3, where we have

six streams. Each mapper emits intermediate (key, value) pairs directly into

one of those r streams based on the partitioner. In this way, the mappers

push intermediate data over to the reducers. Because r streams are being

updated by the mappers in parallel, these streams must be synchronized and

guarded by locks. Due to this synchronization overhead, contention is un-

avoidable, but this cost varies based on the distribution of the intermediate

keys to reducers. There are two ways of dealing with contention cost: the

first is to employ scalable and efficient locking mechanisms (more discus-

sion below), and second is to increase the number of reducers so that key

distribution to reducers is spread out, which in turn will reduce synchroniza-

tion overhead. However, if we have too many reducers, context-switching
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overhead of reducer threads will negatively impact performance.

The push-based approach creates fewer intermediate data structures for

the same amount of intermediate (key, value) pairs, and thus in this manner

is more efficient. In the pull-based approach, since each mapper output is

divided among r streams, the object overhead in maintaining those streams

is much higher relative to the actual data held in those streams (compared

to the push approach). In order to take advantage of greater parallelism in

the reducer stage (for the pull-based approach), we may wish to increase the

number of reducers, which further exacerbates the problem.

Another advantage of the push-based approach is that reducers are only

consuming from a single stream, so we would expect better reference local-

ity (and the benefits of processor optimizations that may come from more

regular memory access patterns) compared to the pull-based approach. The

downside, however, is synchronization overhead since all the mapper threads

are contending for write access to the reducer streams.

Hybrid Approach: As a middle ground between the pull and push ap-

proaches, we introduce a hybrid approach that devotes a small number of

streams to each reducer. In Figure 5.4, each reducer reads from two streams,

which is the default. There are two ways to distribute incoming (key, value)

pairs to multiple streams for each reducer: the first is to distribute evenly,
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Figure 5.3: Push-based approach

and the second is to distribute according to the current lock condition of

a stream. The second approach is perhaps smarter, but HONE currently

implements the first method, which we empirically discovered to work well.

Having multiple streams reduces, but does not completely eliminate lock con-

tention, but at the same time, the hybrid approach does not suffer from a

proliferation of stream objects. The number of streams per reducer can be

specified in a configuration, which provides users a “knob” to find a sweet

spot between the two extremes.

In the push and hybrid data-shuffling approaches, lock efficiency plays

an important role in overall performance. We have implemented and exper-

imented with various lock implementations, including Java synchronization,

test-and-set (tas) spin lock, test and test and set (ttas) spin lock, and reen-

trant lock. Each lock implementation has its own advantages and disadvan-

130



Mapper 1 Mapper 2 Mapper 3

Reducer 

1

Reducer 

2

Reducer 

3

Reducer 

4

Reducer 

5

Reducer 

6

Figure 5.4: Hybrid approach

tages, but overall we find that Java synchronization in JDK7 performs the

best.

Tradeoffs: We experimentally compare the three different data-shuffling ap-

proaches, but we conclude this section with a discussion of the factors that

may impact performance.

Obviously, input data size is an important factor. Larger inputs translate

into more splits, more mappers, and thus more active streams that are held in

memory (for the pull-based approach). In contrast, there are only r streams

in the push-based approach, where r is the number of reducers. Note that

the number of reducers is a user-specified parameter, unlike the number of

mappers, which is determined by the input data. As previously discussed,

the cost of fewer data streams (less object overhead) is synchronization costs

131



and contention when writing to those streams. The hybrid approach tries to

balance these two considerations.

Another factor is the amount of intermediate data that is produced. Some

MapReduce jobs are primarily “reductive” in that they generate less inter-

mediate data than input data, but other types of applications generate more

intermediate data than input data; some text mining applications, for exam-

ple, emit the cross product of their inputs [56]. This characteristic may have a

significant impact on the performance of the three data-shuffling approaches.

Finally, the distribution of the intermediate keys will play an important

role in performance—this particularly impacts synchronization overhead in

the push-based approach. For example, with that approach, if the distribu-

tion is Zipfian (as with word count and certain types of graph algorithms),

then increasing the number of reducers may not substantially lower con-

tention, since the “head” of the distribution will always be assigned to a

single reducer [57]. On the other hand, if the intermediate key distribution

is more uniform, we would expect less lock contention since mapper output

would be more evenly distributed over the reducer streams, reducing the

chance that multiple mappers are contending for a lock.
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5.3.2 Challenges and Solutions

This section discusses key challenges in developing HONE for the Java Virtual

Machine on multi-core, shared-memory architectures and how we addressed

them.

Memory consumption: To retain compatibility with Hadoop, we made the

decision to implement HONE completely in Java, which meant contending

with the limitations of the JVM. In a multi-core, shared-memory environ-

ment, the mapper, sort, and reducer threads compete for shared resources,

and thus we must be careful about the choice of data structures, the number

of object creations, proper de-referencing of objects for better garbage collec-

tion, etc. We discovered early that many Java practices scale poorly to large

datasets. With a näıve implementation based on standard Java collections,

on a server with 128 GB RAM, an initial implementation of MapReduce word

count on an input size 10% of the total memory generated out-of-memory er-

rors because standard Java collections are heavyweight [64]. For example, an

implementation using a Java TreeMap<String, Integer> to hold intermedi-

ate data can have up to 95% overhead, i.e., only 5% of the memory consumed

is used for actual data.

To address this issue, we extensively use primitive data structures such as

byte arrays to minimize JVM-related overhead. In the mapper stage, (key,
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value) pairs are serialized to raw bytes and in the reducer stage, new object

allocations are reduced by reading pairs from byte arrays using bit operations

and reusing container objects when possible. We avoid using standard Java

collections in favor of more efficient custom implementations.

Sorting is expensive: Intermediate (key, value) pairs emitted by the map-

pers need to be sorted by key. For large intermediate data (on the order of

GBs), we found sorting to be a major bottleneck. This is in part because

operations such as swapping objects can be expensive, but the choice of data

structures has a major impact on performance also. In Hadoop, sorting is

accomplished by a combination of in-memory and on-disk operations. In

HONE, however, everything must be performed in memory.

We experimented with two approaches to sorting. In the first, each thread

from the mapper thread pool handles both mapper execution as well as sort-

ing. In the second approach, mapper execution and sorting are handled by

separate thread pools. We ultimately adopted the second design. Note that

sorting is orthogonal to the pull, push, hybrid data-shuffling approaches.

We see a number of advantages to our decoupled approach. First, the

optimal thread pool size depends on factors such as the number of cores

available, the size of the intermediate data, and skew in the intermediate

key distribution. The decoupled approach lets us configure the sort thread
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pool size based on these considerations, independent of the mapper thread

pool size. Second, the decoupled approach allows the garbage collector to

clean up memory used by the mapper stage before moving to the sort stage.

Finally, combining mapping and sorting creates a mix of different memory

access patterns, which can negatively impact performance.

