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Mixed wave systems are systems governed by wave equations that in the 

semiclassical limit have coexisting chaotic and regular trajectories. The goal of this 

study is to calculate the statistics of the response of mixed systems to external 

excitation. The ray tracing method is used to explore the property of simple two-

dimensional wave system shapes: the “Four Arcs” and the “Peanut” billiard. The ray 

trajectories for these two mixed systems are plotted in real space and in phase space. 

The goal is to apply the generalized Random Coupling Model (RCM) to study the 

response of these two mixed systems in the form of their impedance matrices. To 

obtain information needed for the generalized RCM, the Method of Moments (MOM) 

is implemented to numerically calculate the eigenfrequencies and eigenmodes of the 

2D cavities under consideration. As a preliminary study statistics of a lossless and a 

lossy impedance for a two-port 2D rectangular cavity are calculated.   
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Chapter 1: Introduction 
 

 

1.1 Motivation 

Calculating the electromagnetic response of enclosures is a general and 

challenging problem in electromagnetics and microwave engineering. For a given 

configuration of an enclosure, technically the electromagnetic response can be solved 

through the deterministic approach. That is, solve the governing electromagnetic 

equations with boundary conditions and obtain the electromagnetic quantities 

numerically. However, this deterministic approach is not always feasible if we take 

the cost of computation time and computational resources into account, and we allow 

for uncertainty in the exact dimensions and contents of the enclosure. That is 

especially true when you have a very complicated shaped enclosure.     

What makes the problem complicated is that, when the wavelength is very small 

compared with the size of the enclosure, the electromagnetic quantities are highly 

sensitive to small enclosure configuration changes. Therefore in the deterministic 

approach you have to solve the same electromagnetic equations repeatedly for 

slightly different configurations. Likewise the deterministic approach also has 

drawback with small changes in frequency: since in practice a microwave system is 

very often operating in a wide frequency range. Consequently you must solve the 

same electromagnetic equations once per each frequency of interest.  

The deterministic approach’s drawback motivates people to employ a statistical 

approach to solve the electromagnetic quantities, or at least to characterize them 
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probabilistically. This kind of statistical approach was first introduced by Wigner in 

his study of the energy levels of large nuclei [1-3]. 

In my thesis, I focus on quasi-2D cavities with ports. And the electromagnetic 

quantity I’m trying to determine is the cavity impedance. I will characterize the cavity 

impedance through the statistical approach based on the Random Coupling Model 

(RCM) [1-3].  

1.2 Wave Chaos 

Here I introduce concepts relevant to the understanding of wave properties for 

complicated enclosure [1-3]. 

1.2.1 Weyl’s Formula and Normalized Spacing 

Solution of the wave equation in a 2D domain with Dirichlet and Neumann 

boundary condition is an eigenvalue problem for which there is a discrete set of 

eigenfunctions and corresponding eigenvalues 𝑘௡
ଶ, 𝑛 = 1,2, …. Here has of wave 

number and λ = 2π/𝑘௡ is the free space wavelength of the waves form the 

eigenfunction.  

For my 2D problem, in an enclosed region Ω of area 𝐴, the number of 

eigenmodes below 𝑘ଶ (i.e. 𝑘௡
ଶ < 𝑘ଶ) is given by Weyl’s formula [1-3]: 

 𝑁(𝑘ଶ) =
𝐴

4𝜋
𝑘ଶ + 𝑂(𝑘), (1.1) 

From Eq. (1.1), we can write the average mode density of a 2D enclosure 

approximately as: 

 𝜌(𝑘ଶ) ≈
𝐴

4𝜋
, (1.2) 
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Therefore, the mean spacing between adjacent eigenvalues (∆(𝑘ଶ) ≡< 𝑘௡ାଵ
ଶ − 𝑘௡

ଶ >) 

is:  

 ∆(𝑘ଶ) =
1

𝜌(𝑘ଶ)
=

4𝜋

𝐴
, (1.3) 

We define the normalized eigenvalue spacing as: 

 s௡ =
𝑘௡ାଵ

ଶ − 𝑘௡
ଶ

∆(𝑘ଶ)
= 𝑘෨௡ାଵ

ଶ − 𝑘෨௡
ଶ, (1.4) 

The probability density function (PDF) of s௡ has been well studied for wave systems, 

and it will be used in Random Coupling Model (RCM) later on. 

1.2.2 Random Matrix Theory 

When studying the energy spectra of large nuclei, Wigner found the wave 

equation was difficult to solve, so instead he characterize the energy spectra by 

statistics. Winger’s hypothesis is that the eigenvalue spectra of heavy nuclei have 

similar statistical properties to the spectra of some carefully designed random 

matrices. Depending on different types of symmetry, Winger designed three kinds of 

random matrix ensembles, they are [1, 3, 4]: Gaussian Orthogonal Ensemble (GOE), 

Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE). In my 

thesis I only employ the GOE. And a GOE random matrix 𝐇 should have these two 

properties: 

1. Invariance. The probability distribution for the elements of 𝐇, Pഥ(𝐇), should 

be invariant to orthogonal transformations of 𝐇:  

 Pഥ(𝐇) = Pഥ(𝐎𝐇𝐎𝑻), (1.5) 

where 𝐎 denotes any orthogonal matrix. 
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2. Independence. The GOE matrix elements are independent random variables. 

The probability distribution Pഥ(𝐇) is the product of distributions for the 

individual elements H௜௝, 𝑖 ≤ 𝑗. 

Based on the above two properties, we generate a GOE random matrix 𝐇 as 

followed: 

 

H௜௝~𝑁(0,1), 𝑤ℎ𝑒𝑛 𝑖 = 𝑗, 

H௜௝~𝑁(0,1/2), 𝑤ℎ𝑒𝑛 𝑖 < 𝑗, 

H௜௝ = H௝௜, 

(1.6) 

where 𝑁(𝜇, 𝜎ଶ) denotes a Gaussian distribution random variable with mean 𝜇 and 

variance 𝜎ଶ. 

For GOE random matrices, Wigner found that the normalized eigenvalue spacing 

obeys this probability distribution function [1, 2]:    

 Pீ ைா(s) ≈
𝜋

2
𝑠𝐸𝑥𝑝 ቀ−

𝜋

4
𝑠ଶቁ, (1.7) 

In contrast, the normalized eigenvalue spacing of a regular system (system which 

only has regular ray trajectories) obeys Poisson distribution: 

 P௉௢௜௦௦௢௡(s) = 𝑒ି௦, (1.8) 

As an example, I generate a 5000 × 5000 GOE random matrix according to Eq. 

(1.6), and plot its normalized eigenvalue spacing s௡ (according to Eq. (1.4)) 

probability distribution function (PDF) histogram in Fig. 1.1, along with the 

theoretical PDF predictions of Eq. (1.7) and (1.8). 
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Figure 1.1: Normalized eigenvalue spacing probability distribution function (PDF) 

histogram of a 5000 × 5000 GOE random matrix (yellow histogram) vs. theoretical 

PDF predictions of Pீ ைா(s) Eq. (1.7) (blue line) and P௉௢௜௦௦௢௡(s) Eq. (1.8) (red line). 

 

1.2.3 Random Plane Wave Hypothesis 

The Berry’s random plane wave hypothesis says: At short wavelength, at a 

randomly chosen position xሬ⃗  inside a pure chaotic system Ω, the wave function 

evaluated at this position ϕ୬(xሬ⃗ ) has statistical properties similar to a random, 

isotropic superposition of many plane waves [2, 3]. 

 𝜙௡(xሬ⃗ ) ≈ Re ቎෍ 𝛼௝𝐸𝑥𝑝൫𝑖𝑘௡𝑒௝ ∙ 𝑥⃗ + 𝑖𝛽௝൯

ே

௝ୀଵ

቏ ,   𝑁 ≫ 1, (1.9) 

where the wave number 𝑘௡ is fixed, but the amplitudes 𝛼௝, propagation direction 𝑒௝, 

and phases 𝛽௝ are random variables. 

Based on this random plane wave hypothesis, we can replace 𝜙௡(xሬ⃗ ) by a 

Gaussian random variable. For a 2D enclosure Ω of enclosed area 𝐴, the PDF of 

𝜙௡(xሬ⃗ ) is given as: 
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 𝑃(𝜙௡) =
ଵ

√ଶగఙమ
𝐸𝑥𝑝[−

థ೙
మ

ଶఙమ
],   where variance 𝜎ଶ = 1/𝐴,  (1.10) 

1.3 The RCM and the Generalized RCM on Cavity Impedance 

1.3.1 Regular, Chaotic and Mixed System Cavities  

To explain the concept of regular, chaotic and mixed systems, we first need to 

explain what regular and chaotic ray trajectories are. Fig. 1.2 is an illustration of 

regular and chaotic ray trajectories in the Mushroom cavity [3]. 

  

(a) (b) 

Figure 1.2: (a) Two regular ray trajectories in the Mushroom cavity, (b) Two chaotic 

ray trajectories in the Mushroom cavity. 

