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In this dissertation, dynamic force measurement methodologies are developed and im-

plemented for use in hypersonic wind tunnel testing. The chief application is implemen-

tation into Arnold Engineering Development Complex’s Hypervelocity Wind Tunnel No.

9. The Sum of Weighted Accelerations Technique, Time Domain Deconvolution Method,

and Frequency Domain Inverse Method are of particular interest for this study due to their

implementation feasibility within Tunnel 9.

The formulation of each ”conventional” method is presented in its most basic or com-

monly used form. Then several modifications are made to improve the results of the various

methods. Much of this work focuses on the specific alterations performed on each method

and the consequences of each change. To improve the Sum of Weighted Accelerations

Technique, modal separation and a damping matrix are added to the formulation. This

allows for higher frequency accuracy and successful reconstructions on highly damped se-

tups. A novel Time Domain Deconvolution Method is formulated in this dissertation which

exhibits several advantages over the typical time domain approaches. Examples include

elimination of inversion regularization, smooth reconstructions, and improved computa-

tional efficiency via response segmentation. The Frequency Domain Inverse Method was



reformulated to solve directly for the frequency response function. This direct solution also

allows for the use of multiple calibration tests during solution which improves accuracy.

Each alteration is validated on numerical, bench top, and wind tunnel systems to pro-

vide a full theory to implementation understanding. Linked spring-mass-damper models

are used for all of the numerical investigations with additive Gaussian noise and are used to

draw early conclusions about each method and alteration. Bench top studies are performed

on three separate support structures to build confidence in the methods on a more complex,

experimental system. Finally, data obtained by tests performed in a transonic wind tun-

nel are used to demonstrate the capabilities and highlight some of the advantages of each

method.
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Chapter 1: Introduction

This dissertation focuses on the problem of dynamic force and moment measurement

in wind tunnels. Conventional force and moment (henceforth generalized to ”force”) mea-

surement in wind tunnels utilizes the assumption that the applied aerodynamic load and the

test article under load come to a static equilibrium[1–3]. In such cases, the measured strain

of the test article is proportional to the applied load. However, for certain scenarios this

condition cannot be met but the applied aerodynamic load is still of interest. This scenario

is henceforth referred to as dynamic force measurement.

Hypersonic wind tunnel tests in particular, often exhibit dynamic applied loads due to

their short test times. It is difficult and often impossible to bring a test article to static

equilibrium with respect to the flow in the test times of interest. To combat this, moving

averages or filters are often employed to remove the undesirable transience present in the

strain response. This approach may be sufficient for aerodynamic coefficient measurement

but is unable to obtain important forcing features such as rise time and peak magnitude.

Additionally, a wealth of testing scenarios exist where only the transient force application

is of interest. Examples include jet-flow interaction[4, 5], scramjet engine unstart[6, 7], and

control surface deployment[8, 9].

Our sponsor, Arnold Engineering Development Complex (AEDC) Hypervelocity Wind

Tunnel No. 9 is a facility with just such a motivation. Their current force measurement

methodology utilizes a static approach as discussed. However, they seek to improve this

measurement capability by developing a dynamic force measurement method applicable to
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Tunnel 9.

1.1 AEDC Tunnel 9 Overview

Tunnel 9 is a large scale hypervelocity wind tunnel owned and operated by the Air Force

and is located in White Oak, Maryland[10]. This facility is capable of unique conditions,

not capable by any other wind tunnel. In particular, its large scale test section (5’ diameter)

is particularly uncommon for the high Mach and Reynold’s number capabilities. Aerody-

namic measurement for Tunnel 9 is truly a multi-physics endeavor. The information of

interest during a tunnel run may include force, surface pressure, surface heat transfer, and

flowfield visualization. The breadth of measurement is an advantage of this facility. How-

ever, these additional measurements must be considered when determining an applicable

dynamic force measurement technique.

Tunnel 9 is a blowdown facility which utilizes a working fluid of pure Nitrogen. Cur-

rent nozzle capability includes Mach numbers of 7, 8, 10, and 14. The Mach 7 nozzle is

capable of duplicating a large range of flight conditions including unit Reynold’s numbers

of 0.05·106/ft to 48·106/ft. Many other flight conditions can be simulated using the other

nozzles.

Temperature Sensitive Paint (TSP) is another premier measurement capability at Tunnel

9[11]. A thin TSP layer is often applied to the surface of test article which allows for

the computation of heat transfer rates over the entire imaged area. The TSP cameras and

light sources are located above the test section. On the sides of the test section, large

viewing windows are present for advanced Schlieren flow visualization. For best use of

these capabilities, the test article must remained fixed. However, a pitch system is also

present which is capable of rotating the test article about its center of gravity. Therefore,

pitch sweeps may be performed without sacrificing visualization capability.
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Finally, the test articles are often outfitted with a number of surface pressure taps and

thermocouples. The latter is used to calibrate the TSP data and to provide discrete tem-

perature measurements at critical locations. With all of this instrumentation, the force

measurement options are fairly limited. However, as discussed previously, Tunnel 9 uses

a six component strain gage roll balance to measure the quasi-static forces and moments

applied to the test article. This force balance is constrained between the test article and the

support arm (”sting”) to ensure all applied loads travel across the balance.

The following sections present an overview of current force measurement methodolo-

gies and their applicability to Tunnel 9. Upon review of this section, the selection of the

methods discussed in this dissertation are made clear. Following the discussion of method-

ologies, brief consideration is given to sensor selection; another practical option that must

be considered for the Tunnel 9 application.

1.2 Research Objectives and Scope of Research

The scope of this research is to identify and improve dynamic force measurement tech-

niques applicable to Tunnel 9. There are many methods available for dynamic force mea-

surement in hypersonic wind tunnels. However, a select few are applicable to the size

and test times common in Tunnel 9. Therefore, the scope is limited to only the methods

practical to Tunnel 9.

Although applicable methods exist, simple implementation may not be sufficient. There-

fore a full investigation into each applicable method is of interest in this research. Identifi-

cation of weaknesses and methodology improvement is of primary interest in this work.

More specifically, the research objectives are as follows:

1. Identify dynamic force measurements applicable to the AEDC Tunnel 9 facility

2. Identify weaknesses in the conventional implementation of the conventional applica-
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ble methods

3. Modify the applicable methods to improve their performance

4. Validate each modification on numerical and experimental systems

5. Demonstrate methods in wind tunnel tests as able

Upon successful completion of the above research objectives, a practical and concise rec-

ommendation for future Tunnel 9 implementation should be provided.

1.3 Conventional Force Reconstruction Technologies

Two branches of force measurement methodologies are discussed in this dissertation:

forward and inverse[12]. In forward problems, an operation may be performed to a mea-

sured quantity to derive the desired quantity. This may be written as

L {y}= f (1.1)

where L is some operation being performed on the measured quantity y to derive the

desired quantity f.

Inverse problems, on the other hand, are posed in the opposite manor. In such problems,

an operation is being performed on the desired quantity to result in the measurement, i.e.

y = L {f} . (1.2)

In such problems, the operation must be inversely performed on the measured quantity to

derive the desired one.

Each solution methodology discussed hereafter can be cast in such a form.
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1.3.1 Forward Solution Techniques

Forward solution approaches are the most desirable force measurement techniques due

to their relative simplicity as compared to inverse approaches. Some of the more commonly

used approaches and their applicability to Tunnel 9 are discussed in this section.

1.3.1.1 Six-Component Strain Gage Force Balance

As discussed in Section 1.1, this is the most commonly used methodology and is cur-

rently used at Tunnel 9. In this technique, the physics of the force measurement problem

are cast as

SSCS = Frec (1.3)

where SS is a 1 by ns row vector of strain measurements, CS is an ns by 6 matrix of scaling

constants, and Frec is a 1 by 6 row vector of reconstructed forces and moments (Fx, Fy, Fz,

Mx, My, and Mz)[13]. To solve this problem, the user must hang weights at various locations

over the test article and record the strain balance output voltages. After many tests have

been performed, the user may solve for CS as

CS =
[
ST

S SS
]−1 ST

S Fapp (1.4)

where SS is a matrix of stacked strain output row vectors and Fapp is a matrix of stacked

known applied load row vectors. Note that a least squares solution is employed.

This is an accurate method and has been trusted and utilized by the wind tunnel industry

for many decades. However, this method assumes quasi-static equilibrium between the test

article and applied aerodynamic flow. In the dynamic case, structural restoring forces are

present in the strain response and this method will fail.
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1.3.1.2 Sum of Weighted Accelerations Technique

An extension of the strain gage roll balance technique is the sum of weighted accel-

erations technique (SWAT)[14–17]. This method is sometimes referred to as acceleration

compensation but is spiritually equivalent to the SWAT. The SWAT aims to remove the un-

wanted structural restoring forces from the scaled response by measuring the inertial forces

of the test article. As the name suggests, accelerometers are used to measure acceleration

and the response is scaled and combined with the previous method. The SWAT can be

depicted as

SACA +SSCS = Frec (1.5)

where Eq. (1.3) has been expanded to include SA, the acceleration measurements, and CA,

the acceleration scaling constants. To solve this problem, a static calibration is first per-

formed. This is represented by Eq. (1.4). In such cases, loads are applied smoothly and

no dynamics are excited. After the static scaling terms (CS) are obtained, a dynamic cali-

bration is performed. First, a known dynamic load is applied to the test article. Next, the

elastic force contributions are subtracted from that known force. Finally, a least squares

solution is again employed as

CA =
[
ST

ASA
]−1

ST
A
[
Fapp−SSCS

]
(1.6)

1.3.1.3 Free Flying Force Measurement

A technique more commonly used in shock tunnels to measure applied forcing is free

flying force measurement. Since the model is unconstrained, the acceleration of the test

article is directly proportional to the applied loads. Therefore, the physics can be posed
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using Newton’s Second Law, i.e.

SACA = Frec (1.7)

where SA are the acceleration measurements and CA is a matrix of scaling constants contain-

ing the mass properties of the system. This calibration matrix is obtained via experiments

and supplemented using derived inertial quantities of the test article.

Initial tethers must be present to hold the test article in a position prior to flow initi-

ation. Additionally, for safety reasons, a capture mechanism must be present to recover

the test article after the usable flow time has passed[18]. Alternatively, very soft boundary

conditions could be employed so the support structure has very little influence on the test

article over the experiment duration[19]. Due to the scale of test articles at Tunnel 9, these

considerations make this method undesirable. Firstly, test articles can be on the order of a

hundred pounds. Therefore, sturdy tethers must be initially present prior to flow initiation.

However, when the flow impacts the system, these tethers need to break to ensure no affect

on the test article. Ensuring that these tethers are strong enough to support large test articles

but break with little influence after flow initialization would be difficult.

Additionally, Tunnel 9 can have test times on the order of seconds. These methods are

typically employed in shock tunnels due to their short (few millisecond) test times. This

allows the tunnel operators to place the capture mechanism very close to the test article as it

should only move a few millimeters. However, if the desirable test times are on the order of

seconds, the capture mechanism would need to allow a much wider span of motion which

presents further safety concerns. For these reasons, such a technique is not investigated.

1.3.1.4 Surface Pressure Integration

Surface pressure measurement is becoming more and more popular as imaging capabil-

ity becomes more advanced. These and recent advances in pressure sensitive paint (PSP)
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have made the pressure measurement of an entire visible surface possible[20]. With the

surface pressure known, the applied forces can be computed as

‹

S

p(t)dS = Frec(t) (1.8)

where the surface pressure, p, at time t is known everywhere on the surface, S. Integrating

over the entire surface, the applied force can be obtained.

Although this is a promising method, it requires an oxygen flow for the PSP to react[21].

As Tunnel 9 is a pure Nitrogen facility, this will not work. Furthermore, one of the premier

measurements at Tunnel 9 is TSP. Since simultaneous TSP and PSP is not currently pos-

sible, this would sacrifice a key measurement capability. Finally, in some sensitive cases,

this paint layer can be intrusive to the measurements of interest[22] so it may be of interest

to use an internal force measurement mechanism.

1.3.2 Inverse Solution Techniques

Inverse solution methodologies are historically less popular than their forward counterparts[12].

Reasons include high levels of noise contamination due to the inverse formulation and high

computational expense due to the commonly used convolution relationship.

1.3.2.1 Time Domain Deconvolution Method

The first inverse technique discussed is the time domain deconvolution method (TDDM).

This name is not universal for the technique described below, however, many methods can

be categorized as a variant of this. It should also be noted that this is one of the most

popular force reconstruction techniques in hypersonic wind tunnel testing[23–26].

In this method, the system under investigation must be linear and time-invariant (LTI).
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If this condition is satisfied, any input-output (e.g. force-strain) pair can be related via the

convolution integral, i.e.

y(t) =
ˆ t

0
h(t− τ)u(τ)dτ (1.9)

where u in the applied force, y is a measured output (e.g. strain or acceleration), and h is

the impulse response function (IRF) of the system. If the IRF is known, then this equation

can be discretized and assembled into a matrix expression as

y = Hu. (1.10)

Finally, one may invert the impulse response matrix (IRM) and premultiply it by the mea-

sured response to obtain the applied force at a particular location.

The inverse formulation makes this problem ill-posed. However, there are many ap-

proaches to improving the conditioning of the formulation. As this is a methodology-

imposed hindrance, it is not considered a Tunnel 9 application problem. Therefore, this

method is considered. One possible drawback of these methods is the point-to-point for-

mulation. In the discussed forward methods, the center of gravity forces and moments

are computed as an end product. However, in TDDM, only the forcing contribution at a

particular point is reconstructed. This may or may not be a drawback depending on the

application of interest.

1.3.2.2 Frequency Domain Inverse Method

The frequency domain inverse method (FDIM) is a frequency domain couple to the

TDDM. The physics behind this formulation are identical to the TDDM, i.e. input-output

location pairs are related via the continuous convolution integral given in Eq. (1.9). How-

ever, FDIM utilizes the fact that when a Fourier Transform is performed on a time domain
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convolution, it simply becomes a multiplication in the frequency domain, i.e.

F {y(t)}=F {h∗u(t)} (1.11a)

Y (ω) =H(ω) ·U(ω) (1.11b)

where F {·} denotes the Fourier transform, the ∗ operator denotes convolution and capital

variable names represent frequency domain couples of the original time domain variables.

This is proven in Appendix B.2.

By transforming this equation to the frequency domain, the cumulative nature of con-

volution is no longer present. Instead of the response depending on the entire time history

of the IRF from 0 to t, it is only a function of the particular frequency of interest, ω . Instead

of inverting a large IRM, one may simply perform a point wise division of the frequency

response function (FRF), H(ω).

Few examples of this approach are available in wind tunnel testing[27–29]. However,

the computational efficiency and physical similarity to TDDMs make it an attractive option

for longer duration wind tunnel force measurement.

1.4 Instrumentation Considerations

This dissertation primarily focuses on methodology improvements for dynamic force

measurement. However, it is also important to remember the physical sensor challenges

inherent to force measurement. Measurement errors due to temperature sensitivity, thermal

drift, and others may lead to unreasonable errors in the reconstructed force.
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1.4.1 Frequency Response

Due to the constraints of current Tunnel 9 operation, the scope of this dissertation is

limited to the SWAT, TDDM, and FDIM. However, proper measurement recording must be

ensured to test and validate each method. This selection also drives the model design for

wind tunnel tests.

The SWAT requires measurement of strain and acceleration. However, current strain

gage technology utilizes flexures in various direction to isolate the strain measurements to

a particular direction. The use of the flexures limits the stiffness of the balance and causes

a resonant frequency of approximately 30 Hz[30]. Due to the high frequency response

present in some dynamic events, this bandwidth is not sufficient. To circumvent this limita-

tion, an additional strain measurement using piezoelectric strain sensors is recorded. These

sensors are far stiffer and therefore exhibit a much higher resonant peak above 10 kHz.

Additionally, acceleration must be recorded for the SWAT. Therefore, uniaxial piezore-

sistive accelerometers are placed over the test articles. They too, must have high bandwidth

and the selected models exhibit resonant peaks of greater than 10kHz.

As noted, TDDM and FDIM can use strain or acceleration output. However, the dy-

namic input must be precisely known for dynamic calibration. Therefore, an impulse ham-

mer, instrumented with a piezoelectric load cell and dynamically calibrated by the manu-

facturer is used to supply the known applied loads.

1.4.2 Temperature Sensitivity

Physical sensors such as strain gages or accelerometers have temperature sensitivity.

This means that the measured response is also a function of the temperature of the sensor

(e.g. Model 356A32 accelerometers[31]). The validation studies performed in this disser-

tation are all at room temperature, however, it is important to recognize the full picture.
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Temperature sensitivity is of particular importance to hypersonic wind tunnel testing.

Due to the high flow velocities in these tunnels, temperatures can reach much higher levels

than in other typical measurement applications. More recently, sensors specifically de-

signed for wind tunnel measurement are starting to account for this thermal sensitivity by

adding a sensor temperature measurement to the sensor and providing a temperature cali-

bration in addition to the typical calibration. For example, Kulite now provides a five wire

model high frequency pressure gage to account for temperature sensitivity[32].

There are a few ways to circumvent this thermal effect. The first is to simply only test

in room temperature. This is what is done in this dissertation to validate methodologies

but is obviously not possible in many wind tunnel testing applications. The second, as

discussed previously, is to measure the temperature of the sensor and use a previously

derived calibration curve to correct the sensor response. Finally, one may attempt to fix

the sensor temperature at a desired temperature through the use of thermal insulation or

a cooling jacket. For example, NASA Langley uses cooling jackets on many of its strain

gage roll balances to prevent the negative effects of thermal drift.

1.4.3 Capacitive Drift

This final sensor consideration is of particular interest to piezoelectric sensors. These

sensors often have very high frequency response due to the high stiffness. However, these

sensors are capacitive in nature, meaning any constant load applied will generate a response

voltage which will decay to zero over time. This decay is repeatable and is characterized

by the time constant provided by the sensor manufacturer.

The capacitive drift can cause many errors to the various methods discussed in this

dissertation. For example, the SWAT requires a static calibration where a constant load is

applied to the test article. Unfortunately, due to this capacitive drift, the voltage output from
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the piezoelectric sensors will decay with time preventing ideal steadying of the applied

load. Additionally, this drift affects the low frequency response of these sensors, ultimately

lower band limiting the response. However, this is far lower than what is of interest in most

wind tunnel applications.

Since this drift is repeatable, the tester could apply a correction to the measured data

prior to applying any methodology. However, these corrections are not considered in this

methodology development to limit the complexity of the various discussions.
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Chapter 2: Dynamic Force Measurement Methodology Development

In this chapter, an overview of the three force measurement techniques that are applica-

ble for Tunnel 9 is presented. These are the SWAT, TDDM, and FDIM. Additionally, novel

changes made to each method and the extension to multiple input-output systems are pre-

sented. Next, a brief numerical example of each method is shown. Finally, the limitations

of each method under investigation is discussed.

2.1 SWAT

The first method under investigation is the SWAT. This method bears the most re-

semblance to typical static calibration methodologies and therefore is easiest to under-

stand and implement. Additionally, examples of the conventional version of this method

have been employed by researchers at CALSPAN-University of Buffalo Research Center

(CUBRC)[14, 15] for axial and normal force measurement in a hypersonic wind tunnel.

The alterations described in this dissertation were first presented in our AIAA conference

paper[16].

2.1.1 SWAT Overview

The basic SWAT is composed of two steps: a static and dynamic calibration. The static

calibration step is analogous to what has been done for decades with conventional strain

gage force balances. To create an accurate static calibration matrix, begin with Eq. (1.3).
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Next, one must apply a constant load to the test article. This is most commonly done

using some sort of a weight hanger and double knife edge to ensure point loading. Next,

the weight can be settled and the tester can utilize gravity to ensure the directionality of

the applied static load. When the weight is steady, the applied load can be assumed to be

coincident with the gravity direction and the voltage reading from the strain gages can be

recorded. Next, one may remove the weight and reapply them at a new location and repeat.

Each test will form an equation of the form

[
F i

x F i
y F i

z Mi
x Mi

y Mi
z

]
=

[
Si

1 Si
2 . . . Si

ns

]
CS (2.1)

where the superscript, i, denotes the test number, ns is the number of strain channels mea-

sured, and CS is an m by 6 static calibration matrix.

Additional tests will further contribute to the solution of CS and can simply be stacked

onto Eq. (2.1) as



F1
x F1

y F1
z M1

x M1
y M1

z

F2
x F2

y F2
z M2

x M2
y M2

z
...

...
...

...
...

...

FP
x FP

y FP
z MP

x MP
y MP

z


=



S1
1 S1

2 . . . S1
ns

S2
1 S2

2 . . . S2
ns

...
... . . . ...

SP
1 SP

2 . . . SP
ns


CS (2.2)

where P is the number of calibration tests performed. Equation (2.2) may be written in

matrix form as

Fapp = SSCS. (2.3)

Provided P > ns (i.e. there are more calibration tests performed than number of strain
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channels), this equation can be uniquely solved using a least squares pseudo inverse

CS =
[
ST

S SS
]−1 ST

S Fapp. (2.4)

The least squares pseudo inverse will henceforth be written as

S+
S =

[
ST

S SS
]−1 ST

S (2.5)

for compactness.

It is common practice to encompass all loading magnitudes and directions in your static

calibration. This will help prevent extrapolation of the calibration matrix. Additionally,

static calibrations occasionally apply multiple loads simultaneously (e.g. side force and

normal force). As this is not possible with our current test setup, it will not be utilized.

The next step of the SWAT is a dynamic calibration. In this step, the acceleration

response will be scaled to the elastic force contributions present in the statically calibrated

strain measurement. This is done by adding an additional term to Eq. (1.3) as is shown in

Eq. (1.5). This step of the analysis is a bit more computationally expensive than the static

calibration. This is due to the time dependence of the formulation. Rather than just a single

value per channel, many cycles of structural resonances are required.

Start by expanding Eq. (1.5) for a given time, t j

[
F i

x F i
y F i

z Mi
x Mi

y Mi
z

]
t j

=

[
Si

s,1 Si
s,2 . . . Si

s,ns

]
t j

CS+

[
Si

a,1 Si
a,2 . . . Si

a,na

]
t j

CA

(2.6)

where the subscript s denotes a strain measurement, a denotes an acceleration measure-

ment, and na denotes the number of accelerometer channels.

Consider an applied dynamic load where the force and moment contributions are known
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as a function of time. This would be the case for a step load applied at a known location. If

the load is applied suddenly, inertial oscillations and structural restoring forces will ensue.

This results in a time varying response of both the accelerometers and the strain sensors.

Similarly to Eq. (2.2), Eq. (2.6) is stacked for all sampled points of interest as

Fi
app = Si

sCS +Si
aCA. (2.7)

This process is repeated at a new or different location and this creates a new data set

that should utilize the same calibration matrices. Therefore, Eq. (2.7) is stacked for multiple

tests as 

F1
app

F2
app
...

FP
app


=



S1
s

S2
s
...

SP
s


CS +



S1
a

S2
a
...

SP
a


CA (2.8)

or in matrix form as

F̂app = ŜsCS + ŜaCA (2.9)

where the hat signifies all tests stacked together. Since the static calibration matrix is

known, the applied load is known, and the strain and acceleration data are measured, the

dynamic calibration matrix is solved as

CA = Ŝ+
a
[
F̂app− ŜsCS

]
. (2.10)

With both calibration matrices known, any dynamic response of the test article can be

measured and inserted into to Eq. (2.7) to construct the applied force. Since both calibra-

tions are done a priori, this multiplication can be performed directly on the measured data

as it is recorded. This means one can have a live estimate of the applied forces during a
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tunnel run.

2.1.2 Novel SWAT Alterations

2.1.2.1 Modal Separation

The SWAT is a straightforward method that aims to build on a trusted method to im-

prove accuracy in the dynamic regime. However, this methods simplicity is also a source

of weakness. In a typical modal response of a structural system, the presence of the first

mode will be the dominant amplitude. The consequence of this on the SWAT is that the

dynamic calibration matrix tends to be weighted towards removing the first (or rather the

most dominant) mode of the system. This bias will prevent extensive removal of higher

order dynamics and is a case of high frequency error.

In the first alteration to the SWAT, higher frequency accuracy is sought. To achieve this,

modal isolation of the acceleration response is proposed. During dynamic calibration, if

each mode of vibration is scaled separately and removed from the dynamic strain response,

higher order removal of modal dynamics is possible.

Begin by filtering the measured signals around the first mode of interest, l. Equation

(2.9) then becomes

F̂app,l = Ŝs,lCS + Ŝa,lCA,l (2.11)

where a new dynamic calibration matrix, CA,l is defined that is specific to mode l.

Just as in the non-modally separated case, each dynamic calibration matrix can be

solved using Eq. (2.10) for the filtered data as

CA,l = Ŝ+
a,l

[
F̂app,l− Ŝs,lCS

]
. (2.12)

One may repeat this for all L modes of interest. When the solution of each dynamic
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calibration matrix is obtained, they can be applied to the strain response via a summation

over all modes, i.e.

F̂app = ŜsCS +
L

∑
l=1

(
Ŝa,lCA,l

)
. (2.13)

By modally separating the inertial response, higher order accuracy that is not biased by first

mode contributions should be achievable.

2.1.2.2 Damping Force Term

Another observation made is the clear resemblance that Eq. (2.9) bears to the equation

of motion of a structural system, i.e.

mÿ+ cẏ+ ky = Fapp (2.14)

where m, c, and k are the mass, damping, and stiffness of the single degree of freedom

(SDOF) spring-mass-damper system. However, in the SWAT, any damping force has not

been considered. Therefore, the addition of a damping force term into the SWAT is pro-

posed.

Begin by adding a term to Eq. (2.9) which scales a measured velocity as

F̂app = ŜsCS + ŜvCV + ŜaCA. (2.15)

Now this equation is very similar to Eq. (2.14). Note that CV and CA must be simultane-

ously solved as [
CV CA

]
=

[
Ŝv Ŝa

]+ [
F̂app− ŜsCS

]
(2.16)

Similarly to the first alteration, modal isolation is maintained and the applied force is
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solved as

F̂app = ŜsCS +
L

∑
l=1

(
Ŝv,lCv,l + Ŝa,lCA,l

)
(2.17)

where simultaneous solution for each Cv,l and Ca,l is required as

[
CV,l CA,l

]
=

[
Ŝv,l Ŝa,l

]+ [
F̂app,l− Ŝs,lCS

]
. (2.18)

The addition of this term may improve accuracy when the damping force is large.

2.1.3 Numerical Example of the SWAT

Consider a multiple degree of freedom (MDOF) spring-mass-damper model as shown

in Figure 2.1. A system such as this has n DOF or n modes of vibration. This will allow us

Figure 2.1: MDOF lumped mass system

to display the biasing of the SWAT to dominant modes.

For this study, n = 10 is chosen. The stiffness properties are chosen randomly from 0

to 10000 with some separation to encourage spacing of the modes. This is done by adding

each stiffness value by the previous values. The mass properties are all set to one and the

damping values range from 0 to 100. Since n = 10, up to ten modes of vibration are present

in the elastic response. A numerical integration scheme (e.g. fourth order Runge-Kutta) is

used to solve for the kinematics (displacement, velocity, and acceleration) of each mass as a

function of time in response to a prescribed applied load. In reality, the measurement of the

kinematics of every DOF is not feasible, therefore, the measured DOFs (i.e. strain sensor

and accelerometer locations) are restricted to only three DOFs. Similarly, it is unrealistic
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to supply inputs at every DOF so the applied inputs are restricted to only the odd DOFs.

Therefore, ns = na = 3 and P = 5.

For the static calibrations, a 10 N step load with a ten second rise time is used. The

displacement data will be collected at the end of the simulation to ensure any dynamics

have ceased. For dynamic calibrations, a 10 N step load with a 0.1 second rise time is

used. The speed of this load application will prevent static equilibrium over the test time

of interest.

Finally, note that for a numerical system such as this, there is no transverse or rotational

motion allowed. Therefore, the output forces and moments (i.e. Fx, Fy, Fz, Mx, My, and Mz)

will no longer be relevant and are instead replaced with a single force contribution, F .

2.1.3.1 Static Calibration

A static calibration need first be performed. First the quasi-static step loads is applied

at the odd input locations. A numerical integration code (e.g. ode45) can then be used to

approximate the kinematics under that load. Assuming positive damping and the slow rise

time, the dynamics should be small towards the end of the time history. Therefore, extract

the displacement values at each of the three output locations at this time. These serve as

the outputs (Si) in Eq. (2.1). Progressing to the various input locations, the other rows of

Eq. (2.2) are filled in identical fashion. Finally, Eq. (2.4) is used to solve for the static

calibration matrix.

To determine the accuracy of this static calibration, the commonly used Back Calculated

Residuals (BCR)[13] is used. This is defined as

BCR = SSCS−Fapp. (2.19)

This is effectively a measure of how well Eq. (2.3) holds for this static calibration. For
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the example shown in this discussion, the BCR are shown in Table 2.1. Additionally, the

percentage error, computed as

ε =
BCR
Fapp

·100% (2.20)

are also displayed.