HONE implements a custom quick sort that works directly on byte arrays;

these are the underlying implementations of the streams that the mappers

write to when emitting intermediate data. The main idea is to store inter-

mediate (key, value) pairs in a data byte array in serialized form, and to

create an offset array that records offset information corresponding to the

serialized objects in the data byte array. Offsets are also stored in byte ar-

rays. Once mapper output is stored in these data and offset byte arrays,

quick sort is applied. Offsets are read from the offset array and data are read

using bit operations depending on the data type (to avoid object material-

ization whenever possible). Values are compared with each other, but only

offset bytes are swapped. Usually, the size of the offset byte array is much

less than the size of the data byte array, and therefore it is more efficient to

perform swapping on the offset byte array. Moreover, most of the bytes in

the offset byte array contain zeros (i.e., the high order bytes of an offset):

only the non-zero bytes and the bytes that are not equal need to be swapped.

This eliminates a large amount of the total cost of swapping elements during
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sorting.

Interactions between data shuffling and sorting: In the pull-based ap-

proach to data shuffling described in Section 5.3.1, the sort stage takes maxi-

mum advantage of parallelism since the intermediate data are divided among

m×r streams (usually a large number). However, in the push and the hybrid

approaches, intermediate data are held in a much smaller number of streams:

r in the case of the push approach and a small factor of r for the hybrid ap-

proach. In both cases, this reduces the amount of parallelism available, since

each sorting thread must handle a much larger amount of data. For large

datasets, this becomes a performance bottleneck. For the push and hybrid

approaches, we remedy this by splitting intermediate streams into several

smaller streams on the fly. The sizes of these streams is a customizable pa-

rameter, but we have heuristically settled on a value that works reasonably

well across different applications (10000 bytes).

Disk-based readers and writers: One of the challenges in developing a

Hadoop-compatible MapReduce implementation is that Hadoop application

code makes extensive use of disk-based readers and writers, mainly imple-

mented using the RecordReader and RecordWriter classes. The simplest way

to avoid disk overhead is to provide an API to access memory directly and

then change the application code to take advantage of these hooks. Since
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we wanted to make HONE compatible with the existing Hadoop API, we

needed deeper integration.

We introduce the notion of a namespace, which is a dedicated region in

memory where data are stored. Application code can access namespaces

through the standard Hadoop Job object. To maintain compatibility with

the Hadoop API, we provide efficient in-memory alternatives for Hadoop

FileReader and FileWriter classes. Disk paths in application code are auto-

matically converted to appropriate namespaces and output is redirected to

these namespaces.

Iteration support: Iterative MapReduce algorithms, where a sequence of

MapReduce jobs are chained together such that the output of the previous

reducer stage serves as the input to the next mapper stage, are a well-known

weakness of Hadoop [13]. Since many interesting algorithms are iterative in

nature (e.g., PageRank, LDA), this is an important problem to solve. The

primary issue with Hadoop-based implementations of iterative algorithms

is that reducer output at each iteration must be serialized to disk, even

though it should be considered temporary since the data are immediately

read by mappers at the next iteration. Of course, serializing serves the role

of checkpointing and provides fault tolerance, but since Hadoop algorithms

are forced to do this at every iteration, there is no way to trade off fault
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tolerance for speed.

In HONE, all of these issues go away, since intermediate data reside in

memory at the end of each iteration. The choice to serialize data to disk can

be made independently by the developer. Thus, HONE provides natural sup-

port for iterative MapReduce algorithms. In a bit more detail: typically, in

an iterative algorithm, there is a “driver program” that sets up the MapRe-

duce job for each iteration, checks for convergence, and decides if another

iteration is necessary. Convergence checks are usually performed by reading

reducer output (i.e., files on HDFS). In HONE, this is transparently handled

by our notion of namespaces.

Garbage collection and off-heap memory allocation: All objects allo-

cated in the JVM heap are scanned periodically by the garbage collector,

with frequency determined in part by the size of the heap and in part by the

rate at which new objects are created. This significantly impacts the overall

performance of HONE, with a major culprit being the mappers, which gener-

ate a large number of objects to store the intermediate data. The techniques

that we have discussed so far (e.g., using byte arrays to serialize objects,

reducing the number of data streams, etc.) help in reducing the garbage col-

lection overhead. As an additional optimization, we tried taking advantage

of off-heap memory, via the ByteBuffer class in the Java NIO package. This
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Figure 5.5: Offloading intermediate data to off-heap direct native
memory.

allows us to manage the memory directly without interference, since the JVM

garbage collector does not touch memory allocated in this fashion.

Figure 5.5 shows the memory heap managed by JVM encapsulated un-

der OS native memory, where HONE operates. Memory needed for various

MapReduce stages in HONE is still allocated through the JVM heap, but in-

termediate data created by the mappers are offloaded into data streams that

are created off-heap. These off-heap data streams are then accessed by the

sort stage, which performs in-place sorting, and then finally handed over to

the reducers. Since this optimization uses non-standard APIs, we evaluated

its impact in a separate set of experiments (see Section 5.6.2), but we do not

use off-heap memory for most of our experiments.
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NUMA support: To perform NUMA-specific optimizations, a system must

support the ability to pin threads to specific cores. Unfortunately, Java does

not provide explicit support for CPU affinity, as the assignment of threads

to cores is handled opaquely by the JVM. However, thread-to-core affinity

constructs can be supported via a library in C/C++ and accessed in Java

via JNI. HONE currently does not take advantage of such optimizations.

Cache locality: High-performance algorithms usually require very careful

tuning to take advantage of cache locality and processor prefetching—these

effects can be substantial [11]. HONE, however, does not currently imple-

ment any optimizations along these lines, primarily because the intermediate

JVM abstraction often obscures the machine instructions that are being ex-

ecuted, compared to a low-level language such as C where the programmer

retains greater control over the system. Nevertheless, there may be oppor-

tunities to gain greater efficiencies via more cache-conscious designs. For

example, combiners might help an application optimize for cache locality,

e.g., by performing aggregation while intermediate data still reside in cache.

However, this must be balanced against the overhead of context switching

(from mapper to combiner execution). In the future, it would be interesting

to explore whether such cache optimizations can be reliably implemented on

the JVM.
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5.4 Experimental Setup

5.4.1 Comparison Systems

HONE is open-source and can be downloaded at hadoop1.org. As previously

discussed, it is implemented in Java for Hadoop API compatibility. There

are a number of tunable parameters in HONE, which are summarized in

Table 5.2. Unless otherwise specified, all experiments used default settings.

We compared the performance of HONE against Hadoop PDM, a 16-node

Hadoop cluster, a reimplementation of Phoenix in Java (described below),

Phoenix system variants, and Spark. Details are provided below.

Parameter Description

s Split size. Default value is 64 MB.

r Number of reducers.

tpm Mapper stage thread pool size. Default value is 15.

tpr Reducer stage thread pool size. Default value is 15.

tps Sort stage thread pool size. Default value is 15.

arch Approach to data shuffling: {pull, push, hybrid}. De-
fault is pull.

lockType Type of lock for push and hybrid data shuffling: Java
synchronization, test-and-set (tas) spin lock, test and
test and set (ttas) spin lock, and reentrant lock. De-
fault is Java synchronization.

hs Number of streams for each reducer for hybrid data
shuffling.