 

The Mushroom cavity has been well studied [2, 3]. And we know the fact that 

the bottom triangular region of the Mushroom cavity is the “chaotic region”: only the 

chaotic ray trajectories will enter into the chaotic region (as shown in Fig. 1.2 (b)). 

While the upper quarter-circle region of the Mushroom cavity is the “regular region”: 

both regular and chaotic ray trajectories will enter into the regular region (as shown in 

Fig. 1.2). After long enough time, one chaotic ray trajectory will fill up the whole 

cavity, while one regular ray trajectory will be confined within the regular region. 
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If a cavity only has regular/chaotic ray trajectories in it, then it is a regular/ 

chaotic system. If a cavity has both regular and chaotic ray trajectories coexisting in 

it, then it is a mixed system.   

1.3.2 The RCM on Chaotic System Cavity Impedance 

In my thesis, I will focus on studying the impedance of 2D cavity with ports. An 

illustration of a two-port 2D Mushroom cavity is plotted in Fig. 1.3 [3]. 

 

Figure 1.3: Two-port 2D Mushroom cavity 

 

The wave equation for an M-port lossless cavity is [1-3]: 

 (∇ଶ + 𝑘ଶ)𝑉෠் = −𝑗𝑘ℎ𝜂଴ ෍ 𝑢௝𝐼መ௝

ெ

௝ୀଵ

, (1.11) 

𝑉෠் is the voltage difference between the top and bottom of the quasi-2D cavity, 𝐼መ௝ is 

the current at port j, 𝑢௝  is the profile function of space at port j, η଴ is a constant, ℎ is 

height of the cavity, and k is wave number,. Solving Eq. (1.11) for port voltages 𝑉෠௜ 

yields: 

 𝑉෠௜ = ෍ 𝑍௜௝𝐼መ௝

ெ

௝ୀଵ

, (1.12) 
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where the impedance matrix 𝒁 is given by: 

 𝑍௜௝ = −𝑗𝑘ℎ𝜂଴ ෍
< 𝑢௜𝜙௡ >< 𝑢௝𝜙௡ >

𝑘ଶ − 𝑘௡
ଶ

ே

௡ୀଵ

, (1.13) 

where N satisfies the condition 2𝜋/𝑘ே ≪ (𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑜𝑟𝑡𝑠), 𝑘௡ is eigen wave number, 

𝜙௡ is the nth eigenfunction of the cavity, and < ⋯ >= ∫ … dଶxሬ⃗
 

ஐ
. 

We can extract a dimensionless impedance from Eq. (1.13): 

 𝜁௜௝ = −
1

𝜋
෍

< 𝑢௜𝜙௡ >< 𝑢௝𝜙௡ >

𝑘෨ ଶ − 𝑘෨௡
ଶ

ே

௡ୀଵ

, (1.14) 

where 𝑘෨ ଶ ≡ 𝑘ଶ/∆(𝑘ଶ) is the normalized operating frequency, and 𝑘෨௡
ଶ ≡ 𝑘௡

ଶ/∆(𝑘ଶ)  is 

the system normalized eigenvalue.  

so that: 

 𝑍௜௝ = 𝑗
𝑘ℎ𝜂଴

4
𝜁௜௝ , (1.15) 

This new quantity “dimensionless impedance” is independent of system specific 

dimensions, and is therefore universal for all chaotic cavities. 

The Random Coupling Model (RCM) is a model designed to analyze the 

radiation coupling of complicated enclosures through ports. If a system is pure 

chaotic, then the chaotic system will have all the nice wave chaos properties 

mentioned in section 1.2: Weyl’s formula for the normalized eigenvalue spacing, 

random matrix theory, and the random plane wave hypothesis. These properties 

support us to calculate the dimensionless impedance in Eq. (1.14) as following: insert 

the mean eigenvalue spacing as ∆(𝑘ଶ) = 4𝜋/𝐴, replace the eigenfunctions 𝜙௡ by 

Gaussian random variables in Eq. (1.10), and replace the normalized eigenvalues 𝑘෨௡
ଶ 

by the eigenvalues of GOE matrices. Note that in the RCM, we don’t need to actually 
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solve the chaotic system’s eigenvalues and eigenfunctions. This is the very essence of 

the RCM. 

1.3.3 The Generalized RCM on Mixed System Cavity Impedance 

The RCM has been tested to be valid for pure chaotic system cavities in our 

group’s previous work [1-3, 5, 6]. But for mixed system cavities which have 

coexisting regular and chaotic ray trajectories, we cannot apply RCM directly. 

Therefore we need to generalize the RCM first, and then apply the “generalized 

RCM” to study mixed system cavity impedance. 

To generalize the RCM, we first need to decompose the mixed system cavity 

impedance 𝒁 into contributions from the regular eigenmodes 𝒁𝑹 and the chaotic 

eigenmodes 𝒁𝑪 separately [3]: 

 𝒁 = 𝒁𝑹 + 𝒁𝑪, (1.16) 

and 𝒁𝑹, 𝒁𝑪 are given by: 

 

𝑍ோ,௜௝ = −𝑗𝑘ℎ𝜂଴ ෍
< 𝑢௜𝜙௥ >< 𝑢௝𝜙௥ >

𝑘ଶ − 𝑘௥
ଶ

ேೃ

௥ୀଵ

, 

𝑍஼,௜௝ = −𝑗𝑘ℎ𝜂଴ ෍
< 𝑢௜𝜙௖ >< 𝑢௝𝜙௖ >

𝑘ଶ − 𝑘௖
ଶ

ே಴

௖ୀଵ

, 

(1.17) 

where 𝑁ோ/𝑁஼ is the total number of regular/chaotic eigenmodes, 𝜙௥/𝜙௖ is the 

regular/chaotic eigenfunction, 𝑘௥
ଶ/𝑘௖

ଶ is the regular/chaotic eigenvalue, and there 

should be 𝑁ோ + 𝑁஼ = 𝑁 eigenfunctions and eigenvalues. 

After making decomposition of the mixed system cavity impedance 𝒁, we can 

apply the RCM to 𝒁𝑪 following the same approach as solving a pure chaotic system 

cavity impedance, expect for there is a little difference: when replacing the chaotic 
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eigenfunctions 𝜙௖ by zero-mean Gaussian random variables, the variance 𝜎ଶ = 1/𝐴஼  

where 𝐴஼  is the phase space area occupied by chaotic trajectories. While the 𝒁𝑹 is 

still calculated by solving eigenfunctions and eigenvalues of regular eigenmodes. 

This is how the generalized RCM treats the mixed system cavity impedance. 

1.4 Outline of Thesis 

In this thesis, I will focus on characterizing the dimensionless impedance of 

mixed systems by their probability density function. This thesis is organized as 

followed: 

In Chapter 2, I discuss two types of mixed systems: the “Four Arcs” and the 

“Peanut” shaped boundary. I will employ the ray tracing method to study the 

trajectories inside these two systems. By plotting the trajectories in real space and in 

phase space, we can verify that both of these two systems are truly mixed systems, 

and they have rather complicated intermixed chaotic phase space regions and regular 

phase space regions. 

In Chapter 3, I will implement the Method of Moments (MOM) to solve for the 

eigenfunctions and eigenvalues of our concerned 2D cavities. Derivation of the MOM 

algorithm formulas is also provided. As I already mentioned in this chapter, the 

eigenfunctions and eigenvalues are enssential information for our generalized RCM. 

Besides, using numerical eigenfunctions and eigenvalues to calculate dimensionless 

impedance through the old deterministic method will give us good comparison with 

our RCM results.   

In Chapter 4, I make a preliminary study applying the RCM to a two-port 2D 

rectangular cavity with Gaussian profile port function, first for the lossless case 
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second for a lossy case. I treat this regular system as if it were a chaotic system. The 

PDF of the dimensionless impedance calculated by the RCM and by using numerical 

eigenmodes are both given and compared.  

In Chapter 5, I will make a summary of my work and discuss future work. 
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Chapter 2: Mixed System Billiard 
 

 

A billiard is a 2D shaped region in which a particle moves following a trajectory 

defined by classical mechanics. The particle moves in a straight line at constant speed 

until it encounters the boundary where it reflects specularly, without losing any 

kinetic energy [2]. Depending on the shape of the boundary, the trajectories may be 

either be regular, chaotic or a mixture of regular and chaotic.  

The billiard problem has a direct connection to the electromagnetic problem: 

when the EM wavelength is very small compared with the system dimensions, then 

EM waves will propagate inside the system very much like billiards. Mixed systems 

are those systems that have coexisting chaotic and regular billiard trajectories. To 

determine if a certain billiard shape is a mixed system or not, we can employ the ray 

tracing method to plot different billiard trajectories in both real space and phase 

space. In this chapter I will discuss two types of mixed systems: the “Four Arcs” and 

the “Peanut” billiard.  

2.1 Four Arcs Billiard 

2.1.1 Setup 

The Four Arcs billiard is the first type of mixed system I study. In short, its 

boundary is four circular arcs of two different radii which together make a smooth 

elliptical-like shape. An illustration of the Four Arcs shape is shown in Fig. 2.1. 

