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ABSTRACT

In the companion paper, we addressed the low-power DCT/IDCT VLSI architectures of linear com-
plexity increase based on the multirate approach. In this paper, we will discuss other aspects of the
low-power design. Firstly, we consider the design of low-power architectures that can lower the power
consumption at only O(log M) increase in hardware complexity. Next, we will extend the low-power
DCT design to other orthogonal transforms such as Modulated Lapped Transform (MLT) and Ex-
tended Lapped Transform (ELT). A unified programmable IIR low-power transform module, which
can perform most of the existing discrete sinusoidal transforms, is also proposed. Finally, we perform
the finite-precision analysis of the DCT architecture under the normal and multirate operations. In
VLSI design, the assignment of the system wordlength will directly affect the total switching events
and routing capacities, hence the power consumption. Using the analytical results, we can choose
the optimal wordlength for each DCT channel under required signal-to-noise ratio (SNR) constraint.
The material presented in this paper, together with the multirate architectures in the companion
paper, provides a framework for the algorithm-based low-power transform coding kernel design.

This work was supported in part by the ONR grant N00014-93-10566 and the NSF NYI Award
MIP9457397.
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1 Introduction

In the companion paper [1], we introduced the algorithm-based low-power design based on the multi-
rate approach. Specifically, we showed that the power consumption can be reduced provided that we
can perform the DCT/IDCT from the decimated-by-M input sequences at O(M) increase in hard-
ware complexity. In practice, the O(M) overhead may not be desirable when M is large and total
chip area is limited. Therefore, the search for compensation scheme with less hardware overhead is
desired. In this paper, we will show a scheme to perform the polyphase decomposition in such a way
that only O(log M) overhead is required to compensate the speed penalty. The resulting structure
reduces the operating frequency on a stage-by-stage base: In each stage, the operating frequency
is reduced by half. After reaching to the (log M)® stage, we can operate at M-times slower clock
rate of the original data rate. We shall refer to this as logarithmic low-power architecture. This
multiple operation frequency environment allows us to perform different speed compensation at each
stage; i.e., different low supply voltages can be used to lower the power consumption. In general, the
power savings of the logarithmic architecture is between the normal IIR architecture [2] and the full
multirate architecture presented in the companion paper [1].

Next we extend the low-power design presented in the companion paper to a larger class of
orthogonal transforms. We start with the low-power design of the Modulated Lapped Transform
(MLT) and Extended Lapped Transform (ELT). The MLT and ELT, which belong to the family of
Lapped Orthogonal Transforms (LOT), are very attractive in the applications of transform coding
since they can diminish the blocking effect encountered in low bit-rate block transforms [3][4](5].
Recently, Frantzeskakis et al. [6][7] proposed the time-recursive MLT and ELT architectures that are
suitable for VLSI implementation due to their modularity and regularity. However, since the updating
of the MLT and ELT coefficients should be as fast as the input data rate, those architectures cannot
compensate the speed penalty under low supply voltage. In this paper, we will derive the low-power
time-recursive MLT and ELT structures. By applying the polyphase decomposition to their IIR
transfer functions, the MLT/ELT coefficients can be updated at M-times slower rate with linear
hardware overhead; hence, the low-power operation is allowed. Later, based on the derivations of
the MLT and ELT, we propose a unified low-power IIR structure which can be implemented as a
programmable DSP co-processor to perform most of the existing sinusoidal transforms.

In the last part of this paper, we will consider the finite-wordlength effect of the proposed low-
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power DC'T architectures. The effect of wordlength on the power consumption was discussed in [8].
In summary, shorter wordlengths will result in fewer switching events, lower capacitance, and shorter
average routing length in the system. As a result, low power consumption of the chip can be achieved.
On the other hand, if the wordlengths are too short, the rounding error caused by finite-precision
operations can be severe enough to hazard the signal-to-noise ratio (SNR). Thus, choosing minimum
wordlengths without degrading the SNR requirement is an important issue in the low-power VLSI
design. Motivated by this, we perform the finite-precision analysis for the IIR DCT structure and its
low-power design. Our study can precisely predict the finite-precision behavior under different block
sizes and decimation factors. Using these analytical results, we can assign the optimal wordlength for
each DCT channel given the SNR constraint. Moreover, our analyses show that the average SNR’s
of the proposed low-power architectures are better than that of the normal design given the same
wordlength assignment. This indicates the multirate design has better numerical properties under
fix-point arithmetic.

The organization of the this paper is as follows: Section 2 presents the low-power DCT architecture
of logarithmic complexity. In section 3, we derive the multirate MLT and ELT algorithms and
architectures. Then, a unified low-power IIR structure for most sinusoidal transforms are described.

The fixed-point analysis is presented in Section 4 followed by a conclusion.