Table 5.2: Description of HONE parameters.

141

hadoop1.org


Similar to Chapter 4, all single-machine experiments were performed on

a server with dual Intel Xeon quad-core processors (E5620 2.4 GHz) and 128

GB RAM. This architecture has a 64KB L1 cache per core, a 256KB L2 cache

per core, and a 12 MB L3 cache shared by all cores of a single processor. With

hyperthreading, this machine can support up to 16 threads concurrently. The

machine has six 2 TB 7200 RPM disks, each with 64 MB cache, arranged

in a RAID6 configuration. For Hadoop PDM, we ran Hadoop YARN 2.0.3;

the configuration parameters were set for the maximum allowable in-memory

buffer sizes, but note that Hadoop buffer sizes are limited to 32-bit integers.

For comparisons with Phoenix, we ran Phoenix2 and Phoenix++; for Spark,

we used version 0.8.0. Our Hadoop cluster ran CDH4 (YARN) and comprises

16 compute nodes, each of which has two quad-core Xeon E5520 processors,

24 GB RAM, and three 2 TB disks. Note that with YARN, however, one

node serves as the Application Master (AM), leaving only 15 actual worker

nodes. The Hadoop cluster ran JDK6, whereas we used JDK7 everywhere

else. Note that both the individual server and the Hadoop cluster were

purchased around the same time; since they represent hardware from the

same generation, our experiments fairly capture the capabilities of a high-

end server and a modest Hadoop cluster.

Java implementation of Phoenix. The Phoenix project [74,82,92] shares
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similar goals as HONE in terms of exploring MapReduce implementations for

shared-memory systems. The biggest difference, however, is that Phoenix is

implemented in C/C++ and thus abandons Hadoop API compatibility—this

means that Hadoop applications need to be rewritten to take advantage of

Phoenix.

Another substantial difference between Phoenix and HONE is how in-

termediate data are shuffled from the mappers to the reducers. Whereas

HONE uses the pull, push, and hybrid approaches discussed in Section 5.3.1,

Phoenix uses an array of hash tables: the array contains one hash table per

mapper, and the entire data structure can be visualized as a 2D grid. Each

hash table entry has an array of keys that hash to that location, and each

key points to an array of associated values. Conceptually, we can think of

each mapper as writing to a “column” in the 2D data grid. The reducers

scan entries of the hash tables belonging to all the mappers to grab the ap-

propriate intermediate (key, value) pairs; conceptually, we can think of this

as reading the “rows” in the 2D data grid.

It did not appear to us that the Phoenix data-shuffling approach can be

efficiently implemented in Java, but we nevertheless attempted an adapta-

tion to help us better understand the differences between the languages and

the unique challenges that Java imposes. Due to the overhead of material-

izing key and value objects in Java, a straightforward implementation was
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utterly infeasible. Instead, we opted to minimize object overhead by replac-

ing Phoenix’s emission values arrays with byte arrays containing serialized

data. The main data structure is a Java HashMap array, with one map per

mapper, where the map keys are the intermediate keys and the map val-

ues are the intermediate values (associated with the key), both in serialized

form. In order to support this data structure we also needed to create a sec-

ond HashMap array, one map per mapper, so that reducers would know with

which keys to query the main data structure. In each map, the map key is

the reducer id and the map value is the reducer’s keylist—once again, held in

serialized form. Whenever a mapper emits an intermediate (key, value) pair,

the system determines which reducer has ownership of that key and writes

the key to that reducer’s keylist. We feel that we have accurately captured

the data-shuffling approach of Phoenix, and that our implementation repre-

sents a reasonable attempt to study how the “data grid” design would fare

in Java.

5.4.2 Applications and Datasets

Our experiments explored a range of MapReduce applications, described be-

low (see Table 5.3):

• Word Count (WC): This application counts the frequencies of all words

in a collection of text documents.
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Application Dataset Small Medium Large

Word Count (WC) Wiki articles 128 MB,
256 MB,
512 MB

1 GB, 2
GB

4 GB, 8
GB, 16
GB

K-means (KM) 3D points 12M,
25M

51M,
102M

204M,
398M

Inverted Indexing (II) Wiki articles 128 MB,
256 MB,
512 MB

1 GB, 2
GB

4 GB, 8
GB, 16
GB

PageRank (PR) Wiki graph 0.4M,
0.8M

1.8M,
3.5M

7.2M

LDA TREC docs 125 MB,
256 MB

512 MB 1 GB

Table 5.3: Data conditions for each application. For k-means and
PageRank, we show the number of points and number of graph
nodes, respectively.

• K-means (KM): This application implements k-means clustering using

Lloyd’s Algorithm. Since the algorithm is iterative, reducer output is

passed to the input of the next mapper stage through the HONE names-

pace manager. These iterations proceed until convergence.

• Inverted Indexing (II): This application builds a simple inverted index,

which comprises a mapping from terms to postings which hold informa-

tion about documents that contain those terms. An inverted index is

the core data structure used in keyword search.

• PageRank (PR): This application computes PageRank, the stationary

distribution of a random walk over a graph. Like k-means clustering,

this algorithm is iterative.

• Latent Dirichlet Allocation (LDA): This application builds topic models
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over text documents using Latent Dirichlet Allocation [10] via varia-

tional inference. The implementation represents a substantial research

effort [93] and demonstrates HONE on a non-trivial application. This

algorithm is also iterative.

In terms of datasets, for word count and inverted indexing, we used articles

from English Wikipedia totaling 16 GB. For k-means clustering, we randomly

generated 398 million 3D coordinates; in all our experiments we ran clustering

with k = 10. For PageRank, we used a Wikipedia article link graph that

contains 7.2M nodes. For LDA, we used a document collection from the Text

Retrieval Conference (TREC) that totals 1 GB [93].

One important variable in our experiments is the amount of data pro-

cessed. To examine these effects, we generated subsets of varying sizes from

the above datasets. We also divided the data conditions somewhat arbitrarily

into small, medium, and large categories, summarized in Table 5.3.

In addition to the above real applications and datasets, we built a syn-

thetic workload generator to better understand HONE performance under

different workloads. Details of these experiments are discussed in Section 5.6.

5.5 Application Results

In this section, we present results of experiments that compared HONE

against a variety of other systems on the applications described in Sec-
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tion 5.4.2. To thoroughly characterize performance, we varied both the

amount of compute resources available as well as the amount of data pro-

cessed.

5.5.1 Strong Scalability Analysis

HONE
Threads WC KM II PR LDA

1 1892 - 768 - 2068 - 20 - 12214 -
2 946 100% 480 80% 1124 92% 14.0 73% 6296 97%
4 490 97% 281 68% 671 77% 10.8 56% 3160 97%
8 292 81% 185 52% 480 54% 9.5 27% 1675 91%
16 253 47% 166 29% 405 32% 7.8 17% 957 78%

Table 5.4: Strong scalability experiments with Hadoop HONE: cells
show running time in seconds and the strong scaling efficiency.

