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At the back of our eyes, photoreceptors capture light and convert it into electrical signals 
that we perceive in our brain as vision.  Photoreceptor function is energy expensive, even 
more so than many other processes in the body.  Furthermore, photoreceptor metabolism 
increases in the dark and releases more metabolic by-products (CO2, lactic acid, and 
H2O) into the photoreceptor extracellular space (SRS).  The retinal pigment epithelium 
(RPE) maintains photoreceptor health by transporting these metabolic acids from the SRS 
to the choroidal blood supply.  By using native and cultured fetal human RPE, we show 
that the apical membrane is significantly more permeable to CO2 than the basolateral 
membrane.  This feature traps CO2 in the cell and drives carbonic anhydrase (CA)-
mediated hydration of CO2 into HCO3

-, which is subsequently transported out of the 
basolateral membrane by a Na+-linked HCO3

- co-transporter (NBC).  This process 
increases net steady-state fluid absorption, thus maintaining retinal adhesion to the RPE.   
 
Oxidative metabolism generates significantly more ATP than glycolysis, but 
photoreceptors derive ≈ 50% of their total ATP consumed from glycolysis due to the low 
oxygen level at the photoreceptor inner segment.  Furthermore, lactic acid production and 
release into the SRS almost doubles in the dark.  We show that the RPE transports lactic 
acid from the SRS via a proton-linked monocarboxylate transporter (MCT1), and this 
process activates pHi-regulatory mechanisms at the RPE apical membrane: Na+/H+ 
exchanger (NHE) and Na+-linked HCO3

- transporters (NBC1 & NBC3).  These 
mechanisms also facilitate MCT1-mediated lactic acid transport by preventing buildup of 
a proton-gradient across the RPE apical membrane.   
 
We show that an increase in SRS CO2 or lactic acid level causes RPE cell swelling.  The 
RPE alleviates swell-induced osmotic stress by activating apical membrane K+-channel 
(Kir 7.1) and basolateral membrane Cl--channel (ClC-2), which drives KCl (and fluid) 
out of the cell to decrease cell volume.  In this study, we identified the cellular 
mechanisms in RPE that prevent acidosis and fluid accumulation in the SRS caused by 
increased photoreceptor metabolism in the dark.  These homeostatic processes maintain 
the close anatomical relationship between photoreceptors and RPE, thus protecting 
photoreceptor health and preserving visual function.       
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CHAPTER 1: Introduction and Background 

Section 1.1 – Overview 

Our view of the external world begins at the photoreceptors, which capture light quanta 

and convert them into electrical signals that are transmitted to and interpreted in our brain 

as vision.  This event involves a large amount of coordination between many different 

specialized cells within the retina, which continuously integrates, process, and transmit 

the visual signals to the brain (Yau, 1994; Lamb & Pugh, 2004; Stephen et al., 2008).  

However, photoreceptor function requires a large amount of energy, even more so than 

the brain.  Energy (as ATP) is generated by mitochondria that are densely packed at the 

junction between photoreceptor inner and outer segments (Stone et al., 2008).  As a 

result, metabolic waste-products (i.e., CO2, lactic acid, and water) are released into the 

extracellular space that surrounds the photoreceptors – subretinal space (SRS).  In the 

human eye, the SRS has a very small volume (≈ 10 μL), thus even small accumulations 

of metabolic acids within the SRS can cause acidosis and increased osmotic pressure – 

both of which can be detrimental to photoreceptor function.  It has been hypothesized that 

the retinal pigment epithelium (RPE), a specialized monolayer of cells adjacent to the 

photoreceptors (Fig. 1-1), prevents these potentially catastrophic conditions by actively 

transporting these photoreceptor-generated metabolic by-products from the SRS into the 

choroid.  However, the mechanisms involved in this process have been unclear.    

  

The goal of this thesis is to identify and understand the various mechanisms involved in 

CO2, lactic acid, and water transport in human RPE.  We used a primary cell culture 

model of fetal human RPE (Chapter 1), which has been shown to closely mimic 
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physiological and morphological characteristics of the native tissue (Lin et al., 1992; 

Quinn & Miller, 1992; la Cour et al., 1994; Quinn et al., 2001; Maminishkis et al., 2006; 

Adijanto et al., 2009; Wang et al., 2010).  To study RPE pH regulatory mechanisms 

involved in CO2 and lactic acid transport, intracellular pH (pHi) in human RPE was 

measured by using a pHi-sensitive fluorescence dye (Chapter 2).  The transepithelial 

potential (TEP) was recorded with a pair of calomel electrodes linked to agar bridges 

placed in apical and basal baths (Chapter 2).  Recording TEP is a highly sensitive method 

to detect acute (millisecond) changes in apical or basolateral membrane voltage (VA & 

VB) that reflects ion channel or transporter activity.  In some experiments, we placed a 

reference microelectrode within the cell to record changes in VA & VB independently 

(Chapter 2).  Combining these recording techniques with pharmacological interventions 

(see Table 2-4) and other maneuvers allows us to produce unequivocal physiological data 

on human RPE transporters and channels (Chapters 3, 4, & 5).  Understanding the normal 

physiological role of mechanisms involved in metabolic acid transport provides a first 

critical step in understanding the pathophysiology of human ocular diseases.  This 

analysis is required for the development of appropriate animal models suitable for pre-

clinical experiments that can lead to phase I clinical trails and facilitate the development 

of therapeutic interventions and strategies for disease prevention.   

 

This new work is described in three main chapters: (1) CO2/HCO3 transport in RPE 

(Chapter 3); (2) lactate transport in the absence of CO2/HCO3 (Chapter 4); (3) lactate 

transport and its interactions with HCO3-transport mechanisms (Chapter 5).  In Chapter 6, 

we present ideas for future projects and describe some supporting preliminary data. 
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Section 1.2 - Behind every successful retina is an intact retinal pigment epithelium 

In 2002, 2.5% (160 million) of the world’s total human population was visually impaired, 

with 0.6% being completely blind (www.who.int/en/).  The consequences of vision loss 

are severe: you lose a sense of yourself and the world around you.  A reduced ability to 

independently perform essential daily functions diminishes an individual’s quality of life 

and imposes a burden on one’s family and the community.  The RPE is involved in many 

vision-impairing diseases.  For example, age-related macular degeneration (AMD) is the 

leading cause of blindness among the elderly (> 55 years) in the US and developed 

countries world-wide (Congdon et al., 2004).   

 

Fig. 1-1:  Anatomy of the eye: the neural retina and retinal pigment epithelium.   
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Light enters the eye through the cornea and passes through the lens and vitreous onto the 

retina, where it is absorbed by the visual pigment within the photoreceptors (rods and 

cones) (Fig. 1-1).  The capture of a photon by the visual pigment activates visual 

phototransduction; a cascade of events that induces a rapid change in photoreceptor 

membrane potential (Yau & Hardie, 2009).  This response is subsequently transmitted 

across the retinal layers and out of the retinal ganglion cells into the brain (Fig. 1-1).  The 

rest of the retina serves to fine-tune and regulate the electrical input from the 

photoreceptors (bipolar, amacrine, and horizontal cells), and to protect and nourish the 

retinal cells (Müller cells) (Oyster, 1999).  The retinal pigment epithelium (RPE) 

separates the photoreceptor from its major blood supply (choroid) and provides critical 

support to retinal photoreceptor function (Gallemore et al., 1998; Hughes et al., 1998; 

Strauss, 2005).       

 

Fig. 1-2: Schematic of retinal pigment epithelium cells depicting apical and basolateral membrane 

separation by tight junctions. 

 

Like other epithelia, the RPE is a polarized monolayer – its apical (facing photoreceptors) 

and basolateral (facing choroid) membranes are separated by tight and adherens junction 
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that link individual RPE cells to adjacent cells to form a confluent monolayer of cells 

(Fig. 1-2) (Nelson, 2003; Burke, 2008).  The RPE apical and basolateral membranes are 

separated by tight junctions, which help establish cell polarity by acting as a “fence” that 

segregates the proteins that are trafficked to either the apical or basolateral membranes 

(Shin et al., 2006; Terry et al., 2010).  RPE cell polarity is necessary for material (e.g., 

nutrients, metabolic by-products, growth factors) exchange and transport between 

photoreceptors, RPE, and choroid (Hughes et al., 1998; Rizzolo, 2007).   

 

Fig. 1-3:  Anatomical relationship between retinal pigment epithelium and photoreceptor (Miller 

& Steinberg, 1977). 

 

To facilitate this process, the RPE apical membrane has numerous microvilli that 

ensheathes the outer segments of the photoreceptors (Fig. 1-3).  This anatomical structure 
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increases the apical membrane surface area in contact with the SRS, thus facilitating 

RPE-photoreceptor interactions (e.g., material exchange and transport) due to the high 

surface/volume ratio.  The RPE apical membrane and photoreceptors are not in physical 

contact; they are separated by a small volume (≈ 10 μL in human) of extracellular space 

(subretinal space; SRS), whose ionic and pH homeostasis is maintained by active and 

passive transport of solute and fluid across the RPE.  The RPE basolateral membrane 

faces the Bruch’s membrane and an extensive network of blood vessels 

(choriocapillaries) that form the choroidal blood supply (Fig. 1-4).  The choroid has 

normally high blood flow rate; it accounts for ≈ 85% of blood supply to the eye (Alm & 

Bill, 1973; Bill, 1975).  As such, it constitutes the sole blood supply for retinal 

photoreceptors; the RPE transports nutrients, ions, fluid, and metabolic byproducts 

between photoreceptors and choroid (Hughes et al., 1998).   

 

 

Fig. 1-4: The choroidal blood supply (Olver, 1990). (A) Choroidal vasculature viewed from the 

scleral side, showing arterioles (e.g., white arrow), venules (e.g., black arrow), and 

choriocapillaris (asterisk). (B) Choriocapillaris viewed from the retinal side.  
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Besides solute and fluid transport, the RPE also mediates important visual functions such 

as the retinal cycle (Rando, 1991; Lamb & Pugh, 2004), where retinal (vitamin A 

component of the visual pigment) is constantly cycled between the photoreceptors and 

the RPE to regenerate the visual pigment (rhodopsin) and maintain photoreceptor 

photoexitability.  In addition, the photoreceptors are highly susceptible to photodamage, 

thus accumulating toxic amounts of oxidized proteins and lipids within the photoreceptor 

discs, which are continuously shed and replaced at a high turnover rate (Nguyen-Legros 

& Hicks, 2000; Kevany & Palczewski, 2010).  The RPE phagocytose shed photoreceptor 

discs and recycle its components back to the photoreceptor cilium – where new 

photoreceptor discs are synthesized.  Failure of the RPE to phagocytose photoreceptor 

discs results in photoreceptor degeneration in rats (Vollrath et al., 2001) and in humans 

(Koenekoop, 2007).  The RPE also secretes a wide variety of growth factors in a 

polarized manner to the neural retina (e.g., pigment epithelium-derived factor (PEDF)) 

and to the choroid (e.g., vascular endothelial growth factor (VEGF)); these growth factors 

help maintain the structural integrity of the neural retina and the choroidal vasculature 

(Ishida et al., 1997; Blaauwgeers et al., 1999; Jablonski et al., 2000; King & Suzuma, 

2000; Schlingemann, 2004; Marneros et al., 2005).  Loss of RPE function leads to 

photoreceptor degeneration and visual impairment; RPE damage leads to retina and 

choroid degeneration (Del Priore et al., 1995; Litchfield et al., 1997; Aramant & Seiler, 

2004). 



 8

Section 1.3 – The retina and its high metabolism in light and in the dark 

 

Fig. 1-5:  Schematic of rod photoreceptor: The dark current circulates between the inner and outer 

segments. 

 

Metabolic activity in the photoreceptors is among the highest of all human tissue 

(Wangsa-Wirawan & Linsenmeier, 2003); this energy is required to fuel 

phototransduction and to regenerate new photoreceptor discs (Kimble et al., 1980; Yu & 

Cringle, 2001).  The photoreceptor is a polarized cell (Fig. 1-5); it expresses cGMP-gated 

cation (85% Na+ and 15% Ca2+) channels at the outer segments and a K+-selective 

channel and the electrogenic Na+/K+ ATPase at the inner segment.  The polarized 
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distribution of these channels allows for the circulation of a current around the inner and 

outer segments.  This current (also called the dark current) is maximal in the dark; in 

light, phototransduction events lead to the depletion of cGMP at the outer segment, which 

causes the cGMP-gated cation channels to close (Yau & Hardie, 2009).  The closure of 

these channels hyperpolarizes the photoreceptor membrane potential, which inhibits the 

release of glutamate neurotransmitter at the photoreceptor terminal (rod spherule or cone 

pedicle) into the synaptic cleft, where it activates 2nd order neurons such as bipolar cells 

and horizontal cells (Oyster, 1999).  These electrical signals are subsequently transmitted 

to the retinal ganglion cells and into the brain.  

 

The dark current relies on the high Na+ gradient (inward) and a high K+ gradient 

(outward) across the photoreceptor plasma membrane.  If these ionic gradients were not 

continuously sustained, the dark current eventually drives both Na+ and K+ gradients into 

equilibrium, and the photoreceptors would no longer respond to photoexcitation.  The 

3Na+/2K+ ATPase at the inner segment maintains the Na+ and K+ gradients across the 

plasma membrane by using the energy of an ATP molecule to drive three Na+ ions out of 

the cell in exchange for two K+ ions.  A recent study estimated that ATP consumption by 

rod photoreceptor increases ≈ 4-fold in the dark (Okawa et al., 2008).  In darkness, large 

amount of ATP is needed to maintain the dark-current, which requires a high 3Na+/2K+ 

ATPase activity at the inner segments (Ames et al., 1992).  In addition, ATP is used by 

Ca2+-ATPase to recycle Ca2+ out of the cell (Okawa et al., 2008).  Activity of these 

ATPase pumps increases [ATP], and increases [ADP], [inorganic phosphate], and 

[AMP], which in turn activates glycolysis, the TCA cycle, and oxidative phosphorylation.   
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Most of the ATP used by the photoreceptors is produced by oxidative phosphorylation in 

mitochondria located at the junction between the inner and outer segment of the 

photoreceptor (Fig. 1-5) (Stone et al., 2008).  A recent study also provides evidence of 

mitochondria-independent oxidative phosphorylation at the photoreceptor disks (Panfoli 

et al., 2009).  In the dark-adapted eye, photoreceptor O2 consumption (oxidative 

metabolism) and energy production increases to meet the high ATP demand (Wangsa-

Wirawan & Linsenmeier, 2003) – this depletes O2 in the SRS.  Consistent with this 

notion, in vivo O2-sensitive microelectrode experiments on the cat eye show that SRS 

[O2] levels is ≈ 0 mm Hg in the dark vs. ≈ 20 mm Hg in light (Wangsa-Wirawan & 

Linsenmeier, 2003).  The depletion of local O2 forces the photoreceptors to rely more on 

glycolysis (with lactate production) as a source of energy (Linsenmeier, 1986).  Increased 

photoreceptor metabolism (aerobic and anaerobic) in the dark increases CO2, lactic acid, 

and water release into the SRS.  Metabolic acid accumulation in the SRS can cause 

acidosis that inhibits photoreceptor activity (Liebman et al., 1984) and is detrimental to 

the health of surrounding cells (i.e., Müller cells, photoreceptors, and RPE).  In addition, 

pathological conditions that compromise the ability of RPE to clear fluid from the SRS 

can cause abnormal fluid accumulation, resulting in retinal detachment and photoreceptor 

death (Stone et al., 1999; Wickham et al., 2006; Nakazawa et al., 2007).  The RPE 

protects the photoreceptors from these potentially destructive conditions in part by 

regulating pH- and ion- homeostasis of the SRS.  Among its many functions, the RPE is 

responsible for the removal and delivery of metabolites to the choroidal blood supply.   
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Fig. 1-6: Blood supply of the inner retina (Fig. 6-25 from Oyster, 1999).   

   

The neural retina has two blood supplies (Fig. 1-6) (Oyster, 1999): (1) the retinal blood 

circulation is located at the inner retina; (2) the choroidal blood supply is located distally 

behind the RPE.  Early studies demonstrated that choroidal circulation is the major blood 

supply for the photoreceptors; blocking choroidal circulation results in photoreceptor 

degeneration without affecting other retinal cells (Oyster, 1999).  Studies in porcine eye 

also show that most lactate released from the retina is transported to the choroid by the 

RPE (Wang et al., 1997b).  The choroid is the main sink for the removal of most 

photoreceptor-generated metabolites: (1) blood flow rate in the choroid is significantly 

higher than in the retinal blood vessels (Alm & Bill, 1987); (2) metabolites released by 

the photoreceptor inner segments need to diffuse a shorter distance to the choroid (35 

μm) than to the retinal capillary bed at the inner nuclear layer (70 μm) (Oyster, 1999).   
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Section 1.4 – Major ion and fluid transport mechanisms in RPE  

 

Fig. 1-7: Morphology and functions of tight junctions (Sawada et al., 2003).  (A) Schematic 

diagram of tight junction.  (B) Tight junction strands on freeze-fracture replica. (C) The fence and 

barrier functions of tight junctions.  

 

The RPE apical membrane is separated from the basolateral membrane by tight junctions 

(TJs) – TJs function as a fence that prevents intermixing of proteins and lipids between 

the apical and basolateral membrane domains (Fig. 1-7) (Rizzolo, 2007; Burke, 2008; 

Cereijido et al., 2008).  In addition, TJs also form a selectively permeable barrier at the 

intercellular spaces between epithelial cells and its adjacent neighbors, thus limiting free 

diffusion of certain ions and large molecules across the paracellular pathway.  The TJ is 

mainly composed of three families of transmembrane proteins: (1) occludin; (2) claudins; 
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(3) junctional adhesion molecules (JAMs).  These TJ proteins then associate with several 

peripheral membrane scaffolding proteins (e.g., ZO-1), which in turn interacts with the 

actin-cytoskeleton (Shin et al., 2006).  This interaction induces cytoskeleton assembly 

and reorganization within the cell and is critical for post-golgi protein delivery to its 

proper membrane domain (Etienne-Manneville & Hall, 2003; Nelson, 2003).  These 

proteins allow the RPE to maintain a polarized distribution of ion channels, receptors, 

and transporters at its apical and basolateral membranes (Fig. 1-8) (Hughes et al., 1989; 

Lin & Miller, 1994; Kenyon et al., 1997; Hughes et al., 1998; Yang et al., 2008a; 

Adijanto et al., 2009).   

 

 

Fig. 1-8:  Ion channels and transporters in retinal pigment epithelium. 

 

The RPE is one of the two epithelia in the body that expresses the 3Na/2K ATPase (a 

classical marker of epithelial polarity) at the apical membrane (Okami et al., 1990; 

Rizzolo, 1990; Gundersen et al., 1991; Hughes et al., 1998).  The 3Na/2K ATPase is 
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essential for any transporting epithelium, because it maintains Na-gradient needed for 

vectorial (unidirectional) nutrient, ion, and fluid transport (Jaitovich & Bertorello, 2006).  

Besides the 3Na/2K ATPase, the RPE apical membrane contains a Na/H exchanger 

(NHE), an electrogenic Na/2HCO3 co-transporter (NBC1), an electroneutral Na/HCO3 

co-transporter (NBC3), a Na/K/2Cl co-transporter (NKCC1), and an inwardly-rectifying 

K+-channel (Kir 7.1).  The basolateral membrane contains an electrogenic Na/nHCO3 co-

transporter (NBC; n ≥ 2), a Cl/HCO3 exchanger (AE2), a Ba2+-sensitive K+-channel, 

Ca2+-activated Cl-channels, and cAMP-activated cystic fibrosis transmembrane 

conductance regulator (CFTR).  This segregated arrangement of proteins on separate 

membranes allows the RPE to coordinate solute transport vectorially from one side of the 

tissue to another.  The major ions in most biological systems are Na+, K+, Cl-, and HCO3
-.  

[Na]o (≈ 140 mM) and [Cl]o (≈ 120 mM) levels are high in the extracellular space, but are 

low in RPE cytosol ([Na]i ≈ 15 mM and [Cl]i ≈ 70 mM respectively).  In contrast, [K] is 

high in RPE cytosol (≈ 85 mM), but low in the extracellular space (2-5 mM).  [HCO3
-] is 

approximately equal inside and outside the cell (≈ 25 mM). 

 

At the apical membrane, Cl is transported into the cell via the NKCC1, and Cl exits the 

basolateral membrane via Ca2+-activated Cl-channels and CFTR.  HCO3 is transported 

across the apical membrane via NBC1 and NBC3 with the help of the strong Na-gradient.  

HCO3 is transported out of the basolateral membrane via NBC and AE2 (a Cl/HCO3 

exchanger).  Na enters the cell from the apical membrane via NKCC1 and NBC1.  

Although some of these Na is recycled out of the apical membrane via the 3Na/2K 

ATPase, the unrecycled Na leaves the basolateral membrane via the basolateral 
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membrane NBC.  Na-channels or its activity has not been detected in the RPE, NBC is 

currently the only known Na-transport pathway at the basolateral membrane.  K enters 

the cell from the apical membrane via NKCC1 and 3Na/2K ATPase, but most (if not all) 

K is recycled out of the apical membrane via Kir 7.1 K-channel.  Other K-channels at the 

basolateral membrane provides K+ as a counter-ion for Cl- and HCO3
- efflux from the 

RPE.  Although ions are transported across the RPE plasma membrane via transporters 

and channels, some ions (i.e., Na+ and Cl-) can also diffuse across the tight junctions (see 

Fig. 1-8).  In the paracellular pathway, Na is absorbed (from apical to basal) and Cl is 

secreted (from basal to apical).  In the resting state, the RPE transports NaCl and 

NaHCO3 from the apical side to the basal side to drive isoosmotic fluid transport across 

the epithelium.  In addition to osmotically driven fluid transport, other mechanisms of 

fluid transport have also been described (Zeuthen, 2000).     

 

Carbonic anhydrases (CAs) are zinc-metalloenzymes that catalyze the conversion 

between CO2 and HCO3
- according to the following equation: CO2 + H2O ↔ H2CO3 ↔ 

HCO3
- + H+.  Several isozymes of CAs found in the RPE (CA II, CA IV, CA IX, and CA 

XIV) has been shown in other systems to functionally interact with HCO3-transporters 

such as NBC1, NBC3, AE1, AE2, AE3 (Cl/HCO3 exchangers) in a functional complex 

known as the bicarbonate-transport metabolon (Sterling et al., 2001; Alvarez et al., 2003; 

Loiselle et al., 2004; Nagelhus et al., 2005; Morgan et al., 2007; Casey et al., 2009; 

Svichar et al., 2009).  In support of this metabolon theory, binding sites on AE1 and CA 

II for physical interactions with each other has been found (Vince et al., 2000; Vince & 

Reithmeier, 2000).  Further, CA II is activated when it is physically bound to AE1 



 16

(Scozzafava & Supuran, 2002).  In RPE, several membrane-bound CAs (CA IV, CA XII, 

and CA XIV) are expressed exclusively at the apical surface (Wolfensberger et al., 1994; 

Nagelhus et al., 2005; Zhi et al., 2007), suggesting CA involvement in HCO3-transport at 

the apical membrane.  Since the RPE functionally expresses several different HCO3-

transport proteins (i.e., NBCs and AE2) at the apical and basolateral membranes, it is 

possible that their activities are dependent on CAs as illustrated in Fig. 1-9.  Since HCO3-

transport is linked to Na and Cl transport, the interactions between CAs and HCO3-

transporters is indicative of the involvement of CAs in steady-state fluid transport across 

the RPE.   

 

Fig. 1-9: Bicarbonate transport metabolon: HCO3-transporters (i.e., NBCs) interact with carbonic 

anhydrases (CAs) to maximize HCO3 transport across the RPE. 
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The close physiological relationship between HCO3 and fluid-transport was demonstrated 

in frog RPE, where steady-state fluid-absorption was reduced by ≈ 70% following HCO3-

removal from the bathing solutions (Hughes et al., 1984).  Furthermore, the addition of a 

potent but non-specific CA-inhibitor, acetazolamide, has been shown to decrease steady-

state fluid-transport in RPE.  However, these in vitro results are in contrast to in vivo 

animal studies which suggest that acetazolamide (a non-specific CA-inhibitor) enhances 

retinal adhesion and SRS fluid clearance (Kita & Marmor, 1992; Wolfensberger et al., 

2000).  In addition, clinical studies showed that some (but not all) patients with macular 

edema respond to acetazolamide treatment by increasing SRS fluid clearance (Cox et al., 

1988; Fishman et al., 1989).  This difference in the effect of CA inhibition on fluid 

transport in vivo and in vitro will be discussed (in section 3.8), but the underlying 

mechanisms remain to be determined.   

 

There are a number of retinal degenerative diseases (e.g., uveitis, retinitis pigmentosa, 

diabetic retinopathy, age-related macular degeneration) that lead to abnormal 

accumulation of fluid within the retina and subsequent loss of visual acuity 

(Wolfensberger, 1999).  Consequently, there is significant interest in identifying 

mechanisms by which small molecules such as acetazolamide can be utilized to activate 

the fluid transport “engine” of the RPE to eliminate this fluid.  Its efficacy in the clinic 

depends on the extent to which the underlying disease damages the RPE or its transport 

capability. 
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Section 1.5 – Lactate transport in RPE 

Lactate is generally considered as a metabolic waste by-product, which accumulates in 

organs within our body to cause lactic acidosis and muscle fatigue (Hermansen, 1981).  

Research over the past three decades demonstrate that lactate is an intermediate metabolic 

substrate that undergoes oxidative metabolism in cells (Gladden, 2004; Philp et al., 2005; 

Kennedy & Dewhirst, 2010).  The most well established example is the skeletal muscles, 

which contains type I oxidative fibers and type II glycolytic fibers.  In this scheme, 

known as the lactate-shuttle model, type II fibers metabolize glucose into lactate upon 

exercise, which is directly taken up and oxidized by neighboring type I fibers (Peter et 

al., 1971; Baldwin et al., 1978).  A similar lactate-shuttle mechanism was found between 

astrocytes and neurons in the brain, in which astrocytes generates lactate that is 

subsequently metabolized by the neighboring neurons to produce energy (Magistretti, 

2006; Bergersen, 2007; Brown & Ransom, 2007; Pellerin et al., 2007; Pellerin, 2008), 

but this relationship between astrocyte and neuron is controversial (Chih et al., 2001; 

Gladden, 2004; Fillenz, 2005).  In the retina, the lactate shuttling mechanism between 

Müller glia cells and photoreceptors has been described (Poitry-Yamate et al., 1995; 

Poitry et al., 2000): Müller cells metabolize glucose into lactate (Winkler et al., 2000), 

which is taken up by photoreceptors to be used as substrate for oxidative metabolism.  