Table 2.1: Back Calculated Residuals for Numerical MDOF SWAT Example

Input DOF BCR ε

1 -0.4012 -4.01%
3 0.6541 6.54%
5 -0.5242 -5.24%
7 -0.0070 -0.07%
9 0.1885 1.89%

The errors are fairly low and are on average less than 5%. Better results could be

achieved with more input and output locations, but this level of error is deemed acceptable

for this investigation.

2.1.3.2 Modal Separation

The next step is to perform a dynamic calibration. For simplicity, the same input and

output locations as in the static calibration are chosen. As mentioned, a 10 N step load

is applied with a 0.1 second rise time to onset a dynamic response. Again, a numerical

integration code is used to simulate the kinematics of the system.

The dynamic calibration matrix is first computed using Eq. (2.10), the standard way.

Next, compute dynamic calibration matrices using Eq. (2.12) with three frequency ranges.

These ranges are 0− 2 f1, 2 f1− 1.5 f2, and 1.5 f2− 2 f10. Due to the close proximity and

low magnitude of the higher modes, only one calibration matrix is used for modes 3-10.

An example of the dynamic calibrations can be seen in Figure 2.2. The elastic force,

computed using Eq. (2.3), is also shown. Immediately, it is clear that a dynamic calibration
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Figure 2.2: SWAT Force Reconstruction using standard (red) and modally separated (green)
methods.

is necessary as the elastic forces dominate the response. After applying the standard SWAT,

the reconstruction improves, however, there still exists high frequency error. Finally, after

applying the modally separated approach, the reconstruction very closely matches the ap-

plied load.

Further insight can be gained by investigating each reconstruction in the frequency

domain. This is shown in Figure 2.3.

In the standard method, the only modal contributions that have decreased in magnitude

are the first mode. All higher order modes have actually increased in magnitude beyond

what was present in the elastic response. The biasing of first mode contributions has actu-

ally caused an amplification of the higher mode dynamics. In the modally separated method

however, these high mode contributions are very small and our reconstruction matches the

applied load very well. In particular, the two truly isolated modes, (i.e. modes 1 and 2)

were completely removed and the reconstruction nearly perfectly matches the applied load

over these two frequency ranges.
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Figure 2.3: Frequency contribution of SWAT Force Reconstruction using standard (red)
and modally separated (green) methods.

Clearly, allowing separate dynamic calibration matrices for various frequency ranges

can result in more accurate reconstructions.

2.1.3.3 Damping Force Term

Finally, consider the addition of the damping force term. Only Eq. (2.17) is discussed

but the advantages are analogous to the non-modally separated case.

For this study, all numerical parameters (including filtering ranges for modal separation)

remain the same. However, the magnitude of the damping matrix is varied to observe the

accuracy of each method as a function of the damping force. The results are presented in

Figure 2.4.

Four cases are depicted, each with increased damping. Begin with Figure 2.4a. In

this example, the damping matrix has been multiplied by zero to represent an undamped

system. For this case, this method has little effect on the result and performs as well as the
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(a) (b)

(c) (d)

Figure 2.4: Example force reconstruction using modally separated damping force SWAT.
0x (a), 1x (b), 10x (c), and 100x (d) damping are all shown.

modally separated method.

In Figure 2.4b, the damping is chosen to match the previous analysis. Again for

this lightly damped case, little improvement is observed and this performs as well as the

modally separated method.

In Figure 2.4c, the damping is increased by an order of magnitude. This is done to make

the damping force more significant. Observing this figure, the advantages of the damped

method begin to show. The damped method more accurately rejects the structural oscil-

lations than the other two methods. Additionally since the modally separated formulation

was maintained, high frequency accuracy is also achieved.
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Finally, in Figure 2.4d, the damping is increased by two orders of magnitude as com-

pared to the case shown in Figure 2.4b. In this study, the damping force is extremely

significant. This is reflected in the accuracy of the various methods. Due to the large damp-

ing force, the standard SWAT and modally separated versions are ineffective at removing

the structural oscillations of even the first mode. However, since Eq. (2.17) considers a

damping force, this method very accurately reconstructs the applied step loading.

2.1.4 SWAT Limitations

The SWAT appears to be an elegantly simple method that builds on techniques that have

been used for decades. Additionally, two major limitations (i.e. high frequency error and

neglecting damping force) have been alleviated with the proposed alterations. However,

there are still inherent limitations with this method when considering a physical system.

The first problem is the measurement of point velocity. For the displacement measure-

ment, strain gages are used. For the acceleration measurement, accelerometers are used.

However, there is no way to measure the velocity at a particular point within the test arti-

cle. This leaves us with two options: integrating the acceleration response or differentiating

the strain response. The latter will amplify any noise in the system while the former will

amplify any sensor bias. Therefore, neither approach is optimal.

Another major limitation of this method is the inability to account for phase shifts in the

system response. Since this method simply scales the measurements, there is no way to ac-

count for phase shifts between the acceleration, velocity, and displacement/strain response.

In theory, this is acceptable as there should be no phase delay for strain, velocity, and ac-

celeration recorded at the same location. However, in reality, it is impossible to measure

the response at exactly the same location. Therefore, there will always be some amount

of phase lag due to real stress wave propagation. Furthermore, more significant phase lag
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occurs due to varying sensor response time. Due to a myriad of factors such as sensor oper-

ation and electrical connections, real sensor delay exists in a physical measurement. Since

this cannot be accounted for in the problem formulation, this is an unavoidable limitation.

These phase shift effects are expected to be small. Therefore, this limitation should

only band-limit the effectiveness of SWAT meaning it will still be useful at reconstructing

these forces up to the frequency at which these system delays become significant.

2.2 TDDM

Next the TDDM is analyzed. This method relates an input and output via time domain

convolution with the IRF. The primary motivation for looking into TDDMs is the phase

delay limitation of the SWAT. Any repeatable phase shift in sensor response can be directly

accounted for in the IRF. Therefore, higher frequency accuracy is expected to be possible.

2.2.1 TDDM Overview

For LTI systems, the relationship between an input, u(t), and output, y(t), can be de-

scribed by the convolution of the input and IRF, h(t), of the system. This relationship can

be expressed as

y(t) =
ˆ t

0
h(t− τ)u(τ)dτ. (2.21)

Typical solution of the inverse problem using Eq. (2.21) invokes the assumption that sys-

tem response to a finite pulse is approximately the impulse response[24]. If the response

is scaled by the area and time shifted by half the width of the impulse, this is a decent

assumption. Any output response can be deconvolved with this impulse response to re-

construct the input. To realize this, observe Figure 2.5. The unaltered output (red) from

the applied finite impulse does not appear to match the analytical IRF. However, when the
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Figure 2.5: Typical IRF solution using scaling and time shifting of the displacement.

displacement is scaled by the area under the impulse and shift it by half of the width of

the impulse, it nearly perfectly matches the analytical IRF. Note that the magnitude of the

impulse has be reduced considerably for visualization purposes.

Alternatively, Eq. (2.21) could be solved given a measured input and output. However,

the former approach is usually taken for simplicity. Additionally, instrumented impulse

hammers are commercially available and therefore the determination of area and pulse

width is simple.

The next step is to discretize Eq. (2.21). Since real signals are sampled, a discrete equa-

tion must be formulated. Begin by breaking up the continuous integral into a summation

of integrals over each sampling time as

y(tk) =
k−1

∑
i=0

ˆ (i+1)∆ts

i∆ts
h(tk− τ)u(τ)dτ (2.22)

where ∆ts is the sampling time and tk = k∆ts. Next, zero order sampling is typically as-

sumed. This is the assumption that a sampled value remains constant until the next sam-

pled time. Although this would be a step-like representation of the signal, it allows for easy
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solution of the integral. Subbing this assumption into Eq. (2.22) results in

yk =
k−1

∑
i=0

hk−i

[ˆ (i+1)∆ts

i∆ts
dτ

]
ui+1 (2.23)

where the subscripts denote the sampling index (i.e. ui = u(i∆ts)). This integral can be

easily solved as

yk =
k−1

∑
i=0

hk−iui+1∆ts (2.24)

and assembled into matrix form for all L points as

y = Hu∆ts. (2.25)

Since all hi points were solved for during impulse testing and y is measured, the unknown

applied input can be solved by inverting the impulse response matrix (IRM), H, i.e.

u = H−1y · 1
∆ts

. (2.26)

Although constructing the IRM is fairly straight forward, the inversion is not. During

the inversion, small amounts of noise present in the measurements become large errors

in the reconstruction and can often cause the response to erroneously blow up. For an in

depth discussion of this problem, review Appendix A. If H has any small singular values,

any noise in the measured output can become large errors in the reconstructed input.

To solve this ill-posed problem, regularization is typically used. This is the process

of introducing additional information into the problem to improve the conditioning of the

inversion. Arguably the most common regularization technique is the Tikhonov method[33,

34]. This is effectively an extension of least squares method. Consider a matrix A, an mxn
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matrix with m≥ n where

y = Au. (2.27)

The Least Squares method provides a unique approximation by minimizing

F = ||y−Au||22, (2.28)

the square of the L2 norm of the difference of each side, with respect to u. If one caries out

this minimization (i.e. ∂F/∂u = 0), they obtain the expression used throughout this paper,

i.e.

u≈
(
AT A

)−1 AT y. (2.29)

However, this solution does not guarantee an accurate solution. Tikhonov suggested sup-

plementing the objective function (i.e. F from Eq. (2.28)) with an additional term

FT = ||y−Au||22+||Γu||22 (2.30)

where Γ is an arbitrary matrix. If FT is minimized with respect to u, the result is

u≈
(
AT A+Γ

T
Γ
)−1 AT y. (2.31)

This formulation can be further simplified by assuming

Γ =
√

αI (2.32)

where α is a positive, user supplied regularization parameter and I is the identity matrix of
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dimension n. Plugging Eq. (2.32) into Eq. (2.31) results in

u≈
(
AT A+αI

)−1 AT y. (2.33)

Provided the user supplies an appropriate regularization parameter, α , an accurate solution

of u may be obtained.

Much of the research into the solution of inverse problems focuses on regularization

and the solution of regularization parameters[35]. One widely accepted approach is known

as the L-Curve method and is applicable to many regularization schemes[36, 37]. This

method is most easily understood graphically. Consider Figure 2.6. Using Tikhonov as an

Figure 2.6: Mock L-Curve Output

example, the user can supply various α parameters to try and influence the answer. Too

small of α will allow the noise to corrode the response and hence the norm of the input, u,

will grow. This is depicted in the left of the graph. However, as α is increased, the influence

of this noise will decrease and the solution will become more accurate, as depicted in the

bottom of the graph. The creators of the L-Curve method noted that there is an optimal

regularization parameter that considers both norms and occurs at the bend of this function.

31



This optimal is displayed by the green dot in Figure 2.6.

Countless methods exist to regularize this inversion and even more exist to select a pa-

rameter for the various methods. For this work, the two common approaches discussed

above are of interest. For added clarity, the ”standard” TDDM used in this work is summa-

rized below:

1. Apply an impulse at the input location of interest and record the dynamic response

at the output of interest.

2. To obtain the IRF, divide the response magnitude by the area under the pulse and

time shift it (backwards) by half of the impulse width.

3. Record the dynamic response of a new input at the same location.

4. Assemble Eq. (2.25) using the measured output and constructed IRF.

5. Approximate the input by evaluating Eq. (2.33) where α is chosen using the L-Curve

method.

2.2.2 Novel TDDM Alterations

While working with the conventional TDDM, two problems were initially identified:

1. Solution of the IRF requires impulse testing and

2. Selection of regularization parameter is often difficult and requires multiple attempts.

A more general method was sought that (1) could utilize any dynamic calibration load

available to testers to solve for the IRF. Since the convolution is commutative, as proved

in Appendix B.1, any solution methodology utilized for solution of an unknown applied

dynamic force, could also be used to solve for the IRF if the load is known.
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Additionally, a simpler method was sought that (2) didn’t require selection of a regu-

larization parameter than imparts arbitrary smoothness into the solution.

To remedy these two shortcomings, a completely new TDDM was developed. The

formulation is as follows. Two new methods have been developed:

1. Constraint Matrix Method (CMM) and

2. Generalized Draper-Lee Method (GDLM).

The CMM is a linear version of the GDLM, formulated in a simpler way. The CMM was

first presented in our Journal of Sound and Vibration (JSV) article[38] and the GDLM was

first presented in our following JSV article[39].

2.2.2.1 Constraint Matrix Method

Consider a linear, time-invariant (LTI) system. The relationship between an input, u(t),

and output, y(t), for such a system can be described by the convolution of the input and

IRF, h(t), of the system. This relationship can be expressed as Eq. (2.21) and mirrored here

for clarity as

y(t) =
ˆ t

0
h(t− τ)u(τ)dτ. (2.34)

As discussed above, typical solution of the inverse problem using Eq. (2.21) invokes the as-

sumption that system response to a finite pulse is approximately the impulse response[24].

If the response is scaled by the area and time shifted by the width of the impulse, this is a

decent assumption. Any output response can be deconvolved with this impulse response to

reconstruct the input.

Instead of this approach, the commutative property of the convolution integral is in-
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voked and Eq. (2.21) is rewritten as

y(t) =
ˆ t

0
u(t− τ)h(τ)dτ. (2.35)

For discrete measurement signals the integral in Eq. (2.35) can be segmented into a

summation of integrals over each pair of sampling points:

y(tk) =
k−1

∑
i=1

ˆ ti+1

ti
u(tk− τ)h(τ)dτ. (2.36)

Many discrete representations of the convolution integral utilize the assumption that a sam-

pled point holds constant until the next point is sampled, as is done in Eq. (2.24). However,

here it is assumed that u(t) and h(t) are piecewise linear over the sampling time segment,

∆ts, as follows:

u(t) = (1− s)ui + sui+1 t ∈ [ti, ti+1] (2.37a)

h(t) = (1− s)hi + shi+1 t ∈ [ti, ti+1] (2.37b)

s =
t− ti
∆ts

t ∈ [ti, ti+1] (2.37c)

From Eq. (2.37c), it is assumed that dt = ∆ts ds. Note that for convenience of formulation,

the sampling frequencies are assumed to be the same for u(t) and h(t). However, a larger

time segment for h(t) is subsequently assumed through a linear constraint. Applying this

constraint significantly improves the conditioning of the problem, for solution via the least

squares method. For compactness, the expressions in Eq. (2.37) may be written in matrix
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form as follows:

u(t) =
[

ui ui+1

]N1

N2

 t ∈ [ti, ti+1] (2.38a)

h(t) =
[

N1 N2

] hi

hi+1

 t ∈ [ti, ti+1] (2.38b)

where N1 = 1−s and N2 = s. Substituting this into Eq. (2.36) and transforming the integral

from τ to s results in:

yk =
k−1

∑
i=1

[
uk−i+1 uk−i

]ˆ s=1

s=0

 N2
1 N1N2

N1N2 N2
2

∆tsds

 hi

hi+1

 (2.39)

Next, Eq. (2.39) is assembled into matrix form over all time segments. For illustration,

consider the first few points of a signal and how Eq. (2.39) evolves with time.

y2 =

[
u2 u1

]
N∆ts

h1

h2

 (2.40a)

y3 =

[
u3 u2

]
N∆ts

h1

h2

+

[
u2 u1

]
N∆ts

h2

h3

 (2.40b)

y4 =

[
u4 u3

]
N∆ts

h1

h2

+

[
u3 u2

]
N∆ts

h2

h3

+ . . .

+

[
u2 u1

]
N∆ts

h3

h4

 (2.40c)

where N =

ˆ s=1

s=0

 N2
1 N1N2

N1N2 N2
2

ds (2.40d)
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Even when only considering three time steps, the equations become complicated. There-

fore, extraction of patterns is desirable to perform a faster matrix operation instead. One

may notice that the multiplication of uk−i+1 and uk−i with N is reused every time step.

Therefore let us define a row vector for the multiplication that occurs each time step as

[
ak−1,1 ak−1,2

]
=

[
uk−1 uk

]
N. (2.41)

Using the above equation, the column vector of the output at all time segments can be

related to a column vector of the IRF at all time segments as follows:



y2

y3

...

yN+1


=



a1,1 a1,2 0 . . . 0

a2,1 a2,2 +a1,1 a1,2 . . . 0

a3,1 a3,2 +a2,1 a2,2 +a1,1 . . . 0
...

...
... . . . ...

aN,1 aN,2 +aN−1,1 aN−1,2 +aN−2,1 . . . a1,2





h1

h2

...

hN


∆ts (2.42)

or in compact form as

y = Ah∆ts (2.43)

Note that the final column of A has been truncated to ensure it is square. This is not required

but is done to maintain similarity with previous methods.

For a given input and output, one may assemble A, invert A, and solve for h. However,

this inversion is ill-posed and a simple matrix inverse problem is not possible. Typical

solution of this problem utilizes regularization to force a well-posed solution[40] in which

the matrix is conditioned to remove any singularities.

However, a different approach is taken to improve the conditioning of the inverse prob-
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lem. In this approach the assumption that a single linear segment of the resultant IRF holds

for multiple segments of the input and output is made. Here the parameter

R1 =
∆th
∆ts

, (2.44)

is defined where ∆th is the new time segment of h(t) and ∆ts is the sampling time segment.

Next a linear constraint is invoked to account for this difference in time segment size.

For the sake of illustration, assume R1 = 3 and consider the IRF over the first time segment

of ∆th. For all points in this segment h(t) can be expressed as follows:

h(t) = (1− sh)h(0)+ shh(3∆ts) sh ∈ [0,1] (2.45)

Therefore the first R1 points of the segment can be written as follows:

h(0) =(1−0)h(0)+0h(3∆ts) = h(0)

h(∆ts) =(1− 1
3
)h(0)+

1
3

h(3∆ts)

h(2∆ts) =(1− 2
3
)h(0)+

2
3

h(3∆ts)

or in matrix form 
h(0)

h(∆ts)

h(2∆ts)

=


1 0

2
3

1
3

1
3

2
3


 h(0)

h(3∆ts)

 (2.46)

Such a relationship also exists for the next truncated segment of the IRF, i.e.


h(3∆ts)

h(4∆ts)

h(5∆ts)

=


1 0

2
3

1
3

1
3

2
3


h(3∆ts)

h(6∆ts)

 (2.47)
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Continuing this pattern for all N points in the IRF of interest, one may assemble all these

relationships as



h(0)

h(∆ts)

h(2∆ts)

h(3∆ts)

h(4∆ts)

h(5∆ts)
...

h((N−3)∆ts)

h((N−2)∆ts)

h((N−1)∆ts)

h(N∆ts)



=



1 0 0 . . . 0 0

2
3

1
3 0 . . . 0 0

1
3

2
3 0 . . . 0 0

0 1 0 . . . 0 0

0 2
3

1
3 . . . 0 0

0 1
3

2
3 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 0

0 0 0 . . . 2
3

1
3

0 0 0 . . . 1
3

2
3

0 0 0 . . . 0 1





h(0)

h(3∆ts)

h(6∆ts)
...

h((N−3)∆ts)

h(N∆ts)



(2.48)

Note the diagonal stitching of each segment of the IRF into the larger constraint matrix.

This expression can be written compactly as

h = Chhc (2.49)

where Ch is a matrix assembled from the mapping matrix as shown Eq. (2.46), and hc is

the constrained, IRF vector. Substituting Eq. (2.49) into Eq. (2.42) yields

y = AChhc∆ts = Âhc∆ts. (2.50)

The multiplication of A and Ch is denoted Â that is N by (N/R1 + 1). Using R1 > 1

results in many more rows than columns, which allows for a better conditioned least squares

38



inversion.

Applying the initial condition hc(0) = 0, Eq. (2.50) can be solved using least squares

method as follows:

hc =
1

∆ts

(
ÂT Â

)−1
ÂT y (2.51)

With the IRF now determined, return to Eq. (2.21). Since the commutative property of

convolution is invoked, the roles of the IRF and input can be simply switched in the final

discretized equation as

yk =
k−1

∑
i=1

[
hk−i+1 hk−i

]ˆ s=1

s=0

 N2
1 N1N2

N1N2 N2
2

∆tsds

 ui

ui+1

, (2.52)

and solve for any input.

Since h(t) is assumed linear over ∆th, one may evaluate h(t) at any points corresponding

the sampling rate of the output. A linear constraint is subsequently applied to the input to

obtain a least squares solution of that input. One needs to select a new ratio

R2 =
∆ti
∆ts

=
fs

fi
(2.53)

between the sampling frequency ( fs) of the measured output, y(t), and that of the input,

u(t), to be constructed. The reconstructed input will be piecewise linear of time segments

of length ∆ti. This ratio need not be related to that used to form the IRF (R1 = fs/ fh)

and therefore, various R2 values may be selected to determine the best solution. Note

that selecting R2 < R1 is not recommended as no additional information is given at a finer

sampling interval than R1∆ts. Recall that linear interpolation is used to obtain these points.

To solve for the input, the convolution needs to be formulated out of the new known:

the IRF. Again a constraint matrix, Cu, is applied, formed by using the prescribed R2 value.
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Although this analysis is equivalent to the IRF solution, it is presented here for clarity.

Return to Eq. (2.52). For illustration, consider the first few points of a signal and how

this equation evolves with time.

y2 =

[
h2 h1

]
N∆ts

u1

u2

 (2.54a)

y3 =

[
h3 h2

]
N∆ts

u1

u2

+

[
h2 h1

]
N∆ts

u2

u3

 (2.54b)

y4 =

[
h4 h3

]
N∆ts

u1

u2

+

[
h3 h2

]
N∆ts

u2

u3

+ . . .

+

[
h2 h1

]
N∆ts

u3

u4

 (2.54c)

where N =

ˆ s=1

s=0

 N2
1 N1N2

N1N2 N2
2

ds (2.54d)

Even when only considering three time steps, the equations become complicated. There-

fore, extraction of patterns is desirable to perform a faster matrix operation. Just as in the

IRF solution, one may notice that the multiplication of hk−i+1 and hk−i with N is reused

every time step. Therefore let us define a row vector for the multiplication that occurs each

time step as [
bk−1,1 bk−1,2

]
=

[
hk−1 hk

]
N. (2.55)

Using the above equation, the column vector of the output at all time segments can be
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related to a column vector of the unknown input force at all time segments as follows:



y2

y3

...

yN+1


=



b1,1 b1,2 0 . . . 0

b2,1 b2,2 +b1,1 b1,2 . . . 0

b3,1 b3,2 +b2,1 b2,2 +b1,1 . . . 0
...

...
... . . . ...

bN,1 bN,2 +bN−1,1 bN−1,2 +bN−2,1 . . . b1,2





u1

u2

...

uN


∆ts (2.56)

or in compact form as

y = Bu∆ts (2.57)

Note that the final column of B has been truncated to ensure it is square. This is not required

but is done to maintain similarity with previous methods.

As in the IRF solution, one may apply a constraint to the unknown input force. For the
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example case of R2 = 3, the full constraint relationship is



u(0)

u(∆ts)

u(2∆ts)

u(3∆ts)

u(4∆ts)

u(5∆ts)
...

u((N−3)∆ts)

u((N−2)∆ts)

u((N−1)∆ts)

u(N∆ts)



=



1 0 0 . . . 0 0

2
3

1
3 0 . . . 0 0

1
3

2
3 0 . . . 0 0

0 1 0 . . . 0 0

0 2
3

1
3 . . . 0 0

0 1
3

2
3 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 0

0 0 0 . . . 2
3

1
3

0 0 0 . . . 1
3

2
3

0 0 0 . . . 0 1





u(0)

u(3∆ts)

u(6∆ts)
...

u((N−3)∆ts)

u(N∆ts)



(2.58)

or written compactly as

u = Cuuc. (2.59)

Plugging Eq. (2.59) into Eq. (2.57), yields the new discrete convolution relationship

written as

y = B̂uc∆ts, (2.60)

where B̂ = BCu. As mentioned previously, a different R2 value may be used and therefore

Cu may be different from Ch from Eq. (2.49). Now an equation similar to Eq. (2.51) can

be constructed as

uc =
1

∆ts

(
B̂T B̂

)−1 B̂T y (2.61)

to solve for the applied input.
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2.2.2.2 Generalized Draper-Lee Method

One may wonder why a linear distribution was chosen in the CMM instead of some

other order. Therefore, the formulation of a general method that allows for any user selected

distribution of the unknown IRF or input is desirable. This is done in this section and is

referred to as the Generalized Draper-Lee Method. To demonstrate this, reconsider the IRF

construction. A new time interval is defined as

∆th = R1 ·∆ts (2.62)

where ∆th is the selected time segment of the unknown IRF, R1 is an integer number greater

than one, and ∆ts is the sampling time segment of the known output. Equation (2.35) is

rewritten as a summation over these intervals, i.e.

y(t) =
N−1

∑
i=0

ˆ (i+1)∆th

i∆th
u(t− τ)h(τ)dτ (2.63)

where N = t/∆th. Over this segment, a form of the IRF where all points in the segment are

a function of the IRF at the end points or nodal points is assumed, i.e.

h(t) = Nhhi (2.64)

where Nh is a row vector of interpolation functions of the normalized time parameter, sh

(0 ≤ sh ≤ 1 for segment i), and hi is a column vector of the unknown nodal values for

segment i. Over every R1 sampling points, the IRF is assumed to have a distribution which

is only a function of the nodal points. At this point, a general form of Nh is maintained.

For specific examples, refer to Eqs. (2.79) and (2.97).

Instead of choosing the same discretization for the measured input, all of the infor-
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mation is extracted at each sampling point. One may plug Eq. (2.64) into Eq. (2.63) and

separate the continuous integral into a summation of integrals over all ∆ts segments in a

given ∆th segment to obtain

y(t) =
N−1

∑
i=0

[
R1−1

∑
j=0

ˆ i∆th+( j+1)∆ts

i∆th+ j∆ts
u(t− τ)Nhdτ

]
hi+1. (2.65)

Note that h has been removed from the integral as this is a vector of discrete values and is

constant for the interior summation. Next, assume a linear distribution of the input over a

sampling interval, i.e.

u(t) = (1− su)u1 + suu2 for 0≤ su ≤ 1. (2.66)

Expanding to matrix form, results in

u(t) =
[

u1 u2

]Nu1

Nu2

= uNu (2.67)

where Nu1 = 1− su and Nu2 = su. Substituting this into Eq. (2.65) and evaluating at a given

time tk = (k−1)∆ts results in

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
uk−i·R1− j uk−i·R1− j−1

]ˆ i∆th+( j+1)∆ts

i∆th+ j∆ts
NuNhdτ

]
hi+1 (2.68)

where the variables in the upper bounds of the summations are

M =


R1−1, for i < N

rem
(

k−2
R1

)
, for i = N

(2.69)
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(note, rem is the remainder function, i.e. remainder after division) and N = floor
(

k−2
R1

)
(note, floor is a function where the division is rounded down to the nearest integer number),

the number of segments that fit into y without exceeding it. Note that the first point in the

measured y corresponds to k = 1. As in the previous formulation, the starting point is the

second entry in y (i.e. k = 2). Also note that the discrete input nodal values, ui, have been

moved outside of the integral as they are constants.

Finally, the integral is evaluated. However, the integration is over τ while Nu and Nh

are a function of su and sh, respectively. To evaluate this integral, one of these variables is

chosen and the expressions of the other terms are changed. For convenience, su is chosen

as the integration parameter. By doing this, the integration range is always from su = 0 to

su = 1. However, dτ and Nh must change. Since the time was mapped into non-dimensional

time, i.e.

t = (1− su)t1 + sut2 for 0≤ su ≤ 1, (2.70)

one may note that dt = ∆tsdsu = dτ . The input interpolation column vector Nu is already a

function of su. Finally note that

sh = ( j+ su)/R1 (2.71)

and substitute this into our expressions in Nh. This yields the expression

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
uk−i·R1− j uk−i·R1− j−1

]ˆ su=1

su=0
NuN̂hdsu

]
hi+1∆ts (2.72)

where N̂h has been obtained by substituting Eq. (2.71) into Nh.

Equation (2.72) is compact however, for clarity, the first few iterations are presented
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below for R1 = 3.

y2 =

[
u2 u1

]
N0h1∆ts (2.73a)

y3 =

[
u3 u2

]
N0h1∆ts +

[
u2 u1

]
N1h1∆ts (2.73b)

y4 =

[
u4 u3

]
N0h1∆ts +

[
u3 u2

]
N1h1∆ts + . . .

+

[
u2 u1

]
N2h1∆ts (2.73c)

y5 =

[
u5 u4

]
N0h1∆ts +

[
u4 u3

]
N1h1∆ts + . . .

+

[
u3 u2

]
N2h1∆ts +

[
u2 u1

]
N0h2∆ts (2.73d)

where N j =

ˆ su=1

su=0
Nu(su)N̂h(su, j)dsu (2.73e)

Just over these four iterations, the equations become complicated and displaying more

iterations becomes confusing. Up until the second segment of the IRF is displayed. For

the example of R1 = 3 this occurs at the fourth point of interest (i.e. k = 5). Additionally,

one may note that Eq. (2.73e) has the same R1 variants as the equation only changes as a

function of j. Therefore, all R1 matrices are computed before assembling into matrix form

rather than recomputing this integration at every iteration.