2 Low-Power Architecture of Logarithmic Complexity

In the companion paper, we have shown how to perform the DCT/IDCT from the decimated-by-M
input sequences so that the speed penalty under low-power operation can be compensated at the
algorithmic/architectural level. The advantage of this design is obtained by applying the polyphase
decomposition to the IIR transfer function until the resulting transfer function is fully expanded
with all exponents being multiples of M. However, such manipulation requires O(M) overhead in
hardware, which may not be acceptable when M is large and the chip area is limited. In this section,
we will show how to achieve low-power consumption with only logarithmic complexity overhead. The
basic priciple is to repeat the polyphase decomposition in a certain way instead of fully expanding
them. By doing so, the lower-rate operations can be obtained while the complexity will grow slower.
The price paid is that the resulting architecture will be operated at multiple low frquencies rather than

at the uniform low frequency as discussed in [1]. Nevertheless, the multiple frequency environment
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enables us to perform different speed compensations at different stages of the design. Therefore,
different low supply voltages can be applied according to the given speed constraint, and the total
power consumption can be still reduced. In what follows, we will derive the logarithmic low-power
DCT architecture. The results can be extended to other low-power transformation designs to be

discussed in Section 3.

2.1 Low-Power DCT Architecture of Logarithmic Complexity

The multirate IIR DCT transfer function with M = 2 can be written as [1]

1Yk
Hpora(e) = TS [Ho(?) + 27 B2 ®

where C(k) is the scaling factor of the DCT and
D(#*) = 1—2cosdwpz™%+ 274,

Ho(2?) = (coswy — cos3wpz™2),

Hi(2%) = (cos3wy — coswpz™?). (2)

Substituting the polyphase decomposition

1 Hy(z*) +272H|(z*)
DA DA (3)

with

D'(zY) = 1—2cos8uwpz™*+ 278,

Hy(z*) = 14274,

Hi(zY) = 2cosdw, (4)
into (1) and rearranging, we can rewrite Hpcr x(2) so that the DCT can be computed at four times

slower clock rate [1]. Nevertheless, this multirate design requires O(M) hardware overhead to directly

lower the input clock rate by four. In order to save the hardware complexity, we may rewirte (1) in
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a cascade form after the substitution is made, i.e.,

— k 2 -1 2 1(.4 -2 4
Hporx(z) = (~1*C(k) [Ho(a) + 27 Ha(a)] [Ho() + 2 Hi ()] - e (5)
Fig.1(a) shows the polyphase implementation of (5), which leads to the cascade multirate DCT
architecture depicted in Fig.1(b). There are two major blocks. One operates at 50% sample rate and
the other at 25% sample rate. Due to the special form of the denominator of the transfer function,
we can repeatedly perform the polyphase decomposition on the denominator and retain the cascade

form. We then have

log M—1 ' |
11 [(1 +2 ) 277 cos(2i+1wk)]
Hperx(z) = (~1)C(k) [Ho(%) + Hy ()] ==

1—2cos(2Mwy)z=M + z—2M ()

for any M, M e 2% *. The resulting architecture decimates the operating frequency on a stage-by-
stage base: In each stage, the operating frequency is reduced by half. After reaching the (log M)

stage, we will have M times slower clock rate of the original data rate.

2.2 Power Consumption

When low-power implementation is taken into consideration, the feature of multiple operating fre-
quencies in the above architecture implies that different supply voltages will be used according to the
slowest allowable operating speed. That is, the operators to realize Hy(22) and Hy(2?) in (5) can be
operated at 3.1V due to the two times slower clock rate, while all other operators to realize Hj(z*)
and H{(z*) can be operated at 2.1V due to the four times slower clock rate [9][1]. As a consequence,

the power consumption of the 16-point low-power DCT architecture in Fig.1(b) can be estimated as

N, 3.1V, 1 N, 21V 5 1,
where Ny = 30 is the total multipliers used in the normal DCT (M = 0); N = 30 and N4 = 30 are
the number of multipliers in the M = 2 stage and M = 4 stage, respectively. From (7), we can see
that the overall power consumption of the logarithmic low-power design will be in between M = 2
and M = 4 of the full multirate DCT systems discussed in [1].

On the other hand, by examing (6), we can see that in order to have M-times slower operating
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frequency at the final stage, we need a total of (log M +2) multipliers to realize the multirate transfer
function. The comparison of the logarithmic low-power architecture with other approaches is listed
in Table 1. Although the total power savings of the logarithmic structure is less than that of the
full multirate structure given the same decimation factor M, the O(log M) hardware overhead is
preferable when we want to achieve low-power consumption without trading too much chip area.
The multiple-frequency feature of the cascade low-power architecture also allows us to achieve
more power and area savings at the arithmetic level. For example, we can use look-ahead adders in
the M = 2 region to match the data throughput rate, whereas we can employ low-speed carry-ripple

adders in the M = 4 region due to the much relaxed speed constraint.