PDM
Threads WC KM II PR LDA

1 4276 - 3275 - 5079 - 112 - 31991 -
2 2309 54% 2096 64% 3200 63% 92 82% 23673 74%
4 1498 54% 1676 40% 2102 47% 74 50% 12421 70%
8 1089 28% 1100 31% 1501 33% 69 27% 10024 44%
16 837 18% 849 19% 1383 18% 66 14% 8002 27%

Table 5.5: Strong scalability experiments with Hadoop PDM: cells
show running time in seconds and the strong scaling efficiency.

In a strong scalability analysis, the problem size stays fixed but the number

of processing elements varies. A program is considered to scale linearly if

the speedup (in terms of work units completed per unit time) is equal to

the number of processing elements used (N). Maintaining strong scalability
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is challenging because coordination overhead increases with the number of

processing elements.

If the amount of time to complete a work unit with one processing element

is t1 and the amount of time to complete the same unit of work with N

processing elements is tN , the strong scaling efficiency (SSE), as a percentage

of linear, is given as follows:

SSE =
(

t1
N · tN

)

× 100% (5.1)

Table 5.4 and Table 5.5 shows the strong scalability results for HONE and

Hadoop PDM on different applications. In all cases, the experiments ran on

the server described in Section 5.4.1 and HONE used the pull-based data-

shuffling approach. We increased the number of threads from 1 to 16 (by

varying the thread pool sizes) while keeping the dataset size constant; the

table shows running time in seconds and the strong scaling efficiency based

on Equation (5.1). For iterative algorithms the reported values capture the

running time of the first iteration. Speedup of HONE over Hadoop PDM is

summarized in Table 5.6. These experiments used the large dataset condition

for each application: for word count and inverted indexing, 8 GB; for k-means,

398M 3D points; for PageRank, the Wikipedia article link graph with 7.2M

nodes; for LDA, 1 GB. For both HONE and Hadoop PDM, the number of

148



mappers was determined automatically based on the split size, which is 64

MB in our case. We used binary search to determine the optimal number of

reducers, and figures for both HONE and Hadoop PDM are reported with

optimal settings.

From these results we see that HONE is substantially faster than Hadoop

PDM in terms of absolute running time. Keep in mind that our machine has

only 8 physical cores, so the runs with 16 threads are taking advantage of hy-

perthreading. Overall, HONE exhibits much better strong scaling efficiency,

outperforming Hadoop PDM in nearly all conditions. It is interesting to see

that efficiency varies by application—for example, HONE achieves over 90%

efficiency up to 8 threads on LDA, but for inverted indexing and PageRank,

performance deteriorates substantially as we increase the thread count. From

Table 5.6, we find no discernible trend on the relative performance of HONE

compared to Hadoop PDM as the number of threads increases for the five

applications.

5.5.2 Weak Scalability Analysis

In a weak scalability analysis, the problem size (i.e., workload) assigned to

each processing element stays constant and additional processing elements

are used to solve a larger overall problem. In this case, linear scaling is

achieved if the running time stays constant while the workload is increased
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in direct proportion to the number of processing elements.

If the amount of time to complete a work unit with one processing element

is t1, and the amount of time to complete N of the same work units with N

processing elements is tN , the weak scaling efficiency (WSE), as a percentage

of linear, is given as follows:

WSE =
(

tN
t1

)

× 100% (5.2)

Figure 5.6 shows running times for HONE with different numbers of threads

and Table 5.7 provides the weak scalability efficiency computed from those

results. In all cases, the experiments ran on the server described in Sec-

tion 5.4.1. For these experiments, HONE used the pull-based data-shuffling

approach and the number of reducers was tuned using binary search, as with

the strong scalability analysis. For each application we increased the dataset

size with the number of threads. For word count and inverted indexing, the

dataset size varied from 128 MB to 2 GB; for k-means, from 12M to 204M

points; for PageRank, from 0.4M nodes to 7.2M nodes; for LDA, from 125

MB to 1 GB. Note that for the LDA application we did not have sufficient

data to run 16 threads, so that data point was omitted from this experiment.

For iterative algorithms the reported values capture the running time of the

first iteration.
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Threads WC KM II PR LDA
2 2.5× 4.5× 3× 6.5× 4×
4 3× 6× 3× 7× 4×
8 3.5× 6× 3× 7× 6×
16 3× 5× 3.5× 8.5× 8×

Table 5.6: Speedup of HONE over Hadoop PDM based on the strong
scalability results in Table 5.4 and Table 5.5.

As with the strong scalability experiments, we see that efficiency varies

by application. Again, since our machine has only 8 physical cores, it is

no surprise that efficiency falls off dramatically with 16 threads, since they

may be contending for physical resources. Inverted indexing and PageRank

perform poorly, while the three remaining applications appear to scale better.

In particular, both word count and LDA scale almost linearly up to the

physical constraints of the hardware, and k-means scales well up to 4 threads.

Note that this experiment used the pull-based approach to data shuffling for

all data conditions, even though experiments below show that for larger

datasets, a hybrid approach works better. This means that we can achieve

even higher weak scaling efficiency if we dynamically adjust the data-shuffling

approach.

5.5.3 Comparison of Hadoop Implementations

In the next set of experiments, we compared HONE with Hadoop PDM, our

fully-distributed 16-node Hadoop cluster, and our Java implementation of

Phoenix. Running times for the five sample applications on varying amounts
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of data are shown in Figure 5.7. In the legend, “H-Pull”, “H-Push” and

“H-Hybrid” refer to the pull, push, and hybrid data-shuffling approaches

in HONE (for the hybrid approach, each reducer works on two streams).

“Hadoop PDM” refers to Hadoop pseudo-distributed mode. “Hadoop Clus-

ter” refers to Hadoop running on the 16-node cluster. “Phoenix” refers to

our implementation of Phoenix in Java. Note that HONE, Hadoop PDM,

and our Java Phoenix implementation ran on the same machine; in all cases

we fully utilized the machine with 16 threads. For iterative algorithms the

reported values capture the running time of the first iteration. As before, we

report results with the optimal reducer setting discovered via binary search.
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Figure 5.6: Results of weak scalability experiments with HONE.

We summarized the speedup comparing HONE to Hadoop PDM and the
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Threads WC KM II PR LDA
2 95% 94% 88% 90% 98%
4 95% 94% 76% 63% 99%
8 99% 61% 66% 40% 99%
16 61% 30% 41% 18% -

Table 5.7: Weak scaling efficiency based on Figure 5.6.

Hadoop cluster as follows: For each data size category (small, medium, and

large), we considered only the largest data condition for each application, as

shown in Table 5.3. For example, with word count we considered the 512

MB, 2 GB, and 16 GB conditions. For each data condition, we selected the

fastest from the {pull, push, hybrid} approaches and divided that running

time by the running time of either Hadoop PDM or the Hadoop cluster. If

the value is greater than one, indicating that HONE is slower, we take the

negative; otherwise, we take the inverse, indicating that HONE is faster.

These values are reported in Table 5.8.

For word count, as we can see from Figure 5.7a, the pull-based approach

to data shuffling is the fastest for small to medium datasets. With large

datasets, however, the hybrid approach appears to be the fastest. In all cases,

the push-based approach is the slowest of the HONE configurations. HONE

performs substantially faster than Hadoop PDM across all data conditions

and is faster than the 16-node Hadoop cluster on small and medium datasets.