For a selected form of the IRF, this process can be assembled into matrix form as

y = Âh∆ts, (2.74)

where y is a column vector of discrete measured outputs, Â is a matrix generated by as-

sembling Eq. (2.72) for all points, h is the vector of unknown nodal values of the IRF, and

∆ts is the sampling interval of the input force.

If an R1 large enough such that Â has many more rows than columns is chosen, the
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nodal values of the IRF are solved using

h =
1

∆ts
Â+y (2.75)

where the plus superscript denotes the least squares pseudo inverse.

Now with the IRF known, one may interpolate using Eq. (2.64) to evaluate h(t) at any

points in time over the sampling event.

Identically to the Constraint Matrix Method discussed in Section 2.2.2.1, an unknown

applied input is solved by invoking the commutative property of the convolution. Using the

now known IRF, the roles of u and h are switched in all of the above equations to discretize

Eq. (2.34). This results in

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
hk−i·R2− j hk−i·R2− j−1

]ˆ sh=1

sh=0
NhN̂udsh

]
ui+1∆ts (2.76)

where now h at each sampling point is known and u has a distribution over many sampled

points. Note that the distribution of the IRFs at this stage is always assumed linear regard-

less of the form of the IRF selected in stage 1. This is a formulation convenience chosen

by the authors to maintain the similarity with stage 1.

As before, Eq. (2.76) can be assembled into matrix form as

y = B̂u∆ts, (2.77)

and solved using a Least Squares psuedo inverse as

u =
1

∆ts
B̂+y. (2.78)
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2.2.2.3 Linear, Quadratic, and Cubic Distributions of GDLM

To make this clearer, a linear, quadratic, and cubic example distribution is presented.

Begin with linear. In such a case, the form of the unknown IRF is assumed to be

h(t) = (1− sh)hi + shhi+1 for 0≤ sh ≤ 1 (2.79)

over a given segment. Expanding to matrix form yields

h(t) =
[

N1 N2

] hi

hi+1

= Nhh (2.80)

where N1 = 1− sh and N2 = sh.

Plugging this linear distribution into Eq. (2.72) and applying Eq. (2.70) results in

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
uk−i·R1− j uk−i·R1− j−1

]ˆ su=1

su=0
NuN̂hdsu

]hi+1

hi+2

∆ts. (2.81)

For clarity, an example assembly into matrix form is presented. Consider Eqs. (2.73a-

2.73d). Substitute Eq. (2.80) into these expressions. Note that the matrices N j have dimen-

sion of 2 by 2. For compactness, define

[
a j

k−i·R1− j,1 a j
k−i·R1− j,2

]
=

[
uk−i·R1− j uk−i·R1− j−1

]
N j (2.82)

where the superscript on the a entries denotes which N j matrix was used to form it. Using
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the example in Eqs. (2.73a-2.73d) (i.e. R1 = 3), are assembled into matrix form as



y2

y3

y4

y5


=



a0
2,1 a0

2,2 0

a0
3,1 +a1

2,1 a0
3,2 +a1

2,2 0

a0
4,1 +a1

3,1 +a2
2,1 a0

3,2 +a1
3,2 +a2

2,2 0

a0
5,1 +a1

4,1 +a2
3,1 a0

5,2 +a1
4,2 +a2

3,2 +a0
2,1 a0

2,2




h1

h2

h3

∆ts (2.83)

Since a single value is available at each node, R1 > 1 is required for a least squares solution

to be applicable.

Equation (2.81) is equivalent to that given in Eq. (2.39), however, the constraint on the

IRF has been integrated into the formation of Â rather than multiplying by a constraint

matrix after formation.

For the quadratic case, a quadratic interpolation function must be introduced. This

results in a piecewise smooth curve where the derivatives at the ends of the segments will

not be matched. However, this curvature between nodes may enhance the accuracy of the

method.

For quadratic interpolation between nodes the form of the IRF will be

h = a1 +a2sh +a3s2
h. (2.84)

To utilize a quadratic interpolation over a segment requires three nodes. Therefore, a ”seg-

ment” of the IRF is redefined as three points, h1, h2, and h3. Evaluating Eq. (2.84) at each

node results in
h1 =a1

h2 =a1 +
a2

2
+

a3

4

h3 =a1 +a2 +a3
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Solving this for the unknown interpolation coefficients gives us

a1 =h1

a2 =−3h1 +4h2−h3

a3 =2h1−4h2 +2h3

Plugging these definitions into Eq. (2.84) results in

h = Nh1h1 +Nh2h2 +Nh3h3 (2.85)

where
Nh1 =1−3sh +2s2

h

Nh2 =4sh−4s2
h

Nh3 =− sh +2s2
h

Now expressions similar in form to Eq. (2.37b) are available, albeit a bit more com-

plex. Equation (2.85) can be placed into matrix form, resulting in an expression similar to

Eq. (2.80):

h(t) =
[

Nh1 Nh2 Nh3

]
h1

h2

h3

= N2
hh2 (2.86)

Note that the superscript, 2, denotes the quadratic interpolation form.

By formulating in this manner, this can be substituted into Eq. (2.72), i.e.

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
uk−i·R1− j uk−i·R1− j−1

]ˆ su=1

su=0
NuN̂2

hdsu

]
hi+1

hi+1.5

hi+2

∆ts (2.87)

where N̂2
h has substituted Eq. (2.71) into N2

h.
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For clarity, an example assembly into matrix form is presented. Consider Eqs. (2.73a-

2.73d). Substitute Eq. (2.98) into these expressions. Note that the matrices N j will have

dimension of 2 by 3. For compactness, define

[
a j

k−i·R1− j,1 a j
k−i·R1− j,2 a j

k−i·R1− j,3

]
=

[
uk−i·R1− j uk−i·R1− j−1

]
N j (2.88)

where the superscript on the a entries denotes which N j matrix was used to form it. Using

the example in Eqs. (2.73a-2.73d) (i.e. R1 = 3), assembly into matrix form is performed as



y2

y3

y4

y5


=



a0
2,1 a0

2,2 a0
2,3 0 0

a0
3,1 +a1

2,1 a0
3,2 +a1

2,2 a0
3,3 +a1

2,3 0 0

a0
4,1 +a1

3,1 +a2
2,1 a0

4,2 +a1
3,2 +a2

2,2 a0
4,3 +a1

3,3 +a2
2,3 0 0

a0
5,1 +a1

4,1 +a2
3,1 a0

5,2 +a1
4,2 +a2

3,2 a0
5,3 +a1

4,3 +a2
3,3 +a0

2,1 a0
2,2 a0

2,3





h1

h1.5

h2

h2.5

h3


∆ts

(2.89)

Since now two additional values for each new segment are required, R1 > 2 is required

for the IRF solution via Eq. (2.51). Note that since twice as many variables are requested

as in the linear case, the R1 = 2 case will result in a square matrix.

As in the linear case, the roles of the IRF and input force are reversed to solve for an

unknown applied load.

The cubic case is similar to that of the linear case except with a cubic interpolation

function. This results in a smooth construction of the IRF. Consider a segment of the IRF

displayed in Figure 2.7. In this figure, each segment has been assigned a value and slope at

each end point or node. Note the notation

θi =
dh
dt

∣∣∣∣
i

(2.90)
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Figure 2.7: Segment of IRF showing value and slope at end points

is used for our time varying IRF. Therefore, matching the function values hi and the time

derivatives θi at each node of the segments yields a continuous and differentiable recon-

structed function over the entire IRF.

Note that the mapping into non-dimensional time is

t = (1− sh)t1 + sht2 for 0≤ sh ≤ 1 (2.91)

and
dt
dsh

= t2− t1 = ∆th. (2.92)

Since there are four unknowns for a segment, h1, θ1, h2, and θ2, four coefficients in our

interpolation function are needed. Therefore, a cubic function is introduced of the form

h = a1 +a2sh +a3s2
h +a4s3

h. (2.93)

Plugging this into Eq. (2.90) yields

θ =
dh
dt

=
dh
dsh

dsh

dt
=

1
∆th

(
a2 +2a3sh +3a4s2

h
)
. (2.94)
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Evaluating Eqs. (2.93) and (2.94) at each node gives us the following four equations:

h1 =a1

θ1 =
1

∆th
a2

h2 =a1 +a2 +a3 +a4

θ2 =
1

∆th
(a2 +2a3 +3a4)

(2.95)

Solving this for the unknown interpolation coefficients gives us

a1 =h1

a2 =∆thθ1

a3 =−3h1−2∆thθ1 +3h2−∆thθ2

a4 =2h1 +∆thθ1−2h2 +∆thθ2

(2.96)

One may define θ̂i = ∆thθi so that our interpolation function is purely a function of sh.

Plugging these definitions and θ̂ into Eq. (2.93) and rearranging gives us

h = Nh1h1 +N
θ̂1

θ̂1 +Nh2h2 +N
θ̂2

θ̂2 (2.97)

where
Nh1 =1−3s2

h +2s3
h

N
θ̂1
=sh−2s2

h + s3
h

Nh2 =3s2
h−2s3

h

N
θ̂2
=− s2

h + s3
h

Now expressions similar in form to Eq. (2.37b) are available, albeit a bit more com-

plex. Equation (2.97) can be placed into matrix form, resulting in an expression similar to
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Eq. (2.80):

h(t) =
[

Nh1 N
θ̂1

Nh2 N
θ̂2

]


h1

θ̂1

h2

θ̂2


= N3

hh3 (2.98)

Note that the superscript, 3, denotes the cubic interpolation form.

By formulating in this manner, this is simply substituted into Eq. (2.72), i.e.

y(tk) =
N

∑
i=0

[
M

∑
j=0

[
uk−i·R1− j uk−i·R1− j−1

]ˆ su=1

su=0
NuN̂3

hdsu

]


hi+1

θ̂i+1

hi+2

θ̂i+2


∆ts (2.99)

where N̂3
h is obtained by substituting Eq. (2.71) into N3

h.

For clarity, an example assembly into matrix form is presented. Consider Eqs. (2.73a-

2.73d). Substitute Eq. (2.98) into these expressions. Note that the matrices N j have dimen-

sion of 2 by 4. For compactness, define

[
a j

k−i·R1− j,1 a j
k−i·R1− j,2 a j

k−i·R1− j,3 a j
k−i·R1− j,4

]
=

[
uk−i·R1− j uk−i·R1− j−1

]
N j

(2.100)

where the superscript on the a entries denotes which N j matrix was used to form it. Using
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the example in Eqs. (2.73a-2.73d) (i.e. R1 = 3), matrix assembly proceeds as



y2

y3

y4

y5


=



a0
2,1 a0

2,2 a0
2,3

a0
3,1 +a1

2,1 a0
3,2 +a1

2,2 a0
3,3 +a1

2,3

a0
4,1 +a1

3,1 +a2
2,1 a0

4,2 +a1
3,2 +a2

2,2 a0
4,3 +a1

3,3 +a2
2,3

a0
5,1 +a1

4,1 +a2
3,1 a0

5,2 +a1
4,2 +a2

3,2 a0
5,3 +a1

4,3 +a2
3,3 +a0

2,1

. . .

a0
2,4 0 0

a0
3,4 +a1

2,4 0 0

a0
4,4 +a1

3,4 +a2
2,4 0 0

a0
5,4 +a1

4,4 +a2
3,4 +a0

2,2 a0
2,3 a0

2,4





h1

θ̂1

h2

θ̂2

h3

θ̂3



∆ts

(2.101)

Since now two unknowns are assigned at each node (value and derivative), R1 > 2 is

required for the IRF to be determined using Eq. (2.51). Note that since there are twice as

many variables as in the linear case, the R1 = 2 case will result in a square matrix.

Solving this equation for the cubic case will result in a fully defined smooth curve. One

may then evaluate Eq. (2.97) at any intermediate point to increase the resolution of the IRF

while still maintaining the smooth curve.

2.2.2.4 Extension to Multiple Outputs

In this section, an extension to multiple outputs (and inputs) will be presented. Al-

though the notation is chosen to be consistent with the Constraint Matrix Method and the

Generalized Draper-Lee Method, this formulation is applicable to any TDDM.

To begin, consider a system with many outputs. This is the case for many real systems

where strain and acceleration may be measured at various locations over a model. Such
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systems are classified as single input multiple output (SIMO). Additionally, one may con-

sider a system with multiple inputs of interest. This may be the case on a test article with

multiple thrusters or control surfaces. Assuming the system still has multiple outputs, these

systems are classified as multiple input multiple output (MIMO). In either case, each input-

output pair has a unique IRF. For the SIMO case, if one input and n outputs are available,

n IRFs must be generated. Since each of these maps do not depend on each other, one may

use Eq. (2.51), n times to generate the IRFs.

The reconstruction of the input, on the other hand, requires knowledge from all of

output locations. Consider the response of a system to an input at location i. Following the

form of Eq. (2.77), the map from input i to any output location j can be written as:

y j = B̂ j,iui∆ts (2.102)

Each location j, has a similar relationship to input i. Therefore the problem is formulated

as follows to construct an equation to solve for (u)i.

y1

y2

...

yn


=



B̂1,i

B̂2,i

...

B̂n,i


ui∆ts (2.103)

This equation is condensed further as

Y = B̂i(u)i∆ts. (2.104)

Extension to MIMO is also straightforward. Using the principle of superposition, the

response of other inputs invokes response to all of the outputs in an additive fashion to
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that of another input. Superimposing all p inputs, yields the following relationship for the

MIMO case. 

y1

y2

...

yn


=



B̂11 B̂12 . . . B̂1p

B̂21 B̂22 . . . B̂2p

...
... . . . ...

B̂n1 B̂n2 . . . B̂np





u1

u2

...

up


∆ts (2.105)

Provided nN > pN/R2 for the linear case or nN > 2pN/R2 for the cubic case (twice as

many unknowns), a least squares solution may be employed. Applying a ratio ensures that

the solution will not tend to infinity. However, further analysis is required to determine if

the problem is well-conditioned and the solution is acceptable.

It may be possible that the user is interested at the force contributions at each of the

calibration locations. If this is the case, then extracting each input time history after solving

Eq. (2.105) would suffice. However, in wind tunnel applications, it is more often the case

that the experimentalist will be more interested in the forces and moments with respect to

some center of moment. This is akin to the output of the SWAT (e.g. Fapp in Eq. (2.7)).

Additionally, this will provide easier comparison with the SWAT and static strain gage

results.

If this latter result presentation is of interest, one needs to simply convert the result of

point reconstruction into a total force and moment contribution. To do this, define a 1x6

scaling matrix, Sh which is a function of the hole location and converts the hammer load

into force and moment contributions. For example, a z-direction force applied 0.1 meters

in front of the center of moment would have a scaling matrix of

Sh =

[
0 0 1 0 0.1 0

]
. (2.106)

A general formula for Sh requires generating a coordinate system and directionality of
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applied load so this is neglected for this section.

With the scaling matrices defined, the contributions from each hole are added as

Fapp =
p

∑
i=1

Si
huT

i (2.107)

where the super script i denotes which hole location was used to generate the scaling matrix.

Note: if using a higher order version of the GDLM, the scaling should be done after the

interpolation of the reconstructed force. In the third order method, slopes are reconstructed

which should not be scaled and summed together. All interpolation for the third order case

only holds for the reconstructed point force.

This should work well for point loadings at the various calibration locations. However,

it remains to be seen if a distributed pressure load or a point load at a location other than

the calibration locations could be accurately reconstructed using this approach.

2.2.2.5 Averaging of Calibration Sets

In this section, the method is extended to account for repeat tests during dynamic cali-

bration. One motivation for this is better noise rejection. As the noise is assumed random

(i.e. non biased), its form will not be repeatable from test to test. Therefore, using multiple

tests should not reflect its presence in the constructed IRF. Furthermore, this reduces the

reliance on a single calibration test. If the user misses the application location or direction

by a small distance or angle, this can negatively affect the IRF accuracy. However, over

multiple tests the IRF may be more accurately reconstructed.

To begin, return to Eq. (2.74) where the IRF is solved using a single input from a

particular test and the corresponding output. If the IRF also fits the noise characteristics

of the applied input-output pair, this can result in poor accuracy when applying the IRF to

other reconstructions. This process can be avoided by using a higher R1 ratio, however,
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another way that does not compromise resolution is sought.

The IRF is a property of a system. It is the response of the system to a unit impulse of

infinitesimal width. This means that by definition, it is not dependent on the input applied

to the system. Therefore, any input applied to the same location should have an identical

IRF when generating the output, i.e.

yk = Âkh∆ts, (2.108)

where each input-output pair at the same location can be assembled using the procedure

discussed in either of the two methods. So to exploit this fact, additional information

is supplied to the IRF problem by simply performing repeat tests at the same location.

Assembling Eq. (2.108) yields



y1

y2

...

yP


=



Â1

Â2

...

ÂP


h∆ts (2.109)

where the subscript P denotes the number of repeat tests used in reconstruction. One may

note a resultant equation that is very similar in spirit to Eq. (2.103). This is by design, as

the further over determination of the problem tends to enhance the results.

One may note that this type of formulation would not be possible using the conventional

method. Since that method assumes the IRF is simply a scaled multiple of the measured

response to an applied hammer pulse, one may not use multiple tests. Rather, one may

simply select the ”best” test case.

Utilization of this type of formulation allows the user to use a variety of calibration

inputs. Steps, hammer pulses, shaker testing, and many others could all be simultaneously
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used to construct the most accurate IRF.

2.2.2.6 Segmentation

One apparent drawback of TDDMs is the computation expense. As the entire time

history is required (from time t = 0, defined as a time at rest) the IRM can become un-

wieldy when large test times are of interest. Observing Eq. (2.78) for example, requires

the inversion of an (N/R2)x(N/R2) matrix. For these experiments, dynamics of up to a few

kilohertz are of interest. It is common practice to sample at ten times the frequency band of

interest to ensure proper resolution. Therefore, a 25 kHz sampling rate was used for most

of the experiments. For either TDDM, reconstruction of a two second long force would

require the inversion of a 25,000x25,000 matrix for the case of R2 = 2. Obviously, this is

completely unreasonable and a better approach is required.

Instead of deconvolving the entire output, y, consider segmenting the output and decon-

volving each segment separately. After each segment is deconvolved, they are assembled

into the reconstruction over the entire time history. The problem with this is that the convo-

lution integral, i.e. Eqs. (2.34) and (2.35) are only defined for a system starting from rest.

This means that a system with nonzero initial conditions cannot be represented exactly us-

ing these equations. However, it may be of interest to observe magnitude of the error in our

force reconstruction due to the presence of nonzero initial conditions.

Consider a dynamic LTI system subject to a sinusoidal forcing. Next imagine measur-

ing the output of the system after the load has been applied. This is analogous to consider-

ing a segment of the response with nonzero initial conditions. Due to the linearity of LTI

systems, the measured response (ym) in this scenario will be equivalent to the superposi-

tion of the response of the system subject to the sinusoidal forcing but starts from rest (y1)

and the response of the system subject to those initial conditions (y2). Plugging this into
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Eq. (2.34) yields

ym = y1 + y2 = h∗ (u1 +u2) (2.110)

where ∗ denotes the continuous convolution operation, u1 is the sinusoidal applied load of

interest and u2 is zero as there is no applied load in the unforced case.

Let’s consider each equation separately to try and gain some additional insight, i.e.

y1 =h∗u1 (2.111a)

y2 =h∗u2 (2.111b)

Since Eq. (2.111a) has no initial conditions, this is solved using deconvolution techniques

and reconstruct the desired applied load. This is given in Figure 2.8a.

(a) (b)

Figure 2.8: Force Reconstruction using Generalized Draper-Lee Method for sinusoidally
forced system starting from rest (a) and unforced system with nonzero initial conditions
(b).

As expected, the deconvolution algorithm works and the deconvolved solution exactly

matches the applied load. Next, Eq. (2.111b) is solved using the same algorithm. However,

due to the initial conditions, the results are not expected to be accurate. The interesting

result is shown in Figure 2.8b. It seems as though the presence of the initial conditions
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causes considerable error in the force reconstruction, however, the presence of this error

reduces considerably in magnitude as time goes on until there is no evidence of it on the

scale of interest. Therefore, deconvolution is applicable to systems with initial conditions,

provided the beginning of the reconstruction is discarded.

One thing to note is that the IRF is lower band limited to the chosen segment length.

The theoretical lower frequency band is computed as

fmin =
1

tmax
(2.112)

where tmax is the length of the signal in seconds. However, the realizable lower frequency

(i.e. the frequency where one can realistically visualize a peak in the frequency domain)

is usually about an order of magnitude higher than this. Therefore for a 100 ms segment,

only frequencies above about 100 Hz are physically realizable. Therefore, any frequency

content that is reconstructed lower than this realizable lower bound should be ignored.

2.2.2.7 Acceleration Deconvolution

Although most of the examples in literature and in this dissertation utilize deconvolu-

tion of strain and displacement data, it should be noted that such a formulation also holds

between applied force and acceleration. This work was first presented in an AIAA confer-

ence paper by Draper et al.[41].

Acceleration measurements are significantly easier to obtain than strain/displacement.

For the latter, one typically needs to ensure all load can travel through the strain gages

which often requires designing around these sensors. Alternatively, accelerometers need be

simply placed on a surface of the body. This means that acceleration measurement is can

be an afterthought which presents more design flexibility. Additionally, force measurement

can theoretically be made without the need for complex strain balances. This may be
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advantageous in smaller tunnels or small budget experiments.

Returning to the continuous convolution of displacement and applied force, and differ-

entiating both sides twice yields

ÿ(t) =
ˆ t

0
ḧ(t− τ)u(τ)dτ (2.113)

where time derivatives are represented using dots above the variables. For proof of this

equation see Appendix B.3.

This is analogous to the previous study, however now the unknown is now the acceler-

ation IRF (ḧ(t)) rather than the typical displacement/strain IRF (h(t)). Using the constraint

matrix method or generalized Draper-Lee method, one may construct the acceleration IRF

and then use it to reconstruct an arbitrary applied dynamic force u(t).

It also should be noted that all of the previously mentioned extensions to the developed

methods are completely applicable to acceleration deconvolution as well.

Finally, one note should be made for extension to multiple outputs for acceleration

deconvolution. It is true that if multiply acceleration measurements are made, one may uti-

lize them all in the force reconstruction, analogously to what is done in Section 2.2.2.4 and

given by Eq. (2.103). However, interestingly, the acceleration IRFs and strain/displacement

IRFs can be combined to even further constrain the applied load reconstruction problem.
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Such a problem looks like 

s1

s2

...

sns

a1

a2

...

ana



=



B̂s
1,i

B̂s
2,i
...

B̂s
ns,i

B̂a
1,i

B̂a
2,i
...

B̂a
na,i



(u)i∆ts (2.114)

where s j is a vector of discrete strain measurements from channel j, a j is a vector of discrete

acceleration measurements from channel j, the superscripts on the IRMs denote whether

they are strain (s) or acceleration (a) IRFs, and ns and na denote the number of strain and

accelerometer channels used, respectfully.

Using this, significant overdetermination the problem is achieved if acceleration mea-

surement is made which allows for easier solution (i.e. smaller R2 parameter).

2.2.3 Numerical Example of TDDMs

Due to the more complex nature of these methods, begin with the more simple SISO

numerical systems. This allows for concrete conclusions about each methodology without

the complexity of multiple mode interaction. Experimental results are presented in the next

chapter which serve as multiple output validation. An example single degree of freedom

(SDOF) SISO system is given in Figure 2.9.

To be consistent with previous TDDM formulations, the output displacement and input

force have been assigned the variables y(t) and u(t), respectively. Assuming constant mass,

stiffness, and damping values (i.e. m, k, and c) this system is subject to the differential
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Figure 2.9: SDOF spring mass damper system.

equation

mÿ+ cẏ+ ky = u(t) (2.115)

where m = 1 kg, k = 1000 N/m, and c = 0.6325 Ns/m. Additionally, the analytical IRF

can be solved as

h(t) =
1

mωd
exp−σt sinωdt (2.116)

where

ωd =ωn

√
1−ζ 2 (2.117a)

σ =ζ ωn (2.117b)

and ωn =
√

k/m, the natural frequency and ζ = c/(2mωn), the critical damping factor.

For the TDDMs derived in this chapter, the selection of the input calibration force

(i.e. the force measured when constructing the IRF) is arbitrary. However, the standard

TDDM requires a hammer pulse calibration force. Furthermore, this load is easy to measure

using an instrumented impulse hammer. Therefore, in these numerical studies, the chosen
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calibration force is

F(t) = u(t) =
b

a
√

π
exp−(

t−0.5ε

a )2
, (2.118)

where a = 5 · 10−4 controls the pulse width, b = 1
60 is a scaling constant used to select a

desired area (and consequently peak magnitude), and ε is the pulse width used to shift the

pulse from the t = 0 axis. This simulates a steep hammer impulse force with an approximate

width of 2 ms and height of 20 N.

Finally, to further replicate experimental studies, Gaussian numerical noise is added to

the output data. This additive noise is defined as

ε =
σ(ye)

SNR
randn (2.119)

where σ(·) is the standard deviation operator of the vector of interest, ye is the calculated

exact output, ε is a vector of noise values to be added to yc, randn is a vector of points

selected from a Gaussian distribution with a standard deviation equal to one, and SNR is

the Signal to Noise Ratio defined as

SNR =
σ(ye)

σ(randn)desired
. (2.120)

Defining noise in this manner allows the user to supply unbiased noise to the ”measured”

signal as y = ye + ε at a desired SNR.

2.2.3.1 SISO Example of the CMM

Begin with the validation of the Constraint Matrix Method derived in Section 2.2.2.1.

This method is used to demonstrate some of the R1 and R2 parameters. However, as noted,

this method is equivalent to the linear Draper-Lee Method.

Applying the approach discussed in Subsection 2.2.2.1, the impulse response was ob-
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tained using a sampling frequency of 4 kHz and compared with the analytical solution as

shown in Figure 2.10.

Figure 2.10: Comparison of Analytical and Constructed IRF using R1 = 3, sampling fre-
quency of 4 kHz, and SNR of 150.

The sampling frequency (4 kHz) is much higher than the natural frequency of the sys-

tem (5 Hz). Therefore, applying the linear constraint on the IRF vector will have minimal

effect on the IRF construction accuracy. Such a separation between sampling and natural

frequency is not required but the former will dictate the bandwidth of the constructed IRF.

If one considers a MDOF system with many natural frequencies, using a low sampling fre-

quency may truncate important natural frequency contributions. However, for this simple

SDOF case, this is not a concern. Overall, one may observe excellent IRF construction

accuracy.

After this impulse response was obtained, more points were inserted into the IRF us-

ing linear interpolation to match the sampling frequency. The IRF was then used to solve

Eq. (2.61) with a recorded output. To evaluate this, the numerically obtained y(t) corre-

sponding to the applied force in Eq. (2.118) is used. The result of this force reconstruction
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can be seen in Figure 2.11a. For this simulation, R1 = R2 = 3. Note that the only input

information used in our reconstruction is displayed using the triangles. The smoothness

of the actual input is plotted with a smooth curve, however, none of this information is

available.

(a) (b)

Figure 2.11: Hammer Pulse Force Reconstruction for a SDOF System using R1 = R2 = 3
and SNR = 150 with a sampling rate of 4 kHz (a) and 8 kHz (b)

Inadequate pulse resolution is observed. Furthermore, significant oscillations are ob-

served after the pulse. However, the overall shape of the applied load is well recovered. If

more resolution were available, the solution may be improved. For the 4 kHz case, there

are approximately three data points in the reconstructed pulse; any less and the pulse may

be underrepresented. To get sufficient resolution one may use a higher sampling frequency.

Doubling the sampling frequency of the generated data and applying this method to this

data set yields the result presented in Figure 2.11b. For this analysis, R1 = R2 = 3. As ex-

pected, by doubling the sampling frequency and maintaining R2, better pulse resolution is

achieved. Note that errors are still present in the reconstructed input. For this noisy SDOF

case, this level of discrepancy is deemed acceptable.

This reconstruction also works on other loads, e.g. sinusoids, that were not used in

the calibration. This same IRF was deconvolved with the output to a 100 Hz sinusoidal
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input. The results of this reconstruction are shown in Figure 2.12. Once again, accurate

reconstruction is achieved. Note that there exists slight discrepancy, however, the magni-

Figure 2.12: Reconstruction of Sinusoidal Forcing for a SDOF System with R1 = 3 and
R2 = 9, a sampling rate of 8 kHz, and SNR = 150.

tude and frequency recovery are excellent. For this analysis the higher sampling frequency

(8 kHz) and R2 = 9 were used. In this case a higher R2 value is used since the resolution

requirements are lower.