The Four Arcs boundary can be defined by this setup: 
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1. Specify the ratio of the two radii: 𝑟ଵ/𝑟ଶ. Without losing any generality, we can 

restrict this ratio to satisfy 𝑟ଵ/𝑟ଶ ≥ 1. 

2. Specify the value of the “top angle” 𝜓 ∈ (0, π). This is the angle of the two 

arcs having radii 𝑟ଵ. 

3. Adjust the size of 𝑟ଵ and 𝑟ଶ such that the enclosed area satisfies: A = 4π. Thus 

the average eigenvalue spacing will be unity (Weyl’s formula in 2D gives the 

average eigenvalue spacing to be: ∆(𝑘ଶ) ≡< 𝑘௡ାଵ
ଶ − 𝑘௡

ଶ >) ≃4π/A). 

 

Figure 2.1: An illustration of Four Arcs setup, the two red arcs are of radius 𝑟ଵ; the 

two blue arcs are of radius 𝑟ଶ. Connecting the four arcs’ centers by the dashed purple 

lines makes a rhombus. The “top angle” of the dashed purple rhombus is 𝜓. 

 

Given the setup of the Four Arcs 2D billiard, once the quantities 𝑟ଵ/𝑟ଶ and 𝜓 are 

specified while enforcing A = 4π, a valid Four Arcs boundary can be determined 

(there will always be real solutions for 𝑟ଵ and 𝑟ଶ). 
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2.1.2 Four Arcs Billiard Trajectories in Real Space and in Phase Space 

We can imagine in real space, we shoot a billiard with some initial position and 

angle inside the Four Arcs cavity, then the billiard will be bouncing back and forth 

inside the Four Arcs. Each time when the billiard bounces on the boundary, it obeys 

the law of specular reflection.  

The Four Arcs billiard trajectory in phase space setup is plotted in Fig. 2.2. In 

Fig. 2.2, each bounce on the boundary can be recorded by a point in phase space: 

(𝑆𝑐𝑎𝑙𝑒𝑑 𝑆, cos𝜃). Where 𝑆 is the length from the “reference point” to the bounce 

point along the boundary, it is increasing in the counterclockwise direction. The 

“reference point” where 𝑆 = 0 is at the bottom crossing point between Four Arcs and 

the y-axes. 𝑆𝑐𝑎𝑙𝑒𝑑 𝑆 = 𝑆/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑓𝑜𝑢𝑟 𝑎𝑟𝑐𝑠, so 𝑆𝑐𝑎𝑙𝑒𝑑 𝑆 ∈ [0,1]. And 𝜃 is 

the vector angle between the billiard velocity direction vector at the bounce point, and 

the tangential vector along the counterclockwise direction. The vector angle 𝜃 is 

defined in such a way that the phase space (𝑆𝑐𝑎𝑙𝑒𝑑 𝑆, cos𝜃) will be area preserving.  

 

Figure 2.2: Four Arcs billiard phase space setup. 
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With the phase space setup being specified, we can now write a code to 

determine the billiard ray path. We can plot the Four Arcs billiard trajectory in real 

space and in phase space. As an example, in Fig. 2.3 I plot two billiard trajectories for 

the 𝑟ଵ/𝑟ଶ  = 1 + √2, 𝜃 =
గ

ଶ
 Four Arcs.   

 

(a) 

 

(b) 

Figure 2.3: Real space trajectory (200 bounces) and the corresponding phase space trajectory 

(10,000 bounces) for the 𝑟ଵ/𝑟ଶ = 1 + √2, 𝜓 =
గ

ଶ
 Four Arcs: (a) one regular trajectory, (b) one 

chaotic trajectory.  

 

From Fig. 2.3, we can tell this 𝑟ଵ/𝑟ଶ = 1 + √2, 𝜓 =
గ

ଶ
 Four Arcs is truly a mixed 

system. For some initial conditions (like in Fig. 2.3 (a)), the trajectories are confined 

co
sθ

co
sθ
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within a finite region in real space. We call these trajectories as “regular”. For these 

regular trajectories, their corresponding phase space trajectories are also confined to 

some “closed loops”. This kind of “closed loops” in phase space show that these 

regular trajectories are long term quasi-periodic with long enough time (large enough 

bounces times), trajectories will remain on the closed curve. 

On the other hand, chaotic trajectories (like in Fig. 2.3 (b)) fill up real space: 

meaning a chaotic trajectory will eventually come close to any spatial point in the 

Four Arcs. In phase space however, it won’t take up the full phase space region. 

However the trajectory maps out an area in phase space. And it will enter most of the 

phase space region except for those regions reserved for regular trajectories. We call 

those blank regions that chaotic trajectories never enter “islands”, for they are 

surrounded by chaotic phase space regions. 

Moreover, when we plot different regular and chaotic trajectories together in Fig. 

2.4, the phase space plot will tell us even more about where the Four Arcs regular 

regions or “islands” are and where chaotic regions are. The boundary and relationship 

between regular regions and chaotic regions are easier to observe. The results clearly 

show that this 𝑟ଵ/𝑟ଶ = 1 + √2, 𝜓 =
గ

ଶ
 Four Arcs is a mixed system. 

By studying the billiard trajectories in both real space and phase space, we can 

determine if a certain shape of billiard is mixed system or not, and can distinguish 

between regular regions and chaotic regions.  
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(a) 

 

(b) 

Figure 2.4: (a) 4 regular trajectories (each 4,000 bounces, red dots) and 4 chaotic 

trajectories (each 40,000 bounces, blue dots) plotted together on the same phase space 

graph, (b) enlargement of the green rectangular box region in (a).  
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2.2 Peanut Billiard 

2.2.1 Setup 

The Peanut billiard is a different mixed system that I study. Its boundary is given 

in polar coordinates by:  

 ρ(ϕ) = 1 + a cos(2ϕ), (2.1) 

where a is a constant: a ∈ [0, 1]. 

The name “Peanut” comes from that the boundary shape very often looks like a 

peanut. An illustration of different Peanut boundary shapes is plotted in Fig. 2.5. 

 

Figure 2.5: An illustration of different Peanut boundaries, with different parameters a 

values. 

 

The enclosed area of the Peanut shape is given by 

 A = න න ρdρdϕ
ଵାୟ∙ୡ୭ୱ(ଶம)

଴

ଶగ

଴

, (2.2) 

which results in 

 𝐴 =
𝜋

2
(2 + 𝑎ଶ), (2.3) 

The perimeter of the Peanut shape is given as follow: 
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perimeter = න ඨρଶ + ቆ
𝑑ρ(ϕ)

𝑑ϕ
ቇ

ଶଶగ

଴

𝑑ϕ 

= න ඥ(1 + a ∙ cos(2ϕ))ଶ + (−2a ∙ sin(2ϕ))ଶ
ଶగ

଴

𝑑ϕ, 

(2.4) 

Eq. (2.8) can be evaluated numerically. 

It is worth pointing out that the tangential line slope at any given point (𝜌଴, 𝜙଴) 

on the Peanut boundary is: 

 
dy

dx
=

−2𝑎 ∙ sin(2𝜙଴) 𝑠𝑖𝑛𝜙଴ + 𝜌଴𝑐𝑜𝑠𝜙଴

−2𝑎 ∙ sin(2𝜙଴) 𝑐𝑜𝑠𝜙଴ − 𝜌଴𝑠𝑖𝑛𝜙଴
, (2.5) 

Eq. (2.5) is useful when you write a code to simulate the billiard reflects specularly 

on the Peanut shape boundary. 

2.2.2 Peanut Billiard Trajectories in Real Space and in Phase Space 

Following the same procedure as in the Four Arcs, the Peanut billiard trajectory 

in phase space setup is plotted in Fig. 2.6. 

 

Figure 2.6: Peanut billiard phase space setup. 
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In Fig. 2.6, each bounce on the boundary can be recorded by a point in phase 

space: (𝑆𝑐𝑎𝑙𝑒𝑑 𝑆, cos𝜃). Where 𝑆 is the length from the “reference point” to the 

bounce point along the boundary, it is increasing in the counterclockwise direction. 

The “reference point” where 𝑆 = 0 is at the right crossing point between Peanut 

boundary and the x-axes. 𝑆𝑐𝑎𝑙𝑒𝑑 𝑆 = 𝑆/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑃𝑒𝑎𝑛𝑢𝑡, so 𝑆𝑐𝑎𝑙𝑒𝑑 𝑆 ∈

[0,1]. And 𝜃 is the vector angle between the billiard velocity direction vector at the 

bounce point, and the tangential vector along the counterclockwise direction. The 

vector angle 𝜃 is defined in such a way that the phase space (𝑆𝑐𝑎𝑙𝑒𝑑 𝑆, cos𝜃) will be 

area preserving.  