The latter finding is not surprising since Hadoop jobs on a distributed cluster

have substantial startup costs relative to the amount of data processed. We

153



find that our Java Phoenix implementation is very slow, sometimes by up to

two orders of magnitude compared to HONE.

Results for k-means clustering and inverted indexing follow the same

general trends as word count: pull-based data shuffling is faster on smaller

datasets, but the hybrid approach is faster on bigger datasets. HONE is

faster than Hadoop PDM across all dataset sizes, and it is faster than the

16-node Hadoop cluster on small to medium datasets. However, the Hadoop

cluster is faster on the large datasets. For inverted indexing, the Java im-

plementation of Phoenix is terrible, just like in word count. However, for

k-means, the performance gap between Java Phoenix and HONE is substan-

tially smaller—in some cases, the performance of Java Phoenix approaches

HONE configurations. We believe that this is because k-means generates far

less intermediate data than inverted indexing or word count, which confirms

our thinking all along—that the optimization of intermediate data structures

for data shuffling is the key to achieving high performance.

We notice a different pattern for PageRank and LDA: HONE is faster

than both Hadoop PDM and the Hadoop cluster across all data conditions.

This is perhaps due to the relatively small size of the datasets—the graph

is relatively small, and the document collection for LDA is smaller than

the Wikipedia articles used in word count and inverted indexing. Thus,

these results appear to be consistent with the above findings. The pull-based
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HONE vs. Hadoop PDM
WC KM II PR LDA

small 6× 14× 4× 30× 7×
medium 4× 3× 5× 9× 8×
large 5× 3× 4× 6× 8×

HONE vs. Hadoop cluster
WC KM II PR LDA

small 6× 7× 4× 15× 3×
medium 2× 2× 2× 5× 2×
large −2× −2× −2× 3× 2×

Table 5.8: Relative performance of HONE compared to Hadoop
PDM (top) and the 16-node Hadoop cluster (bottom) for different
data conditions. Negative values indicate that HONE is slower
than the comparison system.

approach outperforms all others for PageRank, but all three data-shuffling

approaches are roughly equal for LDA.

Summarizing these results, our experiments suggest a few key takeaways.

For small to medium datasets, the pull-based approach to data shuffling

seems to be the fastest, but for large datasets, the hybrid approach can be

faster—however, there are application-specific differences, such as with LDA.

In our applications, we did not find a case where the push-based approach was

convincingly better, which suggests that contention on the reducer streams

and synchronization overhead significantly impacts performance.

In all these experiments, HONE is faster than Hadoop PDM, and in some

cases, faster than the 16-node Hadoop cluster as well. For the cluster results,

one can criticize that we have not used sufficiently large datasets to make

distributed Hadoop worthwhile—but that’s exactly the point we are trying
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to make. As individual servers grow in memory capacity and core count, the

sizes of datasets that can be handled in memory grows as well, and in these

cases, a scale-up solution is perhaps preferable to a scale-out solution.

Finally, comparisons to our Java Phoenix implementation show that in-

termediate data structures for data shuffling need to be specifically designed

for the execution environment. We adapted an approach that works well for

C/C++, but translates into an inefficient design in Java. This shows, not

surprisingly, that optimizations need to be targeted to the specific execution

environment.

5.5.4 Comparison with Other Systems

Although Phoenix and Spark have very different designs compared to HONE,

we believe that a comparison is still instructive. Here, we describe experi-

ments on the word count and k-means clustering applications with varying

amounts of data.

Phoenix2 [92] and Phoenix++ [82] are implemented in C/C++. Thus,

a comparison against HONE gives us a sense of how much the choice of

language matters. We downloaded both systems and ran an “out of the box”

evaluation with default settings on word count and k-means clustering (both

were existing implementations). We used the same server as all our other

single-machine experiments. Relative performance is shown in Table 5.9 for
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word count (top) and k-means (bottom): positive values indicate that HONE

is faster and negative values indicate that the comparison system is faster.

The earlier system, Phoenix2, is actually slower than HONE on word

count, and has scalability limitations—throwing segmentation faults beyond

2 GB.

Phoenix++, on the other hand, is 2–3× faster than HONE on word count

up to 8 GB, but has roughly comparable performance at 16 GB. For k-

means clustering, both Phoenix2 and Phoenix++ are substantially faster

than HONE, by a factor of up to 7× on larger data. The symbol ∼ indicates

that speed is roughly the same as HONE. Note that Phoenix++ performs

“in-mapper combining” [58] and requires the developer to specify a data

structure to store intermediate data (based on the application type), which

gives it a performance advantage over Phoenix2 and HONE. However, this

substantially alters the MapReduce model. These results show that there

can be significant performance advantages to adopting C/C++, but at the

cost of abandoning Hadoop compatibility.

In our evaluation of Spark, we loaded all data into memory (via the

RDD abstraction) and allowed the system to fully utilize hardware resources

(16 threads). These evaluations were performed on the same server as all

the other single-machine experiments, and we used existing word count and

k-means implementations. Results are shown in Table 5.9 for word count
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Word Count

128
MB

256
MB

512
MB

1 GB 2 GB 4 GB 8 GB 16
GB

Phoenix2 2× 2× 3× 2.4× 2.1× - - -
Phoenix++ −2× −3× −2× −2× −2× −3× −2× ∼
Spark 3× 3× 3× 2× 2× 2× ∼ ∼

K-means

12M 26M 51M 102M 204M 398M
Phoenix 2 −4.5× −3.5× −4× −4.5× −6.5× −6.4×
Phoenix++ −5× −4× −5× −6× −7.5× −7×
Spark 4× 3× 3× 2× 2× 3×

Table 5.9: Relative performance of HONE compared to Phoenix2,
Phoenix++, and Spark for word count (top) and k-means (bot-
tom). Negative values indicate that HONE is slower than the
comparisons system. Note that Phoenix2 does not scale beyond
2 GB and terminates with a segmentation fault. The symbol ∼
indicates that speed is roughly the same as HONE.

(top) and k-means (bottom). For word count, HONE is faster than Spark

on datasets up to 4 GB and roughly comparable in terms of speed for larger

datasets. For k-means, HONE is consistently faster than Spark for all dataset

sizes. We are quick to emphasize that this is inherently an apples-to-oranges

comparison because HONE and Spark are very different. Whereas Spark

provides a general data processing model, HONE is limited to MapReduce.

Spark was designed for distributed execution on a cluster, whereas HONE

was specifically optimized for running on a single machine. However, since

Spark and HONE both run on the JVM, the performance differences gives us

a sense of the gains that might be attributed to careful engineering against

the characteristics of the platform.
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5.5.5 Effects of Input Split Size

In standard distributed Hadoop, input splits for the mappers are aligned

with HDFS blocks so that tasks can be efficiently placed on machines where

the blocks are held locally. Because HONE runs on a single machine, this

constraint is not applicable and thus we have greater flexibility in tuning

the split size. There are two considerations to balance when setting a value:

Smaller splits lead to more mapper tasks and thus generate more opportuni-

ties to extract parallelism. On the other hand, if the split size is too small,

the mapper threads don’t have sufficient work to perform, and thus we waste

time context switching.