2.2.3.2 SISO Example of the GDLM

The Generalized Draper-Lee Method has similar conclusions to the Constraint Matrix

Method. However, the ability to construct smooth signals is possible. For this investigation,

the linear and cubic are compared for IRF construction and applied input force reconstruc-

tion accuracy. However, it is somewhat unfair to compare the methods using the same R1

and R2 parameters. For the cubic method, twice as many unknowns are assigned per node.
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Therefore the term

R̂1 =
L
Lh

(2.121)

is definedwhere L is the length of the measured output vector and Lh is the new length of

the IRF to be solved. One may note that R̂1 = R1 for the linear case and R̂1 = 2R1 for the

cubic case as there are twice as many unknowns.

Similarly,

R̂2 =
L
Lu

(2.122)

is defined where L is the length of the measured output vector and Lu is the new length of

the applied force to be solved.

Applying the approaches discussed in Section 2.2.2.2 with a known load given by

Eq. (2.118), the IRF was obtained and compared with the analytical solution as shown

in Figure 2.13. Note that a sampling rate of 250 Hz and a signal to noise ratio (SNR) of 25

Figure 2.13: SDOF IRF construction using proposed method with first (red) and third
(green) order IRF construction. A sampling rate of 250 Hz and a constraint parameter,
R̂1 = 7 were utilized for this demonstration.

(standard deviation of the output divided by standard deviation of the noise) was used for

this analysis. However, the noise was determined to have little effect as compared to the
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noiseless case.

From the results displayed in Figure 2.13, one may see that the desired result is ob-

tained. For this low sampling rate and high R̂1 case, poor resolution is obtained on the IRF

construction for the linear case. However, when a third order formulation is utilized, the re-

sult more accurately approximates the exact IRF and results in a smooth curve (continuous

and differentiable).

This method is also applicable when a smooth input is of interest (e.g. hammer pulse).

Evaluating Eq. (2.51) for the cubic case the result shown in Figure 2.14 is obtained. Note

that a low sampling frequency was chosen to highlight the advantages of the cubic formu-

lation.

Figure 2.14: SDOF input force reconstruction using time domain deconvolution method
with first (Case 1) and third (Case 3) order formulation. An additional case was presented
where the IRF values from the third order IRF were used in conjunction with the first order
method to reconstruct the applied load (Case 2). A sampling rate of 500 Hz, SNR of 25,
and constraint parameters, R̂1 = R̂2 = 3 were utilized for this demonstration.

In case 1, linear interpolation is assumed for both the construction of the IRF and the

reconstruction of the applied force. In case 2, cubic interpolation is assumed for the IRF

while linear interpolation is used for the reconstructed force. In case 3, cubic interpolation
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is used for both the IRF construction and applied force reconstruction. The result for case

2 demonstrates that there is some benefit just from approximating a more accurate IRF.

2.2.3.3 Noise Discussion

Additionally, it would be prudent to investigate the effects of noise on this process.

For these studies, the Constraint Matrix Method will be utilized. To observe the effects

of noise, the constructed IRF for various SNRs is plotted in Figure 2.15a. However, an

objective comparison is of interest. Therefore, the error metric

ε=
1
N
|hexact−hrec|2 (2.123)

is used to compare the accuracy of the IRF for various SNR levels. This metric is also

plotted versus R1 to see the effect of the constraint parameter on accuracy. This is shown

in Figure 2.15b.

(a) (b)

Figure 2.15: IRF constructions for various SNR values using R1 = 3 (a) and the error
between analytical and constructed IRF for various SNR and R1 values (b).

As SNR increases, our construction tends to the analytical IRF. From Figure 2.15b, it

is evident that the IRF construction is uniformly affected by the noise level. The error for a
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particular R1 value tends to drop two orders of magnitude for every one order of magnitude

increase in SNR. If a particular error level is desired, one may use either a higher R1 or

SNR. Typically, one is constrained to a particular SNR and the constraint parameter must

be altered instead.

This method performs well on a SDOF system, reconstructing a host of dynamic load-

ing scenarios. The accuracy for a given ratio degrades as the SNR is decreased. As always,

low noise measurements are still desirable. Note that the SDOF case is the worst case

scenario. For a system with multiple outputs, more constraints can be introduced to the

problem.

2.2.3.4 Conventional Method Comparison

Thusfar, an in depth analysis of the two TDDMs developed in this chapter have been

presented. However, it would be useful to compare these methods to the conventional

TDDM described in Section 2.2.1. Begin with the IRF construction for a case with SNR=

25. As discussed, the conventional method simply scales the measured output by the area

under the supplied pulse. The result can be seen in Figure 2.16. As expected, all noise

present in the measured output is present in the constructed IRF. This is exactly the unde-

sirable outcome and is why solution of the IRF was performed. Clearly the GDLM better

rejects the noise and more accurately constructs the IRF.

Although the IRF is important, it is an intermediate step in solving for the input force.

Therefore, the input force reconstruction accuracies of each method are compared. In order

to compare the reconstruction accuracy of the three methods, the following error metrics

are considered:

AD =

∣∣∣∣∣1−
´

ε

0 frec(t)dt´
ε

0 fapp(t)dt

∣∣∣∣∣ ·100% (2.124)
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Figure 2.16: SDOF IRF construction using conventional method and third order Draper-
Lee method with R̂1 = 12 and SNR=25.

PD =

∣∣∣∣1− max| frec(t)|
max| fapp(t)|

∣∣∣∣ ·100% (2.125)

where AD and PD stand for Area Difference and Peak Difference, respectively. The sym-

bols fapp(t) and frec(t) represent the discrete applied and reconstructed force, respectively.

Finally, ε is the time width of the specific impulse under investigation; selected to be the

location where the magnitude of the pulse drops below an arbitrarily chosen low value of

0.001 N. Note that for the cubic method, a smooth function is assumed and the area and

maximum is computed exactly. For the first order and conventional methods, trapezoidal

integration is used. These errors versus SNR are presented in Figure 2.17.

In these figures, it is clear that the proposed methods tend to outperform the conven-

tional method. In some cases, this conventional method is better, however, the proposed

methods more consistently reconstruct the applied pulse as displayed by the smaller bands

of variation in the PD and AD plots. It is of course possible that the conventional method

results could be improved with a different selection of the regularization parameter. How-

ever, it is not our intention to optimize this method but rather compare our methods to a
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(a) (b)

Figure 2.17: Area (a) and peak (b) differences versus SNR for conventional method and
proposed first and third order methods. A sampling rate of 500 Hz and constraint parame-
ters, R̂1 = R̂2 = 6 were utilized for this demonstration.

conventional implementation (i.e. parameter selection via L-Curve).

Additionally, the results for our methods have all used the same parameter (i.e. R̂1 =

R̂2 = 6). It is possible that a more optimal parameter is present for each method at each

SNR level. Automated determination of optimal parameters is a topic of future research.

2.2.3.5 SIMO Example of GDLM

In this section, the single-input-multiple-output extension of the GDLM is validated.

This formulation is given in Section 2.2.2.4. Again consider a spring-mass-damper numer-

ical system as was discussed at the beginning of Section 2.2.3. However, in this analysis,

many of these SDOF systems are linked together as is done in Section 2.1.3.

As is stated in this section, each input-output pair have a unique IRF. Therefore, Eq. (2.102)

is solved n times where p is the number of input locations and n is the number of output

locations. Since this IRF construction was validated in Section 2.2.3.2, it is omitted in this

section.

All constructed IRFs are needed to reconstruct a particular input location. This rela-
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tionship is given in Eq. (2.103). For this analysis, consider a 10 DOF lumped mass system

(i.e. nmax = 10) and an input location of 3 (i.e. i = 3). This means the applied impulsive

load is applied to the third mass. This location was arbitrarily chosen. Similar results are

obtained at other input locations. A sampling frequency of 5 kHz was used. Additionally,

the applied impulsive force is given by Eq. (2.118) with a = 10−3 and b = 1
30 . This gener-

ates a smooth pulse with a width of 6 ms and a height of 19 N. An SNR of 150 is chosen

for this analysis. This is higher than in some of the previous studies due to the nature of

the displacement. Because of the inertia of the connected masses, all displacements are

positive for the time frame of interest. This results in a very large standard deviation of the

output (i.e. the numerator of Eq. (2.120). In order to avoid unrealistically high noise levels,

the higher SNR was chosen.

In a real system, there are infinite DOFs and it is impossible to measure the displace-

ment at each location. To simulate this, restrict output measurement to only the odd DOFs.

The input force reconstruction and applied load can be seen in Figure 2.18 for the SIMO

case. Clearly this method has done an excellent job of reconstructing the applied force.

Figure 2.18: SIMO force reconstruction using ten DOF lumped mass system. SNR = 150,
R̂1 = R̂2 = 4, fs = 5 kHz, and the cubic GDLM were used in this analysis.

76



The reconstruction shows very little deviation from the applied load.

It may also be interesting to see the effect of the number of output DOFs on the recon-

struction accuracy. To investigate this, n is varied from 1 to nmax to see if any improvement

on the accuracy is observed. There may be some correlation between the output location

chosen with respect to the applied load. Therefore, to reduce this bias, the output locations

are chosen randomly. Repeated investigations with different positions yielded characteris-

tically similar results.

Again, Eqs. (2.124) and (2.125) are used to determine the area and peak difference,

respectively. These error metrics versus the number of output DOFs used can be seen in

Figure 2.19. A small increase in accuracy is seen as the number of outputs increases. This

(a) (b)

Figure 2.19: Area (a) and peak (b) differences versus number of outputs for SIMO cubic
GDLM. A sampling rate of 5 kHz and constraint parameters, and varying R̂1 = R̂2 were
utilized for this demonstration.

shows that increased accuracy is possible simply by recording additional information (i.e.

measuring more outputs).

Additionally, the constraint parameter is altered. One can see for more drastic improve-

ments in accuracy, an increase in this parameter is still required. For the appropriate choice

of R̂1 and R̂2, the use of more outputs provides negligible improvement. The effect of

increasing the number of outputs are more prevalent in the MIMO example.
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2.2.3.6 MIMO Example of GDLM

In some scenarios, it may be possible for two forces to be applied simultaneously. In

such scenarios, a MIMO approach is required. The SIMO approach assumes that a response

is called by only a single input and therefore will not be applicable in these multi-load

cases. In this case, the MIMO formulation presented in Section 2.2.2.4 is utilized. As in

the SIMO formulation, each input-output pair has a unique IRF that can be computed using

Eq. (2.102). Solving this equation pn times and assembling results in the IRM shown in

Eq. (2.105). Note that after solving for the vector of applied forces, one needs to segment

the result to obtain each applied load (as they are stacked).

For convenience, the same numerical system discussed in Section 2.2.3.5 is utilized.

However, in this study, the responses to inputs at multiple locations are collected. Addi-

tionally, to better constrain the problem, all 10 DoFs are used. Lastly, multiple impulses

are simultaneously applied to see how effectively the method can reconstruct each pulse.

For this study, p = 4, meaning four input locations are chosen. Additionally, for the recon-

struction, simultaneous impulses are supplied at three of the locations at slightly varying

magnitudes. Therefore, one output is expected to be zero. The result of this study is shown

in Figure 2.20.

Interestingly, this method is able to reconstruct the pulses at each location while re-

constructing a zero applied load at the unloaded node (i.e. node 5). This validates that

this method is capable of reconstructing simultaneous load application as well as showing

when approximately no load is applied.

As in the SIMO case study, it may be interesting to investigate the effect of increasing

output DOFs on the accuracy of the reconstruction. Again consider the system described

above except vary the number of outputs used in the reconstruction as well as the constraint

parameters. Note that since the accuracy of multiple input locations is of interest, a new set
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(a) (b)

(c) (d)

Figure 2.20: MIMO hammer pulse reconstruction for 10 DoF system. Applied force re-
construction at input nodes 1 (a), 3 (b), 5 (c), and 9 (d) are all shown. The linear GDLM,
R1 = R2 = 8, SNR= 150, and fs = 5 kHz were used for this study.

of error metrics are considered. These are defined as

AD =
1
Pa

Pa

∑
i=1

ADi (2.126)

PD =
1
Pa

Pa

∑
i=1

PDi (2.127)

where Pa is the number of locations where a force was applied. Therefore the accuracy

of the zero load location is not considered. For the example case depicted in Figure 2.20,

Pa = 3. For each of these locations, the area and peak difference are computed using
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Eqs. (2.124) and (2.125), respectively and then the results are averaged. The resultant

values for varying number of outputs (again chosen randomly) and constraint parameters

is shown in Figure 2.21.

(a) (b)

Figure 2.21: Average area (a) and peak (b) differences versus number of outputs for MIMO
linear GDLM. A sampling rate of 5 kHz and constraint parameters, and varying R̂1 = R̂2
were utilized for this demonstration.

As expected, increasing the number of outputs has a profound impact on the reconstruc-

tion accuracy. In fact, no noticeable trend can be seen by increasing the constrain parameter

as was the case in the SIMO case. Increasing the number of outputs a bit beyond the num-

ber of inputs tends to yield the best result. A further increase of the number of outputs or

constraint parameter value tends to have negligible effect on the accuracy. As predicted in

the SIMO case study, the increase of number of outputs will have a much more profound

impact on the accuracy of the MIMO reconstructions.

2.2.3.7 Averaging of Calibration Sets

Before validating this method, a discussion of the overfitting problem is discussed.

When solving for the unknowns of a system, it is important to not over fit the results. This

is a problem in many system identification investigations. For example, if trying to fit the
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frequency response function of a signal, one might use 1000+ frequencies to do so. This

may exactly match the Fourier transform result, but it will not be representative of the

dynamics of the system as many of those peaks are likely from noise. A similarly spirited

phenomenon can happen in this process.

Consider a SISO system subjected to a hammer pulse. Gaussian noise is added on top

of the measured displacement data to simulate experimental noise. One of the TDDMs

is then evaluated to obtain an IRF relating the noisy strain signal and input hammer force

(also measured). Next, that IRF is utilized in conjunction with that same output response

to solve for the calibration input. In this problem, the impulse should be replicated with

great accuracy as the IRF has fit all the noise properties of the output signal. In reviewing

Figure 2.22, this is exactly what happens. The IRF does not at all match the analytical IRF

and yet this excessively over fit IRF still succeeds at reconstructing the impulse.

(a) (b)

Figure 2.22: Constructed IRF (a) and Reconstructed applied force (b) using R1 = R2 = 3
and the constraint matrix method.

This process fails, however, when trying to apply this erroneous IRF to other signals

with slightly different noise. For example, consider an applied sinusoidal force on a SISO

system. Once again, Gaussian noise is added on top of the displacement response and

use this in conjunction with the constraint matrix method to reconstruct the sinusoidal
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applied load. This can be seen in Figure 2.23. Although the overall shape of the sine

Figure 2.23: Sine force reconstruction using an over fit IRF and R1 = R2 = 3 in the con-
straint matrix method.

wave is accurately captured, the noise that is modeled in the IRF causes large errors in the

reconstruction. Clearly, the IRF is incorrect which propagates error onto reconstructions of

other dynamic loads.

To reduce the effects of this, as discussed in the previous sections, multiple datasets are

averaged in the formation of the IRF. To investigate the effects of this averaging, numerical

studies are performed with this same SDOF system. To draw meaningful conclusions, the

sampling rate, system parameters (i.e. mass, damping, stiffness), and noise level are fixed

across all tests. To maintain similarity to real experiments, the pulse width and magnitude

are varied with ±5% variation. Additionally, the additive noise will be regenerated for

every test. The independent variable is the number of repeat tests. However a metric to

compare various experiments is needed.

To compare various repeat tests, two metrics: the condition number of matrix ÂT Â (i.e.

the matrix being inverted from Eq. (2.51)) and the error between the analytical IRF and

the reconstructed one are considered. The condition number is often used to display the
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severity of the problem. Additionally, a reduction in the condition number often signifies a

better solution. However, this is not guaranteed. The error is computed using Eq. (2.123),

the sum square difference between the analytical and the constructed IRFs. These metrics

are shown in Figure 2.24. Three different constraint ratios are also shown for comparison.

(a) (b)

Figure 2.24: Condition number of ÂT Â (a) and IRF construction error (b) versus number
of calibration tests used. The CMM was used for this analysis.

It appears as if using two tests in the IRF reconstruction improves the condition number

of the inversion by two to four orders of magnitude. Additional repeat tests have minimal

effects in improving the condition number. Two or three repeat tests have the greatest

reduction of the error. Beyond this number of tests, minimal improvement is observed.

Therefore, one is lead to conclude that two or three repeat tests is sufficient. For drastic

changes in condition number or IRF accuracy beyond two or three repeat tests, a larger

constraint parameter, R1, is still required.

It is important to note that this is a very simplified study. For real systems, many signif-

icant modes of vibration are present. The excitation of these modes is largely depended on

the applied load that is used. Therefore, the user could purposely use various pulse widths

to intentionally excite various modes of vibration. For example, the tester may use a harder

hammer tip to excite higher frequency modes. The averaging of all of these experiments
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could result in even more significant improvements. This will be explored in subsequent

chapters.

2.2.3.8 Segmentation

In this section, the segmentation of TDDMs is validated for use on long time histories.

Although this is not as relevant for short duration loads such has hammer pulses, it may

prove very useful in the reconstruction of persistent loading such as ramps or sinusoids. To

maintain consistency with previous examples, the same numerical system described in the

beginning of Section 2.2.3 is used. However, now the desired applied force is

u(t) = 10sin(2π100t) (2.128)

a 100 Hz sinusoidal load. The reconstruction of this force using the standard and segmented

method is shown in Figure 2.25.

Figure 2.25: Sinusoidal force reconstruction using original (blue) and segmented (red)
methods. R1 = R2 = 10, olp = 25, SNR = 150, fs = 5 kHz, and three segments were used
for this demonstration

For this study, it is clear that the segmented approach performs as well as the original
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method. Only small deviation is seen towards the end of the signal and it is difficult to

discern the difference. Note that for this investigation our normalized constraint parameters

were 10, the first 25% of each segment was overlapped (olp = 25) for the serial approach,

and three segments were used over this entire time history.

As it is difficult to discern a difference by simply looking at the reconstruction, weve

chosen two metrics. The first is the computation time of each method. The segmented

method is expected to far outperform the original as data length increases. The second is

the sum square of the error, i.e.

ε=
1
N

L

∑
i=1

∣∣uapp,i−urec,i
∣∣2 (2.129)

similar to Eq. (2.123) except now the applied force reconstruction accuracy is of interest.

The data length is increased to observe the affect on these two metrics. This is shown

in Figure 2.26 where the data length is displayed as multiples of number of segments. As

(a) (b)

Figure 2.26: Computation time (a) and sum square sinusoidal force reconstruction error (b)
versus length of output

shown in Figure 2.26a, a significant improvement in computation time as the data length

increases is observed. For a signal that is eight times as long as the original signal, the

segmented approach reconstructs it with negligible increase in computation time. Addi-
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tionally, the sum square error, depicted in Figure 2.26b, displays that the error is compara-

ble for both methods. Clearly significant computation time reduction is achieved without

sacrificing much reconstruction accuracy.

2.2.3.9 Acceleration Deconvolution

Deconvolution of acceleration data is also possible. This section presents a brief nu-

merical example of acceleration deconvolution on a SISO spring-mass-damper system. The

GDLM is used but similar conclusions are observed for the CMM.

Begin by returning to the SISO numerical system presented in Section 2.2.3. To obtain

the analytical acceleration IRF, Eq. (2.116) is differentiated twice with respect to time to

obtain

ḧ(t) =
1

mωd
exp−σt [(σ2−ω

2
d )sinωdt−2σωd cosωdt

]
. (2.130)

Note that ḧ(0) 6= 0. Therefore, the initial condition used in the previous formulation (i.e.

h(0) = 0) should no longer be used.

Using the third order GDLM on the acceleration response of the SDOF numerical sys-

tem, the IRF construction and pulse force reconstruction shown in Figure 2.27 are obtained.

A few interesting observations can be made from this figure. First, the reconstruction ex-

hibits a large error at the beginning of the IRF construction. This error is consistent across

all example cases performed. Even after applying the initial condition of

ḧ(0) =−2σ

m
(2.131)

this start up error is still observed. It should be noted that this initial condition could not be

obtained for an experimental system.

Despite this error in the IRF, the pulse is still reconstructed with high accuracy, as is
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(a) (b)

Figure 2.27: IRF construction (a) and pulse force reconstruction (b) for acceleration de-
convolution SISO example. R̂1 = R̂2 = 3, fs = 2500 Hz, and SNR = 150 used for this
example.

depicted in Figure 2.27b. Further research is required to determine the origin of this error

in the IRF construction.

Next it may be of interest to compare the displacement-only, acceleration-only, and

combined acceleration-displacement deconvolution approaches. To do this, the IRF and

acceleration IRF of the SISO system are computed using a known applied pulse force.

Then each IRF is used separately to reconstruct a new pulse force. Lastly, the acceleration

and displacement signals are combined and used with Eq. (2.114) to reconstruct the new

load. The result is shown in Figure 2.28.

Interestingly, the acceleration-only and combined acceleration-displacement deconvo-

lution far outperform the displacement-only deconvolution. All methods perform well with

no added noise. Therefore, the presence of noise appears to be more detrimental to the

displacement deconvolution than acceleration. Future studies should be performed to de-

termine the cause of this difference.
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Figure 2.28: Pulse force reconstruction for acceleration-only, displacement-only, and com-
bined acceleration-displacement deconvolution SISO example. R̂1 = R̂2 = 3, fs = 2500 Hz,
and SNR = 150 used for this example.

2.2.4 TDDM Limitations

The TDDM is a complex force reconstruction method that can generate extremely ac-

curate results over very short time scales. Additionally, some of the drawbacks of these

methods have been reduced or eliminated through our reformulation of the deconvolution

problem and subsequent alterations. Although TDDMs do not possess the phase shift error

present in the SWAT, it still some drawbacks which are worth noting.

The first is computation time. Formulating a deconvolution problem in the time domain

is very computationally expensive. Although segmenting the formulation can reduce this

burden, it also has its limits (i.e. due to overlapping there is a minimum reconstruction

length per segment). If a very long time history (many samples) is of interest, this method

may prove less desirable.

Additionally, there still exists some bit of subjectivity in selection of the constraint

parameters. Although our formulation has reduced the number of possible choices and

presents a clear resolution-accuracy trade off, there is not a clear single solution as is the
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case in SWAT. This solution ambiguity may be viewed as a practical limitation.

Finally, TDDMs are formulated for a single input-output pair. That means loading

is assumed to be concentrated at a single point. Often for wind tunnel applications, one

cannot make this assumption. If the applied loading is expected to be largely distributed,

this method again may prove suboptimal. In this dissertation, two solutions to this problem

are presented: (1) pressure reconstruction (presented later) and (2) summation of point

contributions. Further study is needed to determine if these solutions are adequate and the

required density of calibration input locations.

2.3 FDIM

The FDIM is a frequency domain couple to the TDDM. This means it is based on

the same physical relationship between input and output (i.e convolution), however, the

solution is performed in the frequency rather than time domain. This method is commonly

used to increase the computational efficiency of TDDMs. This consequently allows longer

time histories to be reconstructed in a reasonable amount of time.

2.3.1 FDIM Overview

Begin with Eq. (2.21) relating a measured output and desired input force. In the TDDM,

this equation is discretized and the system matrix is assembled. However, in the FDIM, a

Fourier Transform is performed on Eq. (2.21). If this is done, the result is given by

Y (ω) = H(ω) ·U(ω) (2.132)

where capital variables signify frequency domain functions. This conversion from time to

frequency domain is proven in Appendix B.2. Note that the complex convolution of two
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time domain functions has become a more simple multiplication of two frequency domain

functions.

As in the TDDM, the standard method for obtaining the IRF (i.e. h(t)) is to supply

a hammer pulse at the location of interest and record the response. Alternatively, some

researchers choose to fit the IRF with the help of finite element models[27], however this

is not considered here. To obtain the IRF, simply scale the response by the area under the

pulse and time shift it by half of the impulse width. This is shown in Figure 2.5 and is

discussed in further detail in Section 2.2.1. However, in the FDIM, the frequency domain

couple to the IRF is of interest. This is commonly referred to as the Frequency Response

Function (FRF).

With the IRF known, one may utilize the discrete Fourier Transform (DFT) to convert

the IRF into the frequency domain. Next, one may measure a response caused by an applied

dynamic load. Again using the DFT, one may obtain the frequency domain couple to the

output (i.e. Y (ω)).

Finally, to obtain the unknown applied force, one may perform a piecewise division of

the output by the FRF at every frequency, i.e.

U(ω) =
Y (ω)

H(ω)
. (2.133)

The time domain couple to this input force is obtained using the inverse discrete Fourier

Transform (IDFT).

One may note that since a division is required rather than a matrix division, this op-

eration requires O(N) operations rather than O(N2) where N is the length of a measured

channel. As expected, the computational efficiency has increased significantly and much

longer time segments can be deconvolved.

As in the TDDM, many outputs and only a single input are available. In this SIMO case,
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the solution is obtained in a very similar fashion to the conventional TDDM or either of

the TDDMs developed in this dissertation. Begin by obtaining all FRFs between the input

location and all output channels. For the conventional FDIM, this is obtained by performing

a Fourier transform on the scaled and time shifted output to an applied hammer pulse. Each

FRF at a frequency is denoted as (H j)ω and the Fourier Transform of each measured output

at a particular frequency (Y j)ω , where the output location is denoted by the subscript j and

the frequency of interest is denoted by the subscript ω . As in the TDDMs, reconstruction

of the input force requires information from all outputs. Therefore, Eq. (2.132) is stacked

for all output locations to obtain



Y1

Y2

...

YM


ω

=



H1

H2

...

HM


ω

U(ω) (2.134)

or in compact form as

Y(ω) = H(ω)U(ω) (2.135)

which holds for every frequency, ω . Note that M represents the arbitrary number of output

channels used for the reconstruction.

Since this is a matrix equation, point wise division is no longer applicable. However, a

simple least squares inversion can once again be used to solve for the input force as

U(ω) = H+(ω)Y(ω). (2.136)

This is evaluated at each frequency which requires much less computation time compared

to a typical TDDM.
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Finally, a scenario where the force reconstruction at multiple input locations is of in-

terest is considered. Such scenarios may be referred to as MIMO. As in the TDDMs, the

MIMO formulation is simply a superposition of SIMO formulations. This is represented as



Y1

Y2

...

YM


ω

=



H11 H12 . . . H1P

H21 H22 . . . H2P

...
... . . . ...

HM1 HM2 . . . HMP


ω



U1

U2

...

UP


ω

(2.137)

where P input locations are of interest. Again this is represented in compact form as

Y(ω) = H (ω)U(ω) (2.138)

and solved using a least squares pseudo inverse as

U(ω) = H +(ω)Y(ω) (2.139)

provided M > P.

If N frequencies are of interest, this requires the pseudo inversion of N MxP matrices.

Since inversion isO(P3) for this inversion, the MIMO computation isO(N ·P3). The inver-

sion for the typical MIMO TDDM is O(N3 ·P3), a factor of N2 larger. The computational

efficiency of the FDIM is obvious as N becomes large.

2.3.2 Novel FDIM Alterations

In this section, the base FDIM formulation is improved to yield improved results.
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2.3.2.1 FRF Solution

As in the TDDM alterations, the assumption of the IRF being equivalent to a multiple

of the response to a hammer pulse is no longer made. Rather, the convolution relationship

is solved (this time in the frequency domain) with a known applied load and measured

response.

Return to Eq. (2.132) with U(ω) known (measured) and the FRF unknown. As in the

solution of an unknown applied force, the solution of the FRF is simply a division of the

output by the input at each frequency, i.e.

H(ω) =
Y (ω)

U(ω)
. (2.140)

Although this formulation requires more computation than the typical one (i.e. assum-

ing the measured response to a pulse loading is proportional to the FRF), this formulation

is required for the next alteration. Additionally, this allows for a variety of calibration load

types as opposed to just pulses.

2.3.2.2 Averaging of Calibration Sets

The next alteration made is very similar in spirit to what was changed in the TDDM

and is discussed in Section 2.2.2.5. Again, the FRF of the system is not dependent on the

applied load. That means that any applied load at a particular location should exhibit an

identical FRF as any other load applied at the same location. This is capitalized upon to

reduce the ill effects of noise amplification by performing multiple calibration tests.
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Applying p input calibration tests at the same location results in



Y1

Y2

...

Yp


ω

=



U1

U2

...

Up


ω

H(ω) (2.141)

at each frequency and written compactly as

Y(ω) = U(ω)H(ω). (2.142)

Since the noise is random from test to test, utilizing repeat tests will hopefully result in a

more accurate FRF construction. As in Eq. (2.136), the FRF is solved using a least squares

pseudo inverse as

H(ω) = U+(ω)Y(ω). (2.143)

Since each FRF is unique, this technique can be repeated for solving for the FRF at each

input-output pair when considering the SIMO or MIMO case.

2.3.2.3 Acceleration Deconvolution

As in the TDDM formulation, the convolution equation also holds between applied

force and acceleration. Most of the discussions in this dissertation present examples with

strain or displacement deconvolution. However there are some advantages to using accel-

eration data.

Acceleration measurements are significantly easier to obtain than strain/displacement.