However this theory of metabolic coupling between Müller cells and photoreceptors is 

also controversial (Winkler et al., 2004).   

 

The retina is highly glycolytic.  More than 80% of all glucose consumed by 

photoreceptors is converted to lactic acid (Wang et al., 1997a; Wang et al., 1997b; 
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Winkler et al., 2008) indicating that the retina is highly dependent on glycolysis as a 

source of ATP, even in the presence of oxygen (Winkler et al., 2000; Padnick-Silver & 

Linsenmeier, 2002; Winkler et al., 2004).  Therefore, regardless of whether lactate 

derives from glutamate-induced lactate release from Müller glia cells, or as a product of 

photoreceptor aerobic glycolysis (or both), large amounts of lactic acid are generated and 

released from the retina into the SRS in light and in dark.  This is consistent with the high 

lactate concentration (≈ 4 - 13 mM) in the SRS compared to that in blood (≈ 1 mM) 

(Adler & Southwick, 1992).   

 

Fig. 1-10:  Lactate transport in retinal pigment epithelium: MCT1 at the apical membrane 

mediates H+-coupled lactate transport into the cell.  At the basolateral membrane, lactate is 

transported out of the cell via MCT3, MCT4, and AE2.  

 

Lactic acid has a low pKa (3.9) and it exists predominantly in ionic form at physiological 

pH (7.4).  Thus although lactic acid may diffuse passively across the plasma membrane, 

lactate is transported much more quickly via H+-coupled lactate transporters or anion-
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exchangers.  Early physiological studies showed that RPE expresses a proton-coupled 

lactate transporter (1:1 H+:Lac-) at the apical membrane in various native and cultured 

RPE preparations (bovine, porcine, frog, and human; see Fig. 1-10) (Kenyon et al., 1994; 

la Cour et al., 1994; Lin et al., 1994; Zeuthen et al., 1996).  This apical membrane H/Lac 

co-transporter in RPE was identified as MCT1, the first member in the family of 

monocarboxylate transporters (Philp et al., 2003b).  Besides in RPE, MCT1 is also highly 

expressed in many other tissues in our body including skeletal muscle, heart, and brain 

(Bonen, 2001; Bonen et al., 2006; Chiry et al., 2006).  At the RPE basolateral membrane, 

lactate is transported out of the cell via H/Lac co-transporters (MCT3 & MCT4) (Philp et 

al., 2001; Philp et al., 2003b) and a Cl/Lac anion exchanger (AE2) (Kenyon et al., 1994).   

 

The importance of lactate transport in the mammalian eye was demonstrated in mice 

lacking MCT1, MCT3, and MCT4 expression – these mice gradually lose photoreceptor 

function and were completely blind within two months after birth (Hori et al., 2000; Philp 

et al., 2003a).  Further, the affliction of MCT3-null mice with altered visual function 

reaffirmed the importance of lactate transport in the eye, more specifically in the RPE 

(Daniele et al., 2008). 
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CHAPTER 2: Materials and Methods 

Section 2.1 – Human Fetal Retinal Pigment Epithelium (hfRPE) culture 

Studying ion and fluid transport mechanisms of RPE using intact adult human RPE is 

highly impractical; adult human eyes are extremely difficult to obtain and are expensive 

if available (≈ $2000/pair).  An alternative is to grow adult RPE cultures.  However, 

culturing adult human RPE cells is complex and comes with many difficulties.  For 

example, adult RPE cells are terminally differentiated and are non-mitotic, thus highly 

specialized culture media formulations supplemented with high levels of serum (10 – 

20%) are needed to “coax” the RPE cells to proliferate (Valtink & Engelmann, 2009).  In 

addition, culture conditions must also allow the RPE cultures to retain most of its in vivo 

characteristics.  The development of RPE polarity and function in vivo are influenced by 

its interactions with the retina and the choroid (Rizzolo, 1991, 1999), which prompted the 

use of retinal or choroidal extracts in cell culture media to mimic in vivo conditions of the 

RPE (Hu & Bok, 2001; Engelmann & Valtink, 2004; Valtink & Engelmann, 2009).  

Nonetheless, typical RPE characteristics such as pigmentation and the cobblestone-like 

morphology are easily lost in cultures.  Furthermore, RPE cell cultures have a tendency to 

dedifferentiate in a process called epithelial-mesenchymal transition into fibroblast-like 

cells with marked different morphological and physiological characteristics to that of 

RPE (MacDonald, 1994) (also see Chapter 6).  There are also variations stemming from 

the production of retinal or choroid extracts and from the use of serum in the culture 

media.  All these problems and complications results in large variations in the quality of 

human RPE cell cultures, which makes physiological studies with these cells difficult. 
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Fig. 2-1:  Human fetal retinal pigment epithelium (hfRPE; 4 week old) cultured on porous plastic 

filter (Maminishkis et al., 2006): (A) Micrograph of hfRPE. (B) Electron micrograph of hfRPE. 

 

Early researchers observed that the success of human RPE culture decreases with 

increasing donor age (Engelmann & Valtink, 2004).  Therefore, culturing RPE cells that 

are in the growth and development process should produce a more successful cell culture 

that is well-differentiated and retains in vivo characteristics.  Indeed, the best 

characterized models of human RPE today are human fetal RPE cultures developed by 

Bok and Miller laboratories (Hu & Bok, 2001; Maminishkis et al., 2006).  Unlike Bok 

lab’s hfRPE culture, the hfRPE culture developed by the Miller lab does not require any 

retinal extracts in the culture media.  In their formulation, every component of the media 

is commercially available and well-defined.  These culture conditions allows for the 

“mass production” of highly differentiated and confluent hfRPE monolayers (Fig. 2-1) 

that possess many characteristics found in native RPE such as steady-state fluid 

absorption, ion transport, CO2/HCO3 transport, tight-junction formation, and growth 

factor secretion (Maminishkis et al., 2006; Li et al., 2007; Economopoulou et al., 2008; 
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Shi et al., 2008; Adijanto et al., 2009; Li et al., 2009).  A major disadvantage of using 

native adult RPE (bovine or human) in physiological studies is the occlusion of the 

basolateral membrane by the thick choroidal vasculature, which significantly reduces the 

accessibility of drugs or solutions to the basolateral membrane.  Using cultured hfRPE 

monolayers eliminates this problem; hfRPE cells are grown on a thin polyethylene 

membrane with numerous pores (0.4 μm diameter).   
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Section 2.2 – Fluorescence imaging experiments   

Cultured hfRPE monolayer was incubated (at room temperature and 5% CO2) in control 

Ringer solution containing 8 μM BCECF-AM (30 minutes) for pHi-imaging, or 8 μM 

Calcein-AM (30 minutes) for volume measurements, or 10 μM (1 hour) Fura-2-AM for 

calcium-imaging (Invitrogen Corp., CA).  Following dye-incubation, the hfRPE was 

incubated for another 30 minutes in control Ringer for at least 30 min before mounting 

onto a modified Üssing chamber (surface-area = 7.1 mm2).  The Üssing chamber was 

mounted on the stage of a Zeiss axiovert-200 microscope equipped with a 20X plan-

neofluar objective.  The hfRPE was continuously perfused with Ringer solution 

(equilibrated with 5%/10%/85% CO2/O2/N2 gas mixture at 34.5 oC) at a flow rate of 2 

ml·min-1.  Excitation photons (440/480 nm-for BCECF; 480 nm for Calcein; 350/380 nm 

for Fura-2) were generated by a xenon light source and the specific wavelengths were 

selected with a monochromator, Polychrome IV (Photonics, CA).  The emission 

fluorescence (535 nm) was collected, amplified and converted into electrical signals by a 

photomultiplier tube (Thorn, EMI).   

 

pHi-calibrations were performed by perfusing high-K calibration solutions (at pH = 6.8, 

7.2, and 7.6) containing 20 µM nigericin into both solution baths.  The average 

calibration parameters were used to linearly correlate fluorescence intensity to 

intracellular pH (pHi) for all pH-imaging experiments.  Fig. 2-2 is a schematic 

representation of the fluorescence imaging set-up.  Cell volume measurement with 

calcein was not a ratiometric, therefore the data was fitted and normalized to an 

exponential curve (fluorescence signal = Ke-bt).  Calibration was achieved by perfusing 
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control Ringer solutions (305 mOsm) with different osmolarities (i.e., 280 mOsm, 330 

mOsm, and 355 mOsm) into both apical and basal baths.  Fura-2 signals was calibrated 

by first perfusing both apical and basolateral membranes with Ca2+-free Ringer solution 

(with 2 mM EGTA) before adding ionomycin (10 μM) into both solution baths.  Next, 

control Ringer solution (1.8 mM Ca2+) containing 10 μM ionomycin was added to both 

baths.  After [Ca2+]i reaches saturation, Ca2+-free Ringer containing 5 mM MnCl2 was 

added to quench Fura-2 fluorescence to reveal autofluorescence signals.  For every 

experiment, autofluorescence levels were determined and subtracted from the data to 

obtain true Ca2+-signals.   

 

Fig. 2-2:  Schematic of the fluorescence imaging and electrophysiology set-up. 
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Fluorescence dyes (i.e., BCECF, Fura-2, and calcein) are used in their ester-form (e.g., 

BCECF-AM), which are non-fluorescent but are cell permeable.  The ester groups on 

BCECF-AM are cleaved by endogenous esterases within the cell, producing BCECF ions 

with multiple (4-5) negative charges.  In its charged form, BCECF is membrane-

impermeable.  However, during the course of physiology experiments, fluorescence dye 

is lost through two main pathways: (1) photobleaching of the dye and (2) dye extrusion 

via an organic anion transporter (multi-drug resistant protein; MRP1 or ABCC1).  Dye 

loss via photobleaching can be easily controlled by the following methods: (1) using a 

neutral-density filter (reduce light intensity); (2) controlling xenon-lamp intensity; (3) 

reducing exposure time and interval (20 ms exposure every 1.5 seconds).  On the other 

hand, the control of dye extrusion via ABCC1 is more difficult and is the major cause of 

dye-loss in imaging experiments with hfRPE cells.  This can be demonstrated by a simple 

test where excitation fluorescence was stopped for a long period of time (10 minutes) – 

fluorescence emission was reduced at the same rate with or without fluorescence 

excitation.   

 

Fluorescence dye extrusion by ABCC1 is a function of two factors: (1) Ringer solution 

temperature (the higher the temperature, the faster the dye-leakage); (2) RPE viability 

(unhealthy or stressed RPE has a faster dye-leakage).  Dye-loss is extremely fast at 37 oC.  

However, a low temperature reduces the activities of many proteins in the RPE – 34 oC 

strikes a good balance.  When RPE cells experience prolonged periods of stress (e.g., 

alkalosis, acidosis, Na-free conditions), fluorescence dye-leakage was significantly faster.  

From these observations, it is tempting to speculate that either ABCC1 expression or 
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activity is upregulated by cell stress – alleviating cell stress should reduce dye-leakage.  

In support of this possibility, earlier pHi-imaging experiments use Ringer solution 

supplemented with glutathione or glutaMAX™ (antioxidant) to help reduce dye-leakage.  

A more direct but effective method to prevent dye-leakage is the addition of probenecid, 

an ABCC1 inhibitor (Feller et al., 1995; de Jong et al., 2003), to all Ringer solution used 

in all imaging-experiments (Kenyon et al., 1997).  However, high concentrations of 

probenecid show slight inhibition of Cl/HCO3 exchange (Zeidel et al., 1986).  Probenecid 

also inhibits SMCT (Coady et al., 2004), a Na-linked lactate co-transporter expressed in 

RPE (Martin et al., 2007).  Therefore, a low concentration of probenecid (0.5 mM) is 

added to all Ringer solutions used in imaging experiments. 
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Section 2.3 – Intracellular buffering capacity 

 

Fig. 2-3:  Intrinsic buffering capacity of cultured hfRPE. 

 

The intrinsic buffering capacity (βi mM/pH units) of the hfRPE cells was determined by 

using a previously described method (Weintraub & Machen, 1989) and was fitted to a 

third-order polynomial: 6.420656.164834.21504.93 23 +++−= iiii pHpHpHβ  for pHi < 

7.35, and for 7.35 ≤ pHi ≤ 7.7, 06.9=iβ .  The total buffering capacity (βtotal) was then 

calculated with the equation, iiHCOitotal HCO ][3.2 33
+=+= ββββ .  [HCO3]i was 

estimated from the Henderson-Hasselbalch equation with the assumption that 

intracellular CO2 level is 5%.  H+-flux was determined by multiplying βtotal by an 

estimate of the initial dpHi/dt determined from the pHi response.   
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Section 2.4 – Transepithelial potential and total tissue resistance  

As described earlier, the RPE maintains a polarized distribution of different channels and 

transporters at its apical and basolateral membranes, which are separated by the tight 

junction.  This results in different apical and basolateral membrane voltages (VA and VB), 

which gives rise to the transepithelial potential (TEP) of the RPE: TEP = VB – VA.  Since 

VA and VB are directly affected by electrogenic (carrying net ionic charge) transport 

processes, the measurement of TEP provides a sensitive method to study ion channels 

and electrogenic transporters at the apical and basolateral membranes of the RPE.  Early 

studies of epithelial electrophysiology showed that the electrical properties of the RPE 

can be simplified and analyzed in the form of an electrical circuit model as shown in Fig. 

2-4 (Hughes et al., 1998).   

 

 

Fig. 2-4:  Equivalent circuit of the retinal pigment epithelium. 
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From the circuit analysis, ASAA RIEV −=  and BSBB RIEV += .  EA and EB are the 

“batteries” of the apical membrane and basolateral membranes respectively.  EA is the 

combination of all potentials that derives from the ion concentration gradients and their 

respective ion channel conductivity at the apical membrane: 
1

11

NBCK

NBCNBCKK
A gg

EgEgE
+

+
= .  

gK and gNBC1 are conductances of electrogenic processes (Kir7.1 and NBC1) at the apical 

membrane (conductance is the reciprocal of resistance).  Similarly, 

ClNBCK

ClClNBCNBCKK
B ggg

EgEgEgE
++

++
=

1

11 .  Since EA and EB have non-equivalent values, a 

current (IS; shunt current) circulates around the epithelium.  The shunt current, 

SBA

BA
S RRR

EE
I

++
−

= , is carried mainly by Na+ and Cl- ions.  RA and RB are apical and 

basolateral membrane resistances: 
1

11

NBCKA
A ggg

R
+

== ; 
ClNBCKB

B gggg
R

++
==

11 .  

IS depolarizes (more positive) the apical and hyperpolarizes (more negative) the 

basolateral membrane.  Conventionally, the shunt current has a negative value.  

Experimentally, TEP is measured with a pair of calomel electrodes in series with Ringer 

solution bridges (3 %wt/v agar) placed in the apical and basal baths of the Üssing 

chamber (Fig. 2-2).   
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Fig. 2-5:  Measuring total tissue resistance (RT). 

 

The total tissue resistance (RT) is experimentally determined by passing a 2 µA Current 

across the hfRPE monolayer (once every 45 seconds) with Ag/AgCl electrodes placed at 

the apical and basal baths and measuring the voltage drop (i.e., ∆TEP) across the tissue.  

RT is then calculated with Ohm’s law: 
Current

AreaTEPRT
⋅Δ

= .  Area is the cross-sectional 

surface area of the RPE that is exposed to the apical or basolateral baths.  As shown in 

Fig. 2-5, RT is a combination of apical and basolateral membrane resistances (RA and 

RB), and tight junction resistance (RS; shunt resistance).   
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Section 2.5 – Intracellular microelectrode recordings 

Although TEP recording allows for the detection of changes in VA and VB, a TEP 

response can have two different interpretations.  For example, an increase in TEP can be 

interpreted as: (1) an increase in VB, or (2) a decrease in VA.  By placing a microelectrode 

reference within the cell, VA and VB can be measured separately (Fig. 2-6).  This method 

provides valuable information on ion-transport mechanism at the apical or basolateral 

membrane.     

 

 

Fig. 2-6:  Measuring apical and basolateral membrane voltages (VA & VB) with intracellular 

microelectrodes. 

 

In addition to measuring VA and VB, when a current is passed across the tissue in the 

presence of an intracellular microelectrode, the ratio of RA/RB can be determined by 

measuring the current induced deflections in VA and VB. 
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Fig. 2-7:  Measuring and calculating RA/RB. 

 

As shown in Fig. 2-7, the ratio of the current induced deflections in VA and VB (equations 

1 and 2) is: 
B

A

B

A

R
R

V
V

−=
Δ
Δ

. 
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Section 2.6 – Steady-state fluid-transport measurement   

The polarized distribution of the various ion-transport mechanisms at the apical and 

basolateral membranes allow for vectorial transport of solute (Na, Cl, and HCO3) and 

water from the apical side to the basal side.  By measuring the capacitance between the 

probe and the basal bath (electrically grounded), we can monitor the steady increase in 

fluid level in the basal bath, which is directly proportional to the steady-state fluid 

transport rate of the RPE (Fig. 2-8).  In this set-up, hfRPE monolayers were mounted in a 

modified Üssing chamber and the rate of transepithelial water flow (JV; μl·cm-2·hr-1) was 

measured using a capacitance probe at the basal bath of the chamber (Hughes et al., 

1984).  In addition, the TEP (mV) and RT (Ω·cm2) of the hfRPE monolayer were 

simultaneously measured by injecting a known current (5 μA) via Ag/AgCl electrodes 

that were connected to the solution baths with Ringer solution bridges (4 %wt agar).  

Fluid transport experiments were performed in a Steri-Cult™ CO2 incubator (Thermo 

Electron Corp; OH, Marietta) set at 5%/10%/85% CO2/O2/N2 and 37 oC.   

 

Fig. 2-8:  Schematic of the fluid-transport measurement set-up.   
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Section 2.7 – Ringer solution composition, materials, and methods  

Physiology experiments are performed with physiological saline solution (Ringer 

solution).  Two main types of Ringer solution are used: (1) CO2/HCO3 buffered; (2) 

HEPES buffered.  CO2/HCO3 buffered Ringer contains 26.2 mM of HCO3 and requires 

continuous bubbling of 5% CO2 (in a gas mixture containing 5%/10%/85% CO2/O2/N2) 

to maintain a pH of 7.5 at 37 oC.  On the other hand, HEPES buffered Ringer do not 

contain CO2 or HCO3, and is titrated to pH 7.5 (at 37 oC) with NMDG (base).  CO2/HCO3 

buffered Ringer is more physiologically relevant as CO2/HCO3 is the major buffer system 

used in our body to control cellular pH.  In some cases CO2/HCO3-free Ringer (HEPES 

buffered) is very useful: (1) simplicity: HEPES buffered solutions do not require constant 

bubbling or incubation with 5% CO2; (2) to study HCO3-transport: CO2/HCO3-free 

condition eliminates HCO3 transport activity; (3) removing the major intracellular 

buffering system in the cell: acid-coupled transport mechanisms (e.g., H+/Lac co-

transporter) can be easily studied.        

 

For imaging and electrophysiology experiments involving hfRPE cultures, the Ringer 

solutions (Table 2-1) closely mimics the ionic composition and osmolarity of the cell 

culture media (Minimum Essential Medium Eagle; MEM), which has a final osmolarity 

of 310 mOsm (after addition of 5% serum, amino-acid supplements, antibiotics, and 

taurine).  Control Ringer solution contains (in mM): 142.7 Na+, 126.1 Cl-, 26.2 HCO3
-, 5 

K+, 0.5 Mg2+, 1.8 Ca2+, 2 Taurine, 5 Glucose.  The solution is equilibrated with 

5%/10%/85% CO2/O2/N2.  Sucrose was added to the Ringer to reach osmolarity of 305 

mOsm.   Low Cl (1 mM) Ringer (pH 7.5 when equilibrated with 5% CO2) was prepared 
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by replacing all Cl-salts with gluconate-salts (except for MgCl2).  The high gluconate 

concentration (128.7 mM) in the low Cl Ringer requires consideration of the strong Ca2+ 

and Mg2+ chelating ability of gluconate.  By using the stability constants of Ca-gluconate 

(16.22 L·mol-1) and Mg-gluconate (5.01 L·mol-1) (Furia, 1972; Abercrombie et al., 1983), 

the estimated free [Ca2+] and [Mg2+] in the low Cl Ringer are 0.6 and 0.3 mM, 

respectively.  Therefore, the low Cl Ringer was supplemented with additional Ca2+ (to 5.7 

mM) and Mg2+ (to 0.84 mM) to give free [Ca2+] and [Mg2+] of 1.8 mM and 0.5 mM, 

respectively.  Low HCO3 Ringer (2.62 mM HCO3; pH 6.5 when equilibrated with 5% 

CO2) was prepared by replacing 23.58 mM NaHCO3 with equimolar Na-gluconate.  

Ca2+/Mg2+-free Ringer was made by replacing all CaCl2 and MgCl2 with 4.6 mM 

NMDG-Cl.  Na-free Ringer was made by replacing all Na-salts with NMDG.  NMDG-Cl 

was prepared by titrating NMDG solution with HCl.  NMDG-HCO3 was prepared by 

equilibrating NMDG solution with 5%/10%/85% CO2/O2/N2 gas mixture.   

 

Table 2-1.  Ringer solutions for CO2/HCO3 transport experiments (all values in mM). 

 

All Ringer solutions have pH 7.4 after equilibration with 5%/10%/85% CO2/O2/N2 gas mixture. 
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In all lactate transport experiments, CO2/HCO3-buffered Ringer (pH 7.4 with 5% CO2) 

has the following ionic composition (Table 2-2) (in mM): 133.7 Na+, 116.1 Cl-, 26.2 

HCO3
-, 5 K+, 0.5 Mg2+, 1.8 Ca2+, 2 Taurine, 5 Glucose.  Lactate Ringer was prepared by 

adding 20 mM Na-lactate, and replacing 20 mM of NaCl with NMDG-Cl.   

 

Table 2-2.  Ringer solutions for lactate transport experiments (all values in mM). 

 

All Ringer solutions have pH 7.4 after equilibration with 5%/10%/85% CO2/O2/N2 gas mixture. 

 

The CO2/HCO3-free Ringer (HEPES buffered; Table 2-3) has the same ionic composition 

as CO2/HCO3 Ringer except: (1) all HCO3 was replaced with gluconate; (2) 7 mM 

HEPES acid was added to the CO2/HCO3-free Ringer and titrated with NMDG to reach 

pH 7.4 (at 36.9 oC).  Cl-free Ringer solution contains CaSO4 instead of CaCl2; mercury 

sulfate electrodes (sat. K2SO4; Koslow, NJ) were used instead of calomel electrodes.  

Since Cl-free Ringer was made by replacing all Cl with gluconate (138.7 mM), 5.9 mM 

CaSO4 and 0.85 mM Mg-gluconate was added to this Ringer to compensate for Ca2+ and 

Mg2+ chelation by gluconate.  Na-free Ringer containing lactate was prepared by adding 

NMDG-lactate, which was made by titrating NMDG solution with lactic acid. 
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Table 2-3.  CO2/HCO3-free Ringer Solutions for lactate transport experiments (all values in 

mM). 

 

All Ringer solutions should have pH 7.4 ± 0.1, add more or less NMDG to obtain pH 7.4. 

 

Dorzolamide hydrochloride was purchased from U.S. Pharmacopeia (MD, Rockville).  

DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) and Nigericin were purchased 

from Calbiochem (CA, La Jolla).  pCMBS (p-chloromercuribenzenesulfonic acid) was 

purchased from Toronto Research Chemicals (Ontario, Canada).  Benzolamide was a 

kind gift from Dr. Erik Swenson of the University of Washington (WA, Seattle).  All 

other chemicals were purchased from Sigma-Aldrich Co. (MO, St Louis).   

 

In all physiological experiments, intracellular pH, TEP, and RT were recorded 

simultaneously.  The hfRPE produces a response (i.e., pHi, TEP, or RT changes) when 

Ringer solution with a special composition (e.g., low HCO3 Ringer, or 20 mM lactate 

Ringer) was perfused into the apical or basal baths.  For every experiment, two initial 
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control responses (2 min per pulse) were obtained to assure consistency and reversibility 

of the control responses.  Next, the hfRPE was exposed to drug/condition for 4-5 minutes 

(or until the resting pH and TEP stabilizes) before another response was obtained (in the 

continued presence of the drug/condition).  After washing out the drug or returning to 

control condition, a control response was obtained to assess the reversibility of the 

drug/condition’s effect on the transporter activity corresponding to the control pulses.    

 

Table 2-4.  List of compounds. 
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CHAPTER 3: CO2-induced Ion and Fluid Transport in RPE 

Section 3.1 – Introduction  

The retinal pigment epithelium (RPE) is a polarized monolayer of cells that is part of the 

blood-retina barrier in the back of the vertebrate eye.  This epithelium separates the 

choroidal blood supply from the extracellular or subretinal space (SRS) that surrounds the 

retinal photoreceptors.  By transporting ions and fluid from the SRS to the choroid 

(Hughes et al., 1998; Maminishkis et al., 2002), the RPE plays a critical role in 

maintaining the volume and chemical composition of the SRS.  Large amounts of CO2 

and H2O are deposited into the SRS due to the high metabolic activity of the 

photoreceptors (Wangsa-Wirawan & Linsenmeier, 2003).  The choroid’s high blood 

circulation, ≈ 1200 mL/min/100 g (Alm & Bill, 1987) and its proximity to the 

photoreceptor inner segments makes the choroid a very effective sink for the removal of 

these metabolites.  Failure of the RPE to remove CO2 would result in SRS acidosis 

detrimental to retinal function (Sillman et al., 1972; Meyertholen et al., 1986; Takahashi 

et al., 1993).  In addition, abnormal accumulation of fluid in the SRS can cause retinal 

detachment and degeneration (Fisher et al., 2005).  

 

In vivo studies of retinal metabolism show that SRS CO2 level increases following the 

transition from light to dark (Wangsa-Wirawan & Linsenmeier, 2003).  Since CO2 is 

normally highly membrane permeable, the delivery of CO2 from the SRS into the choroid 

was assumed to be achieved via passive diffusion.  We show that the higher apical to 

basolateral membrane surface area results in a 10-fold higher CO2 diffusion rate across 

the apical membrane than across the basolateral membrane.  The relatively lower CO2-
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permeability at the basolateral membrane allows it to act as a bottleneck for CO2 

diffusion, thus trapping CO2 within the cell.  This accumulation of CO2 in the cell causes 

the subsequent hydration of CO2 into HCO3 by the catalytic activity of CA II.  This in 

turn stimulates HCO3-efflux at the basolateral membrane.  Therefore, the increase in SRS 

CO2 level increases net NaHCO3 absorption, which in turn drives solute-linked fluid 

transport across the RPE.  In the transition from light to dark, the RPE can respond to the 

increased metabolic load by increasing the clearance of CO2/HCO3 and fluid from the 

SRS.  This would help protect and maintain the health and integrity of the retina/RPE 

complex by preventing acidosis in the subretinal space and an abnormal separation of 

retina and RPE.   
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Section 3.2 – CO2 permeability at the apical and basolateral membranes 

The study began with the unusual observation that in hfRPE, perfusing 13% or 1% CO2 

equilibrated Ringer to the apical membrane produced significantly larger pHi responses 

than at the basolateral membrane (Fig. 3-1).   