Like what we did for the Four Arcs billiard in the previous section, we can now 

write a code to plot the Peanut billiard trajectory in real space and phase space. As an 

example, here I plot billiard trajectories for the ρ(ϕ) = 1 + 0.1 ∙ cos(2ϕ) Peanut 

cavity:   

  

(a) 

co
sθ
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(b) 

Figure 2.7: Real space trajectory (200 bounces) and corresponding phase space trajectory 

(10,000 bounces) for the ρ(ϕ) = 1 + 0.1cos(2ϕ) Peanut cavity: (a) one regular 

trajectory, (b) one chaotic trajectory.  

 

Again, Fig. 2.7 clearly shows the ρ(ϕ) = 1 + 0.1cos(2ϕ) Peanut cavity is a 

mixed system. There are regular trajectories in this system (like in Fig. 2.6 (a)), and 

these regular trajectories will make “closed loops” in phase space, meaning they are 

long-term quasi-periodic. At the same time, there also are chaotic trajectories (like in 

Fig. 2.6 (b)). Chaotic trajectories will fill up real space, and take up some regions in 

phase space. 

To further characterize the ρ(ϕ) = 1 + 0.1cos(2ϕ) Peanut cavity as a mixed 

system, we plot several different regular and chaotic trajectories in the phase space 

together in Fig. 2.8.  

co
sθ
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(a) 

 

(b) 

Figure 2.8: (a) 4 regular trajectories (each 4,000 bounces, red dots) and 4 chaotic 

trajectories (each 40,000 bounces, blue dots) plotted together on the same phase space 

graph, (b) enlargement of the green rectangular box region in (a).  
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Chapter 3: The Method of Moments on Eigenfrequencies and 
Eigenmodes of 2D Cavities 
 

 

The Method of Moments (MOM), also known as the Boundary Element Method 

(BEM), is a powerful numerical technique to solve electromagnetic problems. Like 

the Finite Element Method (FEM), it will transform the continuous governing partial 

differential equation (in my case, it is the Helmholtz equation with zero potential on 

the boundary) in to a matrix equation. And then by solving the matrix equation, we 

can obtain the potential over the space, eigenfrequencies, eigenmodes and other kinds 

of electromagnetic information.  

Compared with the FEM, there are some different properties of MOM [7-11]: 

1. MOM only needs the information on the boundary to determine eigenvalues 

and eigenfunctions, not the information over the whole desired region/space. 

For example, when I’m studying 2D cavities, only points on the line 

boundary of the 2D cavity are needed to obtain the numerical solution. Thus 

the dimensionality of the problem is reduced by one by using MOM. The 

benefits of that are: (a) it’s much faster and easier for MOM to discretize 

over a 1D contour than FEM to make meshes over a 2D cavity; (b) less 

information needs to be stored in the computer memory, meaning MOM is 

less likely to run into memory shortage than FEM. 

2. For problems without a closed boundary, MOM will do better than FEM. 

This is because of that after MOM obtained the charge/potential distribution 
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on the boundary, even if that boundary is not closed, the outgoing wave 

radiation can be “automatically” achieved. 

In this chapter, I will implement MOM to solve for Eigenfrequencies and 

Eigenmodes of the 2D cavities we are interested in. The numerical Eigenfrequencies 

and Eigenmodes will enable us to check if the Random Coupling Model gives the 

correct prediction of the cavity impedance probability distribution or not. And 

furthermore, the Eigenfrequencies and Eigenmodes information will help us to extend 

the Random Coupling Model predictions for Mixed Systems’ cavity impedance 

probability distribution. 

 

3.1 Method of Moments in 2D Cavity Problems 

3.1.1 Transform Homogenous Helmholtz Equation into Matrix Equation 

The governing equation for a 2D cavity with a perfectly conducting metal wall is 

the homogenous Helmholtz equation: 

 (𝛻ଶ + 𝑘ଶ)𝜑(𝑥⃗) = 0,      𝑥⃗ ∈ Ω, (3.1) 

where k is the wavenumber, Ω denotes the region inside a 2D cavity, and 𝜑(𝑥⃗) is the 

potential at position  𝑥⃗. The boundary condition to be applied to Eq. (3.1) is 𝜑(𝑥⃗) = 0 

on the boundary. 

Analytically, we know that the free-space Green’s function G0 satisfies the 

homogenous Helmholtz equation 

 (𝛻ଶ + 𝑘ଶ)𝐺଴(𝑥⃗, 𝑥⃗ᇱ) = −𝛿(𝑥⃗ − 𝑥⃗ᇱ), (3.2) 

The free-space Green’s function 𝐺଴(𝑥⃗, 𝑥⃗ᇱ) is given by: 
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 𝐺଴(𝑥⃗, 𝑥⃗ᇱ) =
1

4𝑗
𝐻଴

(ଶ)(𝑘(𝑥⃗ − 𝑥⃗ᇱ)), (3.3) 

where 𝐻଴
(ଶ) is the zeroth-order Hankel function of the second kind. 

We multiply Eq. (3.1) by G0, and multiply Eq. (3.2) by 𝜑 on both sides, and then 

subtract the two results: 

 𝐺଴𝛻ଶ𝜑 − 𝜑𝛻ଶ𝐺଴ = 𝜑𝛿(𝑥⃗ − 𝑥⃗ᇱ), (3.4) 

next we integrate Eq. (3.4) over the whole region inside the 2D cavity: 

 ඵ (𝐺଴𝛻ଶ𝜑 − 𝜑𝛻ଶ𝐺଴)𝑑Ω
ஐ

= ඵ ൫𝜑𝛿(𝑥⃗ − 𝑥⃗ᇱ)൯𝑑Ω
ஐ

, (3.5) 

We apply the second scalar Green’s theorem 

 ඵ (𝐺଴𝛻ଶ𝜑 − 𝜑𝛻ଶ𝐺଴)𝑑Ω
ஐ

= ර ൬𝐺଴

𝜕𝜑

𝜕𝑛
− 𝜑

𝜕𝐺଴

𝜕𝑛
൰

୻

𝑑Γ, (3.6) 

where Γ is the boundary enclosing the 2D cavity region Ω. 

Also, the right hand side of Eq. (3.5) is simply: 

 ඵ ൫𝜑(𝑥⃗)𝛿(𝑥⃗ − 𝑥⃗ᇱ)൯𝑑Ω
ஐ

= 𝜑(𝑥⃗ᇱ), (3.7) 

Next, we substitute Eq. (3.6) and (3.7) into Eq. (3.5), and the result is: 

 ර ൬𝐺଴

𝜕𝜑

𝜕𝑛
− 𝜑

𝜕𝐺଴

𝜕𝑛
൰

୻

𝑑Γ = 𝜑(𝑥⃗ᇱ), (3.8) 

For a 2D cavity with perfect conducting metal wall, the boundary condition is: 

 𝜑(𝑥⃗) = 0,   𝑥⃗ ∈ Γ, (3.9) 

with this boundary condition taken into account, and exchanging 𝑥⃗ and 𝑥⃗ᇱ, Eq. (3.8) 

will turn into: 

 ර 𝐺଴(𝑥⃗, 𝑥⃗ᇱ)
𝜕𝜑(𝑥⃗ᇱ)

𝜕𝑛୻ᇲ

𝑑Γᇱ = 0,    𝑥⃗ ∈ Γ, (3.10) 
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We can let 
డఝ(௫⃗ᇲ)

డ௡
=

ଵ

ఌబ
𝜆(𝑥⃗ᇱ), and insert this into Eq. (3.10) : 

 
1

𝜀଴
ර 𝐺଴(𝑥⃗, 𝑥⃗ᇱ)𝜆(𝑥⃗ᇱ)

୻

𝑑Γᇱ = 0,    𝑥⃗ ∈ Γ, (3.11) 

where 𝜀଴ is the vacuum permittivity constant, and 𝜆(𝑥⃗ᇱ) is the line charge density on 

the boundary.   

So far, I have finished the derivation of transforming the homogenous Helmholtz 

equation (Eq. (3.1)), with zero potential on the boundary, into an integral equation 

(Eq. (3.11)). Next I’m going to transform the integral equation Eq. (3.11) into a 

matrix equation.  

If I discretize the boundary of a 2D cavity into N segments, and approximate the 

contour integral by the sum of N integrals over each small segments:  

 
1

𝜀଴
ර 𝐺଴(𝑥⃗, 𝑥⃗ᇱ)𝜆(𝑥⃗ᇱ)

୻

𝑑Γᇱ ≈
1

𝜀଴
෍ 𝑍௠௡𝜆௡

ே

௡ୀଵ

= 𝜑௠ = 0, (3.12) 

where m, n are just dummy indices to mark the segments. And 𝑍௠௡ is given by: 

 𝑍௠௡ = න 𝐺଴(𝑥⃗௠, 𝑥⃗ᇱ
௡)

௦೙

𝑑Γᇱ, (3.13) 

where 𝑠௡ is the length of the nth segment. 𝑍௠௡ is a N × N coefficient matrix. 

In the end, Eq. (3.12) is the homogenous matrix equation we transformed from 

the homogenous Helmholtz equation. We can write a code to numerically solve this 

homogenous matrix equation on a computer. The eigenvalues of matrix 𝑍௠௡ will tell 

us the eigenfrequencies of the 2D cavity. And the eigenvectors 𝜆௡ will tell us the line 

charge density distribution on the cavity boundary from which the solution in the 

interior can be found. Furthermore the eigenmodes potential distribution inside the 
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2D cavity can be achieved by simply implementing Green’s function, once we have 

obtained line charge density vector 𝜆௡.    

