
Abstract

Title of Document: SYNTHESIS AND REACTIVITY OF MONOHYDROCARBYL PALLADIUM(IV) COMPLEXES USING $\mathrm{H}_{2} \mathrm{O}_{2}$ AS OXIDANT IN PROTIC SOLVENTS

Williamson Njoroge Oloo, Ph.D., 2011 Directed By: Associate Professor Andrei N. Vedernikov, Department of Chemistry and Biochemistry

Mild, and selective transition metal catalyzed processes for the functionalization of $\mathrm{C}-\mathrm{H}$ bonds utilizing environmentally benign and inexpensive O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidants are extremely attractive, as they render these transformations more atom economical and practical for large-scale syntheses. Our approach towards this end involves optimizing the oxidation and $\mathrm{C}-\mathrm{X}$ reductive elimination steps of the proposed catalytic cycle using tridentate facially chelating ligands, which include 1-hydroxy-1,1-di(2-pyridyl)methoxide, a derivative of di(2-pyridyl)ketone (dpk) and 6-(2-pyridinoyl)pyridine-2-carboxylic acid (ppc).

Oxidation of the dpk- and the ppc-ligated palladacycles with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water and acetic acid solvents produces the corresponding monohydrocarbyl Pd(IV) complexes quantitatively. The mechanism of oxidation of these complexes was

investigated, and was proposed to involve addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ligand, followed by heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond via nucleophilic attack of $\operatorname{Pd}(\mathrm{II})$ onto the hydroperoxo adduct.

The dpk- and ppc-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes undergo $\mathrm{C}-\mathrm{O}$ reductive elimination at room temperature in acetic acid and/ or water to produce the corresponding phenols and/ or aryl acetates quantitatively. Mechanistic studies led us to propose a $\mathrm{C}-\mathrm{O}$ reductive elimination reaction that proceeds either from a 5 coordinate intermediate, produced upon dissociation of the pyridine group of the dpk chelate or from a 6-coordinate $\mathrm{Pd}(\mathrm{IV})$ species.

Addition of $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$ to aqueous solutions of the dpk-supported hydroxo-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes leads to quantitative formation of $\mathrm{C}-\mathrm{X}$ bond-coupling products. Some of the corresponding X -ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes were isolated from these solutions $(\mathrm{X}=\mathrm{Cl}$ and Br), and could be independently prepared by oxidation of the hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ precursors with the corresponding N-halogenosuccinimides (NXS).

Palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions were performed in the presence of tridentate, facially chelating bis(6-methyl-2-pyridyl)methanesulfonate ligand. Substituted 2-phenylpyridine substrates underwent predominantly $\mathrm{C}-\mathrm{C}$ coupling reactions with minor $\mathrm{C}-\mathrm{O}$ coupling products produced, while 2-benzyl- and 2-phenoxypyridine substrates that form 6-membered palladacycles produced the corresponding $\mathrm{C}-\mathrm{O}$ coupling products selectively in high yields. These reactions were significantly slower in the absence of the ligand, and no reactions took place in the absence of $\mathrm{Pd}(\mathrm{OAc})_{2}$.

SYNTHESIS AND REACTIVITY OF MONOHYDROCARBYL PALLADIUM(IV) COMPLEXES USING HYDROGEN PEROXIDE AS OXIDANT IN PROTIC SOLVENTS

By
Williamson Njoroge Oloo

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2011

Advisory Committee:
Associate Professor Andrei Vedernikov, Chair
Professor Michael Doyle
Professor Bryan Eichhorn
Professor Daniel Falvey
Professor Gregory Jackson

© Copyright by
 Williamson Njoroge Oloo

2011

Dedication

Dedicated to those struggling against oppression and aggression.

Thus far has the Lord brought me........

Acknowledgements

I start by thanking my former lab mates, Dr. Jing Zhang, Dr. Eugene Khaskin, Pratheep Khanthapura, and especially Dr. Julia Khusnutdinova, who offered tremendous help during my most diffucult, first and second years in Grad school. I am also grateful to my current lab mates, Anna Sberegaeva, Shrinwantu Pal, Xiaohang Liu, Yang Wen, and Dr. Daoyong Wang. I really cherish the time I had with you all.

I greatly appreciate working with great undergraduate and High school students, including Huong-Thu Tran, John Jubar, Jilian Neifeld, Gillian Anku, William Sama, and Anshu Mano. I hope you learnt from me as much as I learnt from you all.

I am grateful to Dr. Yiu Fai Lam and Dr. Yinde Wang for assisting me in the NMR experiments, and for being available at night and in the weekends to fix the instruments so that my experiments could be completed in time. I also thank Dr. Peter Zavalij for running the X -ray diffraction experiments, and for being available even at times in the weekend to run my urgent samples.

I thank my undergraduate Mentor, Roger Young. He has been like father to me since my undergraduate years, and I would not be what I am without his help. I owe so much to him. I also thank David Jasper, who established a scholarship foundation that paid for my undergraduate tuition.

I am grateful to my family members, including Doreen Selly Oloo and her husband Anthony Dale, and Steve Oloo, and my friend Raphael Kamau. You have all made my life easier during my time in the graduate school. I am grateful to my father,

Shadrach Oloo for everything he has given me, and my mother Beth Oloo, for all the sacrificies she has made to make it possible for me to be what I am today.

I am also thankful to my great friends who have supported me throughout my time in the graduate school, including Rennisha Wickham for being a great friend and offering encouragement in tough times, Dominique Downing, Melantha Jackson, and Geraldine Echebiri. I especially thank Andrea Andrew for being a great friend, and assisting me through my dissertation write up.

I am thankful to my committee members and to my advisor, Dr. Andrei Vedernikov. He has given me the time and space to mature as a scientist, and given me many valuable life's lessons, and for that I am very grateful.

Table of Contents

Dedication ii
Thus far has the Lord brought me iii
Acknowledgements. iv
Table of Contents vi
List of Tables xi
List of Figures xiv
List of Schemes xxi
List of Abbreviations xxvii
Chapter 1: Oxidative Palladium Catalyzed Functionalization of $\mathrm{C}-\mathrm{H}$ Bonds 1
1.1 Introduction 1
1.2 Palladium Catalyzed Oxygenation of $\mathrm{C}-\mathrm{H}$ Bonds. 4
1.2.1 Utilization of Iodine-Based Reagents as Oxidants for the $\mathrm{C}-\mathrm{H}$ Bond Oxygenation Reactions 4
1.2.2 Utilization of Peroxie-based Reagents as Oxidants for the Palladium Catalyzed Oxygenation of $\mathrm{C}-\mathrm{H}$ Bonds 12
1.2.3 Utilization of O_{2} as Oxidant for Palladium Catalyzed Oxygenation Reactions 17
1.3 Palladium Catalyzed Halogenation of $\mathrm{C}-\mathrm{H}$ bonds 20
1.4 Our Approach and Goal 26
Chapter 2: Synthesis of Monohydrocarbyl Pd(IV) Complexes 31
2.1 Introduction 31
2.2 Preparation and Reactivity of Acetato-bridged Palladacycles 49-57 43
2.2.1 Preparation of Acetato-bridged Palladacycles 49-57. 43
2.2.2 Attempted Aerobic Oxidation of Acetato-bridged Palladacycles 46
2.3 Preparation and Reactivity of dpms-ligated Palladacycles 58-60 47
2.3.1 Preparation of Complexes 58-60 47
2.3.2 Attempted Aerobic Oxidation of dpms-ligated Palladacycles 58-60 48
2.3.3 Attempted Oxidation of Acetato-bridged Palladacycles 49-57 with $\mathrm{H}_{2} \mathrm{O}_{2} 49$
2.3.4 Reactivity of dpms-ligated Palladacycles 58-60 Towards Oxidation with$\mathrm{H}_{2} \mathrm{O}_{2}$51
2.4 Preparation of dpk-ligated Palladacycles 66-74 55
2.4.1 Preparation of dpk-ligated Palladacycles 66 and 67 55
2.4.2 Preparation of dpk-ligated Palladacycles 68-71 57
2.4.3 Preparation of dpk-ligated Palladacycles 72 and 73 59
2.4.4 Preparation of dpk-ligated Palladacycles 74 59
2.5 Oxidation of dpk-ligated Palladacycles 66-74 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 61
2.5.1 Oxidation of Complexes 66 and 67 to Monohydrocarbyl Pd(IV) Complexes 75 and 76 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 61
2.5.2 Oxidation of Complexes $\mathbf{6 6}$ and $\mathbf{6 7}$ to Monohydrocarbyl Pd(IV) Complexes $\mathbf{7 5}$ and $\mathbf{8 2}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid 69
2.5.3 Oxidation of Complexes 68-71 to Monohydrocarbyl Pd(IV) Complexes $83-86$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 75
2.5.4 Oxidation of Complex 69 to Monohydrocarbyl Pd(IV) Complexes 84 and 92 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid 84
2.5.5 Oxidation of Complexes 72 and 73 to Monohydrocarbyl Pd(IV) Complexes 93 and 94 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water and Acetic Acid 86
2.5.6 Oxidation of Complex 74 to Monohydrocarbyl Pd(IV) Complex 96 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 94
2.6 Mechanism of Oxidation of Hydrocarbyl Pd (II) Complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ 97
2.6.1 Introduction 97
2.6.2 Kinetics Study of the Reaction of Organopalladium(II) Complexes 66 and 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 102
2.6.3 Kinetics Study of the Reaction of Organopalladium(II) Complexes 68-71 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 120
2.6.4 ${ }^{1} \mathrm{H}$ NMR Study of the Reaction of Organopalladium(II) Complexes 72 and
73 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Water 126
2.7 Summary and conclusion 127
2.8 Experimental 129
2.8.1 General 129
2.8.2 Computational details. 129
2.8.3 Acetate-bridged Palladacycles 130
2.8.4 Preparation of dpms-ligated Palladacycles 138
2.8.5 Preparation of dpk-ligated Palladacycles 141
2.8.6 Preparation of Monohydrocarbyl Pd(IV) Complexes 151
Chapter 3: Reactivity of Monohydrocarbyl Pd(IV) Complexes in Various Solvents178
3.1 Introduction 178
3.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes
14-17 in Various Solvents 186
3.2.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 14-17 in Water 186
3.2.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 15 in Acetic Acid 200
3.3 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes31 and 32 in Various Solvents201
3.3.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 31 and $\mathbf{3 2}$ in Acetic Acid 201
3.3.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complex 31 in Water 214
3.3.3 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 31 and $\mathbf{3 2}$ in Water in the Presence of Base. 221
3.4 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes37 and $\mathbf{3 8}$ in Acetic Acid Solvent226
3.5 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 46 and 53 227
3.5.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 46 in Water and Acetic Acid Solvents 227
3.5.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 46 in Solid State 229
3.5.3 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 53 in Water and Acetic Acid Solvents 230
3.6 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 59 in Water. 232
3.7 Summary and Conclusions of C-O Reductive Elimination Reactions at Monohydrocarbyl Pd(IV) Complexes. 235
3.7 Experimental 238
3.8.1 General 238
3.8.2 Computational details. 238
3.8.3 Characterization of products of reductive elimination. 239
3.8.4 Kinetic experiments 249
Chapter 4: Synthesis and Reactivity of Monohydrocarbyl Pd(IV)-X in Water ($\mathrm{X}=\mathrm{Cl}$,
Br , and I) 263
4.1 Introduction 263
4.2 C-Cl Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the Presence of HCl 271
4.2.1 C-Cl Bond Formation at 2-Aroylpyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 9 and $\mathbf{1 5}$ in Water in the Presence of HCl 271
4.2.2 C-Cl Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 18 in Water in the Presence of HCl 275
4.2.3 C-Cl Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxide 24 in Water in the Presence of HCl. 279
4.3 C-Br Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the Presence of HBr 293
4.3.1 C-Br Bond Formation at 2-Aroylpyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 9 and 15 in Water in the Presence of HBr 293
4.3.2 C-Br Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 18 in Water in the Presence of HBr 297
4.3.3 C-Br Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 24 in Water in the Presence of HBr 301
4.4 C-I Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the Presence of HI 307
4.4.1 C-I Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl Pd(IV) Alkoxide 24 in Water in the Presence of HI. 307
4.4.2 C-I Bond Formation at 2-Aroylpyridine-derived Monohydrocarbyl Pd(IV) Alkoxides 15 in Water in the Presence of HI. 311
4.4.3 C-I Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ Alkoxides 15 in Water in the Presence of HI. 313
4.5 Attempted C-F Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the Presence of HCl 315
4.5.1 Attempted C-F Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl Pd(IV) Alkoxide 24 in Water, in the Presence of HF 315
4.6 Mechanism of C-X Reductive Elimination From Monohydrocarbyl Pd(IV) Alkoxides in Water, in the Presence of HX 317
4.7 Summary and Conclusions 320
4.8 Experimental 323
Chapter 5: PPC Ligand-enabled Functionalization of $\mathrm{C}-\mathrm{Pd}$ Bonds With $\mathrm{H}_{2} \mathrm{O}_{2}$ in
Acetic Acid 329
5.1 Introduction 329
5.2 Preparation of Palladacycles Supported by ppc Ligand, 15-19 338
5.3 Reactivity of Palladacycles Supported by ppc Ligand, $\mathbf{1 5 - 1 9}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid 341
5.3.1 Reactivity of Complex $\mathbf{1 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid at Room Temperature 342
5.3.2 Reactivity of Complex $\mathbf{1 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid at Room Temperature 356
5.3.3 Reactivity of Complex $\mathbf{1 7}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid at Room Temperature 363
5.3.4 Reactivity of Complex $\mathbf{1 8}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid at Room Temperature 371
5.3.5 Reactivity of Complex 19 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid at Room Temperature 378
5.4 Summary and Conclusions 384
5.5 Application of the ppc Ligand Towards C-H Bond Activation 387
5.6 Application of the ppc Ligand Towards Catalytic C-H Bond Functionalization 392
5.6 Experimental 395
Chapter 6: Ligand-Enabled Oxidative Palladium Catalyzed Functionalization of
Aromatic C-H Bonds 409
6.1 Introduction 409
6.2 Results and Discussion 419
6.3 Summary and Conclusion 432
6.4 Experimental 433
Chapter 7: Conclusion 435
7.1 Summary and Conclusion 435
7.2 Future Work 438
NMR Spectra 439
Bibliography 495

List of Tables

Table 2.1. Ratio of the presumed cis- and trans- isomers of complexes $\mathbf{4 9}$ and $\mathbf{5 0}$, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3} at $22^{\circ} \mathrm{C}$. 44
Table 2.2. Ratio of the presumed cis- and trans- isomers of complexes 51-54 as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3} at $22^{\circ} \mathrm{C}$. 45
Table 2.3. Ratio of the presumed cis- and trans- isomers of complexes 55 and 56, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in dmso- d_{6} at $22^{\circ} \mathrm{C}$. 45
Table 2.4. Selected ${ }^{1} \mathrm{H}$ NMR peaks for complex 66. 57
Table 2.5. Selected ${ }^{1} \mathrm{H}$ NMR peaks for complex 69. 58
Table 2.6. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complexes $\mathbf{6 8 - 7 1}$ with 1.5 equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$, showing the ratio of the major and minor products 79
Table 2.7. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{6 9}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$, showing the ratio of the major product $\mathbf{8 4}$ and minor product $\mathbf{8 8}$ as a function of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and temperature. 80
Table 2.8. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{6 9}$ with 2.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $17^{\circ} \mathrm{C}$, showing the ratio of the major product $\mathbf{8 4}$ and minor product $\mathbf{8 8}$ as a function of pD 81
Table 2.9. Selected ${ }^{1} \mathrm{H}$ NMR chemical shifts for complexes $\mathbf{6 9}, \mathbf{8 4}$, and $\mathbf{8 8}$ in $\mathrm{D}_{2} \mathrm{O}$ at room temperature. 83
Table 2.10. Selected ${ }^{1} \mathrm{H}$ NMR signals of complex $\mathbf{7 2}$ and $\mathbf{9 3}$ in water at room temperature. 87
Table 2.11. Selected ${ }^{1} \mathrm{H}$ NMR signals of complex $\mathbf{7 3}$ and $\mathbf{9 4}$ in water at room temperature. 91
Table 2.12. Selected ${ }^{1} H$ NMR signals of complex $\mathbf{7 4}$ and $\mathbf{9 6}$ in $\mathrm{D}_{2} \mathrm{O}$ at room temperature. 94
Table 2.13. Oxidation of complex 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, showing the concentration of the intermediate " \mathbf{X} " as a function of $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration and temperature. 107
Table 2.14. Selected ${ }^{1} \mathrm{H}$ NMR chemical shifts for complexes $\mathbf{6 7}, 76$, and intermediate " X " in $\mathrm{D}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. 108
Table 2.15. The rate constants for the oxidation of complex 67 at $3{ }^{\circ} \mathrm{C}$ with various concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$. 114
Table 2.16. Time for 50% conversion of complex 67 in acetic acid at $6^{\circ} \mathrm{C}$, in the presence and absence of benzoquinone additive. 116
Table 2.17. Time for 50% conversion of complex 67 in buffered aqueous acidic, basic and non-buffered conditions. 119

Table 2.18. Correlation between the observed first order rate constants and the σ_{m} for
oxidation of various 4 -substituted phenylpyridine dpk-derived
palladacycles with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ under pseudo-first order
conditions
121
Table 2.19. Observed first order rate constants for the depletion of complex 69 in acetic acid at $3{ }^{\circ} \mathrm{C}$, in the presence and absence of benzoquinone additive.
Table 2.20. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complex $\mathbf{6 9}$ with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at 3 ${ }^{\circ} \mathrm{C}$ in the presence of various additives. 126
Table 3. 1. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complex 15 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of various additives at $22{ }^{\circ} \mathrm{C}$ in water. 190
Table 3. 2. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes $\mathbf{1 4 - 1 7}$ in water in the presence 4.0 equivalents of tfa- d_{1} at 22 ${ }^{\circ} \mathrm{C}$. 191
Table 3. 3. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes $\mathbf{1 4 - 1 7}$ in water at $22^{\circ} \mathrm{C}$. 198
Table 3. 4. ${ }^{1} \mathrm{H}$ NMR yields of phenol and aryl acetate from $\mathrm{C}-\mathrm{O}$ reductive elimination reactions at complexes 31 and 32 in acetic acid at $63^{\circ} \mathrm{C}$. 202
Table 3. 5. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $56^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of tfa additive 204
Table 3. 6. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $56^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of LiOAc additive. 205
Table 3. 7. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $48^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of pyridine additive. 206
Table 3. 8. Time (min) for the 50% conversion of complex $\mathbf{3 1}$ in the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $48^{\circ} \mathrm{C}$ in the presence and absence of 28% of water. 207
Table 3. 9. summary of the influence of various additives on the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination from acetic acid solutions of complex 31. 207
Table 3. 10. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination from acetic acid solutions of complex $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ at various temperatures. 210
Table 3. 11. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in AcOD at $50^{\circ} \mathrm{C}$. 213
Table 3. 12. The time for 50% conversion of a $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 31 at $70^{\circ} \mathrm{C}$ in the presence of $1-3$ equivalent trifluoroacetic acid. 217

Table 3. 13. The $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 31 at $70^{\circ} \mathrm{C}$ in the presence of 1 equivalent of trifluoroacetic acid and 20% of complex 39 .
Table 3. 14. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complex 31 in water in the presence of various equivalents of NaOH at $50^{\circ} \mathrm{C}$.

Table 4. 1. ${ }^{1} \mathrm{H}$ NMR yields of the aryl chloride $\mathbf{2 5}$ and phenol $\mathbf{2 6}$ products relative to the amount of HCl used.
Table 4. 2. Fraction of the aryl bromide $\mathbf{4 2}$ and phenol $\mathbf{2 5}$ relative to the amount of
HBr added according to ${ }^{1} \mathrm{H}$ NMR analysis. .. 302
Table 4. 3. Observed first order rate constants for the $\mathrm{C}-\mathrm{X}$ reductive elimination reactions in water at room temperature $(\mathrm{X}=\mathrm{OH}, \mathrm{Cl}$, and Br$)$.

Table 6. 1. Palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of various ligands. 422
Table 6. 2. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization of compound $\mathbf{1 2}$ in acetic acid using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of Me_{2}-dmps ligand, showing relative fractions of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ coupling products as a function of temperature. 424
Table 6. 3. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization of compound $\mathbf{1 2}$ in acetic acid using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of Me_{2}-dmps ligand, showing the conversion of compound $\mathbf{1 2}$ and yield of compound 20 as a function of catalyst loading. .424
Table 6. 4. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization in acetic acid using
$\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of Me_{2}-dmps ligand............. 425

List of Figures

Figure 2.1. ORTEP drawing (50% probability ellipsoid) of complex 63.................. 53
Figure 2.2. ORTEP drawing (50% probability ellipsoid) of complex 74.................. 60
Figure 2.3. ORTEP drawing (50% probability ellipsoid) of complex 75.................. 62
Figure 2.4. ORTEP drawing (50% probability ellipsoid) of complex 79.................. 66

Figure 2.5. pH of the solution of 0.0052 mM solution of 75 in water $v s$ added volume of 0.1000 M NaOH . 68

Figure 2.6. Acetic acid solutions of (a) complex 66; (b) complex 81 at room
temperature. 70

Figure 2.7. Acetic acid solutions of (a) complex 75; (b) complex 81 at room temperature.71

Figure 2.8. Room temperature solutions of mixed $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ solvent system (1:1) of (a) Complex 66; (b) solution of complex 66 after oxidation with 3 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature (c) complex 75; (d) complex 81 generated in acetic acid. 72

Figure 2.9. Room temperature AcOD solution of (a) complex 67, (b) complex 82... 74
Figure 2.10. Room temperature AcOD solutions of (a) complex 76; (b) complex $\mathbf{8 2}$. 75
Figure 2.11. ORTEP drawing (50% probability ellipsoid) of complex $91 ~ 77$
Figure 2.12. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 69 at $25^{\circ} \mathrm{C}$, (b) $\mathrm{D}_{2} \mathrm{O}$ solution of complexes $\mathbf{8 4}$ (major) and $\mathbf{8 8}$ (minor), (c) $\mathrm{D}_{2} \mathrm{O}$ solution of the oxapalladacycle 108 at the end of the reaction. 78
Figure 2.13. (a) Plot for the oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 69 in water with 1.5 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ showing the fraction of the starting complex 69 , the major product 84 , and the minor product 88 as a function of reaction time; (b) Plot for the oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 68 in water with 1.5 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ Oxidation showing the fraction of the $\mathrm{Pd}(\mathrm{II})$ precursor 68 , the major product 83 , and the minor product 87 , as a function of time.

Figure 2.14. (a) ORTEP drawing (50\% probability ellipsoids) of dication 91 in $\mathbf{9 1}\left(\mathrm{OOCCF}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, and proposed structures for (b) $\mathbf{8 4}$, the major product of oxidation, and (c) 88, the minor product of oxidation.
Figure 2.15. (a) Acetic acid solution of complex 69; (b) Acetic acid solution of complex 69 after addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $22^{\circ} \mathrm{C}$, showing products $\mathbf{8 4}$ (minor) and $\mathbf{9 2}$ (major); (c) Acetic acid solution of complex 69 two days later, after addition of 5.0 equivalents of pyridine- d_{5}, showing the corresponding phenol and aryl acetate products. 85

Figure 2.16. ${ }^{1} \mathrm{H}$ NMR of complex 93 in dmso- d_{6} at room temperature.
Figure 2.17. ORTEP drawing (50% probability ellipsoid) of complex 93 89

Figure 2.18. Room temperature acetic acid solutions of (a) complex 73; (b) complex 73, 2 minutes after addition of 3 eq $\mathrm{H}_{2} \mathrm{O}_{2}$, showing complexes 95 (minor) and 94 (major) (c) complex 73, 10 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, showing complex 94; (d) complex 73 at the end of reaction, showing the aryl acetate as the major product of decomposition. 93

Figure 2.19. (a) $\mathrm{D}_{2} \mathrm{O}$ solution of complex 74 at $0^{\circ} \mathrm{C}$; (b) $\mathrm{D}_{2} \mathrm{O}$ solution of complex 96 at $0^{\circ} \mathrm{C}$ 95

Figure 2.20. (a) Change of UV-visible spectra of $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complex 74 upon addition of 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}(1.0 \mathrm{~cm}$ cuvette was used). (b) Change in absorbance as a function of time at the wavelength of 420 nm , over a period of 60 minutes
Figure 2.21. ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{D}_{2} \mathrm{O}$ taken at $3{ }^{\circ} \mathrm{C}$ for (a) complex 66 ; (b) complex 66, 18 minutes after addition of 10.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, together with an intermediate " Y " and $\mathrm{Pd}(\mathrm{IV})$ product 75; and (c), at the end of reaction, showing $\operatorname{Pd}(I V)$ complex 75.

104
Figure 2.22. Plot for the oxidation of complex $\mathbf{6 6}$ with 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3^{\circ} \mathrm{C}$, showing the fraction of starting $\mathrm{Pd}(\mathrm{II})$ complex 66 , the intermediate complex, and the product 75 as a function of time. 104
Figure 2.23. ${ }^{1} \mathrm{H}$ NMR taken in $\mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ for (a) complex 67; (b) complex 67, 10 minutes after addition of 20.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, together with intermediate " X " and $\mathrm{Pd}(\mathrm{IV})$ product 76; and (c), at the end of reaction, showing $\mathrm{Pd}(\mathrm{IV})$ complex 76.
Figure 2.24. Plot for the oxidation of complex 67 with 20.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$, showing the fraction of starting $\operatorname{Pd}(\mathrm{II})$ complex 67 , the intermediate complex, and the product 76 as a function of time.
Figure 2.25. ESI-MS spectrum of an aqueous solution 0.010 M complex $\mathbf{6 7}, 18$ seconds after adding 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $0^{\circ} \mathrm{C}$.
Figure 2.26. Representative kinetic plots of $\ln \left([67]_{\mathrm{o}} /[67]_{\mathrm{t}}\right)$ vs time for reaction mixtures containing aqueous solutions of 0.010 M complex 67 with various equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}(\mathrm{a}-\mathrm{b}) 10.0$ equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used (c-d) 15.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used. 112

Figure. 2.27. Kinetics modeling plots for the reaction between $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complex 67 with (a) 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and (b) 15.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$. The plots include concentration of complex 67 (blue circles/ diamonds), intermediate " \mathbf{X} " (red circles/ diamonds), and complex 76 (green circles/ diamonds) as a function of time. The experimental concentrations are presented as circles while the modeled concentrations are presented as diamonds. 113

Figure 2.28. Representative kinetics plots of $\ln \left([\mathrm{Pd}(\mathrm{II})]_{0} /[\mathrm{Pd}(\mathrm{II})]_{\mathrm{t}}\right)$ vs. time for the oxidation of 0.010 M solutions of complexes 69 and 71 with ~ 7.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$.

Figure 2.29. Hammett plot for the oxidation of 4 -substituted phenylpyridine dpkderived palladacycles $\mathbf{6 8 - 7 1}$ with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ under pseudo-first order conditions.

Fig. 2.30. (a) A Kinetic plot for $\ln \left([69]_{\mathrm{o}} /[\mathbf{6 9}]_{\mathrm{t}}\right)$ vs time plot for the oxidation of 0.010 M complex 69 with ~ 6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $1.0 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ at $\mathrm{pD}=$ 4.99 (b) Kinetic plot for $\ln \left([69]_{0} /[69]_{\mathrm{t}}\right)$ vs time plot for the oxidation of 0.010 M complex 69 with ~ 25 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $1.0 \mathrm{ml} \mathrm{D} \mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ at $\mathrm{pD}=8.88$.

Figure 3. 1. Plot for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complexes (a) $\mathbf{1 5}$ and $\mathbf{1 9}$ and (b) 17 and 21 at $22^{\circ} \mathrm{C} .187$

Figure 3. 2. ORTEP drawings (50\% probability ellipsoids) of $\mathrm{Pd}(\mathrm{II})$ aryloxide cation 23 in 23(OAc) 187

Figure 3. 3. First order kinetic plots for the decomposition of $\mathrm{D}_{2} \mathrm{O}$ solutions of complexes (a) $\mathbf{1 5}$ and (b) $\mathbf{1 4}$ in the presence of 4.0 equivalents of trifluoroacetic acid at $22^{\circ} \mathrm{C}$

Figure 3. 4. The DFT-calculated Gibbs energy reaction profile for $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 15 in gas phase and aqueous solutions in parenthesis ($\mathrm{kcal} / \mathrm{mol}$) leading to corresponding palladacyclic aryloxide 23. 196

Figure 3. 5. First order kinetic plots for the decomposition of aqueous solutions of complexes (a) 15 and (b) 17 at $22^{\circ} \mathrm{C}$.

198
Figure 3. 6. Hammett plot for the decomposition of aqueous solutions of complexes $14-17$ at $22^{\circ} \mathrm{C}$. 199

Figure 3. 7. First order kinetic plot for the decomposition of complex 31 in $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ solvent mixture (5:2) at $49{ }^{\circ} \mathrm{C}$
Figure 3. 8. First order kinetic plots for the decomposition of acetic acid solutions of complex 31 at (a) $47.5^{\circ} \mathrm{C}$ and (b) $56.5^{\circ} \mathrm{C}$.

Figure 3. 9. Eyring plot for decomposition of complex $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ in acetic acid. 211

Figure 3. 10. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$, in the presence of (a) 1.0 equivalent and (b) 3.0 equivalents of trifluoroacetic acid.

Figure 3. 11. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$, in the presence of 1.0 equivalent of trifluoroacetic acid and 20% of complex 39

Figure 3. 12. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of aqueous solutions of complex 31 at $50^{\circ} \mathrm{C}$ in the presence of (a) 2.0 equivalents of NaOH and (b) 4.0 equivalents of NaOH 224

Figure 3. 13. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{D}_{2} \mathrm{O}$ solutions of (a) complex 59; (b) complex $59 \sim$ 11 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, with " \mathbf{X} " present, (c) complex $\mathbf{5 9}$ after one week, in the presence of both " \mathbf{X} " and " \mathbf{Y} ". The reaction was carried out at $22^{\circ} \mathrm{C}$. 233

Figure 3. 14. Plot showing the fraction of complex $\mathbf{5 9}$ and product " \mathbf{X} " as a function of time over ~ 12 hours period. 233

Figure 4. 1. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 9 in $\mathrm{D}_{2} \mathrm{O}$; (b) complex 9 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl , showing an additional set of signals belonging to an intermediate; (c) the reaction mixture after $\mathrm{C}-\mathrm{Cl}$ reductive elimination, showing product 11.. 273
Figure 4. 2. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 15 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction mixture after $\mathrm{C}-\mathrm{Cl}$ reductive elimination showing product $\mathbf{1 6}$ together with a symmertical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product. 275

Figure 4. 3. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a)complex 18 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 18 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl , showing an additional set of signals belonging to an intermediate complex; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, showing the $\mathrm{C}-\mathrm{Cl}$ reductive elimination product 19 together with a symmertical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product in the presence of pyridine- d_{5}, which was added to free any Pdcoordinated products. 277

Figure 4. 4. (a) The aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 prepared via protonation of complex 24 with trifluoroacetic acid; (b) ORTEP drawing (50 \% probability ellipsoid) of complex 30 278

Figure 4. 5. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl ; (c) the reaction mixture after decomposition in the presence of pyridine- d_{5}, showing $\mathrm{C}-\mathrm{Cl}$ elimination product 25 and $\mathrm{Pd}(\mathrm{II})$ derived complexes. 280
Figure 4. 6. (a) ${ }^{1} \mathrm{H}$ NMR of aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature; (b) ${ }^{1} \mathrm{H}$ NMR of chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 29 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature. 283
Figure 4. 7. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl ; (c) complex 29 in $\mathrm{D}_{2} \mathrm{O}$.... 285
Figure 4. 8. A kinetic plot for the depletion of 29 in water at $22^{\circ} \mathrm{C}$ in $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time coordinates. 287

Figure 4. 9. A kinetic plot for the depletion of $\mathbf{2 9}$ in water in the presence of 2.0 equivalents of HCl at $22^{\circ} \mathrm{C}$ in $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time coordinates.

Figure 4. 10. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 29 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 29 in $\mathrm{D}_{2} \mathrm{O} 6$ hours after addition of 5.0 equivalents of pyridine, showing signals of a new species, presumably complex 32 . 292

Figure 4. 11. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a)complex 9 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 9 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr , showing additional signals belonging to an intermediate; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, showing the product of $\mathrm{C}-\mathrm{Br}$ elimination, $\mathbf{3 4}$. 294
Figure 4. 12. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 15 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction mixture after decomposition, now in dmso- d_{6} in the presence of pyridine- d_{5}, showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product 37 and a symmetrical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product. 296
Figure 4. 13. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex $\mathbf{1 8}$ in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 18 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr showing additional signals belonging to an intermediate, (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, now in dmso- d_{6} in the presence of pyridine- d_{5}, showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product $\mathbf{3 8}$ in the presence of (dpk) $\mathrm{Pd}(\mathrm{II})$ containing products 298
Figure 4. 14. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr showing the presence of additional set of signals belonging to an intermediate; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, now in dmso- d_{6} in the presence of pyridine- d_{5}, showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product 42 in the presence of a symmetrical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product. 303

Figure 4. 15. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of complexes (a) 28(OOCCF3) 2 , (b)

Figure 4. 16. (a) Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex (28) Br_{2} in $\mathrm{D}_{2} \mathrm{O}$ at room temperature; (b) ${ }^{1} \mathrm{H}$ NMR of bromoligated(IV) complex 45 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature. 306

Figure 4. 17. Kinetic plot for the depletion of $\mathbf{4 5}$ in water at $22^{\circ} \mathrm{C}$ in the coordinates $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time.
Figure 4. 18. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in $\mathrm{D}_{2} \mathrm{O}$; (b) the reaction solution upon decomposition of complex 24 in water in the presence of HI , now in dmso $-\mathrm{d}_{6}$ in the presence of pyridine, showing the C-I elimination product 46 309
Figure 4. 19. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 15 in $\mathrm{D}_{2} \mathrm{O}$; (b) the reaction solution upon decomposition of complex 25 in water in the presence of HI , now in dmso- d_{6} in the presence of pyridine $-\mathrm{d}_{5}$, showing the aryl iodide 51 and (dpk) $\mathrm{Pd}(\mathrm{II})$ containing products.
Figure 4. 20. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 18 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction solution upon decomposition of complex 18, now in dmso- d_{6} showing C-I elimination product 53. ... 314

Figure 4. 21. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction solution upon decomposition of complex 24 in water in the presence of HF, showing oxapalladacycle 31. 316
Figure 4. 22. Hammett plot for the decomposition of aqueous solutions of complexes 23, 58-60 at $22^{\circ} \mathrm{C}$. 319

Figure 5. 1. ORTEP drawing (50% probability ellipsoids) of complex 18 339
Figure 5. 2. Complex 19, showing the hydrogen atoms H_{a} and H_{b}. 339
Figure 5. 3. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) complex 15 in $\mathrm{AcOH}-\mathrm{d}_{4}$ (b) complex 25 in $\mathrm{AcOH}-\mathrm{d}_{4}$. The minor signals belong to products of decomposition. 343

Figure 5. 4. NOE experiment of complex 25, showing the hydrogen atoms H_{a} and H_{b}. .. 345
Figure 5. 5. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) Acetic solution of complex 25, (b) acetic acid solution of a mixture of products of decomposition, aryl acetate 38 and inorganic product 30 . 353

Figure 5. 6. (a) Kinetics plot for the reaction mixture containing 0.010 M acetic acid solution of complex 15 and 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, showing the fraction of the starting complex 15, the organopalladium(IV) complex 25, and aryl acetate product 38, as a function of time; (b) Plot for the $\ln \left([25]_{\mathrm{o}} /[25]_{\mathrm{t}}\right)$ vs. time in acetic acid at room temperature.354

Figure 5. 7. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 16 and (b) complex 26 at room temperature. This spectrum also shows some products of decomposition.357

Figure 5. 8. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for: (a) Acetic solution of complex 26 (b) acetic acid solution of products of decomposition, including aryl acetate $\mathbf{4 5}$ and inorganic product 30 . 361
Figure 5. 9. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 17 and (b) a mixture of complexes 17 and 48 at room temperature.364

Figure 5. 10. ESI-MS spectrum of acetic acid solution of a mixture of complexes 17 and $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature 364
Figure 5. 11. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for (a) Acetic solution of organopalladium(IV) complex 48 in the presence of organopalladium(II) precursor 17; (b) acetic acid solution of the products of decomposition, including the aryl acetate 53 , phenol 52 , and inorganic product $\mathbf{3 0}$, in the presence of pyridine- d_{5} added to free coordination products. 369

Figure 5. 12. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 18 and (b) a mixture of complexes 54 and 55 at room temperature.
Figure 5. 13. ESI-MS analysis of an acetic acid solution of complex $\mathbf{1 8}$ upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$... 372
Figure 5. 14. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for the, (a) Acetic solution of complex 55 and 56; (b) acetic acid solution of products of decomposition, including the aryl acetate 61, phenol 60, and inorganic product 30
Figure 5. 15. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 19 and (b) a mixture of complexes $\mathbf{6 2}$ and $\mathbf{6 3}$ at room temperature.

Figure 5. 16. ESI-MS analysis of an acetic acid solution of complex 19 upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$. 379
Figure 5. 17. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for (a) Acetic solution of complex 63 and 64 ; (b) acetic acid solution of products of decomposition, including the aryl acetate 68, phenol 67, after addition of pyridine- d_{5} to the reaction solution. 383

Figure 5. 18. ORTEP drawing (50% probability ellipsoids) of complex 30 388

List of Schemes

Scheme 1.1 5
Scheme 1.2 7
Scheme 1.3 8
Scheme 1.4 9
Scheme 1.5 10
Scheme 1.6 11
Scheme 1.7 14
Scheme 1.8 15
Scheme 1.9 15
Scheme 1.10 16
Scheme 1.11 18
Scheme 1.12 18
Scheme 1.13 19
Scheme 1.14 22
Scheme 1.15 23
Scheme 1.16 23
Scheme 1.17 24
Scheme 1.18 25
Scheme 1.19 26
Scheme 1.20 27
Scheme 1.21 30
Scheme 2.1 31
Scheme 2.2 31
Scheme 2.3 37
Scheme 2.4 42
Scheme 2.5 53
Scheme 2.6 55
Scheme 2.7 57
Scheme 2.8 59
Scheme 2.9 59
Scheme 2.10 61
Scheme 2.11 64
Scheme 2.12 64
Scheme 2.13 65
Scheme 2.14 67
Scheme 2.15 68
Scheme 2.16 68
Scheme 2.17 69
Scheme 2.18 73
Scheme 2.19 78
Scheme 2.20 84
Scheme 2.21 86
Scheme 2.22 86
Scheme 2.23 92
Scheme 2.24 94
Scheme 2.25 95
Scheme 2.26 98
Scheme 2.27 99
Scheme 2.28 100
Scheme 2.29 101
Scheme 2.30 102
Scheme 2.31 103
Scheme 2.32 110
Scheme 2.33 111
Scheme 2.34 113
Scheme 2.35 114
Scheme 3. 1 178
Scheme 3. 2 180
Scheme 3.3 181
Scheme 3.4 182
Scheme 3.5 184
Scheme 3.6 186
Scheme 3.7 189
Scheme 3.8 200
Scheme 3.9 201
Scheme 3. 10 202
Scheme 3. 11 203
Scheme 3. 12 214
Scheme 3. 13 220
Scheme 3. 14 221
Scheme 3. 15 222
Scheme 3. 16 225
Scheme 3. 17 226
Scheme 3. 18 228
Scheme 3. 19 228
Scheme 3. 20 229
Scheme 3. 21 231
Scheme 3. 22 231
Scheme 3. 23 232
Scheme 4. 1 263
Scheme 4. 2 265
Scheme 4. 3 266
Scheme 4. 4 267
Scheme 4. 5 268
Scheme 4.6 268
Scheme 4. 7 269
Scheme 4. 8 271
Scheme 4.9 271
Scheme 4. 10 273
Scheme 4. 11 274
Scheme 4. 12 275
Scheme 4. 13 277
Scheme 4. 14 279
Scheme 4. 15 281
Scheme 4. 16 282
Scheme 4. 17 282
Scheme 4. 18 286
Scheme 4. 19 287
Scheme 4. 20 288
Scheme 4. 21 291
Scheme 4. 22 293
Scheme 4. 23 293
Scheme 4. 24 295
Scheme 4. 25 295
Scheme 4. 26 297
Scheme 4. 27 299
Scheme 4. 28 299
Scheme 4. 29 301
Scheme 4. 30 303
Scheme 4. 31 305
Scheme 4. 32 306
Scheme 4. 33 307
Scheme 4. 34 310
Scheme 4. 35 311
Scheme 4. 36 312
Scheme 4. 37 313
Scheme 4. 38 315
Scheme 4. 39 319
Scheme 4. 40 320
Scheme 4. 41 321
Scheme 5. 1 329
Scheme 5. 2 330
Scheme 5.3 331
Scheme 5. 4 333
Scheme 5. 5 334
Scheme 5.6 335
Scheme 5. 7 335
Scheme 5. 8 336
Scheme 5. 9 340
Scheme 5. 10 341
Scheme 5. 11 342
Scheme 5. 12 344
Scheme 5. 13 344
Scheme 5. 14 346
Scheme 5. 15 347
Scheme 5.16 348
Scheme 5. 17 348
Scheme 5. 18 349
Scheme 5. 19 350
Scheme 5. 20 351
Scheme 5. 21 352
Scheme 5.22 354
Scheme 5. 23 355
Scheme 5. 24 356
Scheme 5. 25 358
Scheme 5.26 358
Scheme 5.27 360
Scheme 5.28 361
Scheme 5. 29 363
Scheme 5. 30 366
Scheme 5. 31 367
Scheme 5. 32 368
Scheme 5. 33 370
Scheme 5. 34 371
Scheme 5. 35 374
Scheme 5.36 375
Scheme 5.37 376
Scheme 5.38 377
Scheme 5. 39 378
Scheme 5.40 380
Scheme 5.41 381
Scheme 5.42 382
Scheme 5.43 383
Scheme 5. 44 388
Scheme 5.45 389
Scheme 5.46 390
Scheme 5.47 391
Scheme 5.48 392
Scheme 5.49 393
Scheme 6. 1 410
Scheme 6. 2 410
Scheme 6. 3 411
Scheme 6. 4 414
Scheme 6. 5 414
Scheme 6.6 415
Scheme 6.7 415
Scheme 6.8 416
Scheme 6.9 416
Scheme 6. 10 417
Scheme 6. 11 429
Scheme 6. 12 430
Scheme 6. 13 431
Scheme 7. 1 437

List of Abbreviations

Ac	acetyl
Acac	acetylacetonate
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AcOH	acetic acid
Ar	Aryl
Boc	tert-butoxycarbonyl
BQ	benzoquinone
Bu	butyl
Bpy	bipyridine
Cp	cyclopentadienyl
DMSO	dimethyl sulfoxide
Dppe	1,2-Bis(diphenylphosphino)ethane
FG	functional group
H 2hpda	4-hydroxypyridine-2,6-dicarboxylic acid
I	Iodide
Me	Methyl
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NIS	N-iodosuccinimide
OAc	acetate
Ph	phenyl
Phpy	phenylpydidine
R	alkyl
Rt	room temperature
TFA	trifluoroacetic acid
THF	tetrahydrofuran
X	halide
XRD	X-ray diffraction

Chapter 1: Oxidative Palladium Catalyzed Functionalization of

C-H Bonds

1.1 Introduction

Transition metal catalyzed processes for the construction of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-$ Heteroatom bonds (Heteroatom= O, F, N, Cl, Br, and I) represent essential tools for synthetic organic chemistry. Mild and selective transformations of this type will find widespread use as key steps in target-oriented syntheses to afford natural products, advanced materials, pharmaceutical compounds, and other high-value commercial products. Traditional approaches for the installation of $\mathrm{C}-\mathrm{C}$ and C -heteroatom bonds rely on prefunctionalized starting materials for both reactivity and selectivity, thus leading to additional costly steps to the overall synthesis of a molecule. Procedures which involve direct $\mathrm{C}-\mathrm{H}$ bond functionalization are therefore attractive as they will not only improve atom economy and increase the overall efficiency of multistep synthetic sequences, but they will also render the transformations more economically favorable. ${ }^{1,2}$

Direct $\mathrm{C}-\mathrm{H}$ bond functionalization reactions are limited by several challenges. These include (i) the inert nature of most $\mathrm{C}-\mathrm{H}$ bonds as a result of their high bond strengths (85-105 kcal/mol) and low polarity. This leads to a large kinetic barrier associated with the $\mathrm{C}-\mathrm{H}$ cleavage step, required prior to or during functionalization reactions. Transition metal catalysts serve to increase the rates of reactions of $\mathrm{C}-\mathrm{H}$ bonds by many orders of magnitude. This is because they are capable of breaking CH bonds and form $\mathrm{C}-\mathrm{M}$ bonds, which in most cases can be converted to new
functional groups under milder conditions; ${ }^{3,4}$ (ii) the requirement to control site selectivity in molecules that contain diverse $\mathrm{C}-\mathrm{H}$ bonds. Many strategies have been employed to improve selectivity of various $\mathrm{C}-\mathrm{H}$ bond functionalization reactions, including the use of substrates that contain weaker, or activated $\mathrm{C}-\mathrm{H}$ bonds (eg. 3° or benzylic/ allylic systems), ${ }^{5}$ use of Lewis acids as directing groups, ${ }^{6,7}$ use of arene groups bearing intramolecular coupling partners, ${ }^{8,9}$ use of heteroarene substrates with highly activated $\mathrm{C}-\mathrm{H}$ bonds (e.g. indoles and pyrroles), ${ }^{10-14}$ catalyst-based control of selectivity by tuning the sterics or electronics of the ancillary ligands at the metal, ${ }^{15}$ and the use of substrates that contain coordinating ligands as directing groups. The directing groups, which can include N -donor groups such as pyridine, O-donor groups such as ketones, esters, amides, etc, bind to the metal center and selectively deliver the catalyst to a proximal C-H bond. ${ }^{16-20}$ Therefore, the "Holy Grail" of C-H activation research is not only to find new $\mathrm{C}-\mathrm{H}$ activation reactions, but to also develop reagents that are capable of selectively functionalizing the $\mathrm{C}-\mathrm{H}$ bonds. Although a few organic and main group reagents have been developed with the potential of meeting this goal, much of the activity in this field has been in transition metal chemistry. ${ }^{4}$

Among transition metal catalysts that have been developed for $\mathrm{C}-\mathrm{H}$ bond functionalization reactions, palladium complexes have stood out as attractive homogenous catalysts for both laboratory and industrial applications due to several reasons. ${ }^{1,2}$ First, C-H functionalization at Pd centers can be used to construct many types of bonds, including C -oxygen, C -halogen, C -sulfur, C -nitrogen, and $\mathrm{C}-\mathrm{C}$ bonds, where few other metals show such diverse bond construction capability. ${ }^{51-23}$

This versatility is proposed to result mainly from the compatibility of many $\operatorname{Pd}(\mathrm{II})$ catalysts with many oxidants, as well as the ability to selectively functionalize cyclopalladated intermediates. Palladium complexes are also attractive homogenous catalysts because palladium participates in cyclometalation reactions with a wide range of directing groups, and readily promotes $\mathrm{C}-\mathrm{H}$ activation at both sp^{2} and $\mathrm{sp}^{3} \mathrm{C}-$ H bonds. ${ }^{24}$ Finally, most oxidative palladium catalyzed reactions can be performed under ambient conditions, making them attractive for practical applications in organic synthesis. ${ }^{24}$

Most common Pd-catalyzed bond-forming processes have been proposed to involve the $\operatorname{Pd}(0) \operatorname{Pd}(\mathrm{II})$ catalytic cycle in the presence of benzoquinone, copper (II) salts, or molecular oxygen usually as stoichiometric oxidants. ${ }^{25,26}$ Potential $\operatorname{Pd}(\mathrm{II}) \operatorname{Pd}(\mathrm{IV})$ cycles have received little attention for a long time due to the difficulty in isolating $\operatorname{Pd}(I V)$ complexes. ${ }^{27-29,30}$ However recently, the $\operatorname{Pd}(I I) \operatorname{Pd}(I V)$ catalytic cycle has been implicated in a variety of $\mathrm{C}-\mathrm{C}$ and C -heteroatom bond forming processes in the presence of oxidants such as $\mathrm{PhI}(\mathrm{OAc})_{2}{ }^{31}, \mathrm{NCS}^{32}$ and Oxone. ${ }^{33}$ The oxidants convert hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ intermediates to their $\mathrm{Pd}(\mathrm{IV})$ analogues, which consequently undergo reductive elimination reactions to form $\mathrm{C}-\mathrm{O},{ }^{34-36} \mathrm{C}-\mathrm{N}^{37,38}, \mathrm{C}-$ $\mathrm{C},{ }^{39,40} \mathrm{C}-\mathrm{Cl},{ }^{41}$ and $\mathrm{C}-\mathrm{F}^{42}$ bonds, which were difficult to access via the traditional $\operatorname{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ catalysis. Apart from the construction of new types of bonds, the development of $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalysis has also eliminated problems associated with the $\operatorname{Pd}(0) / \operatorname{Pd}($ II $)$ catalysis, which include β-hydride elimination, palladium-black decomposition from $\mathrm{Pd}(\mathrm{II})$ species, and the necessity to conduct the reactions under air and moisture free conditions. Moreover, the $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalysis allows for
tolerance of various functional groups, including aryl halides, ether, benzylic hydrogens, nitro groups, enolizable ketones, oximes and amides. ${ }^{43}$ Also, the necessity to fine-tune ligands in order to facilitate reductive elimination from Pd (II) species ${ }^{44}$ is no longer necessary since most $\mathrm{Pd}(\mathrm{IV})$ complexes readily undergo reductive elimination.

1.2 Palladium Catalyzed Oxygenation of $C-H$ Bonds

1.2.1 Utilization of Iodine-Based Reagents as Oxidants for the $\mathrm{C}-\mathrm{H}$ Bond

Oxygenation Reactions
Palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions have undergone significant development during the past 10 years. ${ }^{45,46}$ The palladium catalyzed acetoxylation of benzene was first reported in 1966 by Triggs and co-workers. ${ }^{47}$ In 1971, another example of aromatic $\mathrm{C}-\mathrm{H}$ acetoxylation using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ as oxidant was reported by Henry and co-workers, where the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes was proposed. ${ }^{48}$ Crabtree also reported palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant, where he also proposed the intermediacy of $\operatorname{Pd}(\mathrm{IV})$ complexes. ${ }^{49}$ In 2004, Sanford optimized the procedure developed by Crabtree for the acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant. ${ }^{50}$ She applied a strategy that involves the use of directing groups to selectively acetoxylate ortho $\mathrm{C}-\mathrm{H}$ bonds of the aromatic compounds. This procedure has since been used for the ortho $\mathrm{C}-\mathrm{H}$ bond acetoxylation of several aromatic compounds with various nitrogen-based directing groups such as imines, oxime
ethers, azobenzene derivatives, and nitrogen heteroxycles (eg pyrazoles and isoxazolines) (Scheme 1.1).

Scheme 1.1

When the solvent of these reactions was changed from acetic acid to alcohol, aryl ether products were produced in high yields. Sanford proposed that in situ reaction of the alcohol solvent with $\mathrm{PhI}(\mathrm{OAc})_{2}$ affords $\mathrm{PhI}(\mathrm{OR})_{2}$ which functions as the oxidant in these transformations.

The mechanism of these oxidative $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions was explored by Sanford and co-workers. The reactions were shown to proceed with similar rates using either $\mathrm{Pd}(\mathrm{OAc})_{2}$ or palladacycle 1 (eq. 1.1) as the catalyst, suggesting that $\mathbf{1}$ is a kinetically competent intermediate in these reactions. In addition, $\mathbf{1}$ was shown to react directly with $\mathrm{PhI}(\mathrm{OAc})_{2}$ to afford the acetoxylated product, thus providing evidence against a $\mathrm{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ process (eq. 1.1). ${ }^{50}$ Additional studies for the oxidative Pd -catalyzed $\mathrm{C}-\mathrm{H}$ bond acetoxylation reaction using
benzo[h]quinoline and 2-ortho-tolylpyridine as substrates revealed a zero-order dependence on $\left[\mathrm{PhI}(\mathrm{OAc})_{2}\right]$ in several solvents such as benzene, $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$, and MeCN . Large primary deuterium intermolecular kinetic isotope effects (between 3.6 and 4.3) were also observed, indicating that cyclopalladation is the rate-limiting step of the catalytic cycle. A rate-limiting $\mathrm{C}-\mathrm{H}$ bond activation step prevented study of the subsequent steps following cyclopalladation, thus limiting these studies to the synthesis and study of model complexes.

In the study of model complexes, $\operatorname{Pd}(I V)$ complex 4 was synthesized via the reaction of biaryl $\mathrm{Pd}(\mathrm{II})$ complex 3 with $\operatorname{PhI}(\mathrm{OAc})_{2}$ (eq. 1.2). Earlier attempts to isolate stable O-ligated organopalladium(IV) complexes and study their reactivity towards $\mathrm{C}-\mathrm{O}$ bond formation were complicated by their low stability and their propensity to undergo side reactions such as $\mathrm{C}-\mathrm{C}$ bond forming reductive elimination. ${ }^{51-56}$ Complex 4 was however stable at ambient temperature, and underwent clean $\mathrm{C}-\mathrm{O}$ bond reductive elimination to form the acetoxylated product 5 upon thermolysis. The stability and reactivity of complex 4 enabled detailed studies of the $\mathrm{C}-\mathrm{O}$ bond forming reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ complexes.

Scheme 1.2

According to Scheme 1.2 above, three mechanisms were considered in the study of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complex 4: the ionic mechanism (A), which involves preliminary dissociation of a carboxylate ligand, followed by reductive elimination from a 5 -coordinate palladium complex; the concerted mechanism (B), where reductive elimination takes place from a 6coordinate palladium complex; and the chelate dissociation mechanism (C), which involves preliminary chelate dissociation followed by reductive elimination from a 5coordinate palladium(IV) intermediate. On the basis of experimental observations, mechanism C was proposed, which involves preliminary chelate dissociation, followed by $\mathrm{C}-\mathrm{O}$ reductive elimination from a pentacoordinate $\mathrm{Pd}(\mathrm{IV})$ complex. ${ }^{57}$

Later, theoretical studies on the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complex $\mathbf{4}$ were performed by Liu and co-workers. These studies favored mechanism B on Scheme 1.2 above, where the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction takes place from a 6-coordinate palladium species. ${ }^{43}$ This mechanism was supported by a close match between calculated and experimental activation free energy barriers. The theoretical model also correctly predicted the solvent and substituent effects observed experimentally.

However, a recent detailed study led Sanford and co-workers to conclude that the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction proceeds via mechanism A in Scheme 1.2, which involves pre-equilibrium dissociation of an acetate ligand, followed by rate limiting $\mathrm{C}-\mathrm{O}$ reductive elimination from a 5 -coordinate cationic intermediate. ${ }^{58}$ This revised mechanism was proposed based on additional experimental observations, including the rapid exchange of the bound and free carboxylate ligands, which indicates that dissociation of carboxylate ligand from the $\mathrm{Pd}(\mathrm{IV})$ complex is possible. These studies indicate that the mechanism of $\mathrm{C}-\mathrm{O}$ bond-forming reductive elimination from $\operatorname{Pd}(I V)$ complexes is still not well understood.

The intermediacy of $\mathrm{Pd}(\mathrm{III})$ complexes in the palladium catalyzed $\mathrm{C}-\mathrm{H}$ acetoxylation reaction with $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant has also been proposed. ${ }^{59}$ The dimeric Pd(III) complex 9 (Scheme 1.3) was independently synthesized via oxidation of complex $\mathbf{8}$ with $\mathrm{PhI}(\mathrm{OAc})_{2}$ at low temperature. Upon thermolysis, $\mathrm{C}-\mathrm{O}$ reductive elimination was observed in high yields, demonstrating the feasibility of $\mathrm{C}-\mathrm{O}$ bond formation from dimeric $\operatorname{Pd}($ III) complexes. Complex 8 was also shown to be a kinetically competent intermediate in catalytic $\mathrm{C}-\mathrm{H}$ bond functionalization reactions.

Scheme 1.3

As a result of the study of model stoichiometric organometallic reactions of isolated $\operatorname{Pd}(\mathrm{IV})$ and $\operatorname{Pd}(\mathrm{III})$ complexes, two mechanisms for the palladium catalyzed oxygenation of $\mathrm{C}-\mathrm{H}$ bonds with $\mathrm{PhI}(\mathrm{OAc})_{2}$ have thus been put forward. As presented in Scheme 1.4 below, the proposed mechanisms involve $\mathrm{C}-\mathrm{H}$ bond activation of compound 7 to generate a cyclopalladated complex $\mathbf{8}$ or $\mathbf{3}$. Palladacycle $\mathbf{3}$ may undergo two electron oxidation to generate $\operatorname{Pd}(\mathrm{IV})$ intermediate $\mathbf{4}$, whereas $\mathbf{8}$ can generate a $\mathrm{Pd}(\mathrm{III})$ intermediate 9 via 1-electron oxidation of each palladium center. $\mathrm{C}-\mathrm{O}$ reductive elimination from either of these high valent palladium complexes releases the product 5 and regenerates the catalyst.

Scheme 1.4

It is however not possible to identify the nature of the high oxidation state palladium intermediates in the oxidative $\mathrm{C}-\mathrm{H}$ functionalization reactions due to ratelimiting cyclopalladation. ${ }^{60}$ As a result, there is currently no basis to distinguish between the involvement of mononuclear $\mathrm{Pd}(\mathrm{IV})$ or dinuclear $\mathrm{Pd}(\mathrm{III})$ species as intermediates in the catalytic cycle involving $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant. Thus, current research efforts are aimed at determining the nature of the intermediates involved in these transformations, finding out which reaction mechanism is operative, and using
the understanding of the reaction mechanism to improve the efficiency of these reactions, and even make the reactions more environmentally benign.

Palladium catalyzed acetoxylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant has also been performed (Scheme 1.5). These reactions also rely on metal-coordinating groups for regioselective $\mathrm{C}-\mathrm{H}$ functionalization. Both benzylic and unactivated $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds were converted to the corresponding alkyl acetates, and no products from β-hydride elimination were observed. The reactions proceed with high selectivity for primary $v s$. secondary $\mathrm{C}-\mathrm{H}$ bonds, and compounds that form 5-membered palladacycles were favored over those that form 6-membered palladacycles. In this system, the functionalization of secondary and tertiary $\mathrm{C}-\mathrm{H}$ bonds was not efficient. Still, secondary C-H bonds adjacent to activating groups were acetoxylated (see Scheme 1.5).

Scheme 1.5

In contrast to the aryl $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions, there is little information on the putative intermediates involved in the alkyl $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions, although the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes has been
proposed. Isolable alkyl $\mathrm{Pd}(\mathrm{IV})$ complexes capable of undergoing C -heteroatom reductive elimination were first reported by Canty and co-workers. ${ }^{51}$ In this work, oxidation of a (bipy) PdMe_{2} complex 10 (Scheme 1.6) with diphenyl diphenylselenide was reported to cleanly produce trans (bipy) $\mathrm{Pd}(\mathrm{SePh})_{2} \mathrm{Me}_{2}$ 11, which was characterized by XRD. This complex underwent carbon-selenium bond formation upon thermolysis in solution. ${ }^{55}$ Related complexes derived from the oxidation of dimethylpalladium(II) compounds with diaryol peroxides were detected by NMR spectroscopy, but reductive elimination led to $\mathrm{C}-\mathrm{C}$ coupling. ${ }^{51}$ This report supports the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes in the palladium catalyzed acetoxylation of sp^{3} $\mathrm{C}-\mathrm{H}$ bonds.

Scheme 1.6

An example of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{O}$ reductive elimination from an alkyl $\mathrm{Pd}(\mathrm{IV})$ complex was demonstrated by Yamamoto and co-workers. ${ }^{61}$ In this report, the $\mathrm{Pd}(\mathrm{IV})$ complex 12 (eq. 1.3) was prepared by the stoichiometric reaction between tetrachloro-1,2benzoquinone and a palladium(0) precursor. Thermolysis of complex $\mathbf{1 2}$ led to the bisoxygenated compound $\mathbf{1 3}$, among other products. This reaction proved that $\mathrm{C}-\mathrm{O}$ reductive elimination from alkyl $\mathrm{Pd}(\mathrm{IV})$ complexes is a feasible pathway, and supports the intermediacy of $\operatorname{Pd}(I V)$ complexes in the palladium catalyzed acetoxylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds with $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant, described previously.

Apart from iodine(III) oxidants, iodine(I) oxidants have also been applied in the palladium catalyzed acetoxylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds. The IOAc oxidant was used in the palladium catalyzed acetoxylation of N-methylamine derivatives (eq. 1.4). ${ }^{62}$ This oxidant is generated in situ by the reaction of I_{2} with either $\mathrm{PhI}(\mathrm{OAc})_{2}$ or AgOAc . In this system, no reaction was observed when either $\mathrm{PhI}(\mathrm{OAc})_{2}$ or I_{2} was used independently. High selectivity for the functionalization of $\mathrm{N}-\mathrm{CH}_{3}$ over $\mathrm{N}-$ aryl substituents was observed. The mechanism of this reaction was proposed to involve amide directed $\mathrm{C}-\mathrm{H}$ activation, followed by oxidation to $\mathrm{Pd}(\mathrm{IV}), \mathrm{C}-\mathrm{I}$ bond-forming reductive elimination, followed by nucleophilic displacement of I^{-}by OAc^{-}under the reaction conditions. However, direct $\mathrm{C}-\mathrm{OAc}$ elimination to generate the acetoxylated products was not ruled out.

1.2.2 Utilization of Peroxie-based Reagents as Oxidants for the Palladium Catalyzed

Oxygenation of $\mathrm{C}-\mathrm{H}$ Bonds

Hypervalent iodine oxidants are expensive and produce stoichiometric amount of toxic waste products. Oxidation reactions that utilize inexpensive and environmentally benign oxidants such as molecular oxygen and/ or hydrogen
peroxide are extremely attractive as they render the resulting transformations "greener" and more practical for large scale synthesis. ${ }^{33}$ Such transformations however remain a significantly challenging task. ${ }^{63-67}$ An early result on the palladium catalyzed hydroxylation of benzene $\mathbf{1 6}$ using molecular oxygen was reported by Fujiwara and co-workers in 1990. ${ }^{68}$ This transformation was however conducted under harsh reaction conditions and low yields were produced (eq. 1.5). In another study, Rybak-Akimova and Que reported the ortho-hydroxylation of benzoic acid $\mathbf{1 8}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of a stoichiometric amount of a reactive iron complex $\left[\mathrm{Fe}(\mathrm{II})(\mathrm{BPMEN})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} 19$ (eq. 1.6). ${ }^{69}$

Recently, more efficient palladium catalyzed reactions have been developed for the oxygenation of sp^{3} and $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds using various peroxide-based oxidants. In 2005, Sanford and co-workers reported palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using Oxone as terminal oxidant in acetic acid. The inorganic peroxide was proposed to oxidize $\operatorname{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ while the solvent was proposed to be the source of oxygen functionality. Substrates with a variety of directing groups
including oxime ethers, amides, and isoxazolines reacted in acetic acid solvent to afford aryl esters, ${ }^{70}$ and aryl ethers when the reactions were performed in alcohol solvents (Scheme 1.7). ${ }^{33}$

Scheme 1.7

(75\%)

While Oxone was an effective oxidant for the oxygenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, only modest activity was observed when this oxidant was used for the oxygenation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{33}$ The combination of Oxone with $\mathrm{Mn}(\mathrm{OAc})_{2}$ however promoted efficient oxygenation of secondary $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds in amidoquinolines (Scheme 1.8). ${ }^{71}$ It was proposed that the reaction between $\mathrm{Mn}(\mathrm{OAc})_{2}$ and Oxone affords $\mathrm{Mn}_{3} \mathrm{O}(\mathrm{OAc})_{7}$, which then functions as a Lewis acid to increase the reactivity of the $\mathrm{Pd}(\mathrm{II})$ catalyst. A $\mathrm{C}-\mathrm{H}$ functionalization mechanism that involves chelation-assisted $\mathrm{C}-\mathrm{H}$ activation to produce a cyclopalladacycle, followed by oxidation to $\mathrm{Pd}(\mathrm{IV})$ by Oxone in the presence of acetic anhydride was proposed. Reductive elimination from the $\operatorname{Pd}(I V)$ species releases the product and regenerates the catalyst.