 

 

Fig. 3-1:  13% Apical or basal CO2 induced pHi, TEP, and RT responses. 

 

Fig. 3-1 shows that increasing CO2 from 5% to 13% in the apical or basal baths acidified 

the hfRPE by ≈ 0.25 and ≈ 0.04, respectively.  Data from 13 experiments shows that 13% 

apical CO2 decreased pHi by 0.23 ± 0.03, from 7.37 ± 0.05 to 7.14 ± 0.06; in contrast, the 

13% basal bath CO2 induced acidification (∆pHi = 0.03 ± 0.01) was almost 8-fold 

smaller.  Similarly in Fig. 3-2, decreasing CO2 from 5% to 1% in the apical or basal baths 

alkalinized the hfRPE by ≈ 0.35 and ≈ 0.03, respectively.   
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Fig. 3-2: 1% Apical or basal CO2 induced pHi, TEP, and RT responses. 

 

In four experiments, decreasing apical or basal bath CO2 from 5% to 1% alkalinized the 

cell by 0.41 ± 0.05 and 0.03 ± 0.03, respectively.  The CO2-induced changes in TEP and 

RT were relatively small and not statistically significant.   In freshly isolated native 

hfRPE preparations, 13% apical CO2 also caused significantly larger acidification (∆pHi 

= 0.29 ± 0.04) than 13% basal CO2 (∆pHi = 0.03 ± 0.02; n = 4; p < 0.05).  This difference 

in the apical/basolateral CO2-induced pHi response is even more pronounced in bovine 

RPE-choroid preparations: no pHi response to 13% basal CO2 was observed, but a 

significant acidification was produced by 13% apical CO2 (∆pHi = 0.39 ± 0.09; n = 6).  In 

addition, significant differences between the 13% apical and basal bath induced pHi 

responses were also observed in native fetal human RPE-choroid preparations.   
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Apical membrane processes increase the effective apical surface area of native frog RPE-

choroid by ≈ 30-fold relative to the basolateral surface area (Miller & Steinberg, 1977).  

Electron micrographs of hfRPE provide evidence for similar structures in hfRPE 

(Maminishkis et al., 2006) and supports the notion of a relatively larger apical surface 

area.  This difference suggests a possible basis for the ≈ 8-fold difference in the ΔpHi 

produced by altering CO2 (from 5 to 13%) in the apical versus basal bath.  We can also 

determine the relative CO2-permeability of the apical vs. the basolateral membrane by 

using the total buffering capacity of the cell (sections 2.3 & 3.11).  With this method, we 

calculated that the RPE apical membrane has a 10-fold higher CO2 permeability than the 

basolateral membrane.   

 

hfRPE monolayers grown on transwell filters lack Bruch’s membrane and a thick 

choroidal vasculature – it is flimsy and is easily damaged/stretched by the pressures 

exerted by the constant apical and basal perfusion of Ringer solution.  Therefore, a mesh 

(250 μm thick) is placed under the basolateral surface of the hfRPE monolayer for 

structural support (Fig. 3-3).  However, CO2-diffusion into the cell from the basal bath 

may be hindered by the mesh and by the transwell filter itself.  To eliminate the mesh as a 

possible diffusion barrier, we show that the 13% basal bath CO2 produced the same ∆pHi 

with or without the mesh.  To test if the transwell filter is a diffusion barrier, the hfRPE 

monolayer was uniformly damaged by mounting its apical surface facing the mesh (Fig. 

3-3).   
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Fig. 3-3: RPE monolayer damage by plastic mesh.  Upper panel – intact RPE monolayer with 

proper mesh position.  Lower panel – RPE monolayers are damaged by mounting the mesh on top 

of the RPE apical membrane. 

 

This configuration allows CO2 from the basal bath to diffuse through the intact filter to 

reach the apical membrane surface by diffusing through the empty spaces (where the 

RPE were damaged).  If the filter was a significant barrier to CO2, the difference between 

13% apical and basal CO2-induced ∆pHi in the damaged hfRPE would be similar to that 

in an intact hfRPE (≈ 8-fold).   
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Fig. 3-4: 13% Apical or basal CO2 induced pHi, TEP, and RT responses in damaged RPE 

monolayer. 

 

However as shown in Fig. 3-4, 13% basal CO2 caused a significantly larger acidification 

in the damaged hfRPE monolayer compared to intact hfRPE (compare with Fig. 3-1).  In 

five damaged RPE monolayers tested, the difference in CO2-induced ∆pHi was ≈ 2.5-fold 

and the calculated relative CO2 permeability was 3.0 ± 1.5.  This indicates that the filter 

did limit CO2-diffusion rate, but that alone cannot account for the large difference in 

relative difference in CO2-permeability of the apical and basolateral membranes of intact 

hfRPE monolayers.  From this observation, we infer that the basolateral membrane is 

relatively less permeable to CO2 than the apical membrane.   
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There are two interpretations for this observed difference in CO2 permeability: (1) apical 

CO2-permeability is higher because of its relatively larger total surface area; (2) the 

chemical and physical composition of basolateral membrane is a CO2-barrier that 

completely blocks CO2 diffusion, similar to the apical membranes of gastric or colonic 

epithelia (Waisbren et al., 1994; Endeward & Gros, 2005).  We can eliminate the latter 

possibility with the following experiment: the basal bath CO2 was increased from 5 to 

13% when we stop apical perfusion (Fig. 3-5).  Stopping apical perfusion eliminates the 

convective flow at the apical bath, thus increasing the thickness of the unstirred layer at 

the apical membrane surface and reduces CO2 diffusion out of the apical membrane.  If 

the basolateral membrane does maintain a CO2-barrier, then reducing the rate of CO2 

diffusion would not affect the 13% basal CO2 induced pHi-response.   

 

Fig. 3-5: 13% basal CO2 induced pHi, TEP, and RT responses in the absence apical perfusion. 
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However when apical perfusion was stopped, the 13% basal CO2-induced ∆pHi was ≈ 3-

fold greater than with continuous perfusion (p < 0.05; n = 4).  This observation indicates 

that more of the CO2 that diffuses into the basolateral membrane accumulates within the 

cytosol to cause the larger acidification mainly due to a reduced CO2-efflux from the 

apical membrane.  From this result, we infer that the basolateral membrane is CO2 

permeable and that the relatively higher apical membrane CO2 permeability is probably 

due to its larger surface area.   

 

The tight junction prevents the free flow of ions, large molecules (e.g., proteins or 

glucose), and water across the epithelium.  Since CO2 is a gas and is a small molecule, it 

may readily cross the tight junctions.  If true, CO2 may diffuse from the basal bath, across 

the tight junction into the apical bath, where it enters the cell from the apical membrane.  

To test this possibility, tight junctions were disrupted by removing all Ca2+ and Mg2+ 

from both solution baths for 15 minutes before adding 13% CO2 Ringer to the basal bath 

(Fig. 3-6).  This maneuver disrupts tight junctions by dissociating the link between tight 

junction proteins (claudins and occludin) and the intracellular adaptor proteins (e.g., ZO-

1, -2, -3) (Brown & Davis, 2002; Rothen-Rutishauser et al., 2002).  Since RT ≈ tight 

junction resistance (RS) in cultured hfRPE, the observation that [Ca2+]o and [Mg2+]o 

removal decreases RT (-17 ± 7 Ω·cm2·min-1; n = 5) indicates disruption of tight junctions.  

When control Ringer was returned to both solution baths, RT slowly recovered at a rate of 

12 ± 4 Ω·cm2·min-1.  However, the 13% basal CO2-induced acidification was identical to 

control even in the absence of extracellular Ca2+ (p > 0.05; n = 5), suggesting that the 

basolateral membrane is the main pathway for CO2-entry from the basal bath.   
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Fig. 3-6: 13% basal CO2 induced pHi, TEP, and RT responses in the absence of Ca2+ and Mg2+ in 

both apical and basal baths. 

 

Another possible CO2-transport mechanism arises from the ability of aquaporin 1 (AQP1) 

to function as a CO2 channel (Cooper & Boron, 1998; Endeward et al., 2006).  In 

cultured hfRPE cells, AQP1 mRNA is highly expressed in human RPE (Wang and 

Miller, ARVO 2007, #6034).  In addition, AQP1 was also detected specifically at the 

apical membrane (data not shown), corroborating an earlier study on rat RPE (Stamer et 

al., 2003).  However, pCMBS (1 mM; non-specific AQP1 inhibitor) did not block or 

inhibit 13% apical CO2 induced acidification (n = 3), inconsistent with the AQP1 

hypothesis.   
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This asymmetry in apical and basolateral membrane CO2-permeability has a very unique 

function.  This feature allows the RPE to “trap” CO2 within the cell.  Accumulation of 

CO2 in the cytosol favors CO2 conversion into HCO3 by the catalytic activity of cytosolic 

carbonic anhydrase II (CA II).  CA II-mediated formation of HCO3 in the cell stimulates 

HCO3-efflux from the basolateral membrane via HCO3-transporters.  However, besides 

simple diffusion, CO2 can also be transported across the apical membrane in its hydrated 

form, HCO3, via transporters.  In this regard, there is strong electrophysiological evidence 

for an electrogenic Na/2HCO3 co-transporter at the apical membrane of frog and bovine 

RPE (Hughes et al., 1989; Kenyon et al., 1997).  In addition, this Na/2HCO3 co-

transporter (NBC1) has been immunolocalized to the apical membrane of rat RPE (Bok 

et al., 2001).  Since CO2 is an acid, and HCO3 is a base, it is possible that CO2-entry into 

the cell is balanced by concomitant HCO3-entry at the apical membrane, thus maintaining 

pHi homeostasis of the RPE.  This notion is further discussed in the next section.   
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Section 3.3 – HCO3 transport at the apical membrane 

To test the activity of apical NBC1 in cultured hfRPE, we added DIDS (NBC1 inhibitor) 

to the apical bath and compared the resultant pHi and TEP responses in control Ringer 

(26.2 mM HCO3) vs. low HCO3 Ringer (2.62 mM HCO3) in the apical bath (Fig. 3-7). 

   

Fig. 3-7: Apical DIDS induced pHi, TEP, and RT responses in the presence of low [HCO3] Ringer 

(2.62 mM) in the apical bath. 

 

NBC1, like any transporter, is driven by the concentration gradient of its substrate (i.e., 

Na and HCO3).  Normally, the large inward Na-gradient drives Na/2HCO3 transport into 

the cell.  Data from six experiments showed that in control Ringer, apical DIDS acidified 

the cell by 0.05 ± 0.02 and decreased TEP by 1.59 ± 0.63 mV.  When [HCO3] in the 

apical bath was reduced 10-fold (from 26.2 mM to 2.62 mM), the resultant HCO3-
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gradient reverses NBC1 to transport NaHCO3 out of the cell.  In this condition, we found 

that adding DIDS to the apical bath alkalinized the cell by 0.04 ± 0.01 and transiently 

increased TEP by 0.30 ± 0.15 mV.  These apical DIDS-induced pHi and TEP responses 

are consistent with the inhibition of an electrogenic HCO3-dependent mechanism in the 

forward or reverse direction.   

 

Reducing apical bath [HCO3] decreased pHi and TEP – these responses reflect a change 

in Na/2HCO3-transport activity and we can use this maneuver to further study NBC1 

mediated HCO3-transport.  To test this possibility, we decreased apical bath [HCO3] 10-

fold and compared the resultant pHi and TEP responses in the presence or absence of 

apical DIDS (Fig. 3-8).   

 

Fig. 3-8: Apical bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence of apical 

DIDS. 
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In three experiments, DIDS reduced the apical bath ∆[HCO3]-induced TEP response 7-

fold (from ∆TEP = 2.1 ± 0.2 mV to 0.3 ± 0.2 mV; p < 0.01).  The effect of DIDS on the 

TEP response was partially reversible following a five-minute washout (∆TEP = 1.28 ± 

0.22 mV).  This result indicates that apical DIDS almost completely blocked the apical 

membrane Na/2HCO3 co-transporter activity.  Surprisingly, the apical bath ∆[HCO3]-

induced acidification (ΔpHi = 0.10 ± 0.02) was not significantly affected by DIDS (ΔpHi 

= 0.09 ± 0.01; n = 3; p > 0.05), suggesting the presence of a DIDS-insensitive HCO3-

transporter at the apical membrane. 

 

Besides pNBC1 (SLC4A4; GeneID: 8671), a DIDS-insensitive and electroneutral 

Na/HCO3 co-transporter, NBC3/NBCn1 (SLC4A7; GeneID: 9497), is also highly 

expressed at the apical membrane of human RPE (Wang and Miller, ARVO 2007, #6034; 

Zhi et al., ARVO 2007, #2532).  Our observation that apical DIDS had little effect on the 

apical bath Δ[HCO3]-induced acidification suggests that NBC3 is highly active in the 

RPE.  However, this does not indicate that NBC1 has a lower activity than NBC3 

because NBC1 is electrogenic, and is therefore limited by both the membrane voltage and 

HCO3-gradient.  In contrast, NBC3 is limited only by the HCO3-gradient.  Thus the 

relative activities of NBC1 and NBC3 cannot be accurately evaluated by comparing the 

apical bath Δ[HCO3]-induced pHi responses in the presence vs. absence of apical DIDS.    

 

The presence of carbonic anhydrase II (CA II) and several apical membrane-bound 

carbonic anhydrases (e.g., CAs IV, IX, XII, and XIV) support the notion of HCO3-

mediated CO2 transport from the SRS into the RPE via the electrogenic Na/nHCO3 co-
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transporter as illustrated in Fig 2-4.  According to the bicarbonate transport metabolon 

theory (Sterling et al., 2001; Alvarez et al., 2003), a membrane bound CA physically 

binds and interacts with HCO3-transporters at the apical membrane (e.g., NBC1 and 

NBC3).  If this synergistic form of HCO3-transport exists in RPE, increasing CO2 level at 

the apical surface and in the vicinity of the active site of transmembrane CAs should 

stimulate the conversion of CO2 and H2O into H+ and HCO3.  The resultant increase in 

local [HCO3] near the ion-pore of the HCO3-transporter enhances HCO3-entry into the 

cell.  In the remainder of this section, we present experiments to evaluate this possibility.    

 

Fig. 3-9: DIDS induced pHi, TEP, and RT responses in the presence of 13% apical CO2. 

 

Our first step is to determine if increasing apical bath CO2 stimulates HCO3-entry into the 

cell via NBC1.  To test this hypothesis, we compared apical DIDS (0.5 mM) induced pHi 

and TEP responses in control (5% CO2) Ringer to that in 1% or 13% CO2 equilibrated 
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Ringer (Fig. 3-9).  If NBC1 activity is enhanced by an increased CO2 level in the apical 

bath, then DIDS-induced inhibition of NBC1 should cause larger pHi and TEP responses 

in 13% apical CO2 than in control (5% CO2).  Alternatively, if decreasing apical bath 

CO2 from 5% to 1% decreased NBC1 activity, the DIDS-induced pHi and TEP responses 

should be smaller in 1% apical CO2 than in control.  In four experiments, apical DIDS 

induced pHi and TEP responses in control (5% CO2) Ringer (ΔpHi = 0.05 ± 0.02; ∆TEP = 

1.52 ± 0.33 mV) were the same as that in 13% CO2 equilibrated Ringer (ΔpHi = 0.05 ± 

0.02; ∆TEP = 1.57 ± 0.67 mV; p > 0.05).  Similarly, the apical DIDS induced pHi and 

TEP responses in control Ringer (ΔpHi = 0.05 ± 0.02; ∆TEP = 1.66 ± 0.59 mV) were the 

same as that in 1% CO2 equilibrated Ringer (ΔpHi = 0.06 ± 0.02; ∆TEP = 1.31 ± 0.78 

mV; n = 5; p > 0.05; Fig. 3-10). 

 

Fig. 3-10: DIDS induced pHi, TEP, and RT responses in the presence of 1% apical CO2. 
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To further test the pHi-sensitivity of the apical membrane Na/2HCO3 co-transporter, we 

perfused 13% CO2 equilibrated Ringer into the apical bath in the presence or absence of 

0.5 mM apical DIDS (Fig. 3-11).  If increasing apical bath CO2 stimulates NBC1, 13% 

apical CO2 should cause a larger acidification in the absence of NBC1 activity.   

 

Fig. 3-11: 13% apical CO2 induced pHi, TEP, and RT responses in the presence of apical DIDS. 

 

However, in the presence of apical DIDS, the 13% CO2-induced acidification (ΔpHi = 

0.22 ± 0.03) was the same as control (ΔpHi = 0.22 ± 0.02; n = 4; p > 0.05).  Taken 

together, these observations (Fig. 3-9, -10, -11) lead to the conclusion that Na/2HCO3 co-

transport activity is unaffected by apical bath CO2.  This is probably due to the high CO2-

permeability of the apical membrane; CO2/HCO3 equilibration across the apical 
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membrane is achieved very quickly, which prevented the formation of a HCO3-gradient 

needed to increase the rate of NaHCO3 transport via NBC1.   

 

According to Fig. 1-4, HCO3 that enters the RPE via NBC1 can be converted by CA II 

into CO2 and H2O in the cytosol.  By effectively removing HCO3 (by converting it to 

CO2) near NBC1’s ion-pore in the cytosol, CA II facilitates apical Na/2HCO3 co-

transport activity by maintaining a high local [HCO3] gradient across the transporter.  We 

test this notion by decreasing apical bath [HCO3] (10-fold) and comparing the resultant 

pHi and TEP responses in the presence of 250 µM apical dorzolamide (DZA; CA II 

inhibitor) to that in control (Fig. 3-12). 

 

Fig. 3-12: Apical bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence of apical 

dorzolamide. 
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In five experiments, DZA decreased apical bath ∆[HCO3]-induced TEP response by 60% 

(from 2.25 ± 0.81 to 0.89 ± 0.29 mV; p < 0.01) and increased the pHi response from 0.11 

± 0.01 to 0.19 ± 0.01 (p < 0.01) – the effect of DZA on these responses were partially 

reversible following washout (∆TEP = 1.27 ± 0.46 mV; ∆pHi = 0.17 ± 0.02).  The 

reduced apical bath ∆[HCO3]-induced TEP response in the presence of DZA indicates 

inhibition of apical Na/2HCO3 co-transport activity.  On the other hand, the apical bath 

∆[HCO3]-induced acidification was larger in the presence of DZA because CA II-

inhibition reduces intracellular CO2/HCO3 buffering capacity, which compromises the 

ability of the RPE to buffer the acidification caused by HCO3-efflux from the apical 

membrane.  This experiment indicates that NBC1 activity is dependent on CA II activity. 

 

In summary, increasing apical bath CO2 did not stimulate NaHCO3 transport via NBC1.  

This result may seem counter intuitive in the context of the HCO3-transport metabolon 

(see Fig. 1-9), but it can be understood by taking into account the higher apical 

membrane CO2 permeability than the basolateral membrane; 13% CO2 in the apical bath 

equilibrates very quickly in the cytosol.  The lower CO2 permeability of the basolateral 

membrane causes CO2 to accumulate in the cytosol, thus allowing CO2 level in the 

cytosol to approximately equal that in the apical bath.  Without a large CO2 gradient 

across the apical membrane, little or no CO2 is converted into HCO3 for NBC1-mediated 

HCO3-transport.  In contrast, 13% apical CO2 generates a large CO2 gradient across the 

basolateral membrane, which should drive carbonic anhydrase-mediated conversion of 

CO2 to HCO3 for HCO3-transport across the basolateral membrane (see next section).     
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Section 3.4 – HCO3-transport at RPE basolateral membrane 

In frog RPE, a DIDS-sensitive Cl/HCO3 exchanger was found at the basolateral 

membrane (Lin & Miller, 1994).  The activity of this Cl/HCO3 exchanger is pHi 

dependent; it was inhibited by acid and activated by base.  Normally, the Cl/HCO3 

exchanger uses the Cl-gradient (inward) to drive HCO3 out of the cell.  We can evaluate 

basolateral membrane Cl/HCO3 exchanger activity in hfRPE by reducing basal bath [Cl] 

(from 126 mM to 1 mM).  This creates a large outward Cl gradient across the basolateral 

membrane that drives HCO3 into the cell to cause an alkalinization (ΔpHi = 0.22; Fig. 3-

13).  In three experiments this alkalinization (ΔpHi = 0.18 ± 0.05) was abolished by 0.5 

mM basal DIDS (ΔpHi = 0.02 ± 0.01; n = 3; p < 0.05).   

 

Fig. 3-13: Basal bath Δ[Cl]-induced pHi, TEP, and RT responses in the presence of basal DIDS. 
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Fig. 3-14: Basal bath Δ[Cl]-induced pHi, TEP, and RT responses in 13% apical CO2. 

 

Next, we tested the pHi-dependence of the Cl/HCO3 exchanger by comparing the basal 

bath ∆[Cl]-induced pHi response in 5% vs. 13% apical bath CO2 (Fig. 3-14).  The steady-

state pHi in 5% and 13% apical bath CO2 differed significantly, which required us to use 

the total buffering capacity of the hfRPE to calculate equivalent H+-fluxes.  In the 

presence of 13% CO2 equilibrated Ringer in the apical bath, the basal bath ∆[Cl]-induced 

change in H+-flux was 2.3 ± 1.0 mM·min-1, ≈ 4-fold smaller than the H+-flux in 5% CO2 

(9.0 ± 4.5 mM·min-1 ; n = 7; p < 0.01); this effect was fully reversible.  Fig. 3-15 shows a 

parallel experiment in which basal bath [Cl] was reduced in the presence of 1% CO2 

equilibrated Ringer in the apical bath.   
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Fig. 3-15: Basal bath Δ[Cl]-induced pHi, TEP, and RT responses in 1% apical CO2. 

 

In 1% apical bath CO2, the basal bath Δ[Cl]-induced proton flux was 27.4 ± 10.8 

mM·min-1, or ≈ 5-fold larger than the flux in 5% CO2 (5.9 ± 6.5 mM·min-1; n = 5; p = 

0.01).  These experiments indicate that the DIDS-sensitive basolateral membrane 

Cl/HCO3 exchanger in hfRPE is pHi-dependent.  From our laboratory’s Affymetrix data, 

AE2 (SLC4A2; GeneID: 6522) is the only AE isoform detected in cultured fetal human 

RPE and in native adult and fetal human RPE.  Since AE2 is pH-sensitive (Kurschat et 

al., 2006; Stewart et al., 2007), it is possibly the isoform located at the basolateral 

membrane of hfRPE.   

 

In the retina, the transition from light to dark is followed by increased metabolism and 

CO2 and water release into the subretinal space.  In section 2 of this chapter, we 
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hypothesized that the relatively higher apical vs. basolateral membrane CO2-permeability 

could produce a large CO2-gradient across the basolateral membrane in vivo.  With the 

help of carbonic anhydrase activity, this CO2-gradient can drive HCO3 out of the 

basolateral membrane via HCO3-transporters.  Although the Cl/HCO3 exchanger (AE2) is 

a HCO3-transporter, our experiments (Fig. 3-13) show that AE2 is inhibited by 13% 

apical CO2.  To facilitate an increased HCO3-efflux from the basolateral membrane, the 

RPE requires an alternate HCO3-efflux pathway.  In this regard, evidence of an 

electrogenic Na/nHCO3 co-transporter at the basolateral membrane has been reported in 

bovine RPE (Kenyon et al., 1997).  This transporter may work in parallel with AE2 to 

mediate HCO3-efflux at the basolateral membrane.   