3.1.2 Evaluate the Coefficient Matrix of the Helmholtz Matrix Equation 

In this section of my thesis, I will evaluate and give formulas for the elements of 

𝒁 coefficient matrix. 

First it is quite obvious that, when m ≠ n, the 𝑍௠௡ integral can be approximated 

by:  

 

𝑍௠௡ = න 𝐺଴(𝑥⃗௠, 𝑥⃗ᇱ
௡)

௦೙

𝑑Γᇱ ≈ 𝑠௡ ∙ 𝐺଴(𝑥⃗௠, 𝑥⃗ᇱ
௡)

=
𝑠௡

4
𝐻଴

(ଶ)
(𝑘|𝑥⃗௠ − 𝑥⃗ᇱ

௡|),    m ≠ n, 

(3.14) 

The real question is when m = n. As |𝑥⃗௠ − 𝑥⃗ᇱ
௡| becoming zero, then it takes 

some special treatment to evaluate 𝑍௠௡. We call the “𝑍௠௡,   𝑚 = n” as the “self-

term”. 

For the self-terms, we study them in the polar coordinates, and imagine there is a 

circle of radius r contouring the self-term segment. Therefore, 

 

|𝑥⃗௠ − 𝑥⃗ᇱ
௡| = |𝑥⃗(𝜃) − 𝑥⃗(𝜃ᇱ)| = |2𝑟ଶ − 2𝑟ଶ cos(𝜃 − 𝜃ᇱ)| 

= √2𝑟 ∙ ඥ1 − cos(𝜃 − 𝜃ᇱ) ≈ √2𝑟 ∙ ඨ
1

2
(𝜃 − 𝜃ᇱ)ଶ,    m = n, 

(3.15) 

Insert this Eq. (3.15) into the 𝑍௠௡ integral, then we have: 

 𝑍௠௡ ≈
1

4
න 𝐻଴

(ଶ)
ቌ𝑘𝑟ඨ

1

2
|𝜃 − 𝜃ᇱ|ቍ

ఏᇲା
∆ఏ
ଶ

ఏᇲି
∆ఏ
ଶ

𝑟𝑑𝜃ᇱ,    m = n, (3.16) 

and since the Taylor expansion of the 𝐻଴
(ଶ) tells us that: 
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 𝐻଴
(ଶ)

(𝑥) ≈ 1 − 𝑖
2

𝜋
ቂln ቀ

𝑥

2
ቁ + γቃ ,   when x → 0, (3.17) 

where γ is a constant called “Euler Gamma”, γ ≈ 0.577216. 

Apply the approximation in Eq. (3.17) to Eq. (3.16), and set 𝜃ᇱ = 0, we get: 

 

𝑍௠௡ ≈
1

4
𝑟 න ൜1 − 𝑖

2

𝜋
൤ln ൬

1

2
𝑘𝑟|𝜃ᇱ|൰ + γ൨ൠ

∆ఏ
ଶ

ି
∆ఏ
ଶ

𝑑𝜃ᇱ 

=
1

4
𝑟∆𝜃 ൜1 − 𝑖

2

𝜋
൤ln ൬

1

2
𝑘𝑟൰ + γ൨ൠ −

1

4
𝑟 න 𝑖

2

𝜋
ln(|𝜃ᇱ|)

∆ఏ
ଶ

ି
∆ఏ
ଶ

𝑑𝜃ᇱ,    m = n, 

(3.18) 

The integral part of the equation can be evaluated: 

 න ln(|𝜃ᇱ|)

∆ఏ
ଶ

ି
∆ఏ
ଶ

𝑑𝜃ᇱ = 2 න ln(|𝜃ᇱ|)

∆ఏ
ଶ

଴

𝑑𝜃ᇱ = ∆𝜃 ൤ln ൬
∆𝜃

2
൰ − 1൨, (3.19) 

Insert Eq. (3.19) into Eq. (3.18), and recall that in polar coordinates 𝑟∆𝜃 = 𝑠௡, we 

get: 

 

𝑍௠௡ ≈
1

4
𝑟∆𝜃 ൜1 − 𝑖

2

𝜋
൤ln ൬

1

2
𝑘𝑟൰ + γ൨ − 𝑖

2

𝜋
൤ln ൬

∆𝜃

2
൰ − 1൨ൠ 

=
𝑠௡

4
൤1 − 𝑖

2

𝜋
ln ൬

𝑘𝑒ஓ𝑠௡

4𝑒
൰൨ ,    m = n, 

(3.20) 

where 𝑒ஓ ≈ 1.78107. 

In sum, the coefficient matrix 𝑍௠௡ for our homogenous Helmholtz matrix 

equation is evaluated by these formulas [7]: 

 𝑍௠௡ = ൞

𝑠௡

4
𝐻଴

(ଶ)
(𝑘|𝑥⃗௠ − 𝑥⃗௡|),        m ≠ n

𝑠௡

4
൤1 − 𝑖

2

𝜋
ln ൬

𝑘𝑒ஓ𝑠௡

4𝑒
൰൨ ,    m = n,

 (3.21) 

where 𝑘 is the wave number, 𝑠௡ is the uniform segment length on the boundary, 

𝑒 ≈ 2.7183, 𝑒ஓ ≈ 1.78107. 
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3.1.3 Solve the Homogenous Helmholtz Equation Numerically 

As we can see in Eq. (3.21), the coefficient matrix 𝒁 is a function of wave 

number 𝑘. So the homogenous Helmholtz equation we are trying to solve reduces to: 

 𝒁(𝑘) ∙ 𝜆 = 0, (3.22) 

where 𝜆 is the line charge density on each segment stored in vector form. The wave 

numbers 𝑘 that satisfy this above equation and their corresponding line charge density 

vectors 𝜆 are the unknowns we are trying to determine.  

Technically, Eq. (3.22) only has non-trivial solution when the determinant of 𝒁 

matrix is zero: 𝐷𝑒𝑡[𝒁(𝑘)] = 0. However, numerically it is almost impossible to find a 

𝑘 value which makes the determinant strictly zero. Instead, the best result a computer 

can achieve is to find some 𝑘 values which make: 𝐷𝑒𝑡[𝒁(𝑘)] = 𝜀 ≈ 0.  

With the reason given above, the actual numerical solver work flow is: 

1. Find special 𝑘 values: 𝑘଴, so that at these 𝑘଴ we have: 𝐷𝑒𝑡[𝒁(𝑘଴)] = 𝜀 ≈ 0. 

2. For each 𝑘଴ we found, we can calculate this eigen-problem: 

 𝒁(𝑘଴) ∙ 𝜆௠௜௡ = 𝑎௠௜௡ ∙ 𝜆௠௜௡, (3.23) 

where 𝑎௠௜௡ denotes the smallest eigenvalue of 𝒁(𝑘଴), and 𝜆௠௜௡ is its 

corresponding eigenvector. 

3. Numerically and practically, 𝑘଴ is the eigen wave number we are looking for. 

And 𝜆௠௜௡ is the charge density distribution on the boundary for an 

eigenmode. 𝑘଴ will tell us about the eigenfrequencies of the 2D cavity, and 

eigenmodes can be reproduced by implementing Green’s function with 𝜆௠௜௡.   
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3.2 Implement the Method of Moments on the Circular, the Four Arcs and the Peanut 

Cavities 

3.2.1 Eigenfrequencies and Eigenmodes of the Circular Cavity 

We start to implement the algorithm we derived in section 3.1 by solving for a 

circular cavity. Since circular cavities have well-known analytical solutions (TM 

modes solution in our zero potential on the boundary case), we test if our algorithm 

can work or not. 

For a r=2 circular cavity, the enclosed area is 𝐴 = 4𝜋. Plot the eigen wave 

numbers 𝑘଴ we found by using MOM vs. the analytical eigen wave numbers, in the 

range of k ∈ [1, 10] in Fig. 3.1. 

 

(a) 
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(b) 

Figure 3.1: r = 2, 𝐴 = 4𝜋 circular cavity (a) 𝑘௡ 𝑣𝑠. 𝑛, MOM results (blue dots) vs. Analytical 

(yellow dots), and (b) 𝑛 𝑣𝑠. 𝑘௡
ଶ, MOM results (blue dots), Analytical results (yellow dots), and 

Weyl’s formula 𝑛 =
஺

ସగ
𝑘௡

ଶ = 𝑘௡
ଶ (red line); where 𝑘௡ ∈ [1, 10]. 

 

As we can see in Fig. 3.1, the 𝑘଴ found by MOM are very close to the analytical 

𝑘଴, therefore the blue dots and the yellow dots are almost on top of each other. This 

shows that our MOM algorithm can work. The maximum absolute difference in the 

above figure is roughly 0.01, and the maximum percent error is roughly 0.13%.  