Scheme 1.8

Tert-butyl peroxyacetate has also been used as terminal oxidant for the palladium catalyzed oxygenation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds (Scheme 1.9). ${ }^{72}$ Acetic anhydride was an important additive in this reaction since low yields were obtained in its absence. Oxazolines were used as directing groups, and the reaction conditions applied were compatible with ketals, imides, esters, and alkyl chlorides. The authors suggested a mechanism that involves cyclopalladation, followed by oxidation by the peroxyester to produce a $\mathrm{Pd}(\mathrm{IV})$ intermediate that ultimately undergoes $\mathrm{C}-\mathrm{O}$ bondforming reductive elimination to release the product and regenerate the catalyst.

Scheme 1.9

The tert-butyl peroxyacetate oxidant has also been utilized in the acetoxylation of aromatic C-H bonds. In 2010, Jin-Quan Yu and co-workers reported a palladium catalyzed acetoxylation of phenylalanine and ephedrine derivatives with tert-butyl peroxyacetate as terminal oxidant in dichloroethane solvent (Scheme
1.10). ${ }^{73}$ In this transformation, additives such as DMF, acetonitrile, acetic acid and acetic anhydride were used to increase the product yields. The role of the additives as well as the mechanism of this reaction were not discussed.

Scheme 1.10

Although the intermediacy of $\operatorname{Pd}(I V)$ complexes in the palladium catalyzed $\mathrm{C}-\mathrm{H}$ acetoxylation reactions utilizing peroxo-based reagents as oxidants has been proposed, the putative $\mathrm{Pd}(\mathrm{IV})$ intermediates have never been detected in these systems. In addition, stoichiometric reactions between cyclopalladated complexes with peroxide-based oxidants have led to oxygen atom insertion into of the $\mathrm{C}-\mathrm{Pd}$ bonds in most cases, to produce the corresponding oxapalladacycles. ${ }^{74-80}$ Although the mechanisms of these oxapalladation reactions were proposed to involve $\mathrm{Pd}(\mathrm{IV})$ intermediates, no such intermediates were detected in these reactions. However the ability of peroxo-based oxidants to oxidize hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\operatorname{Pd}(I V)$ analogues was demonstrated by Canty and co-workers (eq. 1.7). ${ }^{81}$ In this report, the tris(pyrazol-1-yl)borate-ligated $\mathrm{Pd}(\mathrm{II})$ complex 21 underwent oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce the corresponding $\mathrm{Pd}(\mathrm{IV})$ complex 22. Although the $\mathrm{C}-\mathrm{O}$ reductive elimination reactivity of this complex was not discussed, this report demonstrates that oxidation of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ to the corresponding $\operatorname{Pd}(\mathrm{IV})$ analogs is possible. The report thus lends support to the
intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes in the palladium catalyzed oxygenation reactions using peroxide based reagents as oxidants.

The challenges of the palladium catalyzed $\mathrm{C}-\mathrm{H}$ oxygenation reactions utilizing peroxo-based reagents as oxidants lie in the efficiency, selectivity, and the substrate scope of these reactions. Most of these reactions, especially those involving aromatic $\mathrm{C}-\mathrm{H}$ functionalization proceed with low yields, and require the presence of directing groups to induce ortho $\mathrm{C}-\mathrm{H}$ bond selectivity. Thus future studies should broaden the substrate scope of these reactions and remove the requirement for chelate directed $\mathrm{C}-\mathrm{H}$ activation. In addition, it would be more desirable if these reactions are conducted in water, utilizing oxidants such as $\mathrm{H}_{2} \mathrm{O}_{2}$ and/ or molecular oxygen, since these reagents are more abundant, inexpensive, and more benign to the environment.

1.2.3 Utilization of O_{2} as Oxidant for Palladium Catalyzed Oxygenation Reactions

Molecular oxygen, which is a more attractive oxidant than the peroxide-based oxidants, has also been used as a terminal oxidant in palladium catalyzed oxygenation of both aliphatic and aromatic $\mathrm{C}-\mathrm{H}$ bonds. In the acetoxylation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds, our group reported a quinoline-directed oxygenation of benzylic $\mathrm{C}-\mathrm{H}$ bonds using dioxygen as the terminal oxidant (Scheme 1.11). ${ }^{82}$ This transformation proceeded with $\operatorname{Pd}(\mathrm{acac})_{2}$ as the catalyst in conjunction with a 2,6pyridinedicarboxylate ligand in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ under an atmosphere of oxygen. The
reaction was compatible with a wide array of substituents, including all halides, some of which are usually not tolerated under the $\operatorname{Pd}(0) / \operatorname{Pd}(\mathrm{II})$ catalytic conditions. The possibility of $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalytic cycle, where dioxygen oxidizes $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ was suggested.

Scheme 1.11

Palladium catalyzed ortho-hydroxylation of potassium benzoates with dioxygen as the terminal oxidant in DMF, DMA and DMP was recently reported by Yu and co-workers (Scheme 1.12). ${ }^{83}$ In this transformation, benzoquinone and bases such as KOAc and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ were found to increase the product yields. Labeling studies using ${ }^{18} \mathrm{O}_{2}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ supported a direct oxygenation of the arylpalladium intermediates instead of an acetoxylation/hydrolysis sequence. The possibility of a $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox pathway was also proposed, where dioxygen could function as the terminal oxidant to oxidize $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$. Oxygen incorporation from $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}_{2}$ formed through a $\mathrm{Pd}(0) \mathrm{Pd}(\mathrm{II})$ catalysis was ruled out through the labeling studies.

Scheme 1.12

Palladium(IV) intermediates in the palladium catalyzed aerobic $\mathrm{C}-\mathrm{H}$ functionalization reactions have not been observed in solution. In addition, the aerobic oxidation of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues has never been reported. The oxidation of hydrocarbyl $\mathrm{Pt}(\mathrm{II})$ complexes to their $\mathrm{Pt}(\mathrm{IV})$ analogues has however been reported. Ligand enabled aerobic oxidation of dimethyl $\operatorname{Pt}(\mathrm{II})$ complexes to the $\operatorname{Pt}(\mathrm{IV})$ analogues has been reported by Bercaw (Scheme 1.13), ${ }^{84,85}$ while that for monohydrocarbyl $\mathrm{Pt}(\mathrm{II})$ complexes was reported by Vedernikov. ${ }^{86}$ Considering that platinum complexes are frequently considered as models for the reactivity of palladium complexes, the isolation of hydrocarbyl $\mathrm{Pt}(\mathrm{IV})$ complexes via the oxidation of hydrocarbyl $\mathrm{Pt}(\mathrm{II})$ complexes with dioxygen suggests that aerobic oxidation of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to generate the corresponding $\operatorname{Pd}(\mathrm{IV})$ analogues might be possible. This presents an opportunity to develop aerobic palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions that proceed via the $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox cycle. In addition, the reactivity of hydrocarbyl $\mathrm{Pt}(\mathrm{II})$ complexes towards oxidation with molecular oxygen supports the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes in the $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions described in Schemes 1.11 and 1.12 described previously.

Scheme 1.13

Given that there are very few palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions where dioxygen is used as the terminal oxidant, and these reactions have a
very narrow substrate scope, future studies should broaden the substrate scope of these reactions and also remove the requirement for chelate directed $\mathrm{C}-\mathrm{H}$ activation.

1.3 Palladium Catalyzed Halogenation of $C-H$ bonds

Recently, a variety of procedures that involve direct functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds have been developed. ${ }^{24}$ Most of these procedures utilize N - or O-donor atoms as directing groups to selectively functionalize the ortho $\mathrm{C}-\mathrm{H}$ bond. Of particular importance are the procedures developed for selective halogenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, given that aryl halides are important components of a variety of biologically active molecules, natural products, and pharmaceuticals, ${ }^{87}$ and also serve as precursors to organometallic reagents such as organolithium ${ }^{88}$ and Grignard reagents. ${ }^{89}$

The most common synthetic approaches to halogenated arenes are electrophilic aromatic substitution reactions using reagents such as N halosuccinimides, ${ }^{90-92} \mathrm{X}_{2},{ }^{93}$ peroxides/ $\mathrm{HX},{ }^{94-96}$ peroxides/ MX, ${ }^{97-100}$ or hypervalent iodine reagents/ $\mathrm{MX}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}$, or K$) .{ }^{101,102}$ These transformations however suffer from several challenges, including limited substrate scope due to the requirement for activated arenes, side reactions that include overhalogenation, and multiple regioisomeric products are usually obtained, resulting in decreased yields and the requirement for tedious separations. ${ }^{32,103}$ Another procedure for the preparation of halogenated arenes is the directed ortho-lithiation reaction followed by halogen quenching. ${ }^{104}$ This technique is limited by the requirement for strong bases, which in turn results in low functional group tolerance, and a narrow scope of suitable
directing groups. ${ }^{32}$ As a result, the development of more efficient, selective, and environmentally friendly transition metal catalyzed procedures for halogenation of C H bonds would be highly desirable.

Examples of transition metal catalyzed C-halogen forming reactions are rare, mainly because the reverse aryl halide oxidative addition is thermodynamically favored at most metal centers. ${ }^{105}$ However, several examples of stoichiometric Chalogen reductive elimination reactions at $\mathrm{Pd}(\mathrm{II})$ centers under oxidizing conditions using oxidants such as $\mathrm{X}_{2},{ }^{106-111} \mathrm{CuX}_{2},{ }^{111-113}$ or $\mathrm{PhICl}_{2},{ }^{111}$ have been reported.

The stoichiometric C -halogen reductive elimination reaction at $\mathrm{Pd}(\mathrm{II})$ utilizing Cl_{2} as oxidant was developed into a catalytic $\mathrm{C}-\mathrm{H}$ chlorination reaction in 1970 by Fahey and co-workers. ${ }^{114,115}$ In this report, the palladium catalyzed ortho-chlorination of azobenzenes with Cl_{2} as oxidant generated a mixture of mono-, di-, tri-, and tetrachlorinated products. However the use of Cl_{2} as oxidant and the lack of selectivity of this system limited its application in organic synthesis. More practical methods for the halogenation of $\mathrm{C}-\mathrm{H}$ bonds using electrophilic halogenating reagents are therefore the focus of current research efforts.

In 2001, the N -iodosuccinimide oxidant was applied in the palladium catalyzed ortho-iodination of benzoic acids by Kodama and co-workers. ${ }^{116}$ This system inspired Sanford and co-workers to develop a procedure for the palladium catalyzed ortho chlorination and bromination of benzo[h]quinoline utilizing $N-$ chlorosuccinimide and N-bromosuccinimide as oxidants. ${ }^{177}$ This reaction has since been applied to a wide array of substrates with various directing groups such as pyridines, oxime ethers, isoquinolines, amides, and isoxazolines (Scheme 1.14). ${ }^{32,50}$

Scheme 1.14

The mechanism of palladium catalyzed halogenation utilizing N halosuccinimides as oxidants has recently been studied. Using 2-tolylpyridine as a model compound and NCS as oxidant, the palladium catalyzed chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds was found to be first order in [Pd] and zero order in NCS. A large intermolecular kinetic isotope effect $\left(K_{\mathrm{H}} / K_{\mathrm{D}}=4.4\right)$ was also observed. On the basis of these experimental observations, $\mathrm{C}-\mathrm{H}$ bond activation was proposed to be the rate-limiting step of this reaction. Consequently, it was not possible to determine the structure of the palladium intermediate complexes involved in these reactions. As a result, model studies were conducted in order to gain insight into the reactivity of the steps following the cyclopalladation reaction in the catalytic cycle.

In the model studies, stoichiometric oxidation of a $\mathrm{Pd}(\mathrm{II})$ model complex (phpy) $)_{2} \mathrm{Pd}(\mathrm{II}) 23$ with NCS was performed to produce the corresponding $\mathrm{Pd}(\mathrm{IV})$ complex 24 (Scheme 1.15). Complex 24 underwent $\mathrm{C}-\mathrm{Cl}$ reductive elimination upon thermolysis at $80^{\circ} \mathrm{C}$ to produce the corresponding aryl chloride $\mathbf{2 5}$ in high yield. These studies indicate that NCS is a sufficiently strong oxidant to promote oxidation
of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ in this model system, and the viability of $\mathrm{C}-\mathrm{Cl}$ bond-forming reductive elimination from $\operatorname{Pd}(\mathrm{IV})$ was also demonstrated. ${ }^{118}$

Scheme 1.15

As a result of the model studies, Sanford and co-workers proposed a palladium catalyzed $\mathrm{C}-\mathrm{H}$ halogenation mechanism that involves ligand-directed $\mathrm{C}-\mathrm{H}$ bond activation to produce a cyclopalladated complex. ${ }^{50}$ This palladacycle undergoes two-electron oxidation with NCS to produce a Pd(IV) intermediate, which in turn undergoes $\mathrm{C}-\mathrm{X}$ reductive elimination to release the product and regenerate the catalyst (scheme 1.16). ${ }^{50}$

Scheme 1.16

The intermediacy of $\mathrm{Pd}(\mathrm{III})$ complexes in the catalytic $\mathrm{C}-\mathrm{H}$ bond chlorination reactions with NCS has also been considered. The reaction of the acetato-bridged palladacycle 1 with PhICl_{2} at low temperature was observed to produce a dimeric $\operatorname{Pd}\left(\right.$ III) complex 26, ${ }^{59}$ which underwent high yielding $\mathrm{C}-\mathrm{Cl}$ reductive elimination upon thermolysis (Scheme 1.17). The oxidation of complex $\mathbf{1}$ with NCS indicates that
this oxidant is sufficiently strong to oxidize dimeric $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{III})$ analogues, while the $\mathrm{C}-\mathrm{Cl}$ reductive elimination from complex $\mathbf{2 6}$ indicates that the dimeric $\operatorname{Pd}(\mathrm{III})$ complexes are chemically viable intermediates in the catalytic chlorination reactions. The kinetic viability of dimeric $\operatorname{Pd}(\mathrm{III})$ complexes in the catalytic chlorination reactions was also demonstrated, where complex 26 catalyzed the chlorination of benzo[h]quinoline in the presence of either PhICl_{2} or NCS as oxidants. The structure of the high valent intermediates in the catalytic halogenation reactions was however not determined due to a rate limiting $\mathrm{C}-\mathrm{H}$ activation step. ${ }^{60}$

Scheme 1.17

In 2010, Ritter and co-workers discovered a palladium catalyzed aromatic C H bond chlorination reaction that takes place via rate limiting oxidation step, thus enabling the detection of the high valent palladium complexes (Scheme 1.18). ${ }^{46}$ In this system, the succinamate bridged dimer 28 was proposed to be the resting state of the catalyst, while the rate law for this reaction was established as rate $=$ $\mathrm{k}[\mathbf{2 8}][\mathrm{NCS}]\left[\mathrm{OAc}^{-}\right]$. On the basis of the rigid dinuclear structure of 28, and the measured first order dependence on the concentration of 28, acetate, and NCS oxidant, a rate-limiting oxidation of $\mathbf{2 8}$ with nucleophilic assistance by acetate was proposed. This oxidation reaction was proposed to produce the dimeric $\operatorname{Pd}(\mathrm{III})$ intermediate 29.

Scheme 1.18

Complex 29 was independently synthesized via oxidation of complex $\mathbf{2 8}$ with acetyl hypochlorite at $-78^{\circ} \mathrm{C}$, and characterized via ${ }^{1} \mathrm{H}$ NMR at $-90^{\circ} \mathrm{C}$. Upon warming the solution to room temperature, $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{O}$ reductive elimination reactions were observed to generate the corresponding products in 84% and 0.5% yield respectively; a similar product distribution was observed during catalysis. As a result, the mechanism depicted in Scheme 1.19 was proposed as the mechanism for the palladium catalyzed chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing NXS as the terminal oxidant $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$. This mechanism involves $\mathrm{C}-\mathrm{H}$ bond activation to produce a dimeric $\mathrm{Pd}(\mathrm{II})$ complex. This complex undergoes nucleophile assisted oxidation with NXS to produce a dimeric Pd(III) intermediate, which undergoes acid catalyzed $\mathrm{C}-\mathrm{X}$ reductive elimination to produce the functionalized product and regenerate the active catalyst. This system allowed for the study of the structure of the intermediate complex, but the intermediate was not detected in solution due to its instability under the catalytic reaction conditions.

Scheme 1.19

As a result of the study of stoichiometric organometallic reactions described above, two mechanisms for the palladium catalyzed $\mathrm{C}-\mathrm{H}$ halogenation reactions have been put forward; a mechanism involving $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox couple and another involving $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{III})$ redox couple. Which of these cycles closely resembles the operative catalytic cycle has not been determined since most of these reactions operate via rate limiting $\mathrm{C}-\mathrm{H}$ bond activation step and thus its not possible to determine the identity of the high oxidation state palladium intermediate. As a result, current research efforts are aimed at understanding the mechanism of these $\mathrm{C}-\mathrm{H}$ halogenation reactions, with the aim of developing more selective and efficient catalysts. In addition, the study of these reaction mechanisms might enable the development of more environmentally friendly $\mathrm{C}-\mathrm{H}$ bond halogenation reactions.

1.4 Our Approach and Goal

Given that very few palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions utilizing molecular oxygen and/ or hydrogen peroxide oxidants have been developed,
our ultimate goal is to develop mild, efficient, and environmentally friendly catalytic $\mathrm{C}-\mathrm{H}$ functionalization reactions utilizing molecular oxygen or hydrogen peroxide as terminal oxidants.

Our approach will involve the study and optimization of the steps in the proposed catalytic cycle presented in Scheme 1.20 below.

Scheme 1.20

According to Scheme 1.20, the $\mathrm{C}-\mathrm{H}$ bond functionalization reaction is proposed to proceed via (a) $\mathrm{C}-\mathrm{H}$ bond activation to produce cyclopalladated species A. Stoichiometric ligand-directed $\mathrm{C}-\mathrm{H}$ activation reactions to produce cyclopalladacyclic complexes have been demonstrated in literature. ${ }^{3,119}$ The following step (b) involves oxidation of the palladacycle to produce a high-valent palladium intermediate \mathbf{B} or \mathbf{C}. The oxidation of organopalladium(II) compounds to generate monomeric $\operatorname{Pd}(\mathrm{IV})^{118}$ or dimeric $\operatorname{Pd}(\mathrm{III})^{46}$ complexes has been demonstrated using strong oxidants such as $\operatorname{PhI}(\mathrm{OAc})_{2}$. The functionalization of $\mathrm{C}-\mathrm{Pd}$ bonds using peroxide based oxidants such as MCPBA, ${ }^{74-77}$ tert-butylhydroperoxide in the presence of a vanadium catalyst, ${ }^{120}$ and hydrogen peroxide in the presence of an iron catalyst ${ }^{121}$ have also been demonstrated. Most of these reactions were proposed to proceed via
$\operatorname{Pd}(I V)$ intermediates, although these species were not detected in the solution. The tris(pyrazol-1-yl)borate ligand-enabled oxidation of organopalladium(II) complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues using $\mathrm{H}_{2} \mathrm{O}_{2}$ has also been demonstrated. ${ }^{122}$ The last step (c) involves product release via $\mathrm{C}-\mathrm{X}$ reductive elimination. This step has also been demonstrated from both monomeric $\operatorname{Pd}(\mathrm{IV}),{ }^{57,59}$ and dimeric $\mathrm{Pd}(\mathrm{III}){ }^{59}$ complexes.

Given that oxidation of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues utilizing O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant is rare, our plan involves the use of facially chelating tridentate ligands to aid in this transformation. Stoichiometric studies have shown that bidentate ligands which can adopt a tridentate, facially chelating coordination mode enable oxidation of hydrocarbyl $\mathrm{M}(\mathrm{II})$ complexes ($\mathrm{M}=\mathrm{Pt}$ or Pd) utilizing $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{123}$ or molecular oxygen ${ }^{86}$. For example, the tris(pyrazol-1yl)borate ligand has been used to enable the oxidation of a hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complex to its $\mathrm{Pd}(\mathrm{IV})$ analogue using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant (eq. 1.7), while the dpk ligand enabled the oxidation of a (dpk) PtMe_{2} complex to its $\mathrm{Pt}(\mathrm{IV})$ analogue using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant in methanol (eq. 1.8). ${ }^{123}$ The 2-dipyridylmethanesulfonate (dpms) ligand has also been used to enable functionalization of $\mathrm{C}-\mathrm{Pt}$ bonds using dioxygen as oxidant (eq. 1.9). These potentially tridentate ligands are proposed to enable oxidation of $\mathrm{M}(\mathrm{II})$ to $\mathrm{M}(\mathrm{IV})$ species with relatively less reactive oxidants because the pendant third arm can lower the activation energy of oxidation by incipient formation of the third M-O bond upon oxidation to the $\mathrm{M}(\mathrm{IV})$ species. ${ }^{85,124}$ Additionally, since this is an intramolecular event, it occurs without the entropy penalty involved with coordinating a free ligand. ${ }^{125}$

Our approach involves utilizing bidentate, potentially tridentate facially chelating ligands to enable oxidation of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes with O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$, and also stabilize the resulting high oxidation state palladium complexes. These reactions will enable us to study the oxidation reaction utilizing dioxygen and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidants, and the reductive elimination reaction from the resulting $\mathrm{Pd}(\mathrm{IV})$ species. The understanding of the mechanism of oxidation of $\mathrm{Pd}(\mathrm{II})$ complexes with these oxidants, and $\mathrm{C}-\mathrm{O}$ reductive elimination from the resulting high valent Pd complexes will enable us to optimize these steps, with the ultimate goal of developing a suitable palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation reaction utilizing O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant.

In addition, we also plan to develop palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond halogenation reactions utilizing O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ in HX solvents $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I). Most of these halogenation reactions currently require oxidants such as $\mathrm{X}_{2}, \mathrm{NXS}$, and PhIX_{2}, which produce stoichiometric amounts of waste products. Thus, the use of O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ in water will render these transformations more atom economical, and thus more applicable to large scale synthesis. ${ }^{33,126}$

In order to develop more environmentally friendly procedures for the halogenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, our approach will involve synthesis of model halogeno-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes capable of undergoing $\mathrm{C}-$ halogen bond reductive elimination, utilizing environmentally friendly oxidants in water. Most hydrocarbyl halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ and $\mathrm{Pd}(\mathrm{III})$ complexes have been prepared using oxidants such as $\mathrm{NXS}^{118,127}$ and $\mathrm{PhIX}_{2}{ }^{59,118}(\mathrm{X}=\mathrm{Cl}$ and Br$)$. A more atom-economical procedure for the preparation of model halogeno-ligated monohydrocarbyl Pd(IV) complexes would involve ligand enabled oxidation of organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, with subsequent reaction of the $\mathrm{Pd}(\mathrm{IV})$ hydroxo species with HX acids $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I) (Scheme 1.21). $\mathrm{C}-\mathrm{X}$ bondforming reductive elimination reaction from the halogeno-ligated monohydrocarbyl $\operatorname{Pd}(I V)$ complexes will also be studied.

Scheme 1.21

In summary, we plan to develop "green" procedures for palladium catalyzed aromatic $\mathrm{C}-\mathrm{H}$ bond oxygenation and halogenation reactions utilizing environmentally benign oxidants such as O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$. Our approach involves study of stoichiometric organometallic reactions to optimize each step involved in the catalytic cycle presented in Scheme 1.20 above. Since oxidation of C-Pd bonds utilizing dioxygen and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ is challenging, we plan to use bidentate, potentially tridentate ligands to enable this transformation.

Chapter 2: Synthesis of Monohydrocarbyl Pd(IV) Complexes

2.1 Introduction

Scheme 2.1

Directed, palladium catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bond functionalization utilizing strong oxidants has undergone significant development during the past 10 years (Scheme 2.1). ${ }^{24}$ Some oxidants used in these transformations include $I^{I I I}$ based reagents such as $\mathrm{PhI}(\mathrm{OAc})_{2},{ }^{128} \mathrm{NXS}(\mathrm{X}=\mathrm{Br}, \mathrm{Cl}$, or I$),{ }^{32}$ and peroxide based oxidants such as Oxone, ${ }^{33}$ which are required in stoichiometric quantities to oxidize $\mathrm{Pd}(\mathrm{II})$ to either monomeric $\operatorname{Pd}(\mathrm{IV})$ or dimeric $\mathrm{Pd}(\mathrm{III})$ species. The proposed mechanism of these oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reactions is presented in Scheme 2.2 below.

Scheme 2.2

In the mechanism presented in this Scheme, Pd-catalyzed directed oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reactions have been proposed to proceed via initial $\mathrm{C}-\mathrm{H}$ bond activation at the $\operatorname{Pd}(\mathrm{II})$ center to generate a cyclopalladated intermediate $\mathbf{A} .{ }^{129}$ Complex A could undergo two-electron oxidation to produce a monomeric $\operatorname{Pd}(I V)$ complex \mathbf{B} or one-electron oxidation at each palladium center to produce a dimeric $\operatorname{Pd}($ III) complex \mathbf{C}, depending on the nature of the ancillary ligands present at the metal center. $\mathbf{C}-\mathrm{X}$ bond-forming reductive elimination from either complex \mathbf{B} or \mathbf{C} releases the product and regenerates the $\mathrm{Pd}(\mathrm{II})$ catalyst.

The intermediacy of complex \mathbf{A} in oxidative palladium catalyzed oxygenation reactions has been supported experimentally. ${ }^{50}$ Sanford and co-workers observed that the palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond acetoxylation of benzo[h]quinoline substrate proceeds with similar rate constants when either $\mathrm{Pd}(\mathrm{OAc})_{2}$ or the acetate-bridged benzo[h]quinoline-derived palladacycle $\mathbf{1}$ is used as catalyst in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ oxidant. The stoichiometric reaction of complex 1 with $\mathrm{PhI}(\mathrm{OAc})_{2}$ was also observed to produce the corresponding acetoxylated product. These observations indicate that complex $\mathbf{1}$ is a chemically viable intermediate in these reactions. Additional mechanistic studies indicated that the catalytic $\mathrm{C}-\mathrm{H}$ bond functionalization reaction takes place via rate-limiting cyclopalladation, step a. ${ }^{49,50}$ As a result, it is not possible to study the oxidation step \mathbf{b} and subsequent $\mathrm{C}-\mathrm{X}$ bond reductive elimination step \mathbf{c} in Scheme 2.2. Consequently, these studies have been limited to the synthesis and study of the reactivity of model complexes.

The study of model complexes has shown that oxidation of arylpalladium(II) complexes to produce either mononuclear $\mathrm{Pd}(\mathrm{IV})$ or dinuclear $\mathrm{Pd}(\mathrm{III})$ complexes with
hypervalent iodine oxidants is feasible, and the $\mathrm{C}-\mathrm{X}$ reductive elimination ($\mathrm{X}=\mathrm{OAc}$ or Cl) reaction upon thermolysis of these high valent palladium complexes has also been demonstrated (equation 2.1 and 2.2 below). These studies indicate that the mononuclear $\mathrm{Pd}(\mathrm{IV})$ and dinuclear $\mathrm{Pd}(\mathrm{III})$ complexes are chemically viable intermediates in the oxidative palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions. A monomeric $\operatorname{Pd}(\mathrm{IV})$ complex has also been shown to be kinetically competent intermediate in the palladium catalyzed transformations. The mononuclear $\operatorname{Pd}(I V)$ complex 2 (eq. 2.1) was shown to catalyze trifluoromethylation of benzo[h]quinoline substrates at a faster rate than the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst under similar conditions, and similar product yields were also obtained. ${ }^{130}$ These results demonstrate the kinetic competence of complex 2 in the palladium catalyzed trifluoromethylation reactions, and also confirm the potential viability of this complex as a catalytic intermediate in the palladium catalyzed transformation.

The kinetic competency of dinuclear $\mathrm{Pd}(\mathrm{III})$ complexes as intermediates in catalytic reactions has been demonstrated numerous times. In one example, complex

4 (eq. 2.2) was shown to be kinetically competent in the palladium catalyzed acetoxylation of phenylpyridine-derived complexes. ${ }^{131}$ Dinuclear Pd(III) complexes 5 and $\mathbf{6}$ have also been shown to be chemically and kinetically competent intermediates in the palladium catalyzed ortho-chlorination of benzo[h]quinoline and phenylpyridine substrates respectively. ${ }^{46,59}$

Chart 2.1

5

6

These studies indicate that either monomeric $\operatorname{Pd}(\mathrm{IV})$ or dimeric $\mathrm{Pd}(\mathrm{III})$ complexes could be active intermediates in oxidative palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions depending on the auxiliary ligands and reaction conditions. However these studies have no demonstrated relevance to catalysis because there is no basis to discriminate between the potential mechanisms involving oxidation to either dinuclear $\mathrm{Pd}(\mathrm{III})$ or mononuclear $\mathrm{Pd}(\mathrm{IV})$ intermediates since it is not possible to study these intermediate complexes due to rate-limiting cyclopalladation reaction. Consequently, the study of model complexes only provides insights into the reactivity of high oxidation state palladium centers which may be relevant to the oxidative catalytic transformations. These insights are important because any advanced knowledge of the possible pathways of oxidation and $\mathrm{C}-\mathrm{O}$ reductive elimination from high oxidation state palladium complexes might be very beneficial in the design of more selective, efficient, and environmentally benign palladium catalyzed functionalization reactions. ${ }^{132}$

While a number of model dinuclear Pd (III) and mononuclear dihydrocarbyl $\operatorname{Pd}(I V)$ complexes have been prepared and their reactivity towards $\mathrm{C}-\mathrm{X}$ bond formation studied, few monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ model complexes have been prepared and the study of their reactivity conducted. The difficulty to prepare and isolate stable monohydrocarbyl $\operatorname{Pd}(I V)$ complexes stems from the fact that these complexes are too reactive. The presence of multiple hydrocarbyl ligands on the palladium coordination sphere of isolable Pd(IV) complexes often leads to unwanted $\mathrm{C}-\mathrm{C}$ bond forming side reactions that make the study of $\mathrm{C}-\mathrm{X}$ reductive elimination reactions from these complexes challenging, thus demonstrating the need to prepare monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes. In addition, monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes are relevant intermediates in oxidative palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions since the ligands on the palladium coordination sphere of the proposed $\operatorname{Pd}(\mathrm{IV})$ catalytic intermediates are usually represented by sticks, implying the possibility of either mono- or dihydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ species. Given that polyhydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes have been studied several times, it is therefore important to prepare and study the reactivity of monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes.

Very few monohydrocarbyl Pd(IV) complexes had been prepared before our work. One such $\mathrm{Pd}(\mathrm{IV})$ monohydrocarbyl is complex is $\mathbf{8}$ (eq. 2.3), which was prepared by oxidation of the $\mathrm{Pd}(\mathrm{II})$ complex 7 with PhICl_{2} at low temperature. Complex $\mathbf{8}$ is stabilized by a carbene, an alkoxide, and two chloride ligands, and is stable for at least one week at room temperature. It however undergoes $\mathrm{C}-\mathrm{Cl}$ reductive elimination upon thermolysis. ${ }^{133}$

Another monohydrocarbyl Pd(IV) complex 11 was prepared by oxidation of the $\mathrm{Pd}(\mathrm{II})$ complex 10 with XeF_{2} (eq. 2.4). Complex $\mathbf{1 1}$ is stabilized by multiple fluoride ligands, and undergoes high yielding $\mathrm{C}-\mathrm{F}$ reductive elimination in the presence of F^{+}sources such as XeF_{2}, N-fluorosulfanamide, and 1-fluoro-2,4,6trimethylpyridinium tetrafluoroborate; only trace amounts of C-F bond coupling products are observed in the absence of $\mathrm{F}+$ sources. ${ }^{134}$

entry	" F^{+}"	$\mathbf{1 2}$	$\mathbf{1 3}$
$\mathbf{1}$	None	Trace	$\mathbf{3 5 \%}$
$\mathbf{2}$	XeF_{2}	92%	$\mathbf{4 \%}$
$\mathbf{3}$	$\left(\mathbf{P h S O}_{2}\right)_{\mathbf{2}} \mathbf{N F}$	$\mathbf{8 3 \%}$	$<\mathbf{1 \%}$

Another fluoro-ligated monohydrocarbyl Pd(IV) complex 15 (Scheme 2.3) was prepared by oxidation of complex 14 with Selectfluor, but the difluoro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 16 was produced when XeF_{2} was used as the oxidant instead. These $\operatorname{Pd}(I V)$ monohydrocarbyls are stabilized by the anionic pyridyl sulfonamide and fluoride ligands. The difluoride complex $\mathbf{1 6}$ is thermally more stable than the
monofluoride complex 15, but both complexes undergo $\mathrm{C}-\mathrm{F}$ bond-forming reductive elimination in various solvents upon thermolysis. ${ }^{135}$

Scheme 2.3

Daugulis and co-workers also prepared the monohydrocarbyl Pd(IV) complex 19 (eq. 2.5) by oxidation of complex 18 with Br_{2}. This complex is stabilized by a dianionic tridentate NNC, and bromide ligands. The reactivity of this complex was however not studied because it was too reactive and decomposed at $0^{\circ} \mathrm{C}$ within hours in solution. ${ }^{136}$

These monohydrocarbyl-Pd(IV) complexes can be viewed as models of potential intermediates in $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ mediated $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{Cl}$ functionalization reactions. ${ }^{135,137-141}$ However Pd(IV) monohydrocarbyls have never been shown to undergo $\mathrm{C}-\mathrm{O}$ reductive elimination. This is mainly because most isolable O-ligated monohydrocarbyl Pd(IV) complexes possess other heteroatomic ligands such as halogens in the palladium coordination sphere, leading to side reactions such as $\mathrm{C}-$
halogen reductive elimination. $\mathrm{C}-\mathrm{O}$ reductive elimination from these $\mathrm{Pd}(\mathrm{IV})$ monohydrocarbyls would therefore be more effective in the absence of other heteroatoms on the Pd coordination sphere except oxygen. An even more attractive goal would be to prepare the monohydrocarbyl Pd(IV) complexes using O_{2} and/ or $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidants, as this will ultimately lead to the development of "green" Pd-catalyzed transformations.

The reaction of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes with molecular oxygen has been demonstrated. ${ }^{142}$ Goldberg and co-workers observed insertion of molecular oxygen into the $\mathrm{Pd}-\mathrm{C}$ bond of a (bpy)PdMe ${ }_{2}$ complex 20 to form (bpy)PdMe(OOMe) complex 21 (eq. 2.6). Kinetic studies of this reaction supported the involvement of a radical chain mechanism, where the chain propagation was proposed to proceed via a stepwise associative homolytic substitution at the Pd center of $\mathbf{2 0}$ via a pentacoordinate $\mathrm{Pd}(\mathrm{III})$ intermediate. Aerobic oxidation of $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues has however never been reported.

Oxygenation of $\mathrm{C}-\mathrm{Pd}$ bonds using hydroperoxide based oxidants has also been observed. Van Koten and co-workers reported oxygenation of the $\mathrm{C}-\mathrm{Pd}$ bond of cyclopalladated benzylamine complex $\mathbf{2 2}$ using tert-butyl peroxide as oxidant in the presence of a vanadium catalyst (eq. 2.7). ${ }^{120}$ Bandyopadhyay and co-workers also reported insertion of oxygen atom into the $\mathrm{Pd}-\mathrm{C}$ bond of cyclopalladated azobenzene derivatives 24 and 25 using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant in the presence of Fe (III) porphyrin
catalysts (eq. 2.8). ${ }^{121}$ These oxapalladation reactions were proposed to take place via $\mathrm{Pd}(\mathrm{IV})$ intermediates, but these intermediates were not detected in solution.

The oxidation of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues in the absence of additives had only been demonstrated once before our work. In a 1996 report by Canty, a tris(pyrazolyl)borate-ligated diorganopalladium(II) complex 28 reacted with $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce the corresponding hydroxodiorganopalladium(IV) analogue 29 (eq. 2.9). ${ }^{81,122}$ This was the first time $\mathrm{H}_{2} \mathrm{O}_{2}$ was used to oxidize a hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complex to the corresponding hydrocarbyl $\operatorname{Pd}(\mathrm{IV})$ species. This oxidation reaction was presumably enabled by the tris(pyrazolyl)borate ligand, which was also important in the stabilization of the corresponding $\operatorname{Pd}(I V)$ species. These results indicate that similar bidentate, but potentially tridentate, facially ligands may enable oxidation of organopalladium (II) complexes with dioxygen or hydrogen peroxide, and also stabilize the resulting organopalladium(IV) complexes.

The ability of facially chelating tridentate ligands to enable oxidation of M(II) species by O_{2} has also been demonstrated ($\mathrm{M}=\mathrm{Pt}$ or Pd). Vedernikov and co-workers found that the 2-dypyridylmethanesulfonate (dpms) ligand enables aerobic oxidation of a dimethyl- $\mathrm{Pt}(\mathrm{II})$ complex 30 to the hydroxydimethyl $\mathrm{Pt}(\mathrm{IV})$ complex 31 (eq. 2.10). ${ }^{86}$ This ligand combines two moderately good pyridine donors and a tethered labile sulfonate group. ${ }^{86}$ The sulfonate arm can lower the activation energy of oxidation by incipient formation of the $\mathrm{Pt}-\mathrm{O}$ bond upon oxidation to the octahedral $\mathrm{Pt}(\mathrm{IV})$ species. ${ }^{85,124}$ The dpms ligand also enabled aerobic oxidation of a hydroxoPt(II) ethylene complex $\mathbf{3 3}$ to produce the corresponding 2hydroxyethylPt(IV) complex 34 (eq. 2.11). ${ }^{143}$

The dimethyl(2-pyridyl)borate ligand has also been observed to enable aerobic oxidation of a dimethylPt(II) complex 35 to its $\operatorname{Pt}(\mathrm{IV})$ analogue 36 (eq. 2.12). Similar to the dpms ligand, this anionic, potentially facially chelating tridentate ligand tuned the reactivity of $\mathrm{Pt}(\mathrm{II})$ towards oxidation with dioxygen. ${ }^{144}$

These N -donor tridentate ligands are proposed to enable oxidation of M (II) to M(IV) species with relatively less reactive oxidants because the pendant third arm can lower the activation energy of oxidation by incipient formation of the third $\mathrm{Pd}-\mathrm{X}$ bond ($\mathrm{X}=\mathrm{O}$ or N) upon oxidation to the $\mathrm{M}(\mathrm{IV})$ species. ${ }^{85,124}$ Since this is an intramolecular event, it occurs without the entropy penalty involved with coordinating a free ligand. ${ }^{125}$ Furthermore, coordination of the anionic third arm also provides stability to the octahedral $\mathrm{Pd}(\mathrm{IV})$ product and in most cases enables its isolation. ${ }^{86}$

The ability of κ^{3} ligands to stabilize the $\operatorname{Pd}(\mathrm{IV})$ products has been demonstrated. Canty characterized a serious of trimethylPd(IV) complexes with various ligands and established that $\mathrm{Pd}(\mathrm{IV})$ complexes with bidentate ligands are less stable than those with tridentate ligands, where bidentate-ligated complexes had to be stored below $-20^{\circ} \mathrm{C}$, while those with tridentate ligands were stable as solids at ambient temperature. ${ }^{145}$ The enhanced stability of tridentate ligands was proposed to partly result from the requirement for dissociation of one donor group of the tripod ligand prior to reductive elimination.

Apart from the dpms and the dimethyl(2-pyridyl)borate ligands discussed above, scorpionate ligands such as bis(pyrazol-1-yl)borate and the neutral tris(pyrazol-1-yl)methane) have also been used to stabilize $\mathrm{Pd}(\mathrm{IV})$ complexes. ${ }^{146} \mathrm{~A}$ thermally stable trimethylPd(IV) complex $\mathbf{3 7}$ was synthesized by Vedernikov and coworkers using the facially chelating triazacyclononane ligand (see scheme 2.4 below). ${ }^{147}$ This compound was thermally very stable, decomposing in the solid state at $152-154^{\circ} \mathrm{C}$. It eliminates ethane upon thermolysis in dmso at $140^{\circ} \mathrm{C}$. Another
trimethyl-Pd(IV) complex 38 that was stable at room temperature was prepared using a facially chelating tridentate ligand 1,4,7-trithiacyclononane (tten). ${ }^{148}$ Considering that $\operatorname{Pd}(I V)$ complexes have a strong preference for N -donor ligands, ${ }^{149}$ it is remarkable that complex 38, which is exclusively stabilized by S-donor ligands displays such stability at room temperature. A stable trialkyl-Pd(IV) complex 39 stabilized exclusively through O -donor ligands was also synthesized using the facially chelating, tridentate ligand $\left(\mathrm{L}^{-}=\left[\mathrm{CpCo}^{150}\right]^{-}\right) .{ }^{150}$ The unusual stability of complexes $\mathbf{3 7}$, $\mathbf{3 8}$ and $\mathbf{3 9}$ demonstrates the excellent stabilizing capability of facially chelating tridentate ligands.

Scheme 2.4

37

38

39

Therefore, considering that potentially facially chelating tridentate ligands have been shown to enable oxidation of $M(I I)$ complexes to their $M(I V)$ analogues $(\mathrm{M}=\mathrm{Pt}$ or Pd$)$ using either dioxygen or hydrogen peroxide, and these ligands have been shown to stabilize the resulting $\mathrm{M}(\mathrm{IV})$ complexes at the same time, we plan to use similar facially chelating tridentate ligands to enable oxidation of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues using either dioxygen or hydrogen peroxide as oxidants, and also to stabilize the resultant monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes.

2.2.1 Preparation of Acetato-bridged Palladacycles 49-57

We started our study by synthesizing the acetate-bridged palladacycles 49-57 and analyzing their reactivity towards dioxygen. Oxidation of X-bridged palladacycles has been demonstrated before, but stronger oxidants such as $\operatorname{PhI}(\mathrm{OAc})_{2},{ }^{50,59}$ and m - $\mathrm{CPBA},{ }^{74}$ or less reactive oxidants such as tert-butyl hydroperoxide in the presence of vanadium catalysts, ${ }^{120}$ were required in these oxidation reactions; no oxidation of X-bridged palladacycles has been reported with either dioxygen or $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidants. Thus complexes 49-57 were synthesized and exposed to dioxygen in acetic acid solvent.

The 2-aroylpyridine-derived acetato-bridged palladacycles 49 and 50 were prepared according to literature. ${ }^{151}$ The substrate $\mathbf{4 0}$ or $\mathbf{4 1}$ was combined with 1.0 equivalent of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid, the resulting solution was refluxed for 3 hours,
concentrated to produce dark yellow precipite, and the precipitate was filtered off to produce the target compounds in good yields. The identity of compound 49 was confirmed by comparing its NMR spectra to literature, while the identity of compound $\mathbf{5 0}$ was confirmed by NMR and its purity was confirmed by elemental analysis. Proton NMR spectroscopy revealed the presence of two species, presumably cis- and trans- isomers whose ratio was determined by integration of the NMR spectra (Table 2.1).

Table 2.1. Ratio of the presumed cis- and trans- isomers of complexes $\mathbf{4 9}$ and 50, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3} at $22^{\circ} \mathrm{C}$.

Entry	Complex	R	Major	Minor	Yield (\%)
1	$\mathbf{4 9}$	-H	95	5	83
2	$\mathbf{5 0}$	-Me	94	6	96

Phenylpyridine-derived dinuclear acetato-bridged palladacycles were prepared by a modified literature procedure. ${ }^{127}$ A substituted phenylpyridine derivative 42-45 and $\operatorname{Pd}(\mathrm{OAc})_{2}(1.0$ eq.) were combined in acetic acid and the solution was either refluxed for 4 hours or stirred at $80^{\circ} \mathrm{C}$ for 12 hours. The solutions were concentrated to produce yellow precipitate, which was filtered off to produce the target complexes 51-54 in high yields. The complexes were isolated as a mixture of two species, presumably cis- and trans- isomers whose ratios were determined via ${ }^{1} \mathrm{H}$ NMR integration (Table 2.2). The identity of the products was confirmed by NMR spectroscopy while the purity was confirmed by elemental analysis.

Table 2.2. Ratio of the presumed cis- and trans- isomers of complexes 51-54 as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3} at $22^{\circ} \mathrm{C}$.

Entry	Complex	R	Major	Minor	Yield (\%)
1	$\mathbf{5 1}$	-H	92	8	92
2	$\mathbf{5 2}$	-Me	86	14	95
3	$\mathbf{5 3}$	-OMe	82	18	85
4	$\mathbf{5 4}$	-F	86	14	79

The acetato-bridged palladacycles 55 and 56 derived from substituted acetophenone oxime derivatives were prepared by stirring an acetic acid solution of palladium acetate $(1.00 \mathrm{mmol})$ and a substituted acetophenone oxime derivative $\mathbf{4 6}$ or $47(1.05 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 8 hours. Concentration of the resulting solution produced deep yellow precipitate, which was filtered off to produce the target complex in high yield. The identity of the complexes was confirmed by NMR spectroscopy while the purity was confirmed by elemental analysis. Proton NMR spectroscopy revealed the presence of two species, presumably cis- and trans- isomers whose ratio could be determined by integration of the NMR spectra.

Table 2.3. Ratio of the presumed cis- and trans- isomers of complexes $\mathbf{5 5}$ and 56, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in dmso- d_{6} at $22^{\circ} \mathrm{C}$.

Entry	Complex	R	Major	Minor	Yield (\%)
1	$\mathbf{5 5}$	-H	68	32	96
2	$\mathbf{5 6}$	$-\mathrm{CF}_{3}$	79	21	92

Phenoxypyridine-derived acetate-bridged palladacycle 57 was prepared by a modified literature procedure, ${ }^{152}$ where Phenoxypyridine and $\operatorname{Pd}(\mathrm{OAc})_{2}$ (1.0 eq.) were stirred in acetic acid at $50^{\circ} \mathrm{C}$ for 12 hours to produce the target complex as a light yellow precipitate, which was filtered off. The identity of the complex was confirmed by comparing its spectra to that reported in literature. Proton NMR revealed the presence of two species, presumably cis- and trans- isomers whose ratio was determined to be 92% to 8% according to ${ }^{1} \mathrm{H}$ NMR integration in CDCl_{3} solvent at $22^{\circ} \mathrm{C}$.

2.2.2 Attempted Aerobic Oxidation of Acetato-bridged Palladacycles

Aerobic oxidation of the acetato-bridged palladacycles 49-57 was attempted in acetic acid solvent. A study by Goldberg and co-workers revealed that molecular O_{2} could insert into a $\mathrm{Pd}(\mathrm{II})-\mathrm{C}$ bond of a dimethyl-Pd(II) complex to produce a $\mathrm{Pd}(\mathrm{II})-$ alkylperoxide species via a radical chain mechanism. ${ }^{142}$ Therefore, we subjected our palladacyclic reaction mixtures to aerobic oxidation.

We used 3 complexes as representative samples to study the oxidation of OAc-bridged palladacycles with dioxygen. Complex 49 was used as representative sample for aroylpyridine complexes, $\mathbf{5 5}$ was used as representative sample for acetophenone oxime-derived complexes, and complex 52 was used as representative sample for R-phenylpyridine-derived complexes. 0.02 mmoles of the OAc-bridged palladacyclic complexes were combined with 1.0 ml of deuterated acetic acid, 10% acetic anhydride by volume was added to the solution containing complex 55 to prevent hydrolysis of the oxime moiety, and these reaction mixtures were purged with dioxygen for 10 minutes. The reaction mixtures were then transferred to J. Young

NMR tubes and oxygen was purged into the tubes for an additional 10 minutes. ${ }^{1} \mathrm{H}$ NMR spectra were collected at the start of the reactions, and the J. Young NMR tubes were heated in oil-bath at $100^{\circ} \mathrm{C}$; additional ${ }^{1} \mathrm{H}$ NMR spectra were taken periodically. After 3 days, no products of oxidation were detected by either ${ }^{1} \mathrm{H}$ NMR spectroscopy or ESI-MS.

As a result, dpms-ligated complexes were prepared and subjected to aerobic oxidation. There have been a number of literature reports on the oxidation of $\mathrm{Pt}(\mathrm{II})$ hydrocarbyls with dioxygen enabled by anionic facially chelating ligands, including the dpms ligand. As mentioned before, Vedernikov and co-workers observed ligandenabled aerobic oxidation of $\operatorname{Pt}(\mathrm{II})$ to $\mathrm{Pt}(\mathrm{IV})$ hydrocarbyl complexes using the 2dipyridylmethanesulfonate (dpms) ligand. This anionic bidentate ligand enabled the aerobic oxidation reactions because it has the potential to adopt a facially chelating tridentate coordination mode which can stabilize the octahedral geometry, and thus facilitate oxidation of a M^{II} to M^{IV} monohydrocarbyl with relatively less reactive oxidants. ${ }^{126}$ As a result, we expected the dpms ligand to enable aerobic oxidation of $\mathrm{Pd}(\mathrm{II})$ monohydrocarbyls to the $\mathrm{Pd}(\mathrm{IV})$ analogues.

2.3 Preparation and Reactivity of dpms-ligated Palladacycles 58-60

2.3.1 Preparation of Complexes 58-60

Chart 2.3

58

59

60

The preparation and characterization of complex $\mathbf{5 8}$ was performed by Zhang and co-workers (Zhang, unpublished results). Complexes $\mathbf{5 9}$ and $\mathbf{6 0}$ were prepared by combining the acetato-bridged palladacycles 55 or $\mathbf{4 9}$ with the dpms ligand (1.05 eq.) in water and methanol solvents respectively at ambient conditions. These complexes were isolated as white solids, and their identity was confirmed by NMR spectroscopy and electrospray ionization mass spectrometry, while their purity was confirmed by elemental analysis.

2.3.2 Attempted Aerobic Oxidation of dpms-ligated Palladacycles 58-60

Complexes $\mathbf{5 8}$ and $\mathbf{5 9}$ were used as representative samples for this oxidation reaction. Vedernikov and Zhang obtained promising results when they observed aerobic oxidation of the dpms complex of cyclopalladated tolylpyridine $\mathbf{5 8}$ in acetic acid at $110{ }^{\circ} \mathrm{C}$, albeit at a very low yield of $\sim 5 \%$ (Zhang, unpublished results). However when a 0.010 M acetic acid solution of complex 59 was refluxed for 48 hours, no products of oxidation were detected by ${ }^{1} \mathrm{H}$ NMR or ESI-MS analysis. These results indicate that aerobic oxidation of $\mathrm{Pd}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bonds using the dpms ligand is too slow under these conditions. As a result $\mathrm{H}_{2} \mathrm{O}_{2}$, which is a stronger oxidant, was used.

Oxidation of organopalladium(II) compounds with $\mathrm{H}_{2} \mathrm{O}_{2}$ has been reported before. In one study, Bandyopadhyay and co-workers reported the oxapalladation of cyclopalladated azobenzenes with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of an Iron(III) porphyrin catalyst (eq. 2.8). ${ }^{121}$ Canty and co-workers also reported the oxidation of a diorganopalladium(II) compound to the corresponding hydroxo-diorganopalladium
(IV) analogue using $\mathrm{H}_{2} \mathrm{O}_{2}$ (eq. 2.9) in the presence of an ionic tris(pyrazolyl)borate ligand. ${ }^{81,122}$

Considering the successful oxidation of a dihydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complex using $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of a tridentate ligand reported by Canty and co-workers (eq. 2.9) and the aerobic oxidation of organoplatinum(II) complexes in the presence of facially chelating tridentate ligands reported by Vedernikov and co-workers, we expected to achieve oxidation of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ analogues using $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of dpms, which is a tridentate, facially chelating ligand.

However, we started our studies by determining whether the oxidation of acetate-bridged palladacycles would be facile using $\mathrm{H}_{2} \mathrm{O}_{2}$ in the absence of ligands. Oxygenation of Cl -bridged palladacycles utilizing hydroperoxide based oxidants was achieved by Van Koten and co-workers only in the presence of vanadium catalysts (eq. 2.7), while efficient oxidation of X-bridged palladacycles utilizing hydroperoxide based oxidants in the absence of additives or ligands has never been achieved.

2.3.3 Attempted Oxidation of Acetato-bridged Palladacycles 49-57 with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$

We used 4 complexes as representative samples to study the oxidation of OAc-bridged palladacycles with $\mathrm{H}_{2} \mathrm{O}_{2}$. Complex 49 was used as representative complex for aroylpyridine-derived complexes, $\mathbf{5 5}$ was used as representative sample for acetophenone oxime-derived complexes, complex $\mathbf{5 2}$ was used as representative sample for R-phenylpyridine-derived complexes, and complex 57 were oxidized with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid. Thus, 0.02 mmoles of complexes 49-57 in 0.8 ml of deuterated
acetic acid were transferred to NMR tubes. ${ }^{1} \mathrm{H}$ NMR spectra were collected at the start of the reactions and 10.0 equivalents of $30 \% \mathrm{HOOH}$ were added. The resulting solutions were stirred for 2.5 hours at room temperature. Upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, the reaction mixture of complex 55 dissolved to produce a brown solution, while the reaction mixtures of the other 3 complexes remained heterogeneous. After stirring for 2.5 hours at room temperature, pyridine $-d_{5}$ was added to the reaction solutions to free any coordinated products of oxidation and ${ }^{1} \mathrm{H}$ NMR was taken; addition of 5.0 eq of pyridine led to complete dissolution of all the complexes in acetic acid. ${ }^{1} \mathrm{H}$ NMR analysis of the reaction solution of complex 49 revealed $\sim 15 \%$ conversion and the presence of 8% phenol and 4% aryl acetate. ${ }^{1} \mathrm{H}$ NMR analysis of complex 52 revealed the presence of the reactants with no other species in the solution. ${ }^{1} \mathrm{H}$ NMR analysis of complex 55 revealed $<5 \%$ conversion to the corresponding phenol and aryl acetate, while that of complex $\mathbf{5 7}$ showed no other species in solution except the $\mathrm{Pd}(\mathrm{II})$ precursor.

Oxidation was only observed from the 2-benzoylpyridine derived palladacycle 49 to produce the corresponding phenol and aryl acetate products. This reaction presumably proceeds via high oxidation state palladium intermediates which were not detected by ${ }^{1} \mathrm{H}$ NMR analysis. Given that reactivity was observed with a complex which possesses the $\mathrm{C}=\mathrm{O}$ bond, this indicates that this group might be necessary for the oxidation of organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$. Presumably, the $\mathrm{C}=\mathrm{O}$ group undergoes hydration to produce a facially chelating ligand which in turn enables oxidation of $\mathrm{Pd}(\mathrm{II})$ to high oxidation state palladium complexes, which subsequently undergoes $\mathrm{C}-\mathrm{O}$ bond coupling to generate the oxidized products.

As a result, the oxidation reactions are expected to be facile in the presence of the dpms ligand, which is a bidentate N -donor ligand with the potential to adopt a facially chelating tridentate coordination mode. Besides, the dpms ligand has been shown to facilitate oxidation of organoplatinum(II) complexes with dioxygen. ${ }^{86}$

2.3.4 Reactivity of dpms-ligated Palladacycles 58-60 Towards Oxidation with

$\underline{H}_{2} \underline{\mathrm{O}}_{2}$

When a methanolic solution of complex $\mathbf{5 8}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ were combined, Zhang and co-workers observed near quantitative oxygen insertion into the $\mathrm{C}-\mathrm{Pd}$ bond at ambient conditions to produce the corresponding oxapalladacycle 61 (Zhang, unpublished results). However no $\operatorname{Pd}(\mathrm{IV})$ intermediates were detected in this reaction. Inspired by this result, the oxidation of complexes $\mathbf{5 9 - 6 0}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ was attempted. In the oxidation of complex $\mathbf{5 9}$, a 0.010 M methanolic solution of the complex was combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at ambient conditions. Formation of the corresponding oxapalladacycle 63 among other unidentified products was observed via both ${ }^{1} \mathrm{H}$ NMR and ESI-MS analysis. The reaction of 0.010 mmoles of complex $\mathbf{6 0}$ in 1.0 ml of methanol with $\mathrm{H}_{2} \mathrm{O}_{2}$ was also investigated. This complex was poorly soluble in methanol. 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added to the reaction mixture and the resulting mixture was stirred at room temperature for 12 hours. After 12 hours, no changes to the reaction mixture were visually observed or detected by ${ }^{1} \mathrm{H}$ NMR. The slow reactivity is probably due to the poor solubility of this complex in methanol.

With these results in hand, we attempted the oxidation reactions in water. When 0.010 mmoles of complexes $\mathbf{5 8 - 6 0}$ were combined with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at ambient conditions, no changes were observed by ${ }^{1} \mathrm{H}$ NMR over 12 hours. We hypothesized that the slow reactivity of these complexes was due to their poor solubility in water. As a result, we decided to improve the solubility of complex 59 by preparing its anionic analogue and subjecting this solution towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$. An aqueous reaction mixture of 0.010 mmoles of complex $\mathbf{5 9}$ was prepared and 1.0 equivalent of NaOD was added to this reaction mixture. Addition of the base led to complete dissolution of the white precipitate to produce a colorless solution. The dissolution resulted probably due to formation of an anionic $\mathrm{Pd}(\mathrm{II})$ complex 62 produced upon deprotonation of the oxime moiety as shown below (see eq. 2.14). Addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ resulted in formation of the corresponding oxapalladacycle 63 cleanly according to both ${ }^{1} \mathrm{H}$ NMR and ESI-MS. The $\mathrm{H}_{2} \mathrm{O}_{2}$ was added in 1.0 equivalent batches in 10 minute intervals because decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is fast in basic aqueous solutions. Complex 63 was fully characterized, including NMR spectroscopy, ESI-MS, and X-ray diffraction (Fig. 2.1), while its purity was confirmed using elemental analysis.

Figure 2.1. ORTEP drawing (50 \% probability ellipsoid) of complex 63
The slow reactivity of complexes $\mathbf{5 8 - 6 0}$ in neutral water, and the lack of detection of $\mathrm{Pd}(\mathrm{IV})$ intermediates during the oxidation of basic aqueous solution of complex 59 led us to attempt the oxidation reactions using the 2-dipyridylketone (dpk) ligand. We expect the complexes containing the dpk ligand to be cationic, and thus more soluble in hydroxylic solvents such as water and methanol. Better solubility of these complexes is expected to result in faster and cleaner oxidation reactions, and access to the deprotonated form of the solvated dpk ligand is expected to stabilize the resulting $\operatorname{Pd}(\mathrm{IV})$ complexes and allow for their detection in solution. In its hydrated and deprotonated form, the alkoxide is expected to stabilize the $\operatorname{Pd}(\mathrm{IV})$ center better than sulfonate group of the dpms since it is more basic, and thus allow for isolation of the $\mathrm{Pd}(\mathrm{IV})$ complexes.

Scheme 2.5

Hydration of the dpk complexes of platinum and palladium has been demonstrated previously. Uncoordinated dpk ligand has been shown to readily undergo addition of nucleophiles such as water to give its hydrated gem-diol form, ${ }^{153}$
dpk. $\mathrm{H}_{2} \mathrm{O}$, where the equilibrium constant for this reaction was calculated to be $K\left(\mathrm{dpk} . \mathrm{H}_{2} \mathrm{O} / \mathrm{dpk}\right)=4.0^{*} 10^{-2} .{ }^{154}$ The conversion of this sp^{2} hybridized C atom in dpk to sp^{3} in dpk. $\mathrm{H}_{2} \mathrm{O}$ was shown to be facilitated by metal coordination to the N -sites, where the equilibrium constant $K\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{dpk}\right)=3.0$ when the dpk ligand is complexed to cis- $\left[\operatorname{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}\right]^{2+}$. The equilibrium constant is much larger in the case of Pd , where literature has proposed near complete conversion to the hydrate form whenever dpk is bonded to $\mathrm{Pd}(\mathrm{II}) .{ }^{155}$

Because the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand in metal-coordinated dpk complexes is very susceptible to attack by nucleophiles, we expect $\mathrm{H}_{2} \mathrm{O}_{2}$ to attack the dpk ligand and bring the oxidant in close proximity to $\mathrm{Pd}(\mathrm{II})$, and thus facilitate oxidation of hydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes, and at the same time produce an anionic tridentate ligand with a facially chelating mode that will stabilize the resulting $\mathrm{Pd}(\mathrm{IV})$ species. ${ }^{125}$

The ability of the dpk ligand to enable oxidation of hydrocarbyl $\mathrm{Pt}(\mathrm{II})$ complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ and to stabilize the corresponding hydrocarbyl $\mathrm{Pt}(\mathrm{IV})$ complexes has been demonstrated. Puddephatt and co-workers oxidized a dpkPt(II) Me_{2} complex 64 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetone and obtained the corresponding dpkPt(IV) $\mathrm{Me}_{2}(\mathrm{OH})$ complex 65 (eq. 2.15). ${ }^{123}$ This oxidation reaction was enabled by the dpk ligand while the deprotonated dpk hydrate stabilized the resulting $\mathrm{Pt}(\mathrm{IV})$ species. We expect a similar reactivity in our system, where the dpk ligand will enable the oxidation reaction and stabilize the resulting monohydrocarbyl-Pd(IV) complexes.

2.4 Preparation of dpk-ligated Palladacycles 66-74

2.4.1 Preparation of dpk-ligated Palladacycles 66 and 67

Chart 2.4

The 2-aroylpyridine (aroyl = benzoyl or 3-methyl benzoyl) derived dpk-based palladacycles 66 and 67 were prepared by combining the acetate bridged palladacycle $\mathbf{4 9}$ or $\mathbf{5 0}$ and dpk ligand (1.05 eq.) in acetic acid under ambient conditions. The target complexes were obtained as white precipitate by trituration of the reaction solutions with diethyl ether. The identity of the complexes was confirmed using NMR spectroscopy and ESI-mass spectrometry, while the purity was confirmed by elemental analyses.

Scheme 2.6

Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 66 revealed two species in solution with a $95: 5$ \% ratio, while the ESI-MS analysis of the solution revealed two mass envelopes; one at $\mathrm{m} / \mathrm{z}=472.0203$ which was assigned to complex 66 (Calculated for 66, $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=472.0277$), and another at $\mathrm{m} / \mathrm{z}=490.0432$ which was assigned to complex 66 with an additional $\mathrm{H}_{2} \mathrm{O}$ molecule (calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}=490.0383$, the product of addition of $1 \mathrm{H}_{2} \mathrm{O}$ across a $\mathrm{C}=\mathrm{O}$ bond). This indicates that the species observed by ${ }^{1} \mathrm{H}$ NMR are the hydrated and dehydrated forms of complex $\mathbf{6 6}$. Using ${ }^{13} \mathrm{C}$ NMR in $\mathrm{D}_{2} \mathrm{O}$, the identity of the major complex was assigned as the $\mathrm{C}=\mathrm{O}$ hydrated complex, where a peak at 95.6 , characteristic of a hydrate, $C(\mathrm{OH})_{2}$ was observed. In addition, two low-field carbon shifts at 182.0 and 194.4 characteristic of $\mathrm{C}=\mathrm{O}$ were observed. These signals were assigned to the carbonyl carbons of the acetate and the benzoylpyridine moiety in the complex.

Literature has shown that hydration of dpk ligand becomes more facile upon coordination to $\mathrm{Pd}(\mathrm{II})$, and thus the major complex is expected to be hydrated. ${ }^{154}$

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for complex 66

The structure of complex 66 in solution was confirmed by Selective 1Ddifference NOE experiments. In the 1D difference NOE experiment, positive NOE was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(2.16 \%)$, and between the H_{c} and $\mathrm{H}_{\mathrm{d}}(1.80 \%)$ (mixing time of 0.6 s , delay time 3 s).

Complete peak assignment was accomplished via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, 1D Selective NOE and 1D Selective TOCSY experiments. Selected ${ }^{1} \mathrm{H}$ NMR peaks are presented in the table below:

Table 2.4. Selected ${ }^{1} \mathrm{H}$ NMR peaks for complex 66.

H	H_{a}	H_{b}	H_{c}	H_{d}	H_{e}	H_{f}	H_{g}	H_{h}
(ppm)	8.38	7.61	6.83	7.41	8.12	7.37	8.06	8.04

2.4.2 Preparation of dpk-ligated Palladacycles 68-71

Scheme 2.7

Complexes 68-71 were prepared by combining the acetato-bridged palladacycle 51-54 with the dpk ligand (1.05 eq.) in either dichloromethane (complexes 68-70) or acetic acid (complex 71). The target compounds were obtained as white precipitate by trituration of the solutions with either thf or diethyl ether. The identity of the complexes 68-71 was confirmed by NMR spectroscopy and ESI-Mass spectrometry, while the purity was confirmed by elemental analysis.