We performed an experiment to empirically determine how these two

factors play out. Figure 5.8 plots the execution time of word count and

inverted indexing for different split sizes on the 512 MB dataset (using 16

threads). As we can see, for word count the optimal split size is 5 MB,

whereas for inverted indexing, the we achieve the fastest running time with

64 MB.

5.5.6 Using HONE in a Multi-tenancy Cloud

HONE provides an interesting option in addition to other MapReduce exe-

cution frameworks (such as Hadoop PDM and Hadoop cluster) to a cloud
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service provider for efficient execution of a set of MapReduce jobs. For our

illustrative experiment, we consider three workload mixes having ten word

count application jobs each; mix -1 consists of 60% small (125 MB input

size), 20% medium (1 GB) and 20% large (15 GB) jobs; mix -2 consists of

20% small, 60% medium and 20% large jobs; mix -3 consists of 20% small,

20% medium and 60% large jobs. We consider two execution frameworks:

HONE and a Hadoop 15-node cluster, and we compare the performance

of naive execution frameworks, All-HONE and All-Hadoop, with smarter

counterpart S-Scheme. All-HONE scheme chooses HONE as an execution

framework for all the jobs, whereas All-Hadoop chooses 15-node Hadoop

cluster for all jobs. S-Scheme uses HONE for small and medium data sizes,

and the 15-node Hadoop cluster for the larger jobs. Table 5.10 shows that

smarter execution selection schemes such as S-Scheme performs significantly

better than the naive schemes. For workload mix -1,2,3 when compared to

All-HONE, S-Scheme exhibits 3.5X, 3X and 4X speedup and when compared

to All-Hadoop, it exhibits speedup of 2.3X, 2X and 1.3X.

Workload Mix All-HONE All-Hadoop S-Scheme
mix -1 1249 859 367
mix -2 1345 951 463
mix -3 3546 1144 899

Table 5.10: Selecting the right framework for the data size can lead
to significant benefits. All numbers are in seconds.
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5.6 Synthetic Workload Results

To better understand the effects of different job characteristics on HONE, we

built a synthetic workload generator that allows us to create different types

of MapReduce jobs. Whereas our sample applications encode a specific set of

fixed characteristics, the workload generator lets us vary those characteristics

independently. We also used this tool to evaluate the impact of the off-heap

memory allocation optimization.

5.6.1 Workload Generator

The basic structure of the synthetic job is similar to the word count appli-

cation, but with a number of adjustable parameters, shown in Table 5.11.

The job takes as input a collection of text documents to simulate actual data

processing; the mapper tokenizes each document and processes each token

in turn. What happens next depends on the workload parameters (details

below), but intermediate (key, value) pairs are generated with an integer

between 1 and 10,000 as the key and a random string as the value. The

reducers simply count the number of values that are associated with each

key and output the final counts.

Mapper emit distribution parameter (dm) determines the number of in-

termediate (key, value) pairs emitted per token in the mapper. This param-
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Parameter Description

dm Mapper emit distribution; possible values are {one-to-
one, many-to-one, one-to-many}.

λ For dm = one-to-many, the number of intermediate
(key, value) pairs to emit per token is decided by draw-
ing from a Poisson distribution with mean λ. Default
value is 10.

ψ For dm = many-to-one, the probability to emit an
intermediate (key, value) pair per token. Default value
is 0.1.

di Intermediate key distribution; possible values are
{uniform, Zipfian, biased}.

zipfskew For di = Zipfian, the Zipfian skew parameter. Default
value is 10.

α For di = biased, probability an intermediate (key,
value) pair will be sent to a single “special” reducer.
Default value is 0.7.

ps Payload size, the length of the randomly-generated
string that serves as the intermediate value. Default
value is 3.

bcpu Parameter to control CPU-intensiveness of the work-
load (in the mapper). For each token, value of π is
calculated to bcpu digits before generating intermedi-
ate data. Default value is 2.

Table 5.11: Description of workload generator parameters.

eter attempts to model the fact that some MapReduce algorithms generate

more intermediate data than input data, while others generate less. The

possible settings are {one-to-one, many-to-one, one-to-many}.

Implementing the one-to-one setting is straightforward: for each input

token the job emits an intermediate (key, value) pair, based on constraints

specified below. For the one-to-many setting, we need a mechanism to

stochastically determine the number of (key, value) pairs to emit for each

token. For this we draw from a Poisson distribution with a mean of λ (set
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to 10 by default). In the many-to-one case, for every token, we generate an

intermediate (key, value) pair with probability ψ. The default value of ψ is

0.1, which means that one intermediate pair is emitted every ten tokens on

average.

Intermediate key distribution parameter (di) determines how interme-

diate (key, value) pairs are assigned to reducers. For example, word count

exhibits a Zipfian intermediate key distribution since term occurrences are

(roughly) Zipfian (i.e., lots of occurrences of common words and a long tail).

Graph algorithms often behave similarly due to the presence of “supernodes”,

or nodes with many incoming edges. On the other hand, intermediate data

in k-means clustering is uniformly distributed.

In order to capture these different characteristics, we provide a parameter

di that can be set to {uniform, Zipfian, biased}. In all cases the intermediate

key is an integer between 1 and 10,000, but the selection of the key is based

on this setting:

• In the case of uniform, the integer is selected based on a uniform distri-

bution.

• In the case of Zipfian, the key is drawn from a Zipfian distribution with

skew parameter zipfskew, with a default value of 10.

• In the case of biased, the intermediate key is selected such that each
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emitted (key, value) pair is assigned to a “special” reducer with prob-

ability α, or is otherwise assigned to one of the other reducers with

uniform probability. This means that if we have r reducers, one reducer

will receive α fraction of all intermediate data, while the remaining data

will be distributed evenly among the r − 1 other reducers. The default

value of α is 0.7.

Payload Size (ps) determines the size of the intermediate value. In word

count the payload is always an integer, but other MapReduce applications

may emit bigger values that have complex internal structure. In the workload

simulator, the value in the intermediate (key, value) pair is a randomly-

generated string of length ps, with three as the default value.

CPU-intensiveness parameter (bcpu) controls the amount of processing

that is performed in the mapper in the simulated workload. To simulate

workloads that are CPU-intensive to varying degrees, we compute π to bcpu

digits for each token before proceeding to generate intermediate output. The

default value is two.

5.6.2 Summary of Findings

We have been exploring the performance of HONE and other systems under

different workloads using the synthetic workload generator. This is the sub-

ject of ongoing explorations, but in Figure 5.9 we share a few of our initial
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findings. In particular, we have been using this approach to examine the

performance impact of the off-heap memory optimization discussed in Sec-

tion 5.3.2; the is abbreviated “OH” in the figure legends. The basic setup

is the same as in all the experiments above, comparing HONE (using the

pull-based approach to data shuffling) with Hadoop PDM and the 16-node

Hadoop cluster. As with before, all in cases we used binary search to find

the optimal number of reducers, and report results based on those settings.