 

To test the basolateral membrane Na/nHCO3 co-transporter activity in hfRPE, we 

reduced basal bath [HCO3] by 10-fold to induce a large [HCO3]-gradient across the 

basolateral membrane.  This maneuver causes HCO3 to leave the cell via both AE2 and 

the Na/nHCO3 co-transporter, resulting in intracellular acidification.  Since this 

Na/nHCO3 co-transporter is an electrogenic mechanism, HCO3-efflux via this transporter 

will depolarize the basolateral membrane, which increases TEP.  In contrast, AE2 is 

electroneutral (no transfer of net ionic charges across the membrane) and therefore could 

not have contributed to the TEP response; the basal bath Δ[HCO3]o induced TEP 

response originates solely from Na/nHCO3 co-transport activity.  In confluent 

monolayers of hfRPE, reducing basal bath [HCO3] 10-fold (5% CO2) acidified the cells 

by 0.20 ± 0.05 with an equivalent H+-flux of 6.2 ± 1.5 mM·min-1 (n = 45), and increased 

TEP by 1.18 ± 0.60 mV (n = 53).   
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Table 3-1.  Summary of basal bath Δ[HCO3]-induced pHi responses.  

inhibitor/conditiona 2.62 mM basal bath [HCO3]-induced pHi responseb   

Apical Basal Data Control w/ inhibitor Recovery pc n

∆pHi -0.20 ± 0.04 -0.09 ± 0.05 -0.12 ± 0.03 S   
DIDS H+-flux -6.5 ± 1.2 -3.6 ± 2.7 -4.3 ± 1.3 S 

 

5 

∆pHi -0.21 ± 0.04 -0.08 ± 0.01 -0.14 ± 0.02 S  
Na-free 

 
Na-free H+-flux -7.2 ± 1.7 -2.8 ± 0.7 -4.9 ± 0.8 S 

 

3 

∆pHi -0.22 ± 0.03 -0.28 ± 0.05 -0.21 ± 0.04 S  
amiloride 

 

H+-flux -7.1 ± 1.3 -8.3 ± 1.6 -5.7 ± 1.4 S 

 

5 

∆pHi -0.20 ± 0.03 -0.21 ± 0.03 -0.22 ± 0.03 NS  
bumetanide 

 

H+-flux -6.9 ± 1.8 -6.8 ± 0.9 -7.6 ± 1.6 NS 

 

4 

∆pHi -0.18 ± 0.02 -0.20 ± 0.02 -0.23 ± 0.03 NS  
ouabain 

 

H+-flux -5.1 ± 2.1 -5.4 ± 3.2 -5.7 ± 2.7 NS 

 

3 

∆pHi -0.19 ± 0.03 -0.23 ± 0.03 -0.21 ± 0.01 S  
DIDS 

 

H+-flux -5.0 ± 1.1 -6.0 ± 1.1 -5.3 ± 0.9 S 

 

7 

∆pHi -0.17 ± 0.01 -0.18 ± 0.03 -0.18 ± 0.02 NS   
DZA H+-flux -5.2 ± 0.3 -5.1 ± 0.7 -5.6 ± 0.4 NS 

 

4 

∆pHi -0.21 ± 0.05 -0.20 ± 0.03 -0.24 ± 0.04 NS  
13% CO2 

 

H+-flux -6.0 ± 1.3 -6.1 ± 2.3 -6.5 ± 1.4 NS 

 

9 

∆pHi -0.24 ± 0.08 -0.20 ± 0.06 -0.20 ± 0.06 NS  
1% CO2 

 

H+-flux -7.2 ± 1.8 -10.7 ± 1.9 -6.0 ± 1.3 S 

 

5 

 
a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. H+-flux has units of mM·min-1 and all values are reported as mean ± SD.  

c. Student’s t-test for statistical significance between basal bath Δ[HCO3]-induced pHi response in 

control vs. in the presence of inhibitor/condition.  “S” indicates statistical significance (p < 0.05), 

“NS” indicates statistical insignificance (p > 0.05).   
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Table 3-2.  Summary of basal bath Δ[HCO3]-induced TEP responses.  

inhibitor/conditiona 2.62 mM basal bath [HCO3]-induced TEP response (mV)b   

Apical Basal Control w/ inhibitor Recovery pc n 

  DIDS 1.41 ± 0.69 0.42 ± 0.29 0.56 ± 0.25 S 5 

Na-free Na-free 1.01 ± 0.21 0.04 ± 0.07 0.79 ± 0.38 S 3 

amiloride   1.28 ± 0.58 1.24 ± 0.50 1.23 ± 0.40 NS 5 

bumetanide   0.89 ± 0.28 0.80 ± 0.18 0.97 ± 0.29 NS 6 

ouabain   1.26 ± 0.59 1.17 ± 0.49 1.19 ± 0.51 NS 5 

DIDS   0.86 ± 0.16 0.49 ± 0.07 0.63 ± 0.15 S 6 

  DZA 1.44 ± 0.80 0.98 ± 0.50 1.06 ± 0.55 S 9 

13% CO2   1.11 ± 0.67 1.35 ± 0.78 1.07 ± 0.67 S 9 

1% CO2   1.26 ± 0.74 0.37 ± 0.32 0.99 ± 0.59 S 5 

 

a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. All ΔTEP values are reported as mean ± SD.  

c. Student’s t-test for statistical significance between basal bath Δ[HCO3]-induced TEP response 

in control vs. in the presence of inhibitor/condition.  “S” indicates statistical significance (p < 

0.05), “NS” indicates statistical insignificance (p > 0.05).   
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Electrogenic members of the NBC family of Na/HCO3 transporters (e.g., NBC1 and 

NBC4) are DIDS sensitive.  To ensure that the basal bath Δ[HCO3]-induced pHi and TEP 

responses are mediated by a Na/nHCO3 co-transporter, we compared these pHi and TEP 

responses in the presence vs. absence of 0.5 mM DIDS in the basal bath (Fig. 3-16).   

 

Fig. 3-16: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence of basal 

DIDS. 

 

In five experiments, basal DIDS reduced the basal bath Δ[HCO3]-induced acidification 

by ≈ 50% (Table 3-1), and reduced the TEP response by ≈ 70% (Table 3-2).  The 

inhibitory effect of DIDS on the pHi and TEP responses was irreversible (5 min 

washout).  The significant inhibition of the basal bath Δ[HCO3]-induced acidification by 

basal DIDS indicates that HCO3-transporters at the basolateral membrane are DIDS-
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sensitive.  Since TEP respond only to electrogenic processes, the significant inhibition of 

the TEP response by basal DIDS indicates a reduction in Na/nHCO3 co-transport activity.   

 

Since the Na/nHCO3 co-transporter is a Na-dependent mechanism, the removal of Na 

from both apical and basal baths should eliminate its activity.  Therefore, we reduced 

basal bath [HCO3] and measure the resultant pHi and TEP responses in the presence or 

absence of Na (Fig. 3-17). 

 

Fig. 3-17: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the absence of Na+. 

 

When Na is removed from both apical and basal baths, the cell acidified by ~ 0.3 pH-

units.  This observation is consistent with HCO3-efflux from both the apical and 

basolateral membranes via Na-linked HCO3 transporters.  In three experiments, Na-

removal reduced the basal bath Δ[HCO3]-induced acidification by more than 2-fold 
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compared to control (Table 3-1).  In addition, the basal bath Δ[HCO3]-induced TEP 

response was essentially abolished in the absence of Na, and this effect was reversible 

(Table 3-2).  These experiments indicate that although reducing basal bath [HCO3] causes 

HCO3-efflux via both AE2 and Na/nHCO3 co-transporter, the TEP response corresponds 

specifically to Na/nHCO3 co-transporter activity due to its electrogenicity and Na-

dependence.  This allows one to distinguish the activity of the Na/nHCO3 co-transporter 

from that of AE2.   

 

Affymetrix data on human RPE (native adult and fetal RPE, and cultured fetal RPE) 

(Wang and Miller, ARVO 2007, #6034) show high mRNA expression levels for NBC1 

(SLC4A4; GeneID: 8671) and NBC4/NBCe2 (SLC4A5; GeneID: 57835), both of which 

are candidates for the identity of the basolateral membrane Na/nHCO3 co-transporter in 

human RPE.  Although this co-transporter’s identity is unknown, both NBC1 and NBC4 

have been shown to transport Na:HCO3 with a stoichiometry of 1:2 (Hughes et al., 1989; 

Gross et al., 2001; Virkki et al., 2002), suggesting inward Na/HCO3 co-transport from the 

basolateral membrane.  However, NBC4 transports Na:HCO3 with a 1:3 stoichiometry at 

the apical membrane of the choroid plexus epithelium (Millar & Brown, 2008).  Since 

both the RPE and the choroid plexus epithelium derives from the neural ectoderm and 

share many similarities in HCO3-transport mechanisms (Brown et al., 2004; Praetorius, 

2007), it is possible that the RPE expresses NBC4 at the basolateral membrane and 

transports Na/nHCO3 with a 1:3 Na:HCO3 stoichiometry.  In addition, our calculation of 

the reversal potential of the Na/nHCO3 co-transporter indicate that a 1:3 stoichiometry is 
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required for Na/nHCO3 transport out of the cell; this calculation is based on our 

estimation of resting [Na]i and pHi in control Ringer with the following equation:   
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3 , where inNa ][ +  = 15.7 mM, outNa ][ + = 

143.7 mM, inHCO ][ 3
− = 27.9 mM, outHCO ][ 3

− = 26.2 mM.  n is the stoichiometry of the 

Na/nHCO3 co-transporter.  For a Na:HCO3 transport stoichiometry of 1:2 and 1:3, we 

calculated the reversal potential of the Na/nHCO3 co-transporter NBC (ENBC) to be -55.7 

and -27 mV respectively.  To transport Na/nHCO3 out of the cell against the strong 

inward Na-gradient in control conditions, ENBC must be more depolarized than VB (-49.8 

± 3.7 mV; Maminishkis et al, 2006) and this condition is achieved for a Na:HCO3 

transport stoichiometry of 1:3.  The isoform of this basolateral membrane NBC has not 

been determined. 

 

When apical bath CO2 is increased, CO2 diffuses into the cell and accumulates within the 

cytosol, which shifts the CO2/HCO3 equilibrium towards the formation of HCO3 and H+ 

(catalyzed by carbonic anhydrase II).  In this section, we showed that 13% apical CO2 

acidified the cell and inhibited the Cl/HCO3 exchanger (AE2) at the basolateral 

membrane, indicating that AE2 cannot serve as the main HCO3-efflux pathway when 

apical bath CO2 increases.  However, we also confirmed the presence and activity of an 

alternate HCO3-efflux pathway at the basolateral membrane – Na/nHCO3 co-transporter 

(NBC).  In the next section, we investigate if increasing apical bath CO2 can stimulate 

this Na/nHCO3 co-transporter.    
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Section 3.5 – Basolateral membrane NBC: dependence on CO2 and HCO3 

Carbonic anhydrase II (CA II) catalyzes the conversion of CO2 into HCO3, which is 

subsequently transported out of the basolateral membrane via the Na/nHCO3 co-

transporter (NBC).  Since optimal HCO3-transport requires a steady supply of HCO3, 

inhibition of CA II by dorzolamide (DZA) should reduce Na/nHCO3 co-transport across 

the basolateral membrane.  This notion was tested by reducing basal bath [HCO3] 10-fold 

in the presence of DZA (250 µM) in the basal bath (Fig. 3-18).   

 

Fig. 3-18: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence of 

dorzolamide in the basal bath. 

 

In a total of nine experiments, DZA reduced the basal bath Δ[HCO3]-induced TEP 

response by ≈ 30% (Table 3-2) suggesting that CA II-inhibition reduces basolateral 
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membrane NBC activity.  In contrast, DZA did not affect the basal bath ∆[HCO3]-

induced acidification (Table 3-1).  This lack of effect probably occurred because the 

DZA-induced reduction in basolateral membrane HCO3 efflux is counteracted by a 

concomitant reduction in intracellular CO2/HCO3 buffering capacity.   

 

A 13% CO2-load applied to the apical membrane should increase basolateral membrane 

NBC activity by shifting intracellular CO2/HCO3 equilibrium towards the formation of 

HCO3 (facilitated by CA II activity).  To test this hypothesis, we made a 10-fold 

reduction in basal bath [HCO3] (from 26.2 mM to 2.62 mM) and compared the resultant 

pHi and TEP responses in 5% vs. 13% apical bath CO2 (Fig. 3-19). 

 

Fig. 3-19: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses with 13% apical CO2. 
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With 13% CO2 in the apical bath, decreasing basal bath [HCO3] induced a TEP response 

that was ≈ 20% larger than control (Table 3-2).  However, there was no change in basal 

bath ∆[HCO3]-induced pHi response (∆pHi and H+-flux) in the presence of 5% or 13% 

apical bath CO2 (Table 3-1).  Presumably, 13% apical CO2 did not significantly alter H+-

flux caused by basal bath ∆[HCO3] because the CO2-induced increase in HCO3-efflux via 

the Na/nHCO3 co-transporter was offset by concomitant inhibition of the pHi-sensitive 

Cl/HCO3 exchanger, thus producing no observable change in net H+-flux.  In similar 

experiments, we reduced basal bath [HCO3] in 1% apical bath CO2 (Fig. 3-20).   

 

Fig. 3-20: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses with 1% apical CO2. 

 

This maneuver should reduce free-HCO3 in the cell and subsequently decrease 

basolateral membrane NBC activity.  In 1% apical CO2, the basal bath ∆[HCO3]-induced 
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TEP response was more than 5-fold smaller than in 5% apical CO2 (Table 3-2).  This 

result indicates that intracellular CO2 is a significant source of HCO3-supply for the 

basolateral membrane NBC.  1% apical CO2 increased the basal bath ∆[HCO3]-induced 

equivalent H+-flux from 7.2 ± 1.8 to 10.7 ± 1.9 mM·min-1 (n = 5; p = 0.04).  The H+-flux 

in the presence of 1% apical bath CO2 was larger probably because the resultant 

alkalinization activated the Cl/HCO3 exchanger more than the reduction in Na/nHCO3 

co-transport activity.   

 

By showing that 13% and 1% apical CO2 increased and decreased the basal bath 

∆[HCO3]-induced TEP response respectively, we confirmed our hypothesis that an 

increase in apical bath CO2 stimulates HCO3 efflux from the basolateral membrane via 

the basolateral membrane NBC.  As shown in Fig. 3-18, this process is facilitated by 

cytosolic CA II activity.  Since 13% apical CO2 stimulates NaHCO3 efflux from the 

basolateral membrane, we should observe a decrease in intracellular [Na].  In addition, 

since Na is a substrate of the basolateral membrane NBC, we expect its activity to depend 

on one or more Na-transport mechanism as its main source of Na.  These mechanisms are 

explored in the next few sections. 
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Section 3.6 – CO2 and Na-transport 

We showed that 13% apical CO2 increased the basal bath ∆[HCO3]-induced TEP 

response (Fig. 3-19), suggesting that 13% apical CO2 activates the basolateral membrane 

Na/nHCO3 co-transporter, which should decrease [Na]i.  To test this notion, we observed 

the change in intracellular [Na] (with Na-sensitive dye) when apical bath CO2 was 

increased from 5% to 13% (Fig. 3-21).  Surprisingly, 13% apical CO2 increased [Na]i 

from 15.7 ± 3.3 to 24.0 ± 5.3 mM (n = 6; p < 0.05).   

 

Fig. 3-21: 13% apical or basal CO2 induced [Na]i responses. 

 

This suggests that one or more Na-entry pathways at the apical membrane are affected by 

13% apical CO2 to produce the observed increase in [Na]i.  Early studies showed that the 

Na/H exchanger can be activated by intracellular acidification (Aronson et al., 1982; 

Dunham et al., 2004).  Therefore it is possible that 13% apical CO2 induced acidification 

stimulated NHE activity, which drives Na into the cell – this may explain the 13% apical 

CO2 induced increase in [Na]i.  To test whether 13% apical CO2-induced acidification 

activated NHE, we compared the effect of 1 mM amiloride (NHE inhibitor) on the 
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steady-state pHi of the RPE in control Ringer (5% CO2) to that in 13% CO2 equilibrated 

Ringer (Fig. 3-22).  If 13% apical CO2 stimulated NHE activity, its inhibition by 

amiloride should cause a large acidification.  However in three experiments, adding 1 

mM amiloride into the apical bath did not cause any change in steady-state pHi in either 

5% or 13% apical bath CO2.   

 

Fig. 3-22: Apical amiloride-induced pHi, TEP, and RT responses with 13% apical CO2. 

 

As an additional test, we compared the magnitude of the 13% apical CO2-induced 

acidification in the presence or absence of 1 mM amiloride in the apical bath (Fig. 3-23).  

If NHE activity (H+-efflux) helps buffer the 13% CO2 induced acidification, this 

acidification should be significantly larger in the presence of apical amiloride.   
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Fig. 3-23: 13% apical CO2-induced pHi, TEP, and RT responses in the presence of apical 

amiloride. 

 

In four experiments, amiloride did not affect the 13% apical CO2-induced acidification 

(ΔpHi = 0.23 ± 0.01) compared to control (ΔpHi = 0.22 ± 0.02; p > 0.05).  These 

experiments indicate that 13% apical CO2-induced acidification did not activate NHE, 

therefore it could not have contributed to the CO2-induced [Na]i increase.  This lack of 

participation might have occurred for three reasons: (1) the 13% CO2-induced 

acidification was too small; (2) there was no change in the proton-gradient across the 

Na/H exchanger; (3) the 13% CO2 equilibrated Ringer is acidic relative to control (pH 

7.09 vs. 7.5) and the low extracellular pH may have inhibited the Na/H exchanger 

(Aronson et al., 1983).  We ruled out the first possibility with a 10 mM NH4 pre-pulse 
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that caused only ≈ 0.1 decrease in pHi (n = 4) but still showed the characteristic Na/H 

exchanger mediated pHi recovery; in comparison, 13% apical CO2 acidified the cell by 

more than 0.2 pH-units.  In addition, we showed that reducing basal bath [HCO3] 

acidified the cell by only ≈ 0.2 but was able to activate the Na/H exchanger.  Na/2HCO3 

entry via NBC1 was eliminated as a possible cause of the 13% apical CO2-induced [Na]i-

increase because: (1) the apical DIDS induced pH iii and TEP responses were the same in 

5% or 13% apical bath CO2 (Fig. 3-9); (2) the magnitude of the 13% apical CO2-induced 

pHi response was unaltered in the presence of apical DIDS (Fig. 3-11).     

 

In alveolar epithelium, 3Na/2K ATPase activity is reduced by CO2-induced acidification 

(Briva et al., 2007), suggesting the possibility of a similar effect in RPE.  In frog RPE, 

13% CO2-induced acidification activated the Na/K/2Cl co-transporter (NKCC1) due to a 

reduction in [Cl]i that follows the inhibition of the basolateral membrane Cl/HCO3 

exchanger (Edelman et al., 1994).  Both the 13% apical CO2-induced inhibition of the 

3Na/2K ATPase and activation of the Na/K/2Cl co-transporter can increase [Na]i.  The 

increased [Na]i should facilitate NaHCO3 transport via the basolateral membrane NBC.  

However, NBC only requires one Na+ ion for every three HCO3
- ion transported, thus Na 

may not be the limiting substrate for this Na/3HCO3 co-transporter.  
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Section 3.7 – Basolateral membrane NBC: dependence on Na or HCO3 as substrate 

Since [Na]i is low (15 mM) compared to [Na]o (≈ 140 mM), we expected Na-linked 

transporters at the apical membrane (Fig. 1-3) to provide substrate that would help drive 

the outward transport of Na/nHCO3 at the basolateral membrane.  There are four major 

Na-linked transporters at the apical membrane: (1) Na/H exchanger (NHE); (2) Na/K/2Cl 

co-transporter (NKCC1); (3) 3Na/2K ATPase (ATP); (4) Na/2HCO3 co-transporter 

(NBC1).  If NHE (Na+ in; H+ out) provides the main source of [Na]i for basolateral 

membrane Na/nHCO3 transport out of the cell, inhibition of NHE with amiloride should 

reduce basolateral membrane Na/nHCO3 activity.  

 

Fig. 3-24: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence of apical 

amiloride. 
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To test this notion, we reduced basal bath [HCO3] (10-fold) and observed the resultant 

pHi and TEP responses in the presence or absence of 1 mM apical amiloride (Fig. 3-24).   

In five experiments, amiloride did not affect basal bath ∆[HCO3]-induced TEP response 

(Table 3-2), indicating that the apical membrane Na/H exchanger does not provide 

substrate for basolateral Na/nHCO3 co-transport activity.  On the other hand, the basal 

bath ∆[HCO3]-induced acidification and H+-flux was larger in the presence of apical 

amiloride compared to control (Table 3-1).  This observation indicates that the Na/H 

exchanger normally acts to buffer cell acidification produced by HCO3-efflux from the 

basolateral membrane.   

 

Fig. 3-25: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence apical 

bumetanide. 
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Next, we test if Na-entry via NKCC1 facilitates basolateral Na/nHCO3 co-transport 

activity (Fig. 3-25).  We inhibited NKCC1 with 200 μM apical bumetanide, which did 

not affect the basal bath ∆[HCO3]-induced pHi (∆pHi and H+-flux) and TEP responses 

(Tables 3-1 & 3-2).  This lack of effect suggests that Na-entry via the NKCC1 does not 

contribute significantly to basolateral Na/nHCO3 co-transport activity.  We also evaluated 

the effect of Na-extrusion by the apical membrane 3Na/2K ATPase on the activity of the 

basolateral membrane Na/nHCO3 co-transporter (Fig. 3-26).   

 

Fig. 3-26: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence apical 

ouabain. 

 

Unlike NHE, NKCC1, or NBC1, the 3Na/2K ATPase transports three Na+ ions out of the 

cell in exchange for two K+ ions.  Thus its inhibition by ouabain should increase [Na]i, 
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which may stimulate basolateral Na/nHCO3 co-transport activity.  Adding 200 µM 

ouabain into the apical bath caused an acute TEP-decrease (ΔTEP = 0.55 ± 0.47 mV; n = 

5), as expected from inhibition of the 3Na/2K ATPase.  However, apical ouabain did not 

affect the basal bath ∆[HCO3]-induced pHi (∆pHi and H+-flux) and TEP responses 

(Tables 3-1 & 3-2), indicating that Na-extrusion by the 3Na/2K ATPase does not reduce 

or limit basolateral Na/nHCO3 co-transport activity. 

 

Fig. 3-27: Basal bath ∆[HCO3]-induced pHi, TEP, and RT responses in the presence apical DIDS. 

 

The basolateral membrane Na/nHCO3 co-transporter may be dependent on Na and HCO3 

entry from the apical membrane via the electrogenic Na/2HCO3 co-transporter (NBC1).  

Therefore, we tested the coupling between the apical and basolateral membrane Na/HCO3 

co-transporters by decreasing basal bath [HCO3] (10-fold) in the presence of 0.5 mM 



 84

apical DIDS (Fig. 3-27).  In seven experiments, the basal bath Δ[HCO3]-induced TEP 

response decreased from 0.86 ± 0.17 to 0.49 ± 0.06 mV (p < 0.05) in the presence of 

apical DIDS, suggesting that inhibiting apical HCO3-entry via the Na/2HCO3 co-

transporter reduces the HCO3-supply that drives basolateral Na/nHCO3 co-transport.  

However, apical DIDS increased the basal bath Δ[HCO3]-induced acidification and H+-

flux by ≈ 20% (Table 3-1).  This observation suggests that normally, apical HCO3-entry 

via the Na/2HCO3 co-transporter is a buffer that counteracts the acidification caused by 

HCO3-efflux from the basolateral membrane.   

 

From these experiments, we conclude that HCO3 (not Na) is the limiting substrate for the 

basolateral membrane Na/nHCO3 co-transporter.  This is supported by the following 

evidence: (1) reducing basal bath [HCO3] 10-fold caused a TEP response that was 

reduced in the presence of apical DIDS, suggesting that inhibiting NBC1 reduced 

basolateral Na/nHCO3 co-transport activity; (2) the basal bath ∆[HCO3]-induced TEP 

response was reduced in the presence of basal DZA, suggesting that CA-inhibition 

reduces basolateral Na/nHCO3 co-transport.  DZA reduces HCO3-transport in two ways: 

first, DZA slows CA-mediated hydration of CO2 to HCO3; second, DZA inhibits the 

apical membrane Na/2HCO3 co-transporter, as evidenced by the reduction of apical bath 

∆[HCO3]-induced TEP response in the presence of apical DZA; (3) the basal bath 

∆[HCO3]-induced TEP response was increased in 13% apical bath CO2 and decreased in 

1% apical bath CO2.  This suggests that apical CO2-entry and its subsequent conversion 

into HCO3 is an important source of HCO3-substrate for basolateral Na/nHCO3 co-

transport activity.   
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In addition to showing that the basolateral membrane Na/nHCO3 co-transporter is 

dependent on apical HCO3-supply, we also eliminated Na as a limiting substrate for 

basolateral Na/nHCO3 co-transport by examining three Na-transport proteins at the apical 

membrane of the RPE (Hughes et al., 1998): (1) amiloride-sensitive Na/H exchanger 

(NHE); (2) bumetanide-sensitive Na/K/2Cl co-transporter (NKCC1); (3) ouabain-

sensitive 3Na/2K ATPase (ATP).  In hfRPE, the presence of amiloride, bumetanide, or 

ouabain in the apical bath had no effect on the basal bath ∆[HCO3]-induced TEP 

responses, suggesting that these Na-transport mechanisms are not linked to basolateral 

Na/nHCO3 co-transport activity.  Taken together, our data indicate that the basolateral 

membrane Na/nHCO3 co-transporter is mainly driven by HCO3 supplied by NBC1 

mediated Na/2HCO3 entry and CA II-mediated hydrolysis of CO2 to HCO3. 
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Section 3.8 – CO2 induced fluid transport in hfRPE 

 

Fig. 3-28: CO2 induced ion and fluid transport in human retinal pigment epithelium.  CO2 enters 

the RPE at its apical membrane by diffusion, or it may be transported in the form of HCO3 via 

NBC1 and NBC3.  CO2 exits RPE basolateral membrane as HCO3, mainly via basolateral 

membrane NBC – this process is facilitated by carbonic anhydrase II (CA II) activity.  

 

The model in Fig. 3-28 predicts that 13% apical CO2 would increase net Na, Cl, and 

HCO3 absorption, producing an increase in steady-state fluid-absorption (JV) across the 

RPE.  In four experiments, increasing CO2 from 5% to 13% in both solution baths 

increased JV by more than 2-fold (from 2.8 ± 1.6 to 6.7 ± 2.3 µl⋅cm-2⋅hr-1; n = 5; p < 

0.05).  In another set of experiments, decreasing CO2 from 5% to 1% in both solution 

baths decreased steady-state fluid absorption by ≈ 60% (from 8.8 ± 3.9 to 3.4 ± 1.1 µl⋅cm-

2⋅hr-1; n = 4; p < 0.05).   
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In bovine RPE, net active Cl absorption is mediated by the Na/K/2Cl co-transporter at the 

apical membrane (Edelman et al., 1994) and by Ca2+-activated and cAMP/PKA-

dependent CFTR Cl channels at the basolateral membrane (Joseph & Miller, 1991; 

Bialek et al., 1995; Hughes et al., 1998).  Evidence for the expression and basolateral 

membrane localization of CFTR in hfRPE has been presented (Blaug et al., 2003).  The 

13% apical CO2-induced activation of the Na/K/2Cl co-transporter and inhibition of the 

Cl/HCO3 exchanger would both increase net Cl absorption across the RPE.   