The complexes were shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy to have a hydrated carbonyl group of the dpk ligand as expected. The ${ }^{13} \mathrm{C}$ NMR spectrum of complex 69 in $\mathrm{D}_{2} \mathrm{O}$ showed a peak at 95.6 ppm characteristic of a hydrate, $C(\mathrm{OH})_{2}$, and the
presence of only one $C=\mathrm{O}$ peak at 181.9 ppm assigned to the carbonyl group of the acetate counterion. This composition was also confirmed by electrospray ionization mass spectrometry. The ESI-MS of complex 69 in water shows the presence of signals derived from both the hydrated and non-hydrated complexes. Similar observations were made for complexes 68, 70 and 71.

Selective 1D-difference NOE experiments ($D_{2} O$) for complex 69

The structure of complex 69 in solution was confirmed by Selective 1Ddifference NOE experiments. In the 1D difference NOE experiment, positive NOE was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(5.90 \%)$, and between the H_{c} and $\mathrm{H}_{\mathrm{d}}(4.23 \%)$ (mixing time of 0.6 s , delay time 4 s).

Complete peak assignment was accomplished via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC, 1D Selective NOE and 1D Selective TOCSY experiments. Selected ${ }^{1} \mathrm{H}$ NMR peaks are presented in the table below:

Table 2.5. Selected ${ }^{1} \mathrm{H}$ NMR peaks for complex 69.

H	H_{a}	H_{b}	H_{c}	H_{d}	H_{e}	H_{f}	H_{g}	H_{h}
(ppm)	7.68	7.80	6.28	7.92	7.47	7.16	7.89	7.80

2.4.3 Preparation of dpk-ligated Palladacycles $\mathbf{7 2}$ and $\mathbf{7 3}$

Scheme 2.8

Complexes 72 and 73 were prepared by combining the acetato-bridged palladacycle 55 or 56 with the dpk ligand (1.05 eq.) in methanol under ambient conditions. The target compounds were obtained as white precipitate by trituration of the reaction mixtures with diethyl ether. The identity of the complexes was established using NMR spectroscopy and ESI-mass spectrometry, while the purity was confirmed by elemental analysis.

The ${ }^{1} \mathrm{H}$ NMR analysis of these complexes in deuterated acetic acid or methanol showed only one singlet in the aliphatic region integrating as 3 hydrogens, indicating absence of the acetate counterion. This analysis indicates that these compounds were isolated as zwitterions with a deprotonated OH - group of the oxime moiety. However a small amount of acetic acid was observed in both the ${ }^{1} \mathrm{H}$ NMR spectra (integrating to $<1 \mathrm{H}$) and elemental analysis of complexes 72 and 73.

2.4.4 Preparation of dpk-ligated Palladacycles 74

Scheme 2.9

Complex 74 was prepared by combining the acetato-bridged palladacycle $\mathbf{5 7}$ and with the dpk ligand (1.05 eq.) in acetic acid under ambient conditions. The target complex was obtained as white precipitate by trituration of the reaction solution with diethyl ether. The identity of the complex was determined using NMR spectroscopy, X-ray diffraction and ESI-mass spectrometry, while the purity was confirmed by elemental analysis.
${ }^{1}$ H NMR analysis of complex 74 in chloroform displayed a high-field singlet at 1.97 ppm assigned to the acetate counterion. X-ray quality crystals of complex 74 could be grown by layering a dichloromethane solution of the complex with diethyl ether in the freezer. According to the X -ray diffraction, the hydrated dpk ligand is coordinated to Pd in $\mathrm{N}-\mathrm{N}$ mode. The geometry around palladium is square planar as expected for a $\mathrm{Pd}(\mathrm{II})$ compound. The $\mathrm{Pd}-\mathrm{N}$ bond-length trans to the aryl ligand is elongated $(2.142 \AA)$ relative to the $\mathrm{Pd}-\mathrm{N}$ bond-length trans to the pyridine group of the phenoxypyridine ligand $(2.063 \AA)$, as expected due to the higher trans influence of the phenyl ligand. Each of the two six-membered rings forms a boat conformation. The complex is also cationic, and one acetate ligand was observed for every Pd atom.

Figure 2.2. ORTEP drawing (50 \% probability ellipsoid) of complex 74

Chart 2.5

The oxidation of complexes 66 and 67 was expected to yield stable $\operatorname{Pd}(I V)$ complexes due to the presence of two tridentate facially chelating ligands derived from the hydrated 2-aroylpyridine, and the hydrated dpk ligand.

Scheme 2.10

The dpk ligand-supported aroylpyridine-derived palladacycle 66 or 67 (0.01 mmol) was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, leading to immediate formation of a deep yellow solution and gradual appearance of new peaks by ${ }^{1} \mathrm{H}$ NMR. The new products, identified as the corresponding $\operatorname{Pd}(I V)$ complexes 75 and 76 were formed quantitatively in less than 2 hours at room temperature. These compounds were isolated by removal of water, and were characterized using NMR, electrospray ionization mass spectrometry (ESI-MS), and

X-ray diffraction analysis of complex 75. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{7 5}$ in $\mathrm{D}_{2} \mathrm{O}$, deuterated acetic acid or methanol revealed the presence of 16 partially overlapping multiplets in the aromatic region integrating as 1 H each, indicative of a C_{1} symmetric structure. X-ray quality crystals of complex 75 were grown by slow diffusion of diethyl ether into a cold methanolic solution of the complex 75.

Figure 2.3. ORTEP drawing (50 \% probability ellipsoid) of complex 75

The structure of these complexes in solution was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 1D selective NOE spectroscopy.

Selective 1D-difference NOE experiments $\left(\mathrm{AcOH}-d_{4}\right)$ for 75

The structure of complex 75 in solution was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and 1D NOE experiments. In the 1D difference NOE experiment, positive NOE was
observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(1.0 \%)$ and between H_{c} and $\mathrm{H}_{\mathrm{d}}(0.9 \%)$ (mixing time of 0.8 s , delay time 5 s).

Selective 1D-difference NOE experiments $\left(\mathrm{AcOH}-d_{4}\right)$ for 76

The structure of complex 76 in solution was also confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and 1D NOE experiments. In the 1D difference NOE experiment, positive NOE was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(0.6 \%)$ and between H_{c} and $\mathrm{H}_{\mathrm{d}}(0.7 \%)$ (mixing time of 0.8 s , delay time 5 s).

Complex 75 was isolated from the aqueous solution by removal of the solvent under vacuum to afford a brown solid. The complex decomposes when left under vacuum for a long time. Complex $\mathbf{7 5}$ is also not stable in the solid state at room temperature. It is however stable in water for over 1 week at room temperature, and is also stable in water up to $90^{\circ} \mathrm{C}$, but when heated at this temperature for over 30 minutes, it decomposes to produce a black solid.

Complex 75 could be characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy in such solvents as water, methanol and acetic acid. However, when the complex is dissolved in dimethyl sulfoxide, a complex ${ }^{1} \mathrm{H}$ NMR results indicating the presence of multiple species.

The isolation of these relatively stable cationic $\mathrm{Pd}(\mathrm{IV})$ complexes 75 and 76 is intriguing because the cationic nature of $\mathrm{Pd}(\mathrm{IV})$ complexes has been reported to lead to decreased stability, and higher reactivity in reductive elimination reactions. ${ }^{156}$

Since access to these $\operatorname{Pd}(I V)$ complexes by aerobic oxidation was not successful, facile oxidation by $\mathrm{H}_{2} \mathrm{O}_{2}$ was proposed to take place in part due to the ability of a coordinated dpk ligand to add nucleophilic $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ of the dpk ligand, so accommodating the oxidizing hydroperoxo group in close proximity to a reducing $\operatorname{Pd}(\mathrm{II})$ center as shown in Scheme 2.11.

Scheme 2.11

Synthesis of BF_{4} and $O O C C F_{3}$ salts of complexes 75 and 76

Scheme 2.12

The isolation of complexes $\mathbf{7 5}$ and $\mathbf{7 6}$ was greatly facilitated by precipitation of the cations in the form of the corresponding less soluble OOCCF_{3}^{-}and BF_{4}^{-}salts. Addition of 10-20 eq of either tetrafluoroboric or trifluroacetic acid to an aqueous solution of $\mathbf{7 5}$ or $\mathbf{7 6}$ resulted in immediate precipitation of yellow solid (in the case or
trifluoroacetic acid) or orange solid (in the case of tetrafluoroboric acid). Solutions of $\mathbf{7 5}\left(\mathrm{OOCCF}_{3}\right), \mathbf{7 5}\left(\mathrm{BF}_{4}\right), \mathbf{7 6}\left(\mathrm{OOCCF}_{3}\right)$, and $\mathbf{7 6}\left(\mathrm{BF}_{4}\right)$ in dmso- d_{6} exhibited two additional broad singlets in the downfield region. In particular, the solution of 75(OOCCF_{3}) in dmso- d_{6} exhibited broad singlets at 8.82 and 9.11 ppm integrating as 1 H each, which were assigned to the protons of two OH groups present in cation $\mathbf{7 5}^{+}$. The ESI-MS of both complexes showed the presence of a single cationic complex with the same m / z ratio as the corresponding acetate. The mass spectra of $\mathbf{7 5}(\mathrm{X})$ and $76(X)$ dissolved in methanol $\left(\mathrm{X}=\mathrm{OAc}\right.$ or $\left.\mathrm{OOCCF}_{3}\right)$ or dmso $\left(\mathrm{X}=\mathrm{OOCCF}_{3}\right.$ or $\left.\mathrm{BF}_{4}\right)$ showed the presence of the cation $\mathbf{7 5}^{+}$or $\mathbf{7 6}^{+}$as the sole Pd -containing species. The isolated yields are: $\mathbf{7 5}\left(\mathbf{O O C C F}_{3}\right), 83 \% ; \mathbf{7 5}\left(\mathbf{B F}_{4}\right), 83 \% ; \mathbf{7 6}\left(\mathbf{O O C C F}_{3}\right), 87 \%$; 76(BF_{4}), 92 \%.

Preparation of Zwitterionic complexes 79 and 80

Scheme 2.13

The zwitterionic analogues of complexes $\mathbf{7 5}$ and $\mathbf{7 6}$ were also prepared. To an aqueous solution of complex 75 or $76(0.10 \mathrm{mmol})$ was added ~ 1 eq NaOH , leading to precipitation of an orange solid. The reaction mixture was filtered and the residue was washed with a small amount of cold water to afford the target compounds in 70% for $\mathbf{7 9}$ and 71% for $\mathbf{8 0}$ after drying at room temperature for a few hours. ${ }^{1} \mathrm{H}$ NMR
spectra taken in methanol $-d_{4}$ revealed a simple complex with 16 multiplets, with excess water of crystallization present. Residual water could not be completely removed since both complexes $\mathbf{7 9}$ and $\mathbf{8 0}$ decompose when placed under vacuum at room temperature. For samples dried under vacuum for an extended period, the ${ }^{1} \mathrm{H}$ NMR spectra in methanol reveal appearance of additional peaks over time, and eventually disappearance of the peaks of $\mathbf{7 9}$ or $\mathbf{8 0}$.

Figure 2.4. ORTEP drawing (50 \% probability ellipsoid) of complex 79

X-ray quality crystals of complexes $\mathbf{7 9}$ and $\mathbf{8 0}$ were grown from alkaline solutions of the complexes. The C36-O32 (1.326(5) \AA) and Pd1-O31 (1.974(3) \AA) bonds in the zwitterionic complex $\mathbf{8 0}$ were observed to be $\sim 0.02-0.07 \AA$ shorter than the matching bonds in the cation 76, with C10-O1 (1.393(7) \AA) and Pd1-O2 (2.011(4) \AA), respectively. This bond shortening may be indicative of a resonance contribution of $\mathrm{Pd}(\mathrm{IV})$ oxo complex featuring $\mathrm{C}=\mathrm{O}$ and $\mathrm{Pd}(\mathrm{IV})=\mathrm{O}$ fragments and no formal charge separation, as shown in Scheme 2.14

Scheme 2.14

Both $\mathbf{7 9}$ and $\mathbf{8 0}$ dissolve in the presence of one equivalent of aqueous alkali metal hydroxide to form clear solutions.

Complexes $\mathbf{7 9}$ and $\mathbf{8 0}$ are not stable in the solid state at room temperature and undergo slow decomposition. For complex 79, $\sim 10 \%$ decomposition was observed at room temperature in 7 days according to ${ }^{1} \mathrm{H}$ NMR spectroscopy in methanol. However, the complex is stable in the solid state at low temperature, at $-20^{\circ} \mathrm{C}$.

The zwitterionic complexes are sparingly soluble in $\mathrm{H}_{2} \mathrm{O}$. In methanol, complex 79 is soluble, but undergoes decomposition, where 50% decomposition had taken place in ~ 108 minutes. The complex is more soluble in trifluoroethanol and the decomposition rate is slower, where only 20% decomposition was observed in 150 minutes. Complex 79 dissolves slowly in dmso producing multiple peaks by ${ }^{1} \mathrm{H}$ NMR, indicating decomposition and formation of multiple products. Similar decomposition pattern was also observed for complex $8 \mathbf{0}$.

The deprotonation of complexes $\mathbf{7 5}$ and $\mathbf{7 6}$ to produce $\mathbf{7 9}$ and $\mathbf{8 0}$ (see below) respectively is reversible: when either $\mathbf{7 9}$ or $\mathbf{8 0}$ is dissolved in acetic acid- d_{4}, complete protonation occurs leading to formation of $\mathbf{7 5}$ or 76, according to ${ }^{1} \mathrm{H}$ NMR analysis. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra obtained for $\mathbf{7 9}$ or $\mathbf{8 0}$ in deuterated acetic acid matches exactly the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 5}$ or $\mathbf{7 6}$ in the same solvent.

Scheme 2.15

Potentiometric determination of $p K_{a}$ for complex 75

Scheme 2.16

The pKa of complex 75 was determined by titration of an aqueous solution of complex $75\left(6.6 \mathrm{mg}\right.$ of complex in 2.0466 g of $\mathrm{H}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$) with 0.1000 N NaOH solution.

The results of the titration are given in figure 2.5 below:

Figure 2.5. pH of the solution of 0.0052 mM solution of 75 in water $v s$ added volume of 0.1000 M NaOH .

The first bend $(\mathrm{pH}=8.73$, vol $=90 \mu \mathrm{~L})$ shows the point where precipitate formation (complex 79) took place. Dissolution of the precipitate occurred gradually until addition of $290 \mu \mathrm{~L}(\mathrm{pH}=11.9)$, where the solution was completely clear. Hence, for $p K_{\mathrm{a}}$ calculations the range of the $p H$ from 6.00 to 8.73 was considered. In these calculations it was assumed that each portion of the base added contributed to two processes only, $\left[\mathrm{OH}^{-}\right]$increase (reflected in the pH change) and [79] increase. The K_{a} values were calculated at each point as $K_{\mathrm{a}}=[79]\left[\mathrm{H}^{+}\right] /[75]$, where the total amount of 79 and $\mathbf{7 5}$ in solution = initial amount of 75 used.

An average was calculated and the $p K_{\mathrm{a}}$ for 75 was found to be 8.14 ± 0.02 and 8.16 ± 0.02 in two independent titrations.

2.5.2 Oxidation of Complexes 66 and 67 to Monohydrocarbyl Pd(IV) Complexes 75

and $\mathbf{8 2}$ with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$ in Acetic Acid
Scheme 2.17

The addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an acetic acid solution of complex 66 resulted in an exothermic reaction and color change of the solution from light to deep yellow. ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction revealed generation of a single product with 16 multiplets in less than 5 minutes (Fig. 2.6). The ${ }^{1} \mathrm{H}$ NMR chemical shifts of the product are generally significantly shifted downfield, where the aromatic
signals in the $\mathrm{Pd}(\mathrm{II})$ precursor 66 cover a range of 6.7-8.4 ppm while the aromatic signals for complex $\mathbf{8 1}$ cover a range of 7.1-8.7 ppm. This downfield shift of all the aromatic hydrogens indicates a more deshielded environment, and would signify coordination of the ligands to a more electrophilic central atom, supporting the assignment of complex $\mathbf{8 1}$ as a $\operatorname{Pd}(\mathrm{IV})$ species. ESI-MS analysis of the reaction immediately upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ revealed two major peaks at $\mathrm{m} / \mathrm{z}=506.0323$ corresponding to complex 66 plus 2 OH groups (assigned to complex 75) and 548.0321 corresponding to complex 66 plus 1 OH and 1 OAc groups (assigned to complex 81).

Figure 2.6. Acetic acid solutions of (a) complex 66; (b) complex 81 at room temperature.

When a 0.010 M acetic acid solution of complex $\mathbf{8 1}$ was left at room temperature for 2 days, a mixture of the corresponding phenol 106 and aryl acetate 108 products were observed in 41 to 57% yields respectively. This decomposition pattern signifies the presence of a $\mathrm{Pd}(\mathrm{IV}$) center bearing a hydroxide and an acetato
ligand. The phenol 106 was identified by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to literature, ${ }^{157}$ while the aryl acetate was prepared by acetoxylation of the phenol $\mathbf{1 0 6}$ in a $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ mixture. Its identity was confirmed via NMR and ESI-MS analysis.

Since ESI-MS reveals the presence of two species in solution while the ${ }^{1} \mathrm{H}$ NMR reveals the presence of one predominant species in solution, additional ${ }^{1} \mathrm{H}$ NMR experiments were conducted to determine the identity of the product of oxidation. In the first test, complex 75 was dissolved in acetic acid and the ${ }^{1} \mathrm{H}$ NMR compared to that of the product of oxidation. The ${ }^{1} \mathrm{H}$ NMR pattern of the two complexes were significantly different, indicating that the predominant product of oxidation is not complex 75, and it was assigned to complex 81, based on the ESIMS analysis.

Figure 2.7. Acetic acid solutions of (a) complex 75; (b) complex 81 at room temperature.

In a second test, complex 66 and $\mathrm{H}_{2} \mathrm{O}_{2}$ were combined in a mixture of deuterated acetic acid and water in order to determine whether two products will be
produced in this reaction, since oxidation in water produces complex 75 while oxidation in acetic acid produces a different product (complex 81). Gratifyingly, this reaction generated two products, identified as complex $\mathbf{7 5}$ and complex 81 (the product generated upon oxidation of complex 66 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid) by comparison of the ${ }^{1} \mathrm{H}$ NMR of the reaction mixture to that of independently prepared complexes in the same solvent (Fig. 2.8). Decomposition of the oxidation products in the mixed solvent system at room temperature generates the corresponding phenol 106 quantitatively.

Figure 2.8. (a) Acetic acid solution of complex 75 (a) Complex 66; (b) Reaction solution of a combination of complex 75 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ mixture (c) Acetic acid solution of complex 81 .

This analysis indicates that oxidation of complex $\mathbf{6 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid produces complex 81, which undergoes $\mathrm{C}-\mathrm{O}$ bond-forming reductive elimination in
acetic acid to produce the corresponding phenol $\mathbf{1 0 6}$ and aryl acetate $\mathbf{1 0 8}$ in less than 12 hours.

Scheme 2.18

The addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an acetic acid solution of complex 67 resulted in an exothermic reaction and color change of the solution from light to deep yellow. ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction revealed generation of a single product with 15 multiplets in less than 5 minutes (see figure below). The ${ }^{1} \mathrm{H}$ NMR chemical shifts of the product are generally significantly shifted downfield, where the aromatic signals in the $\mathrm{Pd}(\mathrm{II})$ precursor 67 cover a range of $6.5-9.4 \mathrm{ppm}$ while the aromatic signals for complex $\mathbf{8 2}$ cover a range of 7.0-9.6 ppm. This downfield shift of the aromatic hydrogens indicates a more deshielded environment, and would also signify coordination of the ligands to a more electrophilic central atom, supporting the assignment of compound $\mathbf{8 2}$ as a Pd(IV) species. ESI-MS analysis of the reaction immediately upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ revealed two major peaks at $\mathrm{m} / \mathrm{z}=520.0472$ corresponding to complex 67 plus 2 OH groups (assigned to complex 76) and 562.0611 corresponding to complex 67 plus 1 OH and 1 OAc groups (assigned to complex 82). When an acetic acid solution of the product of oxidation was left at room temperature for 2 days, a mixture of the corresponding phenol 107 and aryl acetate $\mathbf{1 0 9}$ products were observed in 39% to 57% yields respectively. This decomposition pattern signifies the presence of Pd(IV) center bearing a hydroxide
and an acetate ligand. The identity of complex $\mathbf{1 0 7}$ was confirmed by comparison of its NMR spectra to literature, ${ }^{158}$ while the identity of the aryl acetate was confirmed by independent synthesis via acetoxylation of the phenolic compound $\mathbf{1 0 7}$ in a $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ solvent mixture.

Figure 2.9. Room temperature AcOD solution of (a) complex 67, (b) complex 82.

Since the ${ }^{1} \mathrm{H}$ NMR indicated one predominant product of oxidation while ESI-MS gave two major mass envelopes after oxidation, an additional ${ }^{1} \mathrm{H}$ NMR experiment was conducted to determine the identity of the product of oxidation. Complex 76 was dissolved in acetic acid and its ${ }^{1} \mathrm{H}$ NMR spectrum was compared to that of the product of oxidation. The ${ }^{1} \mathrm{H}$ NMR pattern of complex 76 was significantly different from that observed upon oxidation of complex 67 using $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, thus confirming that the product of oxidation is not complex 76. Since only two products of oxidation were observed via ESI-MS, the structure shown for complex $\mathbf{8 2}$ was proposed to be the product of oxidation.

Figure 2.10. Room temperature AcOD solutions of (a) complex 76; (b) complex 82.

This analysis indicates that oxidation of complex 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid produces complex 82, which undergoes $\mathrm{C}-\mathrm{O}$ bond-forming reductive elimination in acetic acid to produce the corresponding phenol 107 and aryl acetate 109 in less than 12 hours.

2.5.3 Oxidation of Complexes 68-71 to Monohydrocarbyl Pd(IV) Complexes 83-86

with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2} \underline{\text { in Water }}$
Chart 2.6

91

Oxidation of complexes 68-71 with 1.5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at room temperature led to formation of a deep yellow solution, which became lighter as the
reaction progressed, ultimately producing the corresponding oxapalladacycles quantitatively. When the oxidation reaction was performed with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and monitored by ${ }^{1} \mathrm{H}$ NMR at $3{ }^{\circ} \mathrm{C}$, clean quantitative formation of the corresponding $\operatorname{Pd}(\mathrm{IV})$ products $\mathbf{8 3 - 8 6}$ was observed. These complexes are stable at this temperature for at least 2 hours.

The identity of complexes 83-86 was confirmed by NMR spectroscopy and ESI-MS. An attempt to isolate complex 84 was not successful. When aqueous solution of complex $\mathbf{8 4}$ was dried under vacuum at $0^{\circ} \mathrm{C}$, an orange solid was obtained, which contained a mixture of $\operatorname{Pd}(I V)$ complex 84 and the corresponding oxapalladacycle 107. This indicates that complex 84 decomposes in the solid state under vacuum to generate the product of $\mathrm{C}-\mathrm{O}$ bond coupling. As a result, isolation of the trifluoroacetate salt of complex $\mathbf{8 4}$ was attempted. This is because the isolation of complexes $\mathbf{7 5}$ and 76 was greatly facilitated by precipitation of the cations in the form of the corresponding less soluble OOCCF_{3} and BF_{4} salts. Therefore excess trifluoroacetic acid was added into aqueous solution of complex 84 at $0{ }^{\circ} \mathrm{C}$ and the resulting solution was dried under vacuum at $0{ }^{\circ} \mathrm{C}$. An orange precipitate was obtained which gave a simple ${ }^{1} \mathrm{H}$ NMR pattern in $\mathrm{D}_{2} \mathrm{O}$ with 15 multiplets. The ${ }^{1} \mathrm{H}$ NMR pattern of this complex was similar to that of complex 84 except that the high field signal belonging to the acetate counterion was absent. Analysis of this complex by ESI-MS gave an m / z ratio similar to the cation of complex 84 . In order to determine the identity of this complex, X-ray quality crystals were grown from an aqueous solution of complex 84 layered onto aqueous trifluoroacetic acid at $-20^{\circ} \mathrm{C}$.

X-ray quality crystals of an aqua ligated $\mathrm{Pd}(\mathrm{IV})$ complex identified as complex 92 were obtained.

Figure 2.11. ORTEP drawing (50 \% probability ellipsoid) of complex 91

This compound was characterized by NMR, ESI-MS and its purity was confirmed by elemental analysis. Its solution state structure was confirmed by 1D difference NOE experiment.

Selective 1D-difference NOE experiment $\left(D_{2} O\right)$ for 91

In the 1D difference NOE experiment, positive NOE was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(2.6 \%)$ and between H_{c} and $\mathrm{H}_{\mathrm{d}}(2.4 \%)$ (mixing time of 0.8 s , delay time 5 s$)$. This indicates that the solid state structure is maintained in solution.

${ }^{{ }^{I}}{ }^{H}$ NMR characterization of a mixture of complex $68-71$ and $\mathrm{H}_{2} \underline{O}_{2}$

Scheme 2.19

Analysis of the ${ }^{1} \mathrm{H}$ NMR spectra of a mixture containing one of the complexes 68-71 and 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $3-22{ }^{\circ} \mathrm{C}$ revealed gradual formation of two products (see fig. 2.12 and 2.13 below). Both products are stable at $3{ }^{\circ} \mathrm{C}$ for over 2 hours, but they undergo decomposition by $\mathrm{C}-\mathrm{O}$ bond elimination at higher temperatures.

Figure 2.12. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 69 at $25^{\circ} \mathrm{C}$, (b) $\mathrm{D}_{2} \mathrm{O}$ solution of complexes 84 (major) and 88 (minor), (c) $\mathrm{D}_{2} \mathrm{O}$ solution of the oxapalladacycle 108 at the end of the reaction.

Figure 2.13. (a) Plot for the oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 69 in water with 1.5 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ showing the fraction of the starting complex $\mathbf{6 9}$, the major product $\mathbf{8 4}$, and the minor product 88 as a function of reaction time; (b) Plot for the oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 68 in water with 1.5 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at 3 ${ }^{\circ} \mathrm{C}$ Oxidation showing the fraction of the $\mathrm{Pd}($ II $)$ precursor 68 , the major product $\mathbf{8 3}$, and the minor product 87 , as a function of time.

The ratio of the two products formed upon combining 0.010 M aqueous solutions of complexes 68-71 with 1.5 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ varied depending on the nature of the substrate used. The ratio of these two products as a function of the substrate is presented in table 2.6 below.

Table 2.6. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complexes $\mathbf{6 8 - 7 1}$ with 1.5 equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$, showing the ratio of the major and minor products.

1.5 eq HOOH, 276 K		
Substrate	Major product (\%)	Minor product (\%)
$\mathrm{R}=\mathrm{H}, \mathbf{6 8}$	92	8
$\mathrm{R}=\mathrm{Me}, \mathbf{6 9}$	83	17
$\mathrm{R}=\mathrm{OMe}, 70$	80	20
$\mathrm{R}=\mathrm{F}, \mathbf{7 1}$	95	5

In this analysis, more electron-rich substrates such as complex 69 exhibited a higher fraction of the minor product while electron-poorer substrates such as complex 71 exhibited a lower fraction of the minor product.

The ratio of the two products formed upon oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{6 9}$ with 1.5 and 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3-25^{\circ} \mathrm{C}$ was also found to be dependent on the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ used and the temperature at which the reaction was carried out (table 2.7).

Table 2.7. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 69 with $\mathrm{H}_{2} \mathrm{O}_{2}$, showing the ratio of the major product $\mathbf{8 4}$ and minor product $\mathbf{8 8}$ as a function of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and temperature.

1.5 eq HOOH			10.0 eq HOOH		
Temp	Major product	Minor product	Temp	Major product	Minor product
$3^{\circ} \mathrm{C}$	83	17	$3{ }^{\circ} \mathrm{C}$	96	4
$10^{\circ} \mathrm{C}$	73	27	$10^{\circ} \mathrm{C}$	89	11
$25^{\circ} \mathrm{C}$	61	39	$25^{\circ} \mathrm{C}$	86	14

*The product ratio was taken after complete conversion of complex 69, and before > 5% oxapalladacycle was present. The time for complete conversion is dependent upon the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ used and the temperature at which the reaction is carried out.

The ratio of the two products of oxidation, complexes $\mathbf{8 4}$ and $\mathbf{8 8}$ was also found to be dependent on the pH of the solution. For example, when the oxidation of complex 69 was carried out in buffered $\mathrm{D}_{2} \mathrm{O}$ solutions of various pD values, the ratio of complexes $\mathbf{8 4}$ to $\mathbf{8 8}$ was observed to change significantly (Table 2.8).

Table 2.8. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{6 9}$ with 2.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $17^{\circ} \mathrm{C}$, showing the ratio of the major product $\mathbf{8 4}$ and minor product $\mathbf{8 8}$ as a function of pD .

pD	Major (\%)	Minor (\%)
4.86	91	8
5.97	85	14
6.82	76	23
7.37	79	21
8.99	87	12

*The pH meter was calibrated using pH scale but $\mathrm{D}_{2} \mathrm{O}$ solutions were used, and therefore $\mathrm{pD}=\mathrm{pH}+0.41$. ${ }^{159}$

In an effort to determine whether the two products can interconvert as the temperature changes, various experiments were performed at one temperature and exposed to a different temperature to observe whether there would be any change in the ratio of the two products of oxidation. In the first experiment, a 0.010 M aqueous solution of complex 69 was combined with 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $25{ }^{\circ} \mathrm{C}$ and a product ratio of $61: 39$ was observed by ${ }^{1} \mathrm{H}$ NMR. This solution was transferred to another NMR instrument whose temperature was set to $3{ }^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR was collected after 2 hrs ; a product ratio of 67:33 was observed. Similarly, when the oxidation reaction was performed at $3{ }^{\circ} \mathrm{C}$ with 10.0 eq HOOH , a product ratio of 96: 4 was observed. Upon warming the solution to $25^{\circ} \mathrm{C}$, the product ratio decreased to 92 : 8 , while cooling it back to $3{ }^{\circ} \mathrm{C}$ further decreased the ratio to $91: 9$. In all these experiments, care was taken to avoid accumulation of the corresponding oxapalladacycle to greater than 5%. These experiments indicate that isomerization of the two complexes takes place, but the rate of isomerization is too slow.

Identity of the Major and Minor products of oxidation

In order to determine the identity of the two products resulting from combining complex 69 and $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, the ${ }^{1} \mathrm{H}$ NMR signals for both products were assigned and 1D Selective NOE experiment was performed.

The selective NOE analysis of the major product $\mathbf{8 4}$ reveals positive NOE enhancement between the H_{a} (ortho- H_{a} of the tolylpyridine ligand) and H_{b} (ortho- H_{b} of the dpk ligand) resonances (2.6%) and between H_{c} (ortho $-\mathrm{H}_{\mathrm{c}}$ of the tolylpyridine) and H_{d} (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) resonances (2.4\%). In the minor product $\mathbf{8 8}$ however, NOE was only observed between H_{c} (ortho- H_{c} on the pyridyl fragment of the tolylpyridine ligand) and H_{d} (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) resonances (6.7 \%).

(a)

major product of oxidation, complex 84
(b)

Minor product of oxidation, complex 88
(c)

Figure 2.14. (a) ORTEP drawing (50\% probability ellipsoids) of dication 91 in $\mathbf{9 1}\left(\mathrm{OOCCF}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, and proposed structures for (b) 84, the major product of oxidation, and (c) $\mathbf{8 8}$, the minor product of oxidation.

In order to determine the structure of complex 88, the ${ }^{1} \mathrm{H}$ NMR chemical shifts for complexes $\mathbf{6 9}, \mathbf{8 4}$ and $\mathbf{8 8}$ were assigned and compared. In the assignment of the chemical shifts, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, 1D Selective NOE, and 1D Selective TOCSY experiments were used. The
overlapping signals were assigned using 1D Selective TOCSY experiments. The selected ${ }^{1} \mathrm{H}$ NMR chemical shifts are presented in the table below:

Table 2.9. Selected ${ }^{1} H$ NMR chemical shifts for complexes $\mathbf{6 9}, \mathbf{8 4}$, and $\mathbf{8 8}$ in $\mathrm{D}_{2} \mathrm{O}$ at room temperature.

	D		A		B		C	
	1	3	1	4	1	4	1	4
$\mathbf{6 9}$	6.28	7.17	7.70^{*}	7.47	7.93	7.80^{*}	7.80^{*}	7.89
$\mathbf{8 4}$	6.43	7.68	8.07	8.01^{*}	8.61	7.74	8.87	7.87
$\mathbf{8 8}$	7.41	7.71^{*}	8.71	8.14^{*}	7.24	7.71^{*}	8.94	7.87

* Indicates signals that overlap with other signals, and therefore the chemical shift value given is midpoint between the two overlapping signals to give an idea of where the signal is located.

The 1D difference NOE experiment for complex 84 reveals positive NOE enhancement between the ortho-H signals of the four ligand fragments around palladium. However, the 1D difference NOE experiment for complex $\mathbf{8 8}$ reveals positive NOE enhancement between the ortho-H signals of the two pyridyl fragments of the dpk and tolylpyridine ligands. The lack of NOE signal enhancement between the ortho-H of the aryl fragment of the tolylpyridine ligand and the pyridyl fragment of the dpk ligand indicates that these two fragments are not in close proximity, and might suggest a different binding mode where the aryl fragment is trans to an
alkoxide as proposed in complex 88. The different binding modes between complexes 84 and $\mathbf{8 8}$ might also account for the significant difference in their ${ }^{1} \mathrm{H}$ NMR chemical shifts.

2.5.4 Oxidation of Complex 69 to Monohydrocarbyl Pd(IV) Complexes 84 and 92

 with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$ in Acetic AcidScheme 2.20

The oxidation of complex 69 in water cleanly generated a mixture of complexes $\mathbf{8 4}$ and $\mathbf{8 8}$. However the addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a 0.010 M deuterated acetic acid solution of complex 69 at room temperature led to appearance of two sets of ${ }^{1} \mathrm{H}$ NMR signals different from the starting $\mathrm{Pd}(\mathrm{II})$ precursor $\mathbf{6 9}$. Analysis of this reaction solution by ESI-MS revealed a mass envelope with $\mathrm{m} / \mathrm{z}=$ 492.0684 corresponding to the mass of complex 69 plus 2 OH groups which was assigned to complex $\mathbf{8 4}$, and $\mathrm{m} / \mathrm{z}=534.0674$ corresponding to the mass of complex 69 plus 1 OH and 1 OAc groups which was assigned to complex 92 . The oxidation reaction was slow with $\sim 60 \%$ conversion in ~ 30 minutes. The two reaction products ultimately decomposed to the corresponding phenol 110 in 25% yield and aryl acetate $\mathbf{1 1 1}$ in 71% yield, identified by means of ESI-MS and ${ }^{1} \mathrm{H}$ NMR spectroscopy (see figure 2.15 below). The identity of the phenol $\mathbf{1 1 0}$ was confirmed by comparison of its NMR spectrum to literature, ${ }^{160}$ while the identity of the aryl acetate was confirmed by independent synthesis of the compound via acetoxylation of the phenol

110 in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ solvent mixture. Its identity was confirmed by NMR spectroscopy and ESM-MS.

Figure 2.15. (a) Acetic acid solution of complex 69; (b) Acetic acid solution of complex 69 after addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $22^{\circ} \mathrm{C}$, showing products 84 (minor) and 92 (major); (c) Acetic acid solution of complex 69 two days later, after addition of 5.0 equivalents of pyridine- d_{5}, showing the corresponding phenol and aryl acetate products.

This analysis indicates that the oxidation of complex $\mathbf{6 9}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid produces complexes $\mathbf{8 4}$ and $\mathbf{9 2}$. This oxidation reaction in acetic acid is relatively slow, but ultimately the corresponding phenol and aryl acetate are produced in a combined quantitative yield.

Complex $\mathbf{9 2}$ is probably produced via ligand exchange from complex $\mathbf{8 4}$ as shown below. Both complexes are observed by ${ }^{1} \mathrm{H}$ NMR and ESI-MS, and the formation of both phenol and aryl acetate products supports the existence of both complexes $\mathbf{8 4}$ and $\mathbf{9 2}$ in solution.

Scheme 2.21

2.5.5 Oxidation of Complexes 72 and $\mathbf{7 3}$ to Monohydrocarbyl Pd(IV) Complexes 93
and $\mathbf{9 4}$ with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$ in Water and Acetic Acid

Scheme 2.22

Oxidation of complex 72 in water

The addition of 2.0 equivalents of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ to a reaction mixture containing 0.02 mmoles of complex 72 in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ at room temperature resulted in the dissolution of the poorly water-soluble complex to form a deep brown solution. When this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, clean formation of a single product identified as complex $\mathbf{9 3}$ with 12 multiplets in the aromatic region and 1 singlet in the aliphatic region was observed within 10 minutes. Complex 93 exhibits narrow ${ }^{1} \mathrm{H}$ NMR signals in deuterated acetic acid, which are significantly different from those of the starting organopalladium(II) precursor 72, which exhibits broad signals in acetic acid solvent, indicating loss of fluxional behavior upon oxidation. In addition, the ${ }^{1} \mathrm{H}$ NMR signals belonging to both the methyl group and the aromatic hydrogens of
complex 72 are shifted downfield relative to the organopalladium(II) precursor 72, indicating a more deshielded environment (see table 2.10 below). ESI-MS analysis of this solution after some time displayed two major peaks at $\mathrm{m} / \mathrm{z}=440.0248$, corresponding to an increase of the mass of the Pd (II) precursor by +16 , assigned to the oxapalladacycle 112, and $\mathrm{m} / \mathrm{z}=458.0376$, corresponding to the mass of the $\operatorname{Pd}($ II $)$ precursor with two additional OH groups, assigned to complex 93.

Table 2.10. Selected ${ }^{1} H$ NMR signals of complex 72 and 93 in water at room temperature.

Entry	Complex	Ortho-H (ppm)	Methyl group (ppm)
1	$\mathbf{7 2}$	6.43	2.31
2	$\mathbf{9 3}$	6.97	2.35

Complex 93 was isolated from the corresponding aqueous solution via fast removal of the solvent under vacuum to afford a brown solid. However when the solid was left under vacuum for longer than 20 minutes, additional peaks appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum collected in deuterated methanol, acetic acid or dmso, indicating decomposition.

Oxidation of complex 72 in acetic acid

When a 0.010 M acetic acid solution of complex 72 was combined with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, a new set of 12 multiplets was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy; no intermediates were observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of this product of oxidation was identical to that of complex 93 , produced upon oxidation of complex 72 in water.

Oxidation of complex 72 in acetonitrile

Complex 93 could also be prepared in acetonitrile solvent. A mixture of 0.1 mmoles of complex 72 in 2.0 ml acetonitrile was combined with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}$, resulting in the formation of a deep red reaction mixture accompanied by formation of brown precipitate. This reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes after which it was concentrated, filtered, and the solid was washed with a small amount of cold diethyl ether. ${ }^{1} \mathrm{H}$ NMR spectrum of this solid in deuterated methanol or acetic acid was identical to that of complex 93, produced upon oxidation of complex $\mathbf{7 2}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water.

The identical ${ }^{1} \mathrm{H}$ NMR patterns of the products of oxidation in water, acetic acid, and acetonitrile indicate that the same product 93 is generated upon oxidation of complex 72 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in these solvents. Complex 93 was characterized by NMR spectroscopy and ESI mass spectrometry, while its elemental composition was confirmed by elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of this complex in $\mathrm{dmso}-\mathrm{d}_{6}$ reveals the presence of three singlets, one in the low-field region at 7.96 ppm , and two in the high-field region at 1.36 ppm and 2.06 ppm . The singlet at 7.96 ppm integrating as 1 H was assigned to the -OH group on the dpk ligand. This -OH signal in $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{7 5}$ and 76 in dmso $-\mathrm{d}_{6}$ solvent shows up at a similar range of 8.78.8 ppm . The high field signal at 1.36 ppm integrating as 1 H was assigned to the -OH group coordinated onto the $\mathrm{Pd}(\mathrm{IV})$ center. Similar -OH signals coordinated to $\mathrm{Pt}(\mathrm{IV})$ center are usually observed in the high field region. ${ }^{123}$ The other singlet at 2.06 ppm that integrates as 3 H was assigned to the methyl group of the acetophenone oxime moiety. Complete assignment of the chemical shifts was accomplished using ${ }^{1} \mathrm{H}$ and
${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, and 1D selective TOCSY and 1D selective NOE experiments.

Figure 2.16. ${ }^{1} \mathrm{H}$ NMR of complex 93 in $\mathrm{dmso}^{\mathrm{d}} \mathrm{d}_{6}$ at room temperature.

X-ray quality crystals of complex 93 could be grown by layering a cold methanolic solution of complex 93 with diethyl ether.

Figure 2.17. ORTEP drawing (50 \% probability ellipsoid) of complex 93

Selective 1D-difference NOE experiments $\left(\mathrm{D}_{2} \mathrm{O}\right)$ for Complex 93

In the 1 D difference NOE experiment, positive NOE enhancement was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(2.1 \%)$ (mixing time of 4.0 s , delay time 5 s). This confirms that the solid state structure is maintained in solution.

Complex 93 is not stable in the solid state at room temperature. When left at room temperature for several days, new peaks appear in the ${ }^{1} \mathrm{H}$ NMR spectrum in deuterated methanol or acetic acid solvents. After 4 weeks, the ${ }^{1} \mathrm{H}$ NMR and ESI-MS analysis revealed complete decomposition to generate the corresponding phenol and inorganic complex cleanly. This complex is however stable at $-20^{\circ} \mathrm{C}$.

Oxidation of complex 73 with $\mathrm{H}_{2} \underline{O}_{2}$ in water

When a mixture of 0.02 mmoles of a trifluoromethyl analogue of 72, complex 73 in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ was combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature, dissolution of the poorly water soluble complex to form a deep red solution was observed. ${ }^{1} \mathrm{H}$ NMR analysis of this reaction revealed formation of a single product with 11 multiplets cleanly within 10 minutes. Analysis of the reaction solution by ESI-MS during oxidation at room temperature revealed two major peaks at $\mathrm{m} / \mathrm{z}=$ 508.0008 assigned to the oxapalladacycle 113 and 526.0276 assigned to the monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex 94.
${ }^{1} \mathrm{H}$ NMR analysis of the oxidation reaction revealed formation of a new species with an ${ }^{1} \mathrm{H}$ NMR pattern that is significantly different from that of the starting organopalladium(II) precursor 73. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Pd}(\mathrm{II})$ precursor exhibits broad multiplets in acetic acid solvent indicative of a fluxional behavior, while the product of oxidation 94 exhibits 11 sharp multiplets. In addition, both the methyl group and the aromatic hydrogens in the product of oxidation, complex 94 are shifted downfield relative to the organopalladium(II) precursor 73, indicative of a more deshielded environment.

Table 2.11. Selected ${ }^{1} H$ NMR signals of complex $\mathbf{7 3}$ and $\mathbf{9 4}$ in water at room temperature.

Entry	Complex	Ortho-H (ppm)	Methyl group (ppm)
1	$\mathbf{7 3}$	6.71	2.27
2	$\mathbf{9 4}$	7.17	2.34

Complex 94 was isolated as a brown solid from the corresponding aqueous solution by fast removal of the solvent under vacuum. However when the solid was left under vacuum for longer than 20 minutes, additional peaks were observed in the ${ }^{1} \mathrm{H}$ NMR indicating decomposition.

Oxidation of complex 73 in acetonitrile

The oxidation of 0.01 mmoles of complex 73 in 1.0 ml deuterated acetonitrile solvent with 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ resulted in formation of a reaction mixture consisting of deep red solution and deep yellow solid. Diethyl ether was added into the reaction mixture to afford more precipitate, which was filtered off and washed with a small
amount of cold diethyl ether to afford the target complex 94. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solid in methanol or acetic acid was identical to that of complex 94 generated upon oxidation of complex 73 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water.

Oxidation of complex 73 in acetic acid

Scheme 2.23

The addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an acetic acid solution of complex 73 resulted in a slightly different reactivity to that of complex 72. Upon addition of 3.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an acetic acid solution of complex 73, an exothermic reaction with concomitant color change from colorless to deep brown was observed. ${ }^{1} \mathrm{H}$ NMR analysis of this reaction solution 2 minutes after addition of the oxidant revealed complete disappearance of the starting $\mathrm{Pd}(\mathrm{II})$ precursor 73 and the presence of two new complexes. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra at room temperature revealed gradual disappearance of one of the products with simultaneous increase of the other, leading to the formation of one major product in $>90 \%$ yield ~ 10 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$. The ESI-MS analysis of the reaction solution after addition of hydrogen peroxide revealed two major mass envelopes, at $\mathrm{m} / \mathrm{z}=508.0008$ assigned to oxapalladacycle 113, and 526.0276 which may be assigned to the Pd(IV) complex 94 and/ or an adduct of 73 with $\mathrm{H}_{2} \mathrm{O}_{2}, 95$. The ${ }^{1} \mathrm{H}$ NMR of the major product was identical to that of complex 94 produced upon oxidation of complex 73 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in either water or acetonitrile.

Considering the ESI-MS analysis, the intermediate complex 95 was proposed to be a product of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand, which precedes formation of the $\operatorname{Pd}(\mathrm{IV})$ complex 94.

Figure 2.18. Room temperature acetic acid solutions of (a) complex 73; (b) complex 73, 2 minutes after addition of 3 eq $\mathrm{H}_{2} \mathrm{O}_{2}$, showing complexes 95 (minor) and 94 (major) (c) complex 73, 10 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, showing complex 94; (d) complex 73 at the end of reaction, showing the aryl acetate as the major product of decomposition.

The adduct of $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand 95 was most likely detected due to the more electron-deficient nature of complex $\mathbf{7 3}$ relative to complex 72. The presence of the " CF_{3} " group in $\mathbf{7 3}$ would make the $\mathrm{C}=\mathrm{O}$ bond more electrophilic thus increasing the rate of the addition reaction, while slowing down the rate of the subsequent oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$.

in Water

Scheme 2.24

The addition of 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 74 at room temperature resulted in color change from colorless to deep yellow. ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction revealed slow disappearance of the starting complex and appearance of an intermediate species which eventually led to formation of two products. A clean ${ }^{1} \mathrm{H}$ NMR spectrum of the intermediate could be obtained when 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used at $0^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR pattern of the intermediate species was significantly different from that of the $\mathrm{Pd}(\mathrm{II})$ precursor 74, with the resonance of the ortho-H of the aryl fragment of the phenoxypyridine ligand in the intermediate complex significantly shifted upfield relative to that of complex 74 (Fig. 2.19).

Table 2.12. Selected ${ }^{1} H$ NMR signals of complex 74 and 96 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature.

Entry	Complex	Ortho- $\mathrm{H}_{\text {aryl }}(\mathrm{ppm})$
1	$\mathbf{7 4}$	6.68
2	$\mathbf{9 6}$	6.35

Figure 2.19. (a) $D_{2} \mathrm{O}$ solution of complex 74 at $0^{\circ} \mathrm{C}$; (b) $\mathrm{D}_{2} \mathrm{O}$ solution of complex 96 at $0^{\circ} \mathrm{C}$.

Analysis of the reaction solution by ESI-MS immediately after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ revealed two major peaks at $\mathrm{m} / \mathrm{z}=476.0264$ assigned to the oxapalladacycle 114, and 494.0294 which can be assigned to the $\mathrm{H}_{2} \mathrm{O}_{2}$ adduct 97 and monohydrocarbyl-Pd(IV) complex 96.

Scheme 2.25

In order to confirm the identity of the complex 96, several experiments were conducted. First, a 0.010 M aqueous solution of complex 74 was combined with 10.0 eq of HOOH at $3^{\circ} \mathrm{C}$ because at this temperature, complex 96 is stable and doesn't decompose for several hours, and this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. A similar
experiment was set up and monitored by UV-vis spectroscopy. We hypothesized that a Pd(IV) complex would display a Ligand to Metal charge transfer band on the visible range of the UV-vis spectrum, while the peroxo adduct is not expected to display any LMCT bands.

When the reaction of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 74 with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR, gradual disappearance of complex 74 was observed with $>95 \%$ conversion after 60 minutes; $<5 \%$ decomposition was observed at this temperature.

A similar reaction was monitored by UV-vis analysis. A $0.010 \mathrm{M}, 3.0 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ solution of complex 74 was prepared and placed in a cuvette at $0^{\circ} \mathrm{C}$ for 30 minutes. The cuvette was placed in a cell holder of a spectrophotometer and UV-vis spectrum was collected at $0^{\circ} \mathrm{C}$. The cuvette was placed at $0^{\circ} \mathrm{C}, 10.0$ eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution at this temperature, and consecutive UV-vis spectra were collected at regular intervals at $0^{\circ} \mathrm{C}$ for at least 60 minutes.

Figure 2.20. (a) Change of UV-visible spectra of $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complex 74 upon addition of 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}(1.0 \mathrm{~cm}$ cuvette was used). (b) Change in absorbance as a function of time at the wavelength of 420 nm , over a period of 60 minutes

According to the UV-vis spectral analysis, an absorption band gradually developed around 425 nm during the reaction of complex 74 with 10.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ (see fig. 2.20) at $0^{\circ} \mathrm{C}$. Since ${ }^{1} \mathrm{H}$ NMR monitoring of this experiment revealed gradual reaction of complex 74 with 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$ with $>95 \%$ conversion after 60 minutes and $<5 \%$ decomposition, the absorption band at $\sim 425 \mathrm{~nm}$ was assigned to the product of the reaction, and since the band occurs at the LMCT range, the band was assigned to the $\mathrm{Pd}(\mathrm{IV})$ complex 96 . This complex was characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, and ESI-MS.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 96

In the 1 D difference NOE experiment of complex 96, NOE was observed between H_{a} and $\mathrm{H}_{\mathrm{b}}(1.6 \%)$ (mixing time of 0.8 s , delay time 5 s).

2.6 Mechanism of Oxidation of Hydrocarbyl Pd(II) Complexes with $\mathrm{H}_{2} \underline{O}_{2}$

2.6.1 Introduction

Pd -catalyzed oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reactions take place in the presence of various oxidants, including $\operatorname{ArIX}_{2}^{59,161,162}(\mathrm{Ar}=$ aryl groups such as phenyl, $\mathrm{X}=$ functional groups such as Cl and OAc$), \mathrm{NXS}^{32}(\mathrm{X}=$ Halogens such as Cl , Br , and I), organic and inorganic peroxides such as Oxone ${ }^{33}$, tBu -peroxides ${ }^{72}$ etc. The oxidation step has been studied for various oxidants such as $\mathrm{PhIX}_{2}(\mathrm{X}=\mathrm{OAc}$ or Cl$)$
and NXS $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$ using various model complexes. ${ }^{118}$ However the oxidation of organopalladium(II) complexes using peroxide based oxidants has not been studied due to the difficulty of accessing stable high oxidation state palladium complexes using peroxide based oxidants.

Several experiments for the stoichiometric oxidation of organopalladium(II) complexes with peroxo-based oxidants have been performed. In one study, Chakravorty and co-workers performed detailed kinetic studies on the mechanism of oxygenation of 2-(alkylsulfinyl)azobenzenes with meta-perchlorobenzoic acid as oxidant. ${ }^{76}$ In this study, an overall second order rate law was established, first order on the substrate and first order on the oxidant. The activation process exhibited a small enthalpy and large negative entropy. The large negative entropy of activation is indicative of an associative transition state where the association was proposed to involve the metal center and the m-CPBA peroxo oxygen in the transition state as shown in Scheme 2.26 below. This was proposed to be followed by heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond, where the facile nature of this cleavage is reflected on the small enthalpy of activation $(<10 \mathrm{Kcal} / \mathrm{mol})$. This mechanism was also supported by the experimental observation where more electron-rich substrates undergo oxidation faster than electron-poor substrates.

Scheme 2.26

A later mechanistic study on the oxygenation of cyclopalladated N, N dimethylbenzylamine complexes by tert-butyl hydroperoxide in the presence of $\mathrm{VO}(\mathrm{acac})_{2}$ that leads to oxygen insertion into the $\mathrm{Pd}-\mathrm{C}$ bond was reported by Van Koten and co-workers in $1993 .{ }^{120}$ Kinetic studies of this reaction revealed that the rate of oxygenation is strongly enhanced by increasing the nucleophilicity of the metal center. On the basis of the kinetic studies and solvent effects observed, a mechanism of oxygenation reaction that begins with a 1,2-proton shift in the hydroperoxide (ROOH) to form an alcohol oxide species ($\mathrm{RHO}-\mathrm{O}$) was proposed. This tert-butyl alcohol oxide is proposed to be the actual oxygen donating agent in this reaction by transferring an oxenoid oxygen atom to $\mathrm{Pd}(\mathrm{II})$, leading to formation of a transient $\operatorname{Pd}(\mathrm{IV})$ oxo species and a neutral alcohol leaving group. This is followed by insertion of oxygen into the $\mathrm{Pd}-\mathrm{C}$ bond (Scheme 2.27).

Scheme 2.27

In this oxidation reaction, the mechanism of the actual oxygen insertion step was proposed as an $\mathrm{S}_{\mathrm{N}} 2$ end-on attack of the $\mathrm{d}_{\mathrm{z}}{ }^{2} \mathrm{HOMO}$ of the palladium center on the σ^{*} LUMO of the $\mathrm{O}-\mathrm{O}$ bond of either the tert-butyl alcohol oxide (oxygenations with TBHP in t - BuOH) or vanadium alkyl peroxide (vanadium catalyzed oxygenations with TBHP). This mechanism is similar to the oxidative addition of dihalogens to square-planar d^{8} metal complexes which has been shown to proceed via end-on, nucleophilic attack of the metal on the σ^{*} LUMO of the $\mathrm{X}-\mathrm{X}$ bond and concomitant splitting of an X^{-}anion as the leaving group. The mechanism was
supported by the experimental observation where the rate of oxygenation increased strongly with the nucleophilicity of the metal center. The formation of the $\operatorname{Pd}(I V)$ oxo species was proposed as the rate-determining step.

Scheme 2.28

24: $R=M e, R^{\prime}=M e$
25: $R=H, R^{\prime}=M e$

26: $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Me}$
27: $R=H, R^{\prime}=M e$

To achieve a wider application of the selective $\mathrm{C}-\mathrm{Pd}$ bond oxidation, especially towards industrial and pharmaceutical samples containing multiple functionalities, the use of bio-friendly and inexpensive oxidants such as $\mathrm{H}_{2} \mathrm{O}_{2}$ would be very useful. Bandyopadhyay and co-workers achieved a successful $\mathrm{C}-\mathrm{Pd}$ bond functionalization using $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of mesotetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride, which is an iron(III)porphyrin catalyst. ${ }^{121}$ In these studies, they proposed the generation of an oxoiron(IV) porphyrin cation radical by the reaction of $\mathrm{F}_{20} \mathrm{TPP}-\mathrm{FeCl}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of excess $\mathrm{H}_{2} \mathrm{O}_{2}$. This oxoiron(IV) porphyrin radical abstracts a hydrogen atom from $\mathrm{H}_{2} \mathrm{O}_{2}$ to generate a hydroperoxy radical, which was proposed to be the major reactive species. The oxidation mechanism could be similar to the mechanism proposed for the oxygen atom insertion into the $\mathrm{Pd}-\mathrm{C}$ bond of cyclopalladated 2(alkylthio)azobenzene complexes using the t-BuOO radical oxidant (Scheme 2.29), ${ }^{163}$ which was proposed to occur via initial direct attack of the $\mathrm{t}-\mathrm{BuOO} \cdot$ radical
at $\mathrm{Pd}^{\mathrm{II}}$ to make an oxopalladium(IV) complex with the generation of a t - $\mathrm{BuO} \cdot$ radical. The oxopalladium(IV) species reacts further via oxygen atom insertion into the $\mathrm{Pd}-\mathrm{C}$ bond while the t - BuO - radical abstracts a hydrogen atom from another molecule of t BuOOH , which will attack another $\mathrm{Pd}(\mathrm{II})$ molecule and so the oxygenation cycle is repeated.

Scheme 2.29

There have been extensive studies on the oxidation of organoplatinum(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$. These studies are relevant because platinum complexes are frequently considered to have similar reactivity with palladium complexes bearing identical ligand environment under similar conditions. Rashidi and co-workers performed kinetic investigations into the mechanism of cleavage of the $\mathrm{O}-\mathrm{O}$ bond in hydrogen peroxide and dibenzoyl peroxide oxidants by arylplatinum(II) complexes of the form (bpy) $\mathrm{PtAr}_{2}\left(\mathrm{Ar}=\mathrm{Ph}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}, p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) .{ }^{164}$ These kinetic reactions were found to observe a second order rate law, with a first order dependence in the substrate and first order dependence in the peroxide oxidant. The activation produced a small enthalpy and large negative entropy, indicative of an associative transition state. The reaction was not sensitive towards solvent polarity differences, thus ruling out the possibility of an $\mathrm{S}_{\mathrm{N}} 2$-type mechanism in which the transition state involves the formation of a cationic intermediate. Reproducible kinetic data and the fact that
radical scavengers did not affect the reaction rate ruled out the possibility of a radical mechanism. As a result, a mechanism of oxidation involving a concerted threecentered transition state involving the two oxygen atoms of the peroxide moiety and the metal was proposed (Scheme 2.30). This association was consistent with the large negative entropy of activation and also with the simple second-order rate law that was observed. The rate of oxidation reaction was also found to increase with increasing electron-density at platinum, providing support for the proposed mechanism. The predominant formation of the trans isomer was explained by a possible rapid isomerization of the kinetic cis complex to the thermodynamically favored trans complex.

Scheme 2.30

2.6.2 Kinetics Study of the Reaction of Organopalladium(II) Complexes 66 and 67 with $\mathrm{H}_{2} \underline{O}_{2} \underline{\text { in Water }}$

In this work, we performed detailed kinetic analyses on the oxidation of organopalladium(II) complexes to the corresponding organopalladium(IV) complexes using $\mathrm{H}_{2} \mathrm{O}_{2}$ in water. The substrates studied are derived from substituted 2benzoylpyridine and substituted 2-phenylpyridine. The oxidation reactions were performed under pseudo-first order conditions at low temperature since the reactions are too fast at room temperature. We began to study the reaction of benzoylpyridine-
derived $\mathrm{Pd}(\mathrm{II})$ complexes with various equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $3{ }^{\circ} \mathrm{C}$ according to the following equation:

Scheme 2.31

${ }^{1} H$ NMR characterization of reaction mixtures containing complex 66 and 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $3^{\circ} \mathrm{C}$

When a mixture of complex 66 with 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ was monitored by ${ }^{1} \mathrm{H}$ NMR at $6{ }^{\circ} \mathrm{C}$, three sets of signals were observed: (a) Signals belonging to the reactant complex 66 which disappeared gradually; (b) Signals belonging to the $\mathrm{Pd}(\mathrm{IV})$ product 75 which grew gradually; (c) signals belonging to a reaction intermediate " Y " which appeared upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ and remained relatively steady throughout the reaction, but eventually disappeared at the end of reaction (Fig 2.21 and 2.22). At the end of the oxidation reaction, complex $\mathbf{7 5}$ was the only species present in solution according to both ${ }^{1} \mathrm{H}$ NMR and ESI-MS analysis. The maximum amount of the intermediate produced in this reaction is 17%.

Figure 2.21. ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{D}_{2} \mathrm{O}$ taken at $3{ }^{\circ} \mathrm{C}$ for (a) complex $\mathbf{6 6}$; (b) complex 66, 18 minutes after addition of 10.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, together with an intermediate " \mathbf{Y} " and $\mathrm{Pd}(\mathrm{IV})$ product 75; and (c), at the end of reaction, showing $\mathrm{Pd}(\mathrm{IV})$ complex 75.

Figure 2.22. Plot for the oxidation of complex 66 with 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3^{\circ} \mathrm{C}$, showing the fraction of starting $\operatorname{Pd}(\mathrm{II})$ complex 66, the intermediate complex, and the product 75 as a function of time.

A similar characterization for the reactivity of complex 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ was monitored by both ${ }^{1} \mathrm{H}$ NMR and ESI-MS.
${ }^{1} H$ NMR characterization of reaction mixtures containing complex 67 and $1.0-40.0$ eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $3^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$

The observations made in this oxidation reaction are similar to those made in the oxidation of complex 66 under similar conditions. Mixtures of $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complex 67 and 1.0-40.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at temperatures ranging from $3-22^{\circ} \mathrm{C}$. In these experiments, three sets of signals were observed: (a) Signals belonging to the reactant complex 67 which disappeared gradually; (b) Signals belonging to the $\mathrm{Pd}(\mathrm{IV})$ product 76 which grew gradually; (c) signals belonging to a reaction intermediate " \mathbf{X} " which appeared upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ and remained steady throughout the reaction and eventually disappeared at the end of reaction (Fig. 2.23 and 2.24). At the end of the oxidation reaction, complex 76 was the only species present in solution according to both ${ }^{1} \mathrm{H}$ NMR and ESI-MS analysis.

Figure 2.23. ${ }^{1} \mathrm{H}$ NMR taken in $\mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ for (a) complex 67; (b) complex 67, 10 minutes after addition of 20.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, together with intermediate " \mathbf{X} " and $\mathrm{Pd}(\mathrm{IV})$ product 76; and (c), at the end of reaction, showing Pd(IV) complex 76.

Figure 2.24. Plot for the oxidation of complex 67 with 20.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$, showing the fraction of starting $\mathrm{Pd}(\mathrm{II})$ complex 67 , the intermediate complex, and the product 76 as a function of time.

In order to understand the nature of the intermediate complex observed in the
${ }^{1} \mathrm{H}$ NMR experiments, ESI-MS analysis of the oxidation reaction was performed.

ESI-MS characterization of a mixture of complex 67 with 10.0 eq $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $273 K$

A 0.010 M solution of complex 67 in 1.0 ml of water was combined with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in an ice-water bath at $0^{\circ} \mathrm{C}$. Analysis of this solution by ESI-MS 18 seconds after mixing revealed the following major peaks (m / z, positive mode): 1) 486.0448, assigned to the $\operatorname{Pd}(\mathrm{II})$ precursor 67 ; 2) 504.0525 assigned to product of hydration of the $\operatorname{Pd}($ II $)$ precursor $67 ; 3) 520.0472$ assigned to complex $76 \mathrm{and} /$ or complex 78 (see fig. 2.25).

Figure 2.25. ESI-MS spectrum of an aqueous solution 0.010 M complex $\mathbf{6 7}, 18$ seconds after adding 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $0^{\circ} \mathrm{C}$.

The maximum fraction of the intermediate " \mathbf{X} " formed was dependent on the temperature and the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ added. A higher concentration of the intermediate was observed when the reaction was conducted at lower temperatures and when a higher concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used (see table 2.13 below).

Table 2.13. Oxidation of complex 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, showing the concentration of the intermediate " \mathbf{X} " as a function of $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration and temperature.

$\left.\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{(e q}\right)$	Temp (K)	Intermediate \mathbf{X} (\%)
1.0	295	2%
1.0	276	12%
20.0	276	27%
40.0	276	33%

In order to determine the identity of the intermediate complex " \mathbf{X} ", some of its ${ }^{1} H$ NMR resonances were assigned and compared to similar set of signals belonging to the $\operatorname{Pd}(\mathrm{II})$ precursor 67 and the $\mathrm{Pd}(\mathrm{IV})$ product 76. Peak assignment for complexes 67 and 76 was based on ${ }^{1} \mathrm{H}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC, 1D Selective NOE, and 1D Selective TOCSY. The assignment of overlapping signals was possible using 1D Selective TOCSY pulse program.

67

76

Table 2.14. Selected ${ }^{1} \mathrm{H}$ NMR chemical shifts for complexes 67, 76, and intermediate " \mathbf{X} " in $\mathrm{D}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$.

	A					B					C				
	1	2	3	4	1	2	3	4	1	2	3	4			
$\mathbf{6 7}$	8.20	7.35	8.02	7.93	7.42	6.90	7.76	7.84	7.49	7.05	7.79	7.86			
"X"	8.22	7.32	8.01	7.94	7.45	6.96	7.80	7.85	7.53	7.10	7.83	7.90			
$\mathbf{7 6}$	8.06	7.15	7.92	7.63	8.03	7.23	7.96	7.75	8.33	7.29	7.94	7.87			

*The ${ }^{1}$ H NMR chemical shifts were analyzed towards the end of the reaction with 64 \% complex 76, 18 \% complex 67, and 18% " $\mathbf{X "}$ present.