3 Unified Low-Power Module Design

3.1 The IIR MLT Algorithm

The MLT operates on segments of data of length 2N, z(t +n — 2N +1),n =0,1,---,2N — 1, and
produces N output coefficients, Xyr7 (t), K =0,1,---, N — 1, as follows [4]:

X (k) % 5 (n+ Heos E(b+ D+ 2+ M)jet+n-2N+1)  (8)
MLTk Z Sln_ n 5 COSN 2 n 2 2 n

where S(k) = (—1)*+2/2 if k is even, and S(k) = (—1)*~D/2 if k is odd. After some algebraic

manipulations, the MLT can be decomposed into [7]

Xy p(t) = =S(k)[ Xog+1(t) + Xsi(t) ], (9)

where

L-1

Xop() £ B3 cos((n + Vwy + Oklz(t +n — 2N + 1), (10)
n=0
L-1

Xsip(t) £ B3 sinf(2n + Dwg + Oglz(t +n — 2N + 1), (11)
n=0

with block size L = 2N and

>

A Tk

w;‘;_m, and Oké (k?"‘

B

o 3

1
V2N’
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The IIR transfer functions for (10) and (11) can be computed as

cos((2L — 1)wy, + k) — cos((2L + 1wy + ;) z~!
1 —2cos2wiz=1 + 22

sin((2L — 1)wy + 6x) — sin((2L + 1wy + O;) 271
1 —2cos2wpz=! 4+ 272 '

Hop(2) = Bi(l—27F) , (13)

Hsp(z) = p(1—2z71) (14)

The corresponding TIR module for the dual generation of X¢ x(t) and Xg4(t) is depicted in Fig.2,

where

Ty 2 fycos((2L — Dwg+6;), T2 2 —B1 cos((2L + Lwy +65),

T3 2 Brsin((2L — Dwe+0;), a2 —f sin((2L + Dwy+65). (15)

This ITR module can be used as a basic building block to implement MLT according to (9). Fig.3
illustrates the overall time-recursive MLT architecture for the case N = 8. It consists of two parts:
One is the IIR module array which computes X¢ ;(t) and Xg4(¢) with different index & in parallel.
The other is the combination circuit which selects and combines the outputs of the IIR array to

generate the MLT coeflicients.

3.2 Low-Power Design of the MLT

As with the low-power DCT, we can have a low-power MLT architecture if each MLT module can
compute X¢ ;(t) and X ;(t) using the decimated input sequences. After performing the polyphase
decomposition on (13) and (14), we can compute the multirate IIR transfer functions for He (2)

and Hgy(z) as

Bl — 2z L/?) -1
Hor(®) = T3 cosmr T+ 77 ([cos((2L — 3w, + 6k) — cos((2L + 1wy + ) 2" | X (2)
+  [cos((2L — D)wk + 0k) — cos((2L + 3wk + 6x)2 11 Xo(2)) , (16)
and
_ ~L/2
Hgp(z) = T 2’2(1)(81(4w:)z_1 )+ 3 ([sin((2L — 3)wy + ;) — sin((2L + Dy + )27 ) Xe(2)

+ [sin((2L — 1w + 6¢) — sin((2L + 3)wg + Ok)z_l]Xo(z)) . (17)
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The parallel architecture for (16) and (17) is shown in Fig.4, where

Fl,e = [ cos((2L —~ 3)wk+0k , Fg’e = -0 COS((2L + 1)wk+0k),

(( )

I3, = B18in((2L — 3)wg+0k), Tae = —Prsin((2L + Vwg+0y),

I'io=pH cos((2L — Dwg+6k), Too= -5 cos((2L + 3)wy, +6y),
) (

k)

Fg’o = ,31 sin((2L — l)wk+0k , 1—‘4’0 = —ﬂl sin (2L + 3)wk+0k).

It consists of two MLT modules in Fig.2. The upper module computes part of the X¢ ;(t) and
Xsi(t) from the even sequence, while the lower one computes the remaining part from the odd
sequence. The two adders at the right end are used to combine the even and odd outputs. Through
such manipulation, only decimated sequences are processed inside the module. Hence, the MLT
module can operate at the half of the original frequency by doubling the hardware complexity. The
comparison of hardware cost is shown in Table 2. Suppose that Py denotes the power consumption of
the MLT module in Fig.2. From the CMOS power model, it can be shown that the power consumption
for the low-power MLT modules are 0.38 Py and 0.17F; for the case M = 2 and M = 4, respectively.

Basically, this savings is obtained at the expense of linear increase in hardware.