 

HCO3 transport also plays a significant role in RPE fluid transport.  We tested the role of 

the apical membrane Na/2HCO3 co-transporter in fluid transport by adding 0.5 mM 

DIDS into the apical bath and measuring the resultant change in steady-state fluid 

absorption rate (JV).  In four experiments, 0.5 mM apical DIDS decreased JV by more 

than 50% (from 16.7 ± 4.8 to 7.7 ± 3.7 µl⋅cm-2⋅hr-1; p < 0.05), suggesting that HCO3-

transport via NBC1 mediates a major component of fluid absorption across the RPE 

apical membrane.  The presence of NBC3 at the apical membrane suggests that it also 

contributes to HCO3-mediated fluid transport.  At the basolateral membrane, HCO3 

transporters, and several Cl-channels are DIDS-sensitive.  Not surprisingly, the addition 

of 0.5 mM DIDS to the basal bath decreased JV from 20.3 ± 8.2 to 11.2 ± 6.0 µl⋅cm-2⋅hr-1 

(n = 9; p < 0.05).  In addition, dorzolamide or acetazolamide decreases steady-state fluid 

absorption across hfRPE in vitro (Zhi et al., ARVO 2007, #2532).  These observations 

are corroborated in the present experiments by the DZA-induced inhibition of NBC1 the 

apical membrane and the Na/nHCO3 co-transporter at the basolateral membrane.   
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Interestingly, animal models showed that systemically administered acetazolamide 

increases fluid absorption across the RPE (Wolfensberger, 1999).  Furthermore, clinical 

studies showed that acetazolamide reduces macular edema in some patients with retinitis 

pigmentosa and uveitis (Cox et al., 1988; Fishman et al., 1989).  It has been proposed 

that acetazolamide increases RPE fluid absorption in vivo by affecting membrane-bound 

carbonic anhydrases at the basolateral membrane (Wolfensberger, 1999), but there is no 

known membrane-bound CAs at the basolateral membrane of native RPE (Zhi et al., 

ARVO 2007, #2532).  In addition, acetazolamide readily permeates RPE basolateral 

membrane, which would reduce fluid absorption by inhibiting cytosolic CA II, as 

observed in vitro (Zhi et al., ARVO 2007, #2532).  More recently, Xu and colleagues 

show that acetazolamide induces hypoxia-inducible factor 1 alpha (HIF-1α) expression in 

rat cerebral cortex (Xu et al., 2009).  This finding suggest the possibility that chronic 

exposure of RPE cells to acetazolamide may exert its therapeutic effects against macular 

edema via HIF-1α-mediated regulation of proteins involved in fluid transport.  Therefore, 

the key to understanding why acetazolamide has opposite effects on RPE fluid transport 

in vitro vs. in vivo may lie in the difference between acute and chronic effects of 

acetazolamide on RPE physiology. 
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Section 3.9 – HCO3-mediated ion and fluid transport in the choroid plexus 

epithelium—a comparison with retinal pigment epithelium 

Both the RPE and the choroid plexus epithelium (CPE) develop from neural ectoderm, 

therefore it is not surprising to find many similarities in the solute transport mechanisms 

of these two epithelia (Hughes et al., 1998; Brown et al., 2004; Praetorius, 2007).  As 

demonstrated in this study, HCO3-transport mediates net solute and fluid absorption in 

human RPE.  This is supported by experiments where acetazolamide or dorzolamide 

reduced steady-state fluid absorption by ≈ 50% in hfRPE cultures (Zhi et al., ARVO 

2007, #2532).  Similarly in the CPE, HCO3-transport is an important mediator of CSF-

production (Saito & Wright, 1983, 1984); CSF-secretion is inhibited by basal DIDS 

(Deng & Johanson, 1989).  In addition, acetazolamide reduces CSF-secretion by ≈ 40% 

(Vogh et al., 1987).  Acetazolamide is used to prevent cerebral edema at high altitudes 

(Wright et al., 2008) and to reduce CSF-pressure in children with hydrocephalus (Cowan 

& Whitelaw, 1991).  The inhibitory effect of acetazolamide on CSF-secretion led to the 

notion that CO2-entry into the CPE from the blood-plasma and the subsequent hydration 

of CO2 into HCO3 stimulates NaHCO3-secretion across the apical membrane.  This 

conclusion is supported by experiments in cat CPE, where ≈ 40% of Na-secretion is 

attributed to CA II-mediated HCO3 formation from CO2 (Vogh & Maren, 1975).  Perhaps 

not surprising, this mechanism of CO2-driven HCO3 transport is also found in the RPE.   

 

Despite many similarities, the RPE normally absorbs Na (Cl + HCO3) and fluid, while 

the CPE secretes Na (Cl + HCO3) and fluid which helps form cerebrospinal fluid (CSF).  

As in the RPE, the CPE expresses Na/HCO3 co-transporters at both the apical and 
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basolateral membranes.  However, the most striking difference is that both NBC1/NBCe1 

and NBC3/NBCn1 in the RPE are expressed at the apical membrane (Zhi et al., ARVO 

2007, #2532), whereas in the CPE, these two transporters are expressed at the basolateral 

membrane (Brown et al., 2004; Praetorius, 2007).  This difference suggests that NBC4, 

which is found at the apical membrane of the CPE (Millar & Brown, 2008), may be the 

unidentified Na/nHCO3 co-transporter at the basolateral membrane of the RPE.  We 

hypothesize that the difference in the membrane location of these HCO3 transporters (i.e., 

NBC1, NBC3, and NBC4) in the RPE and CPE is the basis for their difference in HCO3 

and fluid transport direction.   

 

If the CO2-permeability difference of the apical and basolateral membranes of the RPE 

also manifests in the CPE, what is its functional significance?  In the central nervous 

system, metabolic CO2 produced by the brain is released into the CSF, and is 

subsequently neutralized by HCO3 secreted from the CPE.  We hypothesize that the CPE 

has a relatively lower CO2 permeability at the apical membrane than at the basolateral 

membrane, and this property would promote CA II-mediated HCO3 secretion across the 

apical membrane.  This possibility remains to be evaluated.      
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Section 3.10 – Physiological implications 

Upon dark adaptation, oxygen consumption in the retina increases (Kimble et al., 1980; 

Medrano & Fox, 1995; Cringle et al., 2002; Yu & Cringle, 2002), thus generating and 

depositing more CO2 and H2O into the SRS.  Both CO2 and H2O generation can be 

estimated from the rate of oxygen consumption measured in situ in cat and non-human 

primate eyes (Wangsa-Wirawan & Linsenmeier, 2003).  Our calculations (section 3-11) 

provide an estimate of CO2 production in adult human photoreceptors of ≈ 0.29 and 0.54 

mmol⋅hr-1 in light and dark respectively.  Considering that SRS [CO2] is ≈ 2 mM, 

impaired CO2-transport across the RPE could cause significant SRS or RPE acidification 

resulting in photoreceptor or RPE cell death.  In addition, oxidative phosphorylation in 

the adult retina produces water at a rate of ≈ 0.5 µl⋅cm-2⋅hr-1 in light and 0.9 µl⋅cm-2⋅hr-1 in 

dark adapted eyes.  Since glycolysis in the retina accounts for ≈ 95% of its total glucose 

consumption (Winkler et al., 2008), the combined retinal water production by aerobic 

respiration and glycolysis is calculated to be 3.6 and 6.5 µl⋅cm-2⋅hr-1 in the light and dark 

respectively.  The CO2 induced changes in ion-transport in the RPE is one of many events 

that follows the transition from light to dark in vivo, others include: (1) an increase in 

SRS [K+] from ≈ 3 to 5 mM; (2) the decrease in SRS [Ca2+]; (3) the decrease in SRS pH 

(Steinberg et al., 1983; Borgula et al., 1989; Livsey et al., 1990; Yamamoto et al., 1992; 

Gallemore et al., 1994).  Dark-adaptation decreases SRS volume in situ (Li et al., 1994a; 

Li et al., 1994b).  In addition, in a rat model of retinal re-attachment (Maminishkis et al., 

2002), fluid clearance from the SRS was faster in the dark-adapted eye (Maminishkis A., 

personal communication), suggesting that steady-state fluid-absorption across the RPE is 

higher in the dark.   
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In the dark adapted eye, the high oxidative metabolism in the inner segments of the 

photoreceptors generates CO2 and H2O that are deposited into the SRS.  The RPE utilizes 

the limited CO2-diffusion at the basolateral membrane to drive Na, Cl, and HCO3 

transport across the RPE, which increases solute-driven fluid-transport – this mechanism 

not only prevents CO2 accumulation in the SRS, but also removes water from the vicinity 

of the photoreceptors.  This helps maintain the proper anatomic relationship between the 

photoreceptors and the RPE apical membrane, thus avoiding retinal-detachment and 

photoreceptor degeneration (Stone et al., 1999; Wickham et al., 2006; Nakazawa et al., 

2007).  
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Section 3.11 – Appendix  

Relative CO2 membrane permeability  
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Differentiating the CO2/HCO3 equilibrium constant, 
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Combining the above equations give,  
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The relative permeability (P) of CO2 at the apical vs. the basolateral membrane is, 

dt
Hd
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Hd

D
D
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Basal
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÷==  

Where D is the diffusion coefficient and  
dt

Hd Ap][ +

 and 
dt

Hd Ba][ +

 are the H+-fluxes 

caused by perfusing 13% CO2 equilibrated Ringer to the apical and basal bath 

respectively.  The H+-fluxes were obtained by multiplying the 13% CO2 induced dpHi/dt 

with the total buffering capacity of the hfRPE.  Based on these considerations, the 

relative permeability of apical vs. basolateral membrane of hfRPE to CO2 is 9.9 ± 4.4 (n 

= 7).  
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Retinal water production by aerobic respiration 

In the dark, outer retina O2 consumption (Wangsa-Wirawan & Linsenmeier, 2003) is: 4.2 

± 0.5 ml O2·100g-1 min-1 

In the light, outer retina O2 consumption (Wangsa-Wirawan & Linsenmeier, 2003) is: 2.3 

± 0.6 ml O2·100g-1 min-1 

Wet weight of human retina (Bhosale & Bernstein, 2005) is: 5.44 g  

 

Oxygen consumption in the dark (density of oxygen at 36.9 oC is 0.039 mmol/ml): 

1
2

1111
2 54.00393.044.560042.0 −−−−− ⋅=⋅××⋅×⋅ hrOmmolmlmMghrminmingOml  

Oxygen consumption in the light: 

1
2

1111
2 29.00393.044.560023.0 −−−−− ⋅=⋅××⋅×⋅ hrOmmolmlmMghrminmingOml  

In aerobic respiration, one molecule of water is generated for every molecule of oxygen 

consumed.  Therefore, water generated in the dark is:  

1
2

111
2 72.911854.0 −−−− ⋅=⋅×⋅×⋅ hrOHlmglmmolmghrOmmol μμ  

Water generated in the light is: 

1
2

111
2 22.511829.0 −−−− ⋅=⋅×⋅×⋅ hrOHlmglmmolmghrOHmmol μμ  

Assuming that the entire retina surface is 10.94 cm2 (http://webvision.med.utah.edu/), the 

total rate of fluid generated by the retina through aerobic respiration: 

In the dark: 12
22

2 89.0
94.10

/72.9 −− ⋅⋅= hrcmOHl
cm

hrOHl
μ

μ
 

In the light: 12
22

2 48.0
94.10

/31.5 −− ⋅⋅= hrcmOHl
cm

hrOHl
μ

μ
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Total retinal water production in the light and dark 

For every glucose molecule that undergoes aerobic respiration, six molecules of CO2 are 

produced.  Therefore, glucose consumption by aerobic respiration in the dark is: 

1

2

1 09.0
6

cos154.0 −− ⋅=×⋅ hrmmol
CO

egluhrmmol  

Glucose consumption by aerobic respiration in the light is:  

1

2

1 05.0
6

cos129.0 −− ⋅=×⋅ hrmmol
CO

egluhrmmol  

Assuming that glycolysis in the retina accounts for 95% of glucose consumption in the 

dark (Winkler et al., 2008), the rate of water generation by glycolysis in the dark is: 

12
2

21 6.5
94.10

1
1
18

cos1
2

5
9509.0 −−− ⋅⋅=××××⋅ hrcml

cmmmol
l

eglu
OH

hrmmol μ
μ  

The rate of water generation by glycolysis in the light is: 

12
2

21 1.3
94.10

1
1
18

cos1
2

5
9505.0 −−− ⋅⋅=××××⋅ hrcml

cmmmol
l

eglu
OHhrmmol μμ  

Total water produced by aerobic respiration and glycolysis in dark:  

= 0.89 + 5.6 = 6.5 µl⋅cm-2⋅hr-1 

Total water produced by aerobic respiration and glycolysis in light:  

= 0.48 + 3.1 = 3.6 µl⋅cm-2⋅hr-1 

JV of human RPE in vivo has been estimated using B-scan ultrasonography to be ≈ 11 

µl⋅cm-2⋅hr-1 (Chihara & Nao-i, 1985), comparable to our in vitro measurements (Fig. 13).    
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CO2 production in the light and dark 

CO2 production = O2 consumption.  CO2 production in dark: 4.2 ± 0.5 ml CO2·100g-1 

min-1, and in light: 2.3 ± 0.6 ml O2·100g-1 min-1.  Therefore, CO2 production increases by 

1.4 – 2.6 fold after transitioning from light to dark.  This increase in CO2 production 

translates to an increase in SRS CO2 concentration, from 5% to 10 ± 3%.   
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CHAPTER 4: Lactate Induced Ion Transport Mechanisms in RPE 

Section 4.1 – Introduction  

Photoreceptor metabolism is higher in the dark than in light (Yamamoto et al., 1992; 

Wang et al., 1997a; Wang et al., 1997b; Padnick-Silver & Linsenmeier, 2002; Winkler et 

al., 2008) and it is estimated that ATP consumption by rod photoreceptor is ≈ 4-fold 

higher in the dark (Okawa et al., 2008).  The high ATP production is needed to drive the 

Na/K ATPase and Ca2+ ATPase at the photoreceptor inner segments, to maintain the 

“dark current” that circulates between the photoreceptor inner and outer segments (Ames 

et al., 1992; Krizaj & Copenhagen, 1998; Okawa et al., 2008).  Therefore in the dark, 

oxidative metabolism at the photoreceptor inner segments increases, thus reducing the 

local oxygen levels (Wangsa-Wirawan & Linsenmeier, 2003) and increasing the need for 

glycolysis-derived ATP.  More than 80% of all glucose consumed by photoreceptors is 

converted to lactic acid (Wang et al., 1997a; Wang et al., 1997b; Winkler et al., 2008) 

indicating that the retina is highly dependent on glycolysis as a source of ATP, even in 

the presence of oxygen (Winkler et al., 2000; Padnick-Silver & Linsenmeier, 2002; 

Winkler et al., 2004).  This finding is consistent with the high lactate concentration (4 - 

13 mM) in the subretinal space (SRS) compared to that in blood (≈ 1 mM) (Adler & 

Southwick, 1992).  Although lactate released by Müller cells in darkness can be used as 

an energy source for photoreceptor activity (Poitry-Yamate et al., 1995; Poitry et al., 

2000), this mechanism is controversial (Winkler et al., 2004).  Regardless of the source, 

more lactic acid are generated in the dark and released from the retina into the SRS.   
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The choroidal circulation (see chapter 1) is the main pathway for the removal of 

photoreceptor-generated lactic acid (and CO2) from the SRS.  This process is mediated by 

the RPE, which expresses proton-coupled lactate (H+/Lac-) transporters of the MCT 

family at its apical (MCT1) and basolateral membranes (MCT3) (Kenyon et al., 1994; la 

Cour et al., 1994; Lin et al., 1994; Zeuthen et al., 1996; Philp et al., 1998; Hamann et al., 

2003; Philp et al., 2003a; Philp et al., 2003b; Majumdar et al., 2005).  MCT lactate-

transporters are electroneutral, but early in vitro experiments in bovine RPE showed that 

adding lactate to the apical bath alters RPE membrane voltage, suggesting involvement of 

electrogenic mechanisms (Kenyon et al., 1994).  In this study, we investigate these 

lactate-activated mechanisms.  We demonstrate that apical lactate entry stimulates KCl-

efflux via a Ba2+-sensitive K-channel at the apical membrane and ClC-2 Cl-channel at the 

basolateral membrane.  These channels may be activated by lactate-induced cell-swelling 

(Zeuthen et al., 1996; Hamann et al., 2003), but we show that activation of these two 

channels is caused by cell acidification.  Lactate-induced KCl-efflux decreases RPE cell 

volume and prevent swell-induced osmotic stress.  In addition, lactate-induced activation 

of apical membrane K-channel may be an important mechanism that regulates SRS K-

homeostasis, which is critical for photoreceptor/RPE interactions in light-dark transitions.   

 

All experiments presented in this chapter are performed in CO2/HCO3-free condition 

because the lactate-induced responses are more pronounced and can be easily measured.  

Although this eliminates interactions between lactate and HCO3 transport mechanisms, 

the main features of lactate-induced pHi, TEP, and RT responses were preserved (Fig. 5-

1).  Interactions between lactate and HCO3-transporters are explored in chapter 5. 
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Section 4.2 – MCT localization in cultured hfRPE 

Studies in mouse and human RPE showed MCT1 and MCT3 localization at the apical 

and basolateral membranes, respectively (Philp et al., 1998; Philp et al., 2003b).  First, 

we confirm the localization of these MCTs in hfRPE cultures since this model will be 

used for all physiological experiments.  Western blots showed that MCT1, MCT3, and 

MCT4 and their accessory protein (CD147) are expressed in cultured hfRPE cells (Fig. 4-

1A).  Immunofluorescence imaging shows that MCT1 is localized at the apical 

membrane, whereas both MCT3 and MCT4 are localized to the basolateral membrane 

(Fig. 4-1B).  CD147 was detected in both apical and basolateral membranes; CD147 

labeling of the basolateral membrane is weak probably due to epitope masking by MCT 3 

or 4.  CD147 (or basigin) is an accessory protein that associates with MCTs to regulate 

their membrane targeting and localization – its detection indicates proper distribution of 

MCTs in cultured hfRPE.   

 

Fig. 4-1: Expression and localization of CD147 and MCTs in cultured hfRPE monolayer.  (A) 

Western blot (CG – core-glycosylated, 29.2 kD; FG – fully-glycosylated, 59 kD); (B) 

immunolabeling.     
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MCT4 is normally absent in native RPE, but it is expressed in cultured RPE (e.g., ARPE-

19) (Philp et al., 2003b).  MCT4 is expressed in highly glycolytic cells (Dimmer et al., 

2000).  Studies in renal cells show that MCT4 expression is upregulated in hypoxia (low 

O2) via hypoxia-inducible factor 1-alpha (HIF-1α) (Ullah et al., 2006).  HIF-1α controls 

expression of many genes involved in glycolysis, such as lactate dehydrogenase A 

(LDHA) and pyruvate dehydrogenase kinase 1 (PDK1) (Gleadle & Ratcliffe, 1998; 

Semenza, 2003).  When cells are placed in culture, they abandon oxidative metabolism 

and depend on glycolysis as the main source of energy (Gstraunthaler et al., 1999).  This 

is because O2 supply from the environment to the confluent hfRPE is limited by a large 

diffusion layer (4.4 mm of stagnant media), thus causing hypoxia (Pettersen et al., 2005).  

Based upon these studies, we infer that cultured RPE cells express high levels of MCT4 

due to hypoxia-induced activation of HIF-1α.   

 

MCT3 (Km ≈ 6 mM (Grollman et al., 2000)) has significantly higher affinity for L-

lactate than MCT4 (Km ≈ 30 mM (Philp et al., 1998)).  A simple calculation with 

Michaelis-Menten kinetics show that MCT3 transports lactate at a rate ≈ 2 – 4 folds faster 

than MCT4 (assuming [Lactate]i in RPE ranges between 2 and 20 mM).  Does this mean 

that MCT3 (rather than MCT4) is the major H/Lac co-transporter at the basolateral 

membrane?  Not necessarily.  Although MCT3 transports lactate faster than MCT4, 

MCT4 may be expressed at a much higher levels than MCT3, thus compensating for its 

lower lactate binding affinity.  Therefore, at least in cultured hfRPE, MCT4 can 

contribute significantly to lactate-transport.     
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Section 4.3 – Lactate induced pHi responses in RPE 

Lactate transport at the apical membrane can be studied by imposing a lactate gradient 

across the apical membrane.  This maneuver drives lactic acid into the RPE via MCT1, 

thus causing intracellular acidification.  In this study, we stimulate MCT1 by perfusing 

20 mM lactate Ringer into the apical bath and MCT1 activity is reflected by the 

subsequent changes in pHi, TEP, and RT.  As shown in Fig. 4-2, apical lactate produced a 

pHi response with two successive phases: a fast acidification (R1) followed by a slow 

alkalinization (R2).  In the absence of CO2/HCO3, we took the intrinsic buffering 

capacity of the cell (βi) into account to determine the rate of H+-entry (∆pHi/∆t x βi).   

 

 

Fig. 4-2: Apical monocarboxylate (i.e., lactate, pyruvate, acetate, or propionate) induced pHi, 

TEP, and RT responses. 
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During R1, the hfRPE acidified at a rate of -6.32 ± 1.46 mM·min-1 and R2 has a rate of 

0.71 ± 0.31 mM·min-1 (n = 65).  Concomitantly, apical lactate also increased TEP and RT 

by 1.39 ± 0.60 mV and 52 ± 21 Ω·cm2 (n = 87), respectively.  The pHi responses are 

presented in H+-flux, which is determined by taking into account the intrinsic buffering 

capacity of the RPE.  To make sure that these responses are down-stream effects of H+-

coupled monocarboxylate transporter (MCT1) activity, we compared the pHi, TEP, and 

RT responses induced by apical addition of various monocarboxylates (20 mM of lactate, 

pyruvate, acetate, or propionate) (Fig. 4-2).  Adding various monocarboxylates (i.e., 

pyruvate, acetate, or propionate) to the apical bath produced similar but generally larger 

pHi, TEP, and RT responses compared to that caused by lactate (Table 4-1), suggesting 

that MCT1 has lower affinity for lactate than for other monocarboxylates.  Based on R1 

values, MCT1 substrate specificity in hfRPE (lactate = acetate < pyruvate = propionate) 

resembles MCT1 in Ehrlich Lettré tumor cells (Jackson & Halestrap, 1996).  Some 

discrepancies can be expected due to H+-coupled monocarboxylate transport at the 

basolateral membrane via MCT3, which also exhibits substrate preference.   

 

Table 4-1.  monocarboxylate-induced pHi, TEP, and RT responses. 

 lactate pyruvate acetate propionate 
 R1 (mM·min-1)a -6.17 ± 0.93 -8.28 ± 1.85 -7.15 ± 1.20 -8.48 ± 2.51 
R2 (mM·min-1) 0.71 ± 0.12 0.87 ± 0.27 0.85 ± 0.23 0.93 ± 0.19 
∆TEP (mV) 1.75 ± 0.45 1.99 ± 0.46 2.60 ± 0.52 2.70 ± 0.52 
∆RT  (Ω·cm2) 81 ± 15 77 ± 10 66 ± 12 75 ± 12 

 
a. values are presented as mean ± SD from five tissues. 

 

To test the activity of MCT1, we measured lactate-induced pHi, TEP, and RT responses in 

the presence of MCT1 inhibitors.  In the first experiment, we perfused lactate Ringer to 
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the apical bath in the presence or absence 50 μM apical pCMBS (p-

chloromercuribenzenesulfonic acid; MCT1 inhibitor) (Fig. 4-3).   

 

Fig. 4-3: Apical lactate induced pHi, TEP, and RT responses in the presence of apical pCMBS. 

 

Adding pCMBS (50 μM) into the apical bath acidified the cells and significantly 

decreased steady-state TEP and RT (∆pHi = -0.15 ± 0.01; ∆TEP = -11.99 ± 0.87 mV; ∆RT 

= -305 ± 87 Ω·cm2; n = 4).  In four experiments, pCMBS almost completely blocked the 

apical lactate-induced pHi, TEP, and RT responses (Table 4-2) – the effects of pCMBS on 

the pHi, TEP, and RT responses were irreversible even after 5 min washout.   
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Table 4-2.  Apical lactate-induced pHi, TEP, and RT responses. 

inhibitor/conditiona Apical lactate-induced pHi, TEP, and RT responsesb   

Apical Basal  Control  w/ inhibitor Recovery pc n

R1 -8.19 ± 0.94 -1.03 ± 0.09 -1.51 ± 0.20 S 

R2 1.09 ± 0.06 0.13 ± 0.08 -0.06 ± 0.08 S 

∆TEP 1.99 ± 0.31 0.04 ± 0.08 0.24 ± 0.29 S 

  
 
pCMBS  

 

∆RT 27 ± 13 0 0 S 

 

 

4 

R1 -5.93 ± 1.29 -3.22 ± 0.79 -6.24 ± 0.89 S 

R2 0.78 ± 0.25 0.49 ± 0.23 0.77 ± 0.26 S 

∆TEP 1.58 ± 0.73 1.08 ± 0.52 1.47 ± 0.79 S 

 
 
Niflumic 
acid 

 

∆RT 48 ± 12 38 ± 13 36 ± 11 NS 

 

 

7 

R1 -5.02 ± 1.22 -7.03 ± 2.71 -4.86 ± 1.16 S 

R2 0.78 ± 0.32 0 0.60 ± 0.29 S 

∆TEP 1.48 ± 0.79 1.39 ± 0.84 1.47 ± 1.01 NS 

 
 
Amiloride 

  
  

∆RT 43 ± 16 38 ± 15 37 ± 18 NS 

 

 

6 

R1 -7.36 ± 1.47 -14.2 ± 2.53 -7.33 ± 4.31 S 

R2 1.34 ± 0.24 0 1.17 ± 0.32 S 

∆TEP 1.86 ± 0.32 1.15 ± 0.16 2.06 ± 0.24 S 

 
 
Na-free 

 
 
Na-free 

∆RT 42 ± 3 48 ± 22 46 ± 9 NS 

 

 

3 

 

a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. H+-flux in R1 and R2 has units of mM·min-1, ∆TEP has units of mV, ∆RT has units of Ω·cm2, 

and all values are reported as mean ± SD. 

c. Student’s t-test for statistical significance between apical lactate-induced response in control 

vs. in the presence of inhibitor.  “S” indicates statistical significance (p < 0.05), “NS” indicates 

statistical insignificance (p > 0.05). 
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Fig. 4-4: Apical lactate induced pHi, TEP, and RT responses in the presence of apical niflumic 

acid. 

 

In a similar experiment, we tested the effect of another MCT1 inhibitor, niflumic acid 

(apical bath; 100 μM), on the apical lactate-induced pHi and TEP responses (Fig. 4-4).  

Adding niflumic acid to the apical bath acidified the cells, increased steady-state TEP, 

and decreased RT (∆pHi = -0.12 ± 0.03; ∆TEP = 1.17 ± 0.74 mV; ∆RT = -38 ± 13 Ω·cm2; 

n = 7).  In the presence of niflumic acid, apical lactate-induced R1 and R2 of the pHi 

response were significantly reduced (Table 4-2).  In addition, the lactate-induced TEP 

response was reduced by ≈ 30% (Table 4-2).  In contrast, the effect of niflumic acid on 

lactate-induced RT response was statistically insignificant (Table 4-2).     
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Fig. 4-5: Apical lactate induced pHi, TEP, and RT responses in the presence of apical amiloride. 

 

In RPE, a Na/H exchanger (NHE) is expressed at the apical membrane and is stimulated 

by cell acidification (Lin et al., 1992; Kenyon et al., 1997).  Therefore, R2 of the pHi 

response observed in Fig. 4-2, -3, -4 may reflect lactate-induced NHE activation.  To test 

this possibility, we compared lactate induced pHi, TEP, and RT responses in the presence 

of apical amiloride (1 mM; NHE inhibitor) (Fig. 4-5).  In these experiments, adding 

amiloride per se acidified the cells, and increased steady-state TEP and RT (∆pHi = -0.13 

± 0.02; ∆TEP = 0.28 ± 0.09 mV; ∆RT = 63 ± 41 Ω·cm2).  In contrast, amiloride did not 

affect steady-state pHi in the presence of CO2/HCO3 (Fig. 3-22), indicating that NHE is 

more active in the absence of CO2/HCO3 buffering.  Apical lactate acidified the cell with 

the same magnitude in the presence or absence of amiloride, but when intrinsic buffering 
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capacity was taken into account, R1 of the lactate-induced pHi response is significantly 

larger compared to control (Table 4-2), suggesting that apical lactate activated NHE 

during R1.  In addition, the R2 recovery phase is completely abolished by apical 

amiloride (Table 4-2), but the TEP and RT responses were unchanged.  