It can be observed that the chemical shifts of the signals belonging to the intermediate " \mathbf{X} " are very similar to those belonging to complex 67 and different from complex 76. This indicates that the intermediate " \mathbf{X} " is structurally and electronically more similar to complex 67 than to complex 76. The difference in the
${ }^{1} \mathrm{H}$ NMR pattern of complex 67 and $\mathbf{7 6}$ probably arises from the electrophilic nature of the latter as a result of the $\mathrm{Pd}(\mathrm{IV})$ center relative to the $\mathrm{Pd}(\mathrm{II})$ center of complex 67 , and thus the similarity of the ${ }^{1} \mathrm{H}$ NMR pattern of the intermediate " \mathbf{X} " and that of the $\mathrm{Pd}(\mathrm{II})$ precursor 67 suggests the presence of a similar central atom in both complexes 67 and "X". This analysis led us to propose the structure of the intermediate complex as a $\mathrm{Pd}(\mathrm{II})$ species having a similar chemical environment to the $\mathrm{Pd}(\mathrm{II})$ precursor 67. Thus the intermediate " \mathbf{X} " was assigned to the adduct of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand of complex $\mathbf{6 7}$, complex 78 .

In addition, the ESI-MS analysis revealed formation of a compound with m / z $=520.0472$ corresponding to the mass of the $\mathrm{Pd}(\mathrm{II})$ precursor 67 plus 34 (two OH groups), which was assigned to either complex 78 (intermediate " X ") and/ or complex 76 (Fig. 2.25). According to the ${ }^{1} \mathrm{H}$ NMR analysis of this reaction, the concentration of complex 76 is not significant 18 seconds after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ while the concentration of the intermediate is substantial. As a result, the $\mathrm{m} / \mathrm{z}=$ 520.0472 was also assigned to the intermediate complex of $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across $\mathrm{C}=\mathrm{O}$, complex 78. This assignment is also supported by the facile hydration of the $\mathrm{C}=\mathrm{O}$ group of the dpk ligand (rate $=4.0 * 10^{-2}$ in water), ${ }^{154}$ especially upon coordination to a $\operatorname{Pd}(\mathrm{II})$ atom, ${ }^{154}$ which increases the efficiency of the hydration reaction. Moreover, $\mathrm{H}_{2} \mathrm{O}_{2}$ being a stronger nucleophile than $\mathrm{H}_{2} \mathrm{O}$ is expected to increase the favorability of the addition reaction.

The fraction of complex 78 in the reaction mixture is expected to be affected by the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in solution, and considering that it is an unstable intermediate which decomposes to the $\mathrm{Pd}(\mathrm{IV})$ product 76, its fraction is also expected
to be affected by the temperature of the solution. Indeed, upon addition of 1.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an aqueous solution of complex 67 at $3{ }^{\circ} \mathrm{C}$, a 12% fraction of complex 78 is produced, but this fraction increases to 33% when 40.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ are used. In addition, the fraction of complex 78 is lower at higher temperatures as expected because its reactivity towards oxidation to produce the $\mathrm{Pd}(\mathrm{IV})$ complex 76 increases at higher temperatures. This was demonstrated when a 12% maximum fraction of complex 78 was produced when of 1.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to an aqueous solution of complex 67 at $3{ }^{\circ} \mathrm{C}$, but this fraction decreases to only 2% at $22^{\circ} \mathrm{C}$ under similar conditions.

As a result of the analysis of the ESI-MS and ${ }^{1} \mathrm{H}$ NMR experiments, we propose that the intermediate complex " \mathbf{X} " produced upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an aqueous solution of either complex $\mathbf{6 6}$ or $\mathbf{6 7}$ is an adduct of $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across the $\mathrm{C}=\mathrm{O}$ bond of the coordinated dpk ligand such as 78, and this complex decomposes to produce the observed $\mathrm{Pd}(\mathrm{IV})$ product according to the equation below.

Scheme 2.32

Kinetics study for the oxidation of 0.010 M complex $\mathbf{6 7}$ in water with $\mathrm{H}_{2} \mathrm{O}_{2}$

Scheme 2.33

In order to understanding of the mechanism of the oxidation reaction, several kinetic experiments were performed. A 0.010 M aqueous solution of complex 67 was combined with 10.0-20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$, and this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy; 10.0-20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were used in order to give pseudo-first order conditions. The rate of disappearance of the starting complex 67 at $3{ }^{\circ} \mathrm{C} \mathrm{K}$ was analyzed as $\ln \left([67]_{\mathrm{o}} /[67]_{\mathrm{t}}\right)$ vs time, where $[67]_{0}$ refers to the initial concentration of the organopalladium(II) complex 67, while $[67]_{\mathrm{t}}$ refers to the concentration of the organopalladium(II) complex 67 at time t. The kinetic plots were found to be non-linear.

(a)

\bullet Complex 67 ■ Intermediate Complex 76
(b)

Figure 2.26. Representative kinetic plots of $\ln \left([67]_{\mathrm{o}} /[67]_{\mathrm{t}}\right)$ vs time for reaction mixtures containing aqueous solutions of 0.010 M complex 67 with various equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}(\mathrm{a}-\mathrm{b}) 10.0$ equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used (c-d) 15.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used.

These plots indicate that the reaction does not follow a simple pseudo-first order rate law. The lack of simple second order kinetics would indicate a complex oxidation reaction mechanism. This is expected due to the observation of an intermediate complex which we propose is an adduct of $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand. Either addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to the $\mathrm{C}=\mathrm{O}$ bond or the actual oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ could be the rate determining step in our system, or the two processes could have similar rates, leading to the complex kinetics. In order to study this oxidation system, kinetics modeling was performed. The kinetics modeling was performed by Dr. Andrei Vedernikov. Selected results are presented in fig. 2.27.

In the kinetics modeling described in figure 2.27, experimental data for the reaction mixtures containing $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complex 67 with 10.0 and 15.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ are modeled using Scheme 2.34. The rate constants k_{1}, k_{-1}, $k_{2}, k_{3}, k_{4}, k_{-4}$ were varied to produce the best least-square fit to the experimental data. Numerical integration was used to find the desired concentrations of 67 (blue diamonds in the plot)), 76 (green diamonds in the plot), and 78 (red diamonds in the
plot) based on the rate constant values guessed and initial concentrations of 67, 76
and 78. The quality of the final fit (diamonds) is shown in fig. 2.27.

Figure. 2.27. Kinetics modeling plots for the reaction between $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complex $\mathbf{6 7}$ with (a) 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and (b) 15.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$. The plots include concentration of complex 67 (blue circles/ diamonds), intermediate " \mathbf{X} " (red circles/ diamonds), and complex 76 (green circles/ diamonds) as a function of time. The experimental concentrations are presented as circles while the modeled concentrations are presented as diamonds.

Scheme 2.34

According to figure 2.27 , there is a near perfect fit of the experimental and the calculated values. The rate constants for the oxidation reactions found in three
different runs all performed at $3^{\circ} \mathrm{C}$ but with various concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ are given below:

Table 2.15. The rate constants for the oxidation of complex 67 at $3^{\circ} \mathrm{C}$ with various concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Entry	$[\mathrm{HOOH}]$	k_{1}	k_{--1}	k_{2}	k_{3}	k_{4}	k_{--4}
1	0.1991	0.182	0.099	0.000	1.992	0.248	0.101
2	0.1486	0.182	0.106	0.001	1.980	0.236	0.102
3	0.09872	0.185	0.093	0.000	2.011	0.292	0.095

The reaction scheme used for the kinetic modeling assumes formation of two intermediates exo-78 and endo-78. Intermediate exo-78 cannot lead to any $\mathrm{Pd}(\mathrm{IV})$ product since the $\mathrm{Pd}(\mathrm{II})$ and -OOH are far apart. In turn, intermediate endo-78 is expected to produce the $\mathrm{Pd}(\mathrm{IV})$ product readily. The difference between these two intermediates lies in the orientation of the -OOH group relative to $\mathrm{Pd}(\mathrm{II})$ as shown below. In intermediate endo-78, the -OOH group is oriented in such a way that the σ^{*} orbital of the $\mathrm{O}-\mathrm{O}$ bond can be arranged above the $\mathrm{d}_{\mathrm{z}}^{2}$ orbitals of $\mathrm{Pd}(\mathrm{II})$, and thus their interaction can lead to product formation. However in exo-78, the -OOH group lies further away from the $\mathrm{Pd}(\mathrm{II})$ center leading to minimal if any interaction between the two groups, thus preventing any reaction.

Scheme 2.35

exo-78

endo-78

Consistent with this formal consideration, results of our kinetics modeling give $\mathrm{k}_{2}=0$ and large k_{3} value. In addition, complex endo-78 does not exist in sufficient concentration to be detected by NMR spectroscopy and the intermediate observed experimentally is therefore exo-78, which is unreactive towards product formation but exists in equilibrium with the $\mathrm{Pd}(\mathrm{II})$ precursor 67. When higher concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ are used in the oxidation reaction, the fraction of exo-78 increases since the increase in $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration will push the equilibrium between complexes 67 and exo-78 forwards towards complex exo-78. Moreover, when the oxidation reaction is performed at higher temperatures, the rate of formation of the $\operatorname{Pd}(I V)$ complex 76 is expected to increase, and this will in-turn increase both the rate of depletion of complex 67 and the rate of reversible interconversion of complexes 67 and exo-78. Indeed at $22^{\circ} \mathrm{C}$, the fraction of complex exo-78 was lower than at $3^{\circ} \mathrm{C}$.

Having analyzed the identity of the intermediate, we next sought to study the mechanism of oxidation of $\operatorname{Pd}(\mathrm{II})$ to $\operatorname{Pd}(I V)$. Van Koten and co-workers have proposed formation of an alcohol oxide which initially coordinates onto $\mathrm{Pd}(\mathrm{II})$. This is followed by nucleophilic attack of the $\operatorname{Pd}(\mathrm{II}) \mathrm{d}_{\mathrm{z}}{ }^{2}$ orbitals onto the $\sigma^{*} \mathrm{O}-\mathrm{O}$ LUMO in a rate-determining step to form a Pd(IV) complex. Bandyopadhyay proposed formation of $\cdot \mathrm{OOH}$ radicals from HOOH by a $\mathrm{Fe}(\mathrm{III})$ porphyrin catalyst. This $\cdot \mathrm{OOH}$ radical is attacked by $\mathrm{Pd}(\mathrm{II})$, ultimately leading to the formation of a $\mathrm{Pd}(\mathrm{IV})$ complex in a rate-determining step. In the oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ using m-CPBA, Bandyopadhyay proposed heterolytic cleavage of $\mathrm{O}-\mathrm{O}$ bond of the peroxide oxidant in a concerted fashion, leading to formation of oxapalladacycles without formation of any $\operatorname{Pd}(\mathrm{IV})$ intermediate. In the oxidation of organoplatinum(II) complexes to
dihydroxy-organoplatinum(IV) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$, Rashidi and co-workers proposed a concerted three-centered transition state involving the two oxygen atoms of the peroxide group and the metal. Therefore we started our analysis by determining whether radicals are involved in the oxidation reaction.

In order to rule out participation of $\cdot \mathrm{OH}$ or $\cdot \mathrm{OOH}$ free radicals in the oxidation of the organopalladium(II) complexes, the oxidation of complex 67 was performed in the presence of benzoquinone, which is a known radical reaction inhibitor. ${ }^{165}$ A 0.010 M aqueous solution of complex 67 was combined with 5.0 eq of benzoquinone and 10.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution. This reaction was monitored by ${ }^{1} \mathrm{H}$ NMR at $6^{\circ} \mathrm{C}$. Since the time for 50% conversion in the absence of benzoquinone was found to be ~ 17 minutes while the time for 50% conversion in the presence of benzoquinone was ~ 18 minutes, the radical inhibitor was found not to inhibit the oxidation reaction, ruling out the participation of radicals in this reaction.

Table 2.16. Time for 50% conversion of complex 67 in acetic acid at $6^{\circ} \mathrm{C}$, in the presence and absence of benzoquinone additive.

Additive	50% conversion
No additive	17 min
5.0 eq benzoquinone	18 min

As a result of the lack of inhibition of the oxidation reaction by benzoquinone radical inhibitor, a 2-electron oxidation mechanism was considered in the oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ by $\mathrm{H}_{2} \mathrm{O}_{2}$. This oxidation reaction was studied computationally using the DFT (see scheme 2.36 below, all data is for the aqueous phase reactions). The theoretical calculations were performed by Dr. Andrei Vedernikov.

Scheme 2.36

Consistent with our experimental results, the oxidation reaction might involve two steps: (i) addition of HOOH across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand, and (ii) oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$. According to theoretical calculations, the ratedetermining step for the oxidation of 2-benzoylpyridine derived dpk complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ is the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand. This addition reaction has a lower barrier when its transition state includes one water molecule involved in a concerted proton transfer from $\mathrm{H}_{2} \mathrm{O}_{2}$ to the dpk carbonyl oxygen atom. The calculated $\Delta \mathrm{G}^{\neq}$of $19.9 \mathrm{kcal} / \mathrm{mol}$ closely matches the experimental value of 19.1 $\mathrm{kcal} / \mathrm{mol}$ at $3^{\circ} \mathrm{C}$. The theoretical calculations were performed using density functional theory (DFT) method, ${ }^{166}$ specifically functional PBE, ${ }^{167}$ implemented in an original
program package "Priroda". ${ }^{168}$ The basis set was 311 -split for main group elements with one additional polarization p-function for hydrogen, additional two polarization d-functions for elements of higher periods.

The DFT was also used to study the mechanism for the oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\operatorname{Pd}(\mathrm{IV})$ with $\mathrm{H}_{2} \mathrm{O}_{2}$. The lowest energy transition state for this step was found to involve proton assisted heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond of the peroxide moiety in a cyclic transition state involving 5 atoms (Scheme 2.36). In this mechanism, 2electrons from the doubly occupied $\mathrm{d}_{\mathrm{z}}{ }^{2}$ orbital of the $\operatorname{Pd}(\mathrm{II})$ atom attack the σ^{*} orbital of the $\mathrm{O}-\mathrm{O}$ bond of the peroxide moiety leading to cleavage of this bond with the assistance from the proton of the neighboring hydroxide group. Proton transfer and eventual closure of the second pair of chelate rings lead to formation of the sixcoordinate $\mathrm{Pd}(\mathrm{IV})$ cation 76. The calculated $\Delta \mathrm{G}^{\neq}$for this step was found to be 12.3 $\mathrm{kcal} / \mathrm{mol}$, which is lower than that for the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand.

Additional experiments were performed to test the calculated mechanism. Experiments were set up to monitor the effect of acids and bases on the rate of oxidation of aqueous solutions of complex 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$. It is known that base accelerates the rate of hydration of ketones and aldehydes by deprotonating $\mathrm{H}_{2} \mathrm{O}$ and making a better nucleophile, OH^{-169} Acid also accelerates the rate of hydration of ketones and aldehydes by protonating the $\mathrm{C}=\mathrm{O}$ moiety and making it a better electrophile. ${ }^{169}$ With a rate-limiting addition of HOOH onto the $\mathrm{C}=\mathrm{O}$ bond, the oxidation reaction is expected to be accelerated under both acidic and basic conditions.

Scheme 2.37
Acid assisted hydration

Base assisted hydration

Thus two 0.010 M aqueous solutions of complex 67 buffered at $\mathrm{pD}=8.50$ and 5.03 were combined with 10.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ and the reactions were monitored by ${ }^{1} \mathrm{H}$ NMR at $6^{\circ} \mathrm{C}$. The time for 50% conversion in the absence of a buffer $(\mathrm{pD}=5.72)$ is \sim 17 minutes while the time for 50% conversion at $\mathrm{pD}=8.50 \sim 17$ minutes. The time for 50% conversion at $\mathrm{pD}=5.03$ was found to be ~ 15.5 minutes. These results indicate that both acidic and basic conditions do not have significant effect on the rate of the oxidation reaction (see table 2.17 below).

Table 2.17. Time for 50% conversion of complex 67 in buffered aqueous acidic, basic and non-buffered conditions.

Additive	50% conv	50% product	Max. Intermediate
No additive $(\mathrm{pD}=5.72)$	17 min	22 min	17%
$\mathrm{pD}=8.50$	17 min	19 min	17%
$\mathrm{pD}=5.03$	15.5 min	20 min	19%

In summary, these results indicate that the reaction between $\mathrm{H}_{2} \mathrm{O}_{2}$ and complex 67 is not affected by radical inhibitors, acidic or basic conditions.

The lack of acceleration of this oxidation reaction by acid or base is surprising since acidic and basic reactions conditions are known to increase the rate of hydration
of the $\mathrm{C}=\mathrm{O}$ moiety. These results might indicate that the rate of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of coordinated dpk is not affected in the studied pH range.

2.6.3 Kinetics Study of the Reaction of Organopalladium(II) Complexes 68-71 with

$\underline{H}_{2} \underline{O}_{2} \underline{\text { in Water }}$

In order to study the mechanism of oxidation of complexes 68-71, the kinetics of this reaction was studied. Representative plots of $\ln \left([\mathrm{Pd}(\mathrm{II})]_{\mathrm{o}} /[\mathrm{Pd}(\mathrm{II})]_{\mathrm{t}}\right)$ vs. time for a mixture of 0.010 M aqueous solution of complexes $\mathbf{6 9}$ and 71 and $\sim 7-12$ eq $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$ are given in figure 2.28 below. The pseudo-first order plots for these oxidation reactions are linear. The rates for these oxidation reactions with various substitutents on the 2-phenylpyridine ligand are presented in table 2.18 below.

Figure 2.28. Representative kinetics plots of $\ln \left([\operatorname{Pd}(\mathrm{II})]_{0} /[\operatorname{Pd}(\mathrm{II})]_{\mathrm{t}}\right)$ vs. time for the oxidation of 0.010 M solutions of complexes $\mathbf{6 9}$ and 71 with ~ 7.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at $3^{\circ} \mathrm{C}$.

Table 2.18. Correlation between the observed first order rate constants and the σ_{m} for oxidation of various 4 -substituted phenylpyridine dpk-derived palladacycles with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ under pseudo-first order conditions.

\mathbf{R}	$[\mathbf{P d}(\mathbf{I I})]$	$[\mathbf{H O O H}]$	$\mathbf{K}_{\mathbf{o b s}}\left(\mathrm{min}^{-1}\right)$	$\boldsymbol{\sigma}_{\mathbf{m}}$
-F	$4.85 * 10^{-3}$	$39.9 * 10^{-3}$	$(1.18 \pm 0.02) * 10^{-1}$.337
-H	$5.78 * 10^{-3}$	$40.8 * 10^{-3}$	$(3.09 \pm 0.13) * 10^{-1}$	0
- Ome	$2.93 * 10^{-3}$	$37.9 * 10^{-3}$	$(4.63 \pm 0.06) * 10^{-1}$	0.115
-Me	$5.61 * 10^{-3}$	$40.6 * 10^{-3}$	$(1.37 \pm 0.01) * 10^{-1}$	-0.069

Figure 2.29. Hammett plot for the oxidation of 4-substituted phenylpyridine dpkderived palladacycles 68-71 with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3^{\circ} \mathrm{C}$ under pseudo-first order conditions.

The Hammett plot shows a change in the slope of the plot with two intersecting lines, which is indicative of a change in the rate-determining step as a function of the substituents.

In order to rule out participation of $\cdot \mathrm{OH}$ radicals in the oxidation of the organopalladium(II) complexes, the oxidation of complex 69 was performed in the presence of benzoquinone, which is a known inhibitor of radical reactions. Thus
0.010 M aqueous solution of complex 69 was combined with 3.0 eq of benzoquinone and ~ 7.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution. This reaction was monitored by ${ }^{1} \mathrm{H}$ NMR at $3{ }^{\circ} \mathrm{C}$. The observed pseudo-first order rate constant for the oxidation reaction in the absence of benzoquinone was found to be indistinguishable to the pseudo-first order rate constant in the presence of benzoquinone, indicating the absence of radicals.

Table 2.19. Observed first order rate constants for the depletion of complex 69 in water at $3{ }^{\circ} \mathrm{C}$, in the presence and absence of benzoquinone additive.

Additive	$\mathrm{k}_{\text {obs }}\left(\mathrm{min}^{-1}\right)$
No additive	0.121 ± 0.003
5.0 eq benzoquinone	0.125 ± 0.006

This analysis indicates that radicals are not involved in this oxidation reaction. Therefore a 2 -electron mechanism of oxidation was considered. Similar to the oxidation of complexes 66 and 67 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, a two-step oxidation mechanism was proposed. The first step is proposed to involve addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand to produce a hydroperoxo adduct. The second step involves nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ onto the $\mathrm{O}-\mathrm{O}$ bond in the hydroperoxide adduct that results into heterolytic cleavage of the bond to generate the observed $\mathrm{Pd}(\mathrm{IV})$ products, according to Scheme 2.38. Attempts to detect the hydroperoxo adduct were unfruitful. In particular, when the oxidation reactions of complexes 69 and 71 were performed in water with various equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at various temperatures, no intermediates were detected in these reactions.

Scheme 2.38

This reaction was studied by DFT calculations (Scheme 2.39).
Scheme 2.39

According to the DFT calculations, the two steps involved in the oxidation reaction have similar Gibbs free energy. As a result, any change in substrates or reaction conditions could change the rate-determining step of the reaction. Thus the experimental observation of a curved Hammett plot for the oxidation of 2phenylpyridine derived palladacycles is not surprising.

The experimentally observed Hammett plot gives a negative ρ value for electron-withdrawing substituents and a positive ρ value for electron-donating substituents. A negative ρ value indicates that there is a build up of positive charge at the transition state, and this would support the oxidation step being the ratedetermining step. However a positive ρ value for electron-donating substituents indicates a build up of negative charge in the transition state. Since attack of the $\mathrm{C}=\mathrm{O}$ bond by $\mathrm{H}_{2} \mathrm{O}_{2}$ leads to development of positive charge at the oxygen atom of the hydrogen peroxide moiety and negative charge at the oxygen atom of the carbonyl moiety, the extent to which the charges develop determines the ρ value observed; in this case more negative than positive charge develops at the transition state.

Thus, the mechanism proposed through DFT calculations where the energy of both steps involved in the oxidation reaction are close agrees with experimental observations. This is because when the energies of both steps are close, various factors could change the rate-determining step of the oxidation reaction, and this is the case where electronic factors were observed to change the rate-determining steps according to Hammett analysis.

The effect of pH was also analyzed on the rate of this oxidation reaction. As discussed above, both acids and bases are expected to increase the rate of hydrolysis
of $\mathrm{C}=\mathrm{O}$ bond, and these factors are expected to increase the rate of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond. As a result, if the rate-determining step of the oxidation reaction is addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond, then acidic and basic pH are expected to increase the rate of the oxidation reaction.

The effect of pH in the oxidation of the organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ was investigated. Two 0.010 M aqueous solutions of complex $\mathbf{6 9}$ buffered at pD $=8.88$ and 4.86 were prepared. ~ 5.0 eq. of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solutions and the reactions were monitored by ${ }^{1} \mathrm{H}$ NMR at $3{ }^{\circ} \mathrm{C}$. The plots for $\ln \left([69]_{\mathrm{o}} /[69]_{\mathrm{t}}\right)$ vs time plot for these reactions are presented below. These plots were found to be non-linear, and thus the time for 50% conversion are presented in table 2.20 below.

Fig. 2.30. (a) A Kinetic plot for $\ln \left([69]_{\mathrm{o}} /[\mathbf{6 9}]_{\mathrm{t}}\right)$ vs time plot for the oxidation of 0.010 M complex 69 with ~ 6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $1.0 \mathrm{ml} \mathrm{D} \mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ at $\mathrm{pD}=4.99$ (b) Kinetic plot for $\ln \left([69]_{0} /[69]_{\mathrm{t}}\right)$ vs time plot for the oxidation of 0.010 M complex 69 with ~ 25 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $1.0 \mathrm{ml} \mathrm{D} \mathrm{D}_{2} \mathrm{O}$ at $3{ }^{\circ} \mathrm{C}$ at $\mathrm{pD}=8.88$.

According to the kinetics of oxidation of aqueous solutions of 2phenylpyridine derived palladacycles with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic and basic conditions, the reaction is accelerated at high pH , and inhibited at low pH (table 2.20).

Table 2.20. Oxidation of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complex $\mathbf{6 9}$ with excess (>6 equivalents) $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ in the presence of various additives.

Additive	50 \% conversion (mins)	Complex 84	Complex 88
No additive (pD = 7.32)	6.0	76%	24%
3.0 eq benzoquinone	8.0	87%	13%
$\mathrm{pD}=4.99$	16	96%	4%
$\mathrm{pD}=8.88$	<2	94%	6%

2.6.4 ${ }^{1} \mathrm{H}$ NMR Study of the Reaction of Organopalladium(II) Complexes 72 and 73

with $\mathrm{H}_{2} \underline{\mathrm{O}}_{2} \underline{\text { in Water }}$
A similar two-step oxidation scheme could be considered for the oxidation of complexes 72 and 73.

Scheme 2.40

When aqueous solutions of complexes 72 and 73 were combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at ambient conditions, quantitative formation of complexes 93 and 94 were observed and no intermediates were detected in these reactions.

Similarly, when an acetic acid solution of complex 72 was combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, quantitative formation of complex 93 was observed with no intermediates detected. However when an acetic acid solution of the more electrondeficient complex 73 was combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, an intermediate was detected. This intermediate led to formation of complex 94 under the reaction conditions. It is possible that the adduct of $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand was detected when complex $\mathbf{7 3}$ was used as substrate due to its electrondeficient nature. An electron-deficient complex would make the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand more electrophilic and thus increase the rate of the addition reaction. In addition, an electron-deficient complex would make the $\mathrm{Pd}^{\mathrm{II}}$ center less nucleophilic towards attacking the σ^{*} orbitals of the $\mathrm{O}-\mathrm{O}$ bond of the oxidant, and thus a high rate of formation of the hydroperoxo adduct and a lower rate of depletion would increase the concentration of this adduct leading to its detection by ${ }^{1} \mathrm{H}$ NMR.

2.7 Summary and conclusion

In summary, the ligand enabled oxidation of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes 66-74 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water and acetic acid has been achieved to generate the corresponding $\mathrm{Pd}(\mathrm{IV})$ monohydrocarbyls. The $\mathrm{Pd}(\mathrm{IV})$ complexes bearing two facially chelating ligands were found to be more stable than those bearing one facially chelating ligand.

The mechanism of oxidation of the organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ has been studied. This mechanism has been proposed to involve two steps: (i) addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand to produce a hydroperoxo adduct, (ii) heterolytic $\mathrm{O}-\mathrm{O}$ bond cleavage in the hydroperoxo adduct to produce the
$\mathrm{Pd}(\mathrm{IV})$ products. The adduct of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand has been detected in reactions involving the 2-benzoylpyridine-derived complexes in water and acetophenone oxime-derived complexes in acetic acid. The rate-determing step in these oxidation reactions was found to vary as a function of the substrate used and the reaction conditions.

2.8 Experimental

2.8.1 General

All manipulations were carried out under ambient atmosphere unless otherwise noted. All reagents for which synthesis is not given are commercially available from Aldrich, Acros, Alfa-Aesar or Pressure Chemicals, and were used as received without further purification. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}$ or 500 MHz$)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz or 125 $\mathrm{MHz})$ spectra were recorded on a Bruker AVANCE 400 or Bruker DRX-500. Chemical shifts are reported in ppm and referenced to residual solvent resonance peaks. High Resolution Mass Spectrometry (HRMS) experiments were performed using a JEOL AccuTOF-CS instrument. Elemental analyses were carried out by either Chemisar Laboratories Inc., Guelph, Canada, or Columbia Analytical Services, Tucson, AZ.

2.8.2 Computational details.

Theoretical calculations in this work have been performed using density functional theory (DFT) method, ${ }^{166}$ specifically functional PBE, ${ }^{167}$ implemented in an original program package "Priroda". ${ }^{168}$ In PBE calculations relativistic Stevens-Basch-Krauss (SBK) effective core potentials (ECP) ${ }^{170-172}$ optimized for DFTcalculations have been used. Basis set was 311-split for main group elements with one additional polarization p-function for hydrogen, additional two polarization d functions for elements of higher periods. Full geometry optimization has been performed without constraints on symmetry. For all species under investigation frequency analysis has been carried out. All minima have been checked for the
absence of imaginary frequencies. All transition states possessed just one imaginary frequency. Using the method of Intrinsic Reaction Coordinate, reactants, products and the corresponding transition states were proven to be connected by a single minimal energy reaction path.

All the species under investigation were next modeled with the Jaguar program package with the same functional (PBE) ${ }^{173}$ and LACVP relativistic basis set with two polarization functions. These results showed the same trends as with Priroda calculations and the essentially same reaction parameters. The solvation of all complexes in Scheme 5 in water was modeled using a Poisson-Boltzmann continuum solvation model (PBF).

2.8.3 Acetate-bridged Palladacycles

Preparation of complexes 49 and 50

Compounds 49 and 50 were prepared by the following general procedure. The substrate $\mathbf{4 0}$ or $\mathbf{4 1}$ was combined with 1.0 equivalent of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid. The resulting acetic acid solution was refluxed for 3 hours. The solution was filtered through Celite while hot to remove Pd black and concentrated to afford precipitate. The precipitate was filtered off and washed with a small amount of diethyl ether to afford the target compounds in good yields. The identity of compound 49 was confirmed by comparing its NMR spectra to literature, while the identity of compound $\mathbf{5 0}$ was confirmed by NMR and its purity was confirmed by elemental analysis.

Complex 49 (82.8 \% yield)

The identity of complex 49 was confirmed by comparing its spectrum to that published in literature. ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.07(\mathrm{~s}, 3 \mathrm{H}), 6.81-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}$, 1 H), 7.13 (ddd, $J=7.5,5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.86$ (m, $2 \mathrm{H}), 8.28(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 24.7,124.8,125.7,126.8,128.8,130.6,132.8,134.2$, $138.8,143.5,150.8152 .0,181.7,190.6$

Complex 50 (96.0 \% yield)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.03$ (s, 3H), 2.22 (s, 3 H), 6.69 (vs, 2H), 7.10 (ddd, $J=7.5$, , $5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.81$ (td, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=5.3,0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 20.6,24.7,125.7,126.7,129.1,132.0,132.5$, 134.1, 134.2, 138.6, 139.9, 150.9, 152.1, 181.6, 190.6.

Anal. Found (Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Pd}$): C, 49.54 (49.81); H, 3.71 (3.62); N, 3.77 (3.87).

Preparation of 2-phenylpyridine derived complexes 51-54

Phenylpyridine-derived dinuclear acetato-bridged palladacycles were prepared by a modified literature procedure. A substituted phenylpyridine derivative 42-45 (1.05 mmoles) and $\operatorname{Pd}(\mathrm{OAc})_{2}(1.00$ mmoles $)$ were combined in acetic acid and the solution was either refluxed for 4 hours or stirred at $80^{\circ} \mathrm{C}$ overnight. The resulting solution was filtered through Celite while hot to remove Pd black. Concentration of the reaction solutions produced yellow precipitate of the target complexes. The reaction mixtures were triturated with diethyl ether to afford more products. Filtration of the resulting reaction mixtures afforded the target complexes as yellow residue which were washed with a small amount of diethyl ether and dried under vacuum at room temperature. The target compounds 51-54 were isolated as a mixture of two species, presumably cis- and trans- isomers whose ratios were determined via ${ }^{1} \mathrm{H}$ NMR integration. The identity of the products was confirmed by NMR spectroscopy while the purity was confirmed by elemental analysis.

Complex 51 (90.3 \% yield)

The identity of complex $\mathbf{5 1}$ was confirmed by comparing its spectrum to that published in literature. ${ }^{174}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.25(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.85(\mathrm{~m}$, 3H), 6.89 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (td, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 25.04,117.3,121.2,122.5,124.0,128.6,132.0$, 137.7, 144.6, 150.2, 152.1, 164.3, 181.8.

Complex 52 (94.7 \% yield)

The identity of complex $\mathbf{5 2}$ was confirmed by comparing its spectrum to that published in literature. ${ }^{174}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 6.49(\mathrm{td}, J=6.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s} 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\delta, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{td}, J=5.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 22.2,25.3,117.3,120.3,122.4,125.0,132.7$, 137.6, 138.6, 141.9, 150.0, 152.0, 164.7, 181.9.

Compound 53 (84.9 \% yield)

Complex 53 was prepared using the general procedure described above, and was isolated in 84.9 \% yield as a mixture of two isomers in $82: 18$ ratio as determined by ${ }^{1} \mathrm{H}$ NMR integration.

Major Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.31(\mathrm{dd}$, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{vs}, 1 \mathrm{H}), 6.44(\mathrm{td}, J=6.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 25.0,55.3,110.5,116.2,166.8,119.8,123.6$, 137.5, 137.6, 149.7, 153.9, 164.4, 181.8.

Anal. Found (Calcd, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Pd}$): C, 47.90 (48.09); H, 3.63 (3.75); N, 3.96 (4.01).

Complex 54 (79.2 \% yield)

Complex 54 was prepared by the general procedure described above, and was isolated in 79.2 \% yield as a mixture of two isomers in 86:14 ratio as determined by ${ }^{1} \mathrm{H}$ NMR integration.

Major Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.26(\mathrm{~s}, 3 \mathrm{H}), 6.47(\mathrm{td}, J=8.3,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51$ (dd, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{td}, J=6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.8$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=5.8$, $0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 25.0,111.2(\mathrm{~d}, J=23 \mathrm{~Hz}), 117.5,118.5(\mathrm{~d}, \mathrm{~J}=19$ $\mathrm{Hz}), 121.1,123.7(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 138.1,149.9,154.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 160.0,162.0$, 163.7, 182.2.

Anal. Found (Calcd, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{2} \mathrm{Pd}$): C, 46.16 (46.24); H, 2.91 (2.99); N, 4.05 (4.15).

Preparation of acetophenone oxime-derived complexes 55 and 56

The acetato-bridged palladacycles 55 and 56 were prepared by combining palladium acetate and a substituted acetophenone oxime derivative 46 or 47 (1.05 eq.) were combined in acetic acid and stirred $80^{\circ} \mathrm{C}$ for 8 hours. The resulting solution was filtered through Celite while hot to remove Pd black. Concentration of the resulting solution produced precipitate of the target compound, which was filtered off and the residue was washed with a small amount of diethyl ether to afford the target complexes; complex $\mathbf{5 5}$ was isolated as a yellow solid while complex $\mathbf{5 6}$ was isolated as an orange solid. The identity of the compounds was confirmed by NMR spectroscopy while the purity was confirmed by elemental analysis. Proton NMR spectroscopy revealed the presence of two species, presumably cis- and transisomers whose ratio could be determined by integration of the NMR spectra.

Complex 55 (96\% yield)

Complex 55 was isolated in 96.0 \% yield as a mixture of two isomers in 32:68 ratio as determined by ${ }^{1} \mathrm{H}$ NMR integration.

Major isomer: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 22^{\circ} \mathrm{C}$), $\delta: 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 6.79$ (td, $J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 12.10(\mathrm{~S}, 1 \mathrm{H})$.

Minor isomer: ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, $22^{\circ} \mathrm{C}$), $\delta: 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 6.99$ (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3, \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 1H), 12.10 (s, 1H)
${ }^{13} \mathrm{C}$ NMR (DMSO, $22{ }^{\circ} \mathrm{C}$) for both isomers, $\delta: 11.5,12.2,22.3,124.3,124.9$, $125.4,126.0,128.0,131.6,132.4,144.4,146.5,149.5,154.7,162.1,165.7$.

Anal. Found: C, 40.34; H, 4.06; N, 4.36; Calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Pd}_{2} ; \mathrm{C}$, 40.09; H, 3.70; N, 4.67.

Complex 56 (92\% yield)

Complex 56 was isolated in 96.0 \% yield as a mixture of two isomers in 21:79 ratio as determined by ${ }^{1} \mathrm{H}$ NMR integration.

Major isomer: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{2} \mathrm{~d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 7.28$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 12.32(\mathrm{~s}, 1 \mathrm{H})$.

Minor isomer: ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, $22^{\circ} \mathrm{C}$), $\delta: 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 7.39$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 12.32(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (DMSO-d6, $22^{\circ} \mathrm{C}$) for both isomers, $\delta: 13.0,22.5,123.2,124.6$, $124.9,125.0,125.3,126.4,126.7,128.5,151.5,154.9,156.3,173.8$.

Anal. Found: C, 36.16; H, 3.14; N, 3.49. Calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Pd}_{2} ; \mathrm{C}, 35.94$; H, 2.74; N, 3.81.

Complex 57, (90\% yield)

Phenoxypyridine-derived acetate-bridged palladacycle 57 was prepared by a modified literature procedure. ${ }^{152}$ Phenoxypyridine (1.05 mmoles) and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.0$ mmoles) were combined in acetic acid and stirred at $50^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was filtered and the residue was washed with a small amount of diethyl ether to afford the target compound as light yellow crystals in 90% yield. The identity of the product was confirmed by comparing its spectra to those reported in literature.

Proton NMR revealed the presence of two species, presumably cis- and transisomers whose ratio was determined to be 92% to 8% according to ${ }^{1} \mathrm{H}$ NMR integration in CDCl_{3} solvent at $22^{\circ} \mathrm{C}$.

Complex 57 was prepared according to literature, except that the solution was heat at $50{ }^{\circ} \mathrm{C}$ for 6 hours to increase yield. ${ }^{152}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.06(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6$
$\mathrm{Hz}, 1 \mathrm{H}), 6.70$ to $6.77(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{95} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 24.5,114.3,115.2,117.7,118.5,123.0,124.9,134.2$, 139.8, 148.9, 149.4, 157.4, 181.2.

2.8.4 Preparation of dpms-ligated Palladacycles

Complexes 58 and 61 have been characterized by Zhang and Vedernikov in unpublished results. ${ }^{175}$

The preparation and characterization of complex $\mathbf{5 8}$ was performed by Zhang and co-workers (Zhang, unpublished results). Complex 59 was prepared by combining the acetato-bridged palladacycle $\mathbf{5 5}(1.00 \mathrm{mmol})$ with an aqueous solution of the dpms ligand (1.05 mmol .) at ambient conditions. Stirring the reaction mixture at room temperature for several hours gradually produced a white precipitate. After 12 hours, the precipitate was filtered off and washed with a small amount of cold water to afford the pure target complex. Complex 60 was prepared by combining methanolic solution of the dpms ligand (1.05 mmol .) with the acetate-bridged palladacycle $49(1.00 \mathrm{mmol})$. The resulting reaction mixture was stirred at room temperature for 6 hours, where gradual formation of white precipitate was observed. At the end of the reaction, diethyl ether was added to the reaction mixtures to afford more white precipitate. The precipitate was filtered off and washed with a small amount of cold diethyl ether to afford pure the target complex $\mathbf{6 0}$. The identity of the complexes 58-60 was confirmed by NMR spectroscopy and electrospray ionization mass spectrometry, while the purity was confirmed by elemental analysis.

Complex 59 (82\%)

${ }^{1} \mathrm{H}$ NMR (AcOH- $\left.\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.43(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04$ (dt, $J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dt, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=7.5,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.99$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (AcOH-d $4,22^{\circ} \mathrm{C}$) $, \delta: 12.1,126.0,127.1,130.0,130.4,134.5,141.1$, 143.6, 158.5, 177.4.

ESI-MS of solution of $\mathbf{5 9}^{+}$in methanol, $\mathrm{m} / \mathrm{z}=489.9776$. Calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{106} \mathrm{Pd}, 490.0053$.

Anal. Found: 46.48; H, 3.75; N, 8.32: Calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PdS}$: C, 46.59; H, 3.50; N, 8.58.

Complex 60 (89\%)

${ }^{1} \mathrm{H}$ NMR (AcOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 7.12(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=6.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (td, $J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (ddd, $J=7.7,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (ddd, $J=7.6,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J=7.6,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (d, $J=5.0,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-8.05(\mathrm{~m}$, 4H), 8.21 (td, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (td, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (222, trifluoroethanol-d, $22^{\circ} \mathrm{C}$), $\delta: 128.4,128.6,130.2,130.3,131.1$, 131.7, 133.1, 134.5, 135.0, 142.0, 142.2, 142.6, 145.5, 147.3, 150.9, 151.8, 153.7, 195.6

ESI-MS of solution of $\mathbf{5 9}^{+}$in methanol, $\mathrm{m} / \mathrm{z}=538.0621$, Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{106} \mathrm{Pd},=538.0053$.

Anal. Found: 51.11; H, 3.04; N, 7.57: Calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PdS}$: C, 51.36; H, 3.19; N, 7.81.

Complex 63

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.43(\mathrm{~s}, 3 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=6.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08$ (dt, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dt, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dt, $6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (dd, $J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.06$ (t, $J=7.7$, 2 H), 8.88 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{AcOH}-\mathrm{d} 4,22^{\circ} \mathrm{C}\right), \delta: 15.5,116.5,120.6,122.9,124.4,124.6,127.8$, $128.4,130.6,133.0,140.4,140.5,149.2,152.1,152.6,153.2,160.4,163.1$.

ESI-MS of solution of $\mathbf{6 3 .} \mathbf{H}^{+}$in water, $\mathrm{m} / \mathrm{z}=505.9259$. Calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{106} \mathrm{Pd}, 506.0002$.

Anal. Found: C, 43.69; H, 3.37; N, 7.72: Calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{PdS}$ (with one water molecule): C, 43.56; H, 3.66; N, 8.02

2.8.5 Preparation of dpk-ligated Palladacycles

2-Aroylpyridine Derived Complexes 66 and 67

In the preparation of the 2-aroylpyridine (aroyl = benzoyl or 3-methyl benzoyl) derived dpk-based palladacycles 66 and 67, the acetate bridged palladacycle (1.00 mmol) 49 or $\mathbf{5 0}$ and dpk ligand (1.05 mmoles) were combined in acetic acid. Upon stirring the reaction mixture at room temperature under ambient conditions for 30 minutes, the precipitate dissolved and produced a clear solution, which was stirred at room temperature for an additional 60 minutes. Concentration of the solution and trituration with diethyl ether afforded white crystals of the target compounds. The resulting reaction mixtures were filtered and the residues washed with a small amount of cold diethyl ether to afford the target compound $\mathbf{6 6}$ in 93% yield and complex 67 in 92% yield. The identity of the complexes was established using NMR spectroscopy and ESI-mass spectrometry, while the purity was confirmed by elemental analyses.

Complex 66

Scheme S1. 1

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 1.89(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=6.6$,
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.37$ (d, $J=5.2,1 \mathrm{H}), 7.52$ (d, $J=5.1,1 \mathrm{H}), 7.57(\mathrm{td}, J=6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$,
8.03 to $8.07(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=7.6,1 \mathrm{H}), 8.24(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=5.3$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 23.9,95.6,122.5,122.6,126.1,126.5,126.6,126.7$, $128.7,129.6,133.0,134.5,138.0,141.2,141.3,141.8,150.4,151.6,151.9,153.6$, 154.7, 158.1, 158.5, 182.0, 194.4.

ESI-MS spectrum of solution of $\mathbf{6 6}^{+}$in $\mathrm{H}_{2} \mathrm{O}$, positive mode, $\mathrm{m} / \mathrm{z}=472.0203$, 490.0432, Calculated for 66, $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}$, 472.0286; $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}$ (the product of addition of $1 \mathrm{H}_{2} \mathrm{O}$ across a $\mathrm{C}=\mathrm{O}$ bond), 490.0392 .

Anal. Found (Calcd for a singly $\mathrm{C}=\mathrm{O}$-hydrated adduct with one molecule of acetic acid of crystallization) $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}$: C, 53.14 (53.17); $\mathrm{H}, 3.90$ (4.13); $\mathrm{N}, 6.84$ (6.89).

Complex 67

${ }^{1} \mathrm{H}$ NMR (D2O, 276 K), $\delta: 1.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}-3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-3 \mathrm{H}), 6.83$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 7.01 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 7.03 (ddd, $J=7.8,5.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.23$ (ddd, $J=7.9,5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13$), 7.37 (vs, 1H, H-3), 7.41 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.59$ (ddd, $J=7.9,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.61$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-12), 7.95 (td, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 8.00(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14), 8.04$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7)$, 8.27 (td, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 8.38(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 19.9,22.8,97.2,122.1,122.2,125.6,126.0,126.2$, $128.3,129.2,133.8,136.2,137.5,140.6,140.7,141.4,147.9,150.1,151.3,153.2$, 154.4, 157.6, 158.1, 180.8, 194.1.

ESI-MS spectrum of solution of $\mathbf{6 7}{ }^{+}$in $\mathrm{H}_{2} \mathrm{O}$, positive mode, $\mathrm{m} / \mathrm{z}=486.0527$, 504.0575, Calculated for 67, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=486.0443 ; \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}$ (a product of addition of $1 \mathrm{H}_{2} \mathrm{O}$ across a $\mathrm{C}=\mathrm{O}$ bond $)=504.0589$;

Anal. Found (Calcd for a singly $\mathrm{C}=\mathrm{O}$-hydrated adduct with one molecule of acetic acid of crystallization, $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}$): C, 53.89 (53.90); H, 4.42 (4.36); N , 6.56 (6.73).

Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data also allowed to assign this species as the hydrated species, similar to complex 66.

The ${ }^{1} \mathrm{H}$ NMR and elemental analysis data for this complex also indicate the presence of a residual acetic acid molecule. Attempts to remove the excess solvent under vacuum while heating the complex at $40-50^{\circ} \mathrm{C}$ resulted in decomposition to produce a deeper colored (green) complex which was only partially soluble in water.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 67

The structure of 67 in solution was confirmed by Selective 1D-difference NOE experiments, while the peak assignment was accomplished via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$

NMR, ${ }^{1} \mathrm{H}^{-}{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, 1D Selective NOE and 1D Selective TOCSY experiments. In the selective NOE experiments, irradiation of a resonance at 8.10 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the benzoylpyridine) showed enhancement (positive NOE) of a doublet at 7.36 ppm (ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand, 2.16%), and irradiation of a resonance at $6.49 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{c}}$ of aryl fragment of the 2-(3-methyl)benzoylpyridine) showed enhancement (positive NOE) of a doublet at $7.14 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand, 1.80%) (mixing time of 0.6 s , delay time of 3 s).

2-Aroylpyridine Derived Complexes 66 and 67

Complexes 68-70 were prepared in dichloromethane. The acetato-bridged palladacycle 51-53 (1.00 mmol) was combined with a dichloromethane solution of dpk ligand (1.05 mmol .) to form a clear solution. After stirring the solution at room temperature for 1 hour, the target compound was precipitated via concentration of the solution and trituration with either thf or hexanes. Filtration of the reaction mixtures afforded the target compounds $\mathbf{6 8 - 7 0}$ as white solids in good yields. Complex $\mathbf{7 1}$ was prepared by combining the acetate-bridged palladacyclic complex 54 (1.00 mmol .) and dpk ligand (1.05 mmol .) in acetic acid as solvent. The complex was isolated via removal of acetic acid solvent and addition of tetrahydrofuran to the residue to dissolve free dpk ligand. Filtration of the reaction mixture afforded the target compound as white solid in good yield. The identity of the complexes 68-71 was confirmed by NMR spectroscopy and ESI-Mass spectrometry, while the purity was confirmed by elemental analysis.

Complex 68 (91.5 \% yield)

Scheme S1. 2

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.89(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{bs}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{bs}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{bs}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.03-8.10 (m, 3H), $8.22(\mathrm{bs}, 1 \mathrm{H}), 8.28(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{MeOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 24.2,100.5,121.1,124.5,125.0,125.3,126.9$, $127.4,127.6,131.1,135.1,141.6,141.8,141.9,147.6,151.1,152.8,156.2,156.4$, 159.4, 159.8, 167.8, 180.3 (OAc)

ESI-MS of solution of $\mathbf{6 8}^{+}$in water, positive mode, $m / z=444.0264$ and 462.0403. Calculated for $\quad \mathbf{6 8}^{+}, \quad \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{106} \mathrm{Pd}: \quad 444.0328 ; \quad\left(68+\mathrm{H}_{2} \mathrm{O}\right)^{+}$ $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}: 462.0434$

Anal. Found (Calcd for a $\mathrm{C}=\mathrm{O}$-hydrated adduct, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}$): C, 55.29 (55.24); H, 4.20 (4.06); N, 7.83 (8.05).

Complex 69, (95.4 \% yield)
Scheme S1. 3

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{MeOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 1.89(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{~s}, \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H})$, $8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ to $8.19(\mathrm{~m}, 5 \mathrm{H}), 8.86(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (MeOH-d $4,22^{\circ} \mathrm{C}$) , $\delta: 23.2,25.5,101.8,122.0,125.3,125.8,126.2$, $126.4,128.6,128.9,137.0,142.7,142.9,143.0,143.2,146.0,152.2,154.0,157.4$, 157.6, 160.7, 161.2, 169.1, 181.4

ESI-MS of solution of $\mathbf{6 9}{ }^{+}$in methanol, positive mode, $\mathrm{m} / \mathrm{z}=458.0563$, 490.0853. Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{106} \mathrm{Pd}$, 458.0494; $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}$ (meoh adduct), 490.0756.

Anal. Found (Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}$ (hydrated complex): C, 56.04 (56.03); H, 4.27 (4.33); N, 7.70 (7.84).

Compound 70 (85.5 \% yield)

Scheme S1. 4

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.66(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 5.89(\mathrm{vs}, 1 \mathrm{H}), 6.43(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.77-$ $7.83(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.92(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{MeOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 24.3,55.9,100.5\left(\mathrm{Pyr}_{2} \mathrm{OH}\right), 111.7,120.4$, $121.0,123.3,124.6,125.0,126.6,127.4,127.6,140.1,141.4,141.8,142.0,150.7$, $152.8,156.2,157.9,159.4,159.9,161.6,167.7,180.3$ (OAc)

ESI-MS of solution of 70 in water, positive mode, $m / z=474.0318$ and 492.0423. Calculated for $\quad \mathbf{7 0}^{+}, \quad \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathbf{P d}: \quad 474.0434 ; \quad\left(70+\mathrm{H}_{2} \mathrm{O}\right)^{+}$ $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}: 492.0539$

Anal. Found (Calcd for a singly $\mathrm{C}=\mathrm{O}$-hydrated adduct with one extra $\mathrm{H}_{2} \mathrm{O}$ molecule, $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}$): C, 52.53 (52.69); H, 3.90 (4.42); N, 7.44 (7.37).

Complex 71 (75.6 \% yield)

Scheme S1. 5

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.66(\mathrm{~s}, 3 \mathrm{H}), 6.22(\mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{td}$, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (dd, $J=8.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.81-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (MeOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 24.2,100.5\left(\mathrm{Pyr}_{2} \mathrm{OH}\right), 113.7(\mathrm{~d}, J=24 \mathrm{~Hz})$, 121.2, 121.5 (d, $J=20.3 \mathrm{~Hz}), 124.5,124.7,125.1,127.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.5,127.9$, 141.9 (d, $J=18.8), 142.2,143.9,151.0,152.9,155.9,158.6(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 159.3$, $159.8,162.6,164.6,166.8,180.0$ (OAc).

ESI-MS of solution of 71 in water, positive mode, $m / z=462.0111$ and 480.0257. Calculated for $\mathbf{7 1}^{+}, \quad \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{FN}_{3} \mathrm{O}^{106} \mathrm{Pd}$: 462.0234; $\left(18+\mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}: 480.0340$

Anal. Found (Calcd for a hydrated complex with 1 molecule of acetic acid of crystallization, $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{Pd}$): C, 51.80 (52.05); $\mathrm{H}, 4.46$ (4.03); $\mathrm{N}, 7.16$ (7.00).

Preparation of complexes 72 and 73

In the preparation of complexes 72 and $\mathbf{7 3}$, a methanolic solution of the dpk ligand (0.11 mmol) and acetato-bridged palladacycle ($0.1 \mathrm{mmol}, 1 \mathrm{eq}$) $\mathbf{5 5}$ or $\mathbf{5 6}$ were combined at ambient conditions. Upon stirring the reaction solution for ~ 10 minutes, white precipitate was observed to gradually develop. The reaction mixture was stirred for a total of 60 minutes. The resulting mixture was concentrated and triturated with diethyl ether. The white precipitate was filtered off and washed with a small amount of diethyl ether to afford the target compound $\mathbf{7 2}$ in 90% and 73 in 78%.

Complex 72, (90\% yield)

${ }^{1} \mathrm{H}$ NMR (AcOH-d4, $\left.22^{\circ} \mathrm{C}\right), \delta: 2.31(\mathrm{~s}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=7.1,1 \mathrm{H}), 6.96(\mathrm{t}, J=7.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.14$ (d, 2H), 8.25 (t, $J=7.3,2 \mathrm{H}), 8.95(\mathrm{~d}, J=4.4,2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (AcOH-d4, $22^{\circ} \mathrm{C}$) $, \delta: 10.7,48.7,125.2,126.0,128.4,128.7,132.6$, 140.2, 143.2, 152.2, 153.4, 188.0.

ESI-MS of solution of $(72)^{+}$in $\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z}=424.0182$ and 442.0356 . Calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}$, 424.0277; (hydrated ligand ketone) $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}, 442.0380$.

Anal. Found: C, 52.24; H, 4.12; N, 8.64; Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}$: C, 52.13; H, 3.96; N, 8.69.

Complex 73, (78\% yield)

${ }^{1} \mathrm{H}$ NMR (MeOH-d4, $22^{\circ} \mathrm{C}$), $\delta: 2.29(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~s}, \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~m}, 2 \mathrm{H})$, $8.14(\mathrm{~m}, 2 \mathrm{H}), 8.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (MeOH-d4, $22^{\circ} \mathrm{C}$) , $\delta: 9.8,20.0,98.5,121.3,121.8,123.1,124.2$, 125.7, 127.7, 139.1, 140.1, 150.7, 152.5, 153.8, 156.9, 157.3, 158.6, 163.4, 174.8.

ESI-MS of solution of $(73)^{+}$in $\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z}=492.0031$ and 510.0261. Calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}$, 492.0151; (hydrated ligand ketone) $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}$, 510.0257

Anal. Found: C, 47.83; H, 3.22; N, 7.72: Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}$: C, 47.89; H, 3.29; N, 7.61.

Complex 74, (93 \% yield)

Complex 74 was prepared by a procedure similar to that of complexes $\mathbf{6 6}$ and 67. The acetato-bridged palladacycle (1.00 mmol) 57 and the dpk ligand (1.05 mmoles) were combined in acetic acid. Upon stirring the reaction mixture for ~ 20 minutes at ambient conditions, the precipitate dissolved to produce a clear, colorless solution. The solution was stirred at room temperature under ambient conditions for a total of 90 minutes. Concentration of the solution and trituration with diethyl ether afforded white crystals of the target compound. The resulting mixture was filtered and the residue was washed with a small amount of cold diethyl ether. The target compound 74 was produced in 93% yield as a white solid. The identity of the complex was established using NMR spectroscopy, X-ray diffraction and ESI-mass spectrometry, while the purity was confirmed by elemental analysis.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 1.89(\mathrm{~s}, 3 \mathrm{H}), 6.67(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ to 7.14 (m, 2H). 7.19 (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=5.0 \mathrm{~Hz} \mathrm{1H}) ; 7.85$ to $7.91(\mathrm{~m}, 2 \mathrm{H}), 7.96$ to $8.02(\mathrm{~m}, 2 \mathrm{H}), 8.05$ to 8.09 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}^{95}$ NMR (MeOH-d4, $22^{\circ} \mathrm{C}$), $\delta: 23.6,117.0,117.3,117.4,120.6,122.1$, $124.0,125.0,126.5,127.1,127.3,127.6,130.6,141.6,141.7,144.1,151.1,151.9$, 153.1, 156.6, 158.9, 159.0, 161.8, 179.3.

ESI-MS of solution of $\mathbf{7 4}^{+}$in acetic acid, m / z observed: 460.0203. Calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}, 460.0277$.

Anal. Found: C, 52.53; H, 3.55; N, 6.94: Calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}$ (solvated complex with one acetic acid molecule): C, $52.23 ; \mathrm{H}, 4.21 ; \mathrm{N}, 7.03$.
2.8.6 Preparation of Monohydrocarbyl Pd(IV) Complexes

Synthesis of MonohydrocarbylPd(IV) Complexes 75 and 76

The complexes bearing acetate counterion were prepared by combining an aqueous solution of the $\mathrm{Pd}(\mathrm{II})$ precursor with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and the resulting solutions were stirred at room temperature for 3 hours. Removal of water under vacuum produced the target complex as dark orange solid.

Complex 75(OAc)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 1.91(\mathrm{~s}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ to $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}$, $J=6.2,1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ to $8.23(\mathrm{~m}, 3 \mathrm{H}), 8.27(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=5.1,1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.06(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ to $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=6.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
8.20 to $8.25(\mathrm{~m}, 3 \mathrm{H}), 8.27(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 23.2,104.8,122.7,122.8,124.1,125.5,127.1$, $127.2,128.1,129.1,130.5,131.2,142.9,144.3,144.5,147.7,149.2,149.9,150.4$, $157.6,159.3,162.3,165.1,180.6$.

ESI-MS of solution of $\mathbf{7 5}^{+}$in methanol or acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=$ 506.0323. Calculated for $\mathbf{7 5}^{+}, \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 506.0350.

Complex 75 was isolated from the aqueous solution by removal of the solvent under vacuum to afford a brown solid. However if the solid is left under vacuum for a long time, decomposition takes place as indicated by appearance of new peaks in ${ }^{1} \mathrm{H}$ NMR spectrum in various solvents such as deuterated acetic acid or methanol. Complex 75 is unstable in the solid state. When left at room temperature for several hours, new peaks are observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the product taken in deuterated methanol or acetic acid, indicating decomposition.

Complex 76(OAc)

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 295 \mathrm{~K}\right), \delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.95(, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=7.9,5.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=7.8,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (d,
$J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\delta, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.23(\mathrm{~m}, 3 \mathrm{H}), 8.27(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 20.0,22.6,103.8,121.7,123.1,124.9,126.1,126.2$, $127.1,129.1,130.5,138.8,142.0,143.4143 .5,148.2,148.9,149.4,158.3,161.4$, 180.2

ESI-MS of solution of $\mathbf{7 6}^{+}$in methanol or acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=$ 520.0472. Calculated for 76, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 520.0498.

Preparation of Complexes 75X and 76X $\left(X=\mathrm{OOCCF}_{3}\right.$ or $\left.\mathrm{BF}_{4}\right)$

Complexes bearing trifluoroacetate or tetrafluoroborate counterions were prepared by adding an excess amount of either trifluoroacetic acid or tetrafluoroboric acid to aqueous reaction solutions of the complexes bearing an acetate counterion. This lead to formation of either deep yellow or dark orange precipitate. These reaction mixtures were concentrated further, and the precipitate was filtered off and washed with a small amount of cold water.

Complex 75(OOCCF ${ }_{3}$)

${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 22^{\circ} \mathrm{C}$), $\delta: 7.05$ to 7.07 (m, 2H), $7.22(\mathrm{td}, J=7.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ to $7.62(\mathrm{~m}, 2 \mathrm{H})$,
$7.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.23 to 8.31 (m, 4H), 8.43 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.83 (brs, 1H), 9.13 (brs, 1H)
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$) $, \delta: 103.8,105.2,116.4,118.4,121.6,121.7$, $123.0,124.1,125.9,126.1,127.0,127.2,129.1,129.3,141.8,143.1,143.3,147.7$, 148.6, 148.9, 149.3, 156.1, 157.5, 157.7, 160.4, 163.5, 166.7

ESI-MS of solution of $\mathbf{7 5}\left(\mathbf{O O C C F}_{3}\right)$ in dimethyl sulfoxide or methanol, positive mode, $\mathrm{m} / \mathrm{z}=506.0326$. Calculated for $\mathbf{7 5}^{+}, \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 506.0350.

Anal. Found (Calcd for a complex with 3.5 molecules of water of hydration, $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9.5} \mathrm{Pd}$): C, 44.02 (43.97); H, 3.59 (3.69); N, 5.96 (6.15).

Attempts at removing water of hydration at higher temperatures under vacuum led to decomposition.

Complex 75(BF_{4})

${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}, 22^{\circ} \mathrm{C}$), $\delta: 7.03$ to $7.10(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{td}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ to $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.88$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, 1H) 8.23 to 8.30 (m, 4H), 8.44 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.66 (brs, 1H), 8.95 (brs, 1H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 103.8,105.2,121.6,123.0,124.2,126.0,126.1$, $127.0,127.2,129.1,129.2,141.8,143.0,143.3,147.8,148.6,148.9,149.3,156.1$, $160.4,163.5,166.6$.

ESI-MS of solution of $\left.\mathbf{7 5 (} \mathbf{B F}_{4}\right)$ in dimethyl sulfoxide or methanol, positive mode, $\mathrm{m} / \mathrm{z}=506.0321$. Calculated for $\mathbf{7 5}^{+}, \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 506.0350.

Anal. Found (Calcd for a complex with 1 molecule of water of hydration, $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}$): C, 45.47 (45.16); H, 3.06 (3.30); N, 6.81 (6.87).

An ${ }^{1} \mathrm{H}$ NMR signal produced by the water of hydration was observed in the spectrum recorded in dmso- d_{6}.

Attempts at removing water of hydration at higher temperature under vacuum led to decomposition.

Selective $1 D$-difference NOE experiments $\left(\mathrm{AcOH}-d_{4}\right)$ for 75

The structure of complex 75 in solution was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and 1D NOE experiments. In the 1D difference NOE experiment, NOE was observed between the ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the benzoylpyridine ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ of pyridyl fragment of the dpk ligand and also the ortho $-\mathrm{H}_{\mathrm{c}}$ of the aryl fragment of benzoylpyridine ligand and the ortho $-\mathrm{H}_{\mathrm{b}}$ of the pyridyl fragment of dpk ligand. Irradiation of a resonance at 8.63 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the benzoylpyridine) showed enhancement (positive NOE) of a doublet at 8.41 ppm (ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand, 1.0%), and irradiation of a resonance at 8.35 ppm (ortho $-\mathrm{H}_{\mathrm{c}}$ of aryl fragment of the benzoylpyridine) showed enhancement (positive

NOE) of a doublet at 7.23 ppm (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand, 0.9%) (mixing time of 0.8 s , delay time 5 s).

Complex 76(OOCCF 3)

${ }^{1} \mathrm{H}^{\text {NMR }}\left(\right.$ DMSO-d $_{6}, 22^{\circ} \mathrm{C}$), $\delta: 2.29(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=7.9,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22-8.26(\mathrm{~m}, 3 \mathrm{H}), 8.28(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.78$ (brs, 1H), 9.11 (brs, 1H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 28.3,103.7,105.1,121.6,122.9,124.6,125.8,125.9$, $126.9,128.8,129.3,136.6,141.7,142.9,143.2,147.7,148.5,148.9,149.0,153.2$, 160.4, 163.6, 166.7.

ESI-MS of solution of $\mathbf{7 6}\left(\mathbf{O O C C F}_{3}\right)$ in methanol, acetic acid or dmso, positive mode, $\mathrm{m} / \mathrm{z}=520.0472$. Calculated for $\mathbf{7 6}^{+}, \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 520.0498.

Anal. Found (Calcd for a complex with 0.5 molecule of water of hydration, $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6.5} \mathrm{Pd}$): C, 48.34 (48.50); H, 3.08 (3.44); $\mathrm{N}, 6.50$ (6.53).

An ${ }^{1} \mathrm{H}$ NMR signal produced by the water of hydration was observed in the spectrum recorded in dmso- d_{6}.

Attempts at removing water of hydration at higher temperature under vacuum led to decomposition.

Complex 76(BF_{4})

${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 2.28(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=8.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.0 \mathrm{~Hz} 1 \mathrm{H}), 7.49(\mathrm{dd}, J=6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.62(\mathrm{~m}$, 2H), 7.86 (dq, $J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dq}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (dt, $J=7.7,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17(\mathrm{dq}, J=5.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.31(\mathrm{~m}, 4 \mathrm{H}), 8.43(\mathrm{dt}, J=5.2,0.5 \mathrm{~Hz}$, 1H), $8.76(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 22^{\circ} \mathrm{C}$) $, \delta: 20.4,103.7,105.1,121.6,122.9,124.6,125.9,126.0$, $127.0,128.8,129.4,136.6,141.8,143.0,143.3,147.7,148.5,149.0,153.2,160.4$, 163.5, 166.7,

ESI-MS of solution of $\mathbf{7 6}\left(\mathrm{BF}_{4}\right)$ in methanol, acetic acid or dmso, positive mode, $\mathrm{m} / \mathrm{z}=520.0472$. Calculated for $\mathbf{7 6}^{+}, \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 520.0498.

Anal. Found (Calcd for a complex with 2.0 molecule of $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}$): C, 44.53 (44.78); H, 3.69 (3.76); N, 6.47 (6.53).

An ${ }^{1} \mathrm{H}$ NMR signal produced by the water of hydration was observed in the spectrum recorded in dmso- d_{6}.