We can also solve for the eigenmodes. A plot density 𝜑ଶ of selected eigenmodes 

of an r=2 circular cavity is shown in Fig. 3.2. 

It’s worth mentioning that even though my MOM code works well in finding 

most of the eigenfrequencies and eigenmodes, on the other hand there will be some 

eigenmodes missing. This missing eigenmodes problem is mainly due to the circular 

cavity being a regular system, and there is no “level repulsion” in its eigenvalues 

spectrum. In other words, two adjacent eigenfrequencies (eigenvalues) of a circular 

cavity can be infinitely close with each other. As I mentioned in Chapter 1, the PDF 



 

 32 
 

of eigenvalues for a regular system should obey the Poisson distribution, as plotted in 

Fig. 3.3. 

  

(a) 

  

(b) 

  

(c) 

Figure 3.2: 𝜑ଶ density plot (3D view and top view) of three different eigenmodes for a r=2 circular 

cavity: (a) when 𝑘଴ = 1.204 (TM(0, 1)), (b) when 𝑘଴ = 4.214 (TM(2, 2)),  and (c) when 𝑘଴ =

33.1992 (TM(16, 14)).   

 



 

 33 
 

The numerical solver, with some approximations it already takes (see section 

3.1), plus the limitation in computational resources, cannot tell the difference between 

two very close adjacent eigenmodes. That’s why my MOM numerical solver will 

miss finding some eigenmodes. After tuning my code, I found 2390 out of the first 

2456 eigenmodes of the r=2 circular cavity. So 2.69% of the eigenmodes are missing. 

We can assume the same accuracy also applies to other types of regular systems or 

the regular eigenmodes of mixed systems. 

 

 

Figure 3.3: The eigenvalues spacing of an r=2 circular cavity, roughly 2500 

eigenmodes histogram vs. Poisson distribution function (blue line). 

 

3.2.2 Eigenfrequencies and Eigenmodes of the Four Arcs Cavity 

Following the same steps as in the circular cavity problem, we can write a code 

to compute the eigenfrequencies and eigenmodes of the Four Arcs cavities. In this 

section, I will use the setup of: 𝑟ଵ/𝑟ଶ = 1 + √2,  𝜃 =
గ

ଶ
 and the enclosed area is 

𝐴 = 4𝜋 for the Four Arcs we study. 
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Plot the first 90 eigen wave numbers (in the range of k ∈ [1, 10]) the MOM 

numerical solver obtained in Fig. 3.4. Unlike in the circular cavity case, this time we 

don’t have any analytical results to compare with. 

 

  

(a) (b) 

Figure 3.4: 𝑟ଵ/𝑟ଶ = 1 + √2,  𝜃 =
గ

ଶ
 Four Arcs cavity (a) 𝑘௡ 𝑣𝑠. 𝑛 of MOM results, and (b) 

𝑛 𝑣𝑠. 𝑘௡
ଶ, MOM results (blue dots) vs. Weyl’s formula 𝑛 =

஺

ସగ
𝑘௡

ଶ = 𝑘௡
ଶ (red line); where 

𝑘௡ ∈ [1, 10]. 

 

We can solve for the eigenmodes for this 𝑟ଵ/𝑟ଶ = 1 + √2,  𝜃 =
గ

ଶ
  Four Arcs 

cavity and plot three consecutive low order eigenmodes in Fig. 3.5.  

  

(a) 
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(b) 

  

(c) 

Figure 3.5: 𝜑ଶ density plot (3D view and top view) of 8th~10th eigenmodes for the 𝑟ଵ/𝑟ଶ = 1 +

√2,  𝜃 =
గ

ଶ
  Four Arcs cavity: (a) when 𝑘௡ = 3.183 (n=8), (b) when 𝑘௡ = 3.568 (n=9), and (c) 

when 𝑘௡ = 3.572 (n=10).   

 

We can also go further to increase eigen wave number 𝑘௡, and solve for 

eigenmodes again. Plot the results for three consecutive higher order eingemodes in 

Fig. 3.6. 
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(a) 

  

(b) 

  

(c) 

Figure 3.6: 𝜑ଶ density plot (3D view and top view) of three consecutive eigenmodes at 𝑛 ≈ 1100   

for the 𝑟ଵ/𝑟ଶ = 1 + √2,  𝜃 =
గ

ଶ
  Four Arcs cavity: (a) when 𝑘௡ = 33.2022, (b) when 𝑘௡ = 33.2052, 

and (c) when 𝑘௡ = 33.2172.   

 

3.2.3 Eigenfrequencies and Eigenmodes of the Peanut Cavity 

In this section, we will use MOM code to solve for the eigenfrequencies and 

eigenmodes of Peanut cavity, with the boundary given by this function: ρ(ϕ) = 1 +

0.1cos (2ϕ), enclosed area 𝐴 =
ଶ଴ଵ

ଶ଴଴
𝜋. 

First use the MOM solver to get the first 90 eigen wave numbers (in the range of 

𝑘௡ ∈ [1, 20]), and plot them in Fig. 3.7. 
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(a) (b) 

Figure 3.7: ρ(ϕ) = 1 + 0.1cos (2ϕ), 𝐴 =
ଶ଴ଵ

ଶ଴଴
𝜋 Peanut cavity (a) MOM 𝑘௡ 𝑣𝑠. 𝑛, and (b) 

𝑛 𝑣𝑠. 𝑘௡
ଶ, MOM numerical results (blue dots) and Weyl’s formula 𝑛 =

஺

ସగ
𝑘௡

ଶ = 0.25125𝑘௡
ଶ (red 

line); where 𝑘௡ ∈ [1, 20]. 

 

Solve for four consecutive high order eigenmodes of this Peanut cavity, and plot 

them in Fig. 3.8. 
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(b) 

  

(c) 

  

(d) 

Figure 3.8: 𝜑ଶ density plot (3D view and top view) of four consecutive eigenmodes at 𝑛 ≈ 766 for the 

ρ(ϕ) = 1 + 0.1cos (2ϕ), 𝐴 =
ଶ଴ଵ

ଶ଴଴
𝜋 Peanut cavity: (a) when 𝑘௡ = 53.4668, (b) when 𝑘௡ = 53.4788, (c) 

when 𝑘௡ = 53.4788, and (d) when 𝑘௡ = 53.5478. 
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Chapter 4: Statistical Study of a Two-Port 2D Rectangular 
Cavity Impedance 
 

 

4.1 Setup 

The setup of rectangular cavity with two ports is plotted in Fig. 4.1. In my study, 

I choose these values for parameters: 

 

⎩
⎨

⎧
𝑟ଵ = 𝑟ଶ = 0.01

a =
1 + √5

2
,   b = 1

(𝑥ଵ, 𝑦ଵ) = (0.3,0.8),   (𝑥ଶ, 𝑦ଶ) = (1.2, 0.4),

 (4.1) 

where  𝑟ଵ, 𝑟ଶ denotes the radius of port 1 and 2, a and b are the length of the 

rectangular edges, (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ) are the center positions of the two port 1 and 

2. The (0,0) coordinate is at the bottom left corner of the rectangular. The reason of 

why we are choosing these values for parameters will be explained later in the next 

section, when we derive formulas for cavity impedance. 

The profile functions of the two ports are Gaussian profile functions: 

 𝑢ଵ,ଶ =
1

2𝜋𝑟ଵ,ଶ
ଶ 𝐸𝑥𝑝 ൥−

൫𝑥 − 𝑥ଵ,ଶ൯
ଶ

+ ൫𝑦 − 𝑦ଵ,ଶ൯
ଶ

2𝑟ଵ,ଶ
ଶ ൩, (4.2) 
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Figure 4.1: The setup of the rectangular box with two ports. 

 

4.2 Impedance for Lossless Two-Port 2D Rectangular Cavity 

4.2.1 Formulas for Lossless Impedance 

I will first derive the formula for lossless impedance for a rectangular cavity with 

two Gaussian profile function ports. 

For a lossless cavity with M ports, the impedance matrix 𝒁 is given by [1-3]: 

 𝑍௜௝ = −𝑗𝑘ℎ𝜂଴ ෍
< 𝑢௜𝜙௡ >< 𝑢௝𝜙௡ >

𝑘ଶ − 𝑘௡
ଶ

ே

௡ୀଵ

, (4.3) 

where N satisfies the condition 2𝜋/𝑘ே ≪ 𝑟ଵ,ଶ, in our case we choose N =6347 (the 

reason will be explained later after we derived the impedance formulas). Moreover, 

k = ω/c,   η଴ = ඥμ଴/ϵ଴, h is the height of the cavity (very small, virtually 2D 

cavity), and < 𝑢௜𝜙௡ >= ∫ 𝑢௜𝜙௡dଶxሬ⃗
 

ஐ
 is the integral over the whole region of profile 

function at port i (𝑢௜) times the nth eigen-function (𝜙௡).  