3.3 Low-Power Design of the ELT

The ELT with basis length equal to 4N operates on data segment of length 4N, z(t+n—4N+1),n =
0,1,---,4N —1, and produces N output coefficients, Xgrr 4(t),k = 0,1,---, N —1. One good choice
for the ELT is as follows [10][5]:

4N 1
T 1 T 1 1 N
— €08 — = — = —+ —)jx(t —4N +1) (1
XErr () \/ 2[2\/_ 2c sN(n+2)]cos[N(k+2)(n+2+2)]x( +n +1) (19)
By the use of some trigonometric identities, we can rewrite (19) as
Xprrp(t) = —Xsp1(t) + V2Xop(t) + Xop-1(t), (20)

where

L-1
Xop(®) 2 B cos[(2n + 1)), + 64]a(t +n — AN + 1), (21)

n=0
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L-1

Xs.x(t) 2 52Zsin[(2n+1)wg+0g]x(t+n—4N+1), (22)
n=0
with
| AT 1 AT 1
L=4N =—=, w=s=(k+= k= 5k + ).
y B oI Wi 2N(k+2), and 6 2(k+2) (23)

Define the relationship in (9) and (20) as the combination functions. After comparing (9)-(12) with
(20)-(23), we see that the MLT and ELT have identical mathematical structures except for the
definitions of parameters and the combination functions. Therefore, the IIR MLT module in Fig.2,
as well as the low-power MLT module in Fig.4, can be readily applied to ELT by simply modifying
those multiplier coefficients. Also, the overall ELT architecture is similar to the MLT architecture in
Fig.3 except that the combination circuit performs according to (20).

Moreover, it can be verified that X 1(t) = —Xg0(t) and Xg n(¢) = Xgn_1(t). Hence, we can
compute the 0% and (N — 1) ELT coefficients from

Xprro(t) = —Xs1(t) + V2Xco(t) — Xs-1(t),
Xprrn-1(t) = —Xsn_1(t) + V2Xen-1(t) + Xsn-a(t), (24)

instead of implementing two extra ELT modules for Xg _1(¢) and Xg n(¢). The hardware cost for
the ELT can be found in Table 2. Since the number of multipliers of the ELT is about the same as

that of the MLT, the power savings for both transforms are similar.

3.4 Unified Low-Power IIR Transform Module Design

From the transform functions described in (9)-(12) and (20)-(23), we observe that the low-power MLT
module in Fig.4 can be used to realize most existing discrete sinusoidal transforms by suitably setting
the parameters and defining the combination functions. For example, X¢ x(¢) in (10) is equivalent

to the DCT by setting

kr

L=N’ ,31=O(k‘), wk=ﬁ7

and 6, =0. (25)

As a result, the multirate MLT module in Fig.4 can compute the DCT with different index & in

parallel.
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The other example is the discrete Fourier transform (DFT) with real-valued inputs. With the

following parameter setting

1 -k
L=N, fi=—m w=—, ad 6=, (26)
(10) and (11) become
1 =2 —2m
Xeox(t) = — Z cos(——kn)z(t+n — N + 1), (27)
N n=>0 N
Xon) = -2 3" sin( X k) 2 40— N+ 1) (28)
S,k = N — N )

which are the real part and the imaginary part of the DFT, respectively. The discrete Hartley
transform (DHT) can be computed using the same parameter setting as the DFT except that the

combination circuit in Fig.3 performs as

Xpuarr(t) = Xop(t) + Xsi(t). (29)

The parameter settings as well as the corresponding combination functions for other orthogonal
transforms are summarized in Table 3.

The programmable feature of the unified low-power module design makes it very attractive
in transform coding applications. Firstly, the unified structure can be implemented as a high-
performance programmable co-processor which performs various transforms for the host processor
by loading the suitable parameters. Secondly, by hard-wiring the multiplier coefficients of the mod-
ules to preset values according to the transformation type, we can perform any one of the discrete
sinusoidal transforms using the same architecture. This can significantly reduce the design cycle as

well as the manufacturing cost.

3.5 Extension to Low-Power 2-D Transforms

Extension of our low-power transform algorithms to low-power two-dimensional (2-D) transforms can
be achieved by employing the time-recursive 2-D DCT architecture proposed by Chiu and Liu [11]. In
general, the architecture in [11] can be applied to all transformations with STPO property. Therefore,

we can apply it to implement the low-power 2-D transforms with some minor modifications.
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4 Finite-Precision Analysis of The IIR DCT Architecture

In low-power VLSI implementation, the choice of wordlength is an important issue since it will directly
affect the total switching activities inside the opeartors as well as the total effective capacitance.
Besides, an underestimated wordlength will degrade the system performance due to the increased
rounding errors. Therefore, we should carefully determine the minimum allowable system wordlength
that meets the accuracy criteria for cost-effective implemention. In this section, we will consider
the finite-precision effects of the proposed low-power DCT architectures. The results can be easily
extended to other transform architectures. We will start with the DCT architecture under the normal
operation, then the analysis is extended to the low-power design with M = 2. The general results
for arbitrary M is also presented. Throughout the derivations, the “statistical error model” for

fixed-point analysis is used [12, chap.6]:

1. The rounding error is treated as wide-stationary additive white noise with magnitude uniformly

distributed over one quantization level.
2. Rounding error occurs only in multiplication.