Attempts at removing water of hydration at higher temperature under vacuum led to decomposition.

The structure of 76 in solution was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC, 1D Selective NOE and 1D Selective TOCSY experiments. In the 1D difference NOE experiment, NOE was observed between the ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the benzoylpyridine ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ of pyridyl fragment of the dpk ligand and between the ortho $-\mathrm{H}_{\mathrm{c}}$ of the aryl fragment of benzoylpyridine ligand and the ortho $-\mathrm{H}_{\mathrm{d}}$ of the pyridyl fragment of dpk ligand. Irradiation of a resonance at 8.58 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the benzoylpyridine) showed enhancement (positive NOE) of a doublet at 8.31 ppm (ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand, 2.16%), and irradiation of a resonance at 7.06 ppm (ortho $-\mathrm{H}_{\mathrm{c}}$ of aryl fragment of the 2-(3-methyl)benzoylpyridine) showed enhancement (positive NOE) of a doublet at $8.31 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand, $\left.0.72 \%\right)$ (mixing time of 0.6 s , delay time 3 s).

Preparation of Zwitterionic complexes $\mathbf{7 9}$ and 80

These complexes were produced by addition of 1.0 equivalent of NaOH to aqueous solutions of complexes $75\left(\mathrm{OOCCF}_{3}\right)$ and $76\left(\mathrm{OOCCF}_{3}\right)$ under ambient conditions.

Complex 79

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOD}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 6.99(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (td, $J=6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ - 7.43 (m, 2H), 7.47 (td, $J=6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.17$ (m, 4H), $8.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (trifluoroethanol $\mathrm{d}_{1}, 22^{\circ} \mathrm{C}$), $\delta: 107.6,122.7,123.1,124.3,124.5,124.9$, $125.5,126.3,126.8,127.2,128.2,129.1,130.5,130.9$.

Anal. Found (Calcd for a complex with 3.5 molecules of $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7.5} \mathrm{Pd}$): C, 48.76 (48.56); H, 4.08 (4.25); N, 7.39 (7.39).

ESI-MS of solution of 79 in methanol, positive mode, $\mathrm{m} / \mathrm{z}=506.0323$.
Calculated for $\mathbf{7 5}^{+}, \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 506.0350.

Complex 80

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOD}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.81$ (ddd, $\left.J=8.1,2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.08 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (vs, 1H), 7.35 (dd, $J=6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (dd, $J=6.6$,
$1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dq}, J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dq}$, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.17(\mathrm{~m}, 4 \mathrm{H}), 8.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.52(\mathrm{dt}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{MeOD}_{4}, 2^{\circ} \mathrm{C}\right), \delta: 21.1,108.1,109.4,123.0,123.4,124.5,126.1$, $126.2,126.4,127.0,130.4,130.6,138.5,142.4,143.6,143.8,148.8,150.0,150.3$, $155.2,165.4,168.3,169.5$.

Anal. Found (Calcd for a complex with 9.5 molecules of $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{13.5} \mathrm{Pd}$): C, 41.63 (41.72); H, 5.75 (5.54); N, 5.99 (6.08).

ESI-MS of solution of $\mathbf{8 0}$ in acidified methanol or acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=520.0472$. Calculated for $\mathbf{8 0}{ }^{+}, \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$: 520.0498.

Preparation of complexes 83-87 in water

These complexes were prepared by dissolution of the $\mathrm{Pd}(\mathrm{II})$ precursors in water in ice-water bath at $0^{\circ} \mathrm{C}$, and addition of ~ 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ into these aqueous solutions at $0^{\circ} \mathrm{C}$. It was not possible to isolate these complexes due to their low stability, and thus they were characterized using NMR spectroscopy and electrospray ionization mass spectrometry.

Complex 83

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.72(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{td}, J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.17(\mathrm{~m}, 5 \mathrm{H}), 8.63(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 23.6,104.3,122.4,123.0,123.4,126.4,127.3$, 128.4, 128.9, 129.4, 130.4, .

ESI-MS of solution of $\mathbf{8 3}^{+}$in water, positive mode, $\mathrm{m} / \mathrm{z}=478.0546$. Calculated for $\mathbf{8 3}^{+}, \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}: 478.0383$

This complex is too unstable and thus elemental analysis could not be performed.

Complex 84

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}\right), \delta: 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}-\mathrm{CH}_{3}\right), 6.43(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-1), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.24(\mathrm{td}, J=5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.62$ (ddd, $J=7.9,5.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.66(\mathrm{td}, J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 7.74(\mathrm{~d}, J=7.9,1 \mathrm{H}, \mathrm{H}-11), 7.87(\mathrm{~d}, J=7.9,1 \mathrm{H}, \mathrm{H}-15), 8.00-8.02(\mathrm{~m}, 2 \mathrm{H}$, H-5 and -7), $8.06(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14), 8.07(\mathrm{~d}, J=6.0,1 \mathrm{H}, \mathrm{H}-4), 8.12(\mathrm{td}$, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 8.61(\mathrm{~d}, J=5.7,1 \mathrm{H}, \mathrm{H}-8), 8.87(\mathrm{~d}, J=5.1,1 \mathrm{H}, \mathrm{H}-12)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}\right), \delta: 21.4\left(\mathrm{C}-\mathrm{CH}_{3}\right), 23.1\left(\mathrm{Oac}-\mathrm{CH}_{3}\right), 104.0(\mathrm{C}-17), 122.0$ (C-15), 122.7 (C-11), 125.6 (C-5), 127.0 (C-13), 127.6 (C-3), 128.6 (C-9), 129.8 (C-
2), 130.1 (C-1), 138.7 (C-20), 142.4 (C-14), 143.0 (C-6), 143.9 (C-10), 145.7 (C-22), 146.9 (C-8), 147.6 (C-12), 148.7 (C-4), 158.4 (C-16), 160.0 (C-21), 161.2 (C-18), 162.1 (C-19), 181.3 (Oac-C)

ESI-MS of solution of $\mathbf{8 4}^{+}$in water, m / z observed: 492.0684. Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}, \mathrm{m} / \mathrm{z}=492.0548$.

This complex is too unstable and thus elemental analysis could not be performed.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 84

In the 1D difference NOE experiment, NOE was observed between the orthoH_{a} of the tolylpyridine ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand and between the ortho $-\mathrm{H}_{\mathrm{c}}$ of the tolylpyridine and ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand. Irradiation of a resonance at 8.87 ppm (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) showed enhancement (positive NOE) of the doublet at 8.07 ppm (ortho $-\mathrm{H}_{\mathrm{c}}$ on the pyridyl fragment of the tolylpyridine ligand, 2.4%) (mixing time of 0.8 s , delay time 5 s) and irradiation of a resonance at $8.61 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand) showed enhancement (positive NOE) of the singlet at 6.43 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ on the phenyl fragment of tolylpyridine ligand, 2.6%) (mixing time of 0.8 s , delay time 5 s).

Minor Complex 88

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}\right), \delta: 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}-\mathrm{CH}_{3}\right), 6.94$ (ddd, $J=7.7,5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 7.24(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, 7.41 (s, 1H, H-1), 7.43 (td, $J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48$ (ddd, $J=7.7,4.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-13), 7.69-7.73$ (m, 2H, H-11 and H-3), 7.82 (td, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10)$, 7.87 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 7.99(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14), 8.13-8.15(\mathrm{~m}, 2 \mathrm{H}$, H-6 and H-7), 8.71 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 8.94(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for $\mathbf{8 8}$

In the 1D difference NOE experiment, NOE was observed between the orthoH_{c} of the tolylpyridine ligand and that of the ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand. Irradiation of a resonance at 8.94 ppm (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) showed enhancement (positive

NOE) of the doublet at 8.71 ppm (ortho $-\mathrm{H}_{\mathrm{c}}$ on the pyridyl fragment of the tolylpyridine ligand, 6.7%) (mixing time of 0.8 s , delay time 5 s).

This complex is too unstable and thus elemental analysis could not be performed.

Complex 85

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.66(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 6.10(\mathrm{vs}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.71-7.76(m, 2H), $7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{td}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 23.3,56.0,104.0,113.4,116.5,122.1,122.3$, $122.7,124.8,127.1,128.6,128.8,134.0,142.4,142.8,144.0,146.9,147.6,148.5$, $158.3,160.2,161.3,161.8,162.0,181.7$.

ESI-MS of solution of $\mathbf{8 5}^{+}$in water, positive mode, $\mathrm{m} / \mathrm{z}=508.0589$. Calculated for $\mathbf{8 5}^{+}, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}, \mathrm{m} / \mathrm{z}=508.0489$

This complex is too unstable and thus elemental analysis could not be performed.

Complex 86

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 1.91(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}$, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=6.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{td}, J=6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.31$ (m, 4H), $8.35(\mathrm{td}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 276 \mathrm{~K}\right), \delta: 23.1,104.1,116.5(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 117.9(\mathrm{~d}$, $J=25.6 \mathrm{~Hz}), 122.2,122.9,123.2,126.0,127.2,128.9,129.0(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 138.2$, $142.6,143.2,144.1,146.9,147.5,148.8,158.2,159.0,161.1,161.3,161.7,163.8$, 181.4.

ESI-MS of solution of $\mathbf{8 6}^{+}$in water, positive mode, $\mathrm{m} / \mathrm{z}=496.0324$. Calculated for $\mathbf{8 6}^{+}, \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}, \mathrm{m} / \mathrm{z}=496.0289$

This complex is too unstable and thus elemental analysis could not be performed.

Complex 91(OOCCF $\left.{ }_{3}\right)_{2}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 3{ }^{\circ} \mathrm{C}\right), \delta: 2.10(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22 (ddd, $J=11.3,5.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.8,5.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (ddd, $J=7.7,5.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00-8.01(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (td, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 3{ }^{\circ} \mathrm{C}\right), \delta: 21.4,104.4,115.3,117.6,122.1,122.9,125.7,127.1,127.8$, $128.8,130.0,130.1,138.6,142.4,143.1,144.0,145.9,147.0,147.7,148.8,158.0$, $160.3,161.0,162.0,163.5$.

Anal. Found (Calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Pd}$ with one water molecule of hydration): C, 43.71 (43.95); H, 3.18 (3.14); N, 5.61 (5.69).

ESI-MS of a solution of $\mathbf{9 1}\left(\mathbf{O O C C F}_{3}\right)_{\mathbf{2}}$ in dmso, $\mathrm{m} / \mathrm{z}=492.0622$. Calculated for $\mathbf{8 4}^{+}, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}=492.0548$.

X-ray quality crystals could be produced as described below. 40.0 mg of complex $\mathbf{6 9}(\mathbf{O A c})$ was placed in a vial and 1.5 ml of $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was warmed to completely dissolve the solid. The pale yellow solution was placed in ice-water bath at $0^{\circ} \mathrm{C}$. After 10 minutes, 5 drops of $30 \% \mathrm{HOOH}$ were added to the cold solution and it was left in ice-water bath for 2 hours. Afterward, 3 drops of
HOOCCF_{3} were added to another $0.2 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ solution, and the oxidation solution was carefully layered onto the aqueous HOOCCF_{3} solution. The resulting solution was layered with $\sim 4.0 \mathrm{ml}$ of tetrahydrofuran and was placed in the freezer at $-20^{\circ} \mathrm{C}$.

Deep red crystals were observed after ~ 12 hours.

Figure S1. 1. ORTEP drawing (50\% probability ellipsoids) of dication 91 in 91 $\left(\mathrm{OOCCF}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$,
${ }^{1} \mathrm{H}$ NMR analysis for the oxidation of complex $68-71$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water
Scheme S1. 6

Careful analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum upon oxidation of complexes 68-71 with 1.5 equivalents $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at room temperature revealed formation of a
second, minor product of oxidation (see below). In particular, 0.010 mmoles of the substituted phenylpyridine-dpk derivative was dissolved in 1.0 ml of deuterated water, $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard and the solution was added into an NMR tube. The tube was inserted into the NMR probe at $3{ }^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR was taken after 10 minutes. 1.5 mmoles of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in water was added to the solution and consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals. Data taken for the first 5 minutes was not included because it takes approximately 5-10 minutes for the temperature of the solution to equilibrate with the temperature of the NMR probe. Plots for the fraction of the starting $\mathrm{Pd}(\mathrm{II})$ precursor 68-71, the major $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{8 3 - 8 6}$, and the minor product $\mathbf{8 7 - 9 0}$ are presented below:

Figure S1. 2. Plots showing fraction of Pd(II) complexes 68-71, major complexes 83$\mathbf{8 6}$, and minor complexes $\mathbf{8 7 - 9 0}$, as a function of time, upon combination of aqueous solutions of complexes $\mathbf{6 8 - 7 1}$ with 1.5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$.

The kinetics of oxidation of compounds 68-71 at $3{ }^{\circ} \mathrm{C}$ was studied under pseudo-first order conditions. 0.010 mmol of the substituted phenylpyridine dpkderived complex was dissolved in 1.0 ml of deuterated water, $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard and the solution was placed into an NMR tube. The tube was inserted into the NMR probe set at $3{ }^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR was taken after 10 minutes. 4.5 mmoles of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in water was added to the solution and consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals. Data taken for the first 5 minutes was not included because it takes approximately 10 minutes for the temperature of the solution to equilibrate with the temperature of the NMR probe (Since the solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ was already $\sim 17{ }^{\circ} \mathrm{C}$, it took <5 minutes for the resulting solution to attain the required temperature $)$. Plots of $\ln \left([\mathrm{Pd}(\mathrm{II})]_{0} /[\mathrm{Pd}(\mathrm{II})]_{\mathrm{t}}\right)$ vs. time for the oxidation of complexes $\mathbf{6 8 - 7 1}$ in deuterated water at $3{ }^{\circ} \mathrm{C}$ are given below.

Figure S1. 3. First order plots for the oxidation of 0.010 mmoles of complexes 68-71 in $1.0 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$ with >8 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Table S. 1. Correlation between the rate constant in $\min ^{-1}$ and the σ_{m} for oxidation of various R-substituted phenylpyridine dpk-derived palladacycles with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ under pseudo-first order conditions. The initial concentrations of the reactants are calculated from the first data point collected by ${ }^{1} \mathrm{H}$ NMR and used in the analysis

R	[Pd(II)]	[HOOH]	$\mathbf{K}_{\text {obs }}\left(\mathrm{min}^{-1}\right)$	$\boldsymbol{\sigma}_{\mathrm{m}}$
-F (71)	$4.85 * 10^{-3}$	$39.9 * 10^{-3}$	$(1.18 \pm 0.02) * 10^{-1}$. 337
-H (68)	$5.78 * 10^{-3}$	$40.8 * 10^{-3}$	$(3.09 \pm 0.13) * 10^{-1}$	0
-Ome (70)	$2.93 * 10^{-3}$	$37.9 * 10^{-3}$	$(4.63 \pm 0.06) * 10^{-1}$	0.115
-Me (69)	$5.61 * 10^{-3}$	40.6 * 10^{-3}	$(1.37 \pm 0.01) * 10^{-1}$	-0.069
	$\left.\begin{array}{r} 2.5 \\ 2 \\ 1.5 \\ 1 \\ 1 \\ 0.5 \end{array} \right\rvert\,$	齐 Sigma-meta	-	

Figure S1. 4. Hammett plot for the oxidation of complexes 68-71 with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ in D 2 O at $3^{\circ} \mathrm{C}$.

Due to the unexpected nature of the hammet plot, this experiment was repeated under the same conditions, but 0.040 mmoles of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used instead. Plots of $\ln \left([\operatorname{Pd}(\mathrm{II})]_{0} /[\operatorname{Pd}(\mathrm{II})]_{\mathrm{t}}\right)$ vs. time for the oxidation of complexes $\mathbf{6 8 - 7 1}$ in deuterated water at $3{ }^{\circ} \mathrm{C}$ using 4.0 mmoles of $\mathrm{H}_{2} \mathrm{O}_{2}$ are given below.

Figure S1. 5. First order plots for the oxidation of 0.010 mmoles of complexes 68-71 in $1.0 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$ with >6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Table S. 2. Correlation between the rate constant in $\min ^{-1}$ and the σ_{m} for oxidation of various R-substituted phenylpyridine dpk-derived palladacycles with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ at $3{ }^{\circ} \mathrm{C}$ under pseudo-first order conditions. The initial concentrations of the reactants are calculated from the first data point collected by ${ }^{1} \mathrm{H}$ NMR and used in the analysis.

\mathbf{R}	$[\mathbf{P d}(\mathbf{I I})]$	$[\mathbf{H O O H}]$	$\mathbf{K}_{\mathbf{o b s}\left(\mathrm{min}^{-1}\right)}$	$\boldsymbol{\sigma}_{\mathbf{m}}$
-F	$6.30 * 10^{-3}$	$36.3 * 10^{-3}$	$(0.910 \pm 0.02) * 10^{-1}$.337
-H	$4.35 * 10^{-3}$	$34.3 * 10^{-3}$	$(1.71 \pm 0.13) * 10^{-1}$	0
- Ome	$4.93 * 10^{-3}$	$34.9 * 10^{-3}$	$(2.19 \pm 0.06) * 10^{-1}$	0.115
-Me	$7.87 * 10^{-3}$	$37.9 * 10^{-3}$	$(0.993 \pm 0.01) * 10^{-1}$	-0.069

Figure S1. 6. Hammett plot
Influence of pH on the ratio of complexes $\mathbf{8 4}$ and $\mathbf{8 8}$ produced
The pH -potentiometric titrations were performed with OAKTON Waterproof pH Testr BNC $\mathrm{pH}-$ meter at $22^{\circ} \mathrm{C}$. To calibrate the glass-reference electrode pair, potassium biphthalate ($\mathrm{pH} 4.00,0.05 \mathrm{M}$), potassium phosphate monobasic- $\mathrm{NaOH}(\mathrm{pH}$ $7.00,0.05 \mathrm{M})$, and potassium-carbonate-potassium borate- $\mathrm{KOH}(\mathrm{pH} 10.00,0.05 \mathrm{M})$ buffer solutions were used. For the titrations, 1.0 M NaOD solution and neat deuterated acetic acid were used. 0.05 mmoles of complex $\mathbf{6 9}$ was dissolved in 5.0 ml
of $\mathrm{D}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$, in a vial equipped with a magnetic stirring bar. A 2.0 ml portion of this solution was titrated with 1.0 M NaOD solution at room temperature using a microsyringe while the pH was monitored with the pH meter until the pH of $8.47(\mathrm{pD}$ $=8.88)$ was attained. Another 2.0 ml portion of the solution was titrated with neat deuterated acetic acid solution at room temperature using a microsyringe while the pH was monitored with the pH meter until the pH of $4.58(\mathrm{pD}=4.99)$ was attained. The pH of the solution was read from the pH meter after 2 minutes to ensure complete stabilization. 1.0 ml of the solution at either $\mathrm{pD}=8.88$ or 4.99 was placed into an NMR tube and placed in the NMR probe set at $17{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR was taken at after 10 minutes to ensure equilibration of the temperature of the NMR solution with the NMR probe. The tube was ejected from the instrument, $2.0 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ was quickly added, the solution was shaken and inserted back into the probe at $17{ }^{\circ} \mathrm{C}$. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected until quantitative conversion of complex 69 to the $\operatorname{Pd}(\mathrm{IV})$ complexes 84 and 88 had occurred. The ratio of complex 84 to complex $\mathbf{8 8}$ was recorded at the various pD values.

Preparation of complexes 93 and 94in acetonitrile

Complexes 93 and 94 were prepared in acetonitrile. 0.10 mmoles of complex 72 or 73 was added to 5.0 ml of acetonitrile at $0^{\circ} \mathrm{C}$, and 10.0 equivelents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added to the reaction mixture. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 hours, after which it was concentrated and triturated with diethyl ether. The resulting precipitate was filtered off and washed with a small amount of cold diethyl ether to afford pure target complex.

Complex 93

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Oac}-\mathrm{CH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 6.99(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.04(\mathrm{dt}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.35(\mathrm{dt}, J=6.9,1.3,0.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), 7.42 (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.64 (dt, $6.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.56$ (dt, $J=6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.87$ (d, $J=7.8,2 \mathrm{H}, \mathrm{H}-8$ and -12), 8.10 (dt, $J=7.8,1.2$ Hz, 1H, H-11), 8.19 (dt, 7.8, 1.0 Hz, 1H, H-7), 8.79 (d, J=5.3 Hz, 1H, H-5), 8.90 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 13.2\left(\mathrm{OAc}^{2}-\mathrm{CH}_{3}\right), 104.1(\mathrm{C}-14), 120.8(\mathrm{C}-8), 122.1$ (C-12), 126.2 (C-10), 127.4 (C-4), 128.0 (C-6), 128.5 (C-2), 128.8 (C-3), 130.3 (C-1), 141.6 (C-11), 143.0 (C-17, 17), 147.9 (C-5), 148.5 (C-9), 155.0 (C-18), 159.2 (C-15), 161.8 (C-13), 163.4 (C-16)

ESI-MS of oxidation solution of $\mathbf{9 3}^{+}$in water, m / z 458.0376. Calculated for $\mathrm{Pd}(\mathrm{IV})$ complex $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd} ; 458.0332$

Anal. Found: C, 47.47; H, 4.16; N, 8.01; Calculated for complex with 1 residual water molecule and $1 / 2$ molecule of acetic acid; $\mathrm{C}, 47.49 ; \mathrm{H}, 4.18 ; \mathrm{N}, 8.31$.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 93

In the 1D difference NOE experiment, NOE was observed between the orthoH_{a} on the phenyl fragment of the oxime ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ on the dpk ligand. Irradiation of a resonance at $8.79 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ on the dpk ligand) showed enhancement (positive NOE) of a doublet at 6.99 ppm (ortho $-\mathrm{H}_{\mathrm{b}}$ on the phenyl fragment of the oxime ligand, 2.1%) (mixing time of 4.0 s , delay time 5 s).

Complex 94

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.76(\mathrm{dt}, J=6.5,1.0 \mathrm{~Hz}$ $1 \mathrm{H}), 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (dt, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.82(\mathrm{~d}, J=5.5, \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=5.2, \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 22^{\circ} \mathrm{C}\right), \delta: 12.6,20.9,103.6,120.2,121.7,122.5,124.3,125.4$, 125.6, 125.7, 126.2, 127.2, 127.4, 127.6, 141.1, 142.6, 146.6, 147.0, 147.6, 152.6, 158.1, 160.8, 161.2, 177.5.

ESI-MS of solution of $\mathbf{9 4}^{+}$in water, $\mathrm{m} / \mathrm{z}=526.0276$. Calculated for $\mathrm{Pd}(\mathrm{IV})$ complex $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$, 526.0206

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 94

In the 1D difference NOE experiment, NOE was observed between the orthoH_{a} on the phenyl fragment of the oxime ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ on the dpk ligand. Irradiation of a resonance at $8.82 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ on the dpk ligand) showed enhancement (positive NOE) of a singlet at 7.16 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ on the phenyl fragment of the oxime ligand, 7.4%) (mixing time of 0.6 s , delay time 4 s).

Preparation of complex 96

Complex 96 was prepared in water. 0.01 mmoles of complex 74 was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ in ace-water bath at $0^{\circ} \mathrm{C}$, and 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution. The resulting yellow solution was stirred at this temperature for 60 minutes. Complex 96 was characterized via NMR spectroscopy and electrospray mass ionization spectrometry in solution since it was too reactive to be isolated.

Complex 96

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}\right), \delta: 1.82(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 6.92(\mathrm{td}, J=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ to $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.53$ to $7.60(\mathrm{~m}, 4 \mathrm{H}), 7.89$ (d, $J=7.9,1 \mathrm{H}) .8 .01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dt}, J=7.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=5.7 \mathrm{~Hz} 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.9 \mathrm{~Hz} 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}\right), \delta: 22.1,104.4,118.5,120.7,122.4,122.5,123.4,127.0$, $127.4,128.0,130.0,132.7,133.2,142.6,144.1,145.6,147.2,147.8,147.9,148.4$, 158.0, 158.7, 159.3, 161.2, 179.6

ESI-MS of solution of $\mathbf{9 6}$ in water, m / z observed: 494.0294. Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}, \mathrm{m} / \mathrm{z}=494.0332$.

Chapter 3: Reactivity of Monohydrocarbyl Pd(IV) Complexes in Various Solvents

3.1 Introduction

Scheme 3. 1

Oxidative palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions have been proposed to proceed via $\mathrm{C}-\mathrm{H}$ bond activation to produce organopalladium(II) intermediates (step a). These intermediates undergo oxidation to generate high oxidation state palladium species of monomeric palladium(IV) or dimeric palladium(III) structure (step b), which in turn undergo $\mathrm{C}-\mathrm{O}$ reductive elimination to release the functionalized product and regenerate the catalyst (step c). The $\mathrm{C}-\mathrm{H}$ bond activation reaction has been studied in detail, ${ }^{3,17,63}$ but the subsequent steps of oxidation and $\mathrm{C}-\mathrm{O}$ reductive elimination from the high oxidation state palladium intermediates have not been studied in sufficient detail, ${ }^{57}$ mainly because most oxidative palladium catalyzed reactions have been found to proceed via rate-limiting
$\mathrm{C}-\mathrm{H}$ bond activation. ${ }^{49,50,60}$ Therefore, the reactivity of the high oxidation state palladium complexes has been limited to the synthesis and study of model complexes. However these studies have been held back by the difficulty to synthesize the $\mathrm{O}-$ ligated high oxidation state palladium complexes. ${ }^{56,61,176,177}$ In addition, available complexes are usually stabilized by multiple hydrocarbyl ligands, resulting in competing $\mathrm{C}-\mathrm{C}$ bond forming reductive elimination and/or intermolecular alkyl exchange reactions from such complexes. ${ }^{51-54}$

The first demonstrated model for C -heteroatom bond formation at $\mathrm{Pd}(\mathrm{IV})$ was C-Se reductive elimination from trans $-\mathrm{Pd}(\mathrm{SePh})_{2} \mathrm{Me}_{2}(\mathrm{bpy})$ complex 2, reported by Canty and co-workers (eq. 3.1). ${ }^{55}$ This complex was isolated from the reaction of dimethyl-Pd(bpy) complex 1 with diphenylselenide, and characterized by X-ray crystallography. In CDCl_{3}, complex 2 undergoes both $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Se}$ reductive elimination reactions to produce $\mathrm{Me}-\mathrm{Me}$ and $\mathrm{Me}-\mathrm{SePh}$, together with $\mathrm{Pd}(\mathrm{II})$ products. Detailed studies of $\mathrm{C}-\mathrm{Se}$ reductive elimination could not be performed due to the competing $\mathrm{C}-\mathrm{C}$ reductive elimination reaction.

The reaction of (bpy) $\operatorname{Pd}(\mathrm{II}) \mathrm{Me}_{2}$ with diaroyl peroxides leading to $\mathrm{C}-\mathrm{O}$ coupling products was later studied by Canty and co-workers (Scheme 3.2). ${ }^{51}$ These reactions produced hydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ intermediates containing O -donor ligands which were too unstable to be isolated, but were detected via ${ }^{1} \mathrm{H}$ NMR spectroscopy
at low temperatures. $\mathrm{C}-\mathrm{O}$ bond forming reductive elimination from these $\mathrm{Pd}(\mathrm{IV})$ complexes was however accompanied with either $\mathrm{C}-\mathrm{C}$ bond formation and/ or intermolecular alkyl exchange processes. ${ }^{51-54}$ The instability of these O-ligated hydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes towards isolation in pure form and their tendency to undergo $\mathrm{C}-\mathrm{C}$ bond forming and/ or intermolecular alkyl exchange reactions prevented detailed studies of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction.

Scheme 3. 2

The first isolated stable hydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex containing O -donor ligands was reported by Yamamoto and co-workers in 2004 (Scheme 3.3). ${ }^{56,178}$ This trigonal-bipyramidal complex 5 was formed via the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ with O chloranil 4 and benzonorbornadiene $\mathbf{3}$, and is stable in the absence of bidentate or tripodal donor spectator ligands. It contains two residues of O-chloranil and norbonene that form two 7-membered chelate rings. Complex 5 decomposes slowly over several days at ambient temperature in THF, but undergoes decomposition in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $70^{\circ} \mathrm{C}$ over several hours to give benzonorbornadiene $\mathbf{3}$ as the major organic product and two isomeric adducts between O-chroranil and benzonorbornadiene, 6 and 7. The decomposition was inhibited by pyridine additives, while acid was found to significantly accelerate the decomposition in CDCl_{3}, where decomposition was
complete within 15 minutes at $-40^{\circ} \mathrm{C}$ upon exposure to HCl in CDCl_{3}. Detailed study of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complex 5 was not possible because apart from products resulting from $\mathrm{C}-\mathrm{O}$ coupling, other products resulting from sidereactions were also observed.

Scheme 3.3

7
The first detailed studies of $\mathrm{C}-\mathrm{O}$ reductive elimination from organoplatinum(IV) complexes was reported by Goldberg and co-workers (Scheme 3.4). In this report, a series of $\operatorname{dppePt}(\mathrm{IV}) \mathrm{Me}_{3} \mathrm{X}$ complexes $(\mathrm{X}=\mathrm{OAc}$ or OAr$)$ were prepared and products resulting from both $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond forming reductive elimination upon thermolysis in various solvents were observed. ${ }^{179,180}$ Different reaction conditions could be employed to favor one reaction pathway over the other. The mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination was proposed to take place from a reactive 5-coordinate intermediate produced upon dissociation of an OR^{-}ligand. This was based on the observation that the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination was accelerated by polar solvents, which is indicative of an ionic or polar transition state, and by acids, which increase the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination by hydrogen bonding to OR and thus assist in OR^{-}dissociation. The rate of reductive elimination
reaction was also found to increase with more electron-withdrawing aryloxides. These observations were proposed to be consistent with a mechanism that involves preliminary dissociation of the OR^{-}ligand leading to the development of a negative charge at oxygen. The exchange of aryloxides was extremely fast, where complete exchange was observed at temperatures below those required for reductive elimination, indicating a pre-equilibrium exchange of the OR^{-}ligand. Thus the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination was proposed to involve pre-equilibrium dissociation of the OR^{-}ligand, followed by rate-limiting $\mathrm{S}_{\mathrm{N}} 2$ attack of the ligand on the platinum-bound methyl group of the 5-coordinate cation (Scheme 3.4). A similar mechanism was proposed for one of the steps of the Shilov reaction. In this reaction, activation of methane generates a methyl platinum(II) intermediate, which undergoes oxidation by $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{IV}) \mathrm{Cl}_{6}$ to generate a methylPt(IV) transient species. The $\mathrm{Pt}(\mathrm{IV})$ complex in turn undergoes $\mathrm{C}-\mathrm{O}$ reductive elimination with water acting as external nucleophile to produce methanol. ${ }^{181}$ There have been additional reports on $\mathrm{C}-\mathrm{O}$ reductive elimination from alkylPt(IV) complexes where the $\mathrm{S}_{\mathrm{N}} 2$ mechanism was proposed. ${ }^{182}$ There have also been reports on $\mathrm{C}-\mathrm{O}$ reductive elimination reactions from $\operatorname{Pt}(\mathrm{IV})$ complexes where a concerted 3-center mechanism was proposed. ${ }^{183}$

Scheme 3.4

The first detailed studies of $\mathrm{C}-\mathrm{O}$ reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ complexes were reported by Sanford and co-workers in $2005 .{ }^{57}$ In this report, a series of biaryl $\mathrm{Pd}(\mathrm{IV})$ complexes that were stable at ambient temperature but underwent C -

O bond reductive elimination upon thermolysis were prepared (eq. 3.2). The biaryl $\operatorname{Pd}(I V)$ complexes were accessed via oxidation of $(\mathrm{N} \sim \mathrm{C})_{2} \mathrm{Pd}(\mathrm{II})$ complex $8(\mathrm{~N} \sim \mathrm{C}=$ cyclometalated phenylpyridine ligand) with $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=$ substituted aromatic groups), where the benzoate-based O-donors were used in order to model catalytic arene oxygenation reactions. ${ }^{50}$ The resultant Pd(IV) complex 9 is stabilized by rigid bidentate $\mathrm{N} \sim \mathrm{C}$ ligands, ${ }^{184-188}$ which also contribute two electron-donating σ-aryl ligands to the high oxidation state Pd complex. The rigid, chelating nature of the ligands also limits competing $\mathrm{C}-\mathrm{C}$ bond forming reductive elimination reactions relative to the desired $\mathrm{C}-\mathrm{O}$ coupling.

The $\mathrm{C}-\mathrm{O}$ coupling reaction was subjected to a series of experimental analyses, including solvent effect studies, Eyring analysis, Hammett plot, and crossover studies. Three mechanisms were considered, including (A) the ionic mechanism where preequilibrium dissociation of a benzoate ligand was followed by reductive elimination from the resulting cationic 5 -coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate ${ }^{86,179,180,182,183,189}$ direct reductive elimination from the 6-coordinate $\operatorname{Pd}(I V)$ intermediate; ${ }^{190-196}$ (C) dissociation of a pyridyl arm of one cyclometalated ligand followed by internal coupling from the resulting 5 -coordinate complex ${ }^{197-199}$ (Scheme 3.5). These mechanisms were considered because there is literature precedent for each in reductive elimination reactions from group 10 metal complexes. ${ }^{58}$

Scheme 3.5

On the basis of experimental observations, a $\mathrm{C}-\mathrm{O}$ coupling mechanism that involves preliminary chelate dissociation, followed by $\mathrm{C}-\mathrm{O}$ reductive elimination from a pentacoordinate $\mathrm{Pd}(\mathrm{IV})$ complex, path C was proposed. This mechanism was supported by the absence of solvent effects, a near zero entropy value, negative crossover studies, a slower rate of reaction rate when the more rigid bisbenzo[h]quinolinederived $\mathrm{Pd}(\mathrm{IV})$ complex was used, and lack of incorporation of OAc when the reaction was performed in the presence of $\mathrm{NBu}_{4} \mathrm{OAc}$.

Theoretical studies on this system by Liu and co-workers however favored mechanism B , where $\mathrm{C}-\mathrm{O}$ reductive elimination takes place from a 6-coordinate palladium species. ${ }^{43}$ This mechanism was supported by a close match between calculated and experimental activation free energy barriers. The theoretical model also correctly predicted the subtle solvent and substituent effects observed experimentally. The model also explained why the rate of reductive elimination from the bisphenylpyridine complex is significantly faster than that from bisbenzo[h]quinoline.

A recent detailed study led Sanford and co-workers to conclude that the C-O reductive elimination reaction proceeds via the ionic mechanism A , where preequilibrium dissociation of an acetate ligand is followed by rate limiting $\mathrm{C}-\mathrm{O}$ reductive elimination. ${ }^{58}$ This revised mechanism was proposed based on additional experimental observations, including the rapid exchange of the bound and free carboxylate ligands, which indicates that dissociation of carboxylate ligand from the $\mathrm{Pd}(\mathrm{IV})$ complex is possible. The rates of carboxylate exchange and $\mathrm{C}-\mathrm{O}$ coupling were also observed to increase to similar extents upon addition of AcOH and AgOTf additives. These results support a mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination that includes pre-equilibrium dissociation of the carboxylate ligand, followed by $\mathrm{C}-\mathrm{O}$ coupling from a 5 -coordinate intermediate. Through crossover studies, the nonexchangeable carboxylate ligand was found to selectively participate in the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction.

These mechanistic studies indicate that the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ complexes is not well understood. In addition, $\mathrm{C}-\mathrm{O}$ reductive elimination from monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes has never been studied due to the difficulty in accessing these complexes and their tendency to undergo side reactions. As a result, it is important to prepare O-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes and study their reactivity towards $\mathrm{C}-\mathrm{O}$ reductive elimination since these complexes are potential intermediates in palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions. Additionally, the study of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes is important because any advanced knowledge of the possible $\mathrm{C}-\mathrm{O}$ reductive elimination pathways might
be very beneficial in the design of more selective, efficient, and environmentally benign oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reactions.

As a result, we prepared a number of monohydrocarbyl $\operatorname{Pd}(\mathrm{IV})$ complexes and studied their reactivity towards $\mathrm{C}-\mathrm{O}$ reductive elimination in various solvents.

3.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 14-

17 in Various Solvents

3.2.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes

14-17 in Water

Scheme 3.6

$\mathrm{C}-\mathrm{O}$ reductive elimination from monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{1 4 - 1 7}$ in water was studied. The decomposition of these complexes generates the corresponding oxapalladacycles 22-25 in $>95 \%$ yield. Aqueous solutions of complexes $\mathbf{1 4 - 1 7}$ were prepared in-situ by combining $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complexes $\mathbf{1 0 - 1 3}$ with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}$. In the preparation of complexes 14-17, complexes 18-21 were also observed as minor complexes. When monitored by ${ }^{1} \mathrm{H}$ NMR at $0{ }^{\circ} \mathrm{C}$, no decomposition was observed for up to 2 hours, but when the temperature of these solutions was raised to $22{ }^{\circ} \mathrm{C}$, clean $\mathrm{C}-\mathrm{O}$ reductive
elimination was observed to generate the corresponding oxapalladacycles 22-25. Representative plots for the $\mathrm{C}-\mathrm{O}$ bond reductive elimination reactions from complex 15 and 17 are presented in figure 3.1 below.

Figure 3. 1. Plot for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complexes (a) 15 and 19 and (b) 17 and 21 at $22^{\circ} \mathrm{C}$.

The product of $\mathrm{C}-\mathrm{O}$ reductive elimination of complexes 15 and 19, complex 23 was characterized completely by NMR spectroscopy, ESI-MS, and single crystal X-ray diffraction, while its purity was confirmed using elemental analysis. X-ray quality crystals of complex 23 were grown by slow evaporation of an acetone solution of the complex under air.

Figure 3. 2. ORTEP drawings (50\% probability ellipsoids) of $\mathrm{Pd}(\mathrm{II})$ aryloxide cation 23 in $23(\mathrm{OAc})$.

Complex 25 was also characterized by NMR spectroscopy, electrospray mass spectrometry, and X-ray diffraction (see the experimental section). Complexes 22 and 24 were not isolated but converted to the corresponding phenols by hydrolysis of the oxapalladacycles with HCl at $70^{\circ} \mathrm{C}$ for 6 hours. The phenolic products were isolated from the aqueous solutions by extraction with diethyl ether. The identity of the known phenols was determined by comparison to literature while unknown phenols were identified via NMR spectroscopy and ESI mass spectrometry.

In the study of the mechanism of reductive elimination from the monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes derived from substituted phenylpyridine ligands 14-17, the following pathways were considered: (i) ionic mechanism A, where preliminary dissociation of an alkoxide ligand produces a dicationic 5-coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate that undergoes $\mathrm{C}-\mathrm{O}$ reductive elimination; (ii) concerted mechanism B , where $\mathrm{C}-\mathrm{O}$ bond reductive elimination takes place from a cationic 6 coordinate $\mathrm{Pd}(\mathrm{IV})$ species; (iii) chelate dissociation mechanism C , where dissociation of a pyridine group of the dpk ligand takes place prior to $\mathrm{C}-\mathrm{O}$ bond elimination from a cationic 5-coordinate species. These mechanisms were considered because there is literature precedent for each in reductive elimination reactions from group 10 metal centers. For example, the ionic mechanism A has been proposed for $C\left(\mathrm{sp}^{3}\right)-$ $\mathrm{O},{ }^{86,179,180,182,183,189} \mathrm{C}(\mathrm{sp} 3)-$-halogen, ${ }^{200,201} \mathrm{C}(\mathrm{sp} 3)-\mathrm{N},{ }^{202}$ and $\mathrm{C}(\mathrm{sp} 2)-$-halogen ${ }^{203}$ bond forming reductive elimination reactions from $\operatorname{Pt}(\mathrm{IV})$ center, the chelate dissociation mechanism B has been reported for some $\mathrm{C}-\mathrm{C}$ bond forming reactions form $\mathrm{Pt}(\mathrm{IV})$ center, ${ }^{197-199}$ while a concerted-type mechanism C has been implicated for $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ $\mathrm{O},{ }^{95,190-196} \mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N},{ }^{204}$ and $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{S}^{205,206}$ reductive elimination from $\mathrm{Pd}(\mathrm{II})$ centers.

Scheme 3.7

Kinetics study for $C-O$ reductive elimination from complex 15 in water in the presence of various additives

We started by performing $\mathrm{C}-\mathrm{O}$ reductive elimination studies of aqueous solutions of complex 15 in the presence of various additives, including trifluoroacetic acid, KOAc, and pyridine. Thus, 0.010 M aqueous solution of complex 15 was prepared by combining 0.010 M aqueous solution of complex $\mathbf{1 0}$ with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in ice-water bath at $0{ }^{\circ} \mathrm{C}$. The additive was added into the solution at $0{ }^{\circ} \mathrm{C}$ and the temperature of the resulting solution was raised to $22{ }^{\circ} \mathrm{C}$. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals and the concentration of complex $\mathbf{1 5}$ was monitored as a function of time. The kinetic plots of $\ln \left([\mathbf{1 5}]_{0} /[\mathbf{1 5}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complex 15 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of the pyridine, trifluroacetic acid and acetate anion at $22^{\circ} \mathrm{C}$ were found to be linear. $[\mathbf{1 5}]_{0}$ refers to the initial concentration of complex $\mathbf{1 5}$ while $[\mathbf{1 5}]_{\mathrm{t}}$ refers to
the concentration of complex $\mathbf{1 5}$ at time t. The observed first order rate constants are given in table 3.1 below.

Table 3. 1. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complex 15 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of various additives at $22^{\circ} \mathrm{C}$ in water.

Entry	Additive	$\mathbf{k}\left(\mathbf{m i n}^{-1}\right)$
1	none	$(1.37 \pm 0.02) \cdot 10^{-3}$
2	5.0 eq pyridine	$(2.38 \pm 0.04) * 10^{-3}$
3	5.0 eq KOAc	$(1.32 \pm 0.01) * 10^{-3}$
4	2.0 eq tfa	$(3.45 \pm 0.03) * 10^{-3}$
5	4.0 eq tfa	$(3.46 \pm 0.04) * 10^{-3}$

Kinetics study for $C-O$ reductive elimination from complex 14-17 in water in the presence of 4.0 equivalents of trifluoroacetic acid

As a result of the mild acceleration of $\mathrm{C}-\mathrm{O}$ bond coupling for complex $\mathbf{1 5}$ in the presence of trifluoroacetic acid, $\mathrm{C}-\mathrm{O}$ reductive elimination reactions were carried out for complexes $\mathbf{1 4}, \mathbf{1 6}$ and $\mathbf{1 7}$ in the presence of 4.0 equivalents of trifluoroacetic acid. $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complexes $\mathbf{1 4}, \mathbf{1 6}$ and $\mathbf{1 7}$ were combined with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in ice-water bath at $0{ }^{\circ} \mathrm{C} .4 .0$ equivalents of deuterated trifluoroacetic acid were added to the solutions and consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals at $22{ }^{\circ} \mathrm{C}$. The kinetic plots of $\ln \left([\operatorname{Pd}(\mathrm{IV})]_{0} /[\operatorname{Pd}(\mathrm{IV})]_{\mathrm{t}}\right) \quad$ vs. time for these reactions were found to be linear. Representative plots are given below.

Figure 3. 3. First order kinetic plots for the decomposition of $\mathrm{D}_{2} \mathrm{O}$ solutions of complexes (a) $\mathbf{1 5}$ and (b) $\mathbf{1 4}$ in the presence of 4.0 equivalents of trifluoroacetic acid at $22{ }^{\circ} \mathrm{C}$

Table 3. 2. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes 14-17 in water in the presence 4.0 equivalents of tfa- d_{1} at $22^{\circ} \mathrm{C}$.

Entry	Complex	-R	$k_{\mathrm{obs},} \mathrm{min}^{-1}$ (no acid additive)	$k_{\mathrm{obs}}, \mathrm{min}^{-1}$ $(4 \mathrm{eq} \mathrm{tfa})$
1	$\mathbf{1 4}$	-H	$(1.65 \pm 0.02) \cdot 10^{-3}$	$(3.90 \pm 0.04) * 10^{-3}$
2	$\mathbf{1 5}$	-Me	$(1.37 \pm 0.02) \cdot 10^{-3}$	$(3.50 \pm 0.04) * 10^{-3}$
3	$\mathbf{1 6}$	-OMe	$(1.41 \pm 0.01) \cdot 10^{-3}$	$(2.16 \pm 0.05) * 10^{-3}$
4	$\mathbf{1 7}$	-F	$(1.74 \pm 0.01) \cdot 10^{-3}$	$(3.50 \pm 0.05) * 10^{-3}$

The trifluoroacetic acid and LiOAc additives were used to probe a potential ionic mechanism A. C-O reductive elimination reactions that take place via preliminary dissociation of an ionic ligand have been observed to undergo rate acceleration in the presence of Bronsted acid additives. For example, Goldberg and co-workers observed acceleration of $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ reductive elimination reactions from diphosphine-ligated trihydrocarbylacetato $\operatorname{Pt}(\mathrm{IV})$ complexes in the presence of

Bronsted and Lewis acids, where the additives were proposed to speed up the reactions by accelerating the dissociation of the OR^{-}ligand. ${ }^{180}$ Similarly, Sanford and co-workers observed acceleration of $\mathrm{C}-\mathrm{O}$ reductive elimination from bipyridine ligated biaryldiacetato $\mathrm{Pd}(\mathrm{IV})$ complexes in the presence of Bronsted and Lewis acid additives. ${ }^{58}$ As a result, rate acceleration of $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{1 4 - 1 7}$ in the presence of Bronsted acids would indicate preliminary dissociation of OR^{-}group from the palladium coordination sphere prior by $\mathrm{C}-\mathrm{O}$ bond formation from a 5 -coordinate species. However the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination reactions from complexes $\mathbf{1 4 - 1 7}$ was not significantly accelerated by Bronsted acids. Approximately the same two-fold acceleration was observed when either 2.0 or 4.0 equivalents of trifluoroacetic acid were added. These observations are not in favor of an ionic mechanism A.

The minor acceleration brought about by trifluoroacetic acid could be due to a counterion effect. Given that only two-fold acceleration was observed irrespective of the concentration of trifluoroacetic acid used (2.0 vs 4.0 equivalent), we propose that the acid acts as a reagent in this system. As a reagent, trifluoroacetic acid protonates the acetate counterion and produces acetic acid and trifluoroacetate counterion instead (eq. 3.3). Since acetate is a stronger base compared to trifluoroacetate, the latter is expected to make a weaker ion pair interaction with the cationic complex 15, and lead to a less stable and more reactive complex (this interaction is also affected by solvation, hydrogen bonding among other factors).

$\mathrm{C}-\mathrm{O}$ reductive elimination reactions that proceed via preliminary dissociation of an anionic ligand have also been observed to be inhibited by exogenous anionic ligands in solution. ${ }^{180}$ These anions drive the equilibrium between the 5 - and the 6 coordinate complexes towards the 6 -coordinate complex. This decreases the fraction of the reactive 5 -coordinate complex in solution, which in turn decreases the rate of reaction. In a $\mathrm{C}-\mathrm{C}$ reductive elimination reaction from dppePt(IV) $\mathrm{Me}_{3}(\mathrm{OAr})$ complex that was proposed to take place via pre-equilibrium OR^{-}ligand dissociation, Goldberg and co-workers observed inhibition of the elimination reaction in the presence of exogenous aryloxide ligands. ${ }^{180}$ Sanford and co-workers also observed inhibition of a $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from (phenylpyridyl) ${ }_{2} \mathrm{Pd}(\mathrm{IV}) \mathrm{OAc}_{2}$ that was proposed to take place via preliminary dissociation of an acetate ligand, by exogenous acetate anions. ${ }^{58}$ As a result, inhibition of $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{1 4 - 1 7}$ would indicate preliminary dissociation of the OR^{-}ligand, and thus favor the ionic mechanism A. The presence of 5.0 equivalents of acetate anions however had no effect on the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination from aqueous solutions of complex 15, thus ruling out the ionic mechanism A (In this system, acetate anions were used instead of more basic OH^{-}or OMe^{-}because these stronger bases deprotonate complex $\mathbf{1 5}$ to produce the less a soluble zwitterionic analog).

In order to determine whether mechanism C is operative, where preliminary dissociation of the chelate prior to $\mathrm{C}-\mathrm{O}$ reductive elimination from a 5-coordinate species takes place, the reductive elimination reaction was conducted in the presence of 5.0 equivalents of pyridine. Goldberg and co-workers studied a $\mathrm{C}-\mathrm{C}$ reductive elimination system which was proposed to proceed via preliminary chelate
dissociation. They prepared $f a c-\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Pt}(\mathrm{IV}) \mathrm{Me}_{3}(\mathrm{OAc})$ complex and investigated its $\mathrm{C}-\mathrm{C}$ reductive elimination reaction in the presence of added phosphine ligand. They found that phosphine additives significantly inhibit the $\mathrm{C}-\mathrm{C}$ reductive elimination reaction, indicating that phosphine ligand dissociation precedes the $\mathrm{C}-\mathrm{C}$ coupling reaction. ${ }^{180}$ Considering this report, inhibition of $\mathrm{C}-\mathrm{O}$ reductive elimination from complex 15 in the presence of pyridine additive would indicate preliminary chelate dissociation preceding $\mathrm{C}-\mathrm{O}$ bond coupling as the operative mechanism, C . However $\mathrm{C}-\mathrm{O}$ reductive elimination from complex 15 in water was not inhibited by 5.0 equivalents of pyridine additive. As a result, this pathway was ruled out and pathway B was considered, where the reductive elimination reaction proceeds from a 6-coordinate species.
$\mathrm{C}-\mathrm{C}$ reductive elimination reaction from biaryl $\mathrm{Pd}(\mathrm{IV})$ complexes that proceed via 6 -coordinate species was reported by Sanford and co-workers. ${ }^{58}$ In that system, both $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ reductive elimination reactions were possible, but each was favored under different reaction conditions. Reaction conditions that favor dissociation of an anionic ligand led to predominant $\mathrm{C}-\mathrm{O}$ reductive elimination while reaction conditions that disfavor acetate ligand dissociation led to predominant $\mathrm{C}-\mathrm{C}$ bond coupling. Exclusive experiments were however not designed to interrogate the proposed mechanism of $\mathrm{C}-\mathrm{C}$ bond formation from 6-coordinate palladium complex.

In our system, the absence of rate acceleration in the presence of Bronsted acids and the lack of inhibition by exogenous acetate anions enabled us to rule out mechanism A . The absence of inhibition of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction by pyridine additive enabled us to rule out mechanism C. Consequently, mechanism B
which involves $\mathrm{C}-\mathrm{O}$ reductive elimination from a 6 -coordinate species was proposed as the operative mechanism. This mechanism was also supported by theoretical calculations.

Theoretical Calculations

The theoretical calculations were performed using density functional theory (DFT) method, ${ }^{1}$ specifically functional $\mathrm{PBE},{ }^{2}$ implemented in an original program package "Priroda". ${ }^{3}$ The basis set was 311 -split for main group elements with one additional polarization p-function for hydrogen, additional two polarization d functions for elements of higher periods.

In the DFT calculations, two pathways for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complex 15 were considered. The first pathway involves reductive elimination from a 6-coordiante complex via the transition state TS6 while the second pathway involves reductive elimination from a 5-coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate $\mathbf{2 6}$ via the transition state TS5. The barrier for reductive elimination from the 5coordinate complex produced upon dissociation of a chelate arm was found to be higher than that from a 6 -coordinate species, indicating that the former pathway via TS5 is less competitive. In the TS6, the pyridyl nitrogen atom trans- to the aryl carbon is only partially dissociated with a Pd-N distance of $2.518 \AA$ in 26 vs. $2.239 \AA$ in 15. Given that the chelate dissociation in the transition state TS6 is not too significant, the reductive elimination reaction can be considered to take place from a 6-coordinate species, in agreement with our experimental observations.

Figure 3. 4. The DFT-calculated Gibbs energy reaction profile for $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex $\mathbf{1 5}$ in gas phase and aqueous solutions in parenthesis ($\mathrm{kcal} / \mathrm{mol}$) leading to corresponding palladacyclic aryloxide 23.

C-O reductive elimination process: Substituent effects

$\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}$ reductive elimination from hydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes has been proposed to proceed through a three-center, four-electron transition state (see scheme below). ${ }^{45}$ Although the geometry of the coordination spheres of the complexes involved differs substantially, the process itself has been suggested to be comparable to related reductive elimination from $\mathrm{Pd}(\mathrm{II})$ complexes. The precise mechanistic picture of the process of reductive elimination from $\operatorname{Pd}(I V)$ is not yet fully understood because these complexes are too reactive to allow structure isolation and advanced mechanistic studies.

Up until now, the most common studied reaction that involves reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ via a concerted 3-center 4-electron pathway is $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}$ reductive elimination of aryl carboxylates from diaryl dicarboxylato $\operatorname{Pd}(I V)$ complexes. ${ }^{57,58}$ In this system, experiments were designed to probe the electronic effect of carboxylate and arylpyridine ligands on the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction. Faster $\mathrm{C}-\mathrm{O}$ reductive elimination reactions were observed when electronrich benzoate ligands and electron-poor arylpyridine fragments were employed, indicating that the carboxylate ligand act as a nucleophilic coupling partner while the aryl ring acts as an electrophilic coupling partner in the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction.

We designed experiments to study the electronic effects of the arylpyridine fragment, where a series of complexes containing electronically varied arylpyridine ligands were prepared to place different electron-withdrawing and electron-donating substituents meta- to the $\mathrm{Pd}-$ bound carbon atom (complexes 14-17).

Kinetics study for the $C-O$ reductive elimination reactivity from complexes 14-17 in water to study substituent effect

Reductive elimination from complexes $\mathbf{1 4 - 1 7}$ to produce complexes $\mathbf{2 2 - 2 5}$ in $\mathrm{D}_{2} \mathrm{O}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complexes 10-13 were combined with 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in ice-water bath at $0{ }^{\circ} \mathrm{C}$ to generate the $\operatorname{Pd}(\mathrm{IV})$ adducts in-situ, and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard; these complexes were prepared in-situ since they are too reactive to be isolated. Upon formation of the $\mathrm{Pd}(\mathrm{IV})$ complexes, the temperature was raised to $22^{\circ} \mathrm{C}$ to allow for
the $\mathrm{C}-\mathrm{O}$ bond reductive elimination to take place, and consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals. Representative plots of $\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{t}}\right)$ as a function of time for the C-O reductive elimination reaction of complexes 14 and 17 in $\mathrm{D}_{2} \mathrm{O}$ at $22{ }^{\circ} \mathrm{C}$ are given below; $\left[\mathrm{Pd}(\mathrm{IV})_{\mathrm{o}}\right]$ refers to the initial concentration of the $\operatorname{Pd}(\mathrm{IV})$ reactant while $\left[\mathrm{Pd}(\mathrm{IV})_{\mathrm{t}}\right]$ refers to the concentration of the $\mathrm{Pd}(\mathrm{IV})$ complex at a time, t. These plots were found to be linear.

Figure 3. 5. First order kinetic plots for the decomposition of aqueous solutions of complexes (a) 15 and (b) 17 at $22{ }^{\circ} \mathrm{C}$.

Reductive elimination from the $\operatorname{Pd}(I V)$ complexes was observed to follow $1^{\text {st }}$ order kinetics with the following first order rate constants at $22{ }^{\circ} \mathrm{C}$.

Table 3. 3. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes $\mathbf{1 4 - 1 7}$ in water at $22^{\circ} \mathrm{C}$.

Entry	-R	Complex	$k\left(\mathrm{~min}^{-1}\right)$
1	-H	$\mathbf{1 4}$	$(1.65 \pm 0.02) \cdot 10^{-3}$
2	-Me	$\mathbf{1 5}$	$(1.37 \pm 0.02) \cdot 10^{-3}$
3	-OMe	$\mathbf{1 6}$	$(1.41 \pm 0.01) \cdot 10^{-3}$
4	-F	$\mathbf{1 7}$	$(1.74 \pm 0.01) \cdot 10^{-3}$

The substituent effect was evaluated using the Hammett plot shown below. The ρ was found to be ~ 0, indicating the absence of substituent effects.

Figure 3. 6. Hammett plot for the decomposition of aqueous solutions of complexes $14-17$ at $22^{\circ} \mathrm{C}$.

The observed near zero slope of the Hammett plot indicates no substituent effects of the aryl rings. This indicates that the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction is not sensitive to the electronics of the arylpyridine fragment. This is contrary to literature reports, where the aryl rings with electron-withdrawing groups have been found to accelerate $\mathrm{C}-\mathrm{O}$ reductive elimination reactions, leading to the proposal that the carboxylate ligands act as the nucleophilic coupling partners while the aryl rings act as electrophilic coupling partners in these reactions. ${ }^{58}$ As a result, we propose that the lack of substituent effects may be a result of a very exergonic reaction as a result of a significantly early transition state.

15 in Acetic Acid

Scheme 3.8

Reaction of complex 11 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid generates a mixture of complexes $\mathbf{1 5}$ and 27 in 22% and 38% respectively after 10 minutes, due to a slow oxidation reaction. Both complexes were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and detected via ESI-MS (see chapter 2 for characterization of these complexes). Complexes 15 and 27 decompose at room temperature to produce the corresponding phenol $\mathbf{2 8}$ in 25% yield and aryl acetate $\mathbf{2 9}$ in 71% yield. The identity of compound 28 was confirmed by comparison of the NMR spectra to literature publication, ${ }^{207}$ while the identity of compound $\mathbf{2 9}$ and complex $\mathbf{3 0}$ were confirmed by independent synthesis.

3.3.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes

31 and 32 in Acetic Acid

Scheme 3.9

The reactivity of $\mathrm{Pd}(\mathrm{IV})$ complexes 31 and 32 towards $\mathrm{C}-\mathrm{O}$ reductive elimination was studied. Acetic acid solutions of 0.010 M complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ were prepared, $1.0 \mu \mathrm{l}$ of 1,4 dioxane was added as internal standard, and the resulting yellow solutions were warmed to $63^{\circ} \mathrm{C}$ in a NMR tube. After 12 hours, the ${ }^{1} \mathrm{H}$ NMR spectra of the resulting solutions were complex indicating the presence of multiple species in solution. However upon addition of a small amount of pyridine to free coordinated products, simple ${ }^{1} \mathrm{H}$ NMR spectra resulted revealing clean formation of the corresponding phenol $\mathbf{3 3}$ and $\mathbf{3 4}$ and aryl acetate $\mathbf{3 5}$ and $\mathbf{3 6}$ products. When an acetic acid solution of complex 31 was warmed at $63^{\circ} \mathrm{C}$ in the presence of 10% acetic anhydride by volume, the expected aryl acetate $\mathbf{3 5}$ was produced as the only product quantitatively. The identity of the compound $\mathbf{3 3}$ was confirmed by comparison of the NMR spectra to literature publications, ${ }^{157}$ while the identity of compounds 34, 35, and 36 was confirmed by independent synthesis via acetoxylation of the
corresponding phenols in $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcOH}$ solvent mixture. These compounds were characterized by NMR spectroscopy and ESI-MS.

Table 3. 4. ${ }^{1} \mathrm{H}$ NMR yields of phenol and aryl acetate from $\mathrm{C}-\mathrm{O}$ reductive elimination reactions at complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in acetic acid at $63^{\circ} \mathrm{C}$.

Entry	Complex	Phenol	Aryl acetate
1	$\mathbf{3 1}$	38	58
2	$\mathbf{3 2}$	35	59

This experiment indicates that $\mathrm{C}-\mathrm{O}$ reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ is facile in acetic acid solvent. The formation of the aryl-acetate products may involve an acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex, 37 or 38 (See Scheme 3.10). During the reductive elimination reaction from complex $\mathbf{3 1}$ in acetic acid, a mass envelope at $\mathrm{m} / \mathrm{z}=548.0440$ was observed by ESI-MS, which may be assigned to complex 37, (Calculated for complex 37, $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}=548.0448$). Complex $\mathbf{3 7}$ or $\mathbf{3 8}$ may form in-situ via chelate opening of complex $\mathbf{3 1}$ or $\mathbf{3 2}$ in acetic acid as shown below. The phenolic products $\mathbf{3 3}$ and $\mathbf{3 4}$ are produced via $\mathrm{C}-\mathrm{OH}$ reductive elimination from complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ respectively while the aryl acetate products $\mathbf{3 5}$ and $\mathbf{3 6}$ are produced via $\mathrm{C}-\mathrm{OAc}$ reductive elimination from complexes $\mathbf{3 7}$ and $\mathbf{3 8}$ respectively.

Scheme 3. 10

Complexes Derived from 2-aroylpyridine Ligands 31 and 32 in Acetic acid.

In the study of the mechanism of reductive elimination from monohydrocarbyl $\operatorname{Pd}(\mathrm{IV})$ complexes derived from the 2-aroylpyridine derived fragments $\mathbf{3 1}$ and $\mathbf{3 2}$, the following pathways were considered: (I) ionic mechanism A, where the alkoxide ligand dissociates from the Pd coordination sphere, followed by $\mathrm{C}-\mathrm{O}$ reductive elimination from a dicationic 5-coordinate species; (II) concerted mechanism B, where $\mathrm{C}-\mathrm{O}$ bond reductive elimination takes place from a cationic 6-coordinate palladium species; (III) chelate dissociation mechanism C, where dissociation of the pyridyl arm of the dpk ligand trans to the phenyl ligand takes place prior to $\mathrm{C}-\mathrm{O}$ reductive elimination from a cationic 5-coordinate species. These mechanisms were considered because there is literature precedent for each in the reductive elimination processes from group 10 metal centers. Several experiments were designed to determine the most favorable mechanism, including the study of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction in the presence of various additives.

Scheme 3. 11

Reductive elimination of complex $\mathbf{3 1}$ in acetic acid in the presence of various additives was studied by ${ }^{1} \mathrm{H}$ NMR.

Trifluoroacetic acid (tfa) additive

The decomposition of complex $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ in acetic acid in the presence of 5.0 eq of trifluoroacetic acid was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A 0.010 M acetic acid solution of complex 31 was prepared and 5 eq of tfa was added to the solution followed by 1.0μ l dioxane as internal standard. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at $56^{\circ} \mathrm{C}$. Clean formation of the corresponding aryl acetate $\mathbf{3 5}$ and phenol 33 in 10% and 28% yields respectively was observed. The graph of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}$ in $\mathrm{AcOH}-d_{4}$ at $56^{\circ} \mathrm{C}$ in the presence of 5.0 equivalents of tfa was found to be linear, indicating an overall first order reaction. The first order rate constant for this reaction is presented in the table below.

Table 3. 5. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $56^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of tfa additive.

Additive	$\mathbf{K}_{\text {obs }}\left(\mathbf{m i n}^{-1}\right)$	Temp
5.0 eq tfa	$(9.09 \pm 0.18) * 10^{-3}$	$56^{\circ} \mathrm{C}$
No additive	$(6.21 \pm 0.18) * 10^{-3}$	$56^{\circ} \mathrm{C}$

This indicates that trifluoroacetic acid does not significantly influence the rate of C-O reductive elimination from complex 31.

LiOAc additive

The decomposition of complex $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ in acetic acid solvent in the presence of 5.0 eq of LiOAc was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A 0.010 M acetic acid solution of complex $\mathbf{3 1}$ was prepared and 5 eq of LiOAc was added to the solution followed by $1.0 \mu \mathrm{l}$ dioxane as internal standard. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at $55^{\circ} \mathrm{C}$. Clean formation of the corresponding aryl acetate and phenol products in 64% and 28% yields respectively was observed. The graph of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}$ in $\mathrm{AcOH}-d_{4}$ at $55^{\circ} \mathrm{C}$ in the presence of 5.0 equivalents of LiOAc was found to be linear, indicating an overall first order reaction. The first order rate constant for this reaction is presented in the table below.

Table 3. 6. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $56^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of LiOAc additive.

Additive	$\mathbf{k}\left(\mathbf{m i n}^{-1}\right)$	Temp
5.0 eq LiOAc	$(8.18 \pm 0.06) * 10^{-3}$	$56^{\circ} \mathrm{C}$
No additive	$(6.21 \pm 0.18) * 10^{-3}$	$56^{\circ} \mathrm{C}$

The rate of $\mathrm{C}-\mathrm{O}$ bond reductive elimination from an acetic acid solution of complex $\mathbf{3 1}$ in the presence of 5.0 equivalents of exogenous LiOAc is not inhibited.