HONE gracefully handles skew: Figure 5.9a shows that if the interme-

diate key distribution is uniform, then HONE is faster than Hadoop PDM

for all data conditions examined and HONE is faster than the full Hadoop

cluster for smaller datasets. This finding is consistent with the results from

Section 5.5. However, for non-uniform intermediate key distributions, HONE

appears to be faster than Hadoop PDM and the full Hadoop cluster for the

data conditions we examined; this is shown in Figures 5.9b, 5.9c, 5.9d, and

5.9e. Skew creates stragglers (tasks that take substantially more time than

the others), which is a well-known issue for Hadoop in a distributed environ-

ment [52, 57], and the effects appear to carry over to Hadoop PDM as well.

On the other hand, the design of HONE makes it more resistant to skew

effects.

HONE is less sensitive to payload size: Increasing the payload size in-
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creases disk activity and increases pressure on the communication channels

for Hadoop PDM and the Hadoop cluster. On the other hand, HONE ap-

pears to be relatively insensitive to the payload size since everything is held

in memory (provided, of course, that we have sufficient memory). This result

is shown in Figure 5.9f.

HONE effectively utilizes CPU resources: As the workload becomes

more CPU-intensive, HONE is able to effectively utilize available cores; see

Figures 5.9g and 5.9h. Our single server has only 8 physical cores, so at

some point we begin to saturate all available compute capacity—the full

Hadoop cluster obviously has an advantage here because it has more cores.

In Figure 5.9h, we make an interesting observation: for Hadoop PDM and

the Hadoop cluster, increasing the CPU-intensiveness parameter (at least up

to 10) does not have much of an impact on the overall running time, which

suggests that there are bottlenecks elsewhere (e.g., I/O and skew issues). In

this sense, HONE achieves a better balanced design.

HONE off-heap can be up to 2× faster than HONE on-heap: With

HONE, offloading intermediate data to off-heap native direct memory con-

sistently improves performance, compared to the default setting where all

intermediate data are stored on the JVM heap.
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5.7 Summary of Contributions

In this thesis, we propose to “scale down” Hadoop to run on shared-

memory machines. We present a prototype runtime called HONE that is

intended to be API with standard (distributed) Hadoop. That is, one can

take an existing Hadoop jar and run it, without modification, on a multi-core

shared memory machine using HONE. This allows us to take an implemented

algorithm and find the most suitable runtime environment for execution on

datasets of varying sizes—if the data fits into RAM, we can avoid network

latency and significantly increase execution time in a shared-memory envi-

ronment.

API and binary compatibility with Hadoop is the central tenant in our

design. Although there have previously been alternative MapReduce imple-

mentations for shared-memory machines , taking advantage of them would

require porting Hadoop code over to another custom API. In contrast, HONE

is able to leverage existing implementations—we present experiments running

a Hadoop-based Latent Dirichlet Allocation (LDA) implementation [93] on

HONE and compare the performance of a single shared-memory machine

with a 15-node Hadoop cluster.

As others have suggested, we need to re-think scale-out vs. scale-up archi-

tectures as the amount of cores and memory on high-end commodity servers
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continues to increase. There is no doubt that the total amount of data is also

growing rapidly, but it is unclear if the datasets used in typical analytical

tasks today are increasing as fast. The crux of the scale-out vs. scale-up de-

bate hinges on these relative rates of growth: server capacities are (roughly)

growing with Moore’s Law, which should continue for at least another decade.

If dataset sizes are growing at a slower rate, then scale-up architectures will

become increasingly attractive.

Ultimately, the datacenter is likely to consist of a mix of scale-out and

scale-up systems—we will continue to run large, primarily disk-based jobs to

scan petabytes of raw log data to extract interesting features, but this work

explores the interesting possibility of switching over to a multi-core, shared-

memory system for efficient execution on more refined datasets. With HONE,

this can all be accomplished without leaving the comforts of MapReduce: we

simply select the most appropriate execution environment based on dataset

size and other characteristics of the workload. This brings us to the biggest

limitation of our current work and the subject of ongoing research—how to a

priori determine the best HONE configuration in terms of the data-shuffling

approach, split size, thread pool sizes, etc. In the future, we can imagine

an optimizer that is able to examine a Hadoop workload and automatically

decide what job to run where and the optimal parameter settings.

Our contributions in this work are:
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• HONE is a scalable MapReduce implementation for multi-core, shared-

memory machines. To our knowledge it is the first MapReduce im-

plementation that is both Hadoop API compatible and optimized for

scale-up architectures.

• We propose and evaluate different approaches to implementing the data

shuffling stage in MapReduce, which is critical to high performance.

• We discuss key challenges in implementing HONE on the JVM, how we

addressed them, and lessons we learned along the way.

• We evaluate HONE on a number of real-world applications, comparing

it to Hadoop pseudo-distributed mode, a 16-node Hadoop cluster, and

a few other systems.

• We share a synthetic workload generator for evaluating HONE that may

be of independent interest for evaluating other systems.
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Figure 5.7: Comparing HONE, Hadoop PDM, the 16-node Hadoop
cluster, and our Java Phoenix implementation on five different ap-
plications with varying amounts of data. Note that the y-axis is
plotted on a log scale.
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Figure 5.9: Experimental results using our synthetic workload gen-
erator.

172



Chapter 6

Conclusion and Future

Directions

Overall, in this dissertation, we focus on the issue of resource inefficiency

in scale-out architectures and we demonstrate that in these architectures

workload consolidation can minimize overall resource consumption.

In the first part of the dissertation, we exploit the fact that most dis-

tributed environments need to use replication for fault tolerance, and we

devise workload-driven replica selection and placement algorithms that at-

tempt to minimize the average query span. We model a historical query

workload trace as a hypergraph over a set of data items (which could be re-

lation partitions, or file chunks), and formulate and analyze the problem of

replica placement by drawing connections to several well-studied graph the-
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oretic concepts. We use these connections to develop a series of algorithms

to decide which data items to replicate, and where to place the replicas. We

show effectiveness of our proposed approach by building a trace-driven sim-

ulation framework and by presenting results on a collection of synthetic and

real workloads. Our experiments on analytical workloads show that careful

data placement and replication can dramatically reduce the average query

spans resulting in significant reductions in the resource consumption.

In the second part of the dissertation, we identify two key challenges in

today’s search architectures, first is high search costs that increase overall

operating cost for the search service provider; second is, high load imbalance

that degrades the search service performance. To address these challenges,

we develop a system called as WAFEL, which stands for “Workload-Aware

Framework for search cost and load Effective information retrievaL”. These

two objectives, minimizing search cost and load imbalance are often at odds

with each other. To achieve first objective (minimizing search cost) we ana-

lyze search workload history to perform workload-aware web document par-

titioning to minimize the overall search cost by minimizing the average query

span. Next, based on access frequencies of the web documents, we perform

load-aware replication to create opportunity for load dispersion across the

partitions at the time of routing. In order to take the advantage of workload-

aware partitioning and load-aware replication, we introduce a smart replica-
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tion scheme that can route queries to the physical partitions minimizing load

imbalance while carefully trading the search cost. Our experiments on real

dataset show effectiveness of our proposed approaches.