3. All errors are uncorrelated with the input signal, and are independent of each other.

4.1 Basic Considerations in Finite-Precision Analysis

There are two basic considerations in the fixed-point analysis. One is the rounding error behavior.
It occurs when we multiply two (B + 1)-bit numbers together while only (B + 1)-bit product is kept.

The mean and variance of the rounding error are given by [12, chap.6]

2—2B
12’

mp = 0, a%z = (30)

respectively. Understanding the roudning error behavior will allow us to minimize the wordlength to
achieve a desired output signal-to-noise ratio.

The other is the dynamic range issue. In fixed-point implementation, each number in the system
is treated as a fraction. The magnitude of each node in the circuit cannot exceed one, otherwise
overflow occurs and will result in great distortion in the final output. Therefore, to prevent overflow,

a suitable scaling of the input signal is usually employed according to the dynamic range of the
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system. In practice, the signal-to-noise ratio of the scaled system, SNR’, will be degraded by the
scaling process and is given by [12, chap.6]

SNR' = s2SNRy, (31)

where s is the scaling factor and SNR, is the signal-to-noise ratio of the original system. This implies

that knowing the dynamic range will enable us to perform minimally necessary scaling to prevent

further degradation in SNR.

4.2 TIR DCT Using Direct Form I Structure
4.2.1 Rounding Errors

Using the statistical error model, the rounding error of the IIR DCT structure can be modeled as
(see Fig.5)
e(t) = e1(t) + ex(t) (32)

where e;(t), i = 1,2 is the rounding error caused by the i** multiplier in the circuit !. Then the

actual output of the DCT circuit after N iterations can be represented as

Xpork(t) = Xpork(t) + f(t) (33)

where f(t) is the output error due to the noise error e(t).
Let H.;(z) denote the transfer function of the system from the node at which e(t) is injected to

the output, and hes(n) be the corresponding unit-sample response. From Fig.5, Hef(2) is given by

1

Hey(2) = 1 —2cos2wpz=! 4+ 22’

(34)
and hgf(n) can be derived as
sin[(n + 1)2wg]u(n) (35)

hef(n) = sin(2wr)

!Since the 0™ channel of the DCT is computed by a simple add-and-accumulate operation, we will not consider the
finite-wordlength effect of this channel.
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where u(n) denotes the step function. Since only N iterations are performed in the IIR circuit, the

mean and variance of f(t) of the k** DCT channel can be computed as

N-1
my = me Z hep(n) = me ZO prn 2wk sin[(n + 1)2wy], (36)
2 N-1 2
2 _ 2 _ Ue Oe N
of = Z |hep(n)|? = n2(2wk Z sin?[(n + 1)2w;] = (3 (5> (37)
where

me = E{e(t)} =0, (38)

of = E{()} = E{(e1(t))’} + E{(e2())’} = (1 + N;s(k)) - 0%, (39)

and Ns(k) is the number of the noise sources contributed by the multiplier My = 2 cos(2wy) in the
IIR loop:
4, if |2cos(2wg)| > 1,
Ns(k) =< 1, if |2cos(2wi)| < 1, (40)
0, if |2cos(2wg)| =1.

When |2 cos(2wg)| < 1, a normal multiplication is performed and E{(e2(t))?} = 0%. In the case of
|2 cos(2wy)| > 1, since a left-shift is performed after the multiplication with cos(2wy), the rounding
error is amplified by 2 and its power becomes E{(2e2(t))?} = 4 - 0%. In the case of |2cos(2wy)| = 1,
no mulplication is performed, hence E{(e2(t))?} = 0. Now using (36)-(40), we can represent the total

noise power at the k** DCT channel as

N(N,(k)+1) (2728
— 20 42 8
Pr=m};+of= 2 510?207 TR (41)

As we can see, given the system wordlength B, the rounding error grows linearly with the block
size N. This indicates that we will have 3 dB degradation in the SNR as N doubles; however, such
degradation can be compensated by adding 1/2 (in average) bit in the wordlength. On the other
hand, the noise power is inversely proportional to sin?(2w;). That is, the effect of the rounding error
in each channel of the IIR DCT greatly depends on the pole locations of the IIR transfer function.
The closer 2wy, is to 0 or =, the larger the rounding error is. As a consequence, the 1% and (N —1)%