Pyridine additive

The decomposition of complex $\mathbf{3 1}\left(\mathbf{O O C C F}_{\mathbf{3}}\right)$ in acetic acid solvent in the presence of 5.0 eq of pyridine additive was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A
0.010 M acetic acid solution of complex 31 was prepared and 5 eq of pyridine was added to the solution followed by $1.0 \mu 1$ dioxane as internal standard. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra were collected at $48^{\circ} \mathrm{C}$. Clean formation of the corresponding aryl acetate and phenol products in 72% and 24% yields respectively was observed. The graph of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}$ in $\mathrm{AcOH}-d_{4}$ at $48^{\circ} \mathrm{C}$ in the presence of 5.0 equivalents of pyridine was found to be linear, indicating an overall first order reaction. The first order rate constant for this reaction is presented in the table below.

Table 3. 7. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $48^{\circ} \mathrm{C}$ in the presence and absence of 5.0 equivalents of pyridine additive.

Additive	$\mathbf{K}_{\mathbf{o b s}}\left(\mathbf{m i n}^{-1}\right)$	Temp
5.0 eq pyr	$(4.3 \pm 0.1) * 10^{-4}$	$48^{\circ} \mathrm{C}$
No additive	$(2.7 \pm 0.3) * 10^{-3}$	$48^{\circ} \mathrm{C}$

Pyridine was observed to slow the reaction at least 10 -fold.

Water additive

A 0.010 M acetic acid solution of complex $\mathbf{3 1}\left(\mathbf{O O C C F}_{\mathbf{3}}\right)$ was prepared and 28 $\%$ of $\mathrm{D}_{2} \mathrm{O}$ by volume was added into the solution followed by $1.0 \mu \mathrm{l}$ dioxane as internal standard. Consecutive ${ }^{1} \mathrm{H}$ NMR spectra of the solution were collected at $48^{\circ} \mathrm{C}$. Clean formation of the corresponding phenol was observed with a total yield of $>95 \%$; no aryl acetate product was detected by ${ }^{1} \mathrm{H}$ NMR. The graph of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of
complex 31 in $\mathrm{AcOH}-d_{4}$ at $48^{\circ} \mathrm{C}$ in the presence of 28% water is given below. This plot was found to be non-linear, as a result the time for 50% conversion is given.

Figure 3. 7. First order kinetic plot for the decomposition of complex $\mathbf{3 1}$ in $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ solvent mixture (5:2) at $49^{\circ} \mathrm{C}$

Table 3. 8. Time (min) for the 50% conversion of complex $\mathbf{3 1}$ in the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in AcOD at $48^{\circ} \mathrm{C}$ in the presence and absence of 28% of water.

Additive	$\mathbf{5 0} \%$ conversion $\left(\mathbf{m i n}^{-1}\right)$	Temp
28% water	210	$48^{\circ} \mathrm{C}$
No additive	265	$48^{\circ} \mathrm{C}$

This indicates that water slows down the rate of $\mathrm{C}-\mathrm{O}$ coupling.
Table 3. 9. Summary of the influence of various additives on the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination from acetic acid solutions of complex 31.

Entry	Additive	Effect on $\mathrm{K}_{\mathrm{obs}}$
1.	5.0 eq Pyridine	Slows reaction rate 10-fold
2.	Water	Slows rate 3-fold
3.	LiOAc	No significant effect on rate
4.	tfa	No significant effect on rate

Discussion of the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination

Bronsted acids have been observed to increase the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination reactions that proceed via preliminary dissociation of an anionic ligand, which is followed by reductive elimination from a 5-coordinate palladium species. ${ }^{58}$ The acid has been proposed to accelerate the rate of ligand dissociation, which in turn accelerates the overall elimination reaction. However, trifluoroacetic did not have any noticable effect on the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination from complex $\mathbf{3 1}$ in acetic acid. This is inconsistent with a mechanism that involves pre-equilibrium dissociation of an anionic ligand, and thus mechanism A was ruled out.

Exogenous anionic ligands have also been observed to inhibit $\mathrm{C}-\mathrm{O}$ reductive elimination reactions that proceed via initial loss of an anionic ligand. ${ }^{57,180}$ However LiOAc was found to have no effect on the rate of $\mathrm{C}-\mathrm{O}$ reductive elimination from complex $\mathbf{3 1}$ in acetic acid, which is also inconsistent with a mechanism that involves pre-equilibrium dissociation of an anionic ligand prior to $\mathrm{C}-\mathrm{O}$ bond reductive elimination from a 5 -coordinate reactive species. This additional experimental observation enabled us to rule out mechanism A.

In a mechanism that involves dissociation of one arm of a chelate, additives of a neutral Lewis basic ligand have been found to inhibit such reactions. For example, Goldberg and co-workers found phosphine additives to inhibit $\mathrm{C}-\mathrm{C}$ reductive elimination from $(\mathrm{PMe})_{3} \mathrm{Pt}(\mathrm{IV}) \mathrm{Me}_{3}(\mathrm{OAc})$ complexes that proceed from a 5 coordinate palladium intermediate produced upon preliminary dissociation of phosphine ligand. ${ }^{180}$ In our studies, pyridine additive was used to probe whether pyridine ligand dissociation from the dpk chelate takes place prior to $\mathrm{C}-\mathrm{O}$ reductive
elimination from the resulting 5-coordinate intermediate. Indeed, pyridine was found to inhibit $\mathrm{C}-\mathrm{O}$ reductive elimination from complex 31 in acetic acid significantly. Water was also found to inhibit the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction. In this system, water was proposed to act as a neutral Lewis basic ligand similar to pyridine. These results indicate that the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction takes place from a 5-coordinate species formed upon chelate dissociation, mechanism C.

Reactions that proceed via preliminary dissociation of a neutral ligand have been reported to display high positive entropy values. For example in a series of diphosphino $\mathrm{Pt}(\mathrm{IV}) \mathrm{Me}_{4}$ complexes that were proposed to undergo $\mathrm{C}-\mathrm{C}$ reductive elimination from 5-coordinate intermediates produced via preliminary dissociation of a phosphine ligand, Goldberg and co-workers found these reactions to proceed with relatively high entropy of $15 \pm 4 \mathrm{eu}$. Thus, Eyring analysis was performed on the C-O reductive elimination from complex $\mathbf{3 1}$ in acetic acid to obtain the enthalpy and entropy parameters.

Activation parameters for $\mathrm{C}-\mathrm{O}$ bond reductive elimination of acetic acid solutions of complex 31(OOCCF 3)
0.010 M acetic acid solution of $\mathbf{3 1}\left(\mathbf{O O C C F}_{\mathbf{3}}\right)$ was prepared and $1.0 \mu \mathrm{l} 1,4-$ dioxane was added as internal standard. The resulting yellow solution was monitored by ${ }^{1} H$ NMR spectroscopy at various temperatures. Clean formation of the corresponding phenol and aryl acetate products was observed. The concentration of the $\mathrm{Pd}(\mathrm{IV})$ precursor 31 was monitored by integration of a single peak that did not overlap with other peaks using 1,4-dioxane as an internal standard. The color of the
solution changed from deep yellow to colorless as the reaction progressed. The disappearance of complex $\mathbf{3 1}$ was observed to follow first order kinetics. Representative plots of $\ln \left([\mathbf{3 1}]_{\mathrm{o}} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination of $\mathbf{3 1}$ in $\mathrm{AcOH}-d_{4}$ at various temperatures are given in figure 3.8 below.

Figure 3. 8. First order kinetic plots for the decomposition of acetic acid solutions of complex 31 at (a) $47.5^{\circ} \mathrm{C}$ and (b) $56.5^{\circ} \mathrm{C}$.

The first order rate constants $k_{\text {red }}$ are given in the table below:
Table 3. 10. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination from acetic acid solutions of complex $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ at various temperatures.

Temperature (K)	$k_{\text {red }}, \min ^{-1}$
21.5	$\left(2.7 \pm 0.03 \cdot 10^{-3}\right.$
22.5	$(6.9 \pm 0.14) \cdot 10^{-3}$
334	$(1.08 \pm 0.007) \cdot 10^{-2}$
346.5	$(3.67 \pm 0.158) \cdot 10^{-2}$

Figure 3. 9. Eyring plot for decomposition of complex $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ in acetic acid.

The activation parameters were found to be as follows: $\Delta H^{\neq}=23.4 \pm 0.2$ $\mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\neq=-6 \pm 6 \mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K}) .}$

Our earlier experimental observations led us to propose that $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in acetic acid takes place via preliminary dissociation of a chelate. The near zero entropy values observed are consistent with the proposed reaction mechanism involving preliminary chelate arm dissociation followed by $\mathrm{C}-\mathrm{O}$ reductive elimination from a 5-coordinate palladium species.

Substituent effects of the $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes 31 and 32

Additional experiments were designed to probe the substituent effects. Sanford and co-workers observed a faster C-O reductive elimination reaction with electron-donating substituents on the benzoate ligands and electron-withdrawing substituents on the arylpyridine fragment, indicating that the carboxylate ligands act as the nucleophilic coupling partners while the aryl rings act as electrophilic coupling partners in the $\mathrm{C}-\mathrm{O}$ reductive elimination reactions. Our earlier studies on $\mathrm{C}-\mathrm{O}$ reductive elimination at complexes $\mathbf{1 4 - 1 7}$ in water found no substituent effects. Thus
we designed experiments to study the aroylpyridine electronic effects, where complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ containing electronically varied aroylpyridine ligands were prepared to place different electron-withdrawing and electron-donating substituents para- to the $\mathrm{Pd}-$ bound carbon atom.

Kinetics experiments to probe electronic effects on the rate of $C-O$ reductive elimination from complexes 31 and 32 in $\mathrm{AcOH}-d_{4}$

The rates of $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ were determined under identical conditions. 0.010 M acetic acid solutions of complexes $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ and $\left.\mathbf{3 2 (} \mathrm{OOCCF}_{3}\right)$ were prepared and $1.0 \mu \mathrm{l}$ dioxane was added as internal standard. $\mathrm{C}-\mathrm{O}$ reductive elimination from these solutions was monitored by taking consecutive ${ }^{1} \mathrm{H}$ NMR spectra at regular intervals at $50^{\circ} \mathrm{C}$. The disappearance of the starting complex $\mathbf{3 1}$ or $\mathbf{3 2}$ was monitored and observed to follow first order kinetics. The color of the solution changed from deep yellow to light yellow as the reaction progressed. At the end of the reaction, formation of phenol $\mathbf{3 3}$ in 38% and 34 in 35 \% yields, and aryl acetate $\mathbf{3 5}$ in 58% and 36 in 59% yields was observed. The graphs of $\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination of $\mathbf{3 1}$ and $\mathbf{3 2}$ at $50^{\circ} \mathrm{C}$ in $\mathrm{AcOH}-d_{4}$ are linear, indicating a first order reaction.

Table 3. 11. Observed first order rate constants for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complexes 31 and $\mathbf{3 2}$ in AcOD at $50^{\circ} \mathrm{C}$.

Complex	$\mathbf{K}_{\text {obs }}\left(\mathbf{m i n}^{-\mathbf{1}}\right.$)	Temp (${ }^{\mathbf{O}} \mathbf{C}$)
$\mathrm{R}=\mathrm{H}, \mathbf{3 1}$	$(3.19 \pm 0.04)^{*} 10^{-3}$	$50^{\circ} \mathrm{C}$
$\mathrm{R}=\mathrm{Me}, \mathbf{3 2}$	$(4.11 \pm 0.06)^{*} 10^{-3}$	$50^{\circ} \mathrm{C}$

The rates of $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in acetic acid were found to be similar. This indicates that $\mathrm{C}-\mathrm{O}$ reductive elimination from these complexes is not sensitive to the substituents on the aromatic ring. A similar lack of substituent electronic effect on the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from complexes $\mathbf{1 4 - 1 7}$ in water was observed. This indicates that the process of $\mathrm{C}-\mathrm{O}$ reductive elimination from substituted arylpyridine-derived complexes $\mathbf{1 4 - 1 7}$ in water and substituted aroylpyridine-derived complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in acetic acid may be similar.

Summary and Conclusion

Our experimental observations suggest that $\mathrm{C}-\mathrm{O}$ reductive elimination reactions at 2-arylpyridine derived complexes $\mathbf{1 4 - 1 7}$ in water proceed from a 6 coordinate $\mathrm{Pd}(\mathrm{IV})$ complex, while that at complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in acetic acid solvent proceeds from a 5-coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate generated via preliminary pyridine group dissociation. No substituent effects are observed in these $\mathrm{C}-\mathrm{O}$ reductive elimination reactions.

31 in Water

Scheme 3. 12

We started by attempting $\mathrm{C}-\mathrm{O}$ reductive elimination at complex 31 in water. A 0.010 M aqueous solution of complex $\mathbf{3 1}$ was prepared and this reaction solution was monitored by ${ }^{1} \mathrm{H}$ NMR at various temperatures. When left in water at room temperature, no change in the ${ }^{1} \mathrm{H}$ NMR spectrum was observed for at least 2 days. When monitored at $70^{\circ} \mathrm{C}$, only $\sim 23 \%$ conversion was observed after 12 hours. The presence of phenol was confirmed via both ${ }^{1} \mathrm{H}$ NMR and ESI-MS, but the yield of the phenol could not be determined due to overlapping signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. When this reaction was attempted at $85^{\circ} \mathrm{C}$, no change in the NMR was detected for \sim 30 minutes, but a mixture of white and black precipitate was observed when this reaction was carried out for longer times. After 12 hours, a small amount of acetic acid was added to dissolve the black and white precipitate and a small amount of pyridine was added to free any coordinated products. ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution indicated the presence of phenol among other unidentified products (the yield couldn't be determined due to too much overlap with unidentified peaks). The presence of the expected phenol was also confirmed by an ESI-MS peak at 200.0727 (calculated form phenol $=200.0131$).

Due to slow reactivity of complex $\mathbf{3 1}$ in water, we sought to determine whether the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction would be faster in the presence of trifluoroacetic acid since Bronsted acids have been reported to accelerate $\mathrm{C}-\mathrm{O}$ bond coupling reactions. ${ }^{58,180}$

C-O Reductive Elimination at Complex 31 in Water with Various Equivalents of tfa

$\mathrm{C}-\mathrm{O}$ reductive elimination reaction was attempted in the presence of trifluoroacetic acid. A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{3 1}(\mathbf{O O C C F} 3)$ was prepared by dissolving 0.010 mmoles of the complex in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and 20% deuterated trifluoroacetic acid by volume was added to the solution. The reactivity of the resulting solution was monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature at regular intervals in the presence of dioxane as internal standard. 50% conversion of complex 31 was observed after 108 minutes and 84% phenolic yield was observed at the end of reaction according to ${ }^{1} \mathrm{H}$ NMR analysis of the reaction solution after addition of pyridine to free coordinated products. This indicates that Bronsted acids accelerate $\mathrm{C}-$ O reductive elimination from complex $\mathbf{3 1}$ in water.

As a result of the observed acceleration of $\mathrm{C}-\mathrm{O}$ reductive elimination from aqueous solutions of complex 31 in the presence of 20% trifluoroacetic acid by volume, kinetic experiments were designed to probe the effect of acid concentration on the $\mathrm{C}-\mathrm{O}$ coupling reaction. Thus $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complex 31 were prepared and dioxane was added as internal standard. 1-3 equivalents of tfa- d_{1} were added to the solutions and the reactions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $70^{\circ} \mathrm{C}$. Dark brown precipitate was observed in the reaction mixtures as the reactions
progressed. At the end of the reaction, a small amount of deuterated acetic acid was added to dissolve the precipitate and pyridine was added to free any coordinated products. The total yield of the phenol was found to be between 70-73 \% for multiple experiments, while another product with a yield of $\sim 16-18 \%$ could not be identified. The plots of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ bond reductive elimination reactions from complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$ in the presence of 1-3 equivalents of tfa are non-linear, indicating product catalyzed reactions (Fig. 3.10). $[\mathbf{3 1}]_{0}$ represents the initial concentration of complex $\mathbf{3 1}$ while $[\mathbf{3 1}]_{\mathrm{t}}$ represents the concentration of complex 31 at a time, t. Representative kinetic plots for $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}$ in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$ are given below.

(a)

(b)

Figure 3. 10. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$, in the presence of (a) 1.0 equivalent and (b) 3.0 equivalents of trifluoroacetic acid.

Table 3. 12. The time for 50% conversion of a $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 31 at $70^{\circ} \mathrm{C}$ in the presence of 1-3 equivalent trifluoroacetic acid.

Acid concentration (M)	50% conversion (min) at $70^{\circ} \mathrm{C}$
0.01185	60
0.02	28
0.00625	150

The time for 50% conversion of the starting material in the presence of various acid concentrations are presented in table 3.12 . Higher acid concentration is observed to lead to proportional increase in the reaction rate, indicating that the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction is accelerated by acid. The non-linear first order plots indicate that the reaction is product catalyzed, and thus we designed a reaction to probe whether the inorganic product 39 catalyzes this reaction. A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 31 was prepared and $1.0 \mu \mathrm{l}$ dioxane was added as internal standard. 1.0 equivalent of tfa- d_{l} and 20% of additive 39 were added to the solution, and the resulting solution was monitored by ${ }^{1} \mathrm{H}$ NMR at $70^{\circ} \mathrm{C}$. The plot of $\ln \left([31]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the C-O reductive elimination reaction of complex 31 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of 1 eq of tfa and 20% of complex 39 at $70{ }^{\circ} \mathrm{C}$ is given below.

Figure 3. 11. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$, in the presence of 1.0 equivalent of trifluoroacetic acid and 20% of complex 39 .

Table 3. 13. $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $0.010 \mathrm{M}_{2} \mathrm{O}$ solution of complex 31 at $70^{\circ} \mathrm{C}$ in the presence of 1.0 equivalent of trifluoroacetic acid and 20% of complex 39.

Entry	Acid concentration (M)	Additive	50 \% conv.
1	0.00625	none	150 min
2	0.00625	0.2 eq	35 min

The plot of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination from aqueous solutions of complex $\mathbf{3 1}$ in the presence of both 1.0 equivalent of trifluoroacetic acid and complex 39 was found to be non-linear, indicating that the process is still autocatalytic. However the reaction was found to be ~ 4-fold faster in the presence of complex 39 , indicating that this product catalyzes the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction. In this kinetic analysis, the corresponding phenol was produced in 71% yield together with an unidentified product in 17% yield.

Complex 39 is proposed to accelerate the $\mathrm{C}-\mathrm{O}$ bond coupling reaction as a Lewis acid in its cationic form, produced upon dissociation of an OOCCF_{3} ligand.

The acceleration of $\mathrm{C}-\mathrm{O}$ bond reductive elimination by Lewis acids has been observed by Goldberg and Sanford. ${ }^{58,180}$ Lewis acids are proposed to accelerate C-O reductive elimination reactions that proceed via preliminary dissociation of an OR^{-} ligand by coordinating to the OR group and assisting in the dissociation of OR^{-}. Thus, complex 39 accelerates the $\mathrm{C}-\mathrm{O}$ coupling reaction probably by aiding in the dissociation of a ligand from the $\mathrm{Pd}(\mathrm{IV})$ center prior to $\mathrm{C}-\mathrm{O}$ reductive elimination from a 5-coordinate intermediate.

Unified Mechanism of $C-O$ Reductive Elimination Reaction From Complexes 31 and 32 in Water and Acidic Media

The mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in water and acetic acid solvents was analyzed. It was observed that $\mathrm{C}-\mathrm{O}$ reductive elimination from these complexes is too slow in neutral aqueous solutions while the reaction is faster in acidic solutions. This indicates that acid accelerates the $\mathrm{C}-\mathrm{O}$ coupling reaction. In order to determine how acid accelerates the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction, the reaction was performed in acetic acid solution in the presence of various additives. In this study, the presence of pyridine additives was observed to cause a 10 fold inhibition of the reductive elimination reaction, indicating that the $\mathrm{C}-\mathrm{O}$ reductive elimination from complex 31 proceeds via a 5-coordinate palladium intermediate produced upon preliminary chelate dissociation. Since $\mathrm{C}-\mathrm{O}$ reductive elimination is fast in acidic solutions and slow in neutral solutions, acid is proposed to accelerate the reaction by shifting the equilibrium of pyridine arm dissociation by protonating the pyridine nitrogen as shown in Scheme 3.13.

Protonation of the pyridine group inhibits the reverse reaction and produces a dicationic species which is more reactive towards $\mathrm{C}-\mathrm{O}$ reductive elimination. As a result, the overall rate of $\mathrm{C}-\mathrm{O}$ coupling increases in the presence of acid.

Scheme 3. 13

Summary and Conclusion

In summary, $\mathrm{C}-\mathrm{O}$ reductive elimination from aroylpyridine derived $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ is too slow in neutral aqueous solutions while the reaction is fast in acidic solutions. The mechanism of this reaction in acidic solutions was proposed to involve preliminary dissociation of the dpk chelate followed by $\mathrm{C}-\mathrm{O}$ coupling from a 5-coordinate intermediate. Acid is proposed to accelerate the chelate dissociation.

31 and $\mathbf{3 2}$ in Water in the Presence of Base

Scheme 3. 14

The zwitterionic complexes 40 and 41 were synthesized by addition of 1.0 equivalent of NaOH to aqueous solutions of complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ respectively. The reactivity of aqueous solutions of these complexes towards $\mathrm{C}-\mathrm{O}$ reductive elimination was studied. These complexes were found to be sparingly soluble in water. Heating a reaction mixture containing 0.010 mmoles of complex $\mathbf{3 1}$ in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ at elevated temperatures resulted in decomposition to produce a black solid. However when 1.0 equivalent of NaOH was added to the reaction mixture of complex 40 and $\mathrm{D}_{2} \mathrm{O}$, the precipitate dissolved to give a deep yellow solution. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed 16 multiplets in the aromatic region, with a pattern significantly different from that of complex 31. Heating a basic aqueous solution of complex 40 at $50^{\circ} \mathrm{C}$ for ~ 6 hours leads to formation of black solid. Addition of acetic acid to the reaction mixture at the end of the reaction to dissolve the precipitates revealed formation of the corresponding phenol 34 in 55% yield, together with another product identified as a 2-benzoylpyridine-derived palladacycle supported by 2-picolinate ligand, complex 42 in 23% yield. Complex 42 was also prepared by the decomposition of complex 40 in methanol.

ESI-MS analysis of the reaction solution in water in the negative mode, gave a major peak at $\mathrm{m} / \mathrm{z}=198.0550$, calculated for the phenoxide $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}_{2}=198.0555$, while ESI-MS analysis of the acidified reaction solution in water in the positive mode, gave the following major peaks: $\mathrm{m} / \mathrm{z}=79.9102$ (calculated for protonated pyridine, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}=79.9610$); 200.0727 (calculated for protonated phenol $\mathbf{3 4}^{+}$, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2}=200.01315$); 410.9738 (calculated for protonated complex $\mathbf{4 2} \mathbf{H}^{+}$ $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}=410.2261$); 402.9536 (calculated for (dpk) $\mathrm{Pd}\left(\mathrm{OOCCF}_{3}\right)^{+}$, $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}{ }^{106} \mathrm{Pd}=402.9527$).

Complex 41 also undergoes decomposition in basic aqueous solutions to give the corresponding phenoxide in 49.9 \% yield together with an unidentified complex (presumably complex 43) in 20% yield.

Decomoposition of complex 40 in methanol

Scheme 3. 15

The zwitterionic complex 40 was dissolved in deuterated methanol at room temperature and ${ }^{1} \mathrm{H}$ NMR spectra were collected at regular intervals over several days. New signals gradually appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum, while a white precipitate was observed to develop gradually. After 7 days at room temperature, the signals belonging to complex 40 had completely disappeared and a large amount of
white precipitate was present. The precipitate was filtered off, and its identity was determined as complex $\mathbf{4 2}$ via NMR spectroscopy and ESI-MS, while its composition was confirmed by elemental analysis. Due to the presence of the benzoylpyridine fragment, the picolinate ligand was proposed to originate from decomposition of the dpk fragment of complex 40. The formation of this complex requires loss of pyridine, which was detected in the reaction solution by ESI-MS.

Kinetics Experiments of Aqueous Solutions of 31 in the Presence of NaOH Additives
Kinetics experiments were set up to study $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from basic aqueous solutions of complex 31. $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solutions of complex 31 were prepared and 2.0-6.0 equivalents of NaOD were added. Addition of less than 2.0 equivalents of base led to heterogeneous solutions which were not studied. 1,4 dioxane was added to the aqueous basic solutions of complex $\mathbf{3 1}$ as internal standard, and the resulting solutions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $50^{\circ} \mathrm{C}$. Representative plots of $\ln \left([\mathbf{3 1}]_{\mathrm{o}} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ as a function of time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of complex 31 in $\mathrm{D}_{2} \mathrm{O}$ at $50{ }^{\circ} \mathrm{C}$ in the presence of various equivalents of NaOD are given below. $[\mathbf{3 1}]_{0}$ refers to the initial concentration of complex $\mathbf{3 1}$ while $[\mathbf{3 1}]_{\mathrm{t}}$ refers to the concentration of complex $\mathbf{3 1}$ at time, t.

(a)

(b)

Figure 3. 12. First order kinetic plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of aqueous solutions of complex 31 at $50^{\circ} \mathrm{C}$ in the presence of (a) 2.0 equivalents of NaOH and (b) 4.0 equivalents of NaOH

In this kinetic study, the plots of $\ln \left([31]_{0} /[\mathbf{3 1}]_{\mathrm{t}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination of complex $\mathbf{3 1}$ in $\mathrm{D}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$ are linear indicating a first order process. The observed first order rate constants were virtually identical when greater than 2.0 eq of base was used irrespective of the concentration of base used (see table 3.14 below).

Table 3. 14. Observed first order rate constants for $\mathrm{C}-\mathrm{O}$ reductive elimination at complex $\mathbf{3 1}$ in water in the presence of various equivalents of NaOH at $50^{\circ} \mathrm{C}$.

Base concentration (M)	$\mathrm{k}_{\text {obs }}\left(\mathrm{min}^{-1}\right)$
0.020	1.29 ± 0.02
0.030	1.36 ± 0.04
0.040	1.64 ± 0.05
0.060	1.35 ± 0.05

The observation where the rate of reaction is independent of the amount of base used led us to propose that 2 equivalents of base are consumed in each of these reactions to produce common intermediate $\mathbf{4 4}$. This proposed mechanism is supported
by the isolation of complex 40 from the reaction mixture when 1.0 eq of NaOH was used. Complex 40, which is a poorly water soluble zwitterionic complex, was characterized by NMR, ESI-MS and X-ray diffraction, while its composition was confirmed by elemental analysis. Addition of one equivalent of NaOH to an aqueous reaction mixture containing complex 40 leads to dissolution of the poorly soluble zwitterionic complex to produce a complex that displays 16 multiplets in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum, complex 44 . This complex reacts to produce the corresponding phenoxide. However attempts to characterize complex 44 by ESI-MS in the negative mode were not successful as the species was not observed. This reaction suggests that the anionic complex 44 is more reactive towards $\mathrm{C}-\mathrm{O}$ reductive elimination than the cationic complex $\mathbf{3 1}$ in water.

Scheme 3. 16

Scheme 3. 17

The combination of an acetic acid solution of complex 27 and 3.0 equivalents of HOOH led to clean formation of complex 37 . The identity of this complex was confirmed by both ${ }^{1} \mathrm{H}$ NMR, ESI-MS and additional experimental observations previously described (Chapter 2). When a 0.010 M acetic acid solution of complex $\mathbf{3 7}$ was left at room temperature for 2 days, a mixture of the corresponding phenol 33 and aryl acetate 35 products were observed in 41% to 57% yields respectively, after addition of pyridine in the reaction solutions to free coordinated products. The decomposition of this complex to produce both $\mathrm{R}-\mathrm{OH}$ and $\mathrm{R}-\mathrm{OAc}$ products indicates the presence of complexes with both -OH and -OAc ligated palladium(IV) centers in solution, since $\mathrm{C}-\mathrm{O}$ reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ complexes is believed to take place via a 3-center, 4-electron transition state. As a result, we propose that $\mathrm{C}-\mathrm{OAc}$ reductive elimination from complex $\mathbf{3 7}$ produces that corresponding R -OAc product 35 while R-OR reductive elimination from the same complex, followed by protonation generates the phenol 33.

The reactivity of complex $\mathbf{3 8}$ in acetic acid was similar to that of complex 37, where decomposition of this complex in acetic acid at room temperature for 2 days produced a mixture of the corresponding phenol $\mathbf{3 4}$ and aryl acetate $\mathbf{3 6}$ in 39% to 57 \% yields respectively. Similar to the reactivity of complex 37, the $\mathrm{C}-\mathrm{OAc}$ reductive elimination from complex $\mathbf{3 8}$ is responsible for generation of the aryl acetate $\mathbf{3 6}$ while $\mathrm{C}-\mathrm{OR}$ reductive elimination followed by protonation generates the corresponding phenol 34.

3.5 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 46 and 53

3.5.1 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes

46 in Water and Acetic Acid Solvents
Complex 46 was prepared by combining a reaction mixture of complex 45 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetonitrile. It was isolated as a brown solid in pure form. When a 0.020 M aqueous solution of complex 46 was left in water for >90 minutes, new peaks were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum accompanied by formation of a brown precipitate. Heating the solution accelerated the rate of decomposition and formation of the brown solid. The brown precipitate produced a complex ${ }^{1} \mathrm{H}$ NMR spectrum in deuterated acetic acid and methanol solvents, indicating the presence of multiple species in solution. ESI-MS analysis of a methanolic solution of the precipitate indicated the presence of the corresponding oxapalladacycle 50 among other unidentified products.

Scheme 3.18

When an acetic acid solution of complex 46 was left at room temperature for several hours, a new species with 12 aromatic signals with a ${ }^{1} \mathrm{H}$ NMR pattern similar to complex 46 was observed to develop gradually. ESI-MS analysis of the solution exhibited major peaks at 152.0658 assigned to the phenol 48, 194.0130 assigned to the aryl acetate $\mathbf{4 9}, 440.0230$ assigned to the corresponding oxapalladacycle $\mathbf{5 0}$, 458.0253 assigned to the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 46, and 500.0400 assigned to acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 47 . This indicates that the additional product observed via ${ }^{1} \mathrm{H}$ NMR may be the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 47, which ultimately decomposes to produce the aryl acetate product 49 . Complex 47 may be produced via chelate opening of complex 46 in acetic acid. After 3 hours, the fraction of complex 46 was $\sim 39 \%$, the fraction of complex 47 was $\sim 38 \%$, while complex 30 was $\sim 10 \%$. At the end of the reaction, multiple new peaks appeared in the ${ }^{1} \mathrm{H}$ NMR indicating multiple products.

Scheme 3. 19

Given that the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution after decomposition of complex 46 in acetic acid was complex indicating the presence of multiple products, while ESI-MS analysis of the reaction solution exhibited mass envelopes belonging to multiple products, including products of hydrolysis of the oxime moiety, acetic anhydride was added to the solution prior to decomposition in order to inhibit the hydrolysis of the oxime group and to simplify the reaction by generating a single organic product, the corresponding aryl acetate. As a result, decomposition of complex 46 in acetic acid solvent was performed in the presence of 10% acetic anhydride by volume (Scheme 3.19). At the end of the reaction, the corresponding 2acetoxyacetophenone oxime 51 was produced in $>95 \%$ yield (with acetoxylated N OH group) together with dpk $-\mathrm{Pd}(\mathrm{OAc})_{2}$ complex $\mathbf{3 0}$ as the only inorganic product (see figure below) within two days at room temperature. The organic product $\mathbf{5 1}$ was isolated by removal of solvent and extraction of the residue with diethyl ether. The identity of $\mathbf{5 1}$ was confirmed by independent synthesis using literature procedures for palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant. ${ }^{50}$
3.5.2 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes

46 in Solid State

Scheme 3. 20

When complex 46 was left at room temperature in the solid state for over 4 weeks, the ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting solid in deuterated acetic acid revealed the corresponding phenolic product 48 and $\mathrm{Pd}(\mathrm{II})$ complex 30 as the only products in solution, after addition of pyridine- d_{5} to free any coordinated products (Scheme 3.20). Phenol 48 was isolated by extraction of the solid with diethyl ether, and its identity was confirmed by comparison of its ${ }^{1} \mathrm{H}$ NMR to that of 2-hydroxy acetophenone oxime published in literature. This indicates that complex 46 undergoes clean $\mathrm{C}-\mathrm{O}$ reductive elimination in the solid state.
3.5.3 C-O Reductive Elimination Reactivity at Monohydrocarbyl Pd(IV) Complexes 53 in Water and Acetic Acid Solvents

Complex 53 was prepared by a procedure similar to that of complex $\mathbf{4 6}$, where a reaction mixture of complex 52 in acetonitrile was combined with $\mathrm{H}_{2} \mathrm{O}_{2}$. This complex was isolated as a light orange solid in pure form. When a 0.02 M aqueous solution of complex $\mathbf{5 3}$ was left in water for >45 minutes, new peaks appeared in the ${ }^{1} H$ NMR spectrum accompanied by formation of a brown precipitate. Heating of the solution accelerated the rate of decomposition. The ${ }^{1} \mathrm{H}$ NMR spectrum of the brown precipitate in deuterated acetic acid or methanol was complex, indicating the presence of multiple species in solution. ESI-MS analysis of a methanolic solution of the precipitate indicated the presence of the corresponding oxapalladacycle 54 among other unidentified products.

Scheme 3.21

When an acetic acid solution of complex $\mathbf{5 3}$ was left at room temperature for several hours, multiple new peaks developed indicating the presence of multiple products by ${ }^{1} \mathrm{H}$ NMR (Scheme 3.21). However, the addition of acetic anhydride to the reaction solution prior to decomposition afforded the corresponding aryl acetate product 57 in $\sim 95 \%$ yield (with acetoxylated $\mathrm{N}-\mathrm{OH}$ group), and the $\mathrm{Pd}(\mathrm{II})$ complex 30 as the only inorganic product of decomposition (see Scheme 3.22 below). This reaction was too slow at room temperature, where 65% decomposition was observed in ~ 16 hours. The organic product was isolated by removal of acetic acid solvent under vacuum, and extraction of the solid residue with diethyl ether. The identity of 57 was confirmed by independent synthesis via literature procedures for palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant. It was characterized via NMR spectroscopy and ESI-MS analysis.

Scheme 3. 22

in Water

Scheme 3.23

Complex 59 was prepared by combining a 0.010 M solution of complex $\mathbf{5 8}$ with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $0^{\circ} \mathrm{C}$. Upon warming the solution to $22^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR monitoring of the oxidation reaction revealed gradual disappearance of complex 59 and formation of one product " X " up to $\sim 50 \%$ yield in ~ 12 hours relative to an internal standard. However another product " \mathbf{Y} " began to form after \sim 12 hours, with concomitant formation of brown solid (see figure 3.13 below). This reaction was too slow, taking >1 week to come to completion, with product " \mathbf{X} " at 22 $\%$ and product " Y " at 23% at the end of the reaction, and a significant amount of brown precipitate was also present in solution. The pH of the solution dropped from \sim 6.0 at the start of the reaction to ~ 4.0 at the end of the reaction.

Figure 3. 13. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{D}_{2} \mathrm{O}$ solutions of (a) complex 59; (b) complex $\mathbf{5 9 \sim}$ 11 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, with " \mathbf{X} " present, (c) complex 59 after one week, in the presence of both " \mathbf{X} " and " \mathbf{Y} ". The reaction was carried out at $22^{\circ} \mathrm{C}$.

Figure 3. 14. Plot showing the fraction of complex 59 and product " X " as a function of time over ~ 12 hours period.

Analysis of the aqueous reaction mixtures by ESI-MS after addition of methanol to dissolve the brown precipitate revealed three major mass envelopes at $\mathrm{m} / \mathrm{z}=188.0720$ which was assigned to the protonated phenol $\mathbf{6 1}, 432.0264$ which
was assigned to the oxapalladacycle $\mathbf{6 0}$, and 494.0294 which was assigned to the hydrated oxapalladacycle 60 or unreacted Pd(IV) complex 59 (see scheme 3.23 above).

When the reaction mixture at the end of the reaction was extracted with diethyl ether, the corresponding phenol 61 was isolated cleanly without acidification of the reaction mixture. The isolation of free phenol from the aqueous reaction mixtures produced upon decomposition of complex 59 in water indicates that phenol 61 is one of the products of $\mathrm{C}-\mathrm{O}$ bond coupling from this reaction. Phenol may be formed via $\mathrm{C}-\mathrm{O}$ reductive elimination from the $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{5 9}$, or via hydrolysis of an oxapalladacyclic product 60 . The presence of oxapalladacycle $\mathbf{6 0}$ is proposed based on production of oxapalladacycles during the decomposition of similar dpk ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in water.

As a result, we designed experiments to determine the identity of the reaction products "X" and "Y". We started by performing 1D selective difference NOE experiment on product " \mathbf{X} " in order to determine whether this product was free phenol or a coordination complex, probably the oxapalladacycle $\mathbf{6 0}$ detected by ESIMS at $\mathrm{m} / \mathrm{z}=432.0264$.

In the 1D difference NOE experiment of product " \mathbf{X} ", NOE enhancement was observed between the ortho $-\mathrm{H}_{\mathrm{a}}$ of the phenoxypyridine ligand and that of the ortho-
H_{b} of the dpk ligand. The NOE experiment confirms that the product " \mathbf{X} " is coordinated onto palladium, and that a pyridine based ligand, probably dpk is also coordinated. Since the only products observed by ESI-MS of the reaction solution are complex 59, the oxapalladacyclic complex 60, and the phenolic product 61, we propose that product " \mathbf{X} " is the corresponding oxapalladacycle $\mathbf{6 0}$.

The second product of decomposition is proposed to be free phenol. This is because free phenol was obtained by extraction of the aqueous reaction solution with diethyl ether without acidification, indicating that it is one of the products observed by ${ }^{1} \mathrm{H}$ NMR. Moreover, the low pH of ~ 4.0 at the end of reaction would favor hydrolysis of the oxapalladacycle to generate free phenol.

3.7 Summary and Conclusions of $\mathrm{C}-\mathrm{O}$ Reductive Elimination Reactions at

Monohydrocarbyl Pd(IV) Complexes

In summary, a number of monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes were prepared and their reactivity towards $\mathrm{C}-\mathrm{O}$ reductive elimination studied. Arylpyridine derived complexes 14-18 were observed to undergo $\mathrm{C}-\mathrm{O}$ bond coupling in aqueous solutions at room temperature to produce the corresponding oxapalladacycles 22-25. $\mathrm{C}-\mathrm{O}$ reductive elimination from complexes $\mathbf{1 4 - 1 8}$ in water was proposed to take place from a 6-coordinate palladium intermediate based on the observation that acid, exogenous anions, and pyridine additives do not influence the rate of the reductive elimination reaction. The electronics of the substituent effects on the aryl rings did not affect the rate of the $\mathrm{C}-\mathrm{O}$ reductive elimination reactions.

The aroylpyridine derived complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ undergo very slow $\mathrm{C}-\mathrm{O}$ bond coupling in neutral aqueous solutions at room temperature. However the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction is accelerated in both basic and acidic media. In acidic media, the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination from these complexes was proposed to involve preliminary dissociation of the chelate to produce a 5-coordinate intermediate, which subsequently undergoes $\mathrm{C}-\mathrm{O}$ reductive elimination. This mechanism was proposed based on the observation that pyridine additive significantly inhibits the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction in acetic acid. Acid was proposed to aid chelate dissociation by protonating the dissociated pyridine group. Protonation of the pyridine group slows down the reverse reaction and also produces a dicationic species which is more reactive towards $\mathrm{C}-\mathrm{O}$ bond coupling, leading to a faster overall $\mathrm{C}-\mathrm{O}$ reductive elimination reaction. Basic additives were proposed to accelerate the $\mathrm{C}-\mathrm{O}$ bond coupling reaction by deprotonating the $\mathrm{Pd}(\mathrm{IV})$ complexes, resulting in formation of anionic intermediates. These intermediates are proposed to be more reactive towards $\mathrm{C}-\mathrm{O}$ bond coupling than the cationic complexes $\mathbf{3 1}$ and $\mathbf{3 2}$ in water.

Oxime derived monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{4 6}$ and $\mathbf{5 3}$ undergo slow $\mathrm{C}-\mathrm{O}$ bond coupling reactions in water to produce the corresponding oxapalladacycles among other products. However the $\mathrm{C}-\mathrm{O}$ coupling reactions are simple in the solid state and produce the corresponding phenols quantitatively. In acetic acid solvent, CO coupling from complexes $\mathbf{4 6}$ and $\mathbf{5 3}$ produce the corresponding phenol and aryl acetate, among other products which presumably result from hydrolysis of the oxime moiety, while aryl acetates are produced quantitatively in the presence of acetic anhydride.

Phenoxypyridine derived $\mathrm{Pd}(\mathrm{IV})$ complex 59 undergoes slow $\mathrm{C}-\mathrm{O}$ bond coupling in water to produce the corresponding oxapalladacycle 60 and phenol 61. The phenol 61 may also be produced by hydrolysis of the oxapalladacycle $\mathbf{6 0}$ as a result of acidification of the solution. Both products $\mathbf{6 0}$ and $\mathbf{6 1}$ are observed at the end of the reaction, and the phenol is isolated from the aqueous solutions without acidification.

In acetic acid solvent, the decomposition of alkoxo- and hydroxo-ligated $\operatorname{Pd}(I V)$ complexes was observed to produce the corresponding phenol and aryl acetate products. The aryl acetates may be produced by $\mathrm{C}-\mathrm{O}$ reductive elimination from acetato-ligated $\operatorname{Pd}(\mathrm{IV})$ complexes which may form via chelate opening of alkoxo- and hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in acetic acid.

Our next goal is to explore the ligand exchange reaction at the $\operatorname{Pd}(\mathrm{IV})$ center to produce compounds resulting from $\mathrm{C}-\mathrm{X}$ reductive elimination reaction ($\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{I}$, and F), while the ultimate goal is to develop environmentally benign, palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions that produce $\mathrm{C}-\mathrm{X}$ bond-coupling products $(\mathrm{X}=\mathrm{OR}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, or F$)$ utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant in water.

3.7 Experimental

3.8.1 General

All manipulations were carried out under ambient atmosphere unless otherwise noted. All reagents for which synthesis is not given are commercially available from Aldrich, Acros, Alfa-Aesar or Pressure Chemicals, and were used as received without further purification. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}$ or 500 MHz$)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz or 125 $\mathrm{MHz})$ spectra were recorded on a Bruker AVANCE 400 or Bruker DRX-500. Chemical shifts are reported in ppm and referenced to residual solvent resonance peaks. High Resolution Mass Spectrometry (HRMS) experiments were performed using a JEOL AccuTOF-CS instrument. Elemental analyses were carried out by either Chemisar Laboratories Inc., Guelph, Canada, or Columbia Analytical Services, Tucson, AZ.

3.8.2 Computational details.

Theoretical calculations in this work have been performed using density functional theory (DFT) method, ${ }^{166}$ specifically functional PBE, ${ }^{167}$ implemented in an original program package "Priroda". ${ }^{168}$ In PBE calculations relativistic Stevens-Basch-Krauss (SBK) effective core potentials (ECP) ${ }^{170-172}$ optimized for DFT-calculations have been used. Basis set was 311 -split for main group elements with one additional polarization p-function for hydrogen, additional two polarization d-functions for elements of higher periods. Full geometry optimization has been performed without constraints on symmetry. For all species under investigation frequency analysis has been carried out. All minima have been checked for the absence of imaginary frequencies. All transition states possessed just one imaginary frequency. Using the method of Intrinsic Reaction Coordinate, reactants, products and the corresponding
transition states were proven to be connected by a single minimal energy reaction path.

All the species under investigation were next modeled with the Jaguar program ${ }^{173}$ package with the same functional (PBE) and LACVP relativistic basis set with two polarization functions. These results showed the same trends as with Priroda calculations and the essentially same reaction parameters. The solvation of all complexes in Scheme 5 in water was modeled using a Poisson-Boltzmann continuum solvation model (PBF).
3.8.3 Characterization of products of reductive elimination.

Compounds 33, ${ }^{157}, \mathbf{6 1},{ }^{152} \mathbf{6 2},{ }^{208} \mathbf{6 3},{ }^{21}$ and $\mathbf{6 4}{ }^{21}$ are known.

Compound 34

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.25(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.4,2.0$ Hz 1H), 6.49 (ddd, $J=6.8,4.9,2.0 \mathrm{~Hz} 1 \mathrm{H}), 7.79$ (vs, 1H), 7.89-7.91 (m, 2H), 8.72 (dt, $J=4.8,1.2 \mathrm{~Hz} 1 \mathrm{H}), 12.16(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOH- $d_{4}, 22^{\circ} \mathrm{C}$) , $\delta: 20.7,118.5,119.1,124.7,126.2,128.2,137.6,138.0$, 148.4, 155.7, 161.6, 197.4.

ESI-MS of acidified methanolic solution of $\mathbf{3 4} \cdot \mathbf{H}^{+}$: found $\mathrm{m} / \mathrm{z}=214.0803$; calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ON}_{2}=214.0868$.

2-(2-acetoxybenzoyl)pyridine, 35

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 1.94(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz} 1 \mathrm{H}), 7.36(\mathrm{td}$, $J=7.6,0.9 \mathrm{~Hz} 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz} 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz} 1 \mathrm{H})$, 7.71 (dd, $J=7.7,1.7 \mathrm{~Hz} 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz} 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz} 1 \mathrm{H}), 8.70$ (d, $J=4.7 \mathrm{~Hz} \mathrm{1H}$).
${ }^{13} \mathrm{C}$ NMR (AcOH- $d_{4}, 22^{\circ} \mathrm{C}$) $, \delta: 124.2,125.4,126.7,128.3,131.4,132.3$, 134.0, 139.3, 149.7, 150.6, 155.1, 170.5, and 194.0
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 20.8,123.4,124.0,125.8,126.8,130.7,131.6$, $132.9,137.2,149.3,149.5,154.9,169.0$, and 193.9

ESI-MS of acidified methanolic solution of $\mathbf{3 5} \cdot \mathbf{H}^{+}$: found $\mathrm{m} / \mathrm{z}=242.0855$;
calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{3}{ }^{+}=242.0817$
4-methyl-2-(pyridin-2-ylcarbonyl)phenyl acetate, 36

${ }^{1} \mathrm{H}$ NMR (AcOD, $22^{\circ} \mathrm{C}$), $\delta: 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41 (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{vs}, 1 \mathrm{H}), 7.64$ (ddd, $J=7.7,4.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOD, $22^{\circ} \mathrm{C}$), $\delta: 20.5,20.8,123.9,125.3,128.1,131.1,132.4$, 134.5, 136.7, 139.2, 148.3, 149.7, 155.1, 170.6, 194.2.

ESI-MS of acidified methanolic solution of $\mathbf{3 6} \cdot \mathbf{H}^{+}$: found $\mathrm{m} / \mathrm{z}=256.1039$;
calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}=256.0974$.
(dpk) $\operatorname{Pd}(\mathrm{OAc})_{2}, 30$
$184 \mathrm{mg}(1.0 \mathrm{mmol})$ of dpk ligand was dissolved in 10 ml of acetic acid. 224 $\mathrm{mg}(1.0 \mathrm{mmol})$ of palladium diacetate was added to the solution, and the resulting reaction mixture was stirred at room temperature for 12 hours. After the reaction was complete, the resulting deep red solution was concentrated and triturated with diethyl ether, to give yellow crystals of $(\mathrm{dpk}) \mathrm{Pd}(\mathrm{OAc})_{2}$. The reaction mixture was filtered and the residue was washed with a small amount of ether. Removal of solvent gave the pure product in 92% yield.

${ }^{1} \mathrm{H}$ NMR (AcOH- $\left.d_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.10(\mathrm{~s}, 6 \mathrm{H}), 7.82(\mathrm{~m}, 2 \mathrm{H}), 8.26-8.31(\mathrm{~m}, 4 \mathrm{H})$, 8.77(m, 2H).
${ }^{13} \mathrm{C}$ NMR (AcOH- $d_{4}, 22^{\circ} \mathrm{C}$) , $\delta: 128.4,130.5,142.4,149.1,153.5,182.2$, 185.2.

Anal. Found (Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Pd}$): C, 44.36 (44.08); H, 3.53 (3.45); N, 6.86 (6.85).

ESI-MS of acetic acid solution of $(\mathrm{dpk}) \mathrm{Pd}(\mathrm{OAc})^{+}$positive mode, found $\mathrm{m} / \mathrm{z}=$ 348.9838; calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}^{+}=348.9810$

Complex 39

${ }^{1} \mathrm{H}$ NMR (DMSO- ${ }_{6}, 22^{\circ} \mathrm{C}$), $\delta: 7.05$ to $7.07(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dt}, J=7.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dt, $J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ to 7.62 (m, 2H), $7.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.23$ to $8.31(\mathrm{~m}, 4 \mathrm{H}), 8.43(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$) , $\delta: 103.8,105.2,116.4,118.4,121.6,121.7$, $123.0,124.1,125.9,126.1,127.0,127.2,129.1,129.3,141.8,143.1,143.3,147.7$, $148.6,148.9,149.3,156.1,157.5,157.7,160.4,163.5,166.7$

ESI-MS of solution of $(\mathrm{dpk}) \mathrm{Pd}^{\mathrm{II}}\left(\mathrm{OOCCF}_{3}\right)_{2}$ in water, positive mode, $\mathrm{m} / \mathrm{z}=$ 403.02401 Calculated for (dpk) $\mathrm{Pd}^{\mathrm{II}}\left(\mathrm{OOCCF}_{3}\right)^{+}, \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}$: 402.95217.

Anal. Found (Calcd for a complex with 3.5 molecules of $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9.5} \mathrm{Pd}$): C, 44.02 (43.97); H, 3.59 (3.69); $\mathrm{N}, 5.96$ (6.15).

2-Benzoylpyridine-derived palladacycle supported by 2-picolinate, 42

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCL}_{3}-d, 22^{\circ} \mathrm{C}\right), \delta: 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=7.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47$ (dt, $J=6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J=6.6,1.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.77$ (dd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (dt, $J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{t}, J=7.7, \mathrm{~Hz}, 2 \mathrm{H}), 9.21(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCL}_{3}-d, 22^{\circ} \mathrm{C}\right), \delta: 125.6,125.9,127.3,127.5,127.9,128.5$, $132.1,135.0,135.8,139.7,139.9,149.4,150.8,151.4,152.7,156.2,169.8,191.3$, 207.3.

ESI-MS of solution of $\mathbf{4 2} \cdot \mathbf{H}^{+}$in acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=410.9782$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}=410.9961$.

Anal. Found (Calcd for hydrated complex with one water molecule, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Pd}$): C, 48.48 (48.39); H, 3.67 (3.61); N, 6.30 (6.27).

Compound 29

Compound 29 was prepared by acetoxylation of the corresponding phenol, 63 in neat acetic anhydride. Removal of solvent afforded pure 29.

${ }^{1} \mathrm{H}$ NMR (AcOD, $22^{\circ} \mathrm{C}$), $\delta: 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.88$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOD, $22^{\circ} \mathrm{C}$) , $\delta: 20.9,21.3,124.6,124.7,126.4,128.3,128.5$, 131.7, 141.0, 142.9, 148.1, 149.1, 154.8, 170.8.

ESI-MS of solution of $\mathbf{2 9}$ in methanol, m / z observed: 228.1108, Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}, \mathrm{~m} / \mathrm{z}=228.1025$.

Complex 23(OAc):

${ }^{1} \mathrm{H}$ NMR (methanol- $d_{4}, 22^{\circ} \mathrm{C}$), $\delta: 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.3,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=6.0,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (ddd, $J=7.0,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.26(\mathrm{~m}, 4 \mathrm{H}), 8.36(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (methanol- $d_{4}, 22^{\circ} \mathrm{C}$), $\delta: 21.6,24.1,100.7,121.7,122.2,125.0$, $125.1,125.2,125.5,127.6,128.2,128.8,131.0,142.0,142.5,142.7,145.4,152.0$, 152.7, 154.1, 155.9, 157.2, 158.4, 163.0, 179.9.

ESI-MS of solution of $\mathbf{2 3}$ in methanol, m / z observed: 474.0541 and 506.0834. Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}, \mathrm{m} / \mathrm{z}=474.0443$, and $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}$ (a methanol adduct onto the $\mathrm{C}=\mathrm{O}$ of dpk ligand $)=506.0705$.

Anal. Found (Calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}$ for the complex with one residual acetone molecule; it was recrystallized from acetone) C, 55.44 (55.13); H, 4.68 (4.79); N, 6.63 (6.89)

Selective $1 D$-difference NOE experiment $\left(\mathrm{D}_{2} \mathrm{O}\right)$ for 23(OAc)

In the 1 D difference NOE experiment, NOE was observed between the orthoH_{c} of the tolylpyridine ligand and the ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand. Irradiation of a resonance at 8.56 ppm (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) showed enhancement (positive NOE) of a singlet at 7.04 ppm (ortho $-\mathrm{H}_{\mathrm{c}}$ of the dpk ligand, 2.2\%) (mixing time of 0.8 s , delay time 5 s).

Complex 25(OAc):

ORTEP drawing (50 \% probability ellipsoid) of complex 25.
${ }^{1} \mathrm{H}$ NMR (Acetone- $\left.d_{4}, 22^{\circ} \mathrm{C}\right), \delta: 6.45(\mathrm{td}, J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=11.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (ddd, $J=7.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, $J=7.5,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68 (dd, $J=8.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-8.03$ (m, 3H), 8.62 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (Acetone- $d_{4}, 22^{\circ} \mathrm{C}$), $\delta: 104.2(\mathrm{~d}, J=22.8), 107.5$ (d, $\left.J=19.8\right), 121.9$, $123.3,124.3,124.9,133.5(\mathrm{~d}, J=12.8), 139.9,140.5,146.0,151.5,153.8,176.7$.

ESI-MS of solution of $\mathbf{2 5}^{+}$in methanol, m/z observed: 790.9905, Calculated for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}_{2}, \mathrm{~m} / \mathrm{z}=790.9761$.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 60

In the 1D difference NOE experiment, NOE was observed between the orthoH_{a} of pyridyl fragment of the phenoxypyridine ligand and that of the ortho $-\mathrm{H}_{\mathrm{b}}$ of pyridyl fragment of the dpk ligand. Irradiation of a resonance at $8.33 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{a}}$ of pyridyl fragment of the phenoxypyridine) showed enhancement (positive NOE) of a doublet at $8.12 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand, 2.1\%) (mixing time of 4.0 s , delay time 5 s).

Compound 49

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00 (dd, $J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.0,1.5 \mathrm{~Hz}$, 1H), $11.2(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 13.0,19.4,117.3,118.2,119.3,128.6,132.5,158.7$, 164.2, 167.0.

ESI MS of $\mathrm{H}_{2} \mathrm{O}$ solution of (49) Na^{+}, m / z observed: 216.0593, Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{3}, 216.0637$.

Compound 51

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.0,7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 16.9,19.9,21.3,123.5,126.3,128.9,129.8,131.1,148.3$, 161.9, 168.6, 169.6.

ESI MS of $\mathrm{H}_{2} \mathrm{O}$ solution of (51) $\mathbf{N a}^{+}, \mathrm{m} / \mathrm{z}$ observed: 258.0836. Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{4}, 258.0742$.

Compound 56

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (vs, 1H), 7.56 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$),
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 13.2,19.3,115.6(\mathrm{~m}), 120.2,122.3,125.0,129.2,134.1$ (q), 158.9, 163.2, 166.7.

ESI MS of an aqueous solution of $\mathbf{(5 6)} \mathbf{H}^{+}$, positive mode, m / z observed; 262.0701, Calculated for $\mathbf{5 6 .} \mathbf{H}^{+}, \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3}=262.0691$.

When the oxidation reaction was performed in the presence of acetic anhydride, a doubly acetoxylated acetophenone oxime was produced. However this reaction was slower and more $\mathrm{H}_{2} \mathrm{O}_{2}$ was required for complete oxidation. 20 eq of HOOH was used.

Compound 57

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.52$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 16.8,19.8,21.2,120.9$ (q), 121.9, 123.1 (q), 124.7, $130.5,132.4,133.2$ (q), 148.5, 160.9, 168.3, 169.1.

ESI MS of an aqueous solution of $\mathbf{5 7 . \mathbf { H } ^ { + }}$, positive mode, m / z observed $=$ 304.0853: Calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{4}, 304.0797$

3.8.4 Kinetic experiments

Activation parameters for $\mathrm{C}-\mathrm{O}$ bond reductive elimination of acetic acid solutions of complex 31(OOCCF 3)

The following procedure was used for all kinetic experiments in acetic acid d_{4}.
$10.0 \mu \mathrm{~mol}$ of $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ was dissolved in 1.0 ml of acetic acid- d_{4} and 1.0 $\mu \mathrm{l}$ 1,4-dioxane was added as internal standard. The resulting yellow solution was transferred into a J. Young NMR tube and Teflon-sealed. ${ }^{1} \mathrm{H}$ NMR was taken before heating. The tube was then introduced into the NMR probe (500 MHz) at a pre-set temperature and ${ }^{1} \mathrm{H}$ NMR was taken at pre-set intervals. Clean formation of phenolic product 33, and aryl acetate 35 was observed over a period of time. The disappearance of $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ was monitored, and was observed to follow first order kinetics. The spectra taken for the first 10 minutes were not used in the kinetic measurements because the solution takes approximately 5-10 minutes to equilibrate in the NMR probe. The color of the solution changed from deep yellow to colorless as the reaction progressed.

The graphs of $\ln \left(\mathrm{c}_{0} / \mathrm{c}_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination of $\mathbf{3 1}\left(\mathbf{O O C C F} \mathbf{F}_{3}\right)$ in $\mathrm{AcOH}-d_{4}$ at various temperatures are given below.

Figure S3. 1. $1^{\text {st }}$ order kinetic plots for the decomposition of acetic acid solutions of complex 31 at (a) $47.5^{\circ} \mathrm{C}$, (b) $56.5^{\circ} \mathrm{C}$, (c) $61.0^{\circ} \mathrm{C}$, (d) $73.5^{\circ} \mathrm{C}$.

Kinetic experiments to probe electron-density on the rate of $C-O$ reductive elimination in $\mathrm{AcOH}-d_{4}$

The rate of reductive elimination from complex 31 and complex 32 was probed. 0.010 mmoles of either $\mathbf{3 1}(\mathbf{O O C C F} \mathbf{3})$ or $\mathbf{3 2 (0 O C C F} \mathbf{3})$ was dissolved in 1.0 ml of deuterated acetic acid and 1.0 ul dioxane was added as internal standard. The resulting yellow solution was transferred into a J. Young NMR tube and Teflonsealed. ${ }^{1} \mathrm{H}$ NMR was taken before heating. The tube was then introduced into the

NMR probe (500 MHz) set at $50{ }^{\circ} \mathrm{C}$ and consecutive ${ }^{1} \mathrm{H}$ NMR spectra were taken at regular intervals. The disappearance of the starting complex was observed to follow first order kinetics. The concentrations of phenol and aryl acetate were determined by integration of a single peak that did not overlap with other peaks using dioxane as an internal standard, after addition of 5.0 eq pyridine to simplify the spectrum by freeing any coordinated products. The spectra taken for the first 10 minutes were not used in the kinetic analysis because the solution takes approximately $5-10$ minutes to equilibrate in the NMR probe. The color of the solution changed from deep yellow to light yellow as the reaction progressed. At the end of the reaction, quantitative conversion to phenol and aryl acetate was observed. The product ratio for the reaction involving $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ was 58% aryl acetate and 38% phenol, while for the reaction involving 32(00CCF 3) was $\sim 59 \%$ aryl acetate to 35% phenol.

The plot of $\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination of $\mathbf{3 1}\left(\mathrm{OOCCF}_{3}\right)$ and $\mathbf{3 2 (0 O C C F 3)}$) $50^{\circ} \mathrm{C}$ in $\mathrm{AcOH}-d_{4}$ is given below.

Figure S3. 2. First order kinetic plots for the decomposition of acetic acid solutions of complex $\mathbf{3 1}$ and $\mathbf{3 2}$ at $50^{\circ} \mathrm{C}$.

Effect of various additives on $C-O$ reductive elimination from complex 31 in acetic acid in the presence of various additives:
6.2 mg ($0.01 \mathrm{mmoles} \mu$ moles) of $\mathbf{3 1}\left(\mathbf{O O C C F}_{\mathbf{3}}\right)$ was dissolved in 1.0 ml of deuterated acetic acid. 5 eq of additive was added to the solution followed by 1.0 ul dioxane as internal standard. The resulting yellow solution was transferred into a J. Young NMR tube and Teflon-sealed. ${ }^{1} \mathrm{H}$ NMR was taken before heating. The tube was then introduced into the NMR probe $(500 \mathrm{MHz})$ set at $48^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR was taken at pre-set intervals. Clean formation of phenolic product 33, and aryl acetate $\mathbf{3 5}$ was observed over a period of time with a combined yield of $>95 \%$. The disappearance of $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ was observed to follow first order kinetics. The spectra taken for the first 10 minutes were not used in the kinetic measurements because the solution takes approximately 5-10 minutes to equilibrate in the NMR probe. The color of the solution changed from deep yellow to colorless as the reaction progressed. The product ratio was $\sim 72 \%$ aryl acetate to 24% phenol.

The plot of $\ln \left([\mathbf{3 1}]_{0} /[\mathbf{3 1}]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ in $\mathrm{AcOH}-d_{4}$ at $48^{\circ} \mathrm{C}$ in the presence of 5.0 eq pyridine is given below. The first order rate constant for the $\mathrm{C}-\mathrm{O}$ reductive elimination was observed to be $(4.3 \pm 0.1) * 10^{-4} \mathrm{~min}^{-1}$ vs $(2.7 \pm 0.3) * 10^{-3} \mathrm{~min}^{-1}$ with no pyridine additive under the same conditions.

Figure S3. 3. First order kinetic plots for the decomposition of acetic acid solutions of complex 31 at various temperatures in the presence of various additives.

Kinetics experiments in the presence of NaOH additives

In a small vial, 6.2 mg of $\mathbf{3 1}\left(\mathbf{O O C C F}_{\mathbf{3}}\right)(10 \mu \mathrm{~mol})$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu 1$ 1,4-dioxane was added as internal standard. Various equivalents (2-6) of NaOD were added to the solution, and the resulting yellow solution was transferred into a J. Young NMR tube and Teflon-sealed. In each case an ${ }^{1} \mathrm{H}$ NMR spectrum was taken before the start of the reaction. The tube was then placed into the NMR probe (500 MHz) set at $50^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were taken at regular intervals. A single set of 16 multiplets was observed. The concentration of this complex which is presumed to be $\mathbf{4 4}$, was monitored over a period of time. The spectra taken for the first 10 minutes were not used in the kinetics analyses because the solution takes
approximately 5-10 minutes to equilibrate to the pre-set temperature of the NMR probe.

The graphs of $\ln \left(\mathrm{c}_{0} / \mathrm{c}_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{3 1}\left(\mathbf{O O C C F}_{3}\right)$ in $\mathrm{D}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$ are given below.

Figure S3. 4. First order kinetic plots for the decomposition of aqueous solutions of complex 31 at $50^{\circ} \mathrm{C}$ in the presence of various equivalents of NaOH .

When less than 2.0 eq of base was used, the reaction was heterogeneous and thus kinetics could not be studied.

Scheme S3. 1

The $\mathrm{C}-\mathrm{O}$ bond reductive elimination from complexes $\mathbf{1 4 - 1 7}$ in water was observed to generate the corresponding oxapalladacycles 22-25 in $>95 \%$ yield. The solutions of complexes $\mathbf{1 4 - 1 7}$ were prepared in-situ by combining $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of complexes $\mathbf{1 0 - 1 3}$ with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at 273 K since these complexes are too reactive to be isolated. In the preparation of these complexes, complexes 14-17 were prepared as major complexes while complexes $\mathbf{1 8 - 2 1}$ were also observed as minor complexes. At 273 K , no decomposition was observed for up to 2 hours, but when the temperature of these solutions was raised to $295 \mathrm{~K}, \mathrm{C}-\mathrm{O}$ reductive elimination was observed to cleanly generate the corresponding oxapalladacycles (see fig. S4 below).