With an observation that unnecessary scaling-out can be costly in terms

of resource consumption often degrading performance as well, in the context

of Hadoop, we propose scaling down Hadoop to run on multi-core, shared-

memory machines. We present a prototype runtime called HONE (Hadoop

One) that is API compatible with Hadoop. With HONE, we can take an

existing Hadoop application and run it efficiently on a single server. This

allows us to take existing MapReduce algorithms and find the most suitable

runtime environment for execution on datasets of varying sizes. For dataset

sizes that fit into memory on a single machine, our experiments show that

HONE is substantially faster than Hadoop running in pseudo-distributed

mode. In some cases, HONE running on a single machine outperforms a

16-node Hadoop cluster.

Despite the overall improvements that the techniques introduced in this

work bring about, there are number of limitations that need to be addressed.

We leave these issues to be addressed as future work. These limitations are

as follows:

• Workload-aware data partitioning: Our workload-aware partition-
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ing approach to minimize query spans discussed in Chapter 3 and Chap-

ter 4 assumes homogeneous partitions or physical machines. A typical

data center may consist of heterogeneous machines. We note that par-

titioning on heterogeneous setup to achieve certain objective is a ex-

tremely hard problem and at this point it is unclear how to approach

this problem.

• Routing: In this work, once we perform workload-aware data placement

and replication, we perform setcover computation for routing queries to

physical partitions to minimize the number of machines accessed by

the queries. Performing setcover computation for each query can be

expensive, instead it would be faster if we can employ an incremental

setcover computation to speedup the routing. We leave this as future

work.

• In-memory MapReduce: Our in-memory MapReduce system HONE

is developed in Java, that means it inherits limitations of JVM. Single

JVM process does not scale for large datasets in-memory. In this work,

although we implement off-heap technique to scale the system for rela-

tively bigger data, we cannot handle more than 16GB in-memory. As

a future work, we wish to scale our system to much larger datasets on

single machine.
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This dissertation has highlighted the importance of resource minimization in

Big Data platforms. The techniques introduced in this work focus on taking

advantage of workload-awareness and consolidation of workloads to control

resource wastage and also to increase performance.

Also, in this chapter, we discuss a few interesting broad set of future

research directions related to the work presented in this dissertation.

6.1 Energy Efficient Computing

Today we are witnessing that energy costs are ever increasing. On the

other hand, increasing demand for information processing have led to cheaper,

faster and larger data management systems. This demand in turn requires

more and more hardware to be employed to meet the service needs putting

more pressure on energy costs. We notice that today most of the systems

that are being built for the purpose of information processing usually are

optimized for execution times. For example: Hadoop is a very popular data

processing software employed primarily to crunch very large amounts of data

(in the range of terabytes and petabytes). Hadoop cluster farms usually

make use of thousands of cheap commodity server hardware. Main emphasis

in development of MapReduce based software like Hadoop is high scalability

and lower execution times. We find that emphasis on energy efficiency is

completely missing in these systems. We feel that today there is a strong
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need for energy and resource-aware scalable systems that only focus on high

scalability and low execution times but also on lower energy and resource

consumptions.

One open problem that we identify in this area is regarding improving

energy efficiency of Hadoop. We identify several opportunities in Hadoop

to improve its energy efficiency while maintaining its impressive scalability.

First is in HDFS, where question is how to improve HDFS data placement

policy so that data items can be co-located in an automated way? Secondly,

imagine a hadoop cluster farm that has both cheap commodity and high

performance expensive servers, then how to route the Hadoop jobs so that we

achieve highest energy efficiency while we meet our performance deadlines?

In both the issues, strong knowledge about workload history would help

immensely. Our work in this thesis on workload-aware data placement and

replication policies is relevant to these issues and lessons learnt from our work

can be applied in a generic way to solve these problems.

6.2 In-Memory Computing

Previously, it used to be expensive to scale up computing hardware, so

most of the large-scale systems used cheap commodity machines. But today

scenario is changing where scaling-up of a single machine has become fairly

inexpensive. In coming days, the data centers ultimately will consist of a mix
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of scale-out and scale-up systems. We note that, today most of the systems

developed to handle the problem of Big Data are optimized for scale-out

settings. These design decisions often can lead to under utilization of the

available resources. In order to judiciously make use of cheap processing

power of commodity hardware together with large memories of scaled-up

machines, we need systems that can also take advantage of large available

memories.

One idea in this direction is to develop smart data processing techniques

that can take advantage of both scale-out and scale-up optimized systems.

For example in the scenario of Hadoop, let us say that we have developed a

Hadoop compatible system like HONE that is optimized for scaled-up sys-

tems. Also let us say we perform a workload-aware data placement and

replication in Hadoop. When jobs arrive at Hadoop then if job span is equal

to 1 then we can send to scale-up optimized system like HONE and when

a job with job span greater than 1 arrives at the system, it can be sent

to vanilla Hadoop which uses scaled-our architecture with cheap commodity

machines.

6.3 NUMA-aware Computing

Nowadays, as the number of cores to be placed on a single processor

socket has hit the limits, multi-socket computing has become a norm where
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multiple sockets with each socket employing multiple cores will carry out the

processing. Multiple sockets share a common cache whereas multiple CPU

core within a socket share a high speed cache. Accessing the data across the

socket is orders of magnitude slower than the data access across the cores

within a same socket, hence the problem of Non-Uniform Memory Access

(NUMA).

As the many core computing becomes more and more popular, informa-

tion processing systems need to utilize many cores for performance. NUMA

will create a major performance hit for these systems. So we need NUMA-

aware systems, that can make smart decisions about data access and schedul-

ing and avoid high latency out-of-socket data accesses.

One open problem in this direction that we identify is in the context of

multi-threaded map reduce systems. If we have multi-threaded map reduce

system like HONE, then how can we achieve NUMA-awareness so that in

the shuffling stage threads do not make too many out-of-socket accesses?

6.4 Multi-tenancy in Cloud Infrastructures

Cloud computing is gaining popularity where in order to reduce operating

costs, multiple businesses or tenants share a common infrastructure owned

by a cloud service provider. In coming days, to improve businesses multi-

ple tenants may also share data among themselves while sharing common
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infrastructure.

In a cloud setting, usually, each tenant has different workload require-

ments and service level agreements (SLA). Each tenant wants to make profits

and also expects cloud service provider to meet his SLAs. Whereas cloud ser-

vice provider’s goal is to maximize performance for each tenant and minimize

the overall cost of their service infrastructure. In other words, cloud service

providers objective can be given as: max(performance
cost

). In order to meet

both tenant and cloud provider’s objective, we need techniques to perform

multi-tenant workload consolidation.

One open problem in this direction is: given different workloads corre-

sponding to multiple tenants with different SLAs, can we model these work-

loads together such that the workload-aware data partitioning helps meet

multi-tenant SLAs as well as help maximize cloud service provider’s objec-

tive.
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