DCT channels suffer most from the finite-wordlength effect, while the middle channels have good
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SNR in terms of rounding error. This phenomenon is quite different from what we have seen in other
DCT algorithms (cf, Fig.7 in [13]).
4.2.2 Dynamic Range

In fixed-point arithmetic, the input sequence z(t) is represented as a fraction and is bounded by

|z()| < 1. Hence, the dynamic range of the circled nodes in Fig.6 can be computed as

D, = 2 (42)
N-1
Dy = max{Xpcrx(t)} = max{C(k) ) cos[(2n + )wi]z(n)}
n=0
N-1 N-1
= C(k) Z |cos[(2n + 1)wg]| - max{z(n)} = C(k) Z |cos[(2n + 1)wy]| , (43)
n=0 n=0

and the dynamic range of the overall architecture is given by

D= max{Dl, Dz}. (44)

Suppose that a one-time scaling scheme is provided at the input end to avoid overflow, and it is done

by shifting the data to the right by K bits. We have

K = [log, D], (45)
and the scaling factor s is given by
1

4.2.3 Optimal Wordlength Assignment

Assume that the input sequence z(t) is uniformly distributed over (—1,1) with zero mean. From

(31), (41), and (46), we have

32E{(XDCT,k(t))2}_ 8 sin®(2wp) . 92B-2K (47)

SNR' = =
P N(Ny(k) +1)
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where the fact that [13]
B{(Xper(t))*} = BE{z*(®)} =1/3, k=1,2,...,N -1, (48)

is used. If we want to achieve a performance of 40 dB in SNR for the k% DCT component, the

optimal wordlength By for that channel can be computed from (47) as

4 — logo[sin®(2wy) - 8
By = ol (2) W] +K|. (49)
2- ].Oglo 2

As an example, the By’s for the case N = 8 and 16 under the constraint SNR = 40 dB are listed
in Table 4(a), where B4 denotes the average system wordlength. As we can see, By = 12 bit is
sufficient to meet the accuracy criteria. Compared with the DCT implemenation in [14], in which
B4 was chosen to be 16 bit based on the experimental simulation results, our system wordlength is
much shorter. Suppose that the silicon area of the multiplier is dominant in the chip and the size of
the multipliers is proportional to (B4)?2. Using the optimal wordlengths in Table 4, we can reduce the
total chip area to 56% of the original design without degrading the SNR performance. This shows
that our analysis approach provides more insights to determine the architectural specifications than
the experimental approach. Moreover, in the applications of transform coding, we can shorten the
wordlengths for the high-frequency channels since the human vision system is less sensitive to these

components. Thus, the total wordlength can be further reduced.

4.3 IIR DCT Using Direct Form II Structure

Given the IIR DCT transfer function, we can also implement it using the direct form II structure
as shown in Fig.7. Following the above derivations for the direct form I structure, the fixed-point

analytical results can be derived as:

1. Rounding error:

2. The dynamic range:

1 =
D, = m,;,lsm[(znﬂ)wk“’
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D2=2,

D = max{D;,Ds}. (51)

In contrast to the direct form I structure, the dynamic range of the direct form II structure is
affected by the factor m in Dy; that is, we will have non-uniform dynamic ranges for different
DCT channels. This feature is not desirable in real implementations even though the SNR results
of both structures are comparative to each other (see simulation results in Section 4.5)-It not only
requires different scaling scheme in each DCT channel, but also makes the data interface between
VLSI modules complicated (e.g. 2-D DCT in which two DCT modules are connected.). Therefore,
the direct form I is a better choice for the VLSI implementation of the IIR DCT structures.

4.4 Analysis for the Low-Power IIR DCT with M =2

In the low-power IIR DCT architecture with M = 2, the injected rounding error can be modeled as

(see Fig.8)

e(t) = ei(t) + ea(t) + es(t) (52)
and its power is given by
o; = E{(t)} = (2+ N;(k))o%- (53)
Note that
He(2) = (54)

T 1-2cosdwgzt + 22

and the total iteration is reduced to N/2. Thus, the total power of the rounding error at the output

becomes Nj2-1
- 2 :
2 _ 2 2__ Je ]—V") _ 2+ Ns(k))Nop, 55
71 =00 2 = s (F) = S ™ )

From (55), we observe that

1. Although the total number of noise sources increases, the total noise power is compensated by

the halved number of iterations.

2. Compared with the factor y in (41), the factor Wl)g in (55) will have similar effect

1
sin(2wy, sin(4wy

on the SNR of each DCT channel but with halved period.
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Now let us consider the dynamic range of the low-power DCT structure with M = 2. Given the
assumption that the input sequence z(t) is an i.i.d. sequence, the decimated inputs .(t) and Zo(t)
are also i.i.d. sequences and are uncorrelated with each other. Thus, we can apply the technique
of “superposition” to analyze the dynamic range of the system: We first set z,(t) to zero while
analyzing the dynamic range contributed by z.(t); then we perform the same analysis for Zo(t) by
setting z.(t) to zero. The overall D can be found from the summation of the two dynamic ranges,

which is given by (see Appendix)

D, = 2C(k)(|coswg| + | cos3wg]),

N/2-1
Dy, = C(k) E (|cos[(4n + 1)wg]| + |cos[(4n + 3)wk]|) ,
n=0
D = max{Dl, Dg}. (56)

Using the analytical results in (55) and (56), we can also find the optimal wordlengths for N = 8 and
16 under the 40dB SNR constraint. The results are listed in Table 4(b). It is interesting to note that
the average wordlengths of the multirate DCT architectures are even less than those of the normal
DCT architectures. This is due to the fact that the number of the iterations in the IIR loop will
be reduced to N/M. As M increases, the accumulation of the rounding errors becomes smaller and
thus less wordlength can be allocated. This indicates that the multirate DCT architecture can not
only reduce low-power consumption, its numerical properties also become better as M increases.

The above analyses can be extended to the low-power DCT design with decimation factor equal
to M (M > 2,M € 2+%). The results are given by

2
N oR

Pf = (M + Ns(k))(2m+1 )sin2(2m+1wk),

(57)

and

M-1

Dy = M-C(k) Y [cos[(2n + L)wg]l,
n=0
=1 M-1
D, = Ck) S Icos[(2m+1n+2i+1)wk]‘,
n=0 =0

D = max{Dl,Dg}. (58)
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with m = logy, M.

4.5 Simulation Results

To verify our analytical results, computer simulations are carried out by using the aforementioned
DCT architectures. The input sequence is a random sequence with uniform probability distribution
over the interval (-1,1). All the results are based on the average of 1000 independent DCT compu-
tations. Fig.10 shows the average SNR as a function of the DCT channel number k. As we can see,
there is a close agreement between the theoretical and experimental results. Basically, the SNR dis-
tribution is affected by the factor sin?(2™*+1wy) in (57) so that its period varies with the decimation
factor M. It should be noted that although Fig.10 (a) and (b) yield similar SNR results, the uniform
dynamic range of the direct form I structure makes it a better choice for VLSI implementations.

Fig.11 shows the relationship between the average SNR and the wordlength for N = 16. Com-
pared to the simulation results in [13], the three IIR DCT architectures give comparative SNR
performance to the DCT architectures by Hou [15] and Lee [16] under fixed-point arithmetic. It is
worth noting that the multirate DCT architectures have better SNR results than the normal IIR DCT
architectures; i.e., the multirate DCT has better numerical properties under fixed-point arithmetic,
which is consistent with what we have seen in Table 4.

In summary, the analytical results presented in this section can be used as a good index for future
applications as N and/or M changes. Furthermore, we can assign the optimal wordlength for each
individual DCT channel given the SNR criteria, while this is not the case in the fast-algorithm based
PIPO DCT structures [15][16]. Due to the characteristics of global interconnections in the PIPO
DCT structure, each operator at each stage will affect part or all of the outputs. Therefore, it is not

easy to find optimal wordlength for each channel in the PIPO structure.

5 Conclusions

In this paper, we presented some new aspects of the multirate low-power design discussed in the
companion paper [1]; namely, the logarithmic-complexity low-power architecture, unified low-power
ITR module design, and optimal wordlength assignment. We have shown that logarithmic architecture
is a good choice for VLSI implementation when both low-power dissipation and chip area are taken

into consideration. The unified IIR module presented in Section 3 allows us to perform various
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sinusoidal transforms using the same dedicated VLSI architecture. The real-time operations as well
as the programmability of this design makes it a promising candidate to be incorporated into the
design of video co-processor. Finally, the finite-wordlength analysis gives us a tool to achieve a
desired SNR by choosing minimal wordlength. It not only reduces the total switching events (hence
the power dissipation), but also provides a good control over the total chip area under the SNR
constraint. The materials presented in this paper, together with the multirate approach in the
companion paper, constitute a framework of the algorithm-based low-power design with application

to transform coding kernel design.

Appendix

Derivation of (56)

Setting z,(t) to zero, Fig.8 is reduced to the IIR structure depicted in Fig.9, where w;(t), i = 1,2,

are the nodes that may have overflow. It is easy to see that
D e = max{w;(t)} = C(k) (| cos wg| + | cos wg]) . (59)

From the transfer function of wa(t)

Wa(z) cos 3wy, — cos wiz !
— — 60
Hy(2) Xe(2) C )1 —2cosdwrz—! + 272’ (60)
we can derive the unit-sample response as

ho(n) = C(k) cos|[(4n + 1)wi]u(n). (61)

Thus,

N/2-1 Nj2-1
Dy = max{ws(8)} = C(k) Y |cos[(4n + Dwg]| - max{z(n)} = C(k) D |cos[(4n + Ljwy]|. (62)

n=0 n=0
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Similarly, by setting z.(t) = 0, we can derive the dynamic ranges of the two circled nodes, D, , and

D2,0’ as

D1, = C(k)(]coswg| + | cos3wy|),
N/2-1
Dy, = C(k) Z |cos[(4n + 3)wy]] - (63)

n=0

Combining (62) and (63) together, we can write the overall dynamic range of the multirate DCT as

D1 = Die+ Dip=2C(k) (| coswg| + | cos 3wg|),

N/2—1
Dy = Dye.+ Dy, =C(k) Z (|cos[(4n + 1)wg]| + |cos{(4n + 3)wk]]) ,
n=0
D = max{Dl, Dg}. (64)
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Normal DCT Logarithmic low-power Full low-power DCT
architecture in {2] DCT architecture architecture in [1]
Multipliers 2N -2 (log M + 2)N (in order) | (M + 1)N (in order)
Adders 2N (2log M + 1)N (in order) | (M + 1)N (in order)
Power consumption
for 16-point DCT Py 0.24P, (M = 4) 0.11Py (M = 4)

Table 1: Comparison of hardware cost and power consumption of the logarithmic low-power DCT
architecture with other approaches.

Normal Operation | Downsampling by 2 | Downsampling by 4
Multiplier | Adder | Multiplier { Adder | Multiplier | Adder
IIR MLT 5N 5N 10N 11N 20N 23N
IIR ELT 6N 6N 11N 12N 21N 24N

Table 2: Comparison of hardware cost for the MLT and ELT with their low-power designs in terms
of 2-input multipliers and 2-input adders.
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Tl = T~ e

DCT N | C(k) ko 0 Xpor k() = Xk (t)

IDCT N | o) | Fk+3) —Wk Xmperk(t) = Xk (t) + (C(0) — C(1))z(n — N +1)
DST-IVin [17) | N | €(1) | & (k+3 0 Xpsri(t) = Xs.4(t)

IDST-IVin [17] | N | C1) | & (k+ 3 0 XipsT,k(t) = Xs(t)

MLT N | A b Z(k+3) Xurrk(t) = =SE) Xop41(t) + Xs,1(t)]

ELT AN | o= | aw(k+3) | 3(k+3) | Xerrs(®) = —Xsk1(8) + V2Xok(8) + Xsp-1(2)
DFT N | X% =kn —wh Re{Xppr ()} = Xk (@t), Im{Xppr ()} = Xs1(t).
DHT N | Z& =kx —wp XpuT k() = Xo K (t) + X5 1 (8).

Table 3: Parameter settings for the unified low-power IIR transformation architecture, where
Re{Xprr ()} and Im{Xppr x(t)} denote the the real part and the imaginary part of the DFT,

respectively.
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DCTchannelk | 1 [ 2 [ 3[4 [5[6 [ 7 [ 89 [10]11[12][13]14[15] Ba
Br 1211|109 |10[11]12 N/A 10.7
(N=8) ’
B 13121211 |11|10]|10|10]10|10]11 |11 121213 | 11.2
(N =16) '
(a)
DCT channel k 123456789 [i0[11[12][183[14]15] Ba
B 109 |10|11{10] 9 |10 N/A 9.9
(N =8M=2)
By,
(N=16 =2 [ 12[11[10]10 /1011 12 1212|1110 |10 |10 | 11|12 109
(b)

23

Table 4: Optimal wordlength assighment under the constraint SNR = 40dB, where B4 is the average
wordlength. (a) Normal ITR DCT. (b) Low-power DCT with M = 2.
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Figure 1: (a) Polyphase representation of Hpcr i (2) in cascade form. (b) Multirate DCT architecture
with logarithmic complexity, where wg, I'c(m), m = 1,3, are defined in [1].
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Figure 3: The time-recursive MLT architecture.
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Figure 5: Rounding error in the IIR DCT architecture.
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Figure 6: Dynamic range of the IIR DCT architecture.
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Figure 7: IIR DCT using the direct form II structure.
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Figure 8: Rounding noise in the low-power IIR DCT architecture with M = 2.
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Figure 9: Reduced IIR DCT architecture with M = 2.
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Figure 10: Average SNR as a function of DCT channel number under fixed-point arithmetic (N = 16,
B =12). (a) Normal IIR DCT using direct form I structure. (b) Normal IIR DCT using direct form
II structure. (c¢) Low-power DCT with M = 2. (d) Low-power DCT with M = 4.
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Figure 11: Average SNR as a function of wordlength under fixed-point arithmetic (N=16). The
multirate low-power architectures have better SNR as M increases.