Figure S3.4. Plots for the $\mathrm{C}-\mathrm{O}$ reductive elimination from $0.010 \mathrm{M}_{2} \mathrm{O}$ solutions of major products of oxidation 14-17 and minor products of oxidation $18-21$ at $22^{\circ} \mathrm{C}$ showing the fraction of the major and minor Pd(IV) complexes as a function of time. Kinetic study for the $C-O$ reductive elimination reactivity from complexes 14-17 in water

Reductive elimination from the total products of oxidation (major complexes 14-17 and minor complexes 18-21) to oxapalladacycles 22-25 in $\mathrm{D}_{2} \mathrm{O}$ was studied by ${ }^{1} \mathrm{H}$ NMR. 0.010 ml of complexes $\mathbf{1 0 - 1 3}$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard. This solution was placed in ice-water bath for 10 minutes and 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added. The resulting solution was placed in ice-water bath for 1 hour after which ${ }^{1} \mathrm{H}$ NMR was taken at 276 K to confirm complete conversion to the $\operatorname{Pd}(\mathrm{IV})$ product $\mathbf{1 4 - 1 7}$. The NMR probe was warmed to 295 K and ${ }^{1} \mathrm{H}$ NMR was taken at regular intervals. The graphs of
$\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{1 4 - 1 7}$ in $\mathrm{D}_{2} \mathrm{O}$ at 295 K are given below.

Scheme S3. 2. 1st order plots of $\ln \left([\operatorname{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from the total products of oxidation from the oxidation of complexes $\mathbf{1 0 - 1 3}$ with 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, to the oxapalladacyclic complexes 22-25 in $\mathrm{D}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$.

The identity of the $\mathrm{C}-\mathrm{O}$ bond forming elimination products was determined as the corresponding oxapalladacycles based on the isolation and complete characterization of complex 23, including X-ray diffraction. However, the corresponding phenolic products were isolated via addition of HCl into the oxapalladacyclic reaction mixtures and subsequent heating at $70^{\circ} \mathrm{C}$ for 6 hours. The resulting reaction solution was neutralized with NaHCO_{3} and the product was extracted with diethyl ether. The identity of phenols $\mathbf{6 2},{ }^{21} \mathbf{6 3}$, ${ }^{21}$ and $\mathbf{6 4}{ }^{21}$ was confirmed by comparison of the NMR spectra to those reported in literature, while complex 25 was characterized by NMR spectroscopy and ESI-MS.
$\mathrm{C}-\mathrm{O}$ bond formation reactivity from complex 15 in $\mathrm{H}_{2} \mathrm{O}$ in the presence of various additives

5.0 eq pyridine

$5.2 \mathrm{mg} \mathbf{1 1 (O A c)}$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard. The solution was placed in ice-water bath for 10 minutes, 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, and it was placed in ice-water bath for an additional 1 hour. ${ }^{1} \mathrm{H}$ NMR was taken at $3^{\circ} \mathrm{C}$ after 1 hour to confirm complete conversion to $\mathbf{1 5 (O A c})$. After complete formation of $\mathbf{1 5 (O A c) , ~} 5.0$ eq of pyridine was added to the solution and ${ }^{1} \mathrm{H}$ NMR was taken at $22{ }^{\circ} \mathrm{C}$ at regular intervals. The plot of $\ln \left([15]_{0} /[15]_{x}\right) \quad$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of complex 15 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of 5.0 eq of pyridine at $22^{\circ} \mathrm{C}$ is given below.

Scheme S3. 3. First order kinetic plot of $\ln \left([15]_{0} /[15]_{\mathrm{x}}\right)$ vs. time for the depletion of $\mathbf{1 5}(\mathrm{OAc})$ to form the oxametallacyclic product $\mathbf{2 3}(\mathrm{OAc})$ in the presence of 5.0 eq of pyridine. The rate for the depletion at $22^{\circ} \mathrm{C}$ is found to be $(2.4 \pm 0.04) * 10^{-3} \mathrm{~min}^{-1}$.

2.0 eq trifluoroacetic acid added

 added as internal standard. This solution was placed in ice-water bath for 10 minutes,
5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, and it was placed back to ice-water bath for an additional 1 hour. ${ }^{1} \mathrm{H}$ NMR was taken at $3{ }^{\circ} \mathrm{C}$ to confirm complete conversion to the product. After complete formation of $\mathbf{1 5}(\mathbf{O A c}), 2.0$ eq of deuterated trifluoroacetic acid was added to the solution and ${ }^{1} \mathrm{H}$ NMR was taken at $22{ }^{\circ} \mathrm{C}$ regular intervals. The graph of $\ln \left([15]_{0} /[15]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of complex 15 in $\mathrm{D}_{2} \mathrm{O}$ in the presence of 2.0 eq of tfa at $22^{\circ} \mathrm{C}$ is given below.

Scheme S3. 4. First order kinetic plot of $\ln \left([15]_{0} /[15]_{\mathrm{x}}\right)$ vs. time for the depletion of $15(\mathrm{OAc})$ to form the oxametallacyclic product $23(\mathrm{OAc})$ in the presence of 2.0 eq of $t f a$. The rate for the depletion at $22^{\circ} \mathrm{C}$ is found to be $(3.5 \pm 0.03) * 10^{-3} \mathrm{~min}^{-1}$

4.0 eq trifluoroacetic acid added

$5.2 \mathrm{mg} \mathbf{1 1}(\mathbf{O A c})$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard. This solution was placed in ice-water bath for 10 minutes, 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, and it was placed back to ice-water bath for an additional 1 hour. ${ }^{1} \mathrm{H}$ NMR was taken at 276 K to confirm complete conversion to the product. After complete formation of $\mathbf{1 5}(\mathbf{O A c}), 4.0$ eq of deuterated trifluoroacetic acid was added to the solution and ${ }^{1} \mathrm{H}$ NMR was taken at $22^{\circ} \mathrm{C}$ at regular intervals. The graph of $\ln \left([15]_{0} /[\mathbf{1 5}]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of complex $\mathbf{1 5}$ in $\mathrm{D}_{2} \mathrm{O}$ in the presence of 4.0 eq of tfa at $22^{\circ} \mathrm{C}$ is given below.

Scheme S3. 5. First order kinetic plot of $\ln \left([15]_{0} /[15]_{\mathrm{x}}\right)$ vs. time for the depletion of $\mathbf{1 5}(\mathrm{OAc})$ to form the oxametallacyclic product $\mathbf{2 3}(\mathrm{OAc})$ in the presence of 4.0 eq of tfa. The rate for the depletion at $22^{\circ} \mathrm{C}$ is found to be $(3.5 \pm 0.04) * 10^{-3} \mathrm{~min}^{-1}$.

5.0 eq KOAc added

$5.2 \mathrm{mg} 11(\mathbf{O A c})$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard. This solution was placed in ice-water bath for 10 minutes, 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, and it was placed back to ice-water bath for an additional 1 hour. ${ }^{1} \mathrm{H}$ NMR was taken at $3{ }^{\circ} \mathrm{C}$ to confirm complete conversion to the product. After complete formation of $\mathbf{1 5}(\mathbf{O A c}), 5.0$ eq of KOAc was added to the solution and ${ }^{1} \mathrm{H}$ NMR was taken at $22^{\circ} \mathrm{C}$ at regular intervals. The graph of $\ln \left([\mathbf{1 5}]_{0} /[\mathbf{1 5}]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of complex $\mathbf{1 5}$ in $\mathrm{D}_{2} \mathrm{O}$ in the presence of 5.0 eq of KOAc at $22^{\circ} \mathrm{C}$ is given below.

Scheme S3. 6. First order kinetic plot of $\ln \left([15]_{0} /[15]_{x}\right)$ vs. time for the depletion of $\mathbf{1 5}(\mathrm{OAc})$ to form the oxametallacyclic product $\mathbf{2 3}(\mathrm{OAc})$ in the presence of 5.0 eq of KOAc. The rate for the depletion at $22^{\circ} \mathrm{C}$ is found to be $(1.76 \pm 0.01) * 10^{-3} \mathrm{~min}^{-1}$.

Effect of acid on $\mathrm{C}-\mathrm{O}$ reductive elimination of complexes 14-17 in water

0.01 mmoles of the dpk-derived complex was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$ and $1.0 \mu \mathrm{l}$ of dioxane was added as internal standard. This solution was placed in icewater bath for 10 minutes, 5.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added, and it was placed back to icewater bath for an additional 1 hour. ${ }^{1} \mathrm{H}$ NMR was taken at $3{ }^{\circ} \mathrm{C}$ to confirm complete conversion to the product. After complete formation of the expected $\mathrm{Pd}(\mathrm{IV})$ adduct, 4.0 eq of deuterated trifluoroacetic acid was added to the solution and ${ }^{1} \mathrm{H}$ NMR was taken at $22{ }^{\circ} \mathrm{C}$ at regular intervals. The graphs of $\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]_{\mathrm{x}}\right)$ vs. time for the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction of $\mathbf{1 4 - 1 7}$ in $\mathrm{D}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$ in the presence of 4.0 equivalents of tfa are given below.

Scheme S3. 7. First order kinetic plots of $\ln \left([\mathbf{P d}(\mathbf{I V})]_{0} /[\mathbf{P d}(\mathbf{I V})]_{\mathrm{x}}\right)$ vs. time for the depletion of complexes $\mathbf{1 4 - 1 7}$ in $\mathrm{D}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$ to form corresponding phenols in the presence of 4.0 eq of tfa. The rate for the depletion at $22^{\circ} \mathrm{C}$ is found to be (3.5 ± 0.04) * $10^{-3} \mathrm{~min}^{-1}$.

Chapter 4: Synthesis and Reactivity of Monohydrocarbyl
 $\operatorname{Pd}(\mathrm{IV})-\mathrm{X}$ in Water $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$

4.1 Introduction

Scheme 4. 1

Palladium catalyzed processes for the functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds represent essential tools for synthetic organic chemistry. Mild and selective transformations of this type are essential in the synthesis of natural products, materials, pharmaceutical compounds, and other high value commercial products. ${ }^{178}$ Recently, a variety of procedures that involve direct functionalization of aromatic $\mathrm{C}-$ H bonds have been developed. ${ }^{117}$ Most of these procedures utilize N - or O-donor atoms as directing groups to selectively functionalize the ortho $\mathrm{C}-\mathrm{H}$ bond. Of particular importance are the procedures for the selective halogenation of aromatic $\mathrm{C}-$ H bonds, given that aryl halides are important components of a variety of biologically
active molecules, natural products, and pharmaceuticals, ${ }^{87}$ and also serve as precursors to organometallic reagents such as organolithium ${ }^{88}$ and Grignard reagents. ${ }^{89}$

The most common synthetic approaches to halogenated arenes are electrophilic aromatic substitution reactions using reagents such as N halosuccinimides, ${ }^{90-92} \mathrm{X}_{2},{ }^{93}$ peroxides/ HX, ${ }^{94,96}$ peroxides/ MX, ${ }^{97-100}$ or hypervalent iodine reagents/ $\mathrm{MX}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}$, or K$) .{ }^{101,102}$ These transformations however suffer from several disadvantages including limited substrate scope due to the requirement for activated arenes, side reactions that include overhalogenation, and multiple regioisomeric products are usually obtained, resulting in decreased yields and the requirement for tedious separations. ${ }^{32,103,209,210}$ Halogenated arenes are also prepared via directed ortho-lithiation followed by halogen quenching. ${ }^{104}$ This technique is limited by the requirement for strong bases, which in turn results in low functional group tolerance, and a narrow scope of suitable directing groups. ${ }^{32}$ As a result, the development of more efficient, selective, and environmentally friendly transition metal catalyzed procedures for halogenation of $\mathrm{C}-\mathrm{H}$ bonds would be highly desirable.

An early result on the catalytic chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds with Cl_{2} as oxidant was reported in 1970. ${ }^{14,115}$ In this report, Fahey and co-workers carried out palladium catalyzed ortho-chlorination of azobenzenes with Cl_{2} and generated a mixture of mono-, di-, tri-, and tetra-chlorinated products. The application of this system to organic synthesis was however limited due to the use of Cl_{2} as oxidant, and the lack of selectivity. As a result, more practical electrophilic halogenating reagents have been the focus of current research efforts. In 2001, the N -iodosuccinimide was
applied as oxidant in the palladium catalyzed ortho-iodination of benzoic acids by Kodama and co-workers. ${ }^{116}$ This system inspired Sanford and co-workers to develop a procedure for the palladium catalyzed ortho chlorination and bromination of benzo[h]quinoline utilizing N-chlorosuccinimide (NCS) and N-bromosuccinimide (NBS) as oxidants. These halogenation reactions have since been applied to a wide array of substrates with various directing groups such as pyridines, oxime ethers, isoquinolines, amides, and isoxazolines (Scheme 4.2). ${ }^{32,50}$

Scheme 4.2

The mechanism of palladium catalyzed halogenation utilizing N halosuccinimides as oxidants has recently been studied. Using 2-tolylpyridine as a model compound and NCS as oxidant, the palladium catalyzed chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds was found to be first order in [Pd] and zero order in NCS. A large intermolecular kinetic isotope effect $\left(K_{\mathrm{H}} / K_{\mathrm{D}}=4.4\right)$ was also observed. On the basis of these experimental observations, $\mathrm{C}-\mathrm{H}$ bond activation was proposed to be the rate-limiting step of this reaction. Consequently, it was not possible to determine the structure and oxidation state of the palladium intermediates involved in the
subsequent steps following the cyclopalladation reaction. As a result, model studies have been conducted in order to gain insight into the nature of intermediates involved in these steps.

In the model studies, stoichiometric oxidation of a $\mathrm{Pd}(\mathrm{II})$ model complex (phpy) ${ }_{2} \operatorname{Pd}(\mathrm{II}) 1$ with NCS was performed to produce the corresponding $\operatorname{Pd}(\mathrm{IV})$ complex 2 (Scheme 4.3). Complex 2 underwent $\mathrm{C}-\mathrm{Cl}$ reductive elimination upon thermolysis at $80^{\circ} \mathrm{C}$ to produce the corresponding aryl chloride $\mathbf{3}$ in high yield. These studies indicate that NCS is a sufficiently strong oxidant to promote oxidation of $\operatorname{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ in this model system, and the viability of $\mathrm{C}-\mathrm{Cl}$ bond-forming reductive elimination from $\mathrm{Pd}(\mathrm{IV})$ was also demonstrated. ${ }^{118}$

Scheme 4.3

As a result of the model studies, Sanford and co-workers proposed a palladium catalyzed $\mathrm{C}-\mathrm{H}$ halogenation mechanism that involves ligand-directed $\mathrm{C}-\mathrm{H}$ bond activation to produce a cyclopalladated complex, ${ }^{50}$ which undergoes twoelectron oxidation with NCS to produce a Pd(IV) intermediate. This intermediate was proposed to undergo $\mathrm{C}-\mathrm{X}$ reductive elimination to release the product and regenerate the catalyst (scheme 4.4). ${ }^{50}$

Scheme 4.4

The intermediacy of $\mathrm{Pd}(\mathrm{III})$ complexes in the catalytic $\mathrm{C}-\mathrm{H}$ bond chlorination reactions with NCS has also been considered. The reaction of the acetato-bridged palladacycle 4 with PhICl_{2} at low temperature was observed to produce a dimeric $\mathrm{Pd}(\mathrm{III})$ complex 5 (Scheme 4.5). ${ }^{59}$ Complex 5 underwent high yielding $\mathrm{C}-\mathrm{Cl}$ reductive elimination when the temperature of the solution was raised to room temperature. This study indicates that NCS is a sufficiently strong oxidant to oxidize dimeric $\operatorname{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{III})$ analogues, and that the dimeric $\mathrm{Pd}(\mathrm{III})$ complexes are chemically viable intermediates in the catalytic chlorination reactions. The kinetic viability of dimeric $\operatorname{Pd}(\mathrm{III})$ complexes in the catalytic chlorination reactions was also demonstrated, where complex 5 was observed to catalyze the chlorination of benzo[h]quinoline in the presence of either PhICl_{2} or NCS as oxidants. However in this system, it was not possible to determine the structure of the high valent palladium intermediate in the catalytic reactions due to a rate limiting C H activation step. ${ }^{46}$

Scheme 4.5

In 2010, Ritter and co-workers discovered a palladium catalyzed aromatic C H bond chlorination reaction that takes place via rate limiting oxidation step, thus enabling characterization of the high valent palladium complexes (Scheme 4.6). ${ }^{46}$ In this system, the succinamate bridged dimer 7 was proposed to be the resting state of the catalyst, while the rate law for this reaction was established as rate $=$ $\mathrm{k}[7][\mathrm{NCS}]\left[\mathrm{OAc}^{-}\right]$. On the basis of the rigid dinuclear structure of 7, the measured first order dependence on the concentration of 7, acetate, and NCS oxidant, a ratelimiting oxidation of 7 with nucleophilic assistance by acetate was proposed. This oxidation reaction was proposed to produce the dimeric $\mathrm{Pd}(\mathrm{III})$ intermediate 8 .

Scheme 4.6

Complex 8 was independently synthesized via oxidation of complex 7 with acetyl hypochlorite at $-78^{\circ} \mathrm{C}$, and characterized via ${ }^{1} \mathrm{H}$ NMR at $-90^{\circ} \mathrm{C}$. Upon warming the solution to room temperature, $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{O}$ reductive elimination were observed
to generate the corresponding products in 84% and 0.5% yield respectively; a similar product distribution was observed during catalysis. As a result, the mechanism depicted in Scheme 4.7 was proposed for the palladium catalyzed chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing NCS as oxidant. This mechanism involves $\mathrm{C}-\mathrm{H}$ bond activation to produce a dimeric $\operatorname{Pd}(\mathrm{II})$ complex \mathbf{A}, which undergoes nucleophile assisted oxidation with NXS to produce a dimeric $\mathrm{Pd}(\mathrm{III})$ intermediate B. The intermediate undergoes acid catalyzed $\mathrm{C}-\mathrm{X}$ reductive elimination to produce the functionalized product and regenerate the active catalyst \mathbf{A}. This system allowed for the study of the structure of the intermediate complex, but the intermediate was not detected in solution due to its instability under the catalytic reaction conditions.

Scheme 4.7

A

B

As a result of the study of stoichiometric organometallic reactions described above, two mechanisms for the palladium catalyzed $\mathrm{C}-\mathrm{H}$ halogenation reactions have been put forward; a mechanism involving $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox couple and another involving $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{III})$ redox couple. Which of these cycles closely resembles the
operative catalytic cycle has not been determined since most of these reactions operate via rate limiting $\mathrm{C}-\mathrm{H}$ bond activation step. Thus, current research effort is aimed at understanding the mechanism of these $\mathrm{C}-\mathrm{H}$ halogenation reactions with the aim of developing more selective and efficient catalysts. In addition, the study of these reaction mechanisms might enable the development of more environmentally friendly $\mathrm{C}-\mathrm{H}$ bond halogenation reactions.

In an effort to develop more environmentally friendly procedures for the halogenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, our research efforts have been focused on the synthesis of model halogeno-ligated monohydrocarbyl Pd(IV) complexes capable of undergoing C-halogen bond reductive elimination, utilizing environmentally friendly oxidants in water. Only a few halogeno-ligated monohydrocarbyl Pd(IV) complexes have been prepared to date and shown to undergo $\mathrm{C}-\mathrm{X}$ reductive elimination. ${ }^{133}$ This is because such complexes are usually too reactive to be isolated, ${ }^{106,201,211,212}$ while most isolable halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes possess multiple hydrocarbyl ligands, leading to fast competing $\mathrm{C}-\mathrm{C}$ coupling processes. ${ }^{176,213,214}$ In addition, the preparation of the halogeno-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes utilizing environmentally benign oxidants in water will allow for the substitution of the more common NXS and PhIX_{2} oxidants, which are currently used in the catalytic $\mathrm{C}-\mathrm{H}$ halogenation reactions, since these oxidants produce stoichiometric amounts of waste products. As such, our ultimate goal is to develop "green" palladium catalyzed $\mathrm{C}-\mathrm{H}$ halogenations reactions utilizing environmentally benign oxidants in water.

A more atom-economical procedure for the preparation of model halogenoligated monohydrocarbyl Pd(IV) complexes involves ligand enabled oxidation of
organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water, with subsequent reaction of the $\operatorname{Pd}(\mathrm{IV})$ hydroxo species with HX acids ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I, and F) (Scheme 4.8). We have previously reported the preparation of hydroxo-ligated monohydrocarbyl Pd(IV) complexes using $\mathrm{H}_{2} \mathrm{O}_{2}$ in water (See Chapter 2). In order to prepare the halogenoligated $\mathrm{Pd}(\mathrm{IV})$ complexes, an acid assisted substitution of the hydroxo ligand by the halogeno ligand will be attempted. Upon formation of the halogeno-ligated Pd(IV) complex, we will investigate the $\mathrm{C}-\mathrm{X}$ reductive elimination reactions.

Scheme 4.8

We started by preparing the alkoxy-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes derived from the 2 -aroylpyridine fragment, and studying their $\mathrm{C}-\mathrm{Cl}$ reductive elimination reactivity in the presence of HCl .

4.2 C-Cl Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the

Presence of HCl

4.2.1 C-Cl Bond Formation at 2-Aroylpyridine-derived Monohydrocarbyl Pd(IV)

 Alkoxides 9 and $\mathbf{1 5}$ in Water in the Presence of HCl .Scheme 4. 9

The procedure for the preparation of complex 9 and its characterization has been described in chapter 2 . We started by studying the decomposition of the alkoxoligated $\mathrm{Pd}(\mathrm{IV})$ complex 9 in water in the presence of HCl to produce the corresponding aryl halide 11. A $0.010 \mathrm{M}_{2} \mathrm{O}$ solution of complex 9 was prepared and $1.0 \mu \mathrm{l}$ of 1,4-dioxane was added as internal standard. A ${ }^{1} \mathrm{H}$ NMR spectrum of this solution was taken, and 40.0 eq of HCl dissolved in $\mathrm{D}_{2} \mathrm{O}$ were added to the solution at room temperature. Upon addition of HCl , a yellow precipitate was gradually produced. ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture upon addition of HCl revealed the presence of an additional minor set of signals in the aromatic region of the spectrum, which disappeared at the end of the reaction (Fig. 4.1). This reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where a white precipitate was gradually produced as the reaction progressed. After 6 hours, pyridine- d_{5} was added to the reaction mixture to free any coordinated products, and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The spectrum revealed the presence of a major product in 89% yield, with 8 multiplets in the aromatic region integrating as 1 H each, and the corresponding phenol $\mathbf{1 3}$ in $<5 \%$ yield. The ESI-MS analysis of this reaction mixture revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=218.0410$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClNO}=218.0373$) which was assigned to the protonated aryl chloride $\mathbf{1 1 .} \mathbf{H}^{+}$, and a minor mass envelope at 200.0675 (calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2}=200.0712$) which was assigned to the corresponding protonated phenol $\mathbf{1 3 .} \mathbf{H}^{+}$. The major compound $\mathbf{1 1}$ was isolated by extraction of the aqueous reaction mixture with diethyl ether. The major product was assigned as the corresponding $\mathrm{Ar}-\mathrm{Cl}, \mathbf{1 1}$, by ESI-MS analysis and comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to that reported in literature. ${ }^{215}$

Figure 4. 1. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 9 in $\mathrm{D}_{2} \mathrm{O}$; (b) complex 9 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl , showing an additional set of signals belonging to an intermediate; (c) the reaction mixture after $\mathrm{C}-\mathrm{Cl}$ reductive elimination, showing product $\mathbf{1 1}$.

Scheme 4. 10

Based on the results of the decomposition of complex 9 in water in the presence of HCl to produce the corresponding aryl chloride, a reaction mechanism that involves chelate opening of complex 9 to produce a chloro-ligated $\operatorname{Pd}(\mathrm{IV})$ complex $12 \mathrm{and} /$ or $\mathbf{1 3}$ was proposed (Scheme 4.10). A complex with a matching mass envelope was detected at $\mathrm{m} / \mathrm{z}=523.9991$ (calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}^{106} \mathrm{Pd}$ $=523.9999$) by ESI-MS. In addition, an intermediate was observed by ${ }^{1} \mathrm{H}$ NMR
spectroscopy upon addition of HCl to an aqueous solution of complex $\mathbf{9}$, which may be assigned to the chloro-ligated Pd(IV) complex $\mathbf{1 2}$ based on the ESI-MS analysis. $\mathrm{C}-\mathrm{Cl}$ reductive elimination from complex $\mathbf{1 2}$ produces the corresponding chlorinated product 11 in high yields. The corresponding phenol $\mathbf{1 4}$ was also detected by ESIMS.

Scheme 4.11

15
$\mathrm{C}-\mathrm{Cl}$ bond coupling from the 3-methyl(2-benzoyl)pyridine derived complex 15 was also investigated. In these studies, a $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 15 was prepared, $1.0 \mu \mathrm{l}$ of 1,4 dioxane was added as internal standard, and ${ }^{1} \mathrm{H}$ NMR spectrum of this solution was collected at room temperature. 40.0 equivalents of HCl were added to the solution, leading to gradual formation of a yellow precipitate. This reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where formation of a white precipitate was observed as the reaction progressed. Analysis of this reaction solution by ${ }^{1} \mathrm{H}$ NMR spectroscopy at the end of the reaction upon addition of pyridine- d_{5} to free any Pd-coordinated products revealed the presence of a single product in 87% yield relative to the internal standard, with seven multiplets in the aromatic region integrating as 1 H each, and one singlet in the aliphatic region integrating as 3 H . Analysis of this reaction mixture by ESI-MS revealed a mass envelope at 232.0499 (Calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClNO}=232.0529$) which was assigned to the protonated aryl
chloride compound $\mathbf{1 6 .} \mathbf{H}^{+}$. The product $\mathbf{1 6}$ was isolated by extraction of the aqueous reaction mixture with diethyl ether. The product was identified as the corresponding aryl chloride by ESI-MS analysis and comparison if its ${ }^{1} \mathrm{H}$ NMR spectrum to a commercially available sample.

Figure 4. 2. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 15 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction mixture after $\mathrm{C}-\mathrm{Cl}$ reductive elimination showing product $\mathbf{1 6}$ together with a symmertical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product.

4.2.2 C-Cl Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl Pd(IV)

Alkoxides $\mathbf{1 8}$ in Water in the Presence of HCl .

Scheme 4. 12

$\mathrm{C}-\mathrm{Cl}$ bond formation at phenoxypyridine derived hydroxo-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex 18 in the presence of HCl was also performed. A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 18 was prepared in-situ by the oxidation of complex 17 with 0.95 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}$, and 1,4 dioxane was added as internal standard. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum was collected and 40.0 equivalents of HCl were added to the solution at room temperature. Upon addition of HCl , another ${ }^{1} \mathrm{H}$ NMR spectrum was collected, where an additional minor set of signals was observed. Addition of HCl also led to gradual formation of a yellow precipitate. The resulting reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a white precipitate was observed. After 6 hours, a small amount of pyridine- d_{5} was added to free any Pd-coordinated products, and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The ${ }^{1} \mathrm{H}$ NMR spectrum of this reaction mixture revealed the presence of two species in solution. The first species displayed 8 multiplets in the aromatic region, integrating as 1 H each, which was assigned to the organic product, while the second species displayed 4 multiplets in the aromatic region integrating as 2 H each, which was assigned to a symmetrical dpk-ligated Pd(II) containing species. ESI-MS analysis of the reaction mixture revealed a mass envelope at $\mathrm{m} / \mathrm{z}=206.0408$ (calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClNO}=206.0373$) which was assigned to the corresponding protonated aryl chloride $\mathbf{1 9 .} \mathbf{H}^{+}$. The organic compound 19 was isolated by extraction of the aqueous reaction mixture with diethyl ether, and its identity was confirmed as the corresponding aryl halide 19 by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to that in literature.

Figure 4. 3. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a)complex 18 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 18 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl , showing an additional set of signals belonging to an intermediate complex; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, showing the $\mathrm{C}-\mathrm{Cl}$ reductive elimination product 19 together with a symmertical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product in the presence of pyridine- d_{5}, which was added to free any Pd-coordinated products.

Scheme 4. 13

Analysis of the reaction solution by ESI-MS upon addition of HCl revealed a mass envelope at 511.9913 which may be assigned to the corresponding chloroligated $\mathrm{Pd}(\mathrm{IV})$ complex 22 or its isomer 21 (calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{Pd}^{106}=$
511.9993) (Scheme 4.13). Complex 22 might be produced by chelate opening of complex 18 in the presence of HCl , while complex 21 may be produced by protonation of complex $\mathbf{1 8}$ to produce an aqua-ligated $\operatorname{Pd}(\mathrm{IV})$ complex $\mathbf{2 0}$, which may subsequently undergo ligand exchange in the presence of HCl . Protonation of a similar hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 to produce an aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 has been reported previously (Fig. 4.4). $\mathrm{C}-\mathrm{Cl}$ reductive elimination from either 21 and/ or $\mathbf{2 2}$ produces the corresponding $\mathrm{C}-\mathrm{Cl}$ bond coupling product 19 .

(a)

(b)

Figure 4. 4. (a) The aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 prepared via protonation of complex 24 with trifluoroacetic acid; (b) ORTEP drawing (50 \% probability ellipsoid) of complex $\mathbf{3 0}$.

Attempts to isolate the chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes from the reaction mixtures above were however not successful. Upon addition of HCl to an aqueous solution of complex 18, a deep yellow precipitate is produced. This precipitate was filtered off and washed with a small amount of cold water. Analysis of the precipitate by ${ }^{1} \mathrm{H}$ NMR in water, methanol and acetone produced complex spectra, indicative of multiple species in solution.

Alkoxide 24 in Water in the Presence of HCl.

Scheme 4. 14

26
$\mathrm{C}-\mathrm{Cl}$ reductive elimination was also attempted from the tolylpyridine derived hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in water in the presence of HCl . A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 24 was prepared in-situ by the oxidation of complex $\mathbf{2 3}$ with 0.95 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}$, and 1,4 dioxane was added as internal standard. ${ }^{1} \mathrm{H}$ NMR was collected and 10.0-40.0 equivalents of HCl were added to this solution. Upon addition of $\mathrm{HCl}, \mathrm{a}^{1} \mathrm{H}$ NMR spectrum was collected, where an additional minor set of signals was observed in the aromatic region (Fig. 4.5). Addition of HCl also led to gradual formation of a yellow precipitate. Heating the reaction mixture at $70^{\circ} \mathrm{C}$ for 6 hours led to gradual formation of a white precipitate. After 6 hours, a small amount of deuterated acetic acid was added to dissolve the products, and a small amount of pyridine- d_{5} was added to free any coordinated products. A ${ }^{1} \mathrm{H}$ NMR spectrum was collected, where a mixture of two organic products was observed whose relative fractions were dependent on the amount of HCl used (Table 4.1). ESI-MS analysis the reaction mixture displayed a major mass envelope at $\mathrm{m} / \mathrm{z}=204.0538$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}=204.0580$) which was assigned to the corresponding protonated aryl chloride $\mathbf{2 5 .} \mathbf{H}^{+}$, and $\mathrm{m} / \mathrm{z}=186.0854$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}=186.0919$) which was assigned to the corresponding protonated phenol $\mathbf{2 6 .} \mathbf{H}^{+}$. The major product
according to ${ }^{1} \mathrm{H}$ NMR was identified as the corresponding aryl chloride via independent synthesis using literature procedures for palladium catalyzed chlorination of aromatic $\mathrm{C}-\mathrm{H}$ bonds, ${ }^{32}$ while the minor product was identified as the corresponding phenol via comparison of its ${ }^{1} \mathrm{H}$ NMR to that of independently prepared compound. The highest selectivity for the aryl chloride 25 was observed when 40.0 equivalents of HCl were used, where the aryl chloride was produced as the only organic product, in 80% yield relative to an internal standard. The aryl chloride was isolated by extraction of the aqueous reaction mixture with diethyl ether.

Table 4. 1. ${ }^{1} \mathrm{H}$ NMR yields of the aryl chloride $\mathbf{2 5}$ and phenol $\mathbf{2 6}$ products relative to the amount of HCl used.

HCl (eq)	R-X (\%)	R-OH (\%)
10.0	38	51
20.0	51	37
40.0	>80	0

Figure 4. 5. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl ; (c) the reaction mixture after
decomposition in the presence of pyridine- d_{5}, showing $\mathrm{C}-\mathrm{Cl}$ elimination product $\mathbf{2 5}$ and $\mathrm{Pd}(\mathrm{II})$ derived complexes.

Scheme 4. 15

Analysis of the reaction mixture by ESI-MS upon addition of HCl revealed a major complex with a mass envelope at $\mathrm{m} / \mathrm{z}=512.0283$, which may be assigned to the chloro-ligated $\operatorname{Pd}(\mathrm{IV})$ complex 27 or its isomer 29 (calculated for $\left.\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=512.0199\right)$ (Scheme 4.15). Complex 27 could form via chelate opening of complex 24 in the presence of HCl , while complex 29 may be formed by protonation of complex 24 to produce the aqua ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 with chloride counterions. An aqua-ligated Pd(IV) complex 28 with trifluoroacetate counterions was isolated upon addition of trifluoroacetic acid to an aqueous solution of complex 24, and this complex was characterized fully, including X-ray diffraction (Scheme 4.16). Complex 28 may undergo ligand substitution in the presence of chloride anions to produce the chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 29. Based on the ESIMS analysis, the intermediate detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy may be assigned to complex $27 \mathrm{and} /$ or $\mathbf{2 8}$, or their respective isomers.

Scheme 4. 16

As a result, the $\mathrm{C}-\mathrm{Cl}$ bond coupling reaction from the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in water in the presence of HCl to produce the aryl chloride $\mathbf{2 5}$ was proposed to take place via intermediate 27 and/ or 28 (Scheme 4.15), which have been detected by both ${ }^{1} \mathrm{H}$ NMR spectroscopy and ESI-MS.

In order to determine the structure of the intermediate complex produced upon addition of HCl to an aqueous solution of complex 24, the reaction mixture was filtered and the orange precipitate was characterized by NMR spectroscopy and ESIMS. The ${ }^{1} \mathrm{H}$ NMR chemical shifts of the orange solid in $\mathrm{D}_{2} \mathrm{O}$ were identical to that of complex $\mathbf{2 8}\left(\mathbf{O O C C F}_{3}\right)_{2}$, which was produced by protonation of complex 24 with trifluoroacetic acid in water, and was fully characterized, including X-ray diffraction. Consequently, the yellow solid was assigned to the corresponding aqua ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 with two chloride counterions.

Scheme 4. 17

When complex 28 was placed under high vacuum at room temperature to dry, an additional set of signals was observed to develop in the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue in $\mathrm{D}_{2} \mathrm{O}$, while signals belonging to complex 28 disappeared gradually.

Ultimately when complex 28 was left under high vacuum for 3 hours, the ${ }^{1} \mathrm{H}$ NMR spectrum of this residue in $\mathrm{D}_{2} \mathrm{O}$ was simple, displaying a pattern that was significantly different from that of complex 28. This complex was observed to decompose at room temperature in water over 3 days to produce the $\mathrm{C}-\mathrm{Cl}$ bond coupling product 24 in $>90 \%$ yield. This reactivity indicates that the new complex is most likely a chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex capable of undergoing $\mathrm{C}-\mathrm{Cl}$ bond coupling. In addition, ESI-MS analysis of this complex in methanol exhibited a major mass envelope at $\mathrm{m} / \mathrm{z}=512.0283$ (calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=512.0199$). Consequently, the structure of this new species was assigned to the chloro-ligated Pd(IV) complex 29.

Figure 4. 6. (a) ${ }^{1} \mathrm{H}$ NMR of aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature; (b) ${ }^{1} \mathrm{H}$ NMR of chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 29 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature.

Although other isomers are possible in this reaction, the structure of complex 29 was assigned based on NOE analysis.

Given that irradiation of H_{a} results in NOE enhancement of H_{b} (7.8\%), while irradiation of H_{c} results in NOE enhancement of H_{d} (8.5%, mixing time of 0.6 s , delay time 4 s), this indicates that these sets of hydrogens are in close proximity, and thus an equatorial arrangement of the tolylpyridine and dpk fragments was considered. Although the NOE analysis cannot be used to differentiate between the structure of complexes 27 and 29 , complex 29 is favored because it is produced from the aqua ligated complex 28 under vacuum. Complex 28 was fully characterized, including X-ray diffraction studies, and the structure of complex 27 is expected to be similar to that of $\mathbf{2 8}$. In addition, complex 29 is thermodynamically more stable than complex 27 as a result of the tridentate facial chelating mode of the ligand.

Complex 29 could also be independently prepared by combining the Pd (II) complex 23 with N -chlorosuccinimide (NCS) oxidant in water. The NMR analysis and reactivity of this complex is similar to that of complex (29)Cl, produced upon exposing the aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex (28) $\mathbf{C l}_{\mathbf{2}}$ to high vacuum. This analysis indicates that addition of HCl to an aqueous solution of complex 24 produces the aqua-ligated dicationic $\operatorname{Pd}(\mathrm{IV})$ complex (28) $\mathbf{C l}_{\mathbf{2}}$, which when placed under vacuum, undergoes ligand substitution to produce the chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex (29)Cl . The substitution of the aqua for chloro ligand is probably driven by loss of a water molecule under vacuum.

Having prepared the chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complex (29)CI in pure form, we investigated whether this complex is produced during the decomposition of complex 24 in water in the presence of HCl , since this reaction was observed to produce the corresponding aryl chloride in high yield. ESI-MS analysis of the aqueous solution of complex 24 upon addition of HCl revealed a mass envelope at $\mathrm{m} / \mathrm{z}=512.0283$, corresponding to complex 29. Additionally, the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture collected upon addition of 40.0 equivalents of HCl to an aqueous solution of complex 24 revealed the presence of an intermediate which was absent at the end of the reaction. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the intermediate revealed the presence of signals corresponding to complex 29. Thus, this analysis indicates that complex (29)Cl is produced upon addition of HCl to an aqueous solution of complex
24.

Figure 4. 7. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HCl ; (c) complex 29 in $\mathrm{D}_{2} \mathrm{O}$.

Consequently, this analysis supports the mechanism of $\mathrm{C}-\mathrm{Cl}$ bond coupling from complex 24 in water in the presence of HCl presented in Scheme 12 above, where the intermediacy of complex 29 has been proposed. However, given that multiple additional signals apart from those belonging to complex 29 are produced when HCl is added to an aqueous solution of complex $\mathbf{2 4}$, other chloro-ligated $\operatorname{Pd}(\mathrm{IV})$ complexes may also be present in the solution such as 27 , and thus several complexes might be responsible for the $\mathrm{C}-\mathrm{Cl}$ coupling reaction.

The kinetics study of $\mathrm{C}-\mathrm{Cl}$ reductive elimination reaction from a $\mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{2 9}$ was also performed (Scheme 4.18).

Scheme 4. 18

In the kinetics experiment, the decomposition of $\mathrm{a} \sim 0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex (29)Cl was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. $\mathrm{C}-\mathrm{Cl}$ reductive elimination at this complex was observed to produce the corresponding aryl chloride $\mathbf{2 6}$ in $>90 \%$ yield, along with a small amount of the corresponding $\mathrm{C}-\mathrm{O}$ bond coupling product $\mathbf{2 5}$ in $<10 \%$. The first order kinetics plot of $\ln \left([\mathbf{2 9}]_{\mathrm{o}} /[\mathbf{2 9}]_{\mathrm{t}}\right)$ as a function of time is given below, where $[29]_{o}$ refers to the initial concentration of complex 29 while [29] $]_{\mathrm{t}}$ refers to the concentration of complex 29 at time t. The plot shows initial faster reaction which gradually slows down.

Figure 4. 8. A kinetic plot for the depletion of 29 in water at $22^{\circ} \mathrm{C}$ in $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time coordinates.

Kinetics modeling for the C-Cl elimination at complex 29

This reaction kinetics was modeled by Dr. Vedernikov using the following reaction scheme.

Scheme 4. 19

The rate constants k_{1}, k_{-1}, k_{2} and k_{3} were varied to produce the best least-square fit to the experimental data. Numerical integration was used to find the desired concentrations of both 29 (diamonds in the plot below)) and 28 (triangles in the plot below) based on the rate constant values guessed and initial concentrations of $\mathbf{2 9}$ and
28. The quality of the final fit (circles) is shown below.

The rate constants values were optimized to
$k_{1}=(3.55 \pm 0.05) \cdot 10^{-6} \mathrm{~s}^{-1}$,
$k_{-1}=(4.90 \pm 0.06) \cdot 10^{-5} \mathrm{~s}^{-1} \mathrm{M}^{-1}$,
$k_{2}=(1.60 \pm 0.05) \cdot 10^{-5} \mathrm{~s}^{-1}$, and
$k_{3}=(1.96 \pm 0.05) \cdot 10^{-5} \mathrm{~s}^{-1}$
Note that the k_{3} is close to the k_{OH} value, $(2.52 \pm 0.03) \cdot 10^{-5} \mathrm{~s}^{-1}$, found for the $\mathrm{C}-\mathrm{O}$ reductive elimination from 24 (Chapter 2).

Study of the mechanism of $C-X$ bond formation at complex 29
Scheme 4. 20

The mechanism of $\mathrm{C}-\mathrm{Cl}$ reductive elimination was also investigated, where three mechanisms were considered. The first, "ionic" mechanism involves preliminary dissociation of an alkoxide group from the $\operatorname{Pd}(I V)$ center to generate a dicationic, 5-coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate that undergoes faster $\mathrm{C}-\mathrm{Cl}$ bond coupling. The second mechanism B involves concerted $\mathrm{C}-\mathrm{Cl}$ coupling from a 6 coordinate palladium intermediate, while the third mechanism C involves preliminary dissociation of a pyridine group of the dpk chelate to generate a monocationic 5coordinate species that subsequently undergoes $\mathrm{C}-\mathrm{Cl}$ bond coupling. These mechanisms were considered because each has been observed in reductive elimination reactions involving group 10 transition metal centers. ${ }^{57}$

We started by determining whether acid accelerates the coupling reaction. Sanford and Goldberg observed acceleration of reactions that take place via preliminary dissociation of an ionic ligand by acids. ${ }^{179}$ They proposed that acid accelerates the dissociation of the anionic ligand by hydrogen bonding to the OR ligand prior to dissociation. As a result, acceleration of the $\mathrm{C}-\mathrm{Cl}$ bond reductive elimination reaction from complex 29 in water may indicate preliminary dissociation of an OR^{-}ligand, followed by coupling from a 5 -coordinate dicationic complex.

Thus the $\mathrm{C}-\mathrm{Cl}$ reductive elimination reaction was performed in the presence of HCl to investigate the effect of acid on the $\mathrm{C}-\mathrm{Cl}$ bond coupling reaction. $\mathrm{A} \sim 0.010$ $\mathrm{M}_{2} \mathrm{O}$ solution of complex $\mathbf{2 9}$ was prepared and 2.0 equivalents of HCl in $\mathrm{D}_{2} \mathrm{O}$ were added to the solution. The depletion of complex 29 was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of 1,4 dioxane as internal standard. The ${ }^{1} H$ NMR spectra
revealed a fast disappearance of complex 29 and clean formation of aryl chloride $\mathbf{2 6}$ in $>95 \%$ yield. The plot of $\ln \left([\mathbf{2 9}]_{\mathrm{o}} /[\mathbf{2 9}]_{\mathrm{t}}\right)$ as a function of time is presented below.

Figure 4. 9. A kinetic plot for the depletion of 29 in water in the presence of 2.0 equivalents of HCl at $22^{\circ} \mathrm{C}$ in $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time coordinates.

The plot was found to be non-linear, and the time for 50% conversion to products was found to be ~ 19 minutes. Given that the time for 50% conversion of complex 29 in water in the absence of HCl was 329 minutes, this indicates that reaction is significantly faster in the presence of 2.0 equivalents of HCl , suggesting that acid accelerates the rate of $\mathrm{C}-\mathrm{Cl}$ reductive elimination. These results support an ionic mechanism, where the alkoxide ligand dissociates from the $\operatorname{Pd}(\mathrm{IV})$ center, followed by $\mathrm{C}-\mathrm{Cl}$ bond coupling from a 5 -coordinate $\mathrm{Pd}(\mathrm{IV})$ species.

These results however do not rule out the chelate dissociation mechanism. This is because the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction from 2-aroylpyridine derived $\operatorname{Pd}(I V)$ complexes 9 and 14 was found to be significantly accelerated by acid, but these reactions were also significantly inhibited by pyridine additive (chapter 2). As a result, the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction was proposed to take place via preliminary dissociation of the pyridine group of the dpk chelate, followed by $\mathrm{C}-\mathrm{O}$
coupling from a 5 -coordinate $\operatorname{Pd}(\mathrm{IV})$ species (Scheme 4.21). Acid was proposed to accelerate the reaction by protonating the dissociated pyridine group, thus inhibiting the coordination of the pyridine group back to the $\mathrm{Pd}(\mathrm{IV})$ center, and simultaneously generating a dicationic $\mathrm{Pd}(\mathrm{IV})$ species which is more reactive towards $\mathrm{C}-\mathrm{O}$ coupling.

Scheme 4. 21

Therefore, we performed the $\mathrm{C}-\mathrm{Cl}$ coupling reaction of complex 29 in the presence of 5.0 equivalents of pyridine additive. Thus, $\mathrm{a} \sim 0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 29 was prepared and 5.0 equivalents of pyridine were added to the reaction solution. The depletion of complex 29 was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of 1,4 dioxane as internal standard. Upon addition of pyridine, disappearance of ${ }^{1} \mathrm{H}$ NMR signals belonging to complex 29 was observed accompanied by appearance of a new set of signals within 6 hours (see fig. 4.10 below). The ${ }^{1} \mathrm{H}$ NMR pattern of this new species was similar to that of complex 29 but not identical, indicating that this might be a product of pyridine coordination onto the $\mathrm{Pd}(\mathrm{IV})$ center, presumably resulting from dissociation of the pyridine group of the dpk chelate. Analysis of this solution by ESI-MS revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=589.0585$ (calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{Pd}^{106}=589.0623$), which was assigned to an adduct of pyridine coordination on to the $\mathrm{Pd}(\mathrm{IV})$ center upon dissociation of the pyridine group of the dpk chelate $\mathbf{3 2} . \mathrm{C}-\mathrm{Cl}$ reductive elimination from this reaction mixture was slow. In 24 hours, less than 30% of the product of $\mathrm{C}-\mathrm{Cl}$ coupling
product was observed and $\sim 50 \%$ conversion of the $\mathrm{Pd}(\mathrm{IV})$ species $(\mathbf{2 9}+$ the new species presumed to be a $\mathrm{Pd}(\mathrm{IV})$ species with an extra pyridine group coordinated onto the $\operatorname{Pd}(I V)$ center) was observed.

Figure 4. 10. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 29 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 29 in $\mathrm{D}_{2} \mathrm{O} 6$ hours after addition of 5.0 equivalents of pyridine, showing signals of a new species, presumably complex $\mathbf{3 2}$.

Considering that the $\mathrm{C}-\mathrm{Cl}$ reductive elimination reaction is slow in the presence of pyridine additive, where the time for 50% conversion in the absence of any additive was ~ 329 minutes while the time for 50% conversion in the presence of pyridine additive was ~ 1440 minutes, this indicates that $\mathrm{C}-\mathrm{Cl}$ reductive elimination from complex 29 in water is inhibited by the pyridine additivive, and thus takes place
via pyridine group dissociation of the dpk chelate to generate a reactive 5-coordinate palladium species. Bronsted acids may accelerate the reductive elimination by protonating the dissociated pyridine group, thus inhibiting the reverse coordination reaction, while at the same time producing a dicationic $\mathrm{Pd}(\mathrm{IV})$ species which is more reactive towards $\mathrm{C}-\mathrm{Cl}$ bond coupling as shown in Scheme 4.22 below.

Scheme 4. 22

4.3 C-Br Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the

Presence of HBr
4.3.1 C-Br Bond Formation at 2-Aroylpyridine-derived Monohydrocarbyl Pd(IV)

Alkoxides 9 and 15 in Water in the Presence of HBr .

Scheme 4. 23

$\mathrm{C}-\mathrm{Br}$ coupling from alkoxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 9 in water in the presence of HBr was performed. A 0.010 M aqueous solution of complex 9 was prepared, 1,4 dioxane was added as internal standard and ${ }^{1} \mathrm{H}$ NMR spectrum was collected. 40.0 equivalents of HBr were added to the solution at room temperature and a ${ }^{1} \mathrm{H}$ NMR
spectrum was collected. The spectrum revealed formation of an additional minor set of signals in the aromatic region, with concomitant, gradual formation of an orange precipitate (Fig. 4.11). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where a yellow precipitate was gradually produced. After 6 hours, pyridine- d_{5} was added to free any coordinated products and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed the presence of a new set of 8 multiplets in the aromatic region integrating as 1 H each in $\sim 92 \%$ yield relative to the internal standard (Fig. 411), while the ESI-MS analysis of the reaction mixture exhibited a major mass envelope at $\mathrm{m} / \mathrm{z}=261.9770$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrNO}=261.9868$). This compound was isolated by extraction of the aqueous reaction mixture with diethyl ether, and its identity was confirmed as the corresponding aryl bromide 34 via ESI-MS and comparison of the ${ }^{1} \mathrm{H}$ NMR to that reported in literature.

Figure 4. 11. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a)complex 9 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 9 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr , showing additional signals belonging to an intermediate; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, showing the product of $\mathrm{C}-\mathrm{Br}$ elimination, 34.

Scheme 4.24

Based on the decomposition of complex 9 in water in the presence of HBr to produce the corresponding aryl bromide 34, we propose the intermediacy of a bromoligated $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{3 6}$ and/ or $\mathbf{4 0}$ that undergoes $\mathrm{C}-\mathrm{Br}$ bond coupling to produce the $\mathrm{C}-\mathrm{Br}$ coupling product (Scheme 4.24). A mass envelope corresponding to the mass of complex 36 and/ or 40 was detected by ESI-MS at $\mathrm{m} / \mathrm{z}=569.9558$ (calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}^{106} \mathrm{Pd}=569.9485$), upon addition of HBr to an aqueous solution of complex 9. Additionally, an intermediate was detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture upon addition of HBr to the aqueous solution of complex 9. This intermediate may assigned to complex $\mathbf{3 6}$ or $\mathbf{4 0}$ since a complex with a similar mass envelope was detected by ESI-MS analysis of this reaction mixture. The bromo-ligated $\operatorname{Pd}(\mathrm{IV})$ complex 36 may be produced via chelate opening of complex 9 in the presence of HBr . $\mathrm{C}-\mathrm{Br}$ reductive elimination from complex $\mathbf{3 6}$ and/ or $\mathbf{4 0}$ produces the corresponding aryl bromide, $\mathbf{3 4}$.

Scheme 4.25

$\mathrm{C}-\mathrm{Br}$ bond coupling was also attempted from the alkoxy-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 15 in water in the presence of HBr (Scheme 4.25). A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 15 was prepared and 40.0 equivalents of HBr in $\mathrm{D}_{2} \mathrm{O}$ were added to this solution. Addition of HBr led to gradual formation of an orange precipitate. The resulting reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a yellow precipitate was observed. After the reaction was complete, pyridine- d_{5} was added to free coordinated products and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited 7 multiplets in the aromatic region, integrating as 1 H each, as the only organic product. ESI-MS analysis of this reaction mixture revealed a mass envelope at 275.9928 (calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrNO}=276.0024$). The organic compound was isolated via extraction of the aqueous reaction mixture with diethyl ether, and its identity was confirmed as the corresponding aryl bromide 37, by ESIMS analysis and comparison of its ${ }^{1} \mathrm{H}$ NMR to that of commercially available compound 37.

Figure 4. 12. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 15 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction mixture after decomposition, now in $\mathrm{dmso}^{-} \mathrm{d}_{6}$ in the presence of pyridine- d_{5},
showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product $\mathbf{3 7}$ and a symmetrical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product.

4.3.2 C-Br Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl Pd(IV)

Alkoxides 18 in Water in the Presence of HBr .
Scheme 4.26

$\mathrm{C}-\mathrm{Br}$ coupling from 2-phenoxypyridine derived $\mathrm{Pd}(\mathrm{IV})$ complex 18 was also performed in water in the presence of HBr . A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{1 8}$ was prepared in-situ by oxidation of complex 17 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water as described previously, and ${ }^{1} \mathrm{H}$ NMR spectrum was collected. 40.0 equivalents of HBr were added to the solution and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of an additional minor set of signals, accompanied by gradual formation of an orange precipitate (Fig. 4.13). The resulting reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a yellow precipitate was observed. At the end of the reaction, the solvent was removed and the residue was dissolved in dmso- d_{6} in the presence of a small amount of pyridine- d_{5} to free any coordinated products. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of eight multiplets in the aromatic region, integrating as 1 H each, while the ESI-MS of the reaction mixture revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=249.9925$ which was assigned to the corresponding aryl bromide $\mathbf{3 8}$ (calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrNO}=$
249.9868). The organic product was isolated by extraction of the aqueous solution with diethyl ether and its identity was confirmed by both ESI-MS and comparison of the ${ }^{1} \mathrm{H}$ NMR to that in literature. ${ }^{216}$

Figure 4. 13. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 18 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 18 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr showing additional signals belonging to an intermediate, (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, now in dmsod_{6} in the presence of pyridine- d_{5}, showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product 38 in the presence of $(\mathrm{dpk}) \operatorname{Pd}(\mathrm{II})$ containing products

Considering the formation of the aryl bromide compound 38 from the decomposition of the hydroxo-ligated Pd(IV) complex 18 in water in the presence of HBr , we propose the intermediacy of bromo-ligated Pd(IV) complexes 39 and/ or 41 (Scheme 4.27). A complex with a matching mass envelope was detected by ESI-MS analysis of the reaction mixture produced upon addition of HBr to an aqueous solution of complex 18, at $\mathrm{m} / \mathrm{z}=555.9663$ (calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}^{106} \mathrm{Pd}=$ 555.9488). An intermediate was also detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy upon addition of HBr to an aqueous solution of complex 18, which may be assigned to
complex 39 and/ or 41 based on the ESI-MS analysis. Complex 39 may be formed via chelate opening of complex 18 in the presence of HBr , while complex 41 may be formed via protonation of complex 18 followed by ligand exchange from the aqualigated $\mathrm{Pd}(\mathrm{IV})$ complex 20 in the presence of bromide anions. $\mathrm{C}-\mathrm{Br}$ reductive elimination from the bromo-ligated complexes 39 and/ or 41 produces the corresponding aryl bromide 38 as shown in the scheme below.

Scheme 4. 27

Attempts to isolate the bromo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex by filtering the reaction mixture produced upon addition of HBr to an aqueous solution of complex $\mathbf{1 8}$ were not successful. The residue produced a complex ${ }^{1} \mathrm{H}$ NMR spectrum in deuterated solvents such as methanol, acetone and dmso.

Scheme 4. 28

Complex 41 was however independently prepared by oxidation of the Pd (II) complex 17 with NBS in water. Upon addition of NBS to an aqueous colorless solution of complex 17, a deep orange precipitate was produced. This precipitate was filtered off and washed with a small amount of cold water. The precipitate produces a simple ${ }^{1} \mathrm{H}$ NMR spectrum in deuterated methanol, where 16 multiplets are observed in the aromatic region, which integrate as 1 H each. ESI-MS analysis of a methanolic solution of complex 41 displayed a mass envelope at $\mathrm{m} / \mathrm{z}=555.9221$ (Calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{Pd}^{106}=555.9483$). When the methanolic solution of complex 41 is left at room temperature, an additional set of signals is observed after 12 hours corresponding to $\mathbf{3 8}$ produced in 60% yield. ESI-MS analysis of the reaction solution exhibits a mass envelope at 249.9871 (calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrNO}=249.9868$), which was assigned to protonated 38. After two days at room temperature, compound $\mathbf{3 8}$ is produced quantitatively. The identity of this compound as the corresponding aryl bromide was confirmed by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to that in literature.

The structure of complex 41 was assigned based on ESI-MS, and 1D difference NOE experiments.

Given that irradiation of H_{a} results in NOE enhancement of H_{b} (2.2%), while irradiation of H_{c} results in NOE enhancement of $\mathrm{H}_{\mathrm{d}}(1.8 \%$, mixing time of 0.5 s , delay time 4 s), this indicates that these sets of hydrogens are in close proximity, and
thus an equatorial arrangement of the phenoxypyridine and dpk fragments was considered. However, the NOE analysis cannot be used to differentiate between the structure of complexes 39 and 41 , and thus structure 41 is favored because it is thermodynamically more stable than $\mathbf{3 9}$ as a result of the tridentate facial chelating mode of the ligand.

4.3.3 C-Br Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl Pd(IV)

Alkoxides 24 in Water in the Presence of HBr .

Scheme 4. 29

$\mathrm{C}-\mathrm{Br}$ coupling from 2-tolylpyridine derived hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 was also performed. A $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 24 was prepared in-situ by the oxidation of the organopalladium(II) complex 23 with $\mathrm{H}_{2} \mathrm{O}_{2}$ as described previously. 10.0-40.0 equivalents of HBr in $\mathrm{D}_{2} \mathrm{O}$ were added into this solution where gradual formation of an orange precipitate was observed. ${ }^{1} \mathrm{H}$ NMR spectrum of this reaction mixture revealed an additional minor set of signals which were absent at the end of reaction. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a yellow precipitate was observed. At the end of the reaction, a small amount of acetic acid and pyridine- d_{5} were added to the reaction solution to free any coordinated products and increase solubility, and a ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting reaction mixture was collected. The spectrum revealed the presence of three sets of aromatic signals. The first set included four multiplets integrating as 2 H each, which
was assigned to a symmetrical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ containing product. The second set consisted of seven aromatic multiplets integrating as 1 H each, assigned to the major organic reaction product $\mathbf{4 2}$, while the third set of multiplets was assigned to the corresponding phenol 25 by comparison to independently prepared compound. ESIMS analysis of this reaction mixture revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=$ 248.0074 (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}=248.0075$), while minor mass envelopes were detected at $\mathrm{m} / \mathrm{z}=264.0101$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}=264.0024$), and 186.0863 (calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}=186.0919$). The major organic product was identified as the corresponding aryl bromide 42 via independent synthesis following literature procedures for palladium catalyzed bromination of aromatic $\mathrm{C}-\mathrm{H}$ bonds using NBS as oxidant. ${ }^{32}$ Thus, this reaction was observed to produce a mixture of $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{O}$ coupling products 42 and 25, depending on the amount of HBr used. However when 40.0 equivalents of HBr was used, only aryl bromide 42 was produced in $\sim 93 \%$ yield relative to the internal standard, no phenol was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Table 4. 2. Fraction of the aryl bromide 42 and phenol 25 relative to the amount of HBr added according to ${ }^{1} \mathrm{H}$ NMR analysis.

$\mathrm{HBr}(\mathrm{eq})$	$\mathrm{Ar}-\mathrm{Br}$	$\mathrm{Ar}-\mathrm{OH}$
10.0	59	31
20.0	68	24
40.0	93	0

Figure 4. 14. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) complex 24 in $\mathrm{D}_{2} \mathrm{O}$ upon addition of HBr showing the presence of additional set of signals belonging to an intermediate; (c) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after decomposition, now in dmso $^{2} \mathrm{~d}_{6}$ in the presence of pyridine- d_{5}, showing the presence of $\mathrm{C}-\mathrm{Br}$ elimination product 42 in the presence of a symmetrical dpk-ligated $\mathrm{Pd}(\mathrm{II})$ product.

Scheme 4. 30

Considering the formation of the aryl bromide compound 42 from the decomposition of the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in water in the presence of

HBr , we propose the intermediacy of a bromo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{4 3}$ and/ or $\mathbf{4 5}$ (Scheme 4.30). A complex with a matching mass envelope was detected via ESI-MS of the reaction solution upon addition of HBr to an aqueous solution of complex 24 at $\mathrm{m} / \mathrm{z}=555.9778$ (calculated for $\left.\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{Pd}^{106}=555.9695\right)$. An intermediate was also detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy upon addition of HBr to an aqueous solution of complex 24, which was assigned as the bromo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 43 or $\mathbf{4 5}$ based on the ESI-MS analysis of this reaction mixture. The bromo-ligated Pd(IV) complex $\mathbf{4 3}$ might be produced via acid assisted chelate opening of complex $\mathbf{2 4}$ in the presence of HBr , while complex 45 might be produced via protonation of complex 24, followed by ligand exchange from the dicationic aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{2 8}$ in the presence of bromide anions. $\mathrm{C}-\mathrm{Br}$ reductive elimination from either $\mathbf{4 3}$ and/ or 45 would produce the aryl bromide 42 .

In order to determine the identity of the intermediate complex, the solid produced upon combining an aqueous solution of complex 24 with HBr was filtered off and characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy and ESI-MS. Analysis of this complex by ${ }^{1} \mathrm{H}$ NMR exhibited an NMR pattern similar to that of aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 28 produced upon addition of either hydrochloric acid or trifluoroacetic acid to an aqueous solution of 24 (Fig. 4.15). As a result, this complex was assigned to (28) Br_{2}, which is an aqua-ligated $\operatorname{Pd}(\mathrm{IV})$ dicationic complex with bromide counterions.

Figure 4. 15. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of complexes (a) 28(OOCCF3) $)_{2}$, (b) (28)Br ${ }_{2}$, and (c) (28) Cl_{2}, in $\mathrm{D}_{2} \mathrm{O}$.

Scheme 4. 31

When the orange precipitate of complex (28) $\mathbf{B r}_{2}$ was placed under vacuum for 3 hours, analysis of the resulting solid by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in $\mathrm{D}_{2} \mathrm{O}$ at room temperature revealed a new set of signals with a pattern which was significantly different from that of the aqua-ligated complex (28) $\mathbf{B r}_{2}$ (Fig. 4.16). Analysis of a methanolic solution of this complex by ESI-MS revealed the major mass envelope at $\mathrm{m} / \mathrm{z}=$ 555.9778 (calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{Pd}^{106}=555.9695$). As a result, this complex was assigned to $\mathbf{4 5}$. Complex 45 could also be prepared via oxidation of the organopalladium(II) complex 23 with N -bromosuccinimide (NBS) oxidant.

Figure 4. 16. (a) Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex (28) Br_{2} in $\mathrm{D}_{2} \mathrm{O}$ at room temperature; (b) ${ }^{1} \mathrm{H}$ NMR of bromo-ligated(IV) complex 45 in $\mathrm{D}_{2} \mathrm{O}$ at room temperature.

Upon preparation of complex 45 in pure form, the kinetics study of the $\mathrm{C}-\mathrm{Br}$ reductive elimination reactivity of this complex in water was performed.

Scheme 4. 32

Thus, 3.2 mg of complex $\mathbf{4 5}$ was dissolved in 1.0 ml of $\mathrm{D}_{2} \mathrm{O}$, and the depletion of complex 45 was monitored by ${ }^{1} \mathrm{H}$ NMR in the presence of $1.0 \mu \mathrm{l}$ of 1,4 -dioxane as an internal standard. After ~ 24 hours, a small amount of acetic acid was added to dissolve the white precipitate formed, and the ${ }^{1} \mathrm{H}$ NMR revealed formation of the corresponding phenol $\mathbf{2 5}(<5 \%)$ and the aryl bromide $42(>90 \%)$ as the only organic
products. The first order kinetics plot of $\ln \left([45]_{o} /[45]_{\mathrm{t}}\right)$ as a function of time is given below. This plot was found to be linear.

Figure 4. 17. Kinetic plot for the depletion of 45 in water at $22^{\circ} \mathrm{C}$ in the coordinates $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. time.

4.4 C-I Bond Formation at Monohydrocarbyl Pd(IV) Alkoxides in Water in the

Presence of HI

4.4.1 C-I Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl Pd(IV)

Alkoxide 24 in Water in the Presence of HI.

Scheme 4. 33

C-I coupling from 2-tolylpyridine derived hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex
24 was performed in water in the presence of $\mathrm{HI} .0 .010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex $\mathbf{2 4}$ was prepared $i n$-situ by the oxidation of the organopalladium(II) complex $\mathbf{2 3}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ as described previously. 40.0 equivalents of HI in $\mathrm{D}_{2} \mathrm{O}$ were added into this solution where fast formation of a deep purple precipitate was observed. ${ }^{1} \mathrm{H}$ NMR
spectrum of this reaction mixture did not display any signals presumably due to poor solubility of the aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex and/ or iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes with iodide counterions. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a deep red precipitate was observed. A small amount of acetic acid and pyridine- d_{5} were added to the reaction solution to free coordinated products and improve the solubility. Analysis of this reaction mixture by ${ }^{1} \mathrm{H}$ NMR revealed the presence of three sets of signals. The first set was four multiplets integrating as 2 H each, assigned to a symmetrical (dpk)Pd(II) containing product. The second major set consisted of seven multiplets integrating as 1 H each, which was assigned to the major organic product, produced in $\sim 78 \%$ yield relative to an internal standard, while the third set was produced in $\sim 15 \%$ yield relative to an internal standard (the number of multiplets could not be determined due to significant overlap with other signals). ESI-MS analysis of this reaction mixture at the end of the reaction revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=295.9887$ (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}=295.9936$) which was assigned to the protonated product of C-I bond coupling 46 and a minor mass envelope at $\mathrm{m} / \mathrm{z}=337.1754$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}=337.1705$) which was assigned to the protonated product of $\mathrm{C}-\mathrm{C}$ bond coupling 47 . The organic products were isolated by extraction of the aqueous solution with diethyl ether. The major complex was assigned as the corresponding aryl iodide 46 via independent synthesis of this compound using literature procedures for palladium catalyzed iodination of aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing N -iodosuccinimide as oxidant. ${ }^{32}$

Figure 4. 18. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in $\mathrm{D}_{2} \mathrm{O}$; (b) the reaction solution upon decomposition of complex 24 in water in the presence of HI , now in $\mathrm{dmso}^{2}-\mathrm{d}_{6}$ in the presence of pyridine, showing the C-I elimination product 46.