 

Fig. 4-6: Apical lactate induced pHi, TEP, and RT responses in the absence of Na. 

 

Since NHE (Na/H exchanger) is a Na-linked transporter, we can eliminate its activity by 

removing all Na from both apical and basal baths.  Consistent with this notion, R2 was 

completely blocked by 1 mM apical amiloride (Fig. 4-6).  Removing Na decreased 

steady-state pHi and TEP, and increased RT (∆pHi = -0.77 ± 0.06; ∆TEP = -2.82 ± 1.39 

mV; ∆RT = 412 ± 88 Ω·cm2).  Although NHE normally exchanges H+ for Na-entry, [Na]o 

removal generates a large outward Na-gradient that reverses NHE activity to transport H+ 
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into the cell and cause cell acidification.  As shown in Fig. 4-6, apical lactate-induced 

acidification in the absence of Na (∆pHi = -0.14 ± 0.02) was smaller compared to control 

(∆pHi = -0.22 ± 0.01; p < 0.05).  However when buffering capacity is taken into account, 

R1 was ≈ two-folds larger in the absence of Na compared to control (Table 4-2).  In 

addition, R2 of the pHi response was absent in Na-free condition.  These observations 

suggest that apical lactate activated NHE during R1 and R2.   

  

In this section, we showed that apical lactate-induced pHi response is a two-phased 

process composed of a fast intracellular acidification (R1) followed by a slow 

alkalinization (R2).  R1 reflects H/Lac entry via MCT1 because it can be inhibited by 

niflumic acid and pCMBS, both are potent MCT1 inhibitors (Jackson & Halestrap, 1996; 

Morris & Felmlee, 2008).  R2 reflects NHE activity because it can be eliminated by 

apical amiloride (1 mM) or by Na-removal from both apical and basal baths.  As shown 

in Figs. 4-3 and 4-4, lactate-induced acidification is required for the concomitant TEP 

and RT responses, indicating that these responses originate from the activation of 

secondary mechanisms downstream of H/Lac entry.  In the next section, we study the 

mechanisms underlying these TEP and RT responses.   
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Section 4.4 – Lactate-induced TEP and RT responses: involvement of Cl channels 

Adding lactate to the apical bath increases TEP by ≈ 1.5 mV.  This increase in TEP can 

originate from VA hyperpolarization, VB depolarization, or both.  The latter case may be 

caused by the activation of a Cl channel at the basolateral membrane, leading to 

basolateral Cl-efflux and the subsequent VB depolarization.  If true, removing all Cl in 

both solution baths should eliminate this TEP response (Fig. 4-7).  However, this 

maneuver cannot be performed with calomel electrodes (HgCl2) because these electrodes 

use Cl as the conductive ion; absence of Cl would prevent the electrode from providing a 

reliable measurement of TEP and RT.  Therefore, we replaced the calomel electrodes with 

HgSO4 electrodes (filled with sat. K2SO4).  In this experiment, control and lactate Ringer 

solutions contains CaSO4 (instead of CaCl2) to provide SO4
2- as conductive ion.   

 

Fig. 4-7: Apical lactate induced pHi, TEP, and RT responses in the absence of Cl. 
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Table 4-3.  Apical lactate-induced pHi, TEP, and RT responses. 

inhibitor/conditiona Apical lactate-induced pHi, TEP, and RT responsesb   

Apical Basal  Control  w/ inhibitor Recovery pc n

R1 -6.04 ± 1.31 -5.34 ± 0.67 -6.17 ± 0.98 NS 

R2 0.63 ± 0.34 0.59 ± 0.09 0.61 ± 0.04 NS 

∆TEP 1.72 ± 0.73 0.61 ± 0.36 1.47 ± 1.24 S 

 
 
Cl-free 

 
 
Cl-free  

∆RT 38 ± 19 90 ± 48 32 ± 12 S 

 

 

5 

R1 -5.96 ± 1.42 -5.77 ± 0.85 -5.51 ± 0.71 NS 

R2 0.46 ± 0.28 0.68 ± 0.18 0.37 ± 0.20 S 

∆TEP 1.05 ± 0.46 0.71 ± 0.28 1.05 ± 0.51 S 

 
 
Bume-
tanide 

  
  

∆RT 57 ± 17 56 ± 20 51 ± 18 NS 

 

 

6 

R1 -6.98 ± 1.41 -6.78 ± 1.59 -8.33 ± 3.13 NS 

R2 0.95 ± 0.14 0.95 ± 0.22 1.10 ± 0.34 NS 

∆TEP 2.10 ± 0.78 2.06 ± 0.67 2.10 ± 0.65 NS 

  
 
CFTRinh-
172 

∆RT 54 ± 20 53 ± 17 53 ± 12 NS 

 

 

5 

R1 -7.18 ± 0.69 -7.98 ± 1.37 -8.26 ± 1.49 NS 

R2 0.28 ± 0.06 0.27 ± 0.14 0.42 ± 0.25 NS 

∆TEP 1.16 ± 0.27 1.20 ± 0.31 1.02 ± 0.35 NS 

  
 
Forskolin 

∆RT 64 ± 36 58 ± 38 66 ± 39 NS 

 

 

3 

 
a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. H+-flux in R1 and R2 has units of mM·min-1, ∆TEP has units of mV, ∆RT has units of Ω·cm2, 

and all values are reported as mean ± SD.  

c. Student’s t-test for statistical significance between apical lactate-induced response in control 

vs. in the presence of inhibitor.  “S” indicates statistical significance (p < 0.05), “NS” indicates 

statistical insignificance (p > 0.05). 
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Removing Cl from both apical and basal baths increased steady-state pHi and RT (∆pHi = 

0.18 ± 0.08; ∆RT = 285 ± 74 Ω·cm2; n = 5).  In five experiments, both R1 and R2 of the 

apical lactate-induced pHi responses were the same in the presence or absence of Cl, 

indicating that this maneuver did not impede apical H/Lac entry.  However, the apical 

lactate-induced TEP-response was reduced by ≈ 3-fold in the absence of Cl (Table 4-3).  

In addition, apical lactate-induced RT response was more than two-fold larger (Table 4-

3).  Both observations suggest that lactate stimulates Cl-dependent mechanisms.  

However, Cl-removal did not completely eliminate the TEP response, suggesting 

involvement of other Cl-independent mechanisms.   

 

Fig. 4-8: Apical lactate induced pHi, TEP, and RT responses in the presence of apical bumetanide. 
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In RPE, CFTR and Ca2+-dependent Cl-channels are major Cl-conductances at the 

basolateral membrane (Blaug et al., 2003; Li et al., 2009), and their activities are 

sustained by apical Cl-entry via NKCC1 at the apical membrane (see Fig. 1-8).  

Therefore, apical bumetanide (NKCC1 inhibitor) should reduce lactate-induced TEP 

response (Fig. 4-8).  Consistent with this notion, the TEP response was reduced by ≈ 30% 

in the presence of bumetanide compared to control (Table 4-3).  Bumetanide had no 

effect on R1, but R2 was larger in the presence of bumetanide compared to control (Table 

4-3), possibly due to bumetanide-induced decrease in [Na]i which facilitates NHE 

activity. 

 

Fig. 4-9: Apical lactate induced pHi, TEP, and RT responses in the presence of basal CFTRinh-

172. 
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To identify the lactate-activated basolateral membrane Cl-conductance, we determined 

lactate-induced responses in the presence of CFTRinh-172, a specific CFTR-inhibitor 

(Ma et al., 2002), in the basal bath (Fig. 4-9).  However, apical lactate-induced pHi, TEP, 

and RT responses were unaffected by CFTRinh-172 (Table 4-3), suggesting that apical 

lactate did not stimulate CFTR.  However, CFTRinh-172 per se had little effect on 

steady-state TEP, suggesting that CFTR may not be fully active.  Therefore, we 

stimulated the cAMP-activated CFTR by adding 40 μM forskolin into the basal bath.  

Forskolin stimulates adenylyl cyclase activity which catalyzes production of cAMP from 

ATP.  However, apical lactate-induced pHi, TEP, and RT responses were also unaffected 

by forskolin (Table 4-3).  These data indicate that lactate did not activate CFTR.  

 

Fig. 4-10: Apical lactate induced pHi, TEP, and RT responses in the presence of basal DIDS. 
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Table 4-4.  Apical lactate-induced pHi, TEP, and RT responses. 

inhibitor/conditiona Apical lactate-induced pHi, TEP, and RT responsesb   

Apical Basal  Control  w/ inhibitor Recovery pc n

R1 -5.02 ± 1.81 -6.12 ± 1.90 -7.42 ± 3.16 NS 

R2 0.74 ± 0.10 0.87 ± 0.24 1.00 ± 0.44 NS 

∆TEP 1.28 ± 0.73 0.46 ± 0.32 0.38 ± 0.39 S 

  
 
DIDS 

∆RT 40 ± 8 35 ± 7 26 ± 5 NS 

 

 

5 

∆TEP 1.65 ± 0.50 1.56 ± 0.32 1.43 ± 0.51 NS  
BAPTA 

  

∆RT 70 ± 17 72 ± 19 79 ± 13 NS 

 

5 

R1 -6.29 ± 1.09 -7.18 ± 1.37 -11.0 ± 2.82 S 

R2 0.54 ± 0.20 0.18 ± 0.20 0 S 

∆TEP 1.14 ± 0.42 0.41 ± 0.18 0.57 ± 0.16 S 

  
 
Zn2+ 

∆RT 60 ± 25 70 ± 25 47 ± 31 NS 

 

 

7 

R1 -7.25 ± 1.48 -6.68 ± 1.02 -6.44 ± 1.14 NS 

R2 0.54 ± 0.11 0.12 ± 0.20 0.73 ± 0.21 S 

∆TEP 1.23 ± 0.40 1.48 ± 0.41 1.35 ± 0.45 S 

 
 
Zn2+ 

  
  

∆RT 58 ± 8 46 ± 11 42 ± 10 NS 

 

 

4 

R1 -6.65 ± 1.49 -6.76 ± 1.37 -7.35 ± 1.19 NS 

R2 0.54 ± 0.29 0.46 ± 0.20 0.52 ± 0.32     NS 

∆TEP 1.27 ± 0.30 0.73 ± 0.12 1.26 ± 0.28 S 

 
 
Ba2+ 

  
  

∆RT 53 ± 25 83 ± 45 56 ± 29 S 

 

 

5 

 
a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. H+-flux in R1 and R2 has units of mM·min-1, ∆TEP has units of mV, ∆RT has units of Ω·cm2, 

and all values are reported as mean ± SD. 

c. Student’s t-test for statistical significance between apical lactate-induced response in control 

vs. in the presence of inhibitor.  “S” indicates statistical significance (p < 0.05), “NS” indicates 

statistical insignificance (p > 0.05). 
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Does lactate activate Ca2+-activated Cl conductance?  Ca2+-activated Cl-channels can be 

blocked by DIDS, whereas CFTR is DIDS-insensitive (Bialek et al., 1995; Schultz et al., 

1999; Quinn et al., 2001).  Fig. 4-10 shows that basal DIDS did not affect steady-state 

pHi, but it significantly decreased TEP (2.58 ± 0.69 mV; n = 5) – consistent with 

inhibition of a Ca2+-activated Cl conductance, but there was no significant change in pHi 

or RT.  In five experiments, basal DIDS reduced the lactate-induced TEP response by 

64% (Table 4-4), suggesting that lactate activated the DIDS-sensitive Ca2+-dependent Cl 

conductance at the basolateral membrane.  

 

Fig. 4-11: Apical lactate induced pHi, TEP, and RT responses in the presence of apical BAPTA-

AM. 
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The Ca2+ dependence of this Cl-channel was tested by chelating intracellular Ca2+ with 

BAPTA-AM (20 μM), which decreased [Ca2+]i by 60 ± 30 nM (n = 5).  However, the 

lactate-induced TEP and RT responses were identical in the presence or absence of 

BAPTA-AM (Table 4-4), suggesting that lactate did not activate a Ca2+-dependent Cl 

channel and that another Cl-conductance may be involved.  In this context, ClC-2 is an 

obvious candidate because it is an almost ubiquitously expressed Cl-channel (Thiemann 

et al., 1992) and its expression and activity in RPE has been previously demonstrated 

(Wills et al., 2000; Weng et al., 2002; Hartzell & Qu, 2003). 

 

Fig. 4-12: ClC-2 Expression and Localization in RPE. (A) Western Blot analysis for ClC-2 

protein expression; (B) Immunofluorescence analysis for ClC-2 protein localization. 

 

The Western blot and immunocytochemistry data summarized in Fig. 4-12 show that 

ClC-2 (CLCN2) is highly expressed in hfRPE and localized to the basolateral membrane 

as well as intracellular compartments. 
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Fig. 4-13: Apical lactate-induced pHi, TEP, and RT responses in the presence of basal Zn2+. 

 

Since ClC-2 is inhibited by Zn2+ (Hartzell & Qu, 2003), we used Zn2+ to test ClC-2 

activity (Fig. 4-13).  Adding 200 μM Zn2+ to the basal bath did not significantly affect 

steady-state pHi but it decreased TEP and increased RT (∆TEP = -1.24 ± 0.81 mV; ∆RT = 

51 ± 25 Ω·cm2; n = 15), consistent with the inhibition of a basolateral membrane Cl-

current.  In the presence of basal Zn2+, the apical lactate-induced TEP response was 

reduced by 64% (Table 4-4).  Although Zn2+ also increased the RT response, this effect 

was not statistically significant (n = 10; Table 4-4).  R1 of the pHi response was 

unaffected by basal Zn2+ and R2 was gradually eliminated (Table 4-4), indicating that 

Zn2+ can enter the cell from the basal bath to reach the apical membrane, where it inhibits 

NHE-mediated Na/H exchange.  This observation suggests that Zn2+ entered the cell via 
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Zip1 and Zip2 (Zn2+-channels; (Leung et al., 2008)) from the basolateral membrane.  

Adding 200 μM Zn2+ to the basal bath maximally inhibited ClC-2 because a higher Zn2+ 

concentration (500 μM) only reduced lactate-induced TEP response by 55% (∆TEP = 

1.41 ± 0.41 vs. 0.63 ± 0.33 mV; n = 6; p < 0.05).   

 

Fig. 4-14: Lactate-induced pHi, TEP, and RT responses in the presence of apical Zn2+. 

 

To demonstrate that basally added Zn2+ reduced lactate-induced TEP response by acting 

on basolateral membrane ClC-2, we tested the effect of apical Zn2+ (200 μM) on lactate-

induced responses (Fig. 4-14).  In four experiments, adding Zn2+ to the apical bath 

increased steady-state TEP and RT (∆TEP = 0.42 ± 0.26 mV; ∆RT = 43 ± 10 Ω·cm2), 

suggesting that Zn2+ inhibited a channel at the apical membrane.  However, the lactate-

induced TEP response was larger in the presence of apical Zn2+ compared to control 
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(Table 4-4), whereas the RT response was unaffected.  Although R1 of the pHi response 

was unaffected by apical Zn2+, R2 of the pHi response was significantly reduced (Table 

4-4), indicating that apical Zn2+ inhibited NHE activity.  Since apical Zn2+ did not reduce 

apical lactate-induced TEP response, this experiment confirms ClC-2 localization to the 

basolateral membrane.      

 

Fig. 4-15: Lactate-induced VA, VB, TEP, RA/RB, RT responses in the presence of basal Zn2+. 

 

If lactate activated ClC-2, we should be able to detect basolateral membrane 

depolarization by using intracellular microelectrodes to separately measure apical and 

basolateral membrane voltages (VA and VB).  Fig. 4-15 shows the apical lactate-induced 

changes in VA, VB, TEP, RT, and RA/RB.  Intracellular recordings show that apical lactate-
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induced changes in membrane potentials (ΔVA, ΔVB) consist of two phases (P1 and P2).  

During P1, VA and VB rapidly depolarize with ΔVB > ΔVA (TEP increase).  During P2, 

VA and VB hyperpolarize relatively more slowly with ΔVA > ΔVB (TEP increase).  In 17 

of 21 tissues tested, apical lactate increased RA/RB, consistent with activation of ClC-2 

(which decreases RB). 

 

Addition of basal Zn2+ hyperpolarized both VA and VB, decreased steady-state TEP, and 

increased RT (∆VA = -4.56 ± 3.14 mV; ∆VB = -6.17 ± 4.23 mV; ∆TEP = -1.78 ± 1.16 

mV; ∆RT = 78 ± 34 Ω·cm2; n = 5) – consistent with inhibition of ClC-2 at the basolateral 

membrane.  In the presence of basal Zn2+, the lactate-induced VB depolarization during 

P1 was significantly reduced, whereas VA depolarization in P1 was unaffected (Table 4-

5), suggesting that Zn2+ blocked lactate-induced ClC-2 activation.  In addition, both VA 

and VB hyperpolarization in P2 were significantly reduced by basal Zn2+, suggesting that 

ClC-2 inhibition prevented activation of apical membrane K channels (see section 4.4).  

Furthermore, the lactate-induced increase in RA/RB was significantly reduced (72%) by 

basal Zn2+, but its effect on the RT response was statistically insignificant (Table 4-5). 
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Table 4-5.  Apical lactate-induced VA, VB, TEP, and RT responses. 

inhibitora Apical lactate-induced VA, VB, TEP and RT responsesb   

Apical Basal   Control w/ inhibitor pc n 

∆VA 4.87 ± 1.40 3.90 ± 0.62 NS  
P1 ∆VB 5.54 ± 1.54 4.11 ± 0.77 S 

∆VA -3.13 ± 1.27 -0.92 ± 0.55 S  
P2 ∆VB -2.89 ± 1.34 -0.79 ± 0.50 S 

 ∆TEP 0.94 ± 0.30 0.30 ± 0.18 S 

 ∆RT 74 ± 28 80 ± 30 NS 

  
 
 

    Zn2+ 
 

 ∆RA/RB 0.06 ± 0.03 0.02 ± 0.02 S 

 

 

 

5 

 

∆VA 4.81 ± 0.97 5.87 ± 1.04 S  
P1 ∆VB 5.74 ± 1.20 6.12 ± 1.07 NS 

∆VA -3.08 ± 1.31 -1.68 ± 0.87 S  
P2 ∆VB -3.09 ± 1.24 -1.46 ± 0.74 S 

 ∆TEP 0.98 ± 0.44 0.48 ± 0.09 S 

 ∆RT 60 ± 30 67 ± 31 NS 

 
 
 

    Ba2+ 

 

 ∆RA/RB 0.09 ± 0.05 -0.10 ± 0.06 Sd 

6 

 

∆VA 4.49 ± 0.84 3.05 ± 0.67 S  
P1 ∆VB 5.16 ± 0.87 3.48 ± 0.75 S 

∆VA -3.30 ± 0.77 -2.86 ± 1.23 NS  
P2 ∆VB -3.06 ± 0.92 -2.72 ± 1.15 NS 

 ∆TEP 0.87 ± 0.22 0.49 ± 0.08 S 

 ∆RT 49 ± 10 39 ± 10 NS 

  
 
 

    Ba2+ 
 

 ∆RA/RB 0.08 ± 0.03 0.09 ± 0.04 NSe 

 

 

 

5 

 

∆VA 4.76 ± 0.63 3.41 ± 0.46 S  
P1 ∆VB 5.63 ± 0.70 3.52 ± 0.55 S 

∆VA -2.95 ± 1.42 -0.81 ± 0.63 S  
P2 ∆VB -3.00 ± 1.42 -0.92 ± 0.70 S 

 ∆TEP 1.01 ± 0.34 0.10 ± 0.06 S 

 ∆RT 49 ± 19 68 ± 18 S 

 
 
 

    Ba2+ 

 
 
 

    Ba2+ 
    Zn2+ 

 

 ∆RA/RB 0.09 ± 0.02 -0.02 ± 0.05 Se 

 

 

 

5 

 

 
a. Blank cells indicate that control Ringer was perfused into the corresponding bath. 

b. VA, VB, and TEP responses are presented in mV.  ∆RT has units of Ω·cm2.  All values are 

reported as mean ± SD.  
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c. Student’s t-test for statistical significance between apical lactate-induced response in control 

vs. in the presence of inhibitor.  “S” indicates statistical significance (p < 0.05), “NS” indicates 

statistical insignificance (p > 0.05). 

d. Apical lactate had no effect on RA/RB in two of the six tissues tested, statistical analysis was 

performed with data from the remaining four tissues. 

e. Apical lactate had no effect on RA/RB in one of the five tissues tested, statistical analysis was 

performed with data from the remaining four tissues. 

 

 

In summary, we provided evidence to show that apical lactate stimulated ClC-2 at the 

basolateral membrane.  In the first step, we show that apical lactate induced TEP 

response involves Cl-transport: (1) the lactate-induced TEP response was reduced in the 

absence of Cl (both apical and basal baths); (2) the TEP response was smaller in the 

presence of apical bumetanide to inhibit apical Cl-entry via Na/K/2Cl co-transporter 

(NKCC1); (3) the TEP response was reduced by basal DIDS.  Cl-conductance at the RPE 

basolateral membrane is mainly comprised of cAMP-activated CFTR and Ca2+-

dependent Cl-channels (Hughes et al., 1998).  Our data suggests that lactate did not 

activate CFTR since lactate-induced TEP response was unaffected by either forskolin or 

CFTR-inh172 in the basal bath.  This Cl-channel is also not Ca2+-dependent because 

BAPTA-AM (a cell-permeable Ca2+-chelator) decreased [Ca2+]i, but did not affect 

lactate-induced TEP response.  

 

Next, we showed that lactate stimulated ClC-2 at the basolateral membrane with the 

following observations: (1) apical lactate-induced VB depolarization in P1 was smaller in 

the presence of basal Zn2+, whereas VA depolarization remained unchanged; (2) the apical 

lactate-induced TEP response was reduced by basal Zn2+, but not by apical Zn2+.  In 



 125

addition, western blots indicate that ClC-2 protein is expressed in hfRPE membrane 

fractions.  With immunofluorescence, we also confirmed ClC-2 localization at the 

basolateral membrane surface of confluent cultured hfRPE monolayers, although ClC-2 

was also detected in intracellular compartments.  Collectively, our data confirmed the 

presence and activity of ClC-2 at the RPE basolateral membrane, and that this channel is 

activated by apical lactate.  However, ClC-2 is not the only electrogenic mechanism 

activated by apical lactate, as evidenced by the following experiments: (1) Cl-removal 

(both baths) did not completely eliminate the lactate-induced TEP response; (2) neither 

basal DIDS nor basal Zn2+ (200, 500, or 1000 μM) completely eliminated this TEP 

response; (3) lactate induced VA and VB depolarization in P1 phase was not completely 

blocked by basal Zn2+; (4) apical lactate-induced VA and VB hyperpolarization (in P2) but 

the activation of ClC-2 depolarizes VA and VB (in P1) – the latter observation does not 

reflect ClC-2 activity.  The next section shows that apical lactate activates apical 

membrane K-channels.    

 

 

 

 

 

 

 

 

 



 126



 127

Section 4.5 – Lactate induced TEP and RT responses: involvement of K channels 

Given the high K-conductance at the apical membrane and that activation of this K-

channel hyperpolarizes VA and increases TEP, we sought to determine if lactate activates 

this channel.  To this end, we compared the lactate-induced pHi, VA, VB, TEP, RT, and 

RA/RB responses in the presence or absence of 2 mM apical Ba2+ (K-channel inhibitor) 

(Fig. 4-16 and 4-17).   

 

Fig. 4-16: Apical lactate induced pHi, TEP, and RT responses in the presence of apical Ba2+. 

 

Apical Ba2+ did not affect steady-state pHi, but it significantly depolarized VA and VB, 

increased RA/RB, decreased TEP, and increased RT (∆VA = 12.58 ± 4.39 mV; ∆VB = 9.74 

± 3.36 mV; ∆RA/RB = 0.39 ± 0.18; n = 6) (∆TEP = -3.52 ± 1.87 mV; ∆RT = 88 ± 70 

Ω·cm2; n = 16) – consistent with inhibition of apical membrane K-channels.   
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Fig. 4-17: Apical lactate induced VA, VB, TEP, RA/RB, RT responses in the presence of apical 

Ba2+. 

 

In five experiments, apical lactate-induced pHi-response (R1 & R2) was unaffected by 

Ba2+ (Table 4-4).  On the other hand, lactate-induced VA depolarization in P1 was larger 

in the presence of Ba2+, whereas the VB depolarization was unaffected (Table 4-5).  In 

addition, VA and VB hyperpolarization in P2 were significantly reduced by apical Ba2+.  

Further, the lactate-induced TEP response was reduced by almost 2-fold (from ∆TEP = 

1.11 ± 0.39 mV to 0.59 ± 0.17 mV; n = 11; p < 0.05), and the RT response was increased 

by ≈ 30% (from ∆RT = 57 ± 27 to 74 ± 37 Ω·cm2; n = 11; p < 0.05).  These observations 

are consistent with activation of Ba2+-sensitive K-channels at the apical membrane.   
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Fig. 4-18: Lactate-induced pHi, TEP, and RT responses in the presence of basal Zn2+ followed by 

both basal Zn2+ and apical Ba2+ simultaneously. 

 

If apical lactate stimulated Ba2+-sensitive K-channels and Zn2+-sensitive ClC-2 at the 

apical and basolateral membrane respectively, adding apical Ba2+ and basal Zn2+ 

simultaneously should eliminate the lactate-induced TEP response (Fig. 4-18).  In these 

experiments, apical lactate-induced responses were measured first in the presence of 

basal Zn2+, followed by both apical Ba2+ and basal Zn2+.  In the presence of basal Zn2+, 

the lactate-induced TEP response was reduced from 1.02 ± 0.33 to 0.51 ± 0.17 mV (n = 

6; p < 0.05).  This TEP response was further decreased from 0.51 ± 0.17 to 0.22 ± 0.13 

mV (n = 6; p < 0.05) in the presence of both apical Ba2+ and basal Zn2+.  In contrast, the 
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effect of Ba2+ and Zn2+ on the RT response was statistically insignificant.  The incomplete 

inhibition of the TEP response and the lack of effect on RT suggest the involvement of 

additional mechanisms – one that increases both TEP and RT.  A possible mechanism is 

lactate-induced inhibition of a basolateral membrane K-channel.  If lactate-induced 

inhibition of basolateral membrane K-channel contributed to the initial VA and VB 

depolarization in P1, basal Ba2+ (2 mM) should reduce this response (Fig. 4-19).   