For strain, one typically needs to ensure all load can travel through the strain gages which

often requires designing around sensors. Alternatively, accelerometers need be simply
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placed on a surface of the body. Therefore acceleration measurement can be an afterthought

which presents more design flexibility. Additionally, force measurement can theoretically

be made without the need for complex strain balances. This may be advantageous in smaller

tunnels or small budget experiments.

Returning to our continuous convolution of displacement and applied force, both sides

are differentiated twice to obtain Eq. (B.21). For proof of this equation see Appendix B.3.

The unknown is now the acceleration FRF (Ḧ(ω)) rather than the typical displace-

ment/strain FRF (H(t)). Using the FDIM, one may construct the acceleration FRF and

then use it to reconstruct an arbitrary applied dynamic force u(t).

It also should be noted that all of the previously mentioned extensions to the developed

FDIM variant are completely applicable to acceleration deconvolution as well. Therefore

multiple input tests are used at the same location to solve for the acceleration FRFs. There-

fore Eq. (2.141) becomes 

Ÿ1

Ÿ2

...

Ÿp
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Up
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ω

Ḧ(ω). (2.144)

To solve for the unknown applied load, all of the FRFs are used in the solution. There-
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fore, the SIMO form becomes
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ω

U(ω) (2.145)

where ns denotes the number of strain sensors and na denotes the number of accelerome-

ters. Additionally, the MIMO formulation becomes
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Ḧna,1 Ḧna,2 . . . Ḧna,P
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ω

. (2.146)

Note that adding the acceleration measurements increases the row dimension of the inverted

matrix. This in theory should improve performance for a least squares solution.
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2.3.3 Numerical Examples of FDIM

In this section a few numerical examples of the FDIM solution approach are presented.

This section presents a few of the considerations for the FDIM and demonstrates the ad-

vantages of the novel alterations presented in this dissertation.

2.3.3.1 SISO Example of the Conventional FDIM

The most basic reconstruction problem is first considered. Consider the SISO spring-

mass-damper system depicted in Figure 2.9. All definitions of noise and system properties

are consistent with those defined in Section 2.2.3. Recall that the SISO case is much less

desirable than the SIMO case. Only information from one location is available and one

cannot over constrain the solution.

Applying the conventional FDIM (i.e. scaling and time shifting output to obtain IRF),

the IRF and reconstructed pulse force shown in Figure 2.29 are obtained. Note that no

noise was injected into this problem (aside from unavoidable numerical noise).

(a) (b)

Figure 2.29: Conventional FDIM noiseless force reconstruction. IRF (a) and reconstructed
force (b) are both shown.

As expected, the IRF matches very well with the analytical solution. Furthermore, when
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this IRF is used to reconstruct a new load, the reconstruction matches well with the applied

load. Note some small errors which can be attributed to numerical error accumulation and

inability to perfectly shift the response by half of the impulse width.

Next it is important to observe the detrimental effects of noise to the reconstruction.

Repeating the above analysis with SNR= 150, the results in Figure 2.30 are obtained.

Although minimal influence is observed on the FRF solution, large error is present in the

(a) (b)

Figure 2.30: Conventional FDIM noisy force reconstruction. IRF (a) and reconstructed
force (b) are both shown.

pulse force reconstruction. Unfortunately, with this conventional approach, there are no

more knobs to turn and one is forced to accept this level of accuracy.

2.3.3.2 SISO Example of FDIM with Solved FRF

Next consider the solution of the FRF alteration suggested Section 2.3.2.1. Applying

this approach, the IRF construction and pulse force reconstruction shown in Figure 2.31

are obtained.

Again, as expected, the FRF and pulse force are reconstructed with high accuracy.

Interestingly, the results actually appear more accurate than the simple scaling of output

approach (i.e. Figure 2.29b). It would seem that solving for the FRF is more accurate than
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(a) (b)

Figure 2.31: FRF solved FDIM noiseless force reconstruction. IRF (a) and reconstructed
force (b) are both shown.

the conventional scaling and time shifting of the response.

Next it is important to observe the detrimental effects of noise to the reconstruction.

Repeating the above analysis with SNR= 150, the results in Figure 2.32 are obtained.

(a) (b)

Figure 2.32: FRF solved FDIM noisy force reconstruction. IRF (a) and reconstructed force
(b) are both shown.

Comparing Figure 2.32a with Figure 2.30, it is evident that the FRF solution is worse

in the noisy case. Furthermore, if this noisy FRF is used to reconstruct a pulse force, the

accuracy is once again unacceptable. The level of error in the reconstructions is comparable

with that of the conventional FDIM. Again, no additional alterations are possible for this
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stage of the method.

2.3.3.3 Averaging Calibration Sets

As with TDDMs, one possible way of increasing accuracy for the FRF construction

is by utilizing multiple calibration sets in the FDIM formation. Since each input-output

location pair has a unique FRF, one may perform multiple tests and use all of the infor-

mation to construct the FRF. To compactly observe the influence of repeat tests on FRF

construction accuracy, return to Eq. (2.123) and compute this accuracy versus number of

calibration tests. A plot of this is shown in Figure 2.33. Since the FRF often displays high

frequency error (e.g. Figure 2.35)b) computing an error metric based on the FRF is often

less informative.

Figure 2.33: FDIM SISO IRF construction accuracy versus number of calibration tests

Since the FDIM is so efficient, one may perform many numerical studies with very

little computational effort. Upon review of Figure 2.33, a very clear linear trend in log

space is evident for the multiple calibration approach. One can achieve about an order of

magnitude decrease in error by increasing the number of calibration tests by about an order
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of magnitude. Although performing 100+ tests at the same hole location in real life may be

unreasonable, it is useful to show that performing multiple tests can improve the accuracy.

Although higher accuracy than the conventional approach is achievable, this method

still under performs for any practical number of tests on this SISO case study. Regardless,

this at least gives the tester an option to change where previously they could not.

2.3.3.4 SIMO Example

In this section SIMO force reconstruction is presented for a ten DOF lumped mass

oscillator. This is same system form shown in Figure 2.1 with the stiffness and damping

values selected randomly.

The FDIM presented in Section 2.3.2.1 is validated here. Using this more simplified

method, one may observe the advantages of adding multiple calibration sets later in the

section. Using this method, the pulse shown in Figure 2.34 is obtained.

Figure 2.34: FDIM SIMO noiseless force reconstruction

As expected, excellent accuracy is achieved for the noiseless case. When reviewing the
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various IRFs, a curious phenomenon is observed. This is shown in Figure 2.35a. Ringing

is present in the beginning and end of the reconstruction. This is primarily due to the large

high frequency error in the FRF which is shown in Figure 2.35b. However, this error does

not materialize into large errors in the force reconstruction.

(a) (b)

Figure 2.35: IRF (a) and FRF (b) construction at DOF 5 using FDIM with FRF solution.

This high frequency error in the FRF is due to the finite pulse used for calibration.

The Fourier Transform of an infinitesimal width pulse is constant at a value of 1. When a

finite pulse is used, this constant value drops off steeply at high frequencies. When this is

divided by the Fourier Transform of the pulse, this manifests as large contributions at high

frequencies. This is an unavoidable consequence of using a finite pulse. One may attempt

to remedy this by filtering the signal at a value of

fc =
1
ε

(2.147)

the inverse of the pulse width. For this example, that value is 159 Hz, approximately the

value where this steep increase in the FRF begins. For accurate view of the FRF, this

filtering is required, however, why this is not required for pulse reconstruction is shown

below.
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The reconstructed pulse was a new pulse with different magnitude, pulse width, area,

and noise properties than the pulse used for calibration. Therefore, any claim of over fitting

is invalid. Clearly the use of the erroneous FRF still yields excellent results for the noiseless

case.

Next it is of interest to investigate the negative effects of noise and how it may degrade

the results. This is shown in Figure 2.36. Once again substantial high frequency error is

(a) (b)

Figure 2.36: FRF solved SIMO FDIM noisy force reconstruction. FRF at DOF 5 (a) and
reconstructed force (b) are both shown. SNR= 150 used for this example.

observed in the FRF due to the finite pulse. However, with the presence of noise, the pulse

reconstruction is no longer unaffected. Substantial under prediction of the pulse is ob-

served. This trend is consistent across many tests with varying sampling frequencies, pulse

widths, DOFs, and noise levels. Therefore, one may conclude that noise causes unavoid-

able error in the FRF solved FDIM. Note that there are slight differences in the analytical

FRF from Figure 2.35b and 2.36a. This is due to the random selection of system parameters

during a particular numerical experiment. However, these trends are very repeatable.

Next multiple calibration tests are incorporated to investigate the repeat formulation.

The hypothesis is that with more calibration inputs, a better approximation of the FRF

will be obtained resulting in more accurate reconstructions. The results of the same FDIM
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experiment with ten calibration tests at the same location is shown in Figure 2.37.

(a) (b)

Figure 2.37: FRF solved SIMO FDIM noisy force reconstruction with ten calibration tests
at same input. FRF at DOF 5 (a) and reconstructed force (b) are both shown. SNR= 150
used for this example.

No discernible accuracy increase is evident in Figure 2.37a, however, the pulse re-

construction is clearly more accurate. To more concretely observe this effect, the force

reconstruction for a varying number of input calibration tests is repeated and the peak and

area difference of each reconstruction is computed. These results are displayed in Figure

2.38 with varying levels of SNR.

(a) (b)

Figure 2.38: Peak (a) and Area (b) Difference versus number of calibration tests for FDIM
SIMO numerical studies
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As expected, the peak error reduced considerably when increasing the number of cali-

bration tests. The most substantial accuracy increase occurs after the first few repeat tests.

The influence on the area difference is more dramatic at lower SNR. Interestingly, the same

accuracy with ten repeats for the SNR= 50 case is achieved as with a single test from a data

set with a third the noise level. Clearly performing repeat tests can reduce the ill effects of

noise.

Further increase in repeat tests for the low noise cases yields less increase in accuracy.

Therefore, as in Section 2.2.3.7, a practical requirement of two to three repeat tests is ideal

for high reconstruction accuracy.

2.3.3.5 MIMO Example

In this section the FDIM’s ability to reconstruct pulses for the MIMO case is validated.

The same ten DOF system discussed in the previous section is used. However, this time

pulses are applied simultaneously at multiple locations. For this study all outputs (i.e.

n = 10) are considered and inputs at four locations (i.e. p = 4). Performing the FRF solved

FDIM with no repeat tests or noise, the results in Figure 2.39 are obtained.

Note the high accuracy of the reconstructions for this MIMO case study. All three

simultaneously applied input pulses have been accurately reconstructed. Additionally, the

hole location with no applied load was correctly reconstructed as well.

Next it is of interest to investigate the effects of noise. Adding Gaussian noise to all

output data at SNR= 150, the results in Figure 2.40 are obtained. This figure reveals that

the FRF solved FDIM does a very poor job at reconstructing the pulse. Both the peak and

width of the reconstructed pulse are highly inaccurate.

Next, one may investigate the influence of performing multiple calibration sets on the

accuracy of the reconstruction. Again the peak and area differences are used. However, as
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(a) (b)

(c) (d)

Figure 2.39: MIMO hammer pulse reconstruction for 10 DoF system. Applied force recon-
struction at input nodes 2 (a), 4 (b), 6 (c), and 8 (d) are all shown. The FRF solved FDIM
with no noise and fs = 5 kHz were used for this study.

in Section 2.2.3.6, the average area and peak difference were considered over all the holes

where a pulse was applied. These formulae are given by Eqs. (2.126) and (2.127). The

averaged peak and area differences versus number of calibration tests is depicted in Figure

2.41.

Interestingly, the results aren’t nearly as drastic as in the SIMO case study. Although

some improvement is observed in the peak and area difference as the number of input

calibration tests increases, the effect is much smaller and never reaches a very low level

of error (e.g. < 10% AD and PD). Additionally, the MIMO case study seems much more

sensitive as compared to that of the SIMO. For the high noise case, the solution occasionally
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(a) (b)

(c) (d)

Figure 2.40: MIMO hammer pulse reconstruction for 10 DoF system. Applied force recon-
struction at input nodes 2 (a), 4 (b), 6 (c), and 8 (d) are all shown. The FRF solved FDIM
with SNR= 150 and fs = 5 kHz were used for this study.

blows up. Clearly imposing the added constraint on the FRF solution (i.e. additional

calibration input tests) is not enough to adequately reduce the ill conditioning in the force

reconstruction solution for the MIMO case.

2.3.3.6 Acceleration Deconvolution

The final FDIM investigation is deconvolution of acceleration data. In Section 2.2.3.9

it was shown that the use of acceleration can prove extremely effective for the GDLM. This

section is dedicated to investigating the effectiveness of acceleration deconvolution for the
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(a) (b)

Figure 2.41: Peak (a) and Area (b) Difference averaged over each application location
versus number of calibration tests for FDIM MIMO numerical studies

FDIM. This section only considers the SISO system case. However, further experimental

investigations demonstrate some of the advantages for the SIMO and MIMO cases.

Consider the numerical system shown in Figure 2.9. Assume the displacement and

acceleration of this mass is measured. Next, a known load such as a pulse is applied to this

system and record the resultant response. The acceleration and known applied force can

be used in conjunction with Eq. (2.144) to solve for the resultant acceleration FRF, Ḧ. For

this example, consider the more simplified case where no repeat tests are used (i.e. p = 1).

An acceleration IRF construction using this approach is displayed in Figure 2.42a. Next,

the FRF can be used to solve for an applied force given a measured dynamic acceleration

response. An example pulse force reconstruction is displayed in Figure 2.42b. Note the

excellent pulse reconstruction even with these noisy signals.

As noted in Section 2.3.2.3, this can be combined with the displacement data and recon-

struct an applied load. A comparison pulse force reconstruction considering displacement-

only, acceleration-only, and combined acceleration-strain deconvolution is shown in Figure

2.43.

As found in the GDLM example of acceleration deconvolution, the acceleration-only
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(a) (b)

Figure 2.42: Acceleration IRF construction (a) and pulse force reconstruction (b) using
FDIM acceleration deconvolution. SISO system with SNR = 150 used for these studies.

and combined acceleration-displacement deconvolution far outperform the displacement-

only deconvolution. All methods perform well with no added noise. Therefore, the pres-

ence of noise appears to be more detrimental to the displacement deconvolution than accel-

eration. Future studies should be performed to determine the cause of this difference.

2.3.4 FDIM Limitations

The FDIM is an extremely computationally efficient method due to the solution of

deconvolution in the frequency domain. This approach allows for a series of inversions at

each frequency rather than a simultaneous inversion of a impulse response matrix on the

order of the length of the signal squared. Additionally, the accuracy of this method seems

very comparable with that seen in the SWAT and TDDM variants.

However, as with the previous methods, the FDIM has its drawbacks which should be

noted. After review of Section 2.3.3.5, it is evident that the FDIM is less effective for the

MIMO problem. For this highly over constrained problem (i.e. ten outputs and four inputs),

the best achievable accuracy is about 60% peak error. Adding repeat tests helps this but the

desired level of accuracy is not achieved.
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Figure 2.43: Pulse force reconstruction for acceleration-only, displacement-only, and com-
bined acceleration-displacement deconvolution SISO example. The FDIM with fs = 2500
Hz, and SNR = 150 used for this example.

Another disadvantage of this method is the general lack of modifications available to

the analyst. The only modification implemented is the use of additional calibration tests.

Although this improves performance, it is still not enough in some cases to properly solve

the problem. Unlike in the GDLM or CMM, no large modification is available to the prob-

lem formulation (e.g. increase in constraint parameter) that can increase the conditioning

of the problem to an acceptable level.
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Chapter 3: Experimental Validation on No-Flow Test Article

In this chapter, the various methodologies are validated real experimental systems. Al-

though the methods have been validated on numerical models with noise, many complex-

ities may arise in real systems that are not considered in idealized numerical models. Ex-

amples include nonlinearities, biased noise, and infinite DoFs. Prior to testing in a wind

tunnel, it is important to demonstrate these methods on more complex, real systems to build

confidence in the effectiveness of such methods.

3.1 Experimental Setups

Begin with an overview of the experimental setups for the bench top tests. There are

a number of considerations when performing dynamic experiments. Examples include

stiffness of boundary conditions, sensor connections, data acquisition, and load application.

This section will overview these considerations in detail.

3.1.1 Support Structures

To create a test setup that closely resembled that of a tunnel run, a similarly sized test

article was developed. The fully assembled model can be seen in Figure 3.1. This test

article, designed by Collopy et al[30], was chosen to maximize the number of orthogonal

loading locations and simulates the approximate size, weight, and natural frequencies of

typical test articles used in Tunnel 9. A steel plate is affixed to the test article that has
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Figure 3.1: CAD representation of dynamic calibration bench top test article

mounting holes for the load cells.

The strain sensors, discussed in a later section, must be constrained between the model

and sting to ensure the load travels through the sensors. For this reason, the strain sensors

are mounted between the balance adapter (which connects to the sting) and the model. One

may note that only a single load path exists between the model and support structure which

passes through the sensors. Any other load path may inhibit the sensors performance.

The primary support structure used in most of my experimental studies is shown in Fig-

ure 3.2. This support structure is henceforth referred to as ”Support Structure 1” and will be

used for the majority of the experimental validation studies. This support structure is most

commonly used to apply check loads for validating strain gage force balance calibrations.

It is adjustable in pitch and role via two hydraulic arms. These adjustments, in conjunction

with an inclinometer allows the user to set the orientation of the model within a sixtieth of

a degree.

The high speed data acquisition system (DAS) is also depicted in the left of Figure

3.2. All channels of the sensors are sent through signal conditioning boxes and then finally

recorded by the DAS. This system is capable of sampling analogue signals up to a rate of

1 MHz. Additionally, a physical anti-aliasing filter of 20 kHz is available for use.

To build confidence in these methodologies, tests are performed on a second support
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Figure 3.2: Calibration test article mounted on support structure 1.

structure. This is the actual structure inside of Tunnel 9. A typical sting for a similarly sized

test article was used. This far longer sting will create a very different response as compared

to support structure 1. Although there is no theoretical requirement for validating on the

Tunnel 9 sting, these experiments will build confidence that this method works on the exact

system for future integration. This structure, henceforth referred to as ”Support Structure

2”, is shown in Figure 3.3.

A static calibration was also performed for the piezoelectric gages. However, since

pitch variation on Support Structure 1 was limited to a few degrees and availability on

Support Structure 2 was limited, a static calibration on the support structure depicted in

Figure 3.4 was performed.

This support structure is adjustable in pitch from 0-90◦. This allows the tester to apply a

purely x-direction (i.e. drag) load. This was of interest to quantify the accuracy of the static

calibration in all loading directions. Since the piezoelectric strain sensor connections are

unaltered during mounting on the various support structures, the static calibration should
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Figure 3.3: Calibration test article mounted on support structure 2.

(a) (b)

Figure 3.4: Support structure used for static calibration with (a) and without (b) mounted
test article.

hold. During mounting, an inclinometer was used to ensure the test article was oriented at

zero AoA. This reduces the effects of bending deflections on various support structures.

The same data acquisition system, sensors, and test article are used in these experi-

ments. We’ve simply changed the system boundary conditions by mounting the test article

on various support structures.
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3.1.2 Sensors

Unlike for static force measurement, dynamic force balances are not commercially

available. Some exist but are typically not designed specifically for the wind tunnel ap-

plication. For this reason, high bandwidth sensors need to be integrated directly into the

test article design. A steel plate is affixed to the test article that has mounting holes for

the load cells. Four piezoelectric force sensors were arranged in a rectangular formation

to accurately measure all six components of forces and moments: Fx (Axial), Fy (Side), Fz

(Normal), Mx (Roll), My (Pitch), and Mz (Yaw). Having a symmetric formation minimizes

crosstalk after calibration. This is the phenomenon of undesirable signals being present

on channels without having a corresponding applied load. An example of crosstalk is if a

z-direction load was applied and a small signal was recovered by the y-direction sensors.

The placement of these load cells is crucial when designing a model. This is because

for accurate transmission of all the force through the sensors, they have to be mounted

between the sting and the model. An assembled picture of the load cell configuration can

be seen in Figure 3.1. Similarly, the entire load must travel through the strain gage balance.

A balance adapter was used to connect the model to the balance, with the piezoelectric

load cells in between. A stud is used to constrain each load cell between the test article

and balance adapter. However, this stud limits the deflection of the load cell and reduces

the force transferred to the load cells. To limit the effects on the recovered force from

this measurement system, beryllium-copper studs were used for their high strength and

low stiffness, which means that most of the force will be transferred directly through the

stiffer load cells. A sufficient preload is also required in this assembly to ensure adequate

transmission of shear forces to the load cells. The manufacturer recommends at least ten

times the normal force in preload as compared to the expected shear loading during testing.

The strain gage balance, colored blue in Figure 3.1, is attached to the balance adapter
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with a hardened steel pushpin. Finally, the strain gage balance is firmly connected to the

sting, which is constrained by the support structure of choice. One can now see that any

load imparted to the test article will travel through all five of the force sensors. However,

inertial loads are still present in the signal. These are created from the restoring forces in

the cantilevered arrangement. A flight-worthy test article is not cantilevered and therefore,

the measurement of these restoring forces is undesirable. Rather, the aerodynamic loads

are the target measurement.

Nine uniaxial piezoresistive accelerometers were used to remove the inertial loading.

The accelerometers were arranged in a 3-2-2-2 formation[42] to ensure accurate recovery

of all directional accelerations present. The accelerometer array can be seen in Figure

3.5 and a representative example of physical placement of this array in Figure 3.1. This

formation ensures that all three tangential or rotational oscillations that may be excited can

be recovered.

Figure 3.5: 3-2-2-2 Accelerometer Array to ensure all translational and rotational acceler-
ations are measured.

Some relevant specifications of the load cells (Model 260A01[43]) and accelerometers

(Model 56[44]) are depicted in Table 3.1. Both sensors have a very high bandwidth, making

them more than suitable for the expected dynamic environment. Based on observations
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Table 3.1: Sensor specifications for the load cells (left) and accelerometers (right) used in
the Balance Calibration Laboratory.

Model 260A01 Model 56

Normal Sensitivity 0.56 mV/N 0.9 mV/g

Shear Sensitivity 2.25 mV/N -

Normal Measurement Maximum 4.45 kN 200 g

Shear Measurement Maximum 2.22 kN -

Normal Failure Limit 5.87 kN 5000 g

Normal Broadband Resolution 0.027 N-rms -

Shear Broadband Resolution 0.0089 N-rms -

Upper Frequency Limit 90 kHz 2.8 kHz

Normal Lower Frequency Limit 0.01 Hz 0 Hz

Shear Lower Frequency Limit 0.001 Hz -

Temperature Range -54 to +121 C -40 to +121 C

made in previous tests and numerical studies, relevant dynamics in the range of 5-1000 Hz

are expected. This is well within the range of each sensor. Note that the accelerometers

are uniaxial and therefore do not quote shear quantities. They do however have < 3%

transverse sensitivity so most of the response will be in reaction to the normal direction

motion. The accelerometer spreadsheets unfortunately do not quote a broadband resolution

value however in general this is found to be higher than desired (i.e. noisier signals than

preferred). For future tests, PCB triaxial accelerometers are suggested.

For most of these experimental studies the 6-component strain gage force balance read-

ings are not recorded. This is due to its 30 Hz upper bandwidth. This low internal reso-

nance is far below the level of relevant dynamics. Therefore, the data beyond this limit has

poor signal to noise ratio and is decidedly unusable.

Finally, it is important to measure the applied force during calibration. The most con-

venient way of achieving this at present is to use a modally tuned impact hammer. These

hammers are typically instrumented with a piezoelectric sensor in the tip. The hammer
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structure has been modally tuned to eliminate the resonant vibrations of the piezoelectric

tip. Therefore, there are negligible inertial responses of the sensing element and the mea-

sured response is proportional to the applied force. Many such hammers are commercially

available. For this research, the PCB Model 086C03 was chosen which has a sensitivity of

10 mV/g and a measurement range of ±2224 N[45].

3.1.3 Data Acquisition

To measure all of this high bandwidth data, a high frequency data acquisition system

is required. This section is dedicated to explaining the specifics of this system. All sensor

channels are fed to signal conditioning units. These units power the sensors as well as allow

for setting of gains and removing DC offsets.

Each channel of the piezoelectric strain sensors is fed to PCB Model 482C16 Advanced

ICP signal conditioner[46]. These are capable of removing any accrued DC offset, setting

gains from 0.1-200, and many other functions which are less useful for this application.

The PCB Impact Hammer is similarly sent through a PCB Model 482C05 Basic ICP signal

conditioner[47]. This is a simpler version the Model 482C16 that simply handles the ICP

current levels. Finally the accelerometers are fed to Measurement Specialties Model 101

DC signal conditioners[48]. These are capable of setting gains from 0-999 and zeroing any

DC offset.

After the data is conditioned, it is sent to a data acquisition box. The Pacific Instruments

Model 6010U box[49] is used. This data acquisition system (DAS) can sample up to 32

channels at a maximum of 200 kHz, well beyond our desired limit. The sampled signal is

sent through a physical 20 kHz anti-aliasing filter and digitized prior to being sent to the

user.

The digitized data is then collected using the Pacific Instruments PI660-6000 software[50].
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This software is compatible with the 6010U DAS and allows the user to set sampling rates

and length of recorder as well as change analogue filter setting and various other options.

This software also allows the user to trigger the DAS via a user supplied input or a timing

pulse (as will be used in future wind tunnel experiments). Finally, this software provides a

quick view of the sampled binary data prior to exportation to the desired ASCII format.

3.2 Experimental Results

In this section, a host of experimental results is presented to further validate the tech-

niques formulated in this dissertation. All tests utilize data from the sensors discussed in

Section 3.1.2 inside of the balance calibration test article mounted on one of the support

structures discussed in Section 3.1.1.

3.2.1 SWAT Results

A static calibration was performed on the balance calibration test article to obtain the

millivolt to elastic force scaling factors. Following this, a dynamic calibration was per-

formed on support structure 1 to obtain the modally separated dynamic calibration matri-

ces, used to remove the elastic force contributions from the applied force reconstruction.

This section overviews the results of these two calibrations.

3.2.1.1 Static Calibration Results

This section presents a validation of the static calibration methodology on piezoelec-

tric strain sensors. Additionally, a static calibration of the 6-component strain gage force

balance is presented for comparison. As discussed in Section 3.1.1, a different support

structure was used for the static calibration. This was to allow drag direction loading using

gravity. Alternatively, a 90-degree bend support arm may be mounted to Support Structure
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1. This was unavailable during the calibration of the piezoelectric gages but was used for

the 6-component strain gage force balance static calibration.

To ensure consistency with static calibration methodology used by the aerospace com-

munity, the error metrics and procedures are derived from that presented in the AIAA Rec-

ommended Practice for ”Calibration and Use of Internal Strain-Gage Balances with Ap-

plication to Wind Tunnel Testing”[13]. As discussed in Section 2.1.3.1, the most common

error metric is the Back Calculated Residuals (BCR). To present the overall performance

of a particular calibration, the AIAA Recommended Practice states that the mean, stan-

dard deviation, minimum, and maximum BCR for each measurement direction should be

presented. Furthermore, it suggests the normalization of these results with an engineering

unit value also be presented. Examples of this value are balance measurement maximum

or applied calibration maximum. For these studies, the latter is chosen.

Before presenting the results, a discussion of the testing process aids in understanding

of the final results. To begin, one must apply known static loads to the model and record the

millivolt output from the sensor under investigation (i.e. the 6 component foil strain gage

balance or the piezoelectric strain sensors). This is a fairly simple task and the common

strategy of applying static loads via suspended weights is used. A mock up of this load

application may be seen in Figure 3.6.

The test article was created with screw holes at precise locations all over the model.

This allows the tester to apply a load at an exactly known location. Using the orientation

of the model (obtained via an inclinometer) and the map of hole locations, one may easily

compute the exact, applied forces and moments with respect to a location on the model.

After the load is applied and steadied, the user may record the millivolt reading for the

sensor under investigation. To obtain the static calibration matrix, one needs to assemble

Eq. (2.2) and solve using Eq. (2.4).

This approach yields excellent results for classic, foil strain gage sensors which con-
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Figure 3.6: Suspended weight for static loading and drop tests.

tinuously emit a response that is proportional to the applied load. However, piezoelectric

sensors act slightly different. These sensors are capacitive in nature, meaning an applied

load will generate a response from the sensor which decays over time. This decay rate is a

function of the piezoelectric element and is appropriately named the time constant of decay.

This is a well characterized and unavoidable attribute of piezoelectric materials. However,

when reviewing the static calibration methodology, one may notice a significant concern.

As the weight is applied and the data becomes ”steady”, a drop in signal proportional to

the time waited is observed.

To circumvent this concern, an average of the measured points immediately following

the application of the load is considered. The measurement begins prior to load application.

After data acquisition has begun, the scissor jack depicted in Figure 3.6 is used to smoothly

apply the load. Finally, in post processing, the peak of each measurement is located and

an average of the response over a short duration on the order of 0.25 seconds is taken. The

piezoelectric strain gages used in this study[43] should lose less than 1% of their signal

over this duration according to the manufacturers user’s manual. Although this is small,

this decay and the inability to wait until the weight is ”steady” should be considered when
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drawing conclusions based on the error metrics.