For lossless cavity, the impedance is purely imaginary. According to previous 

work [1-3], we can write the lossless impedance matrix into: 
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 𝒁 = 𝑗
𝑘ℎ𝜂଴

4
𝚵, (4.4) 

where 𝚵 is the dimensionless reactance matrix: 

 𝚵 = −
1

𝜋
෍

𝒘௡𝒘௡
்

𝑘෨ ଶ − 𝑘෨௡
ଶ

௡

, (4.5) 

in which 𝑘෨ ଶ =
௞మ

∆(௞మ)
=

௞మ

ସ஠/୅
, where ∆(𝑘ଶ) = 4π/A is the mean eigenvalue spacing for 

a 2D cavity, and the vector 𝒘௡ is defined by: 

 [< 𝑢ଵ𝜙௡ >, … , < 𝑢ெ𝜙௡ >]் ≡
1

√𝐴
𝒘௡, (4.6) 

In the end, the dimensionless reactance matrix in Eq. (4.5) is the value we are 

calculating.  

To evaluate Eq. (4.5) numerically, we need to insert the numerical eigenvalues 

and eigenfunctions of the rectangular box, and the profile functions Eq. (4.2). 

Combining these together, we get: 

 

Ξ௜௝ = −
16

𝐴
෍ 𝐸𝑥𝑝 ൤−

1

2
𝑘௡

ଶ൫𝑟௜
ଶ + 𝑟௝

ଶ൯൨

ே

௡ୀଵ

∙ sin ቀ
𝑛௫𝜋

𝑎
𝑥௜ቁ sin ቀ

𝑛௬𝜋

𝑏
𝑦௜ቁ

∙ sin ቀ
𝑛௫𝜋

𝑎
𝑥௝ቁ sin ቀ

𝑛௬𝜋

𝑏
𝑦௝ቁ /(𝑘ଶ − 𝑘௡

ଶ), 

𝑘௡
ଶ = ቀ

𝑛௫𝜋

𝑎
ቁ

ଶ

+ ቀ
𝑛௬𝜋

𝑏
ቁ

ଶ

, 

(4.7) 

As mentioned before, we choose N=6347, and consider this as the eigenmode 

cutoff. This is because when N=6347, the factor of 𝐸𝑥𝑝 ቂ−
ଵ

ଶ
𝑘଺ଷସ଻

ଶ ൫𝑟௜
ଶ + 𝑟௝

ଶ൯ቃ ≈

𝑒ିହ ≈ 0.0067 is very small. Therefore any eigenmodes with larger 𝑘௡
ଶ will contribute 

very little to the sum in Eq. (4.5), and can be neglected when calculating Ξ௜௝.  
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On the other hand, if we want to implement RCM on Eq. (4.5), it is more useful 

to write the Ξ௜௝ matrix elements as:  

 Ξ௜௝ = −4 ෍ 𝐸𝑥𝑝 ൤−
1

2
𝑘௡

ଶ൫𝑟௜
ଶ + 𝑟௝

ଶ൯൨ ∙
𝜙௡,௜ ∙ 𝜙௡,௝

𝑘ଶ − 𝑘௡
ଶ

௡

, (4.8) 

where 𝜙௡,௜ denotes the eigenfunction 𝜙௡ at port i.  

The eigenfunctions 𝜙௡ in Eq.(4.8) are assumed to be Gaussian random variables. 

And the PDF for eigenfunctions 𝜙௡ is: 

 𝑃(𝜙௡) =
ଵ

√ଶగఙమ
𝐸𝑥𝑝[−

థ೙
మ

ଶఙమ
],   where 𝜎ଶ = 1/𝐴,  (4.9) 

Therefore when implementing RCM, we actually generate eigenfunctions 𝜙௡ as 

random variables based on Eq. (4.9), instead of calculating them. However, we do not 

expect this assumption to be true for regular systems. We are just doing it for 

preliminary study purpose. 

We generate the system’s eigenvalues 𝑘௡
ଶ in Eq. (4.8) by calculating the 

eigenvalues of a 𝑁 × 𝑁 GOE random matrix and then apply a “mapping function”, so 

that the GOE eigenvalues spectrum has uniform density as the rectangular box 

eigenvalues spectrum.    

The raw GOE eigenvalue spectrum PDF obeys the “semi-circle” law: 

 𝑃(𝜆௡) =
2

𝜋𝜆௡,௠௔௫

ඨ1 − ቆ
𝜆௡

𝜆௡,௠௔௫
ቇ

ଶ

, for 𝜆௡ ∈ ൣ−𝜆௡,௠௔௫ , 𝜆௡,௠௔௫൧, (4.10) 

The mapping function we apply is: 
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𝑀(𝜆௡) =

4π

A
 

𝑁

2𝜋
቎𝜋 + 2𝑠𝑖𝑛ିଵ ൬

𝜆௡

√2𝑁
൰ + 2

𝜆௡

√2𝑁
ඨ1 −

𝜆௡
ଶ

2𝑁
቏,  

where N = 6347, λ୬ are the eigenvalues of a N × N GOE matrix 

(4.11) 

This mapping function in Eq. (4.11) is intended to make the PDF of eigenvalues 𝜆௡ 

uniform in the range of: 0 < 𝜆௡ < 𝑘ே
ଶ . 

The mapped eigenvalue spectrum of the GOE random matrix will become 

uniform much alike the spectrum of the rectangular box, see Fig. 4.2. And the 

mapped GOE mean adjacent eigenvalue spacing ∆𝜆௡ = ∆(𝑘௡
ଶ) = 4π/A. Once we 

map the GOE eigenvalue spectrum correctly, we can use the mapped eigenvalues 𝜆௡  

to substitute for the rectangular box’s eigenvalues 𝑘௡
ଶ.  

  

(a) 

  

(b) 
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(c) 

Figure 4.2: (a) Rectangular box eigenvalue spectrum (left), and 𝑘௡
ଶ 𝑣𝑠. 𝑛 for rectangular box, 

analytical 𝑘௡
ଶ (blue dots) vs. Weyl’s formula (red line) (right); (b) Raw 6347 × 6347 GOE random 

matrix eigenvalue spectrum (yellow histogram)  vs. semi-circle law (blue line) (left), and  𝜆௡ 𝑣𝑠. 𝑛 

for GOE eigenvalues, GOE eigenvalues (blue dots) vs. Weyl’s formula (red line) (right); (c) 

Mapped 6347 × 6347 GOE random matrix eigenvalue spectrum (left), and  𝜆௡ 𝑣𝑠. 𝑛 for mapped 

GOE eigenvalues, mapped GOE eigenvalues (blue dots) vs. Weyl’s formula (red line) (right). 

 

4.2.2 Lossless Dimensionless Reactance PDF Using Numerical Eigenmodes vs. 

Using the RCM 

Given all the setup and the assumptions, now we can calculate the lossless 

dimensionless reactance PDF using the exact numerical eigenmodes (Eq. (4.7)) and 

using the RCM (Eq. (4.8)) proxy eigenfunctions and eigenvalues, and compare their 

results.  

To make realizations of Eq. (4.7) and (4.8), the operating frequency (𝑘ଶ =

𝜔ଶ/𝑐ଶ) has to be specified. We sample random values of 𝑘ଶ assuming the PDF of 𝑘ଶ 

is uniform within the operating frequency range. And we choose the operating 

frequency range of 𝑘ଶ to be 8% of the range [0, 𝑘ே
ଶ ], and symmetric about 

ଵ

ଶ
𝑘ே

ଶ : 
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𝑘ଶ ∈ ൤

1

2
𝑘ே

ଶ − 253∆(𝑘ଶ),
1

2
𝑘ே

ଶ + 253∆(𝑘ଶ)൨ = [23032.6, 26976.1],    

where N = 6347, ∆(kଶ) = 4π/A ≈ 7.77, 

(4.12) 

For each time of the realization, we need to randomly generate a new value for 𝑘ଶ.  

We choose a rather narrow operating frequency range of 𝑘ଶ, because we want to 

keep the radiation resistance to be roughly a constant over the range of the calculation. 

Since the operating frequency range contains roughly 500 eigenmodes, to avoid 

oversampling or undersampling, we choose the number of realizations to be 500. 

The results of the dimensionless reactance PDF using the exact eigenvalues and 

eigenfunctions vs. the RCM prediction are plotted in Fig. 4.3. In our two-port 

rectangular box case, the dimensionless reactance 𝚵 is a 2 × 2 matrix. And Ξଵଵ has 

the same PDF as Ξଶଶ, while Ξଵଶ has the same PDF as Ξଶଵ. Therefore, I only need to 

plot for the PDF of Ξଵଵ and Ξଵଶ.  

 

(a) 
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(b) 

Figure 4.3: Lossless dimensionless reactance PDF, 500 realizations, GOE has 50 

Gaussian orthogonal random matrices. (a) Ξଵଵ using the exact eigenvalues and 

eigenfunctions (yellow histogram) and using the RCM (blue line), (b) Ξଵଶ using the 

exact eigenvalues and eigenfunctions (yellow histogram) and using the RCM (blue 

line). 

 

Fig. 4.3 shows that the lossless dimensionless reactance PDF using the exact 

eigenvalues and eigenfunctions and using the RCM don’t have good agreement. Nor 

do we expect them to have good agreement, because we make this preliminary study 

based on a false assumption that the rectangular box is a chaotic system. 