 

Fig. 4-19: Apical lactate induced VA, VB, TEP, RA/RB, RT responses in the presence of basal Ba2+. 

 

Adding Ba2+ to the basal bath depolarized VA and VB (∆VA = 6.68 ± 2.51 mV; ∆VB = 

7.22 ± 2.68 mV), and increased both TEP and RT (∆TEP = 0.59 ± 0.27 mV; ∆RT = 46 ± 

13 Ω·cm2), consistent with inhibition of basolateral K-conductance.  In five experiments, 
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basal Ba2+ (2 mM) reduced apical lactate-induced VA and VB depolarization in P1 by ≈ 

30%, whereas VA and VB hyperpolarization in P2 were unaffected (Table 4-5).   

Furthermore, basal Ba2+ also reduced lactate-induced TEP and RT responses (Table 4-5), 

but it did not affect lactate-induced increase in RA/RB.  These observations suggest that 

apical lactate inhibited a Ba2+-sensitive K-channel at the basolateral membrane.  

However, basal Ba2+ did not eliminate the lactate induced RT response, suggesting that 

apical lactate increases RT via other mechanisms.  Possible lactate-activated mechanisms 

that can increase RT are presented in the next section (section 4-5).    

 

If apical lactate-induced activation of ClC-2 and apical membrane K-channel, and 

inhibition of basolateral membrane K-channel caused all the changes observed in VA, VB, 

TEP, and RT, the simultaneous inhibition of all these channels should completely 

eliminate these responses.  This notion was tested by adding 2 mM Ba2+ (both apical and 

basal baths) and 200 μM Zn2+ (basal bath) simultaneously (Fig. 4-20).  In the presence of 

Ba2+ and Zn2+, the lactate-induced TEP and RA/RB responses were completely eliminated, 

and the RT response was increased by ≈ 40% (Table 4-5).  VA and VB depolarization in 

P1 were both significantly reduced but not eliminated (Table 4-5).  In addition, the VA 

and VB hyperpolarization in P2 were significantly reduced.   
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Fig. 4-20: Apical lactate induced VA, VB, TEP, RA/RB, RT responses in the presence of both Zn2+ 

(basal bath) and Ba2+ (apical and basal baths). 

 

Although the addition of Ba2+ and Zn2+ completely eliminated the lactate induced TEP 

response, the VA and VB depolarization in P1 was not completely eliminated, albeit 

reduced.  Electrical shunting between apical and basolateral membranes cannot account 

for this observation (all hfRPE have RT > 500 Ω·cm2).  The equivalent increase in both 

VA and VB (without any ∆TEP) is consistent with a change in liquid junction potential at 

the microelectrode tip, possibly due to a decrease in [Cl]i.  Apical lactate can decrease 

[Cl]i by increasing Cl-efflux via ClC-2, and causing cell-swelling, which dilutes the 

cytosol.  However, blocking ClC-2 with Zn2+ did not eliminate lactate-induced VA and 



 133

VB responses in P1, therefore cell-swelling probably generated the junction potential in 

P1.  

 

Besides K-channels and ClC-2, other transport mechanism may be involved in lactate 

transport.  A recent study showed that SMCT1, an electrogenic Na-linked lactate co-

transporter (2:1 Na/Lac), is expressed exclusively at RPE basolateral membrane (Martin 

et al., 2007).  However, our data suggest that SMCT1 contributes little to lactate 

transport: (1) thermodynamics predict that the large inward Na-gradient across the 

basolateral membrane prevents Na/lactate efflux via SMCT1; (2) 2Na/Lac efflux from 

the basolateral membrane via SMCT1 should decrease TEP, but apical lactate increased 

TEP; (3) the lactate-induced TEP response was completely blocked by Ba2+ (apical and 

basal) and Zn2+ (basal) – no other mechanisms contributed to this TEP response.   

 

In summary, based on the following evidence, we show that apical lactate stimulated 

apical membrane K-channels, which hyperpolarize VA throughout P1 and P2 and 

increases TEP: (1) VA depolarization in P1 was larger in the presence of apical Ba2+, 

whereas VB depolarization was unaffected; (2) the lactate-induced TEP response was 

smaller in the presence of apical Ba2+; (3) the VA and VB hyperpolarization in P2 were 

reduced by apical Ba2+.  In addition, inhibition of either apical K-efflux (with Ba2+) or 

basolateral Cl-efflux (via ClC-2; with Zn2+) reduces the VA and VB hyperpolarization in 

P2 phase, suggesting that the activities of these two channels are electrically coupled to 

preserve charge neutrality.  Surprisingly, apical lactate decreased RA/RB in the presence 

of apical Ba2+ (lactate increases RA/RB in control) (Table 4-5).  This is unusual because if 
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lactate activates apical K-channel (which decreases RA and reduces RA/RB), K-channel 

inhibition with apical Ba2+ should amplify the lactate-induced increase in RA/RB.  We 

postulate that the large VA and VB depolarization caused by apical Ba2+ increases 

basolateral membrane K-channel conductance and activity (assuming outwardly 

rectifying channel).  In its highly active state, its inhibition by lactate would cause a more 

pronounced increase in RB, thus producing a significant decrease in RA/RB.  In support of 

this hypothesis, this lactate-induced decrease in RA/RB (in the presence of apical Ba2+) 

was eliminated by basal Ba2+.  

 

The following results support the notion that lactate inhibits a K-channel at the 

basolateral membrane: (1) both VA and VB depolarization in P1 were reduced by basal 

Ba2+; (2) lactate-induced TEP and RT responses were reduced by basal Ba2+.  However, 

evidence suggests that this K-channel is normally less active than apical membrane K-

channel and ClC-2 because: (1) inhibition of basolateral K-channel contributes to a 

decrease in RA/RB by increasing RB, but lactate produced a net increase in RA/RB; (2) 

lactate-induced RA/RB increase was unaffected by basal Ba2+.  The effect of basal Ba2+ on 

apical membrane K-channel and ClC-2 is minimal because basal Ba2+ did not affect VA 

and VB hyperpolarization in P2.  Next, we show that the inhibition of all these channels 

(i.e., apical and basolateral membrane K-channels, and ClC-2) eliminates the lactate 

induced TEP response, but did not affect lactate-induced VA and VB depolarization.  This 

observation suggests that lactate caused cell swelling, which is discussed further in the 

next section.   
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Section 4.6 – Mechanism of lactate induced ion-channel activation or inhibition 

The lactate-induced changes in K-channel and ClC-2 activities may be caused by cell 

swelling or acidification.  As previously discussed, microelectrode experiments suggest 

that apical lactate caused cell-swelling, which may activate these ion-channels.  

Mammalian cells respond to hypoosmotic challenge by activating K- and Cl- channels to 

drive KCl and fluid out of the cell (Nilius et al., 1997; Eggermont et al., 2001).  The RPE 

expresses BK-channel (Ca2+-activated K-channel) and ClC-2 (Grunder et al., 1992; 

Furukawa et al., 1998; Xiong et al., 1999; Sheu et al., 2004) – both are swell-activated 

ion-channels and may participate in regulatory volume decrease.  

 

Fig. 4-21: Apical lactate vs. hyperosmotic Ringer solution induced cell-swelling. 

 

To better quantify lactate-induced cell swelling, we used a pHi-insensitive dye (calcein) 

with a three-point osmolarity calibration (with 280, 330, 355 mOsm Ringer) to show that 
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apical lactate caused cell-swelling equivalent to 8 ± 2 mOsm (n = 6; Fig. 4-21).  If apical 

membrane K-channels and ClC-2 are indeed activated by cell-swelling, decreasing 

Ringer osmolarity (from 305 to 280 mOsm; both solution baths) should increase TEP.  

However, hypoosmotic Ringer decreased TEP by 0.28 ± 0.16 mV, whereas lactate 

increased TEP by 1.06 ± 0.34 mV (n = 6).  Furthermore, hypo-osmotic Ringer did not 

affect RT.  These observations suggest that cell-swelling did not activate apical K-channel 

or basolateral K-channel and ClC-2.    

 

Fig. 4-22: Lactate, low pH (6.8), and hypotonic induced pHi, TEP, and RT responses. 

 

Alternatively, apical lactate may stimulate these K-channels and ClC-2 by causing cell 

acidification.  Kir 7.1 K-channels are highly expressed in RPE apical membrane and is 

activated by mild intracellular acidification (Yuan et al., 2003; Hughes & Swaminathan, 



 138

2008).  In addition, ClC-2 is stimulated by acidic conditions (Jordt & Jentsch, 1997; 

Hartzell & Qu, 2003).  Consistent with this notion, we show that acidifying the cell by 

reducing bath pH (pH 6.8; both solution baths) produced a TEP response (0.83 ± 0.45 

mV) with a magnitude comparable to that caused by 20 mM apical lactate (∆TEP = 1.20 

± 0.52 mV; n = 5; p < 0.05) (Fig. 4-22).  However unlike lactate, low pH Ringer had no 

effect on RT.  If cell acidification stimulated ClC-2 activity, we should be able to block 

low pH Ringer-induced TEP response with basal Zn2+ (200 μM) (Fig. 4-23).   

 

Fig. 4-23: pH 6.8 Ringer induced pHi, TEP, and RT responses in the presence of basal Zn2+. 

 

Consistent with our hypothesis, Zn2+ reduced the low pH-induced TEP response by more 

than 2-fold (from ∆TEP = 1.04 ± 0.47 to 0.35 ± 0.13 mV; n = 5; p < 0.05) – this effect 

was irreversible.  Although low pH Ringer induced acidification was unaffected by basal 
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Zn2+, upon returning to control Ringer (switched from low pH Ringer), cell pHi was 

unable to return to baseline – consistent with the irreversible inhibitory effect of Zn2+ on 

NHE.  Since apical membrane K-channels are electrically coupled to ClC-2 activity, we 

tested if lactate-induced cell acidification activated apical membrane K-channels.  Low 

pH Ringer (both solution baths) induced pHi, TEP, and RT responses were measured in 

the presence or absence of 2 mM apical Ba2+ (Fig. 4-24).   

 

Fig. 4-24: pH 6.8 Ringer induced pHi, TEP, and RT responses in the presence of apical Ba2+. 

 

Interestingly in the presence of apical Ba2+, low pH Ringer decreased TEP (∆TEP = -0.31 

± 0.12 mV), whereas in absence of Ba2+, low pH Ringer increased TEP (∆TEP = 0.80 ± 

0.42 mV; n = 5; p < 0.05).  The low pH Ringer induced pHi response was unaffected by 



 140

apical Ba2+, however upon returning to control Ringer, the recovery to baseline pHi was 

slower compared to control.   

 

Fig. 4-25: pH 6.8 Ringer induced pHi, TEP, and RT responses in the presence of basal Ba2+. 

 

Finally, we test the pHi-sensitivity of the basolateral membrane K-channel; low pH 

Ringer was perfused to both apical and basal baths in the presence or absence of 2 mM 

basal Ba2+ (Fig. 4-25).  Unexpectedly, the low pH Ringer-induced TEP response slightly 

increased in the presence of basal Ba2+ (from ∆TEP = 1.14 ± 0.37 to 1.45 ± 0.40 mV; n = 

5; p < 0.05).  This experiment indicates that cell acidification did not inhibit basolateral 

membrane K-channels. 
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Collectively, our data indicates that cell acidification activates apical membrane K-

channels and basolateral membrane ClC-2, but does not inhibit basolateral membrane K-

channel (Fig. 4-26).  This is also consistent with the notion that lactate-induced inhibition 

of basolateral membrane K-channel is not as significant as its activation of apical 

membrane K-channel and ClC-2.  The observations that either basal Zn2+ or apical Ba2+ 

can almost completely block the low pH Ringer-induced TEP response corroborate our 

conclusion in section 4.4 that KCl-efflux via these two channels are electrically coupled.  

The apical lactate-stimulated apical membrane K-channel is most likely Kir 7.1 because 

(1) it is activated by intracellular acidification with maximal activity at pH 7.1 (Yuan et 

al., 2003) and (2) it is the major K-conductance at the apical membrane of the RPE 

(Shimura et al., 2001; Yang et al., 2003; Yang et al., 2008b).   

 

Fig. 4-26: Lactate-induced ion transport mechanisms in RPE.  Lactate entry via MCT1 activates 

NHE and Kir 7.1 at the apical membrane, and ClC-2 at the basolateral membrane.  Lactate 

inhibits a basolateral membrane K-channel via an unknown mechanism. 
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Although apical lactate inhibited a basolateral membrane K-channel, this channel is not 

pHi-sensitive because basal Ba2+ had no effect on low pH Ringer-induced TEP response.  

Furthermore, low pH Ringer did not appreciably increase RT.  We also show that this K-

channel is not Ca2+-dependent: BAPTA-AM (intracellular Ca2+ chelator) had no effect on 

lactate-induced TEP and RT responses.  Collectively, our data indicates that lactate 

activates a Ba2+-sensitive, pH-insensitive, and outwardly rectifying K-channel at the 

basolateral membrane, whose activity has been demonstrated in RPE cells (Strauss et al., 

1993; Hughes et al., 1995; Strauss et al., 2002).     

 

Apical lactate caused a large increase in RT and is consistent with inhibition of 

basolateral membrane K-channel, but this RT response was only modestly reduced by 

basal Ba2+.  In addition, this RT response is time-delayed relative to VA, VB, and TEP 

responses – RT began to increase at the start of P2.  However, lactate-induced inhibition 

of basolateral membrane K-channel occurs in P1, suggesting that other mechanisms 

caused this RT response.  Although apical lactate caused cell swelling and intracellular 

acidification, neither hypo-osmotic challenge nor extracellular acidification affected RT.  

One possibility is that lactate increases RT by increasing tight junction resistance, perhaps 

by interacting with tight junction proteins or its adaptors.  Alternatively, carboxylates 

may be the main effector of the RT response since other monocarboxylates (e.g., 

pyruvate, acetate, and propionate) also increased RT.     
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Section 4.7 – Lactate, HCO3, and fluid transport in RPE 

In addition to lactate-induced activation of KCl transport, the CO2/HCO3 buffering 

system in the RPE helps regulate cell volume and pHi (Kenyon et al., 1997).  Early 

studies show that MCT1 interacts with HCO3-transporters (Becker et al., 2004) and 

carbonic anhydrases (CAs) (Wetzel et al., 2001; Becker et al., 2005).  Preliminary data 

shows that the apical membrane Na/2HCO3 co-transporter (NBC1) and HCO3-buffering 

by CAs facilitates lactate-transport across RPE (Adijanto et al, ARVO 2009).  The 

interactions between MCT1, NBCs, and CAs in RPE are currently being studied. 

 

In RPE, the activity of the apical membrane Na/K ATPase increases in the dark (Griff et 

al., 1985) due to a higher SRS [K+] level (≈ 5 mM) in the dark than in light (≈ 2 mM).  A 

high SRS [K+] in the dark is due to: (1) active K-channel activity at photoreceptor inner 

segments (Gallemore et al., 1998); (2) CO2-driven fluid transport across the RPE 

dehydrates the SRS, thus increasing SRS [K+] (see Chapter 3); (3) lactate-induced 

increase in Kir 7.1 conductance at the apical membrane increases SRS [K+].  By 

increasing SRS [K+] and Na/K ATPase activity, lactate enhances CO2/HCO3 transport in 

two ways: (1) Na/K ATPase activity maintains a favorable Na+-gradient that facilitates 

NBC1-mediated HCO3-transport across the apical membrane (Adijanto et al., 2009); (2) 

increased Kir 7.1 and Na/K ATPase activity increases TEP, which facilitates paracellular 

Na-absorption – Na acts as the counter-ion for transcellular HCO3-transport.   

 

Since lactate is transported across the RPE in addition to facilitating HCO3-transport, the 

addition of lactate to the apical bath should increase steady-state fluid transport across the 
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tissue.  Assuming that all lactate produced by photoreceptors (0.137 μmol/min; (Wang et 

al., 1997b)) is transported across the RPE, we calculated that lactate-absorption should be 

accompanied by ≈ 2.5 μL/cm2·hr of fluid across the tissue to maintain osmotic balance.  

However, adding lactate to the apical bath did not affect steady-state fluid absorption in 

any RPE preparations tested (e.g., bovine, frog, human, and cultured hfRPE) (data not 

shown), suggesting that apical lactate may counteract the osmotic effects of its absorption 

by activating solute-secreting mechanisms.       

 

The RPE maintains pH homeostasis in the SRS by transporting photoreceptor generated 

CO2 and lactate to the choroidal blood supply.  In the dark adapted eye, photoreceptors 

produce large amounts of CO2 and lactate, which are released into the SRS – 

accumulation of these metabolic by-products in RPE causes cell swelling and osmotic 

stress.  In this study, we demonstrate how the RPE decreases cell volume to mitigate this 

osmotic stress, by using lactate to activate KCl efflux via Kir 7.1 and ClC-2 at the apical 

and basolateral membranes respectively.  In addition, lactate-induced ClC-2 activation 

may help regulate ion-transport at the paracellular pathway.  In support of this notion, 

mice lacking ClC-2 expression exhibit reduced TEP and has a smaller short-circuit 

current across the RPE (Bosl et al., 2001).  These mice also develop early onset retinal 

degeneration.  Therefore, lactate-induced activation of Kir 7.1 and ClC-2 may help 

prevent osmotic stress-induced RPE damage, thus maintaining photoreceptor health and 

integrity.  
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CHAPTER 5: Lactate and CO2/HCO3 Transport in RPE 

Section 5.1 – Introduction  

The concept of acid-base coupled H2CO3-transport via MCT1 and NBC1 has been 

demonstrated in Xenopus oocytes (Becker et al., 2004; Becker & Deitmer, 2004).   

The localization and activity of MCT1, NBC1, and NBC3 at the RPE apical membrane 

(Hughes et al., 1989; Bok et al., 2001; Philp et al., 2003b; Adijanto et al., 2009) suggests 

that these transporters may be acid-base coupled, and are therefore functionally 

dependent on each other.  In this model, HCO3 transport via NBC1 buffers protons 

entering the cell via MCT1, thus maintaining a favorable H+-gradient across the cell that 

increases lactate transport (see Fig. 1-6).  Furthermore, carbonic anhydrases (CAs) 

catalyze the hydration/dehydration reaction between CO2 and HCO3
-, which has been 

shown to enhance the activity of MCT1 (Wetzel et al., 2001; Becker et al., 2005; Svichar 

et al., 2006) and NBCs (Alvarez et al., 2003; Loiselle et al., 2004; McMurtrie et al., 

2004; Pushkin et al., 2004).  Since membrane bound CA (CA XIV) is localized at the 

RPE apical membrane (Nagelhus et al., 2005), it may functionally interact with MCT1 

and NBC1 to enhance both lactate and HCO3 transport into the cell at the apical 

membrane.       

 

In chapter 4, we show that lactate stimulates several ion transport mechanisms in RPE 

(Fig. 4-26).  Conducting these experiments in CO2/HCO3-free (HEPES buffered) 

conditions simplifies the lactate transport system, but this maneuver eliminates potential 

MCT1 interactions with HCO3-dependent mechanisms such as the electrogenic 

Na/2HCO3 co-transporter (NBC1) (Becker et al., 2004), the electroneutral Na/HCO3 co-
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transporter (NBC3), and carbonic anhydrases (Wetzel et al., 2001; Becker et al., 2005).  

In addition to K and Cl channel mediated volume regulation (see Chapter 4), the 

CO2/HCO3 buffering system in the RPE helps regulate cell volume and pHi (Kenyon et 

al., 1997). 

 

In this chapter, we investigate interactions between MCT1 and NBCs, and test the role of 

CAs in a “lactate-bicarbonate-transport metabolon”.  We show that MCT1-mediated 

H/Lac co-transport enhances HCO3-transport via NBC1 and NBC3 at the apical 

membrane.  We also show that H+-buffering by these HCO3-transporters and carbonic 

anhydrases facilitates lactate-transport across RPE.  Interactions between NBC1, NBC3, 

MCT1, and CAs are synergistic, thus maximizing lactate, HCO3, and fluid transport 

across the apical membrane.  In the next section, we demonstrate that lactate is 

transported across the basolateral membrane mainly by AE2, with some contribution 

from MCT3 & MCT4.   
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Section 5.2 – Lactate and HCO3 transport at the RPE apical membrane 

As demonstrated in chapter 4, lactate transport across the apical membrane is mediated 

by MCT1.  To study the interactions between lactate and HCO3 transport mechanisms in 

RPE, we compared the effect of iso-osmotic addition of 20 mM lactate (pH 7.4) into the 

apical bath in the presence vs. absence of CO2/HCO3 (Fig. 5-1).   

 

Fig. 5-1: Apical lactate induced pHi, TEP, and RT responses in the presence vs. absence of 

CO2/HCO3.  Red box – R1 phase; blue box – R2 phase.  

 

In either case, apical lactate produced a pHi response with two phases (Fig. 5-1): a fast 

acidification (R1) followed by a slow alkalinization (R2).  R1 reflects H+-coupled lactate 

entry via MCT1 (Figs. 4-3 and 4-4) and R2 reflects the activity of H+-buffering 

mechanisms such as the Na/H exchanger (Fig. 4-5).  R1 in the presence of CO2/HCO3 

was ≈ 2-fold larger than in the absence of CO2/HCO3 (-12.80 ± 4.33 vs. -6.32 ± 1.46 
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mM·min-1; p < 0.01; n = 59), whereas R2 was ≈ 20% larger in the presence vs. absence of 

CO2/HCO3 (0.86 ± 0.35 vs. 0.71 ± 0.31 mM·min-1; p < 0.01; n = 59) – both observations 

are consistent with the notion that HCO3-transport mechanisms are activated to help 

buffer H+-coupled lactate-entry via MCT1.  Furthermore, lactate-induced TEP and RT 

responses were respectively ≈ 30% and 40% larger in the absence of CO2/HCO3 (∆TEP = 

1.39 ± 0.60 vs. 0.98 ± 0.41 mV; ∆RT = 52 ± 21 vs. 31 ± 14 Ω·cm2; p < 0.01; n = 59), 

suggesting that lactate activated HCO3-independent electrogenic mechanisms.  This is 

consistent with our earlier finding: in the absence of CO2/HCO3, lactate activates apical 

membrane Kir 7.1 K-channels and basolateral membrane ClC-2 Cl-channel (sections 4.4 

& 4.5) by causing cell acidification (section 4.6; Fig. 4-26).   

   

Fig. 5-2: (In CO2/HCO3 Ringer) Apical lactate-induced pHi, TEP, and RT responses in the 

presence of Zn2+ (basal) and Ba2+ (apical).   
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To test if lactate activates Kir 7.1 and ClC-2 in the presence of CO2/HCO3, we measured 

lactate-induced TEP response in the presence of Zn2+ (basal) and Ba2+ (apical) (Fig. 5-2).  

Surprisingly, Zn2+ and Ba2+ did not reduce lactate-induced TEP response in the presence 

of CO2/HCO3 (∆TEP = 0.39 ± 0.13 vs. 0.54 ± 0.19; p > 0.05; n = 3).  This observation 

suggests that lactate activated a HCO3-dependent electrogenic mechanism that increases 

TEP.  A possible candidate is the DIDS-sensitive and electrogenic Na/2HCO3 co-

transporter (NBC1) at the RPE apical membrane (Figs. 1-8 & 5-5).    

 

Fig. 5-3: (In CO2/HCO3 Ringer) Apical lactate-induced pHi, TEP, and RT responses in the 

presence of apical DIDS.   

 

To test if lactate activates NBC1, we added 0.5 mM DIDS into the apical bath (Fig. 5-3) 

and found that the lactate-induced TEP response was significantly reduced from 0.82 ± 
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0.44 to 0.36 ± 0.33 mV (n = 12) and that the RT response was increased by almost 2-fold 

(from 27 ± 14 to 50 ± 20 Ω·cm2; n = 12; p < 0.05).  These observations suggest that 

NBC1-mediated HCO3 transport helps buffer H+-entry into the cell via MCT1.  

Interestingly, R2 of the pHi response was 36% larger in the presence of DIDS compared 

to control (R2 = 0.92 ± 0.52 vs. 0.68 ± 0.37 mM·min-1; p < 0.05; n = 12), suggesting that 

other H+-buffering mechanisms (e.g., NHE) helped compensate for the loss of NBC1 

activity.     

 

 

Fig. 5-4: Lactate induced ion-transport mechanisms in RPE (in the presence of CO2/HCO3):  

Lactate activates NBC1 and NBC3 (blue box), and Kir 7.1 and ClC-2 (orange box).     

 

These experiments suggest that apical lactate can increase TEP by activating two separate 

mechanisms (Fig. 5-4): (1) lactate-transport via MCT1 drives apical Na/2HCO3 co-

transport into the cell via NBC1; (2) lactate-entry into the cell activates apical membrane 



 152

K-channel (Kir7.1) and basolateral membrane Cl-channel (ClC-2), and inhibits 

basolateral membrane K-channel (Figs. 4-20 & 4-26).   

 

 

Fig. 5-5: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in the 

presence of Zn2+ (basal) and Ba2+ (apical & basal), then apical DIDS. 

 

However, as shown in Fig 5-2 and 5-5, apical lactate-induced TEP response (∆TEP = 

1.36 ± 0.41 mV) was not blocked by the simultaneous addition of Ba2+ (apical & basal) 

and Zn2+ (basal) (∆TEP = 1.68 ± 0.74 mV; p > 0.05); in some cases, the TEP response 

was larger in the presence of Ba2+ and Zn2+ (3 of 6 tissues).  This observation does not 

necessarily imply that lactate does not activate K-channels and ClC-2 (in the presence of 
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CO2/HCO3) because the Ba2+-induced VA depolarization may create an electrical gradient 

that promotes NBC1 activity.  We verified this hypothesis by showing that subsequent 

addition of DIDS to the apical bath (still in the presence of Ba2+ and Zn2+) completely 

eliminated the lactate-induced TEP response (p < 0.05; Fig 5-5).      

 

Fig. 5-6: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in the absence 

of Na+ (apical & basal). 

 

Since NBC1 is Na-linked, Na-removal from both bathing solutions should block lactate-

induced TEP response (Fig. 5-6).  In seven experiments, apical lactate-induced TEP 

response was essentially abolished upon Na-removal from both apical and basal baths.  

Furthermore, R2 was completely eliminated, which corroborates the notion that Na-

coupled HCO3-transporter mediates H+-buffering in RPE.  However, NBC1 is not the 
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only Na-linked pHi-regulatory mechanism in RPE: other mechanisms include NBC3 

(Na/HCO3 co-transporter) and NHE (Na/H exchanger) (see Fig. 1-8). 