Finally, it should be noted that the 6 component foil strain gage force balance static

calibration was performed using a calibration block rather than the weight hangers placed

over the model. The use of this calibration block is standard practice by Tunnel 9 and most

other users of these roll balances. The use of this precise calibration hardware surely aids

in the roll balance calibration accuracy.

Figures 3.7 and 3.8 present the force and moment error, respectively calculated using

Eq. (2.19). The results of the foil balance calibration (left) may be compared to that of the

piezoelectric balance (right). Note that the y-axis in each have been matched for ease of

comparison. A total of 135 tests were used in the foil balance calibration while 207 were

used in the piezoelectric balance calibration.

(a) (b)

Figure 3.7: BCR of force directions for 6 component foil balance (a) and piezoelectric (b)
strain gage calibration.

Upon review of Figure 3.7 it is apparent that the order of accuracy of the two calibra-

tions is very similar. A correlation between load magnitude and accuracy is clearly evident

in Figure 3.7a. A higher order calibration could be used to reduce this trend but is be-

yond the scope of this discussion. Upon review of the piezoelectric balance calibration,

no such trend is discernible. Rather, significant scatter is observed. This can be attributed
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to the error of the decay time constant and the averaging of signal near the peak. Due to

unavoidable user error, small errors accrue for a given test.

(a) (b)

Figure 3.8: BCR of moment directions for 6 component foil balance (a) and piezoelectric
(b) strain gage calibration.

Similar conclusions may be drawn for the moment BCR displayed in Figure 3.8. Ad-

ditionally, the error for the piezoelectric calibration appears noticeably worse than its foil

balance counterpart. Aside from the errors accumulated via signal drift and peak averaging,

the imprecision of the test article dimensions could be a source of error. The calibration

block used for the foil balance calibration is a very high precision machined piece of hard-

ware. The test article has higher machine tolerances and may exhibit higher deflections

during a given load application, causing additional error accumulation. Given all of these

sources of error, the calibration of the piezoelectric gages is still considered to be excellent.

Finally, additional insight is gained by computing the standard deviation, mean, maxi-

mum, and minimum of these BCR values as requested by the AIAA recommended practice[13].

These values, as well as the normalized percentages and normalizing values (i.e. max ap-

plied load for a given direction) are shown in Tables 3.2 and 3.3 for the foil and piezoelectric

strain gage static calibrations.

Upon review of these tables, the excellent quality of the calibrations is immediately
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Table 3.2: BCR for 6-component strain gage calibration. Forces units: lbs and moment
units: in-lbs.

Fx Fy Fz Mx My Mz
Standard deviation 0.0426 0.233 0.1264 0.2792 0.2234 0.6283

Average residual -0.0196 0.0538 -0.1079 0.0448 0.1091 -0.1858

Maximum residual 0.0891 0.823 0.0879 0.8563 0.7841 3.8782

Minimum residual -0.1664 -0.5271 -0.6333 -0.4158 -1.0427 -2.2496

Normalization value 100 100 100 100 250 250

Standard deviation 0.04% 0.23% 0.13% 0.28% 0.09% 0.25%

Average residual -0.02% 0.05% -0.11% 0.04% 0.04% -0.07%

Maximum residual 0.09% 0.82% 0.09% 0.86% 0.31% 1.55%

Minimum residual -0.17% -0.53% -0.63% -0.42% -0.42% -0.90%

Table 3.3: BCR for piezoelectric strain gage calibration. Forces units: lbs and moment
units: in-lbs.

Fx Fy Fz Mx My Mz
Standard deviation 0.1763 0.2653 0.4025 0.928 1.3579 1.2047

Average residual -0.0228 0.0263 -0.0055 0.0982 0.1464 -0.1216

Maximum residual 0.5577 1.0522 1.1554 2.8821 4.7598 4.0111

Minimum residual -0.8148 -0.8172 -1.5954 -3.2517 -2.682 -3.5865

Normalization value 19.6576 19.6576 27.8 182.4 547.2 356

Standard deviation 0.90% 1.35% 1.45% 0.51% 0.25% 0.34%

Average residual -0.12% 0.13% -0.02% 0.05% 0.03% -0.03%

Maximum residual 2.84% 5.35% 4.16% 1.58% 0.87% 1.13%

Minimum residual -4.14% -4.16% -5.74% -1.78% -0.49% -1.01%
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evident. Less than 1% and 2% force and moment errors are obtained for the foil balance

calibration. Similarly, less than 6% and 2% force and moment errors are obtained for the

piezoelectric strain gage calibration. These results are of similar order and therefore a

successful calibration has been performed in both cases.

At this point, the retainment of the 6 component foil balance becomes more evident.

The static force and moment measurement of these devices are superior than that of the

piezoelectric balances. This is the primary motivation for the adoption of a hybrid force

measurement balance as proposed.

3.2.1.2 Dynamic Calibration Results

After completing a static calibration, the next step of SWAT is to perform a dynamic

one, where the acceleration response is considered. This section presents the dynamic

calibration results and quantifies the effectiveness using modal response magnitude. For

these studies, a total of 37 tests were performed across 13 hole locations. Drop tests were

performed in the x, y, and z directions. Note for x and y direction (i.e. perpendicular

to gravity) tests, a pulley system was used to transfer the applied load into the x or y

direction. The particular orientation of this pulley is definitely a source of error as no

precise orientation measurement of the pulley and tether was available.

Calibrated ten pound weights were hung at a particular location on the model using

the previously made screw holes on the model and a 2.8 pound weight hanger which was

fabricated for these studies. To apply a dynamic load, first one hangs the weight, steadies

it, and zeros the reading on the piezoelectric load cells. After data collection begins, the

weight is then removed by severing the tether with a propane blow torch. This removal of

the load was found to be substantially more steady and convenient as compared to applying

the weight (i.e. via dropping onto an unloaded model). It should be noted, however, that
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the removal and application of a weight are mathematically equivalent.

First the original SWAT presented in Section 2.1.1 is presented. This technique is the

most basic version of the SWAT where the entire time history of acceleration responses are

scaled and combined with the elastic force to recover the applied forces and moments. The

results of this reconstruction for a drop test applied at hole 29 are presented in Figure 3.9.

To provide fair comparison with the other SWAT variants, the elastic force and acceleration

contributions were low pass filtered at 200 Hz.

Hole 29 was chosen because two directional moments were applied for z-direction

forces at this location. The accuracy is subjectively common when compared to the other

12 hole locations. This test is used to qualitatively discuss the effectiveness of each SWAT

approach. A more quantitative analysis is presented later in this section.

The effectiveness of the static calibration is immediately evident. The scaled elastic

force oscillates the applied magnitude in each direction in Figure 3.9. However, obvi-

ously using solely the static calibration is unacceptable as the elastic force (blue curve)

largely overshoots the applied magnitude and continues to ring down for the entire time

history. After applying the SWAT, this overshoot and subsequent oscillations are reduced

considerably and the applied step load becomes more obvious. Some overshoot and higher

frequency dynamics are still evident, however, the SWAT is very effective at reducing the

elastic oscillations.

Next, it is of interest to see the effects of applying the modally separated SWAT. These

results for the same test case are shown in Figure 3.10. As in the original SWAT, this vari-

ation has also performed adequately at removing the elastic oscillations from the statically

calibrated result. However, as is most easily seen when comparing Figures 3.9e and 3.10e,

the overshoot and higher frequency dynamics have been further reduced by applying the

modally separated variation. For this study, the signals were filtered at 15, 25, 50, 120, and

200 Hz. These bands were chosen to isolate significant dynamics at approximately 11, 21,
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33, 89, and 172 Hz. The elastic force and acceleration measurements are low pass filtered

at 200 Hz as to remove all higher frequency contributions.

Finally, it is of interest to assess the performance of the modally separated SWAT with a

damping matrix considered. These results for hole 29 are shown in Figure 3.11. The same

frequency bands as in the modally separated SWAT variant were used for this investigation.

Additionally, the velocity data was obtained using a cumulative trapezoidal integration of

detrended acceleration response. Using integrated acceleration response proved more ef-

fective than differentiated strain data. The latter amplifies noise and therefore decreases

performance. Again, the accuracy is increased when compared to the original SWAT.

However, little to no performance gain is obvious in comparison the the modally sepa-

rated variant. This is an expected result upon review of Section 2.1.3.3. Similarly to that

which is shown in Figure 2.4c, our system is very lightly damped. Therefore, very small

performance change between the two approaches is expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: SWAT force and moment reconstruction for a 12.8 lb drop test applied at hole
location 29. The original SWAT was used and Fx (a), Fy (b), Fz (c), Mx (d), My (e), and Mz
(f) are all shown.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: SWAT force and moment reconstruction for a 12.8 lb drop test applied at hole
location 29. The modally separate SWAT was used and Fx (a), Fy (b), Fz (c), Mx (d), My (e),
and Mz (f) are all shown.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: SWAT force and moment reconstruction for a 12.8 lb drop test applied at hole
location 29. The modally separate with damping SWAT was used and Fx (a), Fy (b), Fz (c),
Mx (d), My (e), and Mz (f) are all shown.
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Unpacking this analysis a bit further, one may observe the Fourier transform of the z-

direction for the elastic force and reconstructed force for each of the three SWAT variants.

The pwelch function in Matlab was chosen to obtain a smoother (and consequently more

readable) frequency response. Ten windows with 50% overlap were used to perform the

Fourier transform. The result of each of the three SWAT variants versus the elastic force

is displayed in Figure 3.12. Additionally, the frequencies under investigation are approx-

imately denoted using vertical dashed lines. Immediately upon review of Figure 3.12, the

previously mentioned conclusions become more obvious. The largest dynamics at approx-

imately 10, 21, and 33 Hz are removed to a high degree for all three variants. However,

at higher frequencies (e.g. > 40 Hz), the original SWAT actually amplifies the higher fre-

quency modal contribution as compared to the elastic response. The other variants however,

have performed as expected and slightly reduced these contributions. Finally, little to no

difference is obvious between modally separate with and without a damping matrix for this

low damped structure.

Figure 3.12: Amplitude spectra comparison for SWAT reconstruction using original,
modally separate (MS), and modally separate with damping matrix (MSD).

From here it is of interest to quantify these results across all 37 tests. To do this, first
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the amplitude of the Fourier transform at each of the five frequencies was collected for

the elastic force and each of the three SWAT variants. One may notice small deviation in

the frequency location after reconstruction and if various channels are observed. For this

reason, a range of 0.8 fi−1.2 fi was searched for a peak and selected as the modal amplitude

for a particular modal frequency, fi. This prevents inadvertent biasing by selecting a trough.

Next, the modal amplitude of the reconstructed force is compared to that of the elastic

force. A percentage in modal reduction (%MR) is computed as

%MR =
Y e

i −Y r
i

Y e
i
×100 (3.1)

where Y is the amplitude of the time domain signal, the subscript denotes the frequency

index of interest, and superscripts e and r denote elastic or reconstructed, respectively. The

%MR for each of the five frequencies of interest and each of the six directions of force and

moments for the original SWAT is presented in Table 3.4.

Table 3.4: Original SWAT modal reduction percentages averaged over all 37 tests.

f (Hz) Fx Fy Fz Mx My Mz

11 99.49% 98.41% 99.73% 84.23% 99.27% 98.41%

21 99.09% 94.80% 89.01% 91.21% 94.73% 97.88%

33 98.07% 97.97% 98.14% 90.58% 90.02% 96.93%

89 98.25% -691.37% -559.86% -2516.70% -11149.61% -3236.93%

172 -79.90% -1316.20% -47.54% -16447.55% -19355.86% -16397.45%

The first notable observation is the extreme effectiveness of the SWAT at removing the

most dominate structural modes. The first three modes of vibration are reduced by at least

80% in all directions and as high as 99% in some directions. This demonstrates the power

of the SWAT at reducing modal dynamics. However, upon review of the less dominate

modes (i.e. modes four and five), less effective modal reduction is observed and in most
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cases, severe modal amplification. This is consistent with our qualitative observations and

the specific result shown in Figure 3.12. The equal weighting of all modes in the formation

of a dynamic calibration matrix causes amplification of less dominant modes. The ability

to consider each mode separately, and apply appropriate scaling matrices for each is the

motivation behind the modally separate SWAT.

One may also compute the percent modal reduction for the modally separate SWAT

variant. These values are shown in Table 3.5. As expected, this method performs excel-

Table 3.5: Modally separate SWAT modal reduction percentages averaged over all 37 tests.

f (Hz) Fx Fy Fz Mx My Mz

11 99.5% 98.9% 99.8% 83.6% 99.6% 98.9%

21 99.0% 97.7% 93.4% 91.8% 97.2% 98.8%

33 98.7% 97.5% 98.2% 95.2% 99.4% 99.0%

89 98.6% 1.1% 91.9% 12.9% 88.0% 1.7%

172 53.8% 51.6% 86.0% 51.8% 47.5% 59.8%

lently at removing the dominant modes of vibration. The reduction of modal dynamics for

the first three modes are on par or better when compared with the original SWAT. However,

the key improvement is obvious when observing the fourth and fifth mode. Rather than

amplifying the modes, significant modal reduction is apparent for many of the directions.

Some of the reduction is negligible, however, the modal dynamics were small in magnitude

for these directions. Therefore one may not expect a large reduction.

Lastly, the results of modally separated SWAT with a damping matrix considered is

presented. The percent modal reductions are shown in Table 3.6. Very little difference

is evident between the modally separated with and without damping matrix result. Most

notably, the %MR for the Mx direction of the fifth mode has increased by about 9%. All

other values are very comparable.

Furthermore, one may notice decreased effectiveness of the modally separate SWAT
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Table 3.6: Modally separate with damping SWAT modal reduction percentages averaged
over all 37 tests.

f (Hz) Fx Fy Fz Mx My Mz

11 99.5% 99.0% 99.8% 83.7% 99.6% 98.9%

21 99.1% 97.7% 87.1% 91.4% 96.6% 98.8%

33 98.7% 97.4% 98.1% 94.5% 99.3% 99.0%

89 98.4% 0.1% 91.8% 11.9% 84.8% 2.6%

172 55.1% 52.0% 88.9% 60.5% 48.4% 60.1%

(with or without damping) at the fifth mode. This highlights a practical limitation of the

SWAT. At higher frequencies, the amplitude decreases considerably and improvements be-

come difficult. Additionally, many modes are very closely spaced which makes filtering

very difficult as the cut off frequency cannot be exact. Lastly, at even higher frequencies,

the acceleration and strain response can become slightly out of phase due to small system

delays such as electrical transfer speed and stress wave propagation. Accounting for these

delays would require significant system characterization and detract from the elegant sim-

plicity of the method. Therefore, further improvement is not considered and simply band

limit the effectiveness of the SWAT. For these studies, the method is band limited at 200

Hz.

3.2.2 TDDM Results

This dissertation focuses on three TDDMs; a ”conventional” TDDM which utilizes

zero order discretization of the convolution integral at Tikhonov regularization, the CMM

which uses a linear discretization and least squares inversion, and the GDLM, a generalized

formulation for CMM which allows for higher order discretization. This section is devoted

to validating the latter two techniques on the experimental system presented in Section 3.1.
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3.2.2.1 SIMO CMM Experimental Results

The experiments discussed in this section were performed on Support Structure 1 de-

scribed in Section 3.1.1. For clarity, a brief overview of the inputs and outputs are de-

scribed here. To generate the IRFs, the dynamic strain response to input hammer pulses

was recorded in each of the three directions. Ten seconds of response and input force was

sampled at 25 kS/s. This data set was truncated to 50 ms after the pulse initiation to reduce

computational load. The applied force was measured using a modally tuned hammer, in-

strumented with a piezoelectric strain sensor in the tip. Each load was applied normal to the

respective surface. In order to achieve an accurate calibration, many tests were recorded

at different locations and with various model alignments. One wants to encompass a large

portion of the model to account for any possible loading location as well as contain the ex-

pected loading magnitude. Hammer pulse inputs were applied in all three axial directions

to account for a purely x, y, or z direction applied force. Repeat tests were performed to

identify outliers.

The output degrees of freedom are each direction of the individual sensors. There are

four piezoelectric strain sensors, each measuring strain in three directions. This results in

twelve output degrees of freedom. Since the model and sting assembly has infinite DOFs,

one may choose as many input DOFs as required. For this study, 29 different input hammer

locations were used. Redundant tests were performed on each location and the best quality

data was selected based on signal to noise ratio. This resulted in 134 total tests across the 29

loading stations. Each of the tests was considered a different input. Four of these loading

locations (A, B, C, and D) are displayed in Figure 3.1.

The reconstruction of one of the hammer pulses used to generate the IRFs can be seen

in Figure 3.13. This reconstruction closely matches the measured input. For this analysis

R1 = R2 = 2. An example output in the same direction as the applied load is displayed over
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(a) (b)

Figure 3.13: Loading Point A: z-direction impulse reconstruction (a) using R1 = R2 = 2
compared with example unfiltered z-direction sensor output (b) for full time scale.

the whole time history used for this analysis.

To demonstrate the effectiveness of the method in all three directions, reconstructed

forces at three separate locations, B, D, and C are shown in Figures 3.14, 3.15, and 3.16,

respectively. The loading locations and directions for each test are depicted in Figure 3.1.

(a) (b)

Figure 3.14: Loading Point B: x-direction impulse reconstruction (a) using R1 = R2 = 2
compared with example unfiltered x-direction sensor output (b).

It is important to quantify the reconstruction of all input force pulses. Therefore, the

peak and area differences are again considered as was done in the numerical experiments.

The AD and PD are given by Eqs. (2.124) and (2.125), respectively. Since the measured

136



(a) (b)

Figure 3.15: Loading Point D: y-direction impulse reconstruction (a) using R1 = R2 = 2
compared with example unfiltered y-direction sensor output (b).

(a) (b)

Figure 3.16: Loading Point C: z-direction impulse reconstruction (a) using R1 = R2 = 2
compared with example z-direction sensor output (b).

and reconstructed signals have different discretizations, an Lp norm of the error is not

applicable. The chosen quantities are useful for this application because area and peak

value are important parameters in describing a pulse. These two quantities were computed

for all tests. The average and maximum errors are shown in Table 3.7. These errors are

small signifying excellent pulse reconstruction accuracy. The largest errors would likely be

reduced with additional resolution.

It is also be useful to discuss why minimizing the condition number may not always be
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Table 3.7: Input Pulse Reconstruction Error Analysis

Maximum Average
AD 0.90% 0.16%
PD 6.73% 2.94%

the optimal strategy for accurate force reconstruction. Consider the experimental data used

in this section. The results presented utilize R1 = R2 = 2. Upon review of these results,

one might wonder if the condition number is low enough. One may expect a downward

trend and that our answer could be improved with an increased ratio. The average condi-

tion number for all of the tests for ÂT Â and B̂T B̂ can be seen in Figure 3.17 versus their

respective ratios.

(a) (b)

Figure 3.17: Average Condition Number for all impulse reconstructions. IRF condition
number versus R1 (a) and input reconstruction condition number versus R2 (b) are both
shown.

As expected, when the ratio is increased, the condition number improves for both the

IRF construction and the input reconstruction problem. However, this may not result in a

more accurate solution. To appreciate this, the average and max peak and area differences

are plotted in Figure 3.18 versus R2.

Clearly as R2 is increased beyond 2, the reconstruction accuracy decreases. The lack

of resolution causes significant errors in both the peak and area reconstructions. For this
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(a) (b)

Figure 3.18: Error metrics for impulse reconstruction versus R2. Mean and max values for
peak difference (a) and area difference (b) are both shown.

case, it is desirable to keep the ratio as small as possible. Using multiple outputs has con-

strained the problem enough such that a higher ratio is not required. This demonstrates that

resolution of input reconstruction may drive selection of ratios which may limit the flexi-

bility in minimizing condition number. In addition, since a smaller R1 and R2 parameter

resulted in an acceptable reconstruction, the SIMO case has better constrained the problem

as compared to the SISO case.

Note that qualitatively similar results are found if R1 is fixed at 2 and R2 is varied. The

optimal result is still at R1 = R2 = 2. For brevity, these results are not displayed.

3.2.2.2 SIMO GDLM Experimental Results

The GDLM was applied to Support Structure 2 as described in Section 3.1.1. An ex-

ample hammer force reconstruction is shown in Figure 3.19. The first order case assumed

linear interpolation of both the IRF and applied force to be reconstructed. The third or-

der case assumes cubic interpolation of both the IRF and applied force to be reconstructed.

The intermediate points of the third order reconstruction show a near perfect match with the

measured pulse. The lack of resolution in the first order method causes a slight discrepancy
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Figure 3.19: Input force reconstruction using time domain deconvolution method with
first (red) and third (green) order formulations. Third order reconstruction nearly per-
fectly overlaps measured (blue) force. A sampling rate of 5 kHz and constraint parameters,
R̂1 = R̂2 = 2 were utilized for this demonstration.

at the peak of the impulse, however the reconstruction is still good.

One may note improved performance over the SISO case depicted in Figure 2.14. Al-

though the SNR for the two investigations was comparable, the addition of multiple outputs

has helped to better constrain the problem and allow for the usage of a smaller R̂1 parame-

ter.

Since 24 reconstructions are used, it is important to consider the error across all tests.

Therefore, the mean and maximum peak and area errors for all reconstructions were com-

puted for both orders. The linear method is expected to reconstruct pulses accurately for

the low R1 cases. However, as R1 increases, the cubic formulation is expected to become

superior.

To demonstrate this, the constraint parameters are varied and the reconstruction errors

are computed. The error comparison is shown in Figure 3.20. The first and third order

reconstructions display very comparable error. The third order method appears superior at

reconstructing the correct area at higher R̂1 values.
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(a) (b)

(c) (d)

Figure 3.20: Error metrics for input force reconstruction versus R̂1 = R̂2. Maximum area
(a), mean area (b), maximum peak (c), and mean peak difference (d) are all shown.

The chief problem in the inverse force reconstruction problem is the inversion of a near

singular matrix. A discussion of why small singular values result in undesirable reconstruc-

tions is presented in Appendix A. To avoid noise amplification and to increase reconstruc-

tion accuracy, it is advantageous to ensure that the smallest singular values of the matrix

to be inverted is not near zero. In our formulation, the matrices being inverted are ÂT Â

for the IRF construction and B̂T
i B̂i for the SIMO pulse reconstruction. A concise way to

compare the severity of the inversion is to compute the condition number (i.e. maximum

singular value divided by minimum singular value). The smaller the condition number is,

the less likely the inversion will be ill posed. Since the accuracy of the cubic method has
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been shown to outclass the linear one as the constraint parameter increases, it would also

be interesting to see the effect on the condition number.

The condition numbers may be seen for the IRF construction in Figure 3.21a and for

the input force reconstruction in Figure 3.21b.

(a) (b)

Figure 3.21: Average Condition Number for all input force reconstructions. IRF construc-
tion condition number versus R̂1 (a) and input reconstruction condition number versus R̂2
(b) are both shown. Both first order (red solid line) and third order (green dotted line) are
shown for comparison.

It is clear to see that the first order method is better conditioned than the third order

method. For any given R̂1 or R̂2 value, the condition number of the first order method is

approximately two orders of magnitude lower.

3.2.2.3 MIMO GDLM Experimental Results

A SIMO force reconstruction problem is ideal. The location of the applied load is

known and as is all of the information to reconstruct the force at the point. However, there

may be cases where multiple input locations are of interest. In such scenarios, a MIMO

formulation is required. This section provides an experimental validation of the MIMO

problem for the GDLM.

For these studies, Support Structure 1 is used as much more time was allotted on this
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setup to perform various experiments. Additionally, many repeat tests were with varying

hammer tips. This allows for the use of the repeat formulation presented in Section 2.2.2.5.

Finally, the first and third order methods are used and compared.

A dynamic calibration using the four input locations denoted in Figure 3.1 (i.e. p = 4)

and all twelve output channels of the strain sensors (i.e. n = 12) is used to obtain the IRFs

(using 5+ repeats) for each input-output pair. Then Eq. (2.105) is assembled. Solving via

least squares inversion and separation of the u vector yields the force contribution at each

calibration location. The capability to record a simultaneous pulse at two different locations

is unavailable at this time so only single input tests are used. However, the mathematics

behind this is analogous; a pulse at one location and zero at the other three is expected.

The results of this MIMO reconstruction using first and third order GDLM for a pulse

applied at location C are displayed in Figure 3.22. Excellent MIMO force reconstruction

is observed for this very short duration (<1 ms) applied pulse. As expected, the pulse was

accurately reconstructed at the input location while the other three locations display a near

zero applied load.

The first and third order reconstructions yield about identical levels of accuracy. As in

the numerical studies, some pulse clipping is observed from use of the first order method.

The inter-point curvature of the cubic formulation allows for slightly higher accuracy at

locations of large change (i.e. at start of pulse and at peak). Since this applied load is

smooth, a cubic approach is recommended, however the linear results still achieve high

accuracy.

One may additionally be interested in the center of moment forces and moment applied

to the test article. Here the center of moment as the geometric center of the four piezoelec-

tric strain gages in x and y (see Figure 3.1 for coordinate system) and halfway through the

sensor thickness in z. With this center of moment and coordinate system one would would

expect a negative z-force, a negative moment about the x axis, and a very slight positive
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(a) (b)

(c) (d)

Figure 3.22: First and third order GDLM MIMO force reconstruction of point load applied
at location C. R1 = R2 = 4 and a sampling rate of 50 kHz were used. Reconstructions at
hole locations A (a), B (b), C (c), and D (d) shown in Figure 3.1 are all shown.

moment about the y axis (as hole C is slightly in front of the x axis). These assumptions

are affirmed when reviewing the results shown in Figure 3.23.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: First and third order GDLM MIMO force and moment reconstruction of point
load applied at location C. R̂1 = R̂2 = 4 and a sampling rate of 50 kHz were used. Fx (a),
Fy (b), Fz (c), Mx (d), My (e), and Mz (f) are all shown.
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The reconstruction accuracy has declined some as compared to the point force result

shown in Figure 3.22. This is to be expected as small errors from the other channels can

add together and cause further error in the final forces and moments. Slight over prediction

of the applied forces and moments are observed for this example.

Although this works well for the still highly over constrained case (i.e n >> p/R2)

as the IRM is 12 times longer than it is wide, results will likely decline when more input

locations are of interest. To investigate this claim, the above analysis is repeated with a

variable number of input locations from one (i.e. the SIMO formulation) to the worst case

MIMO formulation of all 16 calibration locations. To present these results in a concise

manner, the maximum and average peak and area differences of the reconstruction at the

input location is computed for each case. These results versus number of input locations

are depicted in Figure 3.24.

The expected result is obvious upon review of this figure. The solution quality degrades

as the requested number of inputs increases. Furthermore, when the number of inputs

approaches and exceeds the number of outputs (i.e. n = 12), the solution blows up and

unacceptable reconstructions are obtained. As the constraint parameter is increased, the

trend does not appear to change dramatically meaning there is a hard stop of p < n for this

formulation. The only option is to increase the number of outputs. In the next section, the

addition of acceleration measurement allowing for more input locations is shown.
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(a) (b)

(c) (d)

Figure 3.24: Area and peak difference of input pulse force versus number input locations
using the first and third order GDLM and R̂1 = R̂2 = 4. Max area (a), average area (b), max
peak (c), and average peak (d) difference are all shown.
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3.2.2.4 Acceleration Deconvolution

In real systems, it is often far easier to obtain acceleration measurements as opposed

to strain measurements. The latter typically needs to be integrated into the model design

where as the former can be added as an afterthought. Additionally, the luxury of addi-

tional information can be useful in over-constraining the inversion in the event of a large

constraint parameter requirement or MIMO formulation. Therefore, the acceleration-only

and combined acceleration-strain approaches are validated on our Balance Calibration test

article.

The same data set used in Section 3.2.2.3 was used for this study. Note that many tests

were not used from that set due to saturation of the accelerometers. Future experiments

could be performed with a larger dataset and more optimal accelerometers. A total of 188

hammer calibration tests were used at 15 locations in the x, y, and z direction. Eleven to

fourteen tests at each location were used after the removal of the saturated datasets. As

noted in the Section 2.2.3.7, two repeats should be sufficient for most cases but addition

accuracy can be achieved by increasing this count.

Using Eq. (2.109) on the acceleration and strain signals, separately, the acceleration or

strain IRF may be solved. Then, a random test set from the repeats is chosen as the test

set. Using that test set, Eq. (2.114) is solved for the reconstructed force. Equation (2.104)

may also be solved for the acceleration or strain deconvolution and compare these results

to the combined expression. An example result is displayed in Figure 3.25. Note excellent

agreement is shown for all three methods for the case displayed. This is characteristic of

the other fourteen locations. However, an objective comparison is sought.

Again, for pulse reconstruction, the Area and Peak Differences are considered. The max

and average values for strain-only (S), acceleration-only (A), and combined acceleration-

strain (C) are shown in Table 3.8.
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Figure 3.25: Acceleration only, strain only, and combined acceleration-strain example de-
convolution result.

Table 3.8: Peak and area differences for strain only, acceleration only, and combined strain-
acceleration linear GDLM force reconstruction.

Maximum Average

S A C S A C

AD 43.5 46.09 30.14 7.32 9.26 6.66

PD 26.14 34.6 19.18 6.22 7.48 5.27

From these results it is clear that all three methods perform extremely well. The

acceleration-only result is the worst. This shows that there is some advantage to using the

more difficult to obtain strain measurement. However, the level of improvement is small.

As expected, the combined approach yields the best results on average. Since more infor-

mation is available, higher levels of accuracy are achievable. Again these improvements

are small.

One of the motivations for utilizing acceleration measurements in the reconstruction

problem is to further over constrain the inversion. From the above analysis, it is clear that

this has a small influence for the SIMO analysis. However, the addition of acceleration

measurements can prove more influential in the MIMO problem. To demonstrate this, the
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MIMO analysis presented in Section 3.2.2.3 is repeated but the acceleration only, strain

only, and combined acceleration-strain approaches are compared. The same peak and area

differences versus number of inputs are displayed in Figure 3.26.

(a) (b)

(c) (d)

Figure 3.26: Area and peak difference of input pulse force versus number input locations
using the first and third order GDLM, R̂1 = R̂2 = 4 with acceleration measurements. Max
area (a), average area (b), max peak (c), and average peak (d) difference are all shown.

Similarly to the previous analysis, if only acceleration channels (i.e. green and yellow

curves) are considered, the result blows up as the p = n condition is approached. However,

when strain and acceleration channels are simultaneously considered (i.e. red and maroon

curves) one is able to increase the number of input locations (as n has doubled). Adding

this information allows for a denser grid of input locations.
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3.2.3 FDIM Results

In this section of the dissertation, the FDIM is validated on Support Structure 1. In

this section only the alterations of the FDIM: the FRF solved version and using multiple

input tests at the same location are of interest. The majority of this section considers strain

data as the output. However, as in the presentation of the TDDM results, the acceleration

response is used to quantify some trends about the method.

3.2.3.1 SIMO FDIM Experimental Results

The same large dataset used in Section 3.2.2.4 is used in these studies. The luxury of

using this data set is that 10-12 calibration inputs are available per hole location. As noted

in the numerical studies, increasing the number of calibration inputs at a particular hole

location increases the accuracy of the FDIM, so this is desirable.

Using the repeat formulation discussed in Section 2.3.2.2, a sample result shown in

Figure 3.27 is obtained. As expected, excellent pulse reconstruction is observed and this

Figure 3.27: FDIM SIMO force reconstruction experimental example result. Eleven cali-
bration input tests used for this reconstruction.
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accuracy is characteristic of the other hole locations. Eleven to fourteen calibration tests

were performed at each hole. As discussed in Section 2.3.3.4, adding these tests during

calibration should improve reconstruction accuracy.

To further justify the need of using multiple calibration tests at a single hole, the above

analysis is repeated with a varying number of calibration tests. All 188 test pulses are

reconstructed at each step and the average and max of each are recorded. When plotting

these error metrics, as depicted in Figure 3.28 versus the number of calibration tests used to

generate the FRF, a clear trend is observed. As in Section 2.3.3.4, it is clear that additional

calibration loads substantially improve the performance of this method.

(a) (b)

(c) (d)

Figure 3.28: Area and peak difference of FDIM input pulse force versus number of cali-
bration tests. Max area (a), average area (b), max peak (c), and average peak (d) difference
are all shown.
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3.2.3.2 MIMO FDIM Experimental Results

The most difficult force reconstruction case is MIMO. This section details the valida-

tion of the FDIM MIMO force reconstruction using the same data set from the previous

section. The capability to supply multiple loads simultaneously is not possible on either

of the test setups discussed in this dissertation. However, one may still perform a MIMO

reconstruction but expect zero reconstructed load at each location other than the application

location.

An example MIMO reconstruction using the hole locations depicted in Figure 3.1 is

shown in Figure 3.29.

(a) (b)

(c) (d)

Figure 3.29: FDIM MIMO force reconstruction of point load applied at location C. R1 =
R2 = 4 and a sampling rate of 50 kHz were used. Reconstructions at hole locations A (a),
B (b), C (c), and D (d) shown in Figure 3.1 are all shown.

153



One could compute the center of moment forces and moment using the application

location as was done in Figure 3.23. The intricacies of this were discussed in Section

3.2.2.3 and therefore are neglected from this analysis.

Next, it may be of interest to see the effects of number of input locations, p on the

accuracy of the reconstruction. To demonstrate this, the number of input locations are

varied from one to fifteen. During each study, the MIMO FDIM is used to reconstruct the

force contributions at each input location as is seen in Figure 3.29. Next, the peak and area

difference of the reconstruction at the application location is computed and recorded. The

mean and maximum of these peak and area differences are depicted versus number of input

locations in Figure 3.30.

Several interesting conclusions can be drawn from Figure 3.30. First, there is a clear

decline in performance as the number of input locations increases. This is expected as the

inversion at each frequency becomes closer to a square matrix. This method appears ex-

tremely effective at reconstructing the pulse even when many input locations are of interest.

Interestingly, even when the number of inputs exceeds the number of outputs (i.e. p > 12),

the FDIM still adequately reconstructs the input pulses. Unlike in the TDDM, a sudden

drop in accuracy is not observed as p exceeds n.
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(a) (b)

(c) (d)

Figure 3.30: Area and peak difference of input pulse force versus number input locations
using the FDIM MIMO formulation. Max area (a), average area (b), max peak (c), and
average peak (d) difference are all shown.
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3.2.3.3 Acceleration Deconvolution

As discussed previously in this dissertation, deconvolution of acceleration data is also

an option for TDDMs and FDIMs. Many advantages of acceleration deconvolution exist

such as ease of implementation. In this section, acceleration deconvolution and combined

acceleration-strain deconvolution are validated for the experimental system.

First the SIMO case study discussed in Section 3.2.3.1 is repeated but consider strain-

only, acceleration-only, and combined acceleration-strain deconvolution. An example re-

sult is shown in Figure 3.31. Note the excellent reconstruction accuracy of all three decon-

Figure 3.31: FDIM SIMO acceleration deconvolution force reconstruction experimental
example result. Eleven calibration input tests used for this reconstruction.

volution variants. No obvious advantage of one method over another is observed.

It is important to quantify the accuracy across all tests. Therefore, as presented in Table

3.8, the peak and area difference for each deconvolution variant across all 188 reconstruc-

tions is computed. The maximum number of available calibration tests per hole were used.

This ranges from eleven to fourteen depending on the hole location. These results are

presented in Table 3.9.
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Table 3.9: Peak and area differences for strain-only, acceleration-only, and combined
strain-acceleration FDIM force reconstruction.

Maximum Average

S A C S A C

AD 46.75 37.91 31.80 6.69 6.96 6.59

PD 28.12 22.90 19.55 4.76 5.55 4.64

Upon review of Table 3.9, it is clear that all three deconvolution variants perform ad-

mirably for the SIMO case study. Additionally, the results are comparable and better in

some cases when compared to the results shown in Table 3.8. The FDIM with multiple

calibration input solution of the FRF is extremely effective for SIMO pulse reconstruction.

Next, the study shown in Figure 3.28 is repeated. The results for acceleration-only,

strain-only, and combined acceleration-strain deconvolution are shown in Figure 3.32.

Again, a trend between accuracy and number of calibration inputs is observed for each

deconvolution variant. Clearly, using more calibration inputs improves the accuracy of the

reconstruction. Interestingly, no clear advantage is observed between the three variants.
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(a) (b)

(c) (d)

Figure 3.32: Area and peak difference of FDIM input pulse force versus number of calibra-
tion tests. Max area (a), average area (b), max peak (c), and average peak (d) difference are
all shown. Acceleration-only, strain-only, and combined acceleration-strain deconvolution
are all shown.
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Chapter 4: Dynamic Force Reconstruction Demonstration in Wind Tun-

nels

In this chapter, the developed methodologies are demonstrated on wind tunnel test arti-

cles subjected to dynamic forcing. Extensive numerical and no-flow experimental valida-

tion has been performed in this dissertation. However, there are a few concerns related to

the aerodynamic forcing which are addressed in this chapter prior to the force reconstruc-

tion demonstration.

4.1 Aerodynamic Forcing Considerations

Dynamic aerodynamic forcing is considerably more complex than the point pulse and

step loading that is primarily considered in this dissertation. This section presents some of

these concerns and addresses their consequences.

4.1.1 Distributed Loading

In aerodynamic forcing, the loading is no longer a point force. Instead, the flow subjects

the test article to a more complex, distributed load. The previous studies in this disserta-

tion have not considered distributed loading due to the inability to apply pressure loads to

numerical lumped mass or experimental bench top models. This section presents a brief

discussion of this problem and a brief numerical example to demonstrate the conclusions.

Some recent work has been performed with the objective of reconstructing a full dy-
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namic and distributed pressure loading[51, 52]. Unfortunately, much of this work requires

extensive modal identification and has yet to be validated on experimental systems. There-

fore, these approaches are not attempted in this dissertation. Future work could attempt to

use the datasets collected in this research to validate these methodologies.

It should be noted that the SWAT should be unaffected by distributed loading. In the

SWAT (and all such variants developed in this dissertation), one is only interested in the

center of moment forces and moments. Therefore, the specific form of the loading (e.g.

point or distribution), is irrelevant. This section is primarily addressing the consequences

on point force reconstruction methods (i.e. GDLM and FDIM).

Obviously, the GDLM and FDIM are most useful for point force application at the

calibration locations. Changing the input location by even a few inches could greatly affect

the dynamic response and invalidate the calibration. Furthermore, a distributed load has

forcing contributions over an entire span rather than at only a particular location.

Ideally, if one knows the load is distributed, one could attempt to use the point force

contributions to reconstruct the pressure loading. This is elaborated in the future work

section of this dissertation. However, for these studies such analysis is not considered.

Instead, the pressure load is assumed to supply a near equivalent concentrated force. This

is typically done in static analyses of distributed loading. Although this is not exact for

the dynamic case, it can provide a decent approximation if the area at which the dynamic

pressure load acts is small.

To justify this claim, consider this numerical example performed on a finite element

model (FEM) in Abaqus. This is used instead of the lumped mass numerical models be-

cause of its ability to apply distributed loads and closely match future experiments. For this

study, a numerical model is generated which is very similar to that planned for the hyper-

sonic wind tunnel investigation. This model is shown in Figure 4.1. Note the distributed

pressure loading over the flap, denoted using a series of red arrows.
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Figure 4.1: Abaqus FEM with distributed pressure loading on flap denoted by red arrows.

For this study, the assumption that the pressure loading is evenly distributed over this

surface and for the duration of the loading is made. The magnitude of this distribution will

rise and fall like a triangle over 40 ms. This simulates a flap deployment and retraction at

the desired speed of 1◦/ms.

To obtain the IRFs, an impulse is applied to the center of the flap. The response (both

acceleration and displacement) in three directions is recorded from three nodes within the

test article. This yields a total of nine acceleration outputs and nine displacement outputs,

very similar to what would be obtained in a wind tunnel test. Using the TDDMs and FDIMs

developed in this dissertation, the IRFs/FRFs are solved for each input-output pair.

Next, a 16 N triangle load spanning 40 ms is applied. The response at the same nodes

is again recorded. Then the output is deconvolved using the IRFs/FRFs obtained in the

previous step to solve for that applied triangle force. This is performed twice. Once with a

concentrated force at the calibration location and once with an evenly distributed load over

the flap.

The results for the first order GDLM are shown in Figure 4.2. Note the similarity

between the results from the concentrated load and distributed load. The same effective
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(a) (b)

Figure 4.2: First order GDLM flap force reconstruction Abaqus numerical study using a
concentrated force (a) and a distributed load (b).

result is observed. Interestingly, the acceleration-only reconstruction (green) is the worst

result.

The same study can be performed with the FDIM. These results are depicted in Figure

4.3. Again, characteristically similar results are seen between the concentrated force and

(a) (b)

Figure 4.3: FDIM flap force reconstruction Abaqus numerical study using a concentrated
force (a) and a distributed load (b).

pressure load studies. Additionally, the acceleration-only deconvolution results are worst

for the FDIM as well.
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4.1.2 Aeroelastic Effect

The purpose of this section is to investigate the effects of aeroelasticity on the force

reconstruction problem. The GDLM is used as an example but the conclusions apply to

all methods. First, a numerical model of a wing section is introduced. Then, a force

reconstruction experiment is performed on this model.

Under the presence of a flowfield, the applied load to a model is a function of the state

(e.g. displacement, rotation) of the body. This is a consequence of the directionality of the

flowfield affecting the magnitude of the applied load (i.e. angle of attack alters lift and drag

force). As a result, the reconstructed force is expected to exhibit oscillatory components in

addition to the pulse loading or other additional loading under which the body is subjected.

One should recognize, however, the difference between this aeroelastic forcing and the

elastic force contribution which is obtained by only performing a static calibration.

4.1.2.1 Aeroelastic System Description

Consider an aeroelastic two degree of freedom (2DOF) model. The complex motion of

a wing is simplified here to only include pitch and plunge motion. Using this model, the

state-dependent forcing terms should become obvious. A 2DOF wing section model, taken

from Lee and Wereley’s Vibrations textbook[53] can be seen in Figure 4.4. The plunge

Figure 4.4: 2DOF model wing section
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motion (i.e. vertical translation) is given by q1 and is resisted by the linear spring k1, which

represents the bending stiffness of the wing. The plunge motion (i.e. rotation about the

elastic axis) is given by q2 and is resisted by the angular spring k2, which represents the

torsion stiffness of the wing. This is a common representation of a typical wing and is often

used to approximate flutter/divergence speed for a particular wing cross-section.

The equations of motion for this system are

Mq̈1−Sα q̈2 + k1q1 =L

−Sα q̈1 + Iα q̈2 + k2q2 =Mea

(4.1)

(4.2)

where L is the effective lift force applied over the wing due to the pressure loading and

Mea is the moment about the elastic axis (e.a.). The variables M, Sα , and Iα are the total

mass, static moment of mass about the e.a., and mass moment of inertia about the e.a.,

respectively. These variables and the equations of motion are derived in Lee and Wereley’s

textbook and are omitted from this discussion for brevity.

Using quasi-steady aerodynamic theory, lift is computed as

L = qS
∂CL

∂α

(
q2−

q̇1

U

)
(4.3)

where q is the dynamic pressure, S is the planform area of the wing, CL is the lift coefficient

for the particular air foil, α is the angle of attack, and U is the air speed. The moment about

the e.a. is given by

Mea = eL+Mac (4.4)

where e is the distance from the aerodynamic center (a.c.) to the e.a. and Mac is the moment
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about the a.c. due to the pressure loading. The moment about the a.c. is computed as

Mac = qSc
∂CM

∂ α̇
q̇2 (4.5)

where c is the chord length and CM is the moment coefficient for the particular airfoil.

Plugging Eqs. (4.3) and (4.5) into Eq. (4.4) yields

Mea = eqS
∂CL

∂α

(
q2−

q̇1

U

)
+qSc

∂CM

∂ α̇
q̇2. (4.6)

In reviewing Eqs. (4.3) and (4.6), it is clear that the applied forcing (i.e. the right hand side

of Eqs. (4.1) and (4.2)) have a large dependence on the states of the system.

From here, the analyst would typically move the state dependent terms to the left hand

side and calculate aeroelastic system frequencies for divergence and flutter analysis. How-

ever, this point is sufficient for this investigation.

Next, consider an additional load applied in the plunge direction at the e.a.. This could

be thought of as an impulsive gust or a sudden collision with debris. This force manifests

as an additional load in Eq. (4.1) as

Mq̈1−Sα q̈2 + k1q1 = L+F(t) (4.7)

where, for example

F(t) =
b

a
√

π
exp−(

t−0.5ε

a )2
, (4.8)

where a = 2 · 10−3 controls the pulse width, b = 1
15 is a scaling constant used to select a

desired area (and consequently peak magnitude), and ε is the pulse width used to shift the

pulse from the t = 0 axis. This simulates a steep hammer impulse force with an approximate

width of 10 ms and height of 20 N.
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For the purposes of numerical solution, it is useful to represent Eqs. (4.7) and (4.2) in

matrix form, i.e.

 M −Sα

−Sα Iα


q̈1

q̈2

+

k1 0

0 k2


q1

q2

=

L+F(t)

Mea

 (4.9)

or

Mq̈+Kq = F. (4.10)

We may rearrange this equation for the highest derivative i.e.

q̈ = M1 (F−Kq) (4.11)

to fit the form expected by typical numerical solvers. For this and many other investi-

gations, a fourth order Runge-Kutta (RK4) solver is appropriate to generate output data.

Therefore, the built-in Matlab RK4 method: ode45 is chosen.

4.1.2.2 Dynamic Calibration Discussion

The chief focus of this research is dynamic force measurement. The first step in that

process is to dynamically calibrate the system under investigation. For a typical dynamic

calibration, a known load must be applied and the response of the system measured. Then

these two are used to form the impulse response functions (IRFs) for each input-output

pair. This is commonly a pulse from an instrumented hammer, as the exact applied load

is easy to measure in experiments. Now consider a practical scenario for the numerical

system discussed in Section 4.1.2.1. For a tester to perform a practical calibration of this

system, one must do this in a no-flow condition. The consequence of this is zero lift force

and moment about the e.a., i.e. L = Mea = 0.

166



Following this logic, two IRFs are solved, h11(t) relating a plunge direction input force

to a plunge direction displacement and h12(t) relating a plunge direction input force to a

pitch direction angular displacement. These IRFs represent the unforced dynamics of the

wing system. They effectively capture the mass, static mass about the e.a., mass moment

of inertia about the e.a., and the two directional stiffnesses. Therefore, any applied loading

can be reconstructed which appears in the first entry of the vector on the right hand side of

Eq. (4.9).

It should be noted that when using these IRFs to reconstruct dynamic forces, one will

reconstruct everything in the first entry of the vector on the right hand side of Eq. (4.9).

It may be the case that the user is interested in only the extra forces applied to the system

(i.e. F(t)) as would be the case for a free-flying test article. Unfortunately, this is not

solved for alone. The state-dependent lift contributions are also part of the solution. A

dynamic calibration in the wind-on environment at the conditions of interest would need to

be performed to remove these contributions. This is obviously impractical and improbable

at the moment. Therefore, the measurement of the aeroelastic loading must be accepted in

addition to any extra applied loads such as gust loading.

4.1.2.3 Force Reconstruction Example

The parameters for the model used in these investigations are given in Table 4.1. Note

these parameters were chosen to match those used in an exercise problem in Lee and Were-

leys textbook. With these parameters, the system is stable and will not diverge or flutter.

Therefore, any small perturbation subjected to the system (e.g. pulse gust load) will not

cause destabilization.

The calibration load in these studies is given in Eq. (4.8). For simplicity, this force is

also used for the gust load in the unknown force reconstruction. Additionally, the data were
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Table 4.1: Numerical system parameters for 2DOF aeroelastic model.

Variable M Sα Iα k1 k2 c e S

Value 8.7 5.4 84 6.4×104 1.3×106 5 0.19 150

Unit slug slug-ft slug-ft2 lb/ft lb-ft/rad ft ft ft2

Variable ∂CL
∂α

∂CM
∂ α̇

ρ∞ q∞ U∞

Value 1.87π 0 2.38×10−3 297.1 500

Unit - - slug/ft3 psf ft/s

sampled at 5 kHz and the reconstruction methodology used was the cubic formulation of

the GDLM.

First a dynamic calibration was performed. As discussed previously, a pulse load of ap-

proximately 20 lbs over 10 ms is simulated to strike the structure at the e.a. to ensure input

excitation to DOF 1 only. This known load in conjunction with the cubic GDLM is used

to solve for the pitch and plunge response IRFs with respect to this input direction. These

are shown in Figure 4.5. As expected, the GDLM performs well. The analytical IRFs are

(a) (b)

Figure 4.5: IRF construction for 2DOF wing model using R̂1 = 5. Plunge (a) and pitch (b)
response IRFs both shown.

constructed with high accuracy. These IRFs can now be used in conjunction with a dy-

namic response to reconstruct any dynamic applied load. For example, the calibration load

response may be used to reconstruct that pulse. This is shown in Figure 4.6a. As expected,
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accurate reconstruction of the calibration pulse are obtained in this wind-off environment.

(a) (b)

Figure 4.6: Input force reconstruction for 2DOF wing model using R̂1 = 5 and R̂2 = 6.
Wind-off calibration load reconstruction (a) and wind-on gust force reconstruction (b) are
both shown.

Next it may be interesting to see how the GDLM performs on a wind-on time history.

Using the equations of motion given by Eq. (4.10), this response is simulated. Combin-

ing this response with the IRFs obtained previously, the GDLM yields the reconstruction

depicted in Figure 4.6b. As speculated, the method reconstructs the pulse gust load, as

well as the state dependent lift forcing. This is represented by the subsequent oscillations

following the duration of the pulse. However, as indicated by the ”Applied Force” curve,

this is indeed the force applied to the wind-off system. We cannot resolve purely the gust

load (i.e. that shown in Figure 4.6a) using only a wind-off dynamic calibration.

This demonstrates the ability of the GDLM to reconstruct dynamic forcing on a 2DOF

aeroelastic model. The presence of aeroelastic forcing is an unavoidable consequence of

state dependent forcing (i.e. lift and moment being a function of angle of attack, etc.).

Provided these oscillations are minimal, the experimentalist may still be able to discern an

estimate of the desired, state-independent forcing contributions. To minimize the magni-

tude of aeroelastic force contributions, it is suggested to increase the stiffness as high as

reasonable.
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In subsequent wind-on experiments, the presence of this aeroelastic forcing should be

considered when discerning the aerodynamic applied load. A strong recommendation is to

maximize the stiffness in any ways possible. Aeroelastic forcing is an unavoidable con-

sequence of cantilevered structures and cannot be simply removed without a wind-on dy-

namic calibration.

4.2 Transonic Demonstration

In this study the reconstruction a dynamic applied aerodynamic load in a transonic wind

tunnel test is the chief focus. More specifically, the quantification of the applied forcing

magnitude and frequency content of cyclic aerodynamic forcing on a small cylinder is of

interest. The calibration and air-on experiments were performed at the Air Force Research

Laboratory (AFRL) Wright-Patterson Air Force Base.

Assume for this study that there is an oscillating upstream flow causing the cyclic forc-

ing. The exact cause of the forcing, and purpose of the test article, and specifics of the body

undergoing forcing, are irrelevant for this study.

The GDLM and FDIM are used to reconstruct the applied loads for this case study.

Acceleration response was not measured and therefore the SWAT is not applicable. A cal-

ibration data set is first obtained via striking the test article with an instrumented impulse

hammer. The IRFs of the system are obtained utilizing this data. Subsequently, a valida-

tion study is performed where the calibration loads are reconstructed and compared with

the measured loads obtained by the instrumented hammer. Finally, the IRFs are used to

reconstruct an applied cyclic aerodynamic force.

Furthermore, a shifted formulation of the GDLM is employed to utilize the full mea-

surement range and better compare with FDIM. Due to the cumulative nature of convolu-

tion formulation, this shifting method is required for the test time of interest.
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4.2.1 Test Setup

For the purposes of this discussion, consider the test setup shown in Figure 4.7. The ap-

Figure 4.7: Depiction of experimental setup at AFRL. Test article (yellow), calibration
load locations (skinny red arrows), piezoelectric strain sensors (blue) and high frequency
pressure gages (green) are all shown with important dimensions.

plied and elastic force contributions are recorded on the strain sensors. The high frequency

aerodynamic forcing causes the excitation of structural resonances in the cylinder. These

structural resonances are measured by the piezoelectric strain sensors and corrode the stat-

ically calibrated force and moment measurements. This is analogous to the sting-mounted

studies discussed throughout this dissertation. Additionally, a high frequency static pres-

sure sensor is mounted in the aft end of the test setup and measures the expected applied

forcing frequencies of the aerodynamic load.

There are far less sensors in this study than in the others discussed in this dissertation.
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However, it is still worth mentioning their capability prior to discussing the results. There

are two uniaxial strain sensors and two high frequency pressure sensors. The strain sensors

are Dytran Model 1051V1[54]. The pressure sensors are Endevco Model 8507C-5[55].

The relevant specifications form these sensors are summarized in Table 4.2.

Table 4.2: Sensor specifications for AFRL transonic wind tunnel experiment. Load cells
(left) and pressure sensors (right) both shown.

Model 1051V1 Model 8507C-5

Sensitivity 112.4 mV/N 60±20 mV/psi

Measurement Maximum 44.5 N 5 psig

Failure Limit 890 N 100 psi

Broadband Resolution 0.62 mN-rms 0.05 mV-rms

Upper Frequency Limit 75 kHz 85 kHz

Temperature Range -73 to +121 C -18 to +93 C

Note that the strain sensors are uniaxial rather than triaxial as is used in other experi-

ments in this dissertation. This limitation is suboptimal as additional output locations can

improve the SIMO analysis. Furthermore, out of plane dynamics may be significant for

this study. As transverse bending is the least stiff deformation path, there are likely to be

significant dynamics in the transverse direction.

4.2.2 Force Reconstruction Results

Acceleration measurements were not obtained for these studies. Therefore, the SWAT

method is not applicable. However, a dynamic pulse force calibration was performed prior

to (and after) wind tunnel testing. Therefore, the GDLM and FDIM may be applied. This

section details the cyclic force reconstruction results using each method.
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4.2.2.1 GDLM Results

Begin with the GDLM. The air-on test data set is 8.8 seconds long sampled at 100

kS/s. Obviously, typical reconstruction would require inversion of an unreasonably large

matrix. Accordingly, one may use the segmented formulation whereby a small portion of

the IRF is inverted and multiplied by various segments of the output data. Next stitch the

various reconstructions together to obtain the applied load over the whole time history. A

more reasonable length to invert is about 100 ms for the quoted 100 kS/s sampling rate.

Additionally, since it’s the same IRF, one need only compute the inversion once and store

it for use on subsequent output segments.

One note here is that the IRF is lower band limited to whatever segment length chosen.

The theoretical lower frequency band is computed as

fmin =
1

tmax
(4.12)

where tmax is the length of the segment in seconds. However, the realizable lower frequency

(i.e. the frequency where one can realistically visualize a peak in the frequency domain) is

usually about an order of magnitude higher than this. Therefore for a 100 ms segment, only

frequencies of about 100 Hz or more are physically realizable. Therefore, any frequency

content that is reconstructed lower than this realizable lower bound should be ignored.

Fortunately, for the problem at hand, the applied forcing frequency is estimated to be

approximately 1 kHz. Therefore a 100 ms segment is more than adequate to reconstruct

forcing in this regime.

Additionally, recall that application of the TDDM on a system with nonzero initial con-

ditions (i.e. a system that is not at rest) results in a small amount of error in the beginning

of the reconstruction. Therefore, for additional accuracy, one may overlap the beginning of
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each reconstructed segment with the end of the previous one.

To build confidence in the test setup (i.e. signal quality, system linearity, etc.), begin

with a pulse force reconstruction of the input loads. Impulses were applied to the cylinder

via an instrumented impulse hammer. The stiffest tip was utilized for these calibration

loads to ensure high frequency dynamic excitation. The IRFs for each input-output pair are

computed by measuring the applied load and the response from each of the two load cells.

With the IRFs known, the problem is reversed to reconstruct the applied calibration

loads. An example force reconstruction is shown in Figure 4.8. Even with limited resolu-

Figure 4.8: Cubic GDLM calibration pulse force reconstruction at AFRL

tion over the peak, GDLM still performs adequately at reconstructing the pulse. Six cali-

bration sets were of high enough quality. In order to observe the overall accuracy across

all six tests, the peak and area differences of all reconstructions were computed. Next, the

mean and max of all peak and area differences are computed which are displayed in Table

4.3. Comparable levels of error as to that obtained from validation studies on the Balance

Calibration test article are seen. Therefore, the results are of good quality one may proceed

to the aerodynamic force reconstruction.

For aerodynamic testing, dynamic strain data was collected from the response of the
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Table 4.3: Input Pulse Reconstruction Error Analysis for AFRL tests using third order
GDLM

Maximum Average
AD 8.57 2.94
PD 11.66 5.11

cylinder depicted in Figure 4.7 subjected to transonic tunnel conditions and an upstream

oscillatory forcing. The IRFs constructed in the calibration data sets are utilized in the

reconstruction of the dynamic loads. Since there are three calibration locations, a SIMO

reconstruction of the load is performed at each location. Ideally, a MIMO approach would

be implemented. However, recall Section 3.2.2.3 which shows that the GDLM is ill-suited

for MIMO reconstruction when the number of input locations exceeds that of output loca-

tions (i.e. p > n). Also note that the third order GDLM is considered. Since the forcing

is sinusoidal, a smooth forcing is expected. Therefore, the third order method is ideal to

reconstruct this load.

As mentioned, the segmented alteration was employed in order to reconstruct the entire

eight second window. Figures 4.9, 4.10, and 4.11 depict the time and frequency domain

force reconstructions of the wind tunnel forcing for the forward most, middle, and aft most

loading stations.

The time domain plots are shown to depict the overall forcing magnitude of the aero-

dynamic load. There are four curves shown on each frequency domain plot: the FRF

computed during calibration, the elastic force (i.e. the force computed using only static

calibration), the reconstructed force using the third order GDLM, and the response from

the high frequency pressure sensor during testing. Note that the FRF and pressure mea-

surement magnitudes in the frequency plots have been altered for additional clarity.
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(a)

(b)

Figure 4.9: Wind tunnel force reconstruction using R̂1 = R̂2 = 2 at load station 1 (forward
most location). Time (a) and frequency (b) domain representations of the reconstruction
are both shown.
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(a)

(b)

Figure 4.10: Wind tunnel force reconstruction using R̂1 = R̂2 = 2 at load station 2 (middle
location). Time (a) and frequency (b) domain representations of the reconstruction are both
shown.
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(a)

(b)

Figure 4.11: Wind tunnel force reconstruction using R̂1 = R̂2 = 2 at load station 3 (aft most
location). Time (a) and frequency (b) domain representations of the reconstruction are both
shown.
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Upon review of the plots, the following observations are evident:

1. The overall forcing magnitude decreases progressing chordwise along the cylinder.

The maximum magnitude drops from 2 lbs at the forward most station to 0.6 lbs at

the aft most station.

2. According to the pressure measurement, there are three clear forcing frequencies:

1174, 1904, and 2343 Hz. These are the dominant peaks in the orange curves.

3. All three loading stations were successful at reconstructing these frequencies.

4. The middle station does a poor job at removing the surrounding structural loads.

5. The forward and aft stations perform adequately at removing the 783 and 990 Hz

structural modes.

6. Additional frequency content is reconstructed at 1617 and 2650 that does not appear

to be present in the pressure measurement.

The first puzzling observation is that the middle station does a poor job at removing

the 783 and 990 Hz structural modes. However, looking at the FRF for that station, these

modes are not present. Therefore, it is likely that these modes were not excited during this

calibration test. We believe this is because those two modes are likely pitching modes. A

strike in the center would excite plunging modes but not pitching modes.

Another puzzling observation is that all reconstructions display additional frequency

content at 1617 and 2650 Hz. Again these frequencies are not reflected in the FRFs. Be-

cause these peaks are not reflected in the pressure measurement, they are unlikely to be

forcing frequencies. If these are indeed structural modes, a possible explanation may be

that these are out of plane modes. Since all calibration tests were performed in the lift

direction, out of plane modes would not have been excited to a large degree. A distributed
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cyclic aerodynamic load however, may excite these modes. Future calibration tests should

include out of plane excitation to validate this claim.

4.2.2.2 FDIM Results

In this section the above analysis for the FDIM is repeated. There are several advantages

to using the FDIM. First, the frequency domain characteristics such as forcing frequencies

are of interest. Therefore it is natural to work in the frequency domain. Additionally, the

time history is very long (i.e. eight seconds). As noted previously, the FDIM is far more

efficient for long time histories as compared to TDDMs.

Begin with the same SIMO analysis performed in the previous section but with the

FDIM instead of GDLM. One may expect similar results as the same data set and un-

derlying physics are used for the two analyses. First, one may validate the pulse force

reconstruction used in calibration. An example result is shown in Figure 4.12. In order

Figure 4.12: FDIM calibration pulse force reconstruction at AFRL

to observe the overall accuracy across all six tests, the peak and area differences of all re-

constructions are computed. Next, the mean and max of all peak and area differences are

computed which are displayed in Table 4.4. These results are extremely promising; dis-
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Table 4.4: Input Pulse Reconstruction Error Analysis for AFRL tests using FDIM

Maximum Average
AD 9.37 2.74
PD 7.87 1.82

playing even lower errors than seen in Table 4.3. Next, one may use the generated FRFs to

reconstruct the aerodynamic forcing.

Figures 4.13, 4.14, and 4.15 depict the time and frequency domain force reconstructions

of the wind tunnel forcing for the forward most, middle, and aft most loading stations.

The time domain plots are shown to depict the overall forcing magnitude of the aero-

dynamic load. There are four curves shown on each frequency domain plot: the FRF

computed during calibration, the elastic force (i.e. the force computed using only static

calibration), the reconstructed force using the FDIM, and the response from the high fre-

quency pressure sensor during testing. Note that the magnitudes in the frequency plots

have been altered for additional clarity. These results appear to agree very well with those

obtained in the GDLM analysis. One may draw similar conclusions from these results.
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(a)

(b)

Figure 4.13: Wind tunnel force reconstruction using FDIM at load station 1 (forward most
location). Time (a) and frequency (b) domain representations of the reconstruction are both
shown.
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(a)

(b)

Figure 4.14: Wind tunnel force reconstruction using FDIM at load station 2 (middle lo-
cation). Time (a) and frequency (b) domain representations of the reconstruction are both
shown.
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(a)

(b)

Figure 4.15: Wind tunnel force reconstruction using FDIM at load station 3 (aft most lo-
cation). Time (a) and frequency (b) domain representations of the reconstruction are both
shown.
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Note that the time histories for these studies are much shorter than those in the GDLM

results. This is because if multiple repeat tests are used, the shortest time history during

calibration determines the maximum possible length of the FRF. This limits the overall

length in this case to 0.7 seconds. Future tests could be performed with longer calibration

tests.
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Chapter 5: Conclusions, Contributions, Recommendation, and Future Work

In this dissertation, a solution was sought to the problem of dynamic force measurement

in AEDC Tunnel 9, a hypervelocity wind tunnel. Due to the low bandwidth of typical force

measurement techniques, new approaches needed to be considered. Based on the specific

restrictions and requirements of Tunnel 9, the scope of the research was narrowed to three

methods: SWAT, TDDM, and FDIM. Each method has been investigated and improved

with novel alterations, which are detailed in this work. The performance of each method

was greatly improved by applying each alteration; often by orders of magnitude. Each

method was validated both on numerical spring-mass-damper systems as well as on the

Balance Calibration test article at Tunnel 9.

As for specific enhancements, the modally separated SWAT allowed for high frequency

modal amplitude reduction where the conventional method showed significant, undesirable

modal amplification. Furthermore, the addition of a damping matrix proved significant

when the damping of the system was high.

A new TDDM was developed from first principles (i.e. convolution relationship be-

tween input and output). This reformulation allowed for simpler solution of the deconvo-

lution problem without the need for conventional regularization of the inversion. Addition-

ally, the segmented approach removed one of the chief weaknesses of TDDMs, the large

computational requirement. By only considering a small segment of the output at a time,

large time segments could be reconstructed in a more reasonable amount of time. Finally,

the deconvolution of acceleration data was validated for the GDLM and shown to produce
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comparable results to that of strain deconvolution. A combined acceleration-strain decon-

volution was validated and yielded stable results for higher numbers of input locations.

The FDIM was also reformulated to consider direct solution of the FRF using input

and output data recorded during calibration. Although this yields worse results for the

simplest SISO cases, it allows for the use of multiple calibration tests. The addition of

redundant calibration tests reduces the reliance of accuracy on a single test. Therefore, the

influence of small user errors (e.g. application direction/location) and noise were shown to

reduce significantly as the number of calibration tests increased. Again the deconvolution

of acceleration data was validated, expanding the application scope for this method.

In addition to numerical and bench top validation, these techniques were also demon-

strated on transonic wind tunnel experiments. These tests were used to demonstrate the

segmented GDLM as well as cyclic force reconstruction for both the GDLM and FDIM.

Upcoming tests are planned to demonstrate pulse control force reconstruction in a hyper-

sonic wind tunnel.

The specific contributions to the state of the art are as follows:

1. Extension of the SWAT to improve higher frequency force reconstruction

2. Extension of the SWAT to improve force reconstruction for highly damped systems

3. Development of the CMM, a new TDDM which utilizes linear discretization and

least squares inversion

4. Development of the GDLM, a generalized version of the CMM allowing for smooth

reconstructions via a variable order discretization of the convolution integral

5. Validation of segmentation for TDDMs which allows for utilization of these compu-

tationally expensive methods on longer time histories
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6. Utilization of multiple calibration sets to better constrain solution of the IRF in TD-

DMs

7. Utilization of multiple calibration sets to better constrain solution of the FRF in

FDIMs

8. Demonstration of GDLM and FDIM on transonic cyclic wind tunnel forcing experi-

ment

As the ultimate goal is future implementation into Tunnel 9, it is important to discuss

recommendations for future experiments. Although there are several benefits of record-

ing high frequency strain data (e.g. further constraint of inversion and application of the

SWAT), there are several drawbacks that should be considered. Firstly, the implementation

of such sensors presents considerable design difficulty. For example, the physical size of

the sensors was a challenge to implement for the upcoming tests at NASA Langley. Sec-

ond, as with other strain gage balances, one must ensure that only a single load path exists

between test article and support structure. This can complicate matters as the strain gage

sensors must always be mounted between the two, further constraining the design possibil-

ities. Acceleration data on the other hand is far easier to obtain. The implementation of this

measurement can be an afterthought to a particular experiment, especially on large scale

test articles as are used in Tunnel 9. This allows for considerable design flexibility and

the ability to combine this analysis with other, more primary measurements and analyses.

Furthermore, acceleration deconvolution can prove to be more effective in some very short

duration cases as shown in the numerical experiments of the GDLM and FDIM.

For these practical reasons, it is my recommendation that the next investigation of this

at Tunnel 9 be performed in addition to other experiments. This removes the requirement

of scheduling and funding a particular experiment for this application; often a large hurdle

to get over for popular DoD facilities such as Tunnel 9. If these results are acceptable and
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future customers become primarily interested in dynamic force measurements, one could

expand and include these high bandwidth strain sensors as well. However, if dynamic force

measurement is not the primary investigation, it may prove too cumbersome to implement

these sensors.

As this work is applicable to many wind tunnel facilities, a general guideline for which

methods are applicable is presented here. Obviously, there are a number of factors such as

tunnel size, test duration, and frequency response of interest that make an all-encompassing

rule difficult or even impossible to formulate. Therefore, simple guidelines are given as a

starting point for the interested experimentalist.

For large scale facilities such as Tunnel 9, the large test articles are typically sting

mounted. As such, the dominant modes of vibration are typically lower frequency (e.g.

< 100 Hz). The SWAT is particularly useful in this frequency range as the SWAT most

effectively removes these easily separable dominant modes. Additionally, the SWAT builds

on techniques which most force balance engineers are familiar (i.e. static calibration) and

therefore such techniques are more approachable. Of course if a higher frequency forcing

is of interest, then a TDDM or FDIM may be more applicable.

For small to middle scale facilities, such as NASA Langley’s Mach 6 and 10 wind

tunnels[56] and AFRL’s transonic wind tunnel, with long duration (e.g. > 10 s), FDIMs

are recommended. Generally, longer duration blow-down or continuous wind tunnels fit

this category. Due to the long duration and size of these tunnels, many frequency ranges

can be significant. As noted previously, the SWAT struggles at high frequencies and there-

fore can be less effective for significant dynamics of 200 Hz or more. Furthermore, since

the duration of the usable flow is long with data generally sampled at a high rate (e.g. > 10

kHz), typical TDDMs can be too computationally expensive. Although it’s worth noting

that the segmented GDLM formulated in this dissertation is applicable to such applications.

This facility category is arguably the most flexible as the range of testing possibilities is the
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most diverse. For example, if the facility is being used conventionally (i.e. constant step

load suddenly applied), and the experimentalist is primarily interested in lift and drag mea-

surement, the SWAT may be applicable. However, if a shorter duration or high frequency

cyclic load is of interest, the TDDMs are more applicable.

For small scale facilities, such as the T4 free-piston shock tunnel used by University of

Queensland[24], with short (e.g. < 10 ms) test times, TDDMs are recommended. These

can provide highly accurate force measurements on short time scales using either internal

strain or acceleration measurements. Due to the high frequency dynamics relevant in these

tunnels, the SWAT is ineffective as physical sensor delays on the order of hundreds of

microseconds yields significant error. Additionally, due to the small scale of such facilities,

it is often difficult to incorporate the various sensors required for the SWAT. FDIMs are also

applicable, though their computation efficiency is not as advantageous at shorter durations.

There are a myriad of future endeavors related to this work. Many post-doctoral or

follow on graduate projects could stem from this research. Specifically, uncertainty anal-

ysis, heat transfer measurement, and distributed pressure measurement are very relevant

research avenues, relatively unexplored in the current field.

The most relevant topic of future research to Tunnel 9 is likely uncertainty analysis. Due

to the complex solution formulation of these methods, it is often difficult to develop an un-

certainty criterion. The uncertainties inherent to each measurement need be passed through

the same equations (i.e. inversions), often yielding unreasonably high uncertainties due

to the inversion. Additionally, for comprehensive uncertainty analysis, a separate method

need be developed for each method under investigation. Scientists at NIST have recently

been developing an approach for the FDIM to quantify uncertainty measurements[57]. The

investigation of uncertainty of inverse problems is definitely an area of relevant future re-

search.

Heat transfer measurement is also a relevant application to aerodynamic wind tunnel
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measurement. Typically, a 1D heat transfer assumption is made and the analytical prop-

erties of each layer/substrate is assumed[58–60]. However, this can cause significant dif-

ficulties if the system properties are challenging to obtain. Interestingly, a convolution

relationship exists between temperature and applied heat transfer[61]. Therefore, provided

the system remains LTI, one may attempt to apply the GDLM or FDIM to this problem as

well.

Distributed, dynamic pressure measurement is also a relevant topic of future research.

Often in aerodynamic testing, the distribution of pressure applied to the test article surface

is of more interest than a particular point force contribution. Therefore, the solution of a

distributed pressure field over a test article surface would be extremely insightful. Pres-

sure sensitive paint (PSP) provides this but requires an oxygen flow and conflicts with

TSP. Based on preliminary numerical experiments, it is possible to reconstruct a dynamic

pressure field given a sufficiently dense grid of reconstructed point forces. However, much

future work would need to be performed to validate this method on an experimental system.

Additionally, the required input force spacing density is currently unknown.

The scope of future work could also expand beyond the field of aerodynamics. Many

physical processes can be related via the convolution integral (e.g. acoustics). Therefore,

these methods could be applied in many other fields where the convolution relationship is

applicable.

Additionally, a hypersonic wind tunnel demonstration is planned at NASA Langley Re-

search Center in the near future. Due to scheduling difficulties, this study was not included

in the dissertation. However, it will be published in future works.

As interest in control of hypersonic test articles continues to grow, so too will the need

for measurement of dynamic forces applied in wind tunnels. It is this authors hope that this

dissertation serves as an approachable starting point for the scientist interested in imple-

menting one of these techniques.
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Appendix A: Ill-Posed Problem Explanation

In this section we give proof that small singular values become large errors during

inversion. Consider the following arbitrary matrix equation

y = Au (A.1)

where y and u are Nx1 vectors and A is an NxN matrix relating the two. Such is the case in

discretized convolution problems. Next, consider the singular value decomposition (SVD)

of matrix A, i.e.

A = USVT =
N

∑
i=1

uiσivT
i (A.2)

where U, S, and V are NxN matrices, S is a diagonal matrix of singular values, and U and

V are orthogonal matrices (i.e. U−1 = UT ).

Additionally, consider a measured output as

ym = ye +n (A.3)

where the subscripts m and e stand for measured and exact, respectively. The last term, n

is a vector of noise points i.e.

n =
std(ye)

SNR
n̄ (A.4)

where std is the standard deviation, SNR is the signal to noise ratio and n̄ is a Gaussian
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distribution of points with a standard deviation of one. This is consistent with our definition

of SNR and allows the user to set the noise level as some fraction of the exact signal.

As is commonly done with inverse problems, we wish to invert A and premultiply ym

to solve for u, i.e.

urec = A−1ym = A−1 (ye +n) . (A.5)

The first term, is the exact input i.e. ue = A−1ye, however, the latter term is a source of

error. Recalling the SVD of A, we may define a noise contribution to the input as

un = A−1n =
N

∑
i=1

uT
i nvi

σi
. (A.6)

In this form, it is clear that very small singular values (e.g. < 10−10 or so) become ex-

tremely large errors in the reconstructed input, urec.

If we plug Eq. (A.4) into Eq. (A.6) we see that this error also grows as the signal to

noise ratio decreases. Furthermore, if any singular value is equal to zero, the answer tends

to infinity.
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Appendix B: Properties of Convolution

B.1 Commutativity

In this section, I will prove the commutativity property of the continuous convolution,

i.e.

u∗h(t) = h∗u(t) (B.1)

where * is the convolution operation. For clarity, the continuous convolution equation is

mirrored here

y(t) =
ˆ

∞

−∞

h(t− τ)u(τ)dτ (B.2)

where the more general expression spanning all time (infinity bounds) is used.

Begin by defining the new variable

x = t− τ. (B.3)

We may express Eq. (B.2) in terms of this new variable by noting τ = t− x and dτ =−dx

as

y(t) =
ˆ −∞

∞

h(x)u(t− x)(−dx) (B.4)

or swapping the bounds (and by doing so, multiplying by -1) as

y(t) =
ˆ

∞

−∞

h(x)u(t− x)dx. (B.5)
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Finally, one may note that the selection of the integration variable x is arbitrary. Therefore,

we may switch back to our original notation of τ and we obtain

y(t) =
ˆ

∞

−∞

h(τ)u(t− τ)dτ (B.6)

thus proving the commutativity property of the continuous convolution.

B.2 Fourier Transform

In this section, I will prove that applying a Fourier Transform to a continuous con-

volution integral results in a multiplication of the frequency domain counterparts of the

convolved signals, i.e.

F {h∗u(t)}= H(ω) ·U(ω) (B.7)

where capital variable signify frequency domain counterparts of the lower case time domain

variables.

Begin with the definition of the continuous Fourier Transform, i.e.

F { f (t)}=
ˆ

∞

−∞

exp−2πiωt f (t)dt. (B.8)

We may plug the continuous convolution (i.e. Eq. (B.2)) into Eq. (B.8) as

F {h∗u(t)}=
ˆ

∞

−∞

exp−2πiωt
[ˆ

∞

−∞

h(t− τ)u(τ)dτ

]
dt. (B.9)

We may switch the order of integration as

F {h∗u(t)}=
ˆ

∞

−∞

[ˆ
∞

−∞

exp−2πiωt h(t− τ)dt
]

u(τ)dτ (B.10)
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where u(τ) is kept out of the first integral as it is not a function of t. Next, we may display

the exponential term as

exp−2πiωt = exp−2πiω(t−τ+τ) = exp−2πiω(t−τ) ·exp−2πiωτ . (B.11)

Plugging this result back into Eq. (B.10) and moving the second term outside the integral

results in

F {h∗u(t)}=
ˆ

∞

−∞

[ˆ
∞

−∞

exp−2πiω(t−τ) h(t− τ)dt
]

exp−2πiωτ u(τ)dτ. (B.12)

Define the new variable given in Eq. (B.3) which results in

F {h∗u(t)}=
ˆ

∞

−∞

[ˆ
∞

−∞

exp−2πiωx h(x)dx
]

exp−2πiωτ u(τ)dτ. (B.13)

Finally, one may evaluate each integration separately as each contain unique variables, i.e.

F {h∗u(t)}=
[ˆ

∞

−∞

exp−2πiωx h(x)dx
]ˆ

∞

−∞

exp−2πiωτ u(τ)dτ (B.14)

and recalling our definition of the Fourier transform results proves Eq. (B.7).

B.3 Differentiability

In this section, I will prove the differentiability of the convolution integral, i.e.

d
dt

y(t) =
d
dt

h∗u(t) (B.15)

or in compact notation as

ẏ(t) = ḣ∗u(t) (B.16)
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where the dot signifies a time derivative. Obviously, using the commutative property of

the convolution, we could apply the time derivative to the function u(t) instead. How-

ever, applying the derivative to h(t) is more useful for the applications discussed in this

dissertation.

This property is most easily derived using the inverse Fourier Transform, i.e.

f (t) =
ˆ

∞

−∞

exp2πiωt F(ω)dω (B.17)

which transforms frequency domain signals back to the time domain. Evaluating the time

derivative of Eq. (B.17) we obtain

ḟ =
d
dt

ˆ
∞

−∞

exp2πiωt F(ω)dω = 2πiω
ˆ

∞

−∞

exp2πiωt F(ω)dω. (B.18)

Hence the Fourier Transform of the time derivative of an arbitrary function is

F
{

˙f (t)
}
= 2πiωF(ω). (B.19)

Returning to Eq. (B.16), we may apply the Fourier Transform to gain additional insight,

i.e.

F
{

˙y(t)
}
= 2πiωF {y(t)}= 2πiωF {h∗u(t)}= 2πiωH(ω) ·U(ω). (B.20)

Performing an inverse Fourier Transform results in Eq. (B.16).

One may also note that this operation is repeatable so long as a differential exists.

Therefore, we may repeat this operation to prove

ÿ(t) = ḧ∗u(t) (B.21)

197



and all subsequent time derivatives.
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Appendix C: Standard Operating Procedures

The purpose of this appendix is to aid future researches in properly collecting data

and performing static and dynamic calibrations for the various methods discussed in this

dissertation. These standard operating procedures (SOPs) are most useful for experiments

in the AEDC White Oak Balance Calibration Laboratory. However, the methods could still

be followed with slightly different hardware at another facility.

C.1 Data Acquisition

This appendix contains step-by-step instructions for collecting data in the AEDC White

Oak Balance Calibration Laboratory. In particular, the data acquisition of Model 260A01

strain gages and Model 52 accelerometers using Model 482c16 and Model 101 DC signal

conditioners, respectively. For different sensors, signal conditioners, or testing location,

the following process may vary.
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Step

Number
Description Illustration

1 Turn on pedal box.

2

Turn on data acquisition boxes.

Note: Pictured are for the

Model 260A01 (left) and

Model 52 Accelerometers

(right).

200



3
Turn on computer and plug in

hard drive.

4
Open program in center of

desktop called PI660-6000.

5
On the top menu click ”Log

In”.
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6

Navigate to the test definition

tab and select the ”Open Test”

module.

7

Navigate to the settings folder

on the hard drive and open

settings.txt

8

Click the ”+” next to 6028.

Then click on 6028 to select all

the sub items.

9
On the top menu click the

”Setup All” module.
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10

Zero the strain sensors. Do this

by hitting enter, navigate to

zero, then hit enter again. Click

the down arrow when channel

is selected to select all. Then,

click the right/left arrow and

click the up arrow to select

autozero. Click enter and wait

for the autozero process to

finish. This is when the screen

goes back to showing the gains

of each signal (e.g. 10 10 10

10).

11

Zero the accelerometers. Do

this by clicking on each

channel button, then hitting

zero. The arrows show the

channel select and zero buttons.
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12

Navigate to the acquisition tab

on the computer and click

preview to preview the sensor

output.

13

To run a test, hit the pedal to

begin recording. If previewing,

under the acquisition tab, the

selected button will change

from preview to record. When

the recording is over it will

change back to preview.

14

To delete a test in the event of

an error, open up the file

explorer and inside the external

HD directory navigate to

jdraper/settings. Here, the most

recent raw data file can be

deleted.
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15

If previewing and finished

taking data, click ”Stop” on the

top menu.

16
To export data, navigate to the

export tab.

17
In export settings, select the

output folder.

18

On the left menu, select all

channels to export except

channel 17. This is because

channel 17 contains data from

the pedal which is not needed.

In addition, multiple tests can

be exported at the same time

and renamed later.
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19

Click export to export the data

in text format. Rename the files

as necessary.

C.2 Static Calibration

This section details the static calibration of the piezoelectric strain sensors. Since these

sensors are capacitive in nature, they exhibit non-negligible drift after a sensor is loaded.

Due to this drift, typical calibration methodologies are not applicable as the user cannot

wait a long period of time for the signal to steady. To circumvent this challenge, the method

used here is to remove the weight from the test article. This is significantly smoother and

faster than applying the weight.

As a note, it is often recommended to fully encompass the loading envelope with the

static calibration. For example, if 10 pounds of normal force is expected, it may be useful

to perform calibrations from 0 to 20 pounds in as fine as increment as desired. The SOP

for each loading orientation and magnitude is presented below.
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Step

Number
Description Illustration

1

Thread fishing line through weight

hanger and screw with through hole in

screw head.

2

Zero orientation of model such that

gravity is coincident with the desired

loading direction (e.g. 0◦ pitch and roll

yields pure z-direction force). An

inclinometer is recommended for this

step.
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3

Insert screw into hole location of

interest and load desired weight onto

weight hanger.

4
Steady weight such that swinging is

minimized.

5

Zero reading from strain sensors. To do

so, on each strain gage signal

conditioner select ”ZERO” from the

main menu. Scroll to ”ALL” for the

”Channel” option and choose the

”Autozero” option. Wait until screen

returns to original state.

6

Ensure data acquisition system is

primed (see data acquisition SOP for

more explicit instructions).
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7

Place scissor jack below weight hanger.

This will remove the weight, a steadier

alternative to placing the weight.

8
Trigger data acquisition by pressing

pedal.

9

Shortly ( 1 second) after data acquisition

initiation, raise scissor jack and

smoothly remove weight until tension in

fishing line is released.
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10

Wait until data collection has finished

(default recording time is 10 seconds)

and remove screw from hole of interest.

11
Repeat steps 2-10 for each loading

orientation/magnitude of interest.

C.3 Dynamic Calibration

This section details the dynamic calibration for each of the methods. Different calibra-

tion methodologies are utilized for the SWAT and TDDM/FDIM approaches. As such, a

separate SOP is presented for the two variants.

C.3.1 SWAT - Drop Testing

The dynamic calibration methodology used for the SWAT is very similar to static cal-

ibration. The primary difference is the step is dynamically applied rather than statically.

So instead of a scissor jack smoothly removing the weight, a blowtorch or other severing

mechanism is used to sharply remove the weight. The SOP for SWAT dynamic calibration

is presented below.

Step

Number
Description Illustration
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1

Thread fishing line through weight

hanger and screw with through hole in

screw head.

2

Zero orientation of model such that

gravity is coincident with the desired

loading direction (e.g. 0◦ pitch and roll

yields pure z-direction force). An

inclinometer is recommended for this

step.

3

Insert screw into hole location of

interest and load desired weight onto

weight hanger.
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4
Steady weight such that swinging is

minimized.

5

Zero reading from strain sensors. To do

so, on each strain gage signal

conditioner select ”ZERO” from the

main menu. Scroll to ”ALL” for the

”Channel” option and choose the

”Autozero” option. Wait until screen

returns to original state.

6

Ensure data acquisition system is

primed (see data acquisition SOP for

more explicit instructions).

7

Place scissor jack below weight hanger.

This will remove the weight, a steadier

alternative to placing the weight.
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8
Trigger data acquisition by pressing

pedal.

9

Shortly ( 1 second) after data acquisition

initiation, sever the tether to release the

weight. Typically, a propane blow torch

is used for this application as it is the

quickest and smoothest method.

Scissors could also be used but often

impart unwanted oscillations to the

applied load.

10

Wait until data collection has finished

(default recording time is 10 seconds)

and remove screw from hole of interest.

11
Repeat steps 1-10 for each loading

orientation/magnitude of interest.

C.3.2 TDDM/FDIM - Hammer Testing

Dynamic calibration for the TDDM and FDIM is slightly different than for the SWAT.

The reasoning behind this is the exact applied load during calibration must be known for

these methods. If a step load was used, the exact magnitude, rise time, and any possible os-

cillations are not known which can cause errors in the constructed IRF/FRF. Since impulse

hammers directly measure dynamic loads, the tester can record a more accurate applied
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load. The SOP for hammer test dynamic calibration is detailed below.

Step

Number
Description Illustration

1

Ensure that the hammer is plugged in to

the Model 482C05 signal conditioner

and the desired tip is securely attached.

The user may want to wait a few

minutes after plugging in the hammer as

the signal tends to drift slowly towards

zero as it’s first plugged in.

2

Zero orientation of model such that

gravity is coincident with the desired

loading direction (e.g. 0◦ pitch and roll

yields pure z-direction force). An

inclinometer is recommended for this

step.

3

Zero reading from strain sensors. To do

so, on each strain gage signal

conditioner select ”ZERO” from the

main menu. Scroll to ”ALL” for the

”Channel” option and choose the

”Autozero” option. Wait until screen

returns to original state.
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4

Ensure data acquisition system is

primed (see data acquisition SOP for

more explicit instructions).

5
Trigger data acquisition by pressing

pedal.

6

Shortly ( 1 second) after data acquisition

initiation, strike the surface with the

impulse hammer. Try to apply the strike

as orthogonally to the surface as

possible. User orientation error is a

possible source of error. Additionally,

retract the hammer as quickly as

possible. Double pulses are a common

error of hammer testing and can

sometimes be avoided by quickly

retracting the hammer.

7

Wait until data collection has finished

(default recording time is 10 seconds)

and remove screw from hole of interest.

8

Repeat steps 2-7 for each loading

orientation, hammer tip, and loading

magnitude of interest.
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