4.3 Impedance for Lossy Two-Port 2D Rectangular Cavity 

4.3.1 Formulas for Lossy Impedance 

For a lossy cavity with M ports, the impedance matrix 𝒁 is given by [1, 6]: 

 𝑍௜௝ = −𝑗𝑘ℎ𝜂଴ ෍
< 𝑢௜𝜙௡ >< 𝑢௝𝜙௡ >

(1 − 𝑗𝑄ିଵ)𝑘ଶ − 𝑘௡
ଶ

ே

௡ୀଵ

, (4.13) 
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The lossy impedance formula (Eq. (4.13)) is the same as the lossless impedance 

formula (Eq. (4.3)), except for the (1 − 𝑗𝑄ିଵ) term in the denominator. The quantity 

𝑄 is the quality factor of the cavity, higher 𝑄 value means lower loss. When 𝑄 ⟶

+∞, the lossy impedance formula becomes the lossless formula. The physical 

meaning of all the other quantities is the same as in Eq. (4.3). 

Likewise, we can define the lossy dimensionless impedance matrix as: 

 𝛇 = −
𝑗

𝜋
෍

𝒘௡𝒘௡
்

(1 − 𝑗𝑄ିଵ)𝑘෨ ଶ − 𝑘෨௡
ଶ

௡

, (4.14) 

so that: 

 𝒁 =
𝑘ℎ𝜂଴

4
𝛇, (4.15) 

where all the definitions of 𝒘௡, 𝑘෨ ଶ and 𝑘෨௡
ଶ are the same as in lossless case. 

When using numerical eigenmodes to evaluate the dimensionless impedance, it’s 

more convenient to express 𝛇 as: 

 

ζ௜௝ =
16𝑖

𝐴
෍ 𝐸𝑥𝑝 ൤−

1

2
𝑘௡

ଶ൫𝑟௜
ଶ + 𝑟௝

ଶ൯൨

ே

௡ୀଵ

∙ sin ቀ
𝑛௫𝜋

𝑎
𝑥௜ቁ sin ቀ

𝑛௬𝜋

𝑏
𝑦௜ቁ

∙ sin ቀ
𝑛௫𝜋

𝑎
𝑥௝ቁ sin ቀ

𝑛௬𝜋

𝑏
𝑦௝ቁ / [(1 + 𝑖𝑄ିଵ)𝑘ଶ − 𝑘௡

ଶ], 

(4.16) 

While when implementing the RCM to calculate the dimensionless impedance, it’s 

more convenient to express 𝛇 as: 

 ζ௜௝ = 4𝑖 ෍ 𝐸𝑥𝑝 ൤−
1

2
𝑘௡

ଶ൫𝑟௜
ଶ + 𝑟௝

ଶ൯൨
𝜙௡,௜ ∙ 𝜙௡,௝

(1 + 𝑖𝑄ିଵ)𝑘ଶ − 𝑘௡
ଶ

௡

, (4.17) 

All the other numerical setup are the same as in lossless case, such as the cutoff 

N=6347, the mapping function, the PDF for 𝜙௡ and so on. 
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Obviously, in a lossy cavity case, the impedance has both a real part and an imaginary 

part. And by definition: 

 

𝛇 = 𝛒 + j𝚵 = Re[𝛇] + 𝑖Im[𝛇], 

where  ൜
𝛒 = Re[𝛇],   is the dimensionless resistance matrix

𝚵 = −Im[𝛇],   is the dimensionless reactance martrix
, 

(4.18) 

4.3.2 Lossy Dimensionless Impedance PDF Using Numerical Eigenmodes vs. Using 

the RCM 

The assumptions and the method we employ to calculate the lossy dimensionless 

impedance are the same as those we use to calculate the lossless dimensionless 

reactance, see section 4.2.2 for details. In the lossy case the equations we are use are 

different (Eq. (4.16) for numerical eigenmodes simulation and Eq. (4.17) for the 

RCM).  Here I only list the final results for a two-port lossy dimensionless impedance 

PDF. 

  

(a) 
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(b) 

Figure 4.4: Low loss dimensionless impedance PDF, quality factor 𝑄 = 10ହ (loss parameter 

𝛼 = 𝑘ଶ/(∆(kଶ)𝑄) ≈ 0.032), 500 realizations, GOE has 50 Gaussian orthogonal random 

matrices, ρ (Re[ζ]) on the left and Ξ (−Im[ζ]) on the right. (a) ζଵଵ using numerical eigenmodes 

(yellow histogram) and using the RCM (blue line), (b) ζଵଶ using numerical eigenmodes (yellow 

histogram) and using the RCM (blue line). 

 

 First let’s look at a rather low loss cavity case, when the cavity quality factor 

𝑄 = 10ହ (loss parameter 𝛼 = 𝑘ଶ/(∆(kଶ)𝑄) ≈ 0.032), the low loss dimensionless 

impedance PDF results are plotted in Fig. 4.4. From these results, we can see that: (1) 

since the cavity quality factor 𝑄 = 10ହis rather high, the dimensionless resistance ρ is 

usually much smaller than the dimensionless reactance Ξ in terms of magnitude, (2) 

the low loss dimensionless reactance Ξ has a rather similar PDF compared with 

lossless case, see Fig. 4.3, (3) comparing with the lossless case, the low loss 

dimensionless reactance PDF using the RCM has a little better agreement with the 

PDF using the exact eigenmodes.  
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(a) 

  

(b) 

Figure 4.5: High loss dimensionless impedance PDF, quality factor 𝑄 = 100 (loss parameter 

𝛼 = 𝑘ଶ/(∆(kଶ)𝑄) ≈ 32.20), 500 realizations, GOE has 50 Gaussian orthogonal random matrices, 

ρ (Re[ζ]) on the left and Ξ (−Im[ζ]) on the right. (a) ζଵଵ using numerical eigenmodes (yellow 

histogram) and using the RCM (blue line), (b) ζଵଶ using numerical eigenmodes (yellow histogram) 

and using the RCM (blue line). 

 

Second we turn to look at a high loss cavity case, when the cavity quality factor 

𝑄 = 100 (loss parameter 𝛼 = 𝑘ଶ/(∆(kଶ)𝑄) ≈ 32.20), the high loss dimensionless 

impedance PDF results are plotted in Fig. 4.5. From these results, we can see that: (1) 

in the high loss case, the dimensionless resistance ρ is usually comparable to the 
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dimensionless reactance Ξ in terms of magnitude, (2) the high loss dimensionless 

impedance ζ has a totally different PDF than lossless or low loss cases, (3) the high 

loss dimensionless impedance PDF using the RCM is very different from the PDF 

using the exact eigenmodes. And since loss parameter 𝛼 is too high, there is no 

statistical pattern in the high loss dimensionless impedance PDF at all.  
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Chapter 5:  Summary and Future Work 
 

 

5.1 Summary  

In summary, my study of mixed wave systems includes these three parts: 

1. Study of billiard systems with the “Four Arcs” and the “Peanut” boundary 

shape. The billiard trajectories in real space and in phase space together show 

that regular and chaotic trajectories coexist in these two systems. Both Four 

Arcs and Peanut systems have been verified to be mixed systems. 

2. Implementation of the Method of Moments (MOM) to solve the 

eigenfrequencies and eigenmodes of a circular cavity for preliminary testing 

purpose. Furthermore I solve the eigenfrequencies and eigenmodes of mixed 

systems: the Four Arcs and the Peanut cavities. The numerical 

eigenfrequencies and eigenmodes are necessary information for the 

generalized Random Coupling Model (RCM) on mixed systems. 

3. Preliminary study of the lossless and lossy impedance of a 2D two-port 

rectangular cavity, with Gaussian profile port function. The RCM is applied to 

this 2D rectangular cavity as if it were a chaotic system. The lossless and 

lossy impedance PDF using exact eigenmodes and using the RCM were 

compared.  

5.2 Future Work 

These tasks are left for future work: 
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1. Given the Four Arcs and Peanut billiard trajectories in real space and in phase 

space, we have found that these two mixed systems have multiple intermixed 

chaotic/regular regions, which makes these two mixed systems more generic 

and complicated than the “Mushroom” mixed system studied before [3]. How 

to separate the regular and chaotic regions for these two more generic mixed 

systems is a problem left for future study. 

2. Although MOM can solve for the eigenfrequencies and eigenmodes of our 

concerned 2D cavities, I also find that it will miss finding some eigenmodes of 

a regular system (or miss finding some regular eigenmodes of a mixed 

system). For a circular cavity, my MOM numerical solver will miss finding 

roughly 3% of the total eigenmodes. Next we need to figure out some method 

to either find all these regular eigenmodes precisely or to prove that missing a 

small portion of regular eigenmodes won’t matter the mixed system cavities’ 

impedance statistics. 

3. I only apply the RCM to one regular system: 2D rectangular cavity. Therefore 

future work needs to really generalize the RCM to mixed systems and study 

Four Arcs and Peanut cavity impedance in a statistical point of view.  
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