 

Fig. 5-7: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in presence of 

apical amiloride.  Red box – R1 phase; blue box – R2 phase.  

 

In chapter 4 (section 4.3), we showed that apical lactate activates the Na/H exchanger 

(NHE) at RPE apical membrane.  NHE activity is reflected by R2 of the lactate-induced 

pHi response, which is blocked by amiloride (Fig. 4-5).  However in the presence of 

CO2/HCO3, amiloride reduced R2 by only 50% (R2 from 0.77 ± 0.13 to 0.38 ± 0.22 

mM·min-1; p = 0.046; n = 5; Fig. 5-7) – it did not eliminate R2.  In addition, amiloride 

had no effect on R1 (p > 0.05), suggesting that additional pH-regulatory mechanisms 

(i.e., HCO3-transporters, possibly NBC1) are actively participating in H+-buffering.  To 
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test this notion, we simultaneously inhibit NHE and NBC1 with Zn2+ and DIDS, 

respectively (Fig. 5-8).  Amiloride and Zn2+ are both NHE inhibitors, and Zn2+ was used 

in this experiment because amiloride reacts covalently with DIDS to form a light-yellow 

precipitate (data not shown).   

 

Fig. 5-8: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in presence of 

apical Zn2+.  Red box – R1 phase; blue box – R2 phase.  

 

Like amiloride, apical Zn2+ per se had little effect on R2 (p > 0.05; n = 5).  In addition, 

the presence of both Zn2+ and DIDS in the apical bath to block both NBC1 and NHE had 

little effect on R2 (p > 0.05; n = 3; Fig. 5-7), suggesting that the DIDS-insensitive 

Na/HCO3 co-transporter (NBC3) may be actively transporting HCO3 into the cell.  To 

test this notion, we inhibit HCO3-transporters (NBC1 and NBC3) by using 
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ethoxyzolamide (EZA; 10 μM), a membrane-permeable CA-inhibitor, to non-selectively 

block all cytosolic and membrane bound CAs (Fig. 5-9).   

 

Fig. 5-9: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in presence of 

ethoxyzolamide (EZA) followed by amiloride in the apical bath.  Red box – R1 phase; blue box – 

R2 phase.  

 

In the presence of EZA in the apical bath, lactate caused larger pHi (R1 & R2), TEP, and 

RT responses compared to control (p < 0.05; n = 4).  Although EZA increased R2 (from 

1.03 ± 0.35 to 1.59 ± 0.58 mM·min-1), subsequent addition of amiloride further reduced 

and eliminated R2 (from 1.59 ± 0.58 to 0.13 ± 0.51 mM·min-1; p < 0.05; n = 4) – 

indicating that apical lactate activates NBC1, NBC3, and NHE at the apical membrane.  
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Although lactate-induced TEP response is larger in the presence of EZA (∆TEP = 3.39 ± 

1.22 vs. 1.60 ± 0.55 mV; p < 0.05; n = 4), this observation does not indicate increased 

NBC1 activity – the elimination of R2 by EZA and amiloride demonstrates that EZA 

inhibits NBC1.  To verify this hypothesis, we compared lactate-induced TEP response in 

the presence of apical DIDS vs. in the presence of both DIDS and EZA (Fig 5-10).   

 

Fig. 5-10: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in presence 

of apical DIDS followed by apical ethoxyzolamide (EZA). 

 

In six experiments, EZA increased lactate-induced TEP response even in the presence of 

apical DIDS (∆TEP from 0.96 ± 0.86 to 1.62 ± 0.62 mV; p < 0.05), suggesting that EZA 

enhanced lactate-induced activation of HCO3-independent mechanisms.  Since lactate 

stimulates Kir7.1 and ClC-2 via cell acidification, EZA may enhance lactate-induced 
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activation of these channels by amplifying lactate-induced cell acidification (EZA 

decreases intracellular buffering capacity).  Consistent with this notion, in the presence of 

apical EZA, apical lactate-induced TEP response was reduced by Ba2+ (apical & basal 

baths) and Zn2+ (basal bath) (from 2.32 ± 0.58 to 1.60 ± 0.56 mV; n = 4; p < 0.05) (Fig 5-

11).  The R2 phase of the pHi response was completely eliminated in the presence of 

EZA and Zn2+ (p < 0.05).  This observation corroborates our earlier conclusion that (in 

the presence of CO2/HCO3) apical lactate stimulates NBC1, NBC3, and NHE at the 

apical membrane.   

 

Fig. 5-11: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in presence 

of apical ethoxyzolamide (EZA) followed by Zn2+ (basal) and Ba2+ (apical & basal).  Red box – 

R1 phase; blue box – R2 phase.  
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Collectively, our data show that indiscriminate inhibition of all CAs in the RPE reduces 

NBC1 and NBC3 activity.  However, how much does membrane-bound CAs contribute 

to NBC-mediated HCO3-transport compared to cytosolic CAs?  To answer this question, 

we added membrane-impermeable CA-inhibitor, benzolamide (BZA; 10 μM), to the 

apical bath (Fig. 5-12).   

 

Fig. 5-12: (In CO2/HCO3 Ringer) Apical lactate induced pHi, TEP, and RT responses in the 

presence of apical benzolamide (BZA). 

 

In seven experiments, apical lactate induced R1 and TEP responses were ≈ 40% and ≈ 

30% larger compared to control, respectively (p < 0.05).  However, unlike EZA, BZA 

had little effect on lactate-induced pHi or RT responses.  Further, the simultaneous 

addition of BZA and amiloride to the apical bath did not reduce R2 of the lactate-induced 
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pHi response.  These experiments suggest that cytosolic CAs play a more prominent role 

in facilitating HCO3-transporter activity than membrane-bound CAs.                  

 

Based on the experiments presented in this section, we showed that MCT1 is acid-base 

coupled with NBC1: (1) in the absence of CO2/HCO3, both R1 and R2 were smaller than 

in the presence of CO2/HCO3, suggesting that HCO3-transport helps buffer H+-coupled 

lactate-entry via MCT1; (2) Na-removal from both solution baths eliminates NBC1, 

NBC3, and NHE activities, thus blocking both R2 and TEP response; (3) apical lactate-

induced TEP response was significantly reduced by apical DIDS; (4) this TEP response 

was completely blocked by the simultaneous addition of Zn2+ (basal), Ba2+ (apical & 

basal), and apical DIDS; (5) EZA or amiloride per se modestly reduced R2, but R2 is 

completely eliminated by the simultaneous addition of EZA and amiloride.  At steady-

state, lactate that enters the cell from the apical membrane must exit the basolateral 

membrane; this process is discussed in the following section.    
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Section 5.3 – Lactate and HCO3 transport at the RPE basolateral membrane  

As discussed in section 1.5, lactate transport across the RPE is mediated by MCT1 at the 

apical membrane, and MCT3, MCT4, and AE2 at the basolateral membrane (see Fig. 1-

10).  At the basolateral membrane, AE2 can facilitate lactate transport in two ways (Fig. 

5-13): First, HCO3-transport via AE2 can participate in acid-base coupling with MCT3 

and MCT4 (H/Lac transport) (Fig. 5-13; yellow box).  Alternatively, AE2 can mediate 

Cl/Lac exchange to directly transport lactate out of the cell (Fig. 5-13; blue box).   

 

Fig. 5-13: Lactate and HCO3 transport via AE2 at RPE basolateral membrane.  Yellow box 

highlights acid-base coupling between MCT3 and AE2 as mediated by carbonic anhydrase II (CA 

II).  Blue box highlights direct AE2-mediated lactate transport. 

 

To study AE2-mediated lactate and HCO3 transport, we added lactate to the basal bath – 

lactate entry into the cell via MCT3 or MCT4 should cause cell acidification, whereas 

lactate transport via AE2 should not affect pHi.  However, as shown in Fig. 5-14, adding 
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lactate to the basal bath caused cell alkalinization and decreased steady-state TEP and RT 

(∆pHi = 0.04 ± 0.01, n = 11; ∆TEP = -0.38 ± 0.18 mV, n = 13).  The RT response 

however, was small and insignificant.  Since AE2 can be blocked by DIDS (Fig. 3-13), 

we added DIDS to the basal bath and showed that DIDS completely eliminated basal 

lactate-induced alkalinization (p < 0.05; n = 6).  

  

Fig. 5-14: (In CO2/HCO3 Ringer) Basal lactate-induced pHi, TEP, and RT responses in the 

presence of basal DIDS. 

 

AE2-mediated lactate-transport does not directly cause cell alkalinization, thus 

suggesting involvement of other pH-dependent mechanisms.  In this regard, we 

eliminated HCO3-transport mechanisms by showing that in the absence of CO2/HCO3 

(HEPES buffered) adding lactate into the basal bath caused cell alkalinization, and this 
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alkalinization was significantly reduced by basal DIDS (from ∆pHi = 0.13 ± 0.01 to 0.05 

± 0.01; n = 4; p < 0.01; Fig. 5-15).   

        

Fig. 5-15: (CO2/HCO3-free Ringer) Basal lactate-induced pHi, TEP, and RT responses in the 

presence of basal DIDS. 

 

We showed that basal lactate-induced alkalinization is DIDS-sensitive and HCO3-

independent, but lactate entry into the cell via AE2 should not alter pHi, thus suggesting 

the involvement of a secondary mechanism.  It is possible that lactate entering the cell via 

AE2 is transported out of the cell at the apical membrane via MCT1 (Fig. 5-18), thus 

causing cell alkalinization.  We confirmed this possibility by showing that basal lactate-

induced alkalinization (in control; ∆pHi = 0.03 ± 0.01) was converted into cell 
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acidification (∆pHi = -0.03 ± 0.01) in the presence of 100 μM niflumic acid (MCT1-

inhibitor; see Fig. 4-4) (Fig. 5-16). 

 

Fig. 5-16: (In CO2/HCO3 Ringer) Basal lactate-induced pHi, TEP, and RT responses in the 

presence of apical niflumic acid.  

 

The basal lactate-induced pHi response (in the presence of niflumic acid) exhibits R1 and 

R2 phases (see section 4.3 and Fig. 4-2) similar to that caused by apical lactate.  Hence, 

R1 is probably caused by H/Lac entry into the cell via MCT3 and MCT4, whereas R2 

reflects activation of pHi-regulatory mechanisms at the apical membrane (i.e., NHE, 

NBC1, and NBC3) and/or at the basolateral membrane (i.e., NBC).  In the absence of 

CO2/HCO3 (HEPES-buffered), niflumic acid also converted the basal lactate-induced 

alkalinization into a pHi response with distinct R1 and R2 phases (n = 5; Fig. 5-17).  In 
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this case, R1 reflects MCT3 and MCT4 activity, and R2 can only be attributed to NHE 

activity.   

 

Fig. 5-17: (CO2/HCO3-free Ringer) Basal lactate-induced pHi, TEP, and RT responses in the 

presence of apical niflumic acid.  

 

Although MCT3, MCT4, and AE2 are all electroneutral processes, the data summarized 

in Figs 5-14 to -17 shows that adding lactate to the basal bath decreased TEP.  This TEP 

response originates from basolateral membrane hyperpolarization (Kenyon et al., 1994), 

and this electrical response may derive from two possible mechanisms (see Fig. 5-18): (1) 

basal lactate entry via AE2 decreases [Cl]i, which reduces Cl-channel activity, and (2) 

basal lactate entry via MCT3 drives electrogenic Na/nHCO3 co-transport into the cell via 

basolateral membrane NBC (acid-base coupling).  Our data corroborated the former 
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mechanism since the inhibition of basal lactate-induced TEP response by basal DIDS 

(CO2/HCO3-free; Fig. 5-15) or niflumic acid (which inhibits Ca2+-dependent Cl-channels 

(Hartzell et al., 2005); Fig. 5-16) is both consistent with involvement of Cl-channels.   

 

Fig. 5-18: Basal lactate-induced ion transport in RPE.  At the basolateral membrane, MCT3, 

MCT4, and AE2 transports lactate into the cell.  Lactate is subsequently transported out of the 

cell via MCT1 at the apical membrane.  Lactate entry into the cell via AE2 reduces [Cl]i, which 

reduces Cl-channel activity.  The basolateral membrane NBC may be acid-base coupled to MCT3 

activity, and this interaction may be facilitated by carbonic anhydrase II.  At the apical 

membrane, NBC1 and NHE activity buffers protons entering the cell via MCT3.   

 

Interestingly, Fig. 5-14 shows that basal lactate increased TEP (by 0.21 ± 0.12 mV) in the 

presence of basal DIDS (in CO2/HCO3 Ringer) – this did not occur in the absence of 

CO2/HCO3 (HEPES buffered; Fig. 5-15), thus suggesting the involvement of a HCO3-

transport mechanism.  In this context, activation of NBC1 would hyperpolarize VA and 



 168

increase TEP (see Fig. 5-18).  This observation suggests that basal lactate activates 

NBC1, but its electrical activity is normally masked by concomitant changes in Cl-

channel activity (hyperpolarize VB; decrease TEP).  There may be functional interaction 

between MCT3 (and MCT4) and basolateral membrane NBC, but evidence to support 

this notion is lacking – this is caused by experimental difficulties due to the lack of 

specific NBC inhibitors (DIDS will block NBC, AE2, ClC-2 channel, and Ca2+-activated 

Cl-channel at the basolateral membrane).   

 

In summary, we demonstrate that functional interaction between NBC1, MCT1, and CAs 

enhances lactate, HCO3, and fluid transport at the RPE apical membrane.  At the 

basolateral membrane, AE2 mediates the major component of lactate transport (compared 

to MCT3 & MCT4).  AE2-mediated lactate-efflux from the basolateral membrane drives 

Cl into the cell, which is subsequently recycled back out of the cell mainly via Ca2+-

activated Cl-channels (perhaps with minor contributions from CFTR) – this mechanism 

helps drive fluid across the basolateral membrane.  We show how the RPE protects itself 

from acidosis and osmotic stress imposed by photoreceptor generated metabolic acids in 

light or in the dark.  We also demonstrate how the RPE uses lactate-transport 

mechanisms and its interactions with pHi and volume regulating mechanisms to maintain 

ion, volume, and pH homeostasis in the SRS, thus preserving the health and integrity of 

the neural retina.   
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CHAPTER 6: Conclusion and Future Work 

Section 6.1 – Conclusion 

The photoreceptors in the distal retina convert light quanta into electrical signals that are 

transduced through 2nd order neurons (bipolar cells, horizontal cells, amacrine cells, 

ganglion cells) and transmitted via the optic nerve to the brain.  Although the RPE is not 

directly involved in this process, its close anatomical relationship to the photoreceptors is 

fundamentally important for maintaining photoreceptor health and photoexcitability.  

Vision is an energy (ATP) expensive process.  Our photoreceptors expend large amounts 

of glucose, which is completely oxidized into CO2 and H2O (oxidative metabolism), or 

converted into lactic acid (glycolysis).  Despite the extremely high choroidal blood flow, 

oxygen supply to the photoreceptors is limited; only ≈ 50% of all ATP used by the 

photoreceptors derive from oxidative metabolism.  Therefore, large amounts of CO2, 

lactic acid, and H2O are released into the SRS, and their release almost doubles in the 

dark (see section 3-11).  The accumulation of these metabolic waste products in the SRS 

would quickly destroy the photoreceptors, but the RPE protects the photoreceptors by 

transporting these metabolic waste products to the choroid. 

       

Our in vitro experiments were designed to study CO2 and lactate-transport mechanisms 

separately, but in vivo these mechanisms functionally interact with one another to 

enhance metabolic acid transport across the RPE.  We elucidated the cellular mechanisms 

involved in CO2 transport across the RPE, and showed that this process drives Na, Cl, 

HCO3, and osmotically obliged water across the tissue, thus maintaining retinal adhesion 

to the RPE (section 3.9).  We show that H+-coupled lactate transport across the apical 
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membrane via MCT1 activates pHi-regulatory mechanisms (section 5.2): (1) MCT1 

activity stimulates Na/H exchanger (NHE); (2) MCT1 activity stimulates Na+-linked 

HCO3 co-transporters (NBC1 and NBC3), and this process is dependent on CA II 

activity.  In the dark, these mechanisms help buffer both CO2 and lactate induced cell 

acidification.  Activation of these mechanisms increases [Na+]i, [HCO3
-]i, [lactate]i, 

which drives isoosmotically obliged fluid across the apical membrane to cause cell 

swelling (section 4.6).  Furthermore, the two-fold increase in CO2 release by 

photoreceptors into the SRS causes its accumulation in the cell due to a ≈ 10-fold higher 

apical to basolateral membrane surface area (sections 3.2 & 3.11).  This drives CA II-

mediated CO2 hydration into HCO3, thus increasing [HCO3
-]i further.  Collectively, 

increased release of CO2 and lactic acid by the photoreceptors causes cell swelling and 

osmotic stress.  We show that the RPE reduces cell-swelling by activating Kir 7.1 K-

channel at the apical membrane (section 4.5) and ClC-2 Cl-channel at the basolateral 

membrane (section 4.4).  Furthermore, lactate efflux via AE2 at the basolateral 

membrane stimulates Ca2+-activated Cl-channels (section 5.3), which drives fluid out of 

the basolateral membrane to help reduce RPE cell volume.  KCl efflux via these channels 

mitigates CO2- and lactate-induced RPE cell swelling, thus protecting the health of the 

RPE.  We demonstrated how the RPE utilizes the changes in SRS CO2 and lactic acid 

level as a signal to activate mechanisms that helps the RPE adapt to light-dark transitions 

in photoreceptor metabolism.  Understanding these mechanisms provide us with the basis 

to understand the pathophysiology of disease (e.g., retinal edema and retinal detachment), 

which is a first step for the development of therapeutic interventions to preserve vision.  
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Fig. 6-1: Summary of conclusions.
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Section 6.2 – RPE cell culture models for transplantation 

As discussed in chapter 2 (section 2.1), the use of cell culture allows us to quickly and 

easily uncover physiological processes in the retinal pigment epithelium at a low cost.  

However, how closely does this in vitro culture model mimic the native tissue in vivo?  

What are the differences in gene and protein expression, and physiology of fetal and adult 

RPE?  Microarray data show that despite many overlapping genes between these tissues, 

many genes that are highly expressed in native RPE are lost in culture.  Furthermore, 

genes that are normally not expressed in native RPE are upregulated in culture.  

Improvement to the RPE cell culture model is a constant pursuit of the laboratory.  The 

RPE culture model is used to study ion-transport mechanisms, map signal transduction 

pathways, study drug toxicity, and understand specific RPE functions.  But in addition, it 

can also be developed for transplantation.  RPE cultures that closely mimic native tissues 

can increase the success of transplantation in RPE-degenerative diseases such as AMD 

(Binder et al., 2004; Binder et al., 2007; da Cruz et al., 2007).   

 

To improve RPE cell culture, we find clues in the environment of the RPE in vivo.  What 

are the critical factors that influence RPE growth from its interactions with the retina and 

choroid?  How can we mimic these conditions in vitro?  For example, adding fibroblast 

conditioned medium to the basal side of chick RPE has been shown to improve tight 

junction development and expression, which facilitates RPE polarization and maturation 

(Rahner et al., 2004).  What are the components of retinal extract used in RPE cell 

culture media (Hu & Bok, 2001) that enhances growth and maturation?  Cultured hfRPE 

cells are grown in media containing 5% serum to promote cell proliferation and survival, 
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a condition that is not normally found in vivo (Maminishkis et al., 2006).  To this end, 

RPE monolayers cultured under serum-free condition has been developed by other 

laboratories (Gamm et al., 2008) and is better poised for transplantation purposes (serum 

may transfer animal pathogens to the patient) (Valtink & Engelmann, 2009).  However, 

few experiments have been performed to study how closely this serum-free culture model 

mimics native RPE.  Alternatively, embroyonic and induced pluripotentent stem cells (ES 

& iPS cells) have been coaxed to differentiate into RPE cells (Vugler et al., 2008; Carr et 

al., 2009a; Carr et al., 2009b).  The transplantation of these cells into the eyes of mice 

and rats with retinal degeneration were able to rescue visual function.  Based upon these 

findings, one may be interested in using fibroblast cells from patients, transform them 

into iPS cells, and subsequently convert them into RPE cells for transplantation into the 

same patient.  This method is highly favorable because is eliminates the problem of 

immune rejection.  Since vectorial transport of bicarbonate, lactate, and water by the RPE 

is critical to RPE-photoreceptor interactions, the feasibility of these various RPE cell 

culture models for transplantation can be evaluated by measuring the activities of these 

transport mechanisms. 
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Section 6.3 – Lactate, retinal detachment, and proliferative vitreoretinopathy 

Separation of the retina from RPE induces many changes in retina/RPE morphology and 

physiology (Fisher & Lewis, 2003; Leiderman & Miller, 2009; Wickham & Charteris, 

2009), for example: (1) non-neuronal glia cells (i.e., astrocytes, microglia, and Müller 

cells) in the retina undergo morphological changes and proliferation, (2) photoreceptors 

begin to degenerate – they become shorter and distorted, (3) horizontal and ganglion cells 

undergo extensive remodeling, (4) the RPE dedifferentiates and migrates into the 

subretinal space and retinal layers.  These changes can begin 24 hours after retinal 

detachment and causes irreversible vision loss after three days if not treated.  

Furthermore, this condition can progress into proliferative vitreoretinopathy (PVR), a 

disease with poor visual prognosis characterized by inflammation, proliferation, and 

scarring (Pastor, 1998).   

 

In PVR, RPE undergoes epithelial-to-mesenchymal transition (EMT), in which RPE loses 

its epithelial markers and morphology; transforming from cobblestone-shaped cells into 

elongated fibroblast-like cells (Casaroli-Marano et al., 1999; Saika et al., 2004).  EMT of 

RPE cells in PVR involves transforming growth factor β (TGF-β) (Parapuram et al., 

2009).  In preliminary experiments, I excised cultured hfRPE monolayers grown on 

porous-filters, placed them on culture plates, and incubated them in cell culture media 

over 6 days (37 oC; 5% CO2).  In just three days, these RPE cells dedifferentiated into 

fibroblast-like cells via an EMT-like process (Fig. 6-2); they lose their pigmentation and 

cell-cell attachment, and undergo rapid proliferation and migration.  It is likely that the 

hypoxic condition inherent in tissue cultures (due to large O2 diffusion layer; see 
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discussion in section 4.2) activates EMT of RPE cells via hypoxia inducible factor 1 

alpha (HIF-1α) (Higgins et al., 2007; Higgins et al., 2008; Brahimi-Horn & Pouyssegur, 

2009).  Although EMT of these cultured hfRPE cells are not induced by TGF-β, the 

downstream pathways and mechanisms activated by HIF-1α are mostly the same.     

 

 

Fig. 6-2: RPE monolayers grown on porous filters undergo epithelial-to-mesenchymal transition. 

(A) 3 days (40x mag.), (B) 6 days (20x mag.), (C) 6 days (different sample; 20x mag.). (D) The 
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fibroblast-like cells were extracted and placed in a flask and grown (37 oC, 5% CO2) for 3 days 

(40x mag.).    

 

In PVR, RPE cells undergo EMT and migrate into the SRS (Wickham & Charteris, 

2009).  Similarly, Müller glia cells dedifferentiate and migrate into the SRS (Lewis et al., 

1999; Wickham & Charteris, 2009).  Since cell division requires large amounts of energy, 

these dedifferentiated cells metabolize large amounts of glucose to produce significant 

amounts of CO2 and lactic acid.  This is evidenced by the lower pH of the culture media 

bathing dedifferentiated RPE cells (Fig. 6-2 D) vs. that bathing confluent RPE cells (data 

not shown) – the pH difference was determined (subjectively) by comparing the 

difference in media color (i.e., dedifferentiated RPE media is noticeably more yellow 

than RPE media).  Interestingly, lactate has been shown to stabilize HIF-1α by inhibiting 

HIF-1α prolyl hydroxylases (Crowther et al., 2001; Lu et al., 2002; Lu et al., 2005).  

Furthermore, recent studies also suggest that lactate upregulates HIF-1α in stem cells 

(Milovanova et al., 2008; Zieker et al., 2008).  Since HIF-1α causes cell dedifferentiation 

(Jogi et al., 2002; Helczynska et al., 2003; Axelson et al., 2005), the large amount of 

lactate released by dedifferentiated RPE and retinal cells into the SRS may stimulate 

further RPE EMT in a positive feedback loop, thus exacerbating the PVR disease 

process.  If true, targeting lactate transport mechanisms may be a viable strategy against 

PVR. 
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Section 6.4 – NBC3 activity, interactions, and function in RPE 

The RPE expresses electrogenic (NBC1) and electroneutral (NBC3) NaHCO3 co-

transporters (NBC1) at its apical membrane (Fig. 1-8).  NBC3 is an electroneutral 

Na/HCO3 co-transporter, thus its activity is not limited by the membrane voltage; it is 

capable of transporting large amounts of NaHCO3 and may play a significant role in RPE 

fluid transport.  The importance of NBC3 to HCO3- and fluid- transport can be 

understood by comparing NBC3 localization in RPE vs. CPE (choroid plexus epithelium) 

(see section 3.9).  NBC3 is localized to the basolateral membrane in CPE, which secretes 

HCO3 and fluid.  On the other hand, NBC3 is localized to the apical membrane in RPE, 

which absorbs HCO3 and fluid.  This difference in HCO3 transport-direction of RPE and 

CPE may be in part due to their difference in NBC3 membrane localization.   

 

Interestingly, in mice, loss of NBC3 expression leads to retinal degeneration because 

NBC3-mediated HCO3-transport helps buffer photoreceptor-generated metabolic acids 

(Bok et al., 2003).  In chapter 5 (section 5.2), we demonstrated that MCT1 interacts with 

NBC1 to enhance both lactic acid and HCO3 transport, and that this process depends on 

cytosolic CA (CA II).  The same acid-base coupling mechanism between MCT1 and 

NBC3 may exist, which implicates NBC3 in lactate transport.  However, physiological 

experiments to study this functional interaction were difficult to interpret and are 

inconclusive.  This is in part due to the lack of specific (or non-specific) inhibitors against 

NBC3.  In addition, its electroneutrality makes its activity “invisible” to detection by 

electrophysiological methods.  In this work, all evidences for NBC3 activity in RPE are 

indirect (sections 3.3 & 5.2).  Another way to study this transporter in RPE is via siRNA 
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knockdown technology, but the development of a specific siRNA against NBC3 is 

tedious and difficult.  Alternatively, instead of working with RPE culture models, it is of 

considerable interest to study HCO3 and fluid transport in the RPE and CPE of NBC3 

knockout mice.   
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