The formation of aryl iodide compound 46 from the decomposition of the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in water in the presence of HI was proposed to involve iodo-ligated Pd(IV) intermediates 48 and/ or 50 (Scheme 4.34). ESI-MS analysis of the reaction mixture upon addition of HI to an aqueous solution of complex 24 revealed a complex with a matching mass envelope at 601.9702 (calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{IN}_{3} \mathrm{O}_{2} \mathrm{Pd}^{106}=601.9557$). Complex 48 could be formed via chelate opening of complex 24 in the presence of HI , while complex $\mathbf{5 0}$ might be formed via protonation of complex 24 to produce the aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{2 8 (I})_{2}$, which may undergo ligand exchange in the presence of HI to produce the iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 50. C-I bond coupling from complex 48 and/ or $\mathbf{5 0}$ produces the aryl iodide product 46.

Considering that addition of HI into the aqueous solution of complex 24 leads to the formation of a deep red precipitate, this precipitate was filtered off and washed with a small amount of cold water. ${ }^{1} \mathrm{H}$ NMR analysis of this precipitate in various solvents such as deuterated acetone, methanol, and dimethyl sulfoxide resulted in complex ${ }^{1} \mathrm{H}$ NMR spectra, indicating the presence of multiple species in solution. These species could be a mixture of the corresponding aqua- and iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes. When this precipitate was placed under vacuum for several hours, a complex ${ }^{1} \mathrm{H}$ NMR still resulted. Thus the iodo-ligated Pd(IV) complex 50 could not be isolated in pure form using the techniques previously used for the isolation of bromo- and chloro-ligated Pd(IV) complexes. However since the bromo- and chloroligated $\mathrm{Pd}(\mathrm{IV})$ complexes could be prepared in pure form from the $\mathrm{Pd}(\mathrm{II})$ precursor 24 with either NBS or NCS, the next approach to synthesize the iodo-ligated Pd(IV) complex $\mathbf{5 0}$ might be via oxidation of complex $\mathbf{2 3}$ with N -iodosuccinimide.

Alkoxides 15 in Water in the Presence of HI.

Scheme 4. 35

C-I bond coupling at the alkoxo-ligated $\operatorname{Pd}(I V)$ complex 15 in water in the presence of HI was also performed. 0.010 M aqueous solution of complex $\mathbf{1 5}$ was prepared, 1,4 dioxane was added as internal standard and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. 40.0 equivalents of HI in $\mathrm{D}_{2} \mathrm{O}$ were added to the solution at room temperature, leading to the formation of a deep red precipitate. It was not possible to collect a ${ }^{1} \mathrm{H}$ NMR spectrum of this reaction mixture to detect any intermediates due to the presence of a large amount of precipitate. ESI-MS analysis of this reaction mixture did not reveal a mass envelope corresponding to the iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex, presumably due to poor solubility of this complex in water. The resulting reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where a deep brown precipitate was gradually produced. After 6 hours, pyridine- d_{5} was added to free any coordinated products and ${ }^{1} \mathrm{H}$ NMR spectrum was taken. The ${ }^{1} \mathrm{H}$ NMR spectra displayed the presence of the corresponding aryl iodide 51 in as the only organic product, which was also detected by ESI-MS at $\mathrm{m} / \mathrm{z}=323.9956$ (calculated $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{INO}=323.9885$). This product was isolated by extraction of the aqueous reaction mixture with diethyl
ether, and characterized by NMR spectroscopy and electrospray ionization mass spectrometry.

Figure 4. 19. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 15 in $\mathrm{D}_{2} \mathrm{O}$; (b) the reaction solution upon decomposition of complex $\mathbf{2 5}$ in water in the presence of HI , now in dmso- d_{6} in the presence of pyridine- d_{5}, showing the aryl iodide 51 and (dpk) $\mathrm{Pd}(\mathrm{II})$ containing products.

Scheme 4. 36

15

49

52

Given that decomposition of an alkoxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 15 in water in the presence of HI led to quantitative formation of the corresponding aryl iodide, we propose the intermediacy of the iodo-ligated Pd(IV) complex $\mathbf{4 9}$ and/ or $\mathbf{5 2}$ in this reaction, which may be formed via chelate opening of complex 15 in the presence of HI (Scheme 4.36). Although the intermediate was not detected by either ${ }^{1} \mathrm{H}$ NMR
spectroscopy or ESI-MS presumably due to its poor solubility in water, its presence is proposed because of the observed $\mathrm{C}-\mathrm{I}$ coupling.

4.4.3 C-I Bond Formation at 2-Phenoxypyridine-derived Monohydrocarbyl Pd(IV)

Alkoxides $\mathbf{1 5}$ in Water in the Presence of HI.
Scheme 4.37

C-I coupling at 2-phenoxypyridine derived hydroxo-ligated Pd(IV) complex 18 was also performed in water in the presence of HI . A $0.010 \mathrm{M}_{2} \mathrm{O}$ solution of complex 18 was prepared in-situ by oxidation of complex 17 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water as described previously, and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. 40.0 equivalents of HI were added to the solution and a deep brown precipitate was produced. ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting reaction mixture could not be collected due to the presence of large amount of precipitate, while ESI-MS did not reveal the presence of a mass envelope corresponding to the iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex presumably due to poor solubility of this complex in water. The resulting reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 6 hours, where gradual formation of a deep red precipitate was observed. At the end of the reaction, a small amount of pyridine- d_{5} was added to free coordinated products. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of 8 aromatic multiplets which integrate as 1 H each. The ESI-MS analysis of this reaction mixture revealed a major mass envelope at $\mathrm{m} / \mathrm{z}=297.9703$ (calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INO}=297.9729$). The
organic product was isolated via extraction of the aqueous solution with diethyl ether, and its identity as aryl iodide $\mathbf{5 3}$ was confirmed by NMR spectroscopy and electrospray ionization mass spectrometry.

Figure 4. 20. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 18 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction solution upon decomposition of complex 18, now in dmso- d_{6} showing $\mathrm{C}-\mathrm{I}$ elimination product 53.

Attempts to isolate the intermediate complex were however unfruitful. When an aqueous solution of complex $\mathbf{1 8}$ was placed in ice-water bath and HI was added, a deep red precipitate was produced. This precipitate was filtered off and washed with a small amount of water. Analysis of the precipitate by ${ }^{1} \mathrm{H} N \mathrm{NM}$ in CDCl_{3} and deuterated acetic acid revealed the pure aryl iodide compound $\mathbf{5 3}$ as the only species in solution. This indicates that the $\mathrm{C}-\mathrm{I}$ bond coupling reaction is too fast, complete within a few minutes after the addition of HI .
4.5.1 Attempted C-F Bond Formation at 2-Tolylpyridine-derived Monohydrocarbyl
$\underline{\mathrm{Pd}(\mathrm{IV}) \text { Alkoxide } 24 \text { in Water, in the Presence of HF. }}$
Given that $\mathrm{C}-\mathrm{X}$ bond formation from hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in water in the presence of $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$ has been achieved, we next attempted C-F bond coupling from the hydroxo-ligated Pd(IV) complexes in the presence of HF.

Scheme 4.38

We started our studies by investigating the decomposition of complex $\mathbf{2 4}$ in water in the presence of HF. Thus a $0.010 \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of complex 24 was prepared by oxidation of complex 23 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water as previously described. 1,4 dioxane was added as internal standard and ${ }^{1} \mathrm{H}$ NMR spectrum was collected at room temperature. 40.0 equivalents of HF were added to the solution and another ${ }^{1} \mathrm{H}$ NMR was collected. This solution was heated at $70^{\circ} \mathrm{C}$ for 6 hours. Analysis of the ${ }^{1} \mathrm{H}$ NMR at the end of the reaction revealed the presence of the corresponding phenol $\mathbf{2 5}$ as the only product. No products of C-F bond coupling were detected by either ${ }^{1} \mathrm{H}$ NMR or ESI-MS analysis of the reaction solution.

Figure 4. 21. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 24 in $\mathrm{D}_{2} \mathrm{O}$, (b) the reaction solution upon decomposition of complex 24 in water in the presence of HF , showing oxapalladacycle 31.

ESI-MS analysis of the solution upon addition of HF did not reveal fluoroligated $\operatorname{Pd}(\mathrm{IV})$ complex 54, while analysis of the reaction solution at the end of the reaction did not reveal the presence of C-F bond coupling product 55 (Scheme 4.38). Only the corresponding oxapalladacycle $\mathbf{3 1}$ was observed by both ${ }^{1} \mathrm{H}$ NMR and ESIMS analysis of the solution at the end of the reaction. These results indicate that $\mathrm{C}-\mathrm{F}$ bond coupling from complex 24 in water in the presence of HF was unsuccessful, and only the corresponding product of $\mathrm{C}-\mathrm{O}$ coupling was produced.

We also attempted the decomposition of both complexes $\mathbf{1 5}$ and $\mathbf{1 8}$ in water in the presence of HF. Thus, when 40.0 equivalents of HF were added to 0.010 M aqueous solutions containing complexes $\mathbf{1 5}$ and 18, no $\mathrm{C}-\mathrm{F}$ coupling products were detected when these solutions were heated at $70^{\circ} \mathrm{C}$ for 6 hours by ESI-MS.

This reactivity is in contrast with the previously observed reactivity of the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in the presence of HX acids $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$, where the X-ligated $\operatorname{Pd}(I V)$ complexes were detected by ESI-MS and were sometimes observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and these complexes underwent $\mathrm{C}-\mathrm{X}$ bond coupling to produce the corresponding aryl halides in high yields. Given that the halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ intermediates may be produced via ligand exchange between the aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes with the halide ligand, the nucleophilicity of the ligand is important in the formation of the halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complex. The fluoride ligand is however not as good a nucleophile compared to the chloro-, bromo, and iodo- ligands. This might be the reason why $\mathrm{C}-\mathrm{F}$ bond coupling was not observed in these reactions.

However since $\operatorname{Pd}(\mathrm{IV})-\mathrm{X}$ complexes could be prepared by the oxidation of the $\operatorname{Pd}(I I)$ complex 23 by NXS in water, future plans include preparation of $\mathrm{Pd}(\mathrm{IV})-\mathrm{F}$ complexes via oxidation of complex $\mathbf{2 3}$ with N -fluoropyridinium salts, and study their reactivity in comparison to the $\mathrm{Pd}(\mathrm{IV})-\mathrm{X}$ complexes $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$.

4.6 Mechanism of $C-X$ Reductive Elimination From Monohydrocarbyl Pd(IV)

Alkoxides in Water, in the Presence of $H X$

$\mathrm{C}-\mathrm{X}$ coupling from hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in the presence of HX $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$ is proposed to take place via initial protonation of the hydroxide ligand to produce aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes. Some aqua-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes have been isolated and fully characterized, including X-ray diffraction. Substitution of the aqua ligand for the halide ligand is proposed to place in the presence of HX to produce the corresponding halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complex. The
ligand exchange reaction has also been demonstrated, where isolated aqua-ligated $\operatorname{Pd}(I V)$ complexes have been observed to undergo ligand substitution under of vacuum. This reaction is presumably driven by the loss of a water molecule. $\mathrm{C}-\mathrm{X}$ reductive elimination from the X -ligated $\mathrm{Pd}(\mathrm{IV})$ complexes produces the corresponding aryl halides. This reaction has also been demonstrated, where $\mathrm{C}-\mathrm{X}$ bond coupling has been observed from isolated halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in water.

When the kinetics of $\mathrm{C}-\mathrm{X}$ reductive elimination from isolated X -ligated $\operatorname{Pd}(\mathrm{IV})$ complexes $(\mathrm{X}=\mathrm{OH}, \mathrm{Cl}$, and Br$)$ in water at room temperature was investigated using ${ }^{1} \mathrm{H}$ NMR spectroscopy, the observed first order rate constants for these reactions were found to be similar (see table 3 below).

Table 4. 3. Observed first order rate constants for the $\mathrm{C}-\mathrm{X}$ reductive elimination reactions in water at room temperature $(\mathrm{X}=\mathrm{OH}, \mathrm{Cl}$, and Br$)$.

Entry	$\mathrm{Pd}^{\mathrm{IV}}-\mathrm{X}, \mathrm{X}=$	$\mathrm{Ar}-\mathrm{X}(\%$ yield $)$	$\mathrm{K}_{\mathrm{obs}} \mathrm{sec}^{-1}$
1	OH	98	$(2.52 \pm 0.03) \cdot 10^{-5}$
2	Cl	95	$(1.60 \pm 0.05) \cdot 10^{-5}$
3	Br	90	$(2.50 \pm 0.10) \cdot 10^{-5}$

These results show that the reductive elimination reaction is not sensitive to the electronic effects of the halogeno ligand at the $\mathrm{Pd}(\mathrm{IV})$ center. These results are not unexpected since the $\mathrm{C}-\mathrm{O}$ reductive elimination from complex $\mathbf{2 4}$ was also found to be insensitive to the electronics of the substituents on the aromatic ligand (Fig. 4.22).

Scheme 4. 39

Figure 4. 22. Hammett plot for the decomposition of aqueous solutions of complexes 23, 58-60 at $22^{\circ} \mathrm{C}$.

Given that the $\mathrm{C}-\mathrm{X}$ reductive elimination reaction is insensitive to the electronics of the substituents on the aromatic ligand and that of the halide ligands, we propose that this reaction proceeds via a very early transition state, which results in a very exergonic reaction according to Marcus theory, leading to the insensitivity of the $\mathrm{C}-\mathrm{X}$ reductive elimination process to the electronics of the substituents on the aromatic ligand and the halide ligands on the $\mathrm{Pd}(\mathrm{IV})$ center.

The mechanism of $\mathrm{C}-\mathrm{Cl}$ bond coupling from complex 29 was investigated and was proposed to involve preliminary dissociation of the pyridine group of the dpk chelate, followed by $\mathrm{C}-\mathrm{Cl}$ bond coupling from a 5 -coordinate species (Scheme 4.40).

This mechanism was proposed based on inhibition of the $\mathrm{C}-\mathrm{Cl}$ reaction in the presence of 5.0 equivalents of pyridine additive. The coupling reaction was also significantly accelerated in acid. Acid was proposed to protonate the dissociated pyridine group, thus inhibiting the reverse reaction.

Scheme 4. 40

4.7 Summary and Conclusions

In summary, $\mathrm{C}-\mathrm{X}$ bond formation has been observed from hydroxo-ligated $\operatorname{Pd}(\mathrm{IV})$ complexes in water in the presence of $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I). These reactions are proposed to take place via the intermediacy of halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes, which may be produced in-situ via chelate opening in the presence of HX, or protonation of the hydroxide ligand, followed by substitution of the aqua group by the halide ligand.

A number of chloro- and bromo-ligated Pd(IV) complexes have also been prepared and their reactivity towards $\mathrm{C}-\mathrm{X}$ reductive elimination studied in water. The mechanism of $\mathrm{C}-\mathrm{X}$ reductive elimination has been proposed to involve preliminary pyridine group dissociation of the dpk chelate, followed by $\mathrm{C}-\mathrm{X}$ coupling from a 5 coordinate intermediate. The next goal of this work is to determine the solid state structure of the bromo- and chloro-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes via X-ray diffraction analysis. In addition, iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes have not been isolated in pure
form. Future plans also involve preparation of iodo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in pure form, complete characterization of the structure of these complexes, including X-ray diffraction, and characterization of their reactivity towards $\mathrm{C}-\mathrm{I}$ reductive elimination.

Finally, fluoro-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes have not been prepared. The next goal of this work will involve preparation of these complexes, complete characterization of the structures including X-ray diffraction studies, and characterization of their reactivity towards $\mathrm{C}-\mathrm{F}$ bond coupling.

Scheme 4.41

Ultimately, these studies will be employed towards catalytic $\mathrm{C}-\mathrm{X}$ bond formation reactions utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as the terminal oxidant in water, in the presence of HX. As shown in Scheme 4.41, the catalytic reaction would involve $\mathrm{C}-\mathrm{H}$ bond activation to produce organopalladium(II) complexes, oxidation of the $\mathrm{Pd}($ II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce the corresponding hydroxo-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes, ligand exchange of the hydroxo- ligand for the halogeno- ligand in the presence of HX , followed by $\mathrm{C}-\mathrm{X}$ coupling from the halogeno-ligated $\mathrm{Pd}(\mathrm{IV})$ complex. Towards this goal, the oxidation step b , the ligand substitution step c , and the $\mathrm{C}-\mathrm{X}$ coupling d have been demonstrated. However the $\mathrm{C}-$

H activation step a in water in the presence of HX has not been demonstrated, while oxidation of the organopalladium(II) species with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of HX has not been investigated. Optimization of these steps will enable the development of the catalytic cycle depicted in Scheme 4.41. This catalytic reaction will make the palladium catalyzed halogenation of $\mathrm{C}-\mathrm{H}$ bonds more environment friendly, since the $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidant will replace the currently applied NXS and PhIX_{2} oxidants $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I), which produce stoichiometric amounts of toxic waste products.

4.8 Experimental

Compounds 11, ${ }^{217} \mathbf{3 4},{ }^{218} \mathbf{1 4},{ }^{157} \mathbf{1 6},{ }^{158} \mathbf{3 7},{ }^{219} \mathbf{1 9},{ }^{220} \mathbf{3 8},{ }^{216}$ and 26, ${ }^{21}$ have been reported in literature. The identity of these compounds was confirmed by their isolation and comparison of the ${ }^{1} \mathrm{H}$ NMR to those reported in literature.

Complex 29(Cl)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 3^{\circ} \mathrm{C}\right), \delta: 2.31(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{td}, J=6.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.19(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 3{ }^{\circ} \mathrm{C}\right), \delta: 24.3,107.9,124.8,125.6,125.9,128.7,130.0,130.7$, 131.7, 132.6, 132.9, 141.4, 145.2, 145.7, 146.7, 149.1, 150.4, 151.4, 151.6, 160.6, $161.6,164.0,164.5$

ESI-MS of a solution of 29 in dmso, $\mathrm{m} / \mathrm{z}=$ 512.0135. Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=512.0199$.

The complex is unstable and decomposes in the course of few days at room temperature.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for major intermediate 29(CI)

In the 1D difference NOE experiment, NOE was observed between the orthoH_{a} of the tolylpyridine ligand and ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand and between the orthoH_{c} of the tolylpyridine and ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand. Irradiation of a resonance at 6.66 ppm (ortho $-\mathrm{H}_{\mathrm{a}}$ of the tolylpyridine ligand) showed enhancement (positive NOE) of the doublet at $9.09 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ of the dpk ligand, 2.7%) (mixing time of 0.5 s , delay time 4 s) and irradiation of a resonance at 9.19 ppm (ortho $-\mathrm{H}_{\mathrm{d}}$ of the dpk ligand) showed enhancement (positive NOE) of the doublet at $8.23 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{c}}$ on the pyridyl fragment of tolylpyridine ligand, 2.6%) (mixing time of 0.5 s , delay time 4 s).

Complex 41(OAc)

${ }^{1} \mathrm{H}$ NMR (MeOD, $22^{\circ} \mathrm{C}$), $\delta: 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (ddd, $J=8.4,7.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.97-7.99(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 9.16(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (MeOD, $22^{\circ} \mathrm{C}$) $, \delta: 29.1,117.5,119.7,121.9,122.1,123.1,126.5$, $126.8,127.8,129.2,130.7,133.0,141.9,143.2,145.3,147.6,147.8,148.8,151.0$, 159.4, 159.6, 163.5, 180.2

ESI-MS of a solution of $\mathbf{4 1 (O A c})$ in methanol, $\mathrm{m} / \mathrm{z}=557.9184$. Calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}=557.9485$.

Complex 45(Br)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 3{ }^{\circ} \mathrm{C}\right), \delta: 2.09(\mathrm{~s}, 3 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{td}, J=6.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-8.01(\mathrm{~m}, 4 \mathrm{H}), 8.04(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (MeOD, $22^{\circ} \mathrm{C}$) , $\delta: 22.3,106.5,123.2,123.8,123.9,126.6,128.1$, $128.6,129.8,130.2,131.6,140.8,143.1,143.7,144.6,146.4,149.1,150.3,151.4$, 159.2, 161.7, 164.2, 165.4.

Anal. Found (Calcd. with 1.5 molecules of $\mathrm{H}_{2} \mathrm{O}$ present) C, 41.97 (41.69); H, 3.46 (3.35); N, 5.98 (6.34)

ESI-MS of a solution of $\mathbf{4 5}(\mathbf{B r})$ in dmso, $\mathrm{m} / \mathrm{z}=555.9704$. Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{106} \mathrm{Pd}=555.9692$.

Compounds 51, 25, 42 and 46 were prepared by literature procedures for directed palladium catalyzed halogenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, ${ }^{117}$ while compound 53 was isolated from the reaction mixture and characterized via NMR spectroscopy and ESI-MS.

Compound 25

${ }^{1} \mathrm{H}$ NMR (AcOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 2.43(\mathrm{~s}, 3 \mathrm{H}), 7.29(\mathrm{dq}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (vs, 1H), 7.50 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.13 (td, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.92$ (d, J=5.0, Hz, 1H).
${ }^{13} \mathrm{C}$ NMR (AcOH- $\mathrm{d}_{4}, 22^{\circ} \mathrm{C}$), $\delta: 21.1,124.9,127.4,129.1,131.5,132.4,132.9,134.2$, 140.5, 142.7, 148.0, 155.6.

ESI-MS of solution of $\mathbf{2 5}$ in acetic acid, $\mathrm{m} / \mathrm{z}=204.0468$; calculated for
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NCl}=204.0580$

Compound 42

${ }^{1} \mathrm{H}$ NMR (AcOH- $\left.\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.41(\mathrm{~s}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{ddd}, J=7.8,5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{td}$, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{dd}, J=5.0,0.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOH-d $\left.\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 21.0,122.4,125.4,127.9,129.7,132.3,134.8$, 135.2, 141.8, 143.3, 147.1, 156.5.

ESI-MS of solution of $\mathbf{4 2} \cdot \mathbf{H}^{+}$in acetic acid, $\mathrm{m} / \mathrm{z}=248.0081$; calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NCl}=248.0075$.

Compound 46

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.33(\mathrm{~s}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$
(ddd, $J=7.8,4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (td, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{vs}, 1 \mathrm{H}), 8.66(\mathrm{dq}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 20.7,122.6,124.7,129.2,130.1,136.2,140.1$, $140.3,142.2,149.2,160.8$.

ESI-MS of solution of $\mathbf{4 6 . \mathbf { H } ^ { + }}$ in acetic acid, $\mathrm{m} / \mathrm{z}=295.9887$; calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}=295.9936$

Compound 51

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.33(\mathrm{~s}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (vs, 1H), 7.67 (ddd, $J=7.8,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{td}, J=7.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOH-d $4,22^{\circ} \mathrm{C}$) $20.9,88.9,126.1,128.7,131.3,133.6,139.4$, 139.5, 140.4, 144.5, 149.9, 153.2, 197.2.

ESI-MS of solution of $\mathbf{5 1 . \mathbf { H } ^ { + }}$ in acetic acid, $\mathrm{m} / \mathrm{z}=323.9956$ (calculated $\left.\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{INO}=323.9885\right)$.

Compound 53

${ }^{1} \mathrm{H}$ NMR (dmso- $\left.\mathrm{d}_{6}, 22^{\circ} \mathrm{C}\right), \delta: 7.02(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1 H), 7.11 (dd, $J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (td, $J=7.7,1.4$ Hz, 1H), 7.87 (ddd, $J=8.5,6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (dd, $J=5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{dmso}^{-} \mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 111.2,118.9,123.1,126.8,129.6,139.2,140.1$, 147.1, 162.3, 180.1.

ESI-MS of solution of $\mathbf{5 3 . \mathbf { H } ^ { + }}$ in dmso, $\mathrm{m} / \mathrm{z}=297.9703$ (calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INO}=297.9729$).

Chapter 5: PPC Ligand-enabled Functionalization of $\mathrm{C}-\mathrm{Pd}$ Bonds With $\mathrm{H}_{2} \mathrm{O}_{2}$ in Acetic Acid

5.1 Introduction

Scheme 5.1

Palladium catalyzed oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reactions have been proposed to take place through a three-step catalytic cycle as shown in scheme 5.1. . 24,132 The first step (step a) involves $\mathrm{C}-\mathrm{H}$ bond activation to generate organopalladium(II) intermediates, which undergo oxidation to produce either monomeric $\mathrm{Pd}(\mathrm{IV})$ or dimeric $\mathrm{Pd}(\mathrm{III})$ species (step b). $\mathrm{C}-\mathrm{O}$ reductive elimination from these high oxidation palladium species generates the functionalized product and regenerates the catalyst (step c).

We have performed extensive studies on the oxidation of organopalladium(II) complexes utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant in both water and acetic acid solvents. In the absence of the 2-dipyridylketone (dpk) ligand, the reaction between acetato-bridged
palladacycles and $\mathrm{H}_{2} \mathrm{O}_{2}$ is too slow in acetic acid solvent at room temperature. Among the substrates studied, only the 2-aroylpyridine derived palladacycles bearing the $\mathrm{C}=\mathrm{O}$ functional group undergoes functionalization of the $\mathrm{C}-\mathrm{Pd}$ bond with $\mathrm{H}_{2} \mathrm{O}_{2}$ to generate the corresponding phenol and aryl acetate products, underscoring the importance of the $\mathrm{C}=\mathrm{O}$ functionality in these $\mathrm{C}-\mathrm{Pd}$ functionalization reactions when $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as oxidant. The oxidation reactions become faster, cleaner, and applicable to more palladacycles when the dpk ligand is used. Dpk ligand-supported palladacycles derived from substituted phenylpyridine, benzoylpyridine, acetophenone oxime, and phenoxypyridine were observed to undergo fast oxidation in water and acetic acid solvents to generate the corresponding monohydrocarbyl $\operatorname{Pd}(I V)$ complexes. These oxidation reactions were studied both experimentally and computationally, and a mechanism that involves addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand, followed by nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ onto the hydroperoxide moiety resulting in heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond was proposed (Scheme 5.2). In these reactions, the dpk ligand was proposed to assist in the oxidation reaction by bringing the electrophilic peroxo group in close proximity to the palladium(II) center.

Scheme 5. 2

The dpk ligand was also found to be key in the stability of the resulting monohydrocarbyl Pd(IV) complexes. The ability of the hydrated dpk ligand to
undergo deprotonation and generate an anionic species is significant because this anionic form of the dpk hydrate stabilizes the $\mathrm{Pd}(\mathrm{IV})$ complex through coordination in a facial chelation mode (Scheme 5.3). ${ }^{123,154}$ Aroylpyridine derived $\operatorname{Pd}($ IV) complexes bearing two anionic facially chelating ligands, derived from the hydrated 2-benzoylpyridine and 2-dipyridylketone fragments, were found to be the most stable among the substrates studied, such that they were isolated and stored in the solid state at room temperature for over two weeks without decomposition. In addition, aqueous solutions of the aroylpyridine derived monohydrocarbyl Pd(IV) complexes are stable in water at room temperature for at least two days. In contrast, monohydrocarbyl $\operatorname{Pd}(I V)$ complexes bearing one tridentate facially chelating ligand undergo decomposition at room temperature, and thus have to be stored at $-20^{\circ} \mathrm{C}$. Additionally, these complexes are not stable in water at room temperature, where they undergo $\mathrm{C}-\mathrm{O}$ bond-forming decomposition to generate the corresponding oxapalladacycles.

Scheme 5.3

Given that monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes undergo clean $\mathrm{C}-\mathrm{O}$ reductive elimination reactions in various solvents such as water and acetic acid, the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination was studied. Based on experimental and computational studies on the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction at 2-arylpydidinederived monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes in water, a mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination was proposed where the reaction takes place from a six-coordinate
palladium species. In contrast, $\mathrm{C}-\mathrm{O}$ reductive elimination at monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes derived from 2-aroylpyridine was proposed to take place from a 5coordinate palladium intermediate generated via preliminary pyridine group dissociation in acidic solutions.

Thus, the dpk ligand was observed to enable oxidation of monohydrocarbyl $\operatorname{Pd}(\mathrm{II})$ complexes to their $\mathrm{Pd}(\mathrm{IV})$ analogues using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant, and the subsequent $\mathrm{C}-\mathrm{O}$ reductive elimination from the monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes to produce the corresponding oxapalladacycles, phenols, and/ or aryl acetates, depending on the solvent used. With successful oxidation (step b, Scheme 5.1) and reductive elimination (step c, Scheme 5.1) processes, an efficient palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation reaction will be achieved upon optimization of the $\mathrm{C}-\mathrm{H}$ activation reaction (step a) under similar conditions.

The transition metal-assisted $\mathrm{C}-\mathrm{H}$ bond activation reaction has been studied for many years. ${ }^{119,221,222}$ The earliest study of the mechanism of metal assisted $\mathrm{C}-\mathrm{H}$ bond activation was performed by Winstein and Traylor in 1955. ${ }^{223}$ In this report, the acetolysis of diphenyl mercury in acetic acid solvent was proposed to proceed via an electrophilic aromatic substitution mechanism, based on the electrophilic character of mercury. ${ }^{224-229}$

In 1985, Ryabov and co-workers studied the cyclopalladation reaction of $\mathrm{N}, \mathrm{N}-$ dimethylbenzylamine in acetic acid. ${ }^{230}$ Analysis of the reaction kinetics revealed a negative slope of the Hammet plot $(\rho=-1.6)$, which was proposed to indicate an electrophilic $\mathrm{Pd}(\mathrm{II})$ center, as well as an extremely negative entropy of $-60 \mathrm{calK}^{-}$ ${ }^{1} \mathrm{~mol}^{-1}$ and high KIE ($k_{\mathrm{H}} / k_{\mathrm{D}}$) of 2.2 , which were interpreted to indicate a highly
ordered transition state in which the leaving proton is abstracted intramolecularly by the acetato ligand (see Scheme 5.4).

Scheme 5.4

According to Scheme 5.4, the transition state depicted by Ryabov suggests deprotonation of a Wheland intermediate, although this intermediate was not explicitly mentioned in the report. In a later report, Ryabov stated that "the transition state of the orthopalladation of N, N-dimethylbenzylamine process involves concerted formation of the palladium-carbon bond and cleavage of the $\mathrm{C}-\mathrm{H}$ bond with nucleophilic assistance by the coordinated acetate". ${ }^{231}$

More recent computational studies on the ortho-palladation of $\mathrm{N}, \mathrm{N}-$ benzylamine by Davis and co-workers showed that the lowest energy route proceeds via an agostic intermediate 6 (Scheme 5.5), followed by $\mathrm{C}-\mathrm{H}$ bond deprotonation with acetate group through a six-membered cyclic transition state $\left(\mathbf{T S}_{6-7}\right) .{ }^{232}$ The agostic interaction is proposed to increase the acidity of the ortho-proton, facilitating its deprotonation by the acetate. In addition, hydrogen bonding between the acetate oxygen atom and the ortho-hydrogen of the aromatic group in $\mathbf{6}$ is proposed to orient the acetate for the $\mathrm{C}-\mathrm{H}$ abstraction step, and to also increase the electron density of the $\mathrm{C}-\mathrm{H}$ bond which in turn further strengthens the agostic interaction. As a result of
these combined effects, the $\mathrm{C}-\mathrm{H}$ activation process is proposed to involve a near barrier-less proton transfer to yield the thermodynamically favored palladacycle 7. The calculated atomic charges for $\mathbf{T S}_{\mathbf{6 - 7}}$ showed very little evidence for the contribution of a Wheland intermediate, which led to the conclusion that the deprotonation and metalation steps are concerted. These calculations were supported experimentally by KIE studies, where the calculated $\operatorname{KIE}\left(k_{\mathrm{H}} / k_{\mathrm{D}}=1.2\right)$ was close to the experimental value of $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=2.2\right) .{ }^{129}$

Scheme 5.5

These studies indicate that carboxylate group may be important in the palladium assisted $\mathrm{C}-\mathrm{H}$ activation processes. Therefore, activation of aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing the dpk ligand in the presence of acetate groups was attempted. Complex 8 was prepared and used in stoichiometric quantities to activate the ortho $\mathrm{C}-\mathrm{H}$ bond of the 2-tolylpyridine substrate in acetic acid solvent. These studies were performed by Vedernikov and Zhang, and no $\mathrm{C}-\mathrm{H}$ bond activation was observed (Scheme 5.6). ${ }^{175}$

Scheme 5.6

As a result, we designed a new ligand bearing an ortho-carboxylate group, the 6-(pyridin-2-ylcarbonyl)pyridine-2-carboxylic acid (ppc) ligand. This ligand was designed with an ortho-carboxylate group because the mechanism of $\mathrm{C}-\mathrm{H}$ bond activation by palladium has been proposed to involve intramolecular deprotonation by the adjacent acetate ligand, where acetate acts as an intramolecular base. The orthocarboxylate arm of the ppc ligand is expected to function as an intramolecular base in the $\mathrm{C}-\mathrm{H}$ deprotonation step as shown in Scheme 5.7 below.

Scheme 5.7

The ppc ligand was synthesized by the reaction of $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}-$ tetraethylpyridine-2,6-dicarboxamide with pyridyl lithium in THF to afford the N, N -diethyl-6-(pyridyn-ylcarbonyl)pyridine-2-carboxamide product (Scheme 5.8). Hydrolysis of this product in 6.0 M HCl generated the target ppe ligand. This ligand was characterized by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS), while its purity was confirmed by elemental analysis.

Scheme 5. 8

Considering scheme 5.1 depicted above, our studies were aimed at determining whether the ppc ligand would enable palladium assisted $\mathrm{C}-\mathrm{H}$ bond activation (step a), oxidation of the resulting organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ (step b), and $\mathrm{C}-\mathrm{O}$ reductive elimination from the resulting monohydrocarbyl $\operatorname{Pd}(I V)$ complexes (step c). With each step in the catalytic cycle demonstrated, we plan to develop a ppc ligand-enabled palladium catalyzed functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as the terminal oxidant, in water or acetic acid.

Given that oxidation of organopalladium(II) complexes to their corresponding monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ analogs with $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant was achieved using the dpk ligand, we started by determining whether the ppc ligand would enable the oxidation of similar organopalladium(II) complexes using $\mathrm{H}_{2} \mathrm{O}_{2}$. We anticipated this reaction to be facile because similar to the dpk ligand, the ppc ligand possesses a $\mathrm{C}=\mathrm{O}$ functional group which is important for oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$. The $\mathrm{C}=\mathrm{O}$ functional group was proposed to assist in oxidation of organopalladium(II) complexes by bringing the electrophilic oxidant in close proximity to the palladium center, since $\mathrm{H}_{2} \mathrm{O}_{2}$ is capable of adding across the $\mathrm{C}=\mathrm{O}$ bond to form a hydroperoxide adduct. The difference in reactivity of organopalladium(II) complexes supported by the ppc ligand and those supported by the dpk ligand towards $\mathrm{H}_{2} \mathrm{O}_{2}$ will be discussed.

The $\mathrm{C}=\mathrm{O}$ group of the ppc could undergo hydration and deprotonation to provide an alkoxide that can coordinate to the $\mathrm{Pd}(\mathrm{IV})$ center through the oxygen
atom. The ppc ligand also possesses a carboxylic acid group that can undergo deprotonation and coordinate onto the $\mathrm{Pd}(\mathrm{IV})$ center. By coordination of the alkoxide, the ppe ligand might formally adopt a facially coordination mode that has been proposed to stabilize a variety of $\operatorname{Pd}(I V)$ complexes. ${ }^{184-188}$ Alternatively, coordination of the carboxylate group would lead to either a facially or a meridional coordination geometry. As a result, the mode of binding of the ppc ligand in both the $\operatorname{Pd}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{IV})$ complexes will be studied, and the $\mathrm{C}-\mathrm{O}$ bond forming reactivity of the ppc ligand-supported organopalladium $\mathrm{Pd}(\mathrm{IV})$ complexes will be compared to that of dpk ligand-supported organopalladium(IV) complexes.

Ultimately, the activation of aromatic $\mathrm{C}-\mathrm{H}$ bonds will be investigated utilizing the ppe ligand. With successful $\mathrm{C}-\mathrm{H}$ bond activation, oxidation of the resulting organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$, and $\mathrm{C}-\mathrm{O}$ reductive elimination from the resulting monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes to release the functionalized product, we envision to combine these steps into a catalytic cycle, and be able to perform a ligand enabled, palladium catalyzed functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{H}_{2} \mathrm{O}_{2}$ as the terminal oxidant, in water or acetic acid.

We started our studies by preparing organopalladium(II) complexes supported by the ppc ligand, and studying their reactivity with $\mathrm{H}_{2} \mathrm{O}_{2}$.

Chart 5.1

$\mathrm{R}=\mathrm{H}, 10$
$\mathrm{R}=\mathrm{CF}_{3}, 11$

$\mathrm{R}=\mathrm{H}, 20$ $R=C F_{3}, 21$

R=H, 12
$\mathrm{R}=\mathrm{Me}, 13$

22

14

$\mathrm{R}=\mathrm{H}, 18$
$\mathrm{R}=\mathrm{Me}, 19$

R=H, 23
$\mathrm{R}=\mathrm{Me}, 24$

Preparation of the acetato-ligated hydrocarbyl Pd(II) complexes $\mathbf{1 0 - 1 4}$ has been described previously in chapter 2. The palladacyclic ppc ligand-supported complexes $\mathbf{1 5}, \mathbf{1 6}$, and $\mathbf{1 7}$ were prepared by stirring a mixture of acetato-ligated complexes 10, 11, and $\mathbf{1 2}$ respectively with the ppc ligand (1.05 eq.) in dichloromethane. These solutions were stirred under ambient conditions for several hours, concentrated and triturated with THF to produce white precipitate of the target complexes. Complexes $\mathbf{1 8}$ and $\mathbf{1 9}$ were also prepared using the procedure above, but benzene was used as solvent instead of dichloromethane, while diethyl ether was used to triturate the solutions. The precipitates were filtered off to afford complexes $\mathbf{1 5 - 1 9}$, which were characterized by NMR spectroscopy and electrospray ionization mass
spectrometry, while complex 18 was also characterized by X-ray diffraction. The purity of these complexes was confirmed by elemental analysis.

Figure 5. 1. ORTEP drawing (50 \% probability ellipsoids) of complex 18

According to the crystal structure of complex 18, the palladium center has a square planar geometry, as expected for d^{8} metal centers. The ppc ligand adopts a N,O binding mode that includes one oxygen atom from the carboxylate arm, and nitrogen from one pyridine group of the ppc ligand, while the benzoylpyridine fragment adopts the expected N,C chelation mode with the aryl and pyridine groups. The Pd-N bond length $(2.135 \AA)$ trans to the aryl ligand is elongated due the strong trans influence of the aryl group, while the $\operatorname{Pd}-\mathrm{N}$ bond length ($2.001 \AA$) trans to the carboxylate oxygen atom is shorter. The carboxylate group has $\mathrm{C}-\mathrm{O}$ bond-lengths of $1.225 \AA$ and $1.285 \AA$, which is indicative of charge localization.

Figure 5. 2. Complex 19, showing the hydrogen atoms H_{a} and H_{b}.

The solution structure of complex 19 was determined using selective 1D difference NOE experiments, where irradiation of the H_{a} signal belonging to the ortho-Hydrogen of the pyridyl fragment of the 2-(3-methylbenzoyl)pyridine ligand and H_{b} signal belonging to the ortho-Hydrogen of the pyridyl fragment of the ppc ligand did not result in enhancement of any hydrogen signals. These results suggest that the solid state structure of these complexes may be maintained in solution.

Complexes 15-19 display broad ${ }^{1} \mathrm{H}$ NMR signals in deuterated acetic acid solvent, indicative of fluxional behavior. This behavior might arise due to alternating coordination and dissociation of the carboxylate arm of the ppc ligand and the pyridine group of the ppc ligand, which are slow in the NMR time scale (Scheme 5.9). The ${ }^{1} \mathrm{H}$ NMR signals of these complexes are however sharp and narrow in CDCl_{3} and dmso- d_{6} solvents, indicative of no fluxional behavior. The enhanced fluxional behavior in protic solvents is consistent with the ability of protic solvents to stabilize charge separation, such as in the zwitterionic complex $17_{\mathrm{N}-\mathrm{N}}$ (Scheme 5.9).

Scheme 5.9

The assignment of complexes $\mathbf{1 5 - 1 9}$ as neutral compounds is supported by the absence of acetate ligand in the NMR spectra collected in dmso- d_{6} or CDCl_{3}, the X ray structure of complex $\mathbf{1 9}$, and by the elemental analysis of these complexes.

The N,O binding mode exhibited by ppc ligand-derived complexes $\mathbf{1 5 - 1 9}$ is different from that exhibited by the dpk ligand-supported complexes 20-24, which
display a N, N binding mode (Scheme 5.10). This might be due to the preference of five-membered over six-membered chelates.

Scheme 5. 10

VS.

5.3 Reactivity of Palladacycles Supported by ppc Ligand, $15-19$ with $\mathrm{H}_{2} \underline{O}_{2}$ in Acetic

Acid

Treatment of ppc-derived complexes $\mathbf{1 5 - 1 9}$ with dilute aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature resulted in exothermic reactions and immediate color change from colorless to brown or deep yellow. ${ }^{1} \mathrm{H}$ NMR analysis of the reaction solutions revealed formation of intermediate products which gradually decomposed to produce the corresponding aryl acetate and sometimes phenol in total quantitative yield, and complex $\mathbf{3 0}$ as the only inorganic product of decomposition. The decomposition reaction was accompanied by color change from deep yellow to colorless or light yellow. The intermediates were not isolated and were characterized in solution by ${ }^{1} \mathrm{H}$ NMR spectroscopy and electrospray ionization mass spectrometry, while the products were characterized by independent synthesis or comparison of the ${ }^{1} \mathrm{H}$ NMR of known compounds to literature.

Scheme 5. 11

In the reaction of a 0.01 M solution of complex 15 in acetic acid with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature, ${ }^{1} \mathrm{H}$ NMR analysis revealed a fast and clean formation of a single product $\mathbf{2 5}$ within 10 minutes, accompanied by color change of the solution from colorless to deep brown (characterization of complex $\mathbf{2 5}$ will be discussed later). The ${ }^{1} \mathrm{H}$ NMR spectrum of this product exhibited 11 multiplets in the aromatic region with a pattern significantly different from both the starting complex and the final products. In particular, complex $\mathbf{2 5}$ exhibits narrow and sharp peaks, indicating loss of the fluxional behavior observed in the $\operatorname{Pd}(I I)$ precursor 15. The increased rigidity of $\mathbf{2 5}$ might arise due to coordination of both pyridine groups and the carboxylate arm of the ppc ligand upon reaction of complex 15 with $\mathrm{H}_{2} \mathrm{O}_{2}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 25, the singlet belonging to the methyl group of the oxime moiety is significantly shifted downfield to 2.50 ppm , relative to that of the $\operatorname{Pd}(\mathrm{II})$ precursor 15 whose methyl signal is observed at 2.17 ppm . A similar downfield shift is observed for the aromatic signals belonging to the oxime fragment of complex 25 relative to those of the $\operatorname{Pd}(\mathrm{II})$ precursor. The downfield shift of the ${ }^{1} \mathrm{H}$ NMR signals in the product of oxidation, complex $\mathbf{2 5}$ indicates a more electron deficient environment relative to that of the starting $\mathrm{Pd}(\mathrm{II})$ complex 15.

Figure 5. 3. Room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of (a) complex 15 in $\mathrm{AcOH}-\mathrm{d}_{4}$ (b) complex 25 in $\mathrm{AcOH}-\mathrm{d}_{4}$. The minor signals belong to products of decomposition.

Characterization of complex 25

The ESI-MS analysis of the reaction solution after combining an acetic acid solution of complex $\mathbf{1 5}$ with 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ displayed a major peak at m / z $=526.08683$ corresponding to the $\mathrm{Pd}(\mathrm{II})$ precursor +OAc group which was assigned to complex 25, and $\mathrm{m} / \mathrm{z}=544.0984$ corresponding to the $\mathrm{Pd}(\mathrm{II})$ precursor $+\mathrm{OAc}+$ $\mathrm{H}_{2} \mathrm{O}$ groups, which was assigned to complex 25 plus an additional water molecule. On the basis of ESI-MS analysis, the species observed by ${ }^{1} \mathrm{H}$ NMR was assigned to monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex 25, with has an acetato-ligated palladium center. This assignment is consistent with the ESI-MS signals observed at $\mathrm{m} / \mathrm{z}=526.0868$ and 544.0984.

DFT calculations were used to find the lowest energy structure among a variety of possible structures (Scheme 5.12).

Scheme 5. 12

In the DFT calculations, various possible structures were considered as presented in Scheme 5.12 above, with structure \mathbf{A} used as the reference point. The energies are given both in the gas phase and aqueous phase. The lowest energy structure was calculated where the ppc ligand adopts a facial chelation mode, involving coordination of an alkoxide group, which is produced upon deprotonation of the hydrated $\mathrm{C}=\mathrm{O}$ moiety. This biding mode is similar to that adopted by the dpk ligand as shown in Scheme 5.13 below.

Scheme 5. 13

(a) ppc-ligated complex

(b) dpk-ligated complex

In the reaction involving complex 15 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, one intermediate complex is detected by ${ }^{1} \mathrm{H}$ NMR, while the ESI-MS analysis gives mass envelopes belonging to two species, at $\mathrm{m} / \mathrm{z}=526.0868$ and 544.0984 , with the mass envelope at 544.0498 being significantly larger relative to that at 526.0868 . As a
result of the ESI-MS and ${ }^{1} \mathrm{H}$ NMR analysis, together with the DFT calculations, the assigned structure of complex 25 (Scheme 5.11) includes a facially chelating ppc ligand using the pyridine nitrogen atoms, and the oxygen atom of the alkoxide group produced upon hydration and deprotonation of the $\mathrm{C}=\mathrm{O}$ moiety. Facially chelating ligands have been found to stabilize $\operatorname{Pd}(\mathrm{IV})^{233}$ and $\mathrm{Pt}(\mathrm{IV})^{123}$ complexes. In addition, hydration of the $\mathrm{C}=\mathrm{O}$ group of the dpk ligand becomes more facile upon coordination to a $\operatorname{Pd}(\mathrm{II})$ center, while subsequent deprotonation provides an alkoxide that coordinates and stabilizes the $\operatorname{Pd}(\mathrm{IV})$ center. ${ }^{123,154,233}$ The assignment of complex 25 as an acetato-ligated organopalladium(IV) complex is also supported by its reactivity, where its decomposition in acetic acid solvent at room temperature produces the corresponding aryl acetate quantitatively. Since $\mathrm{C}-\mathrm{O}$ reductive elimination from organopalladium(IV) complexes has been proposed to take place a via 3-center 4electron transition state, ${ }^{45}$ both the aryl and acetate ligands are required to be coordinated onto the palladium center for this process to take place, and this supports our assignment of complex 25 as an acetato-ligated monohydrocarbyl Pd(IV) complex. This reductive elimination reactivity will be discussed in more detail later. The structure of complex $\mathbf{2 5}$ in solution was studied using 1D difference NOE experiment.

Figure 5. 4. NOE experiment of complex 25, showing the hydrogen atoms H_{a} and H_{b}.

In the 1D difference NOE experiment of complex $\mathbf{2 5}$ in deuterated acetic acid at room temperature, no NOE was observed between any hydrogen atoms in the molecule. Irradiation of resonance H_{b} at 6.96 ppm did not result in enhancement of any signals while irradiation of resonance H_{a} at 9.13 did not show enhancement of any signals either. As a result, complex $\mathbf{2 5}$ was assigned to the structure above.

Mechanism of oxidation of complex 15 to complex 25 with $\mathrm{H}_{2} \mathrm{O}_{2}$
Scheme 5. 14

The mechanism of oxidation of the ppc ligand-supported complex 15 was compared to that of its dpk ligand-supported counterpart, 20. The mechanism of oxidation of dpk ligand-supported $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ was studied experimentally and computationally, and was proposed to involve addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand to produce a hydroperoxide moiety. This is followed by nucleophilic attack by palladium onto the hydroperoxide group that results in heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond and formation of an alkoxy-ligated $\mathrm{Pd}(\mathrm{IV})$ complex.

Considering the N, O binding mode of the neutral ppc ligated $\mathrm{Pd}(\mathrm{II})$ complexes relative to the cationic dpk ligated complexes, the $\mathrm{Pd}(\mathrm{II})$ center in the former is considerably more nucleophilic, and as a result, a direct nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ onto $\mathrm{H}_{2} \mathrm{O}_{2}$ is possible. As a result, the reaction of the ppc ligated complex $\mathbf{1 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ may involve a direct nucleophilic attack of $\mathrm{Pd}($ II $)$ onto $\mathrm{H}_{2} \mathrm{O}_{2}$ as shown in Scheme 5.15 above, leading to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond and formation of a hydroxy ligated $\mathrm{Pd}(\mathrm{IV})$ complex 33. Ligand substitution of this complex in acetic acid solvent may lead to formation of the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 25 which was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and detected by electrospray ionization mass spectrometry. A similar mechanism for the oxygenation of cyclopalladated N, N dimethylbenzylamine complexes by tert-butyl hydroperoxide was reported by Van Koten and co-workers (Scheme 5.16). ${ }^{120}$ On the basis of kinetic studies where the oxygenation reaction was observed to be strongly enhanced by increasing the nucleophilicity of the metal center, a mechanism of oxygenation that involves nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ on a tert-butyl alcohol oxide was proposed. This attack leads to formation of a transient $\mathrm{Pd}(\mathrm{IV})$ oxo species and a neutral alcohol leaving group. Insertion of oxygen into the $\mathrm{Pd}-\mathrm{C}$ bond produces the observed oxapalladacycle.

Scheme 5.16

However, given that the analogous neutral acetophenone oxime-derived acetato-bridged $\mathrm{Pd}(\mathrm{II})$ complexes do to undergo oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solvent, we propose that the carbonyl group present in the ppc ligand is important in the reactivity of the ppc ligated complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$. As a result, the mechanism involving direct electrophilic attack of $\mathrm{H}_{2} \mathrm{O}_{2}$ onto the central $\mathrm{Pd}(\mathrm{II})$ atom will not be considered, and a mechanism that involves addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ onto the $\mathrm{C}=\mathrm{O}$ group of the ppc ligand will be considered (Scheme 5.17).

Scheme 5. 17

We therefore propose that the reactivity of the ppc ligated $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ may be similar to that of the dpk ligated $\mathrm{Pd}(\mathrm{II})$ complexes, where the $\mathrm{C}=\mathrm{O}$ group of the ligand brings the peroxo oxidant in close proximity to the $\mathrm{Pd}(\mathrm{II})$ center. Thus, addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to the $\mathrm{C}=\mathrm{O}$ group of the ppc ligand in complex $\mathbf{1 5}$ produces the corresponding hydroperoxide adduct $\mathbf{3 4}$, where a complex with a matching mass envelope at $\mathrm{m} / \mathrm{z}=502.0277$ was detected by ESI-MS (calculated for $\left.\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=502.0230\right)$. Nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ onto the hydroperoxide moiety results in heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond and formation of alkoxo-
ligated $\mathrm{Pd}(\mathrm{IV})$ complex 35. Isomerization of complex 35 in acetic acid produces complex 25.

However, considering the strained nature of complex 35, we propose that a different mechanism may be operative.

Scheme 5.18

Given that complex $\mathbf{1 5}$ was observed to undergo a slow equilibrium between the N, O and the N, N coordination modes of the ppc ligand in protic solvents, the N, N coordination complex $\mathbf{1 5}_{\mathrm{N}-\mathrm{N}}$ may be more reactive towards addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond because coordination of both pyridine groups onto the $\mathrm{Pd}(\mathrm{II})$ center enhances the electrophilicity of the central $\mathrm{C}=\mathrm{O}$ group, relative to the N, O coordination mode. A similar enhanced electrophilicity of the $\mathrm{C}=\mathrm{O}$ group of the 2dipyridylketone ligand was reported upon N, N coordination onto $\mathrm{M}(\mathrm{II})(\mathrm{M}=\mathrm{Pd}$ or Pt). ${ }^{154}$ Consequently, we propose a mechanism of oxidation that involves addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand of complex 15 to produce the hydroperoxide adduct 36 (Scheme 5.18). Although this complex was not detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy, a complex with a matching mass envelope was detected via ESI-MS at $\mathrm{m} / \mathrm{z}=502.0277$ (calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=502.0230$). Moreover, addition of a molecule of methanol across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand in complex 15 has been observed by ESI-MS at $\mathrm{m} / \mathrm{z}=500.0585$ (calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}^{106}$
$=500.0438$), indicating that the addition of nucleophiles across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand is possible. Nucleophilic attack of palladium(II) onto the hydroperoxide moiety leads to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond, and produces the acetatoligated $\operatorname{Pd}(I V)$ complex 25, which was observed by ${ }^{1} \mathrm{H}$ NMR and detected by ESIMS.

Scheme 5. 19

The reactivity of the ppc ligand-supported organopalladium(II) complex $\mathbf{1 5}$ towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid was compared to that of the dpk ligandsupported organopalladium(II) complex 20 under similar conditions. In contrast to the reactivity of ppc ligand-supported complex 15 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid where the acetato-ligated organopalladium(IV) complex 25 was produced, the dpk ligandsupported organopalladium(II) analogue 20 reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid to produce the hydroxo ligated organopalladium(IV) complex 32. The reaction of complex 20 with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid to produce complex 32 at room temperature took ~ 4 minutes for complete conversion to take place. The characterization of complex $\mathbf{3 2}$ has been reported in chapter $2 .{ }^{233}$

Given that the ppc ligand-supported complex $\mathbf{1 5}$ reacts with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature to produce the corresponding monohydrocarbyl Pd(IV) complex 25 in ~ 10 minutes, while the dpk ligandsupported complex 20 reacts with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce the corresponding monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{3 2}$ in under 4 minutes under similar conditions, this indicates that dpk-ligated $\mathrm{Pd}(\mathrm{II})$ complexes undergo oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ at a faster rate than analogous ppc-ligated complexes. The lower oxidation rate of the ppc ligated complex $\mathbf{1 5}$ may be due to the equilibrium between the N, O and the N,N ppc ligand coordination modes adopted by this complex in protic solvents. Given that the N, N ligated ppc complex $\mathbf{1 5}_{\mathrm{N}-\mathrm{N}}$ is more reactive towards addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ relative to the N, O ligated complex $\mathbf{1 5}_{\mathrm{N}-\mathrm{o}}$, the overall oxidation rate of this complex depends on the fraction of $\mathbf{1 5}_{\mathrm{N}-\mathrm{N}}$ in solution, which in turn depends on the equilibrium between the two complexes. On the other hand, the dpk-ligated complex 20 reacts faster because the complex is active towards $\mathrm{H}_{2} \mathrm{O}_{2}$ addition.

Decomposition of monohydrocarbyl Pd(IV) complex 25 in acetic acid

Scheme 5. 21

The monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complex 25 gradually decomposes in acetic acid at room temperature in under 2 hours to generate the corresponding aryl acetate 38 quantitatively, with complex $\mathbf{3 0}$ as the only inorganic product of decomposition. The decomposition reaction was accompanied by gradual color change from deep brown to light yellow. The aryl acetate product $\mathbf{3 8}$ was isolated by removal of the solvent and extraction with diethyl ether. This compound was independently synthesized according to literature procedures for palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ oxidant. ${ }^{50}$ Complex 30 was also independently synthesized and characterized fully, including NMR, ESI-MS, and Xray diffraction, while its purity was confirmed by elemental analysis. The preparation of complex $\mathbf{3 0}$ will be described later.

Figure 5. 5. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of (a) Acetic solution of complex $\mathbf{2 5}$, (b) acetic acid solution of a mixture of products of decomposition, aryl acetate $\mathbf{3 8}$ and inorganic product 30 .

The decomposition reaction of complex $\mathbf{2 5}$ in acetic acid at room temperature was monitored by ${ }^{1} \mathrm{H}$ NMR. This complex was prepared in situ via the reaction of complex 15 with 5.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$. The plot for the fraction of the organopalladium(II) precursor 15, the organopalladium(IV) complex 25, and the aryl acetate product $\mathbf{3 8}$, as a function of time is given below. The plot for $\ln \left([\mathbf{2 5}]_{o} /[\mathbf{2 5}]_{\mathrm{t}}\right)$ as a function of time is also presented below, where $[\mathbf{2 5}]_{0}$ refers to the initial concentration of complex $\mathbf{2 5}$, while $[\mathbf{2 5}]_{\mathrm{t}}$ refers to the concentration of complex $\mathbf{2 5}$ at a time t. This plot was found to be linear, with observed rate constant of $(2.21 \pm$ $0.07) * 10^{-2} \mathrm{~min}^{-1}$.

Figure 5. 6. (a) Kinetics plot for the reaction mixture containing 0.010 M acetic acid solution of complex 15 and 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, showing the fraction of the starting complex 15, the organopalladium(IV) complex 25, and aryl acetate product 38, as a function of time; (b) Plot for the $\ln \left([25]_{\mathrm{o}} /[25]_{\mathrm{t}}\right)$ vs. time in acetic acid at room temperature.

The decomposition of the ppc ligand-supported organopalladium(IV) complex $\mathbf{2 5}$ was compared to that of dpk ligand-supported organopalladium(IV) complex $\mathbf{3 2}$ in acetic acid.

Scheme 5. 22

When the decomposition of an acetic acid solution of complex $\mathbf{3 2}$ was monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, $\sim 60 \%$ conversion of complex 32 was observed after 3 hours. At the end of the reaction, multiple new peaks appeared in the ${ }^{1} \mathrm{H}$ NMR indicating multiple products. ESI-MS analysis of the solution showed the presence of the corresponding phenol 40, and the aryl acetate $\mathbf{3 8}$ products. This reaction was however simpler, generating the corresponding N -acetoxy aryl acetate
and $\mathrm{Pd}(\mathrm{II})$ complex 41 as the only products when performed in the presence of acetic anhydride.

Given that quantitative decomposition of ppc ligand-supported organopalladium(IV) complex $\mathbf{2 5}$ in acetic acid at room temperature to produce the corresponding aryl acetate and the $\mathrm{Pd}(\mathrm{II})$ complex 30 took less than 2 hours, while only $\sim 60 \%$ decomposition of complex 32 was observed in 3 hours, this indicates that the ppc supported organopalladium(IV) complexes are kinetically less stable than their dpk supported counterparts. This might be due to the presence of the carboxylic acid functionality on the ppc ligand. Given that dpk-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes have been proposed to undergo $\mathrm{C}-\mathrm{O}$ reductive elimination in acetic acid from a 5 coordinate intermediate produced upon pyridine group dissociation (Scheme 5.23), ${ }^{233}$ we propose that the enhanced reactivity of the ppc-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes is due to the electron-withdrawing carboxylic acid functionality present on the ppc ligand, which accelerates pyridine group dissociation to generate the reactive 5-coordinate intermediate.

Scheme 5. 23

Scheme 5. 24

The reaction of complex 16 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid was similar to that of complex 15. Addition of 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a 0.010 M acetic acid solution of complex 16 led to an exothermic reaction and color change of the solution from colorless to deep red, but the reaction was too slow. Complete conversion of the organopalladium(II) complex $\mathbf{1 6}$ had not taken place after 30 minutes. Decomposition of the $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{2 6}$ was simultaneously observed under the reaction conditions. As a result, 9.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were used to achieve a faster reaction in order be able to characterize the corresponding product of oxidation. When a 0.010 M acetic acid solution of complex $\mathbf{1 6}$ was combined with 9.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature, color change from a colorless to deep red solution was observed with cleaner generation of the product of oxidation, as determined by ${ }^{1} \mathrm{H}$ NMR, in ~ 10 minutes. The ${ }^{1} \mathrm{H}$ NMR resonances belonging to the new species are narrow and sharp relative to the $\mathrm{Pd}(\mathrm{II})$ precursor 16, indicative of no fluxional behavior. In addition, ${ }^{1} \mathrm{H}$ NMR signal belonging to the methyl group of the new species is shifted downfield to 2.48 ppm , relative to that in the $\mathrm{Pd}(\mathrm{II})$ precursor $\mathbf{1 6}$ at 2.21 ppm . The same downfield shift is observed for the aromatic resonances belonging to the oxime moiety, indicating that the product of oxidation is in a more deshielded environment.

Figure 5. 7. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 16 and (b) complex 26 at room temperature. This spectrum also shows some products of decomposition.

The ESI-MS analysis of this reaction solution after combining an acetic acid solution of complex 16 with 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ displayed major signals at m / z $=594.0907$, which was assigned to complex 26, and 612.0220 which was assigned to complex 26 with one $\mathrm{H}_{2} \mathrm{O}$ molecule. Consequently, the product observed by ${ }^{1} \mathrm{H}$ NMR upon combining an acetic acid solution of complex 16 with $\mathrm{H}_{2} \mathrm{O}_{2}$ was assigned as organopalladium(IV) complex 26. The structure of complex 26 is proposed to be similar to that of complex $\mathbf{2 5}$ due to the similar structure of the $\mathrm{Pd}(\mathrm{II})$ precursors $\mathbf{1 5}$ and 16.

The mechanism of oxidation of this complex is similar to that of complex 15, where addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of $\mathbf{1 6}_{\mathrm{N}-\mathrm{N}}$ produces a hydroperoxo adduct 42 (Scheme 5.25). A matching mass envelope was detected by ESI-MS at m / z $=570.0174$ (calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=570.0104$). Addition of MeOH across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand has also been observed by ESI-MS at $\mathrm{m} / \mathrm{z}=$
568.0379 (calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}^{106}=568.0312$), indicating that addition of nucleophiles across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand in this complex is possible. Nucleophilic attack of $\operatorname{Pd}(\mathrm{II})$ onto the hydroperoxide moiety results in heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond and produces an alkoxide ligated $\mathrm{Pd}(\mathrm{IV})$ complex 26, which was detected by both ${ }^{1} \mathrm{H}$ NMR spectroscopy and ESI-MS.

Scheme 5. 25

The reactivity of the ppc ligand-supported organopalladium(II) complex 16 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid was compared to that of dpk ligand-supported organopalladium(II) complex 21 under similar conditions. The reaction of an acetic acid solution of the dpk ligand-supported organopalladium(II) complex 21 with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ generates the corresponding organopalladium(IV) complex 44 in under 10 minutes. The characterization of complex 44 has been reported in chapter $2 .^{233}$

Scheme 5. 26

Given that the reaction between the ppc-supported organopalladium(II) complex $\mathbf{1 6}$ with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature does not
undergo full conversion in over 30 minutes, while the reaction of the dpk-supported $\mathrm{Pd}(\mathrm{II})$ complex 21 with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ under similar conditions undergoes full conversion in under 10 minutes, this indicates that the ppc ligated $\operatorname{Pd}(\mathrm{II})$ complexes are less reactive towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ relative to their dpk-ligated $\operatorname{Pd}(\mathrm{II})$ counterparts. This might be due to the equilibrium between the $\mathrm{N}-\mathrm{N}$ and the $\mathrm{N}-\mathrm{O}$ ppc-ligated complexes, where the overall rate of oxidation depends on the fraction of the reactive $\mathrm{N}-\mathrm{N}$ isomer in solution as described previously (Scheme 5.25).

Study of the electronics effects in the oxidation of complexes 15 and 16 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid

The electronics of the reaction between ppc ligated $\mathrm{Pd}(\mathrm{II})$ complexes and $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solvent were also investigated. Considering that the reaction between para-trifluoromethyl substituted acetophenone oxime-derived complex 16 with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature does not reach full conversion in over 30 minutes, while that of the acetophenone oxime-derived complex $\mathbf{1 5}$ with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ under similar conditions takes ~ 10 minutes for complete conversion of the organopalladium(II) complex to take place, the slower rate of reaction of complex $\mathbf{1 6}$ may be a result of the electron-withdrawing trifluoromethyl substituent present in complex 16. Since the oxidation reaction has been proposed to involve addