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This simulation study presents a justification for evaluating teacher effectiveness with a 

multivariate multilevel model. It was hypothesized that the multivariate model leads to more 

precise effectiveness estimates when compared to separate univariate multilevel models. Then, 

this study investigated combining the multiple effectiveness estimates that are produced by the 

multivariate multilevel model and produced by separate univariate multilevel models. Given that 

the models could produce significantly different effectiveness estimates, it was hypothesized that 

the composites formed from the results of the multivariate multilevel model differ from the 

composites formed from the results of the separate univariate models in terms of bias. The 

correlations between the composites from the different models were very high, providing no 

evidence that the model choice was impactful. Also, the differences in bias and fit were slight. 

While the findings do not really support a claim for the use of the more complex multivariate 

model over the univariate models, the increased theoretical validity from adding outcomes to the 

VAM does. 
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Chapter 1: Introduction 

Value added models (VAM) are a category of statistical models implemented in the 

educational context typically to measure the influence of a teacher, school, or district on a 

student’s achievement (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004). This 

influence is often labeled as effectiveness. Evaluation systems are using such effectiveness 

estimates to compare and rank teachers, schools, and/or districts and even states. In many cases, 

high stakes decisions, such as tenure or dismissal and funding, are based on these evaluation 

systems, which has fueled the research in this field (Goldhaber, 2010; Montes, 2012; Rothstein, 

2016). Evaluation systems are also using teacher effectiveness estimates to rate teachers with the 

purpose of reward and development. Many current evaluation systems are implemented to 

incentivize better performance; but further investigation into what makes teachers and schools 

effective is necessary before relying heavily on these systems. The American Statistical 

Association (ASA) published a statement on using value-added models in 2014. The ASA noted 

two issues that are particularly relevant to this dissertation. First, it declares that VAMs are 

generally based on standardized test scores, and do not directly measure teacher influences on 

other student outcomes. Second, the VAM scores’ rankings can change substantially when a 

different model or measure is used. The ASA statement declares that the ranking of teachers by 

VAM scores can have unintended consequences. It concludes that, with caution, VAMs could be 

used to distinguish characteristics of quality (ASA, 2014). It is possible that the practices of 

teachers determined to be effective by such models can be identified and shared with educators 

to improve the teaching and learning experience (Goe, 2007). These evaluation systems have 
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garnered much criticism with respect to the methods of calculating teacher effectiveness 

estimates, specifically value-added modeling.  

Many teacher evaluation systems are using students-within-teacher random effects 

multilevel models to estimate teacher effectiveness effects where student achievement, or some 

outcome of choice, is modeled as the VAM outcome. There can even be multiple outcomes of 

interest. It is common in the primary school-level for a teacher to be responsible for teaching all 

of the academic subjects. Students typically have one primary teacher who has the potential to 

impact a range of outcomes. The teacher effectiveness should reflect all of the outcomes that the 

teacher has influence over. Modeling multiple outcomes with a multivariate model is a more 

complex analysis than a univariate model, but the added information in the model could produce 

a more useful estimate of effectiveness. At the older grade levels, students are more likely to 

have a different teacher for each subject. This makes it more difficult to attribute the growth of a 

student to just one teacher. There are complex statistical models used to estimate effectiveness 

that take into account the multiple teachers, such as the cross-classification model and multiple 

membership model (Fielding & Goldstein, 2006).  

The teacher effects are calculated post-estimation as best linear unbiased predictions 

(BLUPs) of the random intercept effects. This means that, prior to the calculations, teachers are 

assumed to be at the average level of effectiveness, until the student data evidence otherwise. 

When specifying a multilevel random effects model, each specified outcome has a direct 

influence on the resulting teacher effectiveness estimate(s). Therefore, the selection of the 

outcome(s) is a critical decision in VAM (Lockwood et al., 2007). Of interest to the current study 

is that multiple outcomes result in multiple effectiveness estimates for each teacher which can, in 

turn, be aggregated into one teacher effectiveness composite. Evaluation systems can choose to 
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fit separate multilevel models to each outcome when multiple outcomes are of interest; 

alternatively, multiple outcomes can be modeled jointly with a multivariate multilevel model. 

Fitting separate multilevel models implies that the teacher effects are independent of each other, 

which may not be the case. In the multilevel model each outcome has an associated set of teach-

level residuals, just as each separate univariate multilevel model produces a set of teacher-level 

residuals associated with the respective outcome. Ideally, teacher effectiveness is calculated as a 

composite of these teacher-level residuals across the multiple outcomes. Previous research has 

shown that the estimate of the population covariance structure of group-level residuals from 

separate univariate multilevel models was biased when compared to the estimate of the 

population covariance structure of the group-level residuals resulting from the multivariate 

model (Leckie, 2018). This finding has implications for the constructed composite of residuals, 

which is interpreted as the teacher effectiveness estimate. This dissertation study examined the 

hypothesis that the composites built from the residuals resulting from the multivariate model 

differ from the composites built from the univariate models. It was hypothesized that the 

univariate model-based composites would be biased when compared to the multivariate model-

based composites.  

Statement of Problem 

 

Each outcome in the multivariate multilevel model has an associated residual at the 

group- (teacher) level. It is this residual that is interpreted as the effectiveness estimate. For 

models with multiple outcomes, multiple sets of effectiveness estimates (residuals) are produced. 

This means that each teacher has multiple effectiveness estimates, one for each outcome. The 

problem with this is that a teacher could be rated at different levels of effectiveness depending on 

which outcome is examined. One of the only examples of where an effectiveness composite is 
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constructed is the state of Ohio’s EVAAS value added reporting (SAS, 2016). Ohio’s EVAAS 

implements a multivariate multilevel VAM to estimate teacher effectiveness across multiple 

grades, years, and academic subjects. An effectiveness composite is calculated for each teacher 

with the number of students used in a particular measure as the weight. The evaluation system in 

Ohio only focuses on grades four through eight in math and reading. There are limitations with 

the model where students have multiple teachers throughout the day. Typically, the elementary 

school level is a better fit for VAM given that students have one primary teacher throughout the 

day. In the upper grades, students have multiple teachers and it is more difficult to attribute 

growth and outcomes to one teacher. The EVAAS model is discussed in more detail throughout 

this study. Alternatively, there are several empirical studies in multivariate multilevel VAM that 

conclude with comparing the separate multiple estimates from the multiple outcomes across 

models and conditions without calculating an overall combined effectiveness estimate (De 

Maeyer, van den Bergh, Rymenans, Van Petegem, & Rijlaarsdam, 2010; Grilli, Pennoni, 

Rampichini, & Romeo, 2015; Lockwood et al., 2007; Ma, 2001). Multiple outcomes and 

multiple estimates potentially, and likely, results in different effectiveness ratings for each 

teacher. An alternative to having multiple ratings for each teacher is to combine the estimates 

into one aggregated effectiveness estimate; however, methods for doing this have yet to be 

investigated. There is no VAM-related research for guidance on how to rank or classify teachers 

based on multiple effectiveness estimates. There are examples of other contexts where an 

aggregation of variables is desired. For instance, the Organization for Economic Co-operation 

and Development (OECD) compares and ranks countries based on a set of economic 

characteristics. These characteristics or ‘variables’ are aggregated into a composite that is used to 

represent the economic strength of the country. There are a variety of methodological options for 
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creating a composite variable using weights and general aggregation methods (OECD, 2008; 

Oosterhof, 1997). This study investigated potential methods for constructing a single teacher 

effectiveness estimate for a teacher when multiple outcomes are modeled. Currently, in other 

contexts, it is most common to construct a composite based on the compensability of outcomes. 

As this study presents, the weighted importance of the outcomes is a theory-based decision that 

has a direct impact on the resulting teacher effectiveness estimates. This study employed an 

alternative to a theoretical weighting of the outcome-based estimates, examining the use of the 

covariance matrix of the residuals to inform the aggregation of the effectiveness estimates to 

construct an effectiveness composite. The analysis includes an examination of the consequences, 

in terms of bias of estimates of the residuals’ covariance structure, of fitting separate univariate 

multilevel models as opposed to a multivariate multilevel model, thereby adding to the 

significant evidence that calls for a standardization of value-added models if reliable estimates of 

teacher effectiveness are desired.  

Purpose and Significance of Study 

First, this study presents a justification for evaluating teacher effectiveness with a 

multivariate multilevel model. A multivariate model would be most applicable in the primary 

school-level, where one teacher is the primary educator and is responsible for multiple subjects. 

It was hypothesized that the multivariate model leads to more precise effectiveness estimates 

when compared to separate univariate multilevel models. Then, this study investigated 

combining the multiple effectiveness estimates that are produced by the multivariate multilevel 

model and produced by separate univariate multilevel models. Given that the models could 

produce significantly different effectiveness estimates, it was hypothesized that the composites 

formed from the results of the multivariate multilevel model differ from the composites formed 
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from the results of the separate univariate models in terms of bias. Additionally, there is no 

previous research that provides guidance on the aggregation of multiple sets of VAM 

effectiveness estimates. In fact, there is no research on best practices in combining residuals from 

multilevel models in any context. Multiple potential methods for weighting and aggregating the 

effectiveness estimates exist. Estimates can be summed in a simple equal-weight linear method 

or through more complex combinations of weights and aggregation methods. This study 

investigated viable methods for weighting and aggregating estimates with a focus on using the 

covariance structure of the teacher-level residuals.  

In sum, as noted in the 2015 statement from the American Educational Research 

Association (AERA), educator evaluation systems need to heed caution when incorporating 

VAM due to the scientific and technical limitations (AERA, 2015). As such, AERA calls for a 

substantial investment in more research on VAM. This current study adds to the psychometric 

research on VAM, with a specific focus on multivariate multilevel models, their assumptions, 

and the manipulation of the resulting effectiveness estimates.  
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Chapter 2: Literature Review 

Following the legislation of the No Child Left Behind Act (2002), federal officials 

demanded accountability for student achievement from schools, districts, administrators, states, 

and other stakeholders. Research began in order to identify methods that could attribute student 

learning to particular influences, focusing primarily on the effect that a particular school or 

teacher could have on achievement. The characteristics of teachers and schools have been 

investigated through statistical models to evaluate their influence on student achievement. 

Influences like teacher and school characteristics became the subject of value-added modeling 

and effectiveness research studies (Cawthorn, 2004). One focus of these studies is estimating the 

effect that a teacher has on student learning in order to determine how much value a teacher adds 

to the students’ education. This is the primary focus of value-added models (VAMs).  

This literature review presents a brief background of value-added modeling. This 

includes a review of the most common statistical models. A focus on multilevel VAM highlights 

support for the use of the multivariate multilevel model when multiple outcomes are of interest. 

After justification for the use of the multivariate model is presented, the construction of the 

composite and the various aggregation methods is discussed. Of particular focus is the 

dependency of the residual covariance structure-based aggregation method on the type of 

multilevel model, univariate or multivariate. This literature review highlights the complexity of 

issues and the lack of current research within the VAM context.  

Accountability 

 Recent expansion of the interest in value-added models can be attributed to 

policymakers and legislators that have become attracted to the idea of teacher and school 
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accountability based on student outcomes (Everson, 2017). One of the original drivers was Race 

to the Top (RTTT), a federal government legislation that centralized the once somewhat 

localized education policy of accountability (USDE, 2009). Baker et al. (2010) cites the Obama 

administration as encouraging states to make greater use of standardized testing results as an 

indicator in high-stakes teacher evaluation systems. The new act was titled Every Student 

Succeeds Act, ESSA, and was signed into law in 2015. The law included provisions that there 

will be accountability and action to effect positive change in schools and each state must have an 

accountability plan. Each state is required to hold schools accountable for student success. The 

accountability plan must include measures for academic achievement, academic progress, 

English language proficiency and high school graduation rates. The final plan requirement is a 

way to measure school quality or student success.  

 A 2019 check-in on state progress for implementing ESSA shows that the majority of 

states have methods for flagging the lowest performing schools and implementing improvement 

plans (Klein, 2019). When the new act was signed into law, many thought it would lead to 

increased innovation in education.  But, according to a report from Bellwether Education 

Partners, this has yet to happen (Aldeman, Hyslop, Marchitello, O’Neil Schiess, & Pennington, 

2017).  The Bellwether review did reveal that the majority of states included a measure of year to 

year student growth. For example, Minnesota’s plan includes a growth model that awards points 

to schools based on students making progress in math and English achievement levels. Others 

include added outcomes beyond just reading and math, including science, attendance, college 

readiness and even school climate. The review notes an interesting shift in the accountability 

systems toward norm-referenced systems rather than criterion-referenced ones. This shift is 

important in that it means rather than being held to predetermined criteria, schools are compared 
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to each other. This methodology means that the system is ignoring whether or not students are on 

track to succeed and only looking at how they compare to one another. This phenomenon is also 

seen in VAM where teachers are given an effectiveness score and ranked as in the Tennessee 

evaluation system. The effectiveness score is the amount the teacher contributes above or below 

the average effect of a teacher on student outcomes. This means that there will always be a set of 

teachers at the bottom of the ranking, so rather than looking at what teachers can do or not do, 

the systems are looking at how teachers compare to each other. The implications of this are 

discussed in more detail.  

Background on Value-added Modeling 

As teachers and administrators face the reality of being evaluated based on the 

achievement of their students, they are asking questions about how their effort is being measured 

and whether the process is fair. The federal government, education associations and 

organizations, state and federal policy groups, and other stakeholders involved all want to know 

if evaluating the effectiveness of teachers is even possible and, if so, how well the methods work. 

Teachers are feeling the effects of the emphasis on accountability as many states have instituted 

teacher evaluation systems, with VAM being a significant part of those systems (Feng, Figlio, & 

Sass, 2010; Goldhaber & Hannaway, 2004; Jiang, Sporte, & Luppescu, 2015; Montes, 2012). 

There are a number of statistical approaches to VAM in use across the evaluation systems. These 

various models have been shown to produce varying results, adding more complexity to the 

teacher evaluation controversy (ASA, 2014). 

State educator evaluation systems. Many teacher evaluation systems incorporate the 

VAM results as just one component of the teacher’s overall evaluation. In May 2010, the state of 

Louisiana declared that school districts must make teacher effectiveness estimates account for 
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50% of the teacher’s evaluation score. Michigan began a pilot teacher evaluation program where 

the school districts were allowed some flexibility in how they meet the basic framework of the 

program. The majority of the districts, about 400, chose to have student achievement growth 

account for 21-30% of the teacher evaluation. Another 200 districts chose to have student 

achievement growth account for more than 31% (Keesler & Howe, 2012). The remaining 

percentage of the teacher’s evaluation rating in these systems was informed by administrator 

observation and evaluation based on a framework for teaching, such as Charlotte Danielson’s 

Enhancing Professional Practice for Performance of Teaching (2007). This background is 

relevant to the aggregation of effectiveness estimates as it gives some insight into how much 

weight evaluation systems give to the academic achievement component of the teacher’s 

evaluation.  This could inform the weight for a set of residuals yielded from the academic 

achievement outcome(s) in VAM when modeling both achievement and non-cognitive 

outcomes.  

A review of ten evaluation systems (Doyle & Han, 2012) identified several methods for 

aggregating the VAM rating with other indices of teacher effectiveness for an overall teacher 

evaluation. Several systems use a matrix method that examines the VAM score with other 

measures, such as an observation rating, to assign a qualitative label. The rationale or 

justification for how much the VAM score should account for in the teacher’s overall rating 

appears to be theoretical and assigned after a process of gathering stakeholder opinions. Clearly, 

the stakeholder opinions have great impact on the overall teacher’s evaluation rating. The 

weighting and aggregating of multiple outcomes within VAM within a teacher evaluation system 

where there are multiple inputs compounds this impact. A slight tweak of any of the weights in 

the system could produce a different outcome for a teacher. In a system where there are 
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monetary awards or hiring decisions depending on these outcomes, the weights should be 

selected very carefully.  

Statistical Models 

Rather than providing an exhaustive review of VAM, the following discussion is 

intended to exhibit a sample from the wide variety of models and discuss some of the issues 

associated with them. This review focuses on the more common statistical approaches to VAM.  

Regression models. At the K-12 education level, state systems select the VAM for 

evaluating teacher effectiveness. The state of Texas uses a regression model that O’Malley, 

Murphy, McClarty, Murphy, and McBride (2011) noted is the only one of its kind that is fully 

transparent and reproducible. In the typical education example, students’ achievement is the 

outcome of interest. This multiple regression model allows for the prediction of student 

achievement while controlling for student characteristics including prior student achievement. 

The outcome from one year is predicted by the outcome from the previous year and additional 

covariates. For a group of students and teachers, the difference between the predicted outcome 

and the actual outcome is calculated for each student in the classroom, and the average of these 

differences is taken as the measure of the teacher effectiveness. Covariates, Xij and Zj, are used to 

control for factors among the students and teachers that are theorized to be above and beyond the 

effect of the teacher. Common student covariates include socio-economic status and prior 

achievement. Identifying potential teacher or group-level covariates is more difficult. Separating 

teacher or class characteristics from what makes a teacher effective is not straightforward.  

Researchers need to be careful not to control for teacher or class characteristics that contribute to 

teacher effectiveness. One possible example of what to control for is class size, where it is 

theorized that class size has an impact on a teacher’s ability to be effective above and beyond the 
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teacher’s effectiveness. This equation specifies the model with student and teacher or class 

covariates:  

𝑌𝑖𝑗(2) =  𝛽0 +  𝛽1𝑌𝑖𝑗(1) + 𝛽2𝑋𝑖𝑗 + 𝛽3𝑍𝑗 + 𝜀𝑖𝑗 , (1) 

 

Where 𝑌𝑖𝑗(2) is the current test score for student i taught by the teacher j, 𝑌𝑖𝑗(1) is the prior year 

test score of student i within teacher j (the current teacher), 𝛽0 is the intercept, 𝛽1 … 𝛽3 are the 

regression slopes, 𝑋𝑖𝑗 is the student covariate, 𝑍𝑗 is the teacher or class covariate, and 𝜀𝑖𝑗 is the 

residual (error term), which is assumed to be normally distributed and independent of the 

covariates. The average of the residuals for teacher j, 𝜀𝑖̅𝑗, is interpreted as teacher effectiveness. 

A slight differentiation of the model above that has the current year test score predicted 

by the prior year and covariates is to specify the gain score as the dependent variable, where the 

difference between the current year score and the prior year is the gain score (McCaffrey et al., 

2004). Equation 2 is the gain score model: 

𝑌𝑖𝑗(2) − 𝑌𝑖𝑗(1) =  𝛽0 + 𝛽1𝑋𝑖𝑗 +  𝛽2𝑍𝑗 + 𝜀𝑖𝑗, (2) 

where the gain score, 𝑌𝑖𝑗(2) − 𝑌𝑖𝑗(1) is the current year score for student i within teacher j minus 

the student’s prior year score. Note the prior year score was within a different teacher; however, 

that is not specified in the model. The subscript j in the prior year term 𝑌𝑖𝑗(1) in Equation 2 refers 

to the student’s current year teacher.   

Researchers posit that the inclusion of the student’s prior achievement and characteristics 

adds validity to the teacher effectiveness estimate (McCaffrey et al., 2004). The prior year 

achievement and student characteristics can control for otherwise potentially extraneous 

variables to produce a more valid estimate of teacher effectiveness. By accounting for these 
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extraneous effects in the model, they are removed from the effectiveness estimate. In the model 

where the current year test score is the dependent variable (Equation 1), the predicted 

achievement measure can be on a different scale than the prior achievement measure. This would 

be the case where there is not a vertically-scaled standardized test available.  

One disadvantage of the regression model using prior year’s achievement is the potential 

for missing data (Sanders, 2006). Students without the prior year’s test scores (or current year’s) 

would be excluded from the model, reducing the reliability of the effectiveness estimate by 

having fewer students in the sample. Research also suggests that this lack of data is not random, 

thereby introducing bias (McCaffrey et al., 2003). McCaffrey and associates (2003) discussed 

the significant correlation between student mobility (causing missing prior or current year data) 

and student achievement. Another potential disadvantage of this model is that it does not account 

for the common hierarchical nature of education data (Clark, Crawford, Steele, & Vignoles, 

2010). This issue is explored in more depth below. 

Multilevel models. The multilevel model is built on the regression model used in Texas 

by adding a level to account for the fact that students are grouped within schools, within 

classrooms, or within some other category, and such grouping creates a dependency among the 

data. The two-level random intercept multilevel model can be specified as: 

𝑌𝑖𝑗(2)   =  𝛽0 + 𝛽1𝑌𝑖𝑗(1) + 𝛽2𝑋𝑖𝑗 + 𝛽3𝑍𝑗 + 𝑢𝑗 + 𝜀𝑖𝑗 , (3) 

where 𝑌𝑖𝑗(2) is the current test score for student i taught by teacher j, 𝑌𝑖𝑗(1) is the prior year test 

score of student i within teacher j (same current year teacher j), 𝛽0 is the intercept, 𝛽1 … 𝛽3 are 

the regression slopes, 𝑋𝑖𝑗 is the student covariate, 𝑍𝑗 is the teacher covariate, 𝑢𝑗 is the effect of 

teacher j on student achievement, and 𝜀𝑖𝑗  is the residual at the student level (error term).  
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Teacher effects, 𝑢𝑗, and student residuals, 𝜀𝑖𝑗, are assumed normally distributed and to have zero 

means and constant variances. The multilevel model addresses the issue of missing data due to 

mobility that is a disadvantage of the regression model discussed above. If a case is missing 

either the prior or current year data in the regression model, it must be excluded from the 

analyzed data. Multilevel models can incorporate missing data and mobility into the analysis 

using full information maximum likelihood estimation (Peugh & Enders, 2004). There is no need 

to remove cases with incomplete data unless the missing data is in the covariates. Parameters are 

estimated using all the available data and are informed by the relations among the variables – 

even when these variables have missing data. (Note, there are certain restrictions based on the 

type of missing data; see Peugh and Enders, 2004, for further information.) 

The three-level random intercept model adds a level of nesting and therefore another 

subscript to represent this level, m, and a new residual at level three, 𝜔𝑚 .  

𝑌𝑖𝑗𝑚(2) =  𝛽0 + 𝛽1𝑌𝑖𝑗𝑚(1) + 𝛽2𝑋𝑖𝑗𝑚 +  𝛽3𝑍𝑗𝑚 + 𝑢𝑗𝑚 + 𝜀𝑖𝑗𝑚 + 𝜔𝑚 (4) 

A third level could be, for example, a school. Students are nested within teachers and teachers 

are nested within a school. There could be a commonality among teachers of the school that 

should be accounted for in the model. Covariates could also be added at the third level to control 

for characteristics related to this level (not depicted in Equation 4). Using the example of the 

school as the level-three grouping variable, a relevant covariate could be the percent of students 

receiving free or reduced school lunch.  

A potential disadvantage of the multilevel model is the inherent complexity, particularly 

when covariates at multiple levels are included. Some stakeholders will have difficulty tracking 

the multiple levels and/or variables, which could lead to questions among a population that may 
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already be predisposed to doubt the fairness of teacher effectiveness estimates (O’Malley et al., 

2011). The multilevel model is made even more complex with the addition of multiple outcomes. 

It is the hypothesis of the current study that additional outcomes, modeled jointly, leads to a 

more precise teacher effectiveness estimate because more information (data) going into the 

calculation of the estimate, i.e. increased sample size, results in decreased standard error. A 

multilevel model with multiple outcomes is termed a multivariate multilevel model.  

Multivariate multilevel models. The multivariate class of multilevel VAM specifies 

multiple dependent variables, also referred to as outcomes in this study, as a function of the 

explanatory variables, also referred to as covariates. In value-added modeling, if the theory is 

that teacher effectiveness influences more than just one outcome, then these additional outcomes 

can be specified to provide information in the model for estimating effectiveness. Despite the 

prevalence of VAM with student achievement outcomes, teachers have been shown to affect 

non-cognitive outcomes as well (Chetty, Friedman, & Rockoff, 2011; Jackson, 2012). There are 

a limited number of studies that have shown how multiple outcomes could be modeled in this 

context (De Maeyer, van den Bergh, Rymenans, Van Petegem, & Rijlaarsdam, 2010; Lockwood 

et al., 2007; Ma, 2001; Papay, 2010). The researchers used achievement-based outcomes, but the 

model could be applied to non-achievement outcomes and a combination of the two types of 

outcomes as well. This study investigated modeling additional outcomes and manipulating the 

resulting multiple sets of residuals.  

Multivariate multilevel model equations. The multivariate multilevel model builds on the 

hierarchical linear model by using level 1 to account for the multiple outcomes. The individual 

student is now modeled at level 2. In the model examined in this study, the underlying 

assumption is that the outcome measures (level 1) are nested within students (level 2), which are 
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nested within teachers (level 3). The model notation follows the multivariate multilevel notation 

format of Hox (2002).   

The equation for level 1 is: 

𝑌ℎ𝑖𝑗 =  𝜓1𝑖𝑗𝐴1𝑖𝑗 + 𝜓2𝑖𝑗𝐴2𝑖𝑗 + ⋯ + 𝜓𝐷𝑖𝑗𝐴𝐷𝑖𝑗 

𝐴𝑑𝑖𝑗 = 1 when ℎ = 𝑑 

𝐴𝑑𝑖𝑗 = 0 when ℎ ≠ 𝑑, 

(5) 

where 𝐴𝑑𝑖𝑗 is a dummy variable used to distinguish the outcomes, 𝑌ℎ𝑖𝑗 is the outcome h of 

student i within teacher j ( d = 1, …, D; i = 1,…, Ni ;  j = 1,…, n), D is the number of outcomes, 

(when h = d, the dummy variable is ‘on,’ equal to 1; when h ≠ d, the dummy variable is ‘off,’ 

equal to 0), Ni is the number of students for teacher j, and n is the number of teachers. The level 

1 model of the multivariate model excludes the usual intercept found in the univariate model. 

There is also no error term for level 1. The number of outcomes in the model determines the 

number of  𝜓𝑑𝑖𝑗𝐴𝑑𝑖𝑗 terms in the level 1 model.  

The level 2 model of the multivariate model defines the coefficients, 𝜓𝑑𝑖𝑗, from level 1, 

where 𝜓𝑑𝑖𝑗 
is the score for student i within teacher j on outcome d:  

 𝜓𝑑𝑖𝑗 = 𝛽𝑑0𝑗 + ∑ 𝛽𝑞𝑑𝑗𝑋𝑞𝑑𝑖𝑗
𝑄
𝑞=1 + 𝜀𝑑𝑖𝑗   (6) 

The intercept term, 𝛽𝑑0𝑗, is a measure of the average outcome d performance for teacher j, 

adjusted for any level 2 covariates, 𝑋𝑞𝑑𝑖𝑗, where Q is the number of covariates. Without grand 

mean centering of the predictors, the intercept, 𝛽𝑑0𝑗, is interpreted as the expected value on the 

dth outcome for student i within teacher j who has a value of zero on the covariates. Grand mean 

centering of the predictors allows for the interpretation of the intercept as the expected value on 
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the dth outcome for student i within teacher j who has the overall sample mean value on the 

covariates. The alternate centering method, group mean centering, was not applied because the 

research interest is in the level 3 effect. Group mean centering would remove the between-group 

variation for the covariates and would thus remove a valuable aspect of the model and yield 

misleading results given the theoretical basis for the research. The vector of student-level 

residuals is 𝜺𝑖𝑗 = (𝜀1𝑖𝑗 … 𝜀𝑑𝑖𝑗) and is assumed distributed as multivariate normal with a mean of 

zero and a variance-covariance matrix of 𝚺′, a D×D matrix for the D outcomes with variance 

components 𝜎𝑑𝑑 (on the diagonal) and covariance components  𝜎𝑑𝑑′ (off the diagonal).  

 

 

 

The level 3 model defines the 𝛽𝑞𝑑𝑗 coefficients from level 2.   

𝛽𝑑0𝑗 = 𝛾𝑑00 + 𝛾0𝑗𝑍𝑑0𝑗 + 𝑢𝑑0𝑗 

𝛽1𝑑𝑗 =  𝛾1𝑑0 + ∑ 𝛾𝑚𝑑𝑍𝑚𝑑𝑗

𝑀

𝑚=1

 

. 

. 

. 

𝛽𝑄𝑑𝑗 =  𝛾𝑄𝑑0 + ∑ 𝛾𝑚𝑑𝑍𝑚𝑑𝑗

𝑀

𝑚=1

 

(7a) 

 

(7b) 

For each teacher j, there is a vector of the residuals, 𝒖𝒋 = (𝑢1𝑗 , … , 𝑢𝑑𝑗), that is distributed 

as multivariate normal with a mean of zero and a variance-covariance matrix, 𝚻. Each element, 

(𝑢1𝑗 , … , 𝑢𝑑𝑗), has a mean of zero and a variance of 𝜏𝑑𝑑 and each pair of elements has a 
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covariance of 𝜏𝑑𝑑′. The intercepts, 00d ,  are the grand means of the outcomes, d, each adjusted 

for any level three covariates, 𝑍𝑚𝑑𝑗 , where M is the number of level three covariates. Equation 

7b presents only fixed effects of level two covariates as indicated by the lack of a random error 

term. Level three covariates should be selected carefully. Because the level three grouping 

variable is the teacher, including covariates about the teacher could remove the unique 

characteristics of the teacher that leads to the value that the teacher adds to the outcome(s) 

(McCaffrey, Lockwood, Koretz, & Hamilton, 2003). For example, if the number of years of 

experience was added as a covariate at level three, the model essentially removes the variation in 

the outcome score explained by the covariate. But, it could be the years of experience that leads 

to the teacher having more knowledge and instructional techniques that results in higher student 

outcome scores. The higher outcome score relates to a high effectiveness score, but this is 

suppressed if the covariate is specified. 

Substituting the level two and three equations into level one yields a combined model:  

Note that the model is essentially a three-level model with repeated outcomes (level one) nested 

within students (level two) nested within teachers (level three). Thus, there is a set of level three 

residuals across teachers – one for each outcome d. The multivariate multilevel model is 

expected to follow a set of assumptions for these parameters. These assumptions as well as 

 

𝑌ℎ𝑖𝑗 = ∑ 𝛾𝑑00𝐴ℎ𝑑𝑖𝑗

𝐷

𝑑=1

+ ∑ ∑ 𝛾𝑞𝑑0𝑋𝑞𝑑𝑖𝑗𝐴ℎ𝑑𝑖𝑗

𝑄

𝑞=1

𝐷

𝑑=1

+ ∑ ∑ 𝛾𝑚𝑑0𝑍𝑚𝑑𝑖𝑗𝐴ℎ𝑑𝑖𝑗

𝑀

𝑚=1

𝐷

𝑑=1

+ ∑ 𝜀𝑑𝑖𝑗𝐴ℎ𝑑𝑖𝑗

𝐷

𝑑=1

+ ∑ 𝑢𝑑𝑗𝐴ℎ𝑑𝑖𝑗

𝐷

𝑑=1

 

(8) 
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guidance for sufficient sample sizes are discussed below, following an example of a multivariate 

multilevel model, EVAAS. 

EVAAS, a multivariate multilevel model. The state of Ohio implements an extensive 

evaluation system, including state and district-level analyses in addition to teacher-level 

evaluation. The system applies a multivariate response model (MRM) for tests given in 

consecutive grades (e.g., reading, math). The MRM is a gain-based model that measures growth 

in student achievement between two points in time for a group of students. The system applies a 

univariate response model (URM) when the test is given in non-consecutive grades (e.g., 

science). The URM measures the difference between the students’ predicted scores for a 

particular subject/year with their observed scores. Both models include multiple years of test data 

to minimize the influence of measurement error and accommodate students with missing test 

scores. EVAAS Technical documentation claims that adjusting for student characteristics is not 

necessary due to the inclusion of multiple years of student testing data. The teacher evaluation 

model includes the percentage of instructional responsibility that the teacher had for the student. 

The technical documentation provides the teacher model equation (SAS, 2016).  

𝑌𝑖𝑠𝑘𝑙 =  𝛾𝑠𝑘𝑙 + (∑ ∑ 𝑤𝑖𝑠𝑘∗𝑙∗𝑗  ×
Τ𝑖𝑠𝑘∗𝑙∗

𝑗=1𝑘∗≤𝑘 𝑢𝑖𝑠𝑘∗𝑙∗𝑗) + 𝜀𝑖𝑠𝑘𝑙, (9) 

where 𝑌𝑖𝑠𝑘𝑙 is the test score for the ith student in the sth subject in the kth grade in the lth year, for 

the current year; 𝑢𝑖𝑠𝑘∗𝑙∗𝑗  is the teacher effect of the jth teacher on the ith student in the sth subject 

in the grade k* in year l*, where k* and l* are previous grades and years; and 𝑤𝑖𝑠𝑘∗𝑙∗𝑗 is the 

fraction of the ith student’s instructional time claimed by teacher j. The inner summation is over 

all the teachers of the ith student in a particular subject/grade/year. The outer summation 

accumulates teacher effects for the current and previous grades in the same subject. This is 
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referred to as a layered model. The Tennessee value-added assessment system also implements a 

layered model, termed the TVAAS (McCaffrey et al., 2004).  

The estimated teacher effects are treated as random effects in the EVAAS and TVAAS 

models. These estimates are obtained by shrinkage estimation known as best linear unbiased 

prediction (BLUP). From Equation 9, the teacher-level residuals, 𝑢𝑖𝑠𝑘∗𝑙∗𝑗, are assumed to be a 

linear function of the outcome, 𝑌𝑖𝑠𝑘𝑙, and is said to be unbiased so that the mean of the difference 

between the estimates and the ‘true’ value is zero and the variance of that difference is no larger 

than the variance of the difference between any other linear and unbiased predictor and the true 

value. The shrinkage estimation considers the information available about the specific teacher 

and the information about all teachers (Tate, 2004). The combination of information includes a 

weight that depends, in part, on the amount of information available for the individual teacher. 

The equation for the BLUP, using the notation from Equation 9, is as follows:  

𝑢𝑖𝑠𝑘∗𝑙∗𝑗 =   
𝜎𝑢𝑖𝑠𝑘∗𝑙∗𝑗

2

𝜎𝑢𝑖𝑠𝑘∗𝑙∗𝑗
2 +𝜎𝜀𝑖𝑠𝑘𝑙

2  (𝑌𝜀𝑖𝑠𝑘𝑙
− 𝑌̅..), (10) 

where the estimate is a product of the individual score and overall mean score.  

 This method protects teachers from being incorrectly classified due to random 

measurement error in the test scores when there is an insufficient number of students. A greater 

number of students results in a greater weight of the individual teacher’s information in the 

combination, such that the resulting shrinkage estimate would not be much different from the 

observed mean. On the other hand, if the class size were very small, the estimate is weighted 

more heavily on the information of all the teachers. The shrinkage estimate is therefore closer to 

the overall mean of all teachers.  
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Multivariate models, like the EVAAS, result in teacher effectiveness estimates for each 

subject/grade/year. With separate teacher effectiveness estimates, the evaluation system is not 

likely be able to provide one ranking for the teacher. Across the different subjects, grades and 

years, the teacher ranking could vary and evaluation systems that depend on the ranking to, for 

example, make decisions, give bonuses, or evaluate effective characteristics, would lack the 

ability to do this. It is possible that systems would give a set of rankings and address each subject 

area separately, but there could also be the need for just one. For example, the New York State 

Annual Professional Performance Review Guidelines require a composite rating of highly 

effective, effective, developing or ineffective (New York State Education Department, 2019). 

The rating is based on growth scores on state tests and on local assessments. Teachers with an 

ineffective rating are required to develop an improvement plan. Having separate subject-level 

scores in addition to the composite score could be helpful in identifying specific areas of 

weakness for the improvement plan. In Ohio’s system, a composite is constructed from the 

estimates across subjects. The composite weights each subject based on the number of students 

used in the measure within a year. For example, the composite for a teacher with two effects, 

math and reading, would be calculated as shown in Equation 11:  

𝐶𝑗 =
𝑛𝑟

𝑛𝑟+𝑛𝑚
(𝑢𝑟𝑗) +

𝑛𝑚

𝑛𝑟+𝑛𝑚
(𝑢𝑚𝑗), (11) 

where Cj is the composite, 𝑛𝑟 is the number of students in the reading sample, 𝑛𝑚 is the number 

of students in the math sample, and 𝑢𝑚𝑗  is the teacher effectiveness estimate for teacher j based 

on the math outcome, and 𝑢𝑟𝑗 is the teacher effectiveness estimate for teacher j based on the 

reading outcome.  
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The EVAAS example is of interest to this study because it provides the precedence of 

implementing a multivariate multilevel model to estimate teacher effectiveness. EVAAS also 

provides an example of how an effectiveness composite can be constructed. While the basic 

method of using the sample size is logical, alternative methods should be explored. Methods 

based on statistical properties of the measures, such as reliability and covariance structure, could 

lead to more accurate estimations of effectiveness and are worthy of exploration. There may be 

theoretical reasons for wanting a different structure of the composite. An outcome may have 

more perceived importance than another, so the aggregation method should allow for this to be 

reflected in the composite construction. This is proposed in more detail in the aggregation 

methods section. Aggregation methods is yet another example of the many choices to be made in 

value-added modeling that can lead to very different effectiveness estimates.  

Univariate versus multivariate modeling. The decision of separately or jointly modeling 

related outcomes is of great relevance to this study. First, the justification for implementing a 

more complex multivariate model over separate univariate models is warranted, particularly 

when the consumers of the VAM results are not typically statisticians. Univariate models are 

complex enough to the lay person and adding multiple outcomes and correlation structures is 

likely to reduce transparency even more. However, because modeling the outcomes separately is 

often inferred to mean that they are independent, the complexity of the multivariate model is 

warranted given that the outcomes are seldom independent of each other.  

Griffiths, Brown, and Smith (2003) examined the application of univariate and 

multivariate multilevel models for repeated measures, with the purpose of comparing the two 

modeling approaches. The researchers first applied a univariate three-level logistic regression 

model to empirical pregnancy-related data derived from mothers across time with multiple 
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pregnancies within primary sampling units. The model assumed that the probability of the use of 

antenatal care over successive pregnancies (limited to three pregnancies per mother) within 

primary sampling units were independent Bernoulli trials. So, the three levels of the model were 

pregnancy (the use of antenatal care or not) within mother within primary sampling unit. The 

model specified three outcomes, the use of antenatal care or not for each of the three 

pregnancies. Pregnancies of one mother, and more specifically the use of antenatal care, are 

likely not independent events, so the researchers hypothesized that applying a univariate 

approach would violate the independence assumption. To assess violation of the independence 

assumption, the model was run where the variation at the pregnancy-level, the binomial standard 

deviation, was constrained to one (the required binomial variation at the pregnancy-level) and 

then unconstrained (free to be estimated). If the estimated variance was significantly greater than 

one or less than one, the independence assumption was violated. If the estimated variance is 

greater than one, this implies overdispersion of the data at the pregnancy-level. If it is less than 

one, this implies underdispersion. The underdispersion suggests a strong correlation between the 

outcomes. The estimated variation indicated a problem with underdispersion in the model. The 

results displayed a severe violation of the independence assumption and found that the mother-

level residuals were significantly increased when the variance was not constrained at the 

pregnancy-level. The results displayed a relation between the outcome variable and the grouping 

variable, the mother, that was not explained through covariates or the inclusion of the mother-

level random effect. Next, they fit a multivariate multilevel model to the same data where the 

multiple outcomes were the use or not of antenatal care for each pregnancy. Equation 12 is the 

multivariate model. 
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𝑌𝑖𝑗𝑘 =  𝜋𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘𝑧𝑖𝑗𝑘, (12) 

where 𝑌𝑖𝑗𝑘 is the use of antenatal care or not with pregnancy i where i = 1, 2, 3. The probability 

of using antenatal care, 𝜋𝑖𝑗𝑘, depends on characteristics of the pregnancy, the mother, j, and the 

primary sampling unit, k. 𝑧𝑖𝑗𝑘 is the binomial standard deviation and 𝜀𝑖𝑗𝑘 is the pregnancy-level 

residuals.  

The pregnancy-level residuals have a covariance matrix of: 

 (

𝜎𝜀1

2

𝜎𝜀21

𝜎𝜀31

 𝜎𝜀2
2

𝜎𝜀32

 
𝜎𝜀3

2
), (13) 

where 𝜎𝜀21
= 𝜎𝜀32

 and  𝜎𝜀1
2 = 𝜎𝜀2

2  = 𝜎𝜀3
2 . There were incomplete cases where not all mothers had 

three outcomes, (three pregnancies). To address this issue, the error covariance for outcomes one 

and two was set equal to the error covariance for outcomes two and three. 

 As in the multivariate VAM model where there is a dependency among the multiple 

outcomes, this model allowed for the specification of the correlation between the pregnancies to 

mothers. The multivariate multilevel model corrected the violation of the independence 

assumption among pregnancies and the researchers saw no significant difference between the 

random parameter estimates, pregnancy-level variance and mother-level residuals’ variances, 

resulting from the models with constrained variance and non-constrained variance at the 

pregnancy-level. The multivariate multilevel model also allowed researchers to examine the 

relation between successive outcomes in a more flexible way than the univariate multilevel 

model, i.e. the relations between the use of antenatal care and the mother-level and pregnancy-

level covariates. This is analogous to the relation between the student outcomes in a VAM with 
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the student-level and teacher-level covariates. This study exemplifies the impact of applying 

univariate models to multivariate data and the advantage of employing the multivariate model.  

Baldwin, Imel, Braithwaite, and Atkins (2014) also investigated the application of 

multivariate multilevel models in comparison to univariate multilevel models; however, their 

purpose was not to compare the results for bias or error, but rather to bring awareness to the 

mismatch between study design and study analysis. The researchers noted that multivariate 

models have not been widely adopted in the psychotherapy research community; yet it is rare to 

find studies in the field that involve only one outcome. In a meta-analysis, they found only one 

study out of 60 where the multivariate design was examined with a multivariate model. The 

researchers claimed this model misspecification creates a disadvantage with regard to testing 

important theoretical questions that are best examined in the multivariate context. They argued 

for the use of multivariate models to examine hypotheses about the relations among the multiple 

outcomes, the correlations among the residuals and treatment effects across the outcomes. This is 

beneficial in VAM research as well where the relation between the outcomes and the covariates 

could be examined. The researchers illustrated their arguments with simulated longitudinal 

treatment data as they investigated hypotheses regarding fixed and random effects. To compare 

univariate and multivariate models, the researchers examined comparative model fit, specifically 

the deviance statistic associated with the models. The deviance of each separate univariate model 

can be summed and compared to the deviance of the multivariate model. A likelihood ratio test 

compares the difference between the deviances to a chi-square distribution with degrees of 

freedom equal to the difference in the number of parameters between the total of the univariate 

models and the multivariate model. This method for comparing the univariate and multivariate 

models was applied in this dissertation study.  
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The second consideration with how the model is specified concerns the covariance 

structure of the residuals. There is research, however limited, to show that the covariance 

calculated among residuals that result from separate univariate multilevel models will differ 

substantially from the covariance calculated from the residuals of the multivariate model 

(Leckie, 2018). In a study with empirical data, Leckie (2018) found that the set of school effects 

(residuals) for each school estimated from the multivariate model were shrunken toward the 

overall mean of the school effects. The covariance among the residuals associated with the 

independently modeled outcomes was smaller than the covariance among the residuals estimated 

with the multivariate model. This is of interest to this study because the covariance structure of 

the residuals informed the weights of the residuals in one of the effectiveness composites used in 

this study. If there is bias in the estimated covariance between residuals from the univariate 

models, this study provides further evidence and a rationale for implementing the more complex 

multivariate model over separate univariate models when an effectiveness composite is desired.   

Multivariate multilevel model assumptions. Assumptions for the multivariate multilevel 

model consist of the assumptions for the multilevel univariate model, regarding the distribution 

of the residuals as well as the relation between covariates and residuals, as described in detail in 

the section below.  

First, the multivariate multilevel model includes the assumption that the residuals of the 

continuous variables have multivariate normal distributions. The linearity assumption specifies 

that the outcome variables are a linear function of the covariates in the model. If the relations 

among the variables are truly not linear, a linear model will underestimate the strength of the 

relation or fail to find the existence of a relation. 
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Second, the residual at the student-level is expected to have no covariance with the 

covariates at the student-level, (𝐶𝑂𝑉(𝜀𝑖𝑗 ,  𝑋𝑖𝑗) =  0). And, like the residuals at the student-level, 

the residuals at the teacher-level are assumed to be unrelated to the covariates at the teacher-

level, (𝐶𝑂𝑉(𝑢𝑗 ,  𝑍𝑗) =  0).  

Third, the residual homoscedasticity assumption at the group-level of the model (level 

three) implies that the level two residual variance and the variance-covariance for the level three 

residuals is held constant across all groups at level three (Snijders & Berkhof, 2008). Violating 

the homoscedasticity assumption for level three residuals could result in incorrect hypothesis 

tests for the level three covariates and biased standard errors (Raudenbush & Bryk, 2002). That 

said, research has shown that the influence of heteroscedasticity on the level one variance and the 

standard error is minimal (Snijders & Bosker, 1992). Given the inconclusive research, it is 

strongly advocated to evaluate the homoscedasticity assumption and model it if 

heteroscedasticity is found (Korendijk, Maas, Moerbeek, & Van der Heijden, 2008).  

A guideline for the multivariate multilevel model involves the multiple outcomes selected 

for the model. The specified outcomes of the model are expected to be moderately correlated, not 

too high and not too low (Finch & French, 2013; Maxwell, 2001). If the correlation among the 

outcomes is too high, the model could be specified with only one of the outcomes, as the 

additional outcome brings little additional information. It would be statistically redundant to 

include too highly correlated variables (Thum, 1997). If there is no correlation among the 

outcomes, then the joint modeling is not necessary as the purpose of jointly modeling the 

outcomes is to account for the relation and its joint influence on the effectiveness estimates. 

Exactly what is too high and what is too low is difficult to define and existing research does not 

specify exact correlation values. Maxwell (2001) offered a rule of thumb, greater than 0.3 and 
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less than 0.7, but he offered no significant research-based evidence for the rule. Finch and French 

(2013) cited the dependent variable correlations of small = 0.2 and large = 0.8, and stated that 

these are consistent with prior research. 

To evaluate the adequacy of the application of the univariate and multivariate models, 

there are several comparative fit measures (Heck & Thomas, 2000; McCoach, 2010). Often, the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are employed to 

evaluate the comparative fit of non-nested models (Heck & Thomas, 2000). In this study, the set 

of univariate models is nested within the multivariate model, which jointly models the outcomes. 

In this case, the deviance was examined as in the Baldwin et al. (2014) study, described above.  

Achievement outcomes. The correlation between reading and math scores has been found 

to be quite high among standardized assessments as well as curriculum-based assessments. The 

Programme for International Assessment (PISA) consists of reading and math assessments given 

to a population of 15-year-old students from over 44 countries; the correlation between the 

reading and math scores was found to be .85 (PISA, 2012). In 2011, the International 

Association for the Evaluation of Educational Achievement combined PIRLS (reading) and 

TIMSS (math) databases, including fourth grade students responding to both instruments. Grilli 

et al. (2015) examined the correlation between the 2011 PIRLS reading and TIMSS math tests 

for Italy and found the correlation to be slightly smaller at .76. Additionally, Larwin (2010) 

examined the reading and math assessments from the Educational Longitudinal Study (ELS, 

2004) database for 10th graders and found the correlation to be .75. Larwin’s study provided 

evidence to conclude that a student’s reading score was a significant predictor of the student’s 

math score. The Stanford Achievement Test claims a correlation of about .70 between its reading 

and math tests (Pearson, 2014).  However, the findings from Villa (2008) support a smaller 
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correlation, .49, based on scores he examined from Stanford’s math problem solving subtest and 

reading skills for a small sample (n=58) of students between sixth and eleventh grade. To 

summarize, researchers have found evidence that there is a substantial correlation between 

students’ standardized assessment-based reading and math scores. The standardized assessments’ 

correlations range from .49 to .85. There is no shortage of evidence to conclude that math 

performance and reading performance are strongly related.  When examined in the VAM 

context, the relation of the effectiveness estimates based on these different subjects is the 

correlation of interest.   

Some researchers (Fox, 2016; Goldhaber, Cowan, & Walch, 2012; Lefgren & Sims, 

2012) have theorized that elementary school teachers, who teach all subjects, could be more 

capable of raising achievement in one subject over another. These researchers suggested that by 

incorporating multiple subjects into the VAM, inferences made from the effectiveness estimates 

are more valid. Fox (2016) presented research that concluded that teachers who are good at 

teaching in one subject are generally as good at teaching another. Fox estimated the teacher 

value-added scores for reading and math separately and found a correlation of .70 between the 

results. Koedel and Betts (2007) also estimated the value-added scores for teachers across two 

subjects using the Stanford 9 reading and math assessments. The researchers presented a lower 

and upper bound of correlations between the two sets of value-added scores from .35 to .64, 

resulting in the same conclusion as Fox (2016) that the ability to be an effective teacher is not 

strongly subject-specific. Lefgren and Sims (2012) posed the hypothesis that it is unlikely that 

the value-added score from each specific subject is equally informative about overall teacher 

effectiveness. They examined a gain score OLS regression model to determine if including both 

reading and math in the equation improved the predictive power of the value-added model. They 
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modeled the teacher’s value-added score for math as the outcome conditioned on the gain score 

for math and the gain score for reading. Contrary to the previous findings, the results showed that 

while math was a stronger predictor of future overall teaching ability than reading, the two 

subjects together were even stronger by over 25%. They found that incorporating both subjects 

in the model increased the precision of teacher value-added across a composite average of the 

subjects. Goldhaber and associates (2012) examined the same dataset from North Carolina as 

Lefgren and Sims (2012) but found contradictory results. Goldhaber et al. (2012) corrected the 

estimates for sampling error and produced correlations between value-added estimates based on 

math and reading scores within the same year of 0.8 to 0.9. They used the effectiveness estimates 

to place teachers within a quintile and found that 75% of the teachers were in the same or 

adjacent quintile across subjects. They concluded that teachers who were determined to be 

effective in one subject were as effective in the other. However, the results also suggest that 25% 

of the teachers are inconsistently classified, depending on which subject is used as the basis for 

the value-added score. With some evaluation systems placing high stakes decisions on the value-

added scores, potentially negatively impacting 25% of the teachers is significant and justifies 

further examination into the topic. 

Findings from Fox (2016), Goldhaber et al. (2012), and Koedel and Betts (2007) could 

suggest that a single achievement measure is sufficient; however, the variability among value-

added scores across subjects in other studies suggests otherwise (Lefgren & Sims, 2012; 

Lockwood et al., 2007; Papay, 2010; Rose et al., 2012). There is enough conflicting evidence to 

justify further investigation into the influence of subject on VAM. One focus of this study is on 

jointly modeling two achievement outcomes and a non-achievement outcome. The correlation 

between the two achievement outcomes, reading and math, and between the achievement and 
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non-achievement outcomes, was simulated to examine the influence of these relations on the 

effectiveness estimates. Previous research suggests that the achievement outcomes strongly 

correlate and the resulting effectiveness estimates strongly correlate. This study contributes new 

evidence to the study of the influence of choice and modeling of outcomes in the value-added 

context. 

Non-cognitive outcomes. The discussion above was about achievement outcomes, but 

non-cognitive outcomes can be used in VAM as well. Other outcomes of teacher effectiveness 

could include, for example, student motivation, satisfaction and engagement. Chickering and 

Gamson (1997) present seven principles of effective education models, one of which is 

engagement. If their effective education model is valid, then the addition of an engagement 

indicator in the value-added model as an outcome could increase the utility of the modeling for 

student improvement. As an outcome, student engagement provides an indicator of student 

success much like student achievement. Researchers propose that engagement and achievement 

are positively correlated and both desired outcomes of an effective education model (Korobova 

& Starobin, 2015). Research also highlights a positive correlation of motivation to academic 

performance. It is theorized that a teacher could influence a student’s motivation, but increased 

motivation is not enough to guarantee increased academic achievement; however, student 

motivation has been linked to successful outcomes in the long-run (Jackson, 2012). Teachers 

should be recognized for their ability to positively influence student motivation. This makes 

motivation a good example in the discussion of the use of a non-cognitive outcome in VAM. 

Adding outcome variables that correlate to the effective teaching principles can add validity to 

the value-added model because then the teacher is not just rated on one measure, it is a 
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compilation of measures that should all correlate to theoretical teacher effectiveness. This 

simulation employed motivation as an example of a non-cognitive outcome.  

Collins, Hanges, and Locke (2004) conducted a meta-analysis of 28 studies examining 

the relation between student motivation and academic performance. They coded the studies as 

known group studies when the researchers’ unit of analysis was a group of students and as 

individual when the researchers’ unit of analysis was the individual student. The mean 

correlation between student motivation and academic performance was .46 among known group 

studies (n = 20) and .18 among individual studies (n=8); the difference between the mean 

correlations from these two types of studies was statistically significant. This indicates that the 

correlation between motivation and academic performance could depend on how the data are 

modeled, either as aggregate data or as independent data. This dissertation study models the 

correlation between academic performance and motivation at the student level. The study by 

Collins, Hanges and Locke (2004) provides guidance on the values to use in the simulation. As 

previously stated, the specific non-cognitive and cognitive outcomes selected in this study are 

not a focus. The focus is on the ability to model multiple outcomes with varying relations to 

produce an aggregated effectiveness estimate constructed from either theory-based or statistical-

based weighted components, that is, the teacher-level residuals from each of the outcomes. 

Aggregated Effectiveness Estimates 

As discussed, the multivariate model produces multiple sets of effectiveness estimates, 

one for each outcome. Previous studies evaluated the effectiveness of teachers separately for 

each set of estimates, without attempting to combine sets into one indicator of effectiveness 

(Lockwood et al., 2007; Ma, 2001). However, when multiple sets of estimates create contrasting 

rankings or groupings of teachers, it is logical to develop a composite of the estimates to produce 
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one effectiveness measure on which to rank or group teachers. This study examined possible 

methods of aggregating the estimates.  

OECD (2008) suggests considering the following criteria when determining the 

aggregation method: 

▪ Intensity of preference for indicators 

▪ Weighting method 

▪ Desired amount of compensability 

▪ Relation of each indicator to all other indicators 

▪ Relation of each grouping unit to all other grouping units 

These criteria suggest that the researcher should have a solid theory of the relations among and 

between the teacher effectiveness estimates derived from various outcomes and the teachers and 

the ranking thereof. Many state educator evaluation systems have formed evaluation models of 

weighted components, such as effectiveness rankings and observation ratings, based on a theory 

of relative importance. 

The OECD (2008) handbook on constructing composite indicators stated that the most 

common method of aggregating indicators is equal weighting, where all the variables are given 

the same weight. In the case of aggregating multiple effectiveness estimates into one indicator of 

teacher quality, it is theoretically justified to assume that the informative value of estimates 

yielded from one outcome would be higher than estimates from another. For example, suppose 

the model relies on two outcomes, student achievement and student satisfaction. The researcher 

could justifiably assume that achievement is more objective than student satisfaction, which was 

derived from end of course evaluations with questionable reliability, and should be a larger 

component of the teacher overall effectiveness indicator (Hendrickson, Patterson, & Ewing, 
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2010; Kane & Case, 2003). This idea of using the reliability of the indicators to inform the 

composition of an aggregated variable is a potential method for combining the multiple sets of 

residuals produced from the multivariate multilevel value-added model (Cunningham, Fina, 

Adams, & Welch, 2011; OECD, 2008; Rudner, 2001). Rudner (2001) presented a model where 

the composite weights are a function of the reliability and validity of the composite. He went on 

to show that the validity increases with more reliable indicators receiving a higher weight, up to 

a point, and then the validity begins to decrease. Kane and Case (2003) supported this claim and 

cautioned that weighting the more reliable indicators in a composite too highly can harm the 

validity of the composite. Researchers need to examine the composite consistency after 

weighting based on reliability to ensure the composition is realistic and an indicator of what it 

was intended to measure. At some point, if the more reliable variable(s) are weighted too 

heavily, the less reliable variables have little meaning in the composite, thus defeating the 

purpose of aggregating all of them into one composite. This study applied a simple reliability 

weighting, where the standardized value of the teacher effectiveness estimate is weighted by the 

reliability of the instrument used to measure the respective estimate. After each teacher 

effectiveness estimate for each outcome is weighted, the weighted estimates are added to form a 

composite effectiveness estimate for each teacher.  

𝐶𝑂𝑗 =  ∑ 𝜌𝑑𝑢𝑑𝑗, (14) 

where 𝐶𝑂𝑗 is the effectiveness composite for teacher j and 𝜌𝑑  is the reliability coefficient of the 

instrument used to measure the outcome, d. 

Burns and Clemen (1993) presented covariance structure models as a multivariate 

procedure that involves observable and unobservable variables, where the unobserved variables 

are measured by the observed variables. This is analogous to the effectiveness composite concept 
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where an unobserved effectiveness composite is constructed from the observed effectiveness 

estimates. The researchers proposed the use of the covariance structure of the observed variables 

to create and analyze linear combinations to serve as composite indices of the corresponding 

unobserved variable of interest. Burns and Clemen (1993) illustrated the method with empirical 

data based on the risk associated with transporting hazardous materials. The general composite 

equation is that the unobserved variable is equal to the sum of observed variables each weighted 

by its respective contribution to the estimated variation of the unobserved variable. The 

researchers used the observed variables’ regression coefficients calculated in the multivariate 

model as weights in the composite construction. This example is not directly related to value-

added modeling or teacher effectiveness models where the residuals are the outcome of interest, 

but it is a good example of how the covariance structure of observed variables is used to 

construct a composite variable. Struppeck (2014) presented an example from actuarial science 

where multiple loss estimates were combined to obtain one estimate of loss. The procedure 

weighted the estimates by multiplying the estimates by the variance-covariance matrix. The 

weighted estimates were then summed to obtain the composite. The composite construction in 

this study considered the relative precision of the observed variables and the extent to which they 

were correlated among themselves. These considerations could be extended to the multivariate 

multilevel random effects model where the covariance structure of the random effects (residuals) 

informs the construction of the composite.  

Applying this model to the teacher effectiveness context yields Equation 15, where 𝒖𝒋 is 

a 1×D vector of the teacher effectiveness estimates for teacher j for a given set of outcome 

variables and 𝚻 is the D×D variance-covariance matrix for the teacher-level residuals and the 

vector 1 is D×1.  
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𝐶𝑂𝑗 = (𝒖𝒋 ×  𝚻) (𝟏) (15) 

The effectiveness composite, 𝐶𝑂𝑗, is the sum of the elements in the resulting 1×D product matrix 

of 𝒖𝒋 ×  𝚻. This is the basis for one of the aggregation methods employed in the dissertation 

study. Another logical method for weighting indicators of a composite is based on the indicator’s 

theoretical importance relative to the other indicators. Rothstein (2000) debated the process of 

determining weights based on importance in composites of school effectiveness. Rothstein was 

part of the effort of the Educator Preparation Institute (EPI) to assess teacher preparation 

institutions based on a composite of how each institution met the three goals of EPI (EPI, 2014). 

The three goals focused on an assessment of the teachers from the institutions in these areas: 

content knowledge, satisfaction and perception survey data, and the value-added rating scores. 

The weighting of each of the metrics for the goals into one institution effectiveness composite 

was based on an expert-determined importance of each goal. Generally, the proportion of the 

metric in the composite was highest for goal one (the teachers’ knowledge assessment), less for 

goal two (satisfaction and perception data) and lowest for goal three (value-added rating score). 

The general equation for a composite weighted by varying degrees of importance is 

𝐶𝑂𝑗 =  ∑ (𝑤𝑑𝑢𝑑𝑗)𝐷
𝑑=1 , (16) 

where the weight, 𝑤𝑑 , is given a value that corresponds to the relative importance of the 

associated outcome.   

Rothstein (2000) stressed the importance of clearly articulating the weights of the 

indicators and suggested stakeholders could use the indicators from EPI to apply their own 

weights based on their own theory of relative importance to determine composites. This is an 

example of a participatory aggregation method to construct a composite. For demonstration 
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purposes, this method was included in this study. Using the example from above, this method 

assumes that a lack of effectiveness based on the satisfaction rating can be compensated for by 

higher effectiveness based on the achievement outcome.  

This study not only examined four methods for aggregating variables into a composite, 

but also examined the difference in results when the residuals are a product of the multivariate 

multilevel model and separate univariate models. To summarize, the four aggregation methods 

are simple linear summation with equal weights, weights based on reliability, weights based on 

the covariance structure of the residuals, and weights based on the relative importance of the 

outcomes that are aligned to the residuals. This dissertation hypothesized that calculating the 

composite from residuals produced from the multivariate multilevel model, independent of the 

aggregation method, differ from calculating the composite from residuals resulting from separate 

univariate multilevel models. As previous empirical research by Leckie (2018) showed, the 

relation among the multivariate model residuals estimates were more highly correlated than the 

estimates from the independent outcomes models, this study expected the same. The estimated 

residuals from the separate univariate models were expected to have more bias than the estimated 

residuals from the multivariate model because the univariate models ignored the dependency 

among the data.  

It seems logical to explore the two categories of methods for aggregating effectiveness 

estimates, participatory and statistical methods, to highlight the consequences of selecting one 

method over the other. The public opinion/ relative importance method appears to be a justified 

choice based on the applied methods discussed above for constructing an overall teacher rating in 

the state evaluation systems. This study examined the reliability of the measures for the 

outcomes to provide component weights for each resulting set of effectiveness estimates. The 
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underlying covariance structure of the residuals was used to provide weights for the estimates in 

the composite as well. This examination also provides evidence of the bias when modeling 

related outcomes in separate univariate multilevel models as opposed to jointly modeling them 

with a multivariate multilevel model. These methods appear as viable options for combining sets 

of teacher effectiveness estimates. In addition to the impact of the aggregation method, sample 

size likely influences VAM results. 

Sample size for VAM. The impact that class size has on teacher effectiveness has been an 

area of educational research for decades. Class size research with specific reference to VAM can 

be found in the K-12 sector with mixed findings (Lipscomb, Teh, Gill, Chiang, & Owens, 2010; 

McCaffrey et al., 2003; Wright, Horn, & Sanders, 1997). Wright and associates (1997) did not 

find evidence to support the claim that class size has an effect on the teacher effectiveness 

estimate. Lefgren and Sims (2012) included class size in the weighting of multiple subjects in a 

gain-score OLS regression model. They found that including weights for the class size for each 

teacher had no significant effect on the resulting value-added scores. Incorporating class size in 

the model did not improve the predictive power, mostly because there was low variance for class 

size in the dataset. McCaffrey et al. (2003) concluded that class size does influence the 

variability in the effectiveness estimate for an individual teacher due to sampling error. They 

found that the teachers with the largest classes (20 – 32 students) had less variability in their 

teacher effectiveness estimates than teachers with the smaller classes (10 – 19 students). Among 

the K-12 research literature is a study on the growth model used by Pittsburgh Public Schools to 

estimate teacher effectiveness. In the growth model, Lipscomb et al. (2010) included student 

characteristics such as race, gender and up to three years of achievement data. The researchers 

ran variations of the VAMs to compare the effectiveness estimates. Class size was one of the 
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control variables that the researchers examined. They found that the teachers with smaller 

classes, and therefore less precise estimates, will be overrepresented at the high and low ends of 

the estimated performance distribution. Overall, the research is inconclusive on what the 

standards for class size are explicitly. There are two related questions with regard to class size: 

(1) What affect does class size have on a teacher’s ability to impact student achievement (or 

other outcomes of interest)? and (2) What is the smallest class size that can be used to make 

effectiveness estimates? The sample size must be large enough to provide stable and accurate 

effectiveness estimates, especially when used to make personnel decisions or judgments of 

teacher quality.  

The latter question is examined below, followed by a discussion of the sample size 

guidelines with respect to multivariate multilevel models. Some of the state accountability 

models have specified a minimum number of students per teacher required before a value-added 

estimate can be calculated. It varies, with no concrete evidence of an optimal minimum number, 

from five (Harris & Sass, 2009) to 20 students (Koedel & Betts, 2010).   

Multivariate and multilevel modeling research provides guidance on the question of how 

many teachers and students the study must include overall. The effect from the violation of the 

independence assumption is likely impacted by the sample size. Previous research on 

assumptions and sample size suggest that the estimates will be more robust, less biased, under 

assumption violations when the sample size is relatively larger (Maas & Hox, 2005). An 

important examination in this study attempted to determine the relation of class size and bias in 

estimates of teacher effectiveness and how it differs across the univariate models and the 

multivariate model. 
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According to Maas and Hox (2005), for multilevel models, it is evident that estimates and 

standard errors are more accurate as the sample sizes at all levels are increased. Maas and Hox 

cited the ‘30/30 rule’ offered by Kreft (1996) which suggests a sample of at least 30 groups with 

at least 30 subjects per group. Maas and Hox went on to suggest that this rule is best when the 

interest is in the fixed parameters. When the interest is in the residuals, Maas and Hox (2005) 

suggest greatly increasing the number of groups and subjects per group to a ‘100/10 rule.’ Maas 

and Hox (2005) further provided evidence to support this suggestion in a school effectiveness 

simulation study using a two-level model. The researchers showed that only a small sample size 

at level two, of 50 or less, resulted in biased estimates of the level two standard errors of the 

residuals (Maas & Hox, 2005). Simulations of larger sample sizes at level two resulted in no 

significant effects on the estimates of standard errors, regression coefficients, or variance 

components. Maas and Hox (2005) also varied the intraclass correlation of the groups and found 

no significant effects from the manipulation. Snijders (2005) suggested that if the focus of study 

is on the effect of the level one variable, then the level one sample size is of greatest importance. 

In this study, the level of interest is the grouping-level: level three. Therefore, a focus of this 

study was on the sample size of the teachers.  

Summary 

In summary, VAM presents opportunities and challenges for improving education. 

Hopefully, by assessing students and identifying effective teachers, best instructional practices 

can be determined and shared. Incorporating multiple outcomes in the VAM adds more 

information on which to base the effectiveness estimate when compared to single outcome 

models; therefore, this study focused on the multivariate multilevel model to investigate the use 

of multiple outcomes and to address the hierarchical nature of the data. There is a challenge with 
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the multivariate multilevel model’s resulting multiple effectiveness estimates across teachers. 

Theoretically, teachers could be ranked differently depending on which outcome’s residuals are 

examined. This study proposed a composite of the effectiveness estimates for each teacher. 

However, the literature points out that there are a variety of potential methods for aggregating 

estimates and the selected method likely has a significant impact on the teacher rating. The 

background research for this study has resulted in four research questions.  

Research Questions 

The research questions examined in this study are:  

1) Does the use of univariate or multivariate models result in different levels of bias in 

estimated group- (teacher-) level residuals?  

2) Does the use of univariate or multivariate models result in different levels of model fit?  

3) In terms of teacher ranking, what is the influence of constructing teacher effectiveness 

composites with equal weight, weight by theory, weight by reliability, and weight by residual 

covariance structure aggregation methods?  

4) What is the influence of the combinations of small, medium and large-sized teacher 

groups with small and average-sized student groups on teacher effectiveness estimates? 

The next chapter of this study presents the methods for a Monte Carlo simulation that 

evaluated these research questions.  
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Chapter 3: Methods 

This chapter discusses the methods used to conduct the Monte Carlo simulation and to 

evaluate the results in order to draw conclusions about the research questions posed above. The 

first section of this chapter presents the simulation design including the empirical research upon 

which simulation parameter values were based. The second section discusses the conditions and 

manipulated factors. The third section presents the sequence of simulation steps including data 

generation and the procedures for checking the quality of the data generation. The fourth section 

presents the statistical analyses applied to examine and compare the estimates, including model 

fit, absolute bias of teacher-level residuals and the ranking of teachers based on the composite 

effectiveness estimates.  

Simulation Design 

 The multivariate multilevel model was used to generate the outcomes data. As is common 

in educational research, the multilevel model was used due to the nested nature of the data. In 

this study, the outcomes are nested within students, which are nested within teachers. The 

multivariate model allows for the joint specification of multiple outcomes. Each of the outcomes 

produces a set of residuals for each teacher. These residuals are the teacher effectiveness 

estimates. In this study, the three-level multivariate multilevel model does not include covariates 

at either the student- or teacher-level. The influence of covariates on the estimation of residuals 

is outside the scope of this study.  

This section presents the values for generating the data used in the simulation. For 

demonstration, three outcomes were modeled, two achievement-related outcomes and one non-

cognitive outcome. As is common in value-added modeling research, the two achievement 

outcomes are assumed measured with a standardized math test and a standardized reading test 
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(Fox, 2016; Goldhaber, Cowan, & Walch, 2012; Lefgren & Sims, 2012; Lockwood et al., 2007; 

Papay, 2010; Rose, Henry, & Lauen, 2012). These two subject areas are the most commonly 

studied subjects in the K-12 research because standardized testing in these areas is required 

across the U.S., per RTTT (USDE, 2009). This study explored the reliability of each for use in 

constructing the effectiveness composite. Lockwood et al. (2007) incorporated the Stanford 9 

standardized achievement test in the VAM study of multiple math measures. Papay’s (2010) 

follow-up study incorporated the Stanford 9 reading sub-tests. This standardized achievement 

test has been in use for decades and Pearson provides reliability estimates which can be used in 

the weighting of the components in the effectiveness composite. This study used reliability 

indices and parameters from the Stanford 10 math and reading achievement tests.  Statistics 

Solutions (2016) cites the reliability for the Stanford 10 math section between .80 and .87 (an 

average of .84 was employed in this simulation) and the reliability for the reading section .87. 

The correlation between the Stanford reading and math achievement tests was found to be about 

.70 (Pearson, 2014). These values were used in the baseline data generation model.  

As discussed in the literature review, Collins et al. (2004) calculated a correlation 

between student motivation and academic performance of .18 among individual studies (n=8). 

They found a larger correlation between motivation and performance among known group 

studies (.48, n=20). Because motivation was assumed to be measured for each student in this 

study, the correlation from the individual studies (.18) was used to inform the correlation 

between the cognitive and non-cognitive outcomes, academic achievement and motivation, at the 

student-level in the baseline data generation model. The reliability of the motivation measure 

was also needed to inform the weighting of the effectiveness estimates in the teacher 

effectiveness composite. As discussed in the literature review, Fredricks and McColskey (2012) 
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evaluated 11 self-report measures and proposed the guideline that reliabilities above .70 are 

acceptable for motivation measures.  Following this review, this study assumed .70 as the 

reliability for the student motivation measure for use in the weighting of the effectiveness 

estimates in the composite. 

 The specification of relevant covariates influences the independence between the 

residuals of the outcomes and the covariates. Omitting a relevant covariate can falsely attribute 

effects to the variables that are present in the model. Based on a review of VAM research, 

common student-level covariates are SES and prior achievement. Lockwood et al. (2007) 

incorporated these as well as gender, age, race, English proficiency and special education status 

in an empirical study to examine the influence of covariates on teacher effectiveness estimates. 

The study included four VAM, the gain score model, the covariate adjustment model, the 

complete persistence model and the variable persistence model and applied the models 

[separately] with two different math-related outcomes. The researchers applied five different 

covariate configurations in all four VAM, for each of the two outcomes. For all four models, the 

average correlation for the effectiveness estimates ranged from .92 to .98 across both outcomes. 

The results did show a slightly greater sensitivity to the inclusion of covariates at the teacher 

level compared to the student level, but the correlations were still very high. The researchers 

found the effectiveness estimates to be robust to the exclusion of these variables in the model. 

This suggests the added model complexity of including covariates does not influence the 

effectiveness estimates, thus was not justified. No teacher-level covariates were modeled as it is 

theorized that teacher characteristics are what makes the teacher effective and controlling for 

these would result in an underestimated effectiveness estimate. The data generation correlations 

between the student-level outcomes are presented in Table 1.  
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Table 1 

Correlations Between Outcomes  

Variable Math Reading Motivation 

Math 1 .7 .18 

Reading  1 .18 

Motivation   1 

 

 The multivariate multilevel equation (in its combined form) used to simulate the 

outcomes data was: 

𝑌ℎ𝑖𝑗 = ∑ 𝛾𝑑00𝐴ℎ𝑑𝑖𝑗
𝐷
𝑑=1 + ∑ 𝜀𝑑𝑖𝑗𝐴ℎ𝑑𝑖𝑗

𝐷
𝑑=1 + ∑ 𝑢𝑑𝑗𝐴ℎ𝑑𝑖𝑗

𝐷
𝑑=1 , (17) 

where 𝐴ℎ𝑑𝑖𝑗 is a dummy variable used to distinguish the outcomes, 𝑌ℎ𝑖𝑗 is the outcome h 

of student i within teacher j ( d = 1, …, D; i = 1,…, Ni ;  j = 1,…, n), D is the number of 

outcomes, (when h = d, the dummy variable is ‘on,’ equal to 1; when h ≠ d, the dummy variable 

is ‘off,’ equal to 0), Ni is the number of students for teacher j, and n is the number of teachers. 

For each teacher j, there is a vector of the residuals, 𝒖𝒋 = (𝑢1𝑗 , … , 𝑢𝑑𝑗). The vector of student-

level residuals is 𝜺𝑖𝑗 = (𝜀1𝑖𝑗 … 𝜀𝑑𝑖𝑗). The intercepts, ,  are the grand means of the outcomes.  

The population covariance at the teacher-level was:  

Table 2 

Covariance of Teacher-level Residuals  

Variable Math Reading Motivation 

Math .25 .175 .0225 

Reading  .25 .0225 

Motivation   .0625 
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The population covariance at the student-level was:  

Table 3 

Covariance of Student-level Residuals 

Variable Math Reading Motivation 

Math 1 .2 .0225 

Reading  1 .0225 

Motivation   1 

 

Simulation conditions. This simulation is a within-cell and between-cell factor design 

where the four aggregation methods were applied to the results of the univariate and multivariate 

models for each of the six sample size combinations. Table 4 summarizes the factors that were 

involved in this design of six between-cell conditions and eight within-cell methods of obtaining 

teacher effectiveness composites. 

Table 4 

Study Design and Factors 

 

 

Sample Size 

 Students per teacher (N) 

 Small  
10 

 Average 
22 

 Teachers (N) 
 Composite Method 15 220 500  15 220 500 

Univariate 

model 

Equal weights (Ew) Ew: 𝐶𝑂𝑗 =  (1 × 𝑢1𝑗) +  (1 × 𝑢2𝑗) +  (1 × 𝑢3𝑗)  

Rb: 𝐶𝑂𝑗 =  (. 87 ×  𝑢1𝑗) +  (. 84 × 𝑢2𝑗) +  (. 70 × 𝑢3𝑗) 

Cb: 𝐶𝑂𝑗 =  (𝒖𝑗  ×  𝚻) (𝟏) 

Tb: 𝐶𝑂𝑗 =  (1 × 𝑢1𝑗) +  (1 × 𝑢2𝑗) +  (. 5 × 𝑢3𝑗) 

Reliability-based (Rb) 

Covariance-based (RC) 

Theory-based (Tb) 

Multivariate 

model 

Equal weights 

Theory-based 

Covariance-based 

Reliability-based 

 

First, these categories are described, followed by a detailed account of the values for the 

factors and levels within each category. There are two samples to consider in the study: teachers 
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and students per teacher. Multilevel modeling literature provides general guidance on the number 

of groups and the number of observations per group for accurate estimation. The second category 

of factors involves the aggregation method used to combine the teacher effectiveness estimates 

for each of the outcomes. The approaches include participatory (theory-based, equal weighting) 

and statistical (reliability-based, covariance structure-based).  

Sample size.  Investigating the advice of multilevel researchers (Goldstein, 1999; Heck & 

Thomas, 2000; Hox, 2005; Snijders, 2005) and VAM researchers (McCaffrey et al., 2004), this 

study examined the influence of sample size with conditions based on combinations of the 

number of teachers and ratio of students per teacher. The baseline data were generated on the 

assumption that the average class size is 22 students. This was contrasted with a small class 

which was defined as 10 students. Ten is the minimum number of students required for the 

TVAAS to provide teacher reporting (SAS, 2016). Following multilevel recommended 

guidelines of group to unit of analysis ratio of 100/10, the initial teacher sample size was 220. To 

contrast this, the small sample of teachers, 15, is less than the recommendation by Maas and Hox 

(2005) of at least 50 and less than the recommended ratio, 100/10. A third teacher sample size of 

500 was also employed to examine the use of a large sample, more than twice the recommended 

ratio. The number of teachers in the VAM sample had three levels, small = 15 teachers, medium 

= 220 teachers, and large = 500 teachers.  

Aggregation method. The VAM and multivariate research is limited regarding methods 

for combining residuals. In other fields of study, there are common methods for weighting and 

aggregating variables to form composites. These most common methods were simulated in this 

study. These include equal weights, weights based on reliability, weights based on the residual 

covariance structure, and weights based on a theory of perceived outcome importance. The equal 



 

 

 

48 

 

 

weights method assigned equal weights to each teacher effectiveness estimate and then summed 

them to form the overall teacher effectiveness composite. The second method gave more weight 

to the indicators from more reliable sources, using the reliability coefficient as the weight. 

Previous empirical research was examined to inform the reliability of the math and reading 

assessments and the motivation measure. The reliability of the Stanford 10 reading test is .87 and 

the math test is .84 (Statistics Solutions, 2016). Based on a review of the literature, the reliability 

of the motivation measure was set at .70 (Fredricks & McColskey, 2012). The covariance 

structure-based method refers to the structure of teacher-level residuals, also known as the 

teacher effects. This method was of particular interest when comparing the separate multilevel 

model results to the multivariate multilevel model results. The final method is referred to as 

participatory and is based on perceived importance of type of outcome. Based on a theory, a 

higher proportion was applied to each of the sets of estimates from the achievement outcomes. 

The two cognitive and one non-cognitive outcomes were given weights of 1, 1, and .5 to place 

more importance on the cognitive outcomes.  

Replications. The number of replications used in this study was determined by examining 

two parameters, the mean bias of the MM reading residual and the mean bias of UM reading 

residual. In general, smaller sample size usually leads to less stable parameter estimates. 

Therefore, the small teacher sample size and small student sample size data set was used for this 

analysis. Figure 1 below shows that the mean values appear to stabilize around 300 replications. 

Around 900 replications, the values are fairly constant. This study ran all analyses for 1000 

replications.  



 

 

 

49 

 

 

 

Figure 1. Average MM reading residual bias and average UM reading bias by replication for the 

sample where nj=10, J=15.  

Simulation Procedures 

The sequence of simulation procedures is as follows:  

A. Dataset Generation 

a. To simulate the residuals associated with each outcome for the student-level 

and the teacher-level, two sets of three variables were generated. It was 

assumed the mean of each residual variable was zero. The variances of teacher 

residuals associated with the math and reading outcomes were set to be the 

same. As in several previous related simulation studies, the variance of the 

student-level residuals, 𝜎2, was fixed at 1 (Coleman, Hoffer & Kilgore, 1982; 

Donoghue & Jenkins, 1992).  

b. The grand mean of each outcome was specified. The values were standardized 

to account for the difference in the scales used for the achievement outcomes 
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and the non-cognitive outcome, motivation. The grand means were 50, 50 and 

30, respectively.  

c. The outcome scores, 𝑌ℎ𝑖𝑗, were generated from the grand mean, 𝛾𝑜𝑜, plus the 

student-level residual, 𝜀𝑑𝑖𝑗, and the teacher-level residual, 𝑢𝑑𝑗.  

B. Data Generation Check 

a.  Descriptive statistics were calculated for the outcomes, teacher residuals and 

student residuals of the largest generated dataset. These statistics were 

compared to the known values used in the data generation code. 

b. The distributions of the residuals were examined for normality. 

c. The correlation matrix between the teacher-level residuals was calculated and 

compared to the correlation matrix used in the data generation code.  

C. Estimating effectiveness from models 

a. SAS was used to analyze the data. Code for one sample size condition is in the 

Appendix.    

i. The PROC MIXED command was used to apply the univariate and 

multivariate models to the datasets. Refer to Equations 3 and 8. 

ii. The student-level and teacher-level residuals were saved.  

iii. Restricted Maximum Likelihood (REML) estimation method was 

employed. REML estimation was selected over Maximum likelihood 

(ML) estimation because REML optimizes the likelihood of the full 

residuals as opposed to the observations directly. REML partials out 

the fixed effects and maximizes the portion which is free of fixed 

effects (Harville, 1977). ML estimates are unbiased for the variance 
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components of the fixed effects, but biased for the variance 

components of the random effects, whereas REML is the opposite, 

biased for the variance components of the fixed effects and unbiased 

for the variance components of the random effects (Swallow & 

Monahan, 1984; Wu, Gumpertz & Boos, 2001). The difference 

between estimation methods is often more pronounced in small 

samples. Since the random effects (residuals) are the focus of this 

study, REML was selected. 

iv. In the cases where the analysis yielded a non-positive definite G 

matrix, the cases were removed from the dataset. This resulted in 

smaller datasets, < 1000 replications, for the two samples with the 

small teacher sample size condition. This design decision has potential 

implications for the results as discussed later in the paper.  

D. Comparing the results 

a. To assess research question one, I calculated the absolute bias, 𝐵𝑖𝑎𝑠(𝑢𝑑𝑗), for 

the teacher effectiveness estimates from the univariate and multivariate 

models within each set of conditions. This evaluated the question of the 

impact of applying univariate models to multivariate data. Let 𝑢𝑑𝑗 be the 

value of the teacher effectiveness estimate for outcome d for teacher j. The 

absolute bias measures the difference between the ‘true’ value (the data 

generation values) and the estimated value, 𝑢̂𝑑𝑗. Absolute bias was employed 

rather than relative and actual bias because the estimated effectiveness value 
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can be less than or greater than the ‘true’ value. The focus is on how much the 

estimate differs from truth, not the direction of the difference.  

𝐵𝑖𝑎𝑠(𝑢𝑑𝑗) =  
∑|𝑢𝑑𝑗 − 𝑢̂𝑑𝑗|

𝑁
 (18) 

The difference between the true effectiveness and the estimated effectiveness 

was summed for all teachers for each outcome. The sum was then divided by 

the number of teachers in the sample, N. I compared the absolute bias for the 

teacher effectiveness estimates for each outcome, within each sample size 

combination. An average absolute bias value was calculated across the 

replications, R, where r = 1, ..., 1000. 

𝐴𝑉𝐸𝑅𝐴𝐺𝐸 𝑜𝑓 𝐵𝑖𝑎𝑠(𝑢𝑑𝑗) =  
∑ 𝐵𝑖𝑎𝑠(𝑢𝑑𝑗)

𝑟

𝑅
𝑟=1

1000
 (19) 

 

b. To assess research question two, the likelihood ratio test (LRT) compared the 

difference between the deviances (De) of the models to a chi-square 

distribution with a degrees of freedom equal to the difference in the number of 

parameters between models. Deviance describes the difference between the 

specified model and the best possible, i.e. saturated, model. In general, models 

with lower deviance indicate better fit than models with higher deviance. The 

univariate models were nested within the multivariate model because the 

univariate models use the same data and are constrained versions of the 

multivariate model (the correlation between outcomes is assumed to be zero). 

When models are nested, as is the case with independent univariate models 

and the associated multivariate model, the deviance measures can be 
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compared using the chi-square difference test, i.e. likelihood ratio test (Hox, 

2002). The combined deviance (𝐷𝑒𝑢𝑚) of the univariate multilevel models 

was compared to the deviance of the multivariate model 𝐷𝑒𝑚𝑚 (Baldwin et 

al., 2014). 

𝜒2(𝑑𝑓𝑢𝑚 − 𝑑𝑓𝑚𝑚) =  𝐷𝑒𝑢𝑚 − 𝐷𝑒𝑚𝑚 (20) 

 

A significant likelihood ratio test indicates if the multivariate model is a better 

fit to the data than the separate univariate models. The degrees of freedom for 

the chi-square test is equal to the difference in the number of parameters 

between models (where the set of independent univariate models is considered 

one model and the multivariate model is the other). The difference in the 

degrees of freedom was six, the critical value was 12.592 and an alpha level of 

.05 was applied.  

E. Aggregating the effectiveness estimates 

a. I constructed an overall teacher effectiveness estimate from the three sets of 

residuals for each teacher for each aggregation method, from both the 

multivariate model and separate univariate models.  

i. Equal weights and summation, based on Equation 11: 

𝐶𝑂𝑗 =  (1 × 𝑢1𝑗) + (1 ×  𝑢2𝑗) +  (1 × 𝑢3𝑗) (21) 

  

ii. Reliability weights and summation, based on Equation 12: 

𝐶𝑂𝑗 =  (. 87 ×  𝑢1𝑗) + (. 84 ×  𝑢2𝑗) + (. 70 ×  𝑢3𝑗) (22) 

 

iii. Covariance structure-based, refer to Equation 13, where the composite 

is the sum of the elements in the product matrix of the vector of 
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teacher effectiveness estimates, 𝒖𝑗 , and the covariance matrix of 

residuals, 𝚻, multiplied by the vector 1:  

𝐶𝑂𝑗 = (𝒖𝒋  ×   𝚻) (𝟏) (23) 

 

iv. Participatory method with importance on achievement outcomes, 

based on equation 11: 

𝐶𝑂𝑗 =  (1 × 𝑢1𝑗) + (1 ×  𝑢2𝑗) +  (. 5 × 𝑢3𝑗) (24) 

For this study, I assumed that the weight of the importance of the 

achievement outcomes was twice that of the weight of the non-

cognitive outcome, motivation (i.e., weights were 1, 1, and .5). 

F. Comparison of rankings  

a. For each multivariate model dataset, I rank ordered the teachers based on each 

aggregated effectiveness estimate, 𝐶𝑂𝑗.  

b.  For research question three, Spearman and Pearson correlations were 

employed to compare the teacher effectiveness estimates (Newton, Darling-

Hammond, Haertel, & Thomas, 2010; Wei, Hembry, Murphy, & McBride, 

2012). Additionally, like other VAM studies, I compared the change in 

rankings through an analysis of quintiles (Koedel & Betts, 2007; McCaffrey et 

al., 2008; Sass, 2008). 

i. I calculated a Spearman rank correlation for each ordered, paired set of 

aggregated effectiveness estimates: 

2

3

6
1s

D
r

N N


= −

−
, (25) 
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where D is the difference between the ranks of the corresponding 

values CO1j,… CO8j,  and N is the number of values in each data set. 

Based on statistical significance tests with an alpha level of .05 and 

degrees of freedom of N - 2, where N is the number of pairwise cases,  

ii. I calculated a Pearson correlation, pr , for each paired set of 

aggregated effectiveness estimates.  

𝑟𝑝 =
𝐶𝑜𝑣(𝐶𝑂𝑗𝑐, 𝐶𝑂𝑗𝑡)

𝜎𝐶𝑂𝑗𝑐
 ×  𝜎𝐶𝑂𝑗𝑡

, (26) 

where t is not equal to c, c = 1, …, 8. I summarized the results from 

the Pearson correlation in the same manner as the Spearman rank 

correlation above. The Pearson correlation was applied to evaluate the 

linear relation between two sets of effectiveness estimates. 

iii. For each composite, across the models, I placed the teacher 

effectiveness estimate composite into a quintile. Each teacher had 

eight effectiveness quintiles, four from the composites that resulted 

from the univariate models and four from the composites that resulted 

from the multivariate model. Then, the difference in quintiles for each 

teacher across the models was examined. The frequency of quintile 

changes is reported. Also, the difference in quintiles from composite to 

composite within model was examined.  

c. For research question four, the variation in the outcomes of interest across the 

replications was analyzed by sample size. First, the ANOVA assumptions 

were evaluated; normality, independence of cases, and homogeneity of 
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variance. The cases are assumed independent given the experimental design. 

PROC Univariate in SAS was used to produce the statistics and visuals to 

check the normality and homogeneity. Histograms showed that the estimated 

bias of the teacher-level residuals were not normally distributed. The 

correlations between the residuals and composites were not normally 

distributed either. The P-P and Q-Q plots confirm this as well. For each of the 

outcomes, examining box plots of the groups revealed that there is 

homogeneity of variance across sample size conditions. Given that the sample 

sizes were all greater than 10,000 and ANOVA has been shown to be robust 

to the violation of the normality assumption (Blanca, Alarcon, Arnau, Bono & 

Bendayan, 2017; Kahn & Rayner, 2003) the ANOVA were conducted despite 

the violation of the normality assumption. When the ANOVA resulted in 

significant variation, the effect size was calculated. The effect size, partial eta 

squared, was calculated as the sum of squares for the factor of interest divided 

by the sum of squares for that factor plus its associated error sum of squares.  

i. ANOVA was conducted for bias.  

ii. Repeated ANOVA was conducted for the Spearman correlations 

between the univariate residuals and the multivariate residuals. 

iii. Repeated ANOVA was conducted for the Spearman correlations 

between the composites from the different aggregation methods. 

iv. Repeated ANOVA was conducted for the Spearman correlations 

between the composites from the different models. 
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Summary 

In summary, this study presents a Monte Carlo simulation to assess four research 

questions.  

1) Does the use of univariate or multivariate models result in different levels of bias in 

estimated group- (teacher-) level residuals?  

2) Does the use of univariate or multivariate models result in different levels of model fit?  

3) In terms of teacher ranking, what is the influence of constructing teacher effectiveness 

composites with equal weight, weight by theory, weight by reliability, and weight by residual 

covariance structure aggregation methods?  

4) What is the influence of the combinations of small, medium and large-sized teacher 

groups with small and average-sized student groups on teacher effectiveness estimates? 

The Monte Carlo simulation generated datasets based on known means and variance-

covariance values for the outcomes, the student-level residuals and the teacher-level residuals. 

Datasets were generated for the sample size combinations, resulting in six datasets. To analyze 

the datasets and inform the conclusions to the research questions, univariate and multivariate 

multilevel models were applied to the datasets. As described in the simulation procedures, to 

address research question one, the observed effectiveness estimates were compared to the 

generating effectiveness estimate values with the absolute bias statistic. Research question two 

was addressed with an examination of the model fit statistics for each model within each sample 

size combination. Research question three was addressed with ranking the teachers based on the 

composite effectiveness estimates and evaluating pairwise correlations as well as the number of 

teachers that jump ranked quintiles across paired models and paired composites. Research 

question four was addressed with analysis of variance. The effect size, partial eta squared, 
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within-subject was calculated when the analysis of variance resulted in statistical significance. 

The evidence collected to assess the research questions in this study informs the VAM research 

literature as well as multivariate multilevel modeling literature. 
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Chapter 4: Results 

Data Generation Check 

 The process for generating the simulation data was presented in Chapter III. In order to 

confirm the accuracy of the generated data in representing the desired population distributions, 

descriptive statistics for the variables in a large sample with 500 teachers (J) and 22 students per 

teacher (nj) for one replication are presented in Table 5.  

Table 5 

Descriptive statistics of the variables in the large sample (nj=22, J=500), one replication 

 N Mean SD Skewness Kurtosis 

𝒀𝟏𝒊𝒋 math 11,000 50.00 1.12 0.01 -0.03 

𝒀𝟐𝒊𝒋 read 11,000 50.00 1.12 0.04 0.00 

𝒀𝟑𝒊𝒋 mot 11,000 30.01 1.03 -0.00 -0.02 

𝒖𝟏𝒋 math 500 -0.00 0.51 -0.17 -0.18 

𝒖𝟐𝒋 read 500 0.01 0.51 -0.02 -0.11 

𝒖𝟑𝒋 mot 500 0.00 0.24 0.02 0.12 

 𝜺𝟏𝒊𝒋 math 11,000 -0.00 0.99 -0.00 0.00 

 𝜺𝟐𝒊𝒋 read 11,000 -0.00 0.99 0.00 -0.00 

 𝜺𝟑𝒊𝒋 mot 11,000 0.00 1.00 0.00 0.00 

 

The data that were generated in the largest sample reflects the values used in the data 

generation code. The means and standard deviations for the outcomes, teacher residuals and 

student residuals are as expected. There are no issues with the skewness or kurtosis. More results 

for this and the other samples are discussed below.  

 The resulting correlations between the teacher-level residuals are within one standard error 

of the generating values. The data generation correlation between the math and reading teacher-

level residuals was .70. The data generation correlation between the math and motivation 
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teacher-level residuals was .18. The data generation correlation between the reading and 

motivation teacher-level residuals was .18. The resulting teacher-level residual correlations for 

one replication are presented in Table 6.  

Table 6 

Correlations between teacher-level residuals in the large sample (nj=22, J=500), one replication 

 Math Read Mot 

Math  1   

Read .699 1   

Mot .180 .178 1  

 

Multivariate and univariate multilevel models were applied to the generated data. Across 

all 1000 replications for each sample size combination, the multivariate multilevel model and the 

three univariate multilevel models converged. However, there were cases in the smallest sample, 

(nj=10, J=15), where the analysis resulted in a non-positive definite G matrix. The G matrix is 

the estimated covariance matrix for the subject-specific effects. The multivariate model had 53% 

of replications result in a non-positive definite G matrix. The math, reading and motivation 

univariate models had .6%, .2% and 15.5%, respectively, resulting in non-positive definite G 

matrices under this small sample scenario. The values for the residuals resulting from cases with 

the non-positive definite G matrix were identified as missing in the dataset. In these cases, the 

analyses are based on the number of non-missing records. 

The residuals from the univariate models and the multivariate models were analyzed for 

variation across the teacher sample size and student sample size as well as the interaction 

between the teacher and student samples sizes. Due to the dependency between the univariate 
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and multivariate measures, a repeated measures ANOVA was applied to the data. The results are 

in Table 7.  

Table 7 

Repeated measures ANOVA, within-subjects effects, for the residuals from the univariate models 

and the multivariate model across all replications for teacher and student sample sizes 

 DF Sum of 

squares 

F value P value 

Math 1 0.0000 0.00 .944 
TSamp 2 0.0002 0.02 .981 
SSamp 1 0.0007 0.18 .669 
TSamp * SSamp 2 0.0062 0.79 .456 

Read  1 0.0014 0.36 .548 
TSamp 2 0.0002 0.02 .980 
SSamp 1 0.0008 0.19 .659 
TSamp * SSamp 2 0.0144 1.81 .163 

Mot  1 0.0000 0.01 .925 
TSamp 2 0.0018 0.22 .807 
SSamp 1 0.0000 0.07 .787 
TSamp * SSamp 2 0.0014 1.75 .173 

Notes. n=147,000 TSamp = teacher sample size, SSamp = student sample size 

 The results of the analysis of variance, within-subjects effects, show that there is no 

evidence that the univariate residuals differ significantly from the multivariate residuals on 

average. There were no differences found in the means of the residuals across the univariate and 

multivariate models, the teacher sample sizes or the student sample sizes. There were no 

differences found in the means of the residuals across the interaction of teacher and student 

sample sizes.  

The following results are organized by research question one, two and three. The results 

for research question four, regarding the impact of sample sizes, are presented along with each of 

the other research questions since each was examined for differences across samples.   
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Research Question One 

Does the use of univariate or multivariate models result in different levels of bias in estimated 

group- (teacher-) level residuals?  

 To assess research question one, the absolute bias for the teacher effectiveness estimates 

from the univariate and multivariate models within each set of conditions was calculated.  

Generally, the absolute bias is greater for univariate model effectiveness estimates over the 

multivariate model effectiveness estimates, for each outcome, for each sample size combination. 

The small samples where both the teacher sample size and student sample size are small are 

exceptions to this. For these two samples, the absolute bias for the multivariate model is slightly 

greater. Table 8 presents the average absolute bias for the teacher effectiveness estimates for 

each outcome for each model.  

Table 8 

Average absolute teacher effectiveness estimate bias across replications by sample  

 

 Average Bias  

 Multivariate model Univariate model 

Sample 

(nj, J) 

Math Read Mot Math Read Mot 

1: 10, 15 .241 .239 .188 .238 .237 .170 

2: 10, 220 .201 .201 .158 .215 .215 .158 

3: 10, 500 .206 .206 .157 .214 .214 .157 

4: 22, 15 .185 .184 .148 .185 .184 .141 

5: 22, 220 .154 .154 .130 .159 .158 .130 

6: 22, 500 .153 .153 .129 .157 .157 .130 

 

Figure 2 presents the distributions of absolute bias of the teacher effectiveness estimates by each 

sample. The box plots below show the average and the range of absolute bias values.  

 



 

 

 

63 

 

 

 

 

Figure 2. Distribution of bias of the teacher effectiveness estimates by sample.  
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  An analysis of variance of bias across all replications by teacher sample size, student 

sample size and teacher by student sample size interaction showed a significant difference for the 

means of the absolute bias variables. The effect size, partial eta squared (𝜂p2), is presented in 

Table 9. Conventionally, values of .01, .06, and .14 represent small, moderate, and large effects, 

respectively (Green, Salkind, & Akey, 2000). The ANOVA results indicate that the mean 

absolute bias for each outcome for each model varies significantly across the teacher sample 

sizes and the student sample sizes. The effect sizes for the teacher sample size variable are small 

across all bias variables. The effect sizes for the student sample sizes are between small and 

medium. The effect sizes are not calculated for the factors where the effect is not significant. For 

the interaction effect, only the differences in mean bias for multivariate motivation, univariate 

math and univariate reading were significant. The effect sizes for these were all small, <0.0001.  
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Table 9 

Results of the ANOVA for Bias across all replications by sample size 

 DF Sum of 

squares 

F value P value Effect size  

𝜂p2 

MM math bias 5 1153.93 11917.90 <.0001 0.04 

TSamp 2 136.98 3535.96 <.0001 0.00 

SSamp 1 1018.13 52576.70 <.0001 0.04 

TSamp * SSamp 2 0 0 1 -- 

MM read bias 5 1131.98 11740.60 <.0001 0.04 

TSamp 2 127.56 3307.66 <.0001 0.00 

SSamp 1 1005.46 52142.00 <.0001 0.03 

TSamp * SSamp 2 0 0 1 -- 

MM mot bias 5 304.3 5109.56 <.0001 0.02 

TSamp 2 20.49 859.92 <.0001 0.00 

SSamp 1 282.91 23751.50 <.0001 0.02 

TSamp * SSamp 2 0.91 38.21 <.0001 0.00 

UM math bias 5 1195.94 11744.80 <.0001 0.04 

TSamp 2 22.37 549.16 <.0001 0.00 

SSamp 1 1173.33 57613.90 <.0001 0.04 

TSamp * SSamp 2 0.24 5.84 0.003 0.00 

UM read bias 5 1175.67 11598.20 <.0001 0.04 

TSamp 2 17.8 439.01 <.0001 0.00 

SSamp 1 1157.62 57100.40 <.0001 0.04 

TSamp * SSamp 2 0.25 6.27 0.0020 0.00 

UM mot bias 5 284.95 4773.36 <.0001 0.02 

TSamp 2 5.08 212.68 <.0001 0.00 

SSamp 1 279.81 23436.30 <.0001 0.02 

TSamp * SSamp 2 0.06 2.55 0.0800 -- 
Notes. n=147,000 TSamp = teacher sample size, SSamp = student sample size 

To better understand the relation between the teacher effectiveness estimates from the 

univariate and multivariate models, the correlations were calculated. The average correlations 

between the effectiveness estimates from the univariate models and the multivariate models are 

significantly high, for each outcome, for each sample size combination. The correlations are 

presented in Table 10. 
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Table 10 

Ave. Pearson correlation between the effectiveness estimates from the UM and MM across 

replications 

 Correlations 

Sample 

(nj, J) 

MMMath, 

UMMath 

MMRead, 

UMRead 

MMMot, 

UMMot 

1: 10, 15 .965 .963 .849 

2: 10, 220 .984 .984 .975 

3: 10, 500 .985 .985 .982 

4: 22, 15 .999 .989 .949 

5: 22, 220 .995 .995 .993 

6: 22, 500 .995 .995 .994 
Notes. UM = Univariate multilevel model, MM= Multivariate multilevel model 

A repeated measures analysis of variance across all replications across teacher sample 

size and student sample size shows there is not enough evidence to conclude there is a significant 

difference between the means of the correlations of the teacher effectiveness estimates from the 

univariate and multivariate models. The results of the ANOVA are presented in Table 11.  
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Table 11  

Repeated measures ANOVA, within-subjects effects for correlations between UM and MM 

estimates across replications by samples 

 DF Sum of 

squares 

F value P value 

Math 1 .00 0.00 0.94 
TSamp 2 .00 0.02 0.98 
SSamp 1 .00 0.18 0.67 
TSamp * SSamp 2 .01 0.79 0.46 

Read 1 .00 0.36 0.55 
TSamp 2 .00 0.02 0.98 

SSamp 1 .00 0.19 0.66 
TSamp * SSamp 2 .01 1.81 0.16 

Mot 1 .00 0.01 0.93 
TSamp 2 .00 0.22 0.81 
SSamp 1 .00 0.07 0.79 
TSamp * SSamp 2 .00 1.75 0.17 

Notes. n=147,000 TSamp = teacher sample size, SSamp = student sample size 

Research Question Two 

2) Does the use of univariate or multivariate models result in different levels of model fit?  

The deviance statistic from the multivariate multilevel model was compared to the sum of the 

deviance statistics from the univariate multilevel models, for each data set. The LRT with six 

degrees of freedom was employed to compare the difference in the deviances to a chi-square 

distribution to determine significance. The use of univariate or multivariate models results in 

different levels of model fit (p <.05). The percent of the replications where the multivariate 

multilevel model had a greater model fit over the univariate multilevel models is summarized in 

Table 12. Only the two smallest samples had less than 100% of the replications resulting in a 

non-significant LRT, indicating that the multivariate multilevel model was not a significantly 

better fit in a very few instances. 
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Table 12 

LRT and average deviance statistic for the MM and UM models across replications 

Sample 

(nj, J) N 

MM Sum of 

UM 

UM  

math 

UM 

reading 

UM 

motivation 

% LRT 

Sig. 

1: 10, 15 932 1299.96  1317.91 442.83 443.26 431.82 75.8% 

2: 10, 220   1000 19220.97  19393.30 6522.75 6518.87 6351.68 100% 

3: 10, 500   1000 43683.79 44069.22 14819.48 14816.48  14433.27 100% 

4: 22, 15 994 2849.36 2875.39 963.44 961.77 950.18 96.8% 

5: 22, 220   1000 41921.76 42232.77 14145.63 14151.19 13935.95 100% 

6: 22, 500   1000 95260.71 95963.37 32158.61 32148.36 31656.41 100% 
 

The model fit analysis provides evidence that the models produce different levels of 

model fit, with the multivariate model outperforming the univariate models. This finding, alone, 

cannot lead to a conclusion that the multivariate model should be used over the univariate 

models. There are other issues to consider than model fit. This is examined in more detail in the 

discussion.  

Research Question Three 

3) In terms of teacher ranking, what is the influence of constructing teacher effectiveness 

composites with equal weight, weight by theory, weight by reliability, and weight by residual 

covariance structure aggregation methods? The descriptive statistics for the aggregated teacher 

effectiveness estimates composites are presented in Table 13. Consistent across all samples, the 

standard deviation for the composite constructed from weights from the residual covariance 

structure was less than the standard deviation for the other composites. The means and standard 

deviations appear to be comparable for the equal weight, theory weight, and reliability weight 

composites. While all of the composite equations are structurally similar, the residual 

covariance-based composite differs in one key way. In the other three equations, the weights are 

relatively of the same magnitude, ranging from .5 to 1. The equation for the covariance structure-
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based composite contains a set of weights based on the covariance matrix, which has values that 

are much smaller and closer together than the weights used in the other aggregation methods, 

ranging from .022 to .2.  

Table 13 

Descriptive statistics for the composites, mean and standard deviation 

   Composite 

Sample 

(nj, J) 

  Equal 

Wt. 

Theory  

Wt. 

Reliable 

Wt. 

Residual 

Cov. 

1: 10, 15 MM Mean 0.0017 0.0015 0.0014 0.0003 

  SD  (0.772) (0.725) (0.644) (0.153) 

 UM Mean 0 0 0 0 

  SD (0.762) (0.735) (0.642) (0.135) 

2: 10, 220 MM Mean -0.0001 -0.0001 -0.0001 -0.0000 

  SD (0.836) (0.802) (0.704) (0.173) 

 UM Mean 0 0 0 0 

  SD (0.774) 0.754) (0.655) (0.124) 

3: 10, 500 MM Mean -0.0001  -0.0001 -0.0001 -0.0000 

  SD (0.860) (0.827) (0.725) (0.201) 

 UM Mean 0 0 0 0 

  SD (0.777) (0.756) (0.657) (0.136) 

4: 22, 15 MM Mean -0.0018 -0.0017 -0.0015 -0.0000 

  SD (0.855) (0.808) (0.715) (0.06) 

 UM Mean 0 0 0 0 

  SD (0.864) (0.834) (0.729) (0.081) 

5: 22, 220 MM Mean 0.0000 0.0001 0.0000 0.0000 

  SD (0.919) (0.881) (0.773) (0.269) 

 UM Mean 0 0 0 0 

  SD (0.874) (0.845) (0.737) (0.227) 

6: 22, 500 MM Mean 0.0000 0.0000 0.0000 0.0000 

  SD (0.934) (0.897) (0.786) (0.243) 

 UM Mean 0 0 0 0 

  SD (0.878) (0.848) (0.740) (0.205) 

Notes. UM = Univariate multilevel model, MM= Multivariate multilevel model 

The two tables below present the correlations, Pearson and Spearman Rho, between the 

composites constructed from the four different aggregation methods, across conditions of the 
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number of students and the number of teachers. As evidenced by the analysis of variance results, 

presented in Table 16, the mean correlations are consistent across the teacher and student sample 

size conditions and across the different composites, except for the sample with the small teacher 

sample size and the average student sample size. These mean correlations are lower than the 

other pairs across the teacher and student sample conditions for the paired correlations that 

include the residual covariance structure-based composite. The smallest sample with the small 

teacher sample size and the small student sample size, also has slightly lower correlations for the 

pairs that involve the residual covariance structure-based composites, but not as low as the 

correlations from the sample with the small teacher sample size and average student sample size. 

There were no noticeable differences between the Pearson correlations and the Spearman Rho 

correlations.  

Table 14 

Pearson correlations between composites from the aggregation methods 

  Aggregation Methods Combinations 

Sample 

(nj, J) 

 EW&T EW&R EW&RC T&R T&RC R&RC 

1: 10, 15 MM .994 .999 .972 .998 .967 .970 

 UM .994 .999 .892 .998 .879 .885 

2: 10, 220 MM .996 .999 .983 .999 .969 .978 

 UM .995 .999 .950 .998 .933 .943 

3: 10, 500 MM .996 .999 .979 .999 .967 .974 

 UM .995 .999 .936 .998 .917 .927 

4: 22, 15 MM .995 .999 .568 .998 .504 .542 

 UM .994 .999 .740 .998 .672 .714 

5: 22, 220 MM .995 .999 .971 .998 .957 .966 

 UM .994 .999 .950 .998 .934 .943 

6: 22, 500 MM .995 .999 ,965 .998 .948 .958 

 UM .994 .999 .937 .998 .918 .929 
Notes. Aggregation methods: EW: equal weight, T: theory, R: reliability, RC: residual covariance structure 
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Table 15 

Spearman Rho correlations between rankings for aggregation methods 

  Aggregation Methods Combinations 

Sample 

(nj, J) 

 EW&T EW&R EW&RC T&R T&RC R&RC 

1: 10, 15 MM .994 .999 .973 .997 .967 .971 

 UM .993 .999 .882 .997 .867 .875 

2: 10, 220 MM .996 .999 .981 .998 .966 .975 

 UM .995 .999 .946 .998 .927 .937 

3: 10, 500 MM .996 .999 .977 .998 .963 .972 

 UM .995 .999 .930 .998 .910 .921 

4: 22, 15 MM .995 .999 .547 .998 .484 .522 

 UM .994 .999 .733 .997 .667 .708 

5: 22, 220 MM .995 .999 .968 .998 .953 .963 

 UM .994 .999 .946 .997 .928 .938 

6: 22, 500 MM .995 .999 .961 .998 .944 .954 

 UM .994 .999 .932 .997 .910 .923 
Notes. Aggregation methods: EW: equal weight, T: theory, R: reliability, RC: residual covariance structure 

The results of the analysis of variance indicate significant differences between the means 

of the correlations for paired composites for both the univariate models and the multivariate 

model across the aggregation method and teacher and student sample size conditions. The 

aggregation method effect is large for both the univariate and multivariate models. This is 

evident by looking at the correlations for the small teacher/average student sample size condition 

in Table 15. The pairs that include the residual covariance-based composites are much lower 

than the others. The teacher sample size effects are large for both the multivariate and univariate 

models. The student sample size effects are lower, with the effects being between small and 

medium for the multivariate model and between medium and large for the univariate model. The 

interactions of teacher sample size and student sample size with aggregation method are also 

significant effects. The effects for the interaction between the aggregation method and the 

teacher sample size is large for both the multivariate and univariate models. The interaction 
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effect between the aggregation method and the student sample size is between small and medium 

for the multivariate model and between medium and large for the univariate model.  

Table 16  

ANOVA and effect size for correlations of paired aggregation methods across replications by 

samples 

  DF Sum of 

squares 

F value P value Effect size  

𝜂p2 

AM MM 5 673.59 3733.87 <.0001 .34 

 UM 5 104.18 5416.06 <.0001 .47 

TSamp MM 2 361.65 5011.78 <.0001 .22 

 UM 2 37.43 4864.63 <.0001 .24 

SSamp MM 1 51.08 1415.70 <.0001 .04 

 UM 1 12.21 3174.27 <.0001 .09 

TSamp* SSsamp MM 2 816.48 11314.80 <.0001 .39 

 UM 2 6.89 894.99 <.0001 .06 

AM * TSamp MM 10 362.54 1004.83 <.0001 .22 

 UM 10 36.45 947.40 <.0001 .24 

AM*SSamp MM 5 51.14 283.49 <.0001 .04 

 UM 5 12.54 652.08 <.0001 .10 
Notes. nmm=36,000   num=30,648 AM= aggregation method, TSamp = teacher sample size, SSamp = student sample 

size 

Although most of the composite correlations don’t appear to differ much, the differences 

from the residual covariance-based composite and the small teacher sample size condition appear 

to impact the results enough to create significant effects across the conditions.  

The correlations between the composite from the univariate models and the 

corresponding composite from the multivariate model are high for each aggregation method and 

each sample. The correlations are presented in Table 17. 
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Table 17  

Average correlation between UM and MM composites 

 Aggregation Methods 

Sample 

(nj, J) 

EW R T RC 

1: 10, 15 .989 .991 .993 .955 

2: 10, 220 .999 .999 .999 .988 

3: 10, 500 .999 .999 .999 .988 

4: 22, 15 .998 .998 .999 .981 

5: 22, 220 .999 .999 .999 .995 

6: 22, 500 .999 .999 .999 .996 

Notes. Aggregation methods: EW: equal weight, T: theory, R: reliability, RC: residual covariance structure 

Analysis of variance showed that across the replications, the difference between the 

means of the correlations between the composite from the multivariate model and the 

corresponding composite from the univariate models did differ significantly across the teacher 

samples sizes and the student sample sizes conditions. The interaction effect between teacher and 

student sample sizes was significant for all the aggregation methods except for the equal weight 

method, with the covariance structure-based composite having a very large effect size. The 

teacher sample effect was large for all four aggregation methods as shown in Table 18. 
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Table 18  

ANOVA for correlations of UM and MM composites across replications by samples 

Aggregation 

method 

DF Sum of 

squares 

F value P value Effect size 

𝜂p2 

Equal Wt 5 56.36 1064.16 <.0001 0.18 

TSamp 2 56.04 2644.99 <.0001 0.18 

Ssamp 1 0.27 25.11 <.001 0.00 

TSamp*SSamp 2 0.06 2.85 .058 -- 

Theory Wt 5 50.81 928.50 <.0001 0.16 

TSamp 2 50.20 2293.37 <.0001 0.16 

Ssamp 1 0.00 0.07 .799 -- 

TSamp*SSamp 2 0.61 27.85 <.0001 0.00 

Reliable Wt 5 53.37 1011.11 <.0001 0.17 

TSamp 2 53.07 2513.47 <.0001 0.17 

Ssamp 1 0.11 10.76 0.001 0.00 

TSamp*SSamp 2 0.19 8.93 0.0001 0.00 

Residual Cov. 5 3065.02 15081.80 <.0001 0.76 

TSamp 2 930.78 11450.00 <.0001 0.49 

Ssamp 1 244.19 6007.93 <.0001 0.20 

TSamp*SSamp 2 1890.05 23250.60 <.0001 0.66 
Notes. n=23,999 TSamp = teacher sample size, SSamp = student sample size 

When examining the findings for the correlations between the composites, across the 

conditions, there are a few patterns that emerge. The small teacher sample size condition appears 

to influence the correlations between the compositions. The residual covariance-based composite 

also stands out when looking at the standard deviations across sample size conditions, 

correlations between composites across the aggregation methods and correlations between 

composites across the models.  

In addition to correlations, the teacher effectiveness composites were ranked and placed 

in quintiles and analyzed for differences across the composites derived from the univariate 

models and the multivariate model. For each aggregation method, within each sample, the 
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frequency of quintile changes was examined. Across all aggregation methods and samples, most 

composites did not change quintiles when comparing the univariate-based composite to the 

multivariate-based composite except for two samples. The two samples with the small number of 

teachers (J=15) experienced proportionally more quintile changes than the other samples. The 

frequency of zero quintile changes for the equal weight, theory-based weight, and reliability 

weight composites ranges from 58% to 98%. The frequency of quintile changes for the 

covariance-based composite ranges from 36% to 74%. Table 19 summarizes the changes when 

going from the univariate model-based composite to the multivariate model-based composite.  
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Table 19 

Frequency of Quintile Changes from Univariate to Multivariate Model-based Composites 

Aggregation 

method 
Sample <-2 -2 -1 0 1 2 >2 

EqualWt J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

2% 

0 

0 

1% 

0 

0 

4% 

1% 

1% 

3% 

1% 

0 

16% 

7% 

3% 

9% 

3% 

1% 

58% 

83% 

90% 

71% 

94% 

97% 

15% 

7% 

3% 

9% 

2% 

1% 

4% 

1% 

1% 

3% 

1% 

0 

2% 

0 

0 

2% 

0 

0 

TheoryWt J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

2% 

0 

0 

2% 

0 

0 

3% 

1% 

1% 

3% 

1% 

0 

15% 

7% 

4% 

9% 

2% 

1% 

59% 

83% 

90% 

73% 

94% 

98% 

15% 

7% 

3% 

9% 

2% 

1% 

3% 

1% 

1% 

3% 

1% 

0 

2% 

0 

0 

2% 

0 

0 

ReliableWt J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

2% 

0 

0 

2% 

0 

0 

3% 

1% 

1% 

3% 

1% 

0 

15% 

7% 

3% 

9% 

2% 

1% 

58% 

83% 

90% 

72% 

94% 

98% 

15% 

7% 

3% 

9% 

2% 

1% 

3% 

1% 

1% 

3% 

1% 

0 

2% 

0 

0 

2% 

0 

0 

CovWt J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

3% 

0 

1% 

1% 

0 

0 

6% 

1% 

2% 

6% 

0 

0 

20% 

16% 

17% 

24% 

12% 

12% 

42% 

64% 

61% 

36% 

74% 

74% 

21% 

17% 

17% 

25% 

12% 

13% 

6% 

1% 

1% 

6% 

0 

0 

3% 

0 

0 

1% 

0 

0 

 

 It was also hypothesized that there would be changes in the quintiles when comparing 

across aggregation methods. The composites were placed into quintiles and the frequency of 

changes between quintiles was examined. Table 20 presents the quintile changes for the 

composites from the multivariate model. Like the comparison between the composites from the 

univariate models and the multivariate model, the comparisons that include the residual 

covariance-based composite exhibit more quintile changes than the other comparisons. Each of 
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the comparisons with the covariance-based composites had changes of more than 2 quintiles for 

16% of the sample where nj=22, J=15.  The other composite comparisons, without the 

covariance-based composite, had zero changes of more than 2 quintiles at this and the other 

sample sizes. At this sample size, nj=22, J=15, only 18-19% of the composite comparisons with 

the covariance-based composite did not change quintiles. This is compared to 79%, 83% and 

86% for the other composite comparisons at the same sample size.  This analysis supports the 

other common finding where the small teacher sample size condition produced more quintile 

changes than the other sample conditions.  
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Table 20 

Frequency of Quintile Changes Between Composites, Multivariate Model 

Composite 

Pair 
Sample <-2 -2 -1 0 1 2 >2 

EqualWt, 

TheoryWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

11% 

9% 

9% 

10% 

11% 

11% 

77% 

81% 

82% 

79% 

78% 

78% 

11% 

9% 

9% 

10% 

11% 

11% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

EqualWt, 

ReliableWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4% 

3% 

3% 

4% 

4% 

4% 

92% 

93% 

93% 

93% 

92% 

92% 

4% 

3% 

3% 

4% 

4% 

4% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

EqualWt, 

CovWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

16% 

0 

1% 

2% 

0 

2% 

12% 

4% 

4% 

19% 

20% 

19% 

13% 

20% 

29% 

55% 

57% 

59% 

18% 

50% 

50% 

21% 

21% 

19% 

13% 

21% 

20% 

2% 

1% 

2% 

12% 

4% 

5% 

0 

0 

0 

16% 

0 

1% 

TheoryWt, 

ReliableWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7% 

6% 

6% 

7% 

7% 

7% 

85% 

88% 

88% 

86% 

86% 

86% 

8% 

6% 

6% 

7% 

7% 

7% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TheoryWt, 

CovWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

16% 

1% 

1% 

2% 

3% 

4% 

11% 

6% 

6% 

18% 

22% 

20% 

13% 

20% 

20% 

56% 

50% 

52% 

18% 

45% 

45% 

20% 

22% 

20% 

13% 

20% 

20% 

3% 

3% 

4% 

11% 

6% 

6% 

0 

0 

0 

16% 

1% 

1% 

ReliableWt, 

CovWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

16% 

1% 

1% 

2% 

2% 

2% 

11% 

5% 

5% 

19% 

21% 

20% 

13% 

20% 

20% 

56% 

54% 

56% 

19% 

48% 

48% 

20% 

21% 

20% 

13% 

21% 

20% 

2% 

2% 

2% 

11% 

5% 

5% 

0 

0 

0 

16% 

1% 

1% 

 



 

 

 

79 

 

 

 The comparisons for the composites from the univariate models follow the same 

patterns as the composites from the multivariate model. The quintile changes for the composites 

from the univariate model are presented in Table 21. The frequencies of composite comparisons 

that contain the covariance-based composite that resulted in zero quintile changes range from 

15% to 42% across the sample size conditions. This is compared to a range of 76% to 94% for 

the comparisons that do not contain the covariance-based composite that resulted in zero quintile 

changes. The comparisons with the covariance-based composite for the sample where nj=22, 

J=15 resulted in a greater frequency of quintile changes compared to the other samples. The 

frequencies of composite comparisons that contain the covariance-based composite that resulted 

in more than two quintile changes range from 22% to 25% for the small sample size, nj=22, 

J=15. The frequencies of the same comparisons, change of more than two quintiles, at the other 

sample sizes range from 2% to 8%.  Again, the small teacher sample size condition and the 

comparisons that include the residual covariance-based composite exhibit more quintile changes 

than the others. 
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Table 21 

Frequency of Quintile Changes Between Composites, Univariate Model 

Composite 

Pair 
Sample <-2 -2 -1 0 1 2 >2 

EqualWt, 

TheoryWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

11% 

10% 

10% 

11% 

12% 

12% 

78% 

79% 

79% 

78% 

76% 

76% 

11% 

10% 

10% 

11% 

12% 

12% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

EqualWt, 

ReliableWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5% 

4% 

4% 

4% 

4% 

4% 

91% 

92% 

94% 

92% 

91% 

91% 

4% 

4% 

4% 

4% 

4% 

4% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

EqualWt, 

CorrWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

2% 

1% 

2% 

12% 

2% 

2% 

8% 

5% 

7% 

14% 

7% 

7% 

21% 

24% 

21% 

16% 

19% 

19% 

36% 

41% 

42% 

16% 

42% 

42% 

21% 

24% 

20% 

17% 

19% 

19% 

8% 

5% 

7% 

14% 

7% 

7% 

3% 

1% 

2% 

11% 

2% 

2% 

TheoryWt, 

ReliableWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7% 

7% 

7% 

7% 

8% 

8% 

85% 

86% 

86% 

86% 

84% 

85% 

7% 

7% 

7% 

7% 

8% 

8% 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TheoryWt, 

CovWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

4% 

1% 

2% 

13% 

4% 

4% 

8% 

7% 

8% 

13% 

8% 

8% 

21% 

23% 

20% 

15% 

19% 

18% 

34% 

37% 

38% 

15% 

39% 

38% 

21% 

23% 

20% 

16% 

19% 

18% 

9% 

7% 

8% 

13% 

8% 

8% 

4% 

1 

2 

12% 

4% 

4% 

ReliableWt, 

CovWt 

J=15, nj=10 

J=220, nj=10 

J=500, nj=10 

J=15, nj=22 

J=220, nj=22 

J=500, nj=22 

4% 

1% 

2% 

12% 

2% 

4% 

8% 

6% 

7% 

14% 

8% 

8% 

21% 

23% 

20% 

16% 

19% 

19% 

35% 

39% 

40% 

16% 

41% 

40% 

21% 

23% 

20% 

16% 

19% 

19% 

8% 

6% 

7% 

14% 

8% 

8% 

4% 

1% 

2% 

12% 

2% 

4% 
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Summary 

 The use of univariate or multivariate models leads to slightly different levels of bias in 

estimated group- (teacher-) level residuals and different levels of model fit. Generally, the 

multivariate model produced estimates with slightly lower bias and the multivariate model 

deviance statistics indicate better model fit. Teacher sample size had small significant effects for 

the math, reading and motivation bias variables for both the multivariate and univariate models. 

Teacher sample size did not have a significant effect on the correlations between the residuals 

from the univariate and multivariate models. The correlations between the composites both 

within and across the composites from the univariate and multivariate models are very high, all 

above .955 for the paired composites between the models. For the paired composites within each 

model, the correlations were above .917 for all of the samples except where nj=22 and J=15 for 

the correlations that included the covariance-based composite. This sample had correlations 

between composites within the model of .484 to .733 for the pairs that included the covariance-

based composite. Teacher sample size had significant effects for the correlations between the 

composites from the multivariate and univariate models. Composites from the univariate and 

multivariate models changed quintiles across the aggregation methods and sample sizes. The 

greatest differences were seen for the comparisons that included the covariance-based composite 

and in the small sample size condition where nj=22, J=15. The differences in the frequencies of 

zero quintile changes were up to 60% in some cases for composite comparisons both within and 

across the models in the small size condition where nj=22, J=15.  

 Two consistent issues appeared in several of the analyses. First was the influence of the 

small teacher sample size. The differences in the correlations between and across composites as 

well as the quintile classifications were greater in the small teacher sample size condition. The 
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differences are great enough to caution against the use of such a small teacher sample size. The 

second issue was the difference in the results for the residual covariance-based composite 

compared to the other composites, particularly when looking at the correlations of the different 

composites and in the quintile classifications.  

 Examination of the univariate and multivariate model composites provide some support 

for the argument to use the multivariate model over the univariate models. While the correlations 

between effectiveness estimates and composites did not appear to vary across the models as 

much as was expected, the model fit and quintile changes suggest that the multivariate model 

should be used over the univariate models. This is discussed in more detail in Chapter V.   
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Chapter 5: Discussion 

Given the attention on evaluating teachers, schools, districts and states to quantify the 

effectiveness on student learning (Goldhaber, 2010; Montes, 2012; Rothstein, 2016), this study 

employed a multivariate multilevel model that yields a composite effectiveness estimate. The 

findings provided mixed statistical evidence toward the conclusion that the multivariate model 

should be used over the univariate models; however, a theoretical argument could be made for 

the increased validity provided by the multiple outcomes in the multivariate model (Baldwin et 

al., 2014). Interpretation of the findings, limitations, implications and future research are 

discussed below.  

Interpretation of the Findings 

Research Question 1. Does the use of univariate or multivariate models result in different 

levels of bias in estimated group- (teacher-) level residuals? 

In the study, the use of univariate or multivariate models results in slightly different 

levels of bias in estimated group- (teacher-) level residuals.  The absolute bias is slightly greater 

for the univariate model effectiveness estimates over the multivariate model effectiveness 

estimates, for each outcome, for each sample size combination except for the conditions where 

the teacher sample size was small (J=15). These findings are consistent with the previous 

literature that found the advantage of employing the multivariate model (Griffiths et al., 2003). 

However, it should be noted that the differences in absolute bias are very slight across all the 

samples and outcomes, ranging from .000 to .018. The evidence does support the hypothesis that 

the choice of model has an impact on the bias of the estimates. 
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There is a note to make about the bias statistic and its interpretation. The bias statistic was 

calculated as the difference between the estimated parameter and the ‘true value’, the generating 

value. The bias statistic calculated in this study could also be a measure of variability, rather than 

‘bias’.  It is difficult to parse the value of the difference between the estimated parameter and the 

true value of the parameter (Fortmann-Roe, 2012). The difference is likely made up of both bias 

and variance, but this could not be parsed in this study. It is important to note in this study, that 

the results focus on bias, but it is possible that the term ‘bias’ contains both bias and variance.  

Research Question 2. Does the use of univariate or multivariate models result in different 

levels of model fit?  

In the study, the use of univariate or multivariate models results in different levels of 

model fit.  The LRT shows that the deviances from the multivariate multilevel models differ 

from the summed deviances from the univariate multilevel models. These findings are consistent 

with the previous literature that argued for the utilization of multivariate models to test 

hypotheses about the associations among the multiple outcomes. The results confirm prior 

research (Baldwin et al., 2014). Baldwin et al. (2014) examined multivariate multilevel models 

and univariate multilevel models.  Baldwin et al. (2014) argued for the use of multivariate 

models to examine hypotheses about the relations among the multiple outcomes. These results 

are useful in the discussion of which model to use when the data are multivariate. If not modeled 

correctly, the inferences based on hypothesis tests about the relation between the outcomes could 

be inaccurate.  

Research Question 3. In terms of teacher ranking, what is the influence of constructing 

teacher effectiveness composites with equal weight, weight by theory, weight by reliability, and 

weight by residual covariance structure aggregation methods?  
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In the study, teacher effectiveness composites were highly correlated across the equal 

weight, weight by theory, weight by reliability, and weight by residual covariance structure 

aggregation methods from the multivariate models and the univariate models but the analysis of 

variance for the means of the correlations between the composites from the univariate models 

and the multivariate model revealed significant effects from the aggregation method and teacher 

sample sizes. The residual covariance-based composite and the small teacher sample conditions 

produced larger effects than the other conditions. These findings are consistent with the limited 

previous literature that found that the relation between the residuals estimated with the 

multivariate model was larger than the relation between those associated with the independently 

modeled outcomes (Leckie, 2018). The effects found on the correlations between composites and 

the quintile changes suggest that the aggregation method and whether the residuals are from the 

univariate models or the multivariate models are impactful decisions for researchers and 

stakeholders such as administrators and teachers. These results support those from research 

questions one and two that provide evidence that the model specification does impact the teacher 

effectiveness estimates. These findings suggest that further research is required. As discussed in 

the limitations below, the simulation and study design decisions greatly impact the 

generalizability of the results. The modeling specifications and variety of aggregation methods 

could lead to very different findings.  

Research Question 4. What is the influence of the combinations of small, medium and 

large-sized teacher groups with small and average-sized student groups on teacher effectiveness 

estimates? 

There were three teacher sample sizes and two student sample sizes. The residuals, bias, 

model fit, and composites were evaluated across the conditions. There was significant difference 
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in the means across the replications across conditions for bias, deviance, and residual and 

composite correlations. As expected, the smaller samples had greater effects.  There already exist 

some guidelines on the sample sizes for multivariate and univariate multilevel models. As 

discussed, Maas and Hox (2005) suggested a ratio of 100/10 for groups to subjects. This 

dissertation study supports the researchers’ claim. The conditions where the teacher to student 

ratios were only 15/10 and 15/22 exhibited greater effects in bias, deviance and composites than 

the other samples where the teacher samples were 220 and 500. The differences in the means for 

the bias, deviances and composites across samples and models were significant. This finding 

could be a problem for evaluations in small schools where the teacher sample size is limited. 

They could model multiple schools to increase the teacher sample size, but then would need to 

add a new grouping level for ‘school’. The impact of this needs to be researched in more detail. 

Limitations 

This study was designed to address the specific questions regarding the composites and 

the methods of constructing them. This simulation, like others, required the input of specific 

fixed variables and values which led to limitations. The generalizability of the results is 

potentially impacted by each design decision in this study.  

The target population was students and teachers.  The findings cannot be generalized to 

other people or groups (Remler & Van Ryzin, 2010).  One might want to generalize the results to 

VAM studies at the school- or district-level rather than the teacher-level. It is likely that the 

sample sizes would differ for those groups, therefore the results of this study may not be 

comparable. The teacher sample sizes used in this simulation may not accurately represent the 

typical values of the number of teachers being evalauted. It is not likely that there would be a 
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sample of 220 or 500 teachers within one school. This sample size could exist if there were 

multiple schools, but in that case a fourth level should be added to the model to account for the 

school differences. Given the consistent finding that the small teacher sample size condition was 

notable and that the likelihood that most teacher samples will be small, the use of the 

multivariate model or even VAM in general is questionable and requires further research. Future 

research could examine the differences in sample sizes in more detail. 

This study employed one set of correlations among the outcomes, where reading and 

math were correlated .70 and the achievement outcomes were correlated with motivation at .18. 

The results may be impacted with a different set of correlations. This study assumed that two of 

the outcomes were very closely related. It is realistic to expect that a researcher might select 

three outcomes that are dependent but not as highly correlated as math and reading. Generally, 

the results for the math effectiveness estimates were the same as the results for the reading 

effectiveness estimates. If they were not as highly correlated, they could differ as the results for 

motivation do. The motivation outcome was generated with a lower variance and a lower 

covariance with the other outcomes. This produced some differences in the results, such as the 

average absolute bias. The motivation average absolute bias was lower than math and reading 

across both models and the sample size conditions. Alternatively, if the outcomes were all highly 

correlated, the results would be more similar. As noted earlier, there could be an issue when 

including outcomes that are too highly correlated. The additional outcomes are adding 

complexity to the models without adding more information. The correlation between outcomes 

also greatly impacts the covariance-based composites. Since the covariance was used as a weight 

in the covariance-based composite, the values set for the correlations directly impact the 

composites which then impacts the ranking and quintile placement for the teacher.   
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Related to the correlation between the outcomes, is the intra-class correlation (ICC). This 

is a measure of how much of the variance in the outcomes is between the level two units. The 

higher the ICC, the more homogeneity there is within teacher groups. An ICC above zero 

indicates some degree of dependence in the data. The data were generated with an assumed ICC 

of .2, which is common in student achievement scores (Hedges & Hedberg, 2007). The influence 

of the ICC value was not examined in this study. If a higher ICC was selected, indicating more 

dependence in the data within the teacher group, there could have been more variation among the 

teacher groups (less within), resulting in a wider range of teacher effectiveness scores (McCoach 

& Adelson, 2010). A lower ICC value would have created more variability within the teacher 

group, creating less variation across teachers. The effectiveness scores would have had a smaller 

range and the differences between the effectiveness estimates would have been less. The impact 

of this would have been less differences across the composites and likely less differences in the 

estimates across the models.  

Another implication of the choice of outcomes is the scale of the measure and the impact 

this has on the composite. For example, in this study math and reading were assumed to be on 

the same scale, but motivation was assumed to come from a measure with a different scale. This 

creates a different scale for the effectiveness estimates which are then aggregated into the 

composite. This could be addressed by standardizing the outcomes to be on the same scale. This 

was not addressed in this study. This means that the motivation outcome was weighted less in the 

composites given its scale, even in the equal weights method where it was assumed they were all 

equally weighted. Another interesting potential issue is with the reliability values for the 

measures. Often in psychology, a measure’s reliability can vary depending on the sample size 

(Holland et al., 2018). This simulation assumed the reliability values were constant across 
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sample size conditions, but in reality some measures vary in reliability across sample sizes. If the 

reliability values varied across sample size conditions, the composites would likely have been 

more variable like the covariance matrix-based composites. The weights would have been 

different for each sample size condition rather than constant like the equal weights and theory-

based weights. It is important to examine the weights and aggregation methods with respect to 

the measures of the outcome variables that are aggregated.  

The number of outcomes modeled is also a potential limiting factor. If there are more 

outcomes, there is an increased risk of including outcomes that are too highly correlated rather 

than introducing new information into the model or including outcomes that do not correlate at 

all that makes the use of the multivariate model unnecessary. On the other hand, not including 

outcomes that contribute to teacher effectiveness causes, in some cases, incorrect decisions 

leading to unfair actions, such as missed promotions, missed bonuses, probation, transfers and 

termination. It is difficult to know how many and which outcomes to include in VAM. It could 

be possible that there are a set of outcomes that measure the teacher effectiveness on some 

students that is not the right set of outcomes for other students (Lefgren & Sims, 2012). Teachers 

have a variety of impacts on students and depending on the characteristics of the students, it is 

possible that those impacts are not consistent. For example, one teacher may be able to bring up 

the test scores for part of her class but not all (Lockwood & McCaffrey, 2009; Rothstein, 2009). 

Lockwood and McCaffrey (2009) found modest effects from student achievement level on 

teacher effectiveness estimates indicating that teacher effectiveness could vary for different 

student achievement levels within the same class.  Suppose that for students that have more 

trouble with the achievement tests, the teacher has a positive impact in other areas, like 

motivation, confidence or imagination. Many VAM only focus on achievement tests, but 
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teachers can provide other positive influences on students that should be rewarded (Chetty, 

Friedman, & Rockoff, 2011; Jackson, 2012).  

This study did not include covariates in the model, although the research is inconclusive 

on the impact of covariates (Lockwood et al., 2007). It is possible that including student and/or 

teacher level covariates could have impacted the results. Covariates could have controlled for 

some of the variance in the model decreasing the amount attributed to the teacher effectiveness. 

However, if the outcome had been a growth score rather than a direct score on some measure, the 

need for covariates is removed. A gain score or growth score is the difference between the prior 

score(s) and current score. This controls for extraneous variables; therefore, the use of covariates 

is not necessary (Rose, Henry, & Lauen, 2012). In this simulation, without covariates, it may 

have been more appropriate to use outcomes that were gain or growth scores to help with the 

interpretation of the results given the lack of covariates in the model.  Given that the modeling 

specifications would most likely impact the results, these results cannot be generalizable to all 

multivariate multilevel VAM. Future studies could examine the variety of VAM specifications 

within the multivariate multilevel class of models. 

The aggregation methods were selected to demonstrate that there are a variety of ways to 

combine the effectiveness estimates to form a composite. This study did not include all the 

possible aggregation methods. It is likely that there are aggregation methods that would 

significantly impact the ranking and correlation of the composites, such as the methods that 

weight for the number of students. This method would change the results for systems where 

teachers had different class sizes or even within the class where the measurements were not 

completed by all students. In the teacher evaluation systems where the stakes are high and the 

evaluation score depends significantly on the effectiveness composite, the decision of which 
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aggregation method to use could seriously impact a teacher’s career. The analyses on the 

composites shows that while there is a high correlation between the composites for most sample 

conditions, there are significant differences in the means of composite correlations across 

aggregation methods. The small teacher sample size condition has composite correlation values 

lower than the others which cautions against the reliability of teacher effectiveness estimates in 

small teacher samples. Future studies could examine the different categories of aggregation 

methods in more detail.  

Another study design decision that could lead to limitations in the generalizability of the 

results includes the handling of missing data. Missing data is common in education data and not 

an issue that was modeled in this simulation. There are different types of missing data that could 

be expected in data of this kind. For example, the model included multiple outcomes which in 

this study, each student had a score for each one. A student could have reading and math 

assessment scores, but failed to do the survey that measured motivation. In this case, there are 

decisions to be made of how to deal with the missing data. The student could be excluded from 

the dataset, the student’s motivation score could be imputed using the mean, or the teacher’s 

effectiveness composite could consist of unequal residual sample sizes. These are just a few of 

the potential methods for dealing with the missing data and only one example of the type of 

missing data that is possible. A future study could examine the impact of missing data on 

univariate and multivariate multilevel model as well as the impact on a variety of aggregation 

methods.  

During the application of the multivariate and univariate models a portion of the analyses 

resulted in a non-positive definite G matrix. The G matrix is the estimated covariance matrix for 

the residuals. The multivariate model analysis with the smallest sample size condition, where the 
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teacher sample size was small and the student sample size was small, yielded a non-positive 

definite G matrix 53% of the time. These results were removed from the further analysis. This 

created missing data in two of the data sets. While the number of replications was still around 

500 in the smaller sample, the decrease in replications could have impacted the findings. The 

small teacher sample size conditions resulted in notable findings and the impact of the reduced 

number of replications was not examined. The analysis could have been run for more 

replications to make up for those that resulted in the non-positive definite G matrix so that all of 

the datasets had 1000 replications. The impact of the number of replications could be examined 

in future research.   

There are two common reasons for why the PROC MIXED procedure might result in a 

non-positive G matrix. One is that there is not enough variation in the outcomes, meaning that 

after controlling for the fixed effects, there isn’t much variation in the residuals. The other cause 

is that the model is misspecified. If the number of observations is too close to the number of 

parameters in the model, the analysis can result in a non-positive definite matrix. In this study, 

the non-positive definite G matrix finding was only in the smallest sample. This is more evidence 

that the teacher sample size of 15 is too small to produce usable teacher effectiveness estimates. 

Implications for Practice and Further Research 

Although this dissertation was limited in scope, researchers can utilize the study to 

examine if the use of univariate or multivariate models results in different levels of bias in 

estimated group- (teacher-) level residuals and different levels of model fit. This study also 

provides a demonstration of constructing an effectiveness composite. A composite allows for the 

evaluation system to assign a rating based on one combined value rather than assigning separate 
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ratings for each effectiveness score. This is useful when the separate effectiveness scores result 

in conflicting ratings and a decision or outcome relies on the rating. However, it is useful to have 

the profile of scores available as well. When the composite results in a low rating, the profile can 

be used to identify the areas of weakness for improvement. This is useful in the primary school 

setting where a teacher is responsible for multiple subject areas. A composite allows for the 

teacher to get an overall rating and then the profile allows for the drill down to the specific 

subject area or outcome of weakness. Given the usefulness of the composite, the aggregation 

method potentially has a great impact on the resulting rating.  

The correlations between the composites from the different models were very high, 

providing no evidence that the model choice was impactful. Also, the differences in bias and fit 

were slight. While the findings do not really support a claim for the use of the more complex 

multivariate model over the univariate models, the increased theoretical validity from adding 

outcomes to the VAM does. The trade-off between validity and complexity is not a simple 

concept. While the more complex model may provide more accurate or precise results, the 

stakeholders who consume the results may not be appreciative. Tensions are already high over 

the use of VAM to measure teacher effectiveness for use in high stakes decisions, such as 

terminations. In 2017, the Houston Independent School District won a lawsuit in which a group 

of teachers declared the use of the EVAAS for termination is unlawful (AFT, 2017). The 

teachers, and the courts agreed, claimed that the EVAAS model was flawed, unfair and 

incomprehensible. This follows previous lawsuits in Tennessee and Florida (Sawchuk, 2014). 

These lawsuits are over the use of VAM in teacher evaluation systems, regardless of the model 

employed. The use of a seemingly incomprehensible model such as the multivariate multilevel 

model would not contribute to acceptance of VAM.  
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The study also adds to the VAM research literature. There are limited studies on the 

multivariate multilevel VAM. This study informs the examination of multiple measures of 

teacher effectiveness. This study adds to the evidence that suggests the specifications for VAM 

are complex and the decisions could influence the results. Making high stakes decisions based on 

the results of VAM should be done so with caution, if at all.  

Further research should include empirical data. While the values used in this simulation 

were selected from the available research literature, applying the models to real data could reveal 

complexities and issues not seen in the simulated data. One such issue is missing data. This study 

did not address missing data that is commonly found in educational data sets.  

Further research should include more complex value-added models. The three-level 

multivariate model could be expanded to include covariates at the student-level. As discussed, 

the research is not conclusive on the influence of covariates on teacher effectiveness estimates. 

More research could compare the various model complexities and the impact that has on the 

estimates. The model could also be expanded to include a fourth level. A four-level model could 

include the outcomes, students, teachers, and schools. One could even imagine a five-level 

model that adds the school district or even state. Testing more complex models for the influence 

on the teacher effectiveness estimates and the resulting composites is valuable research for those 

interested in increasing the validity of the teacher effectiveness models and VAM.  

More research is needed around the validity of VAM. There is limited research and 

guidance about which outcomes should be used to estimate teacher effectiveness. As this study 

highlighted, the use of non-cognitive outcomes could have a valuable place in VAM; though few 

states are using non-cognitive outcomes in teacher evaluation. Models with multiple outcomes 
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could allow for the inclusion of non-cognitive outcomes without losing the achievement-based 

outcomes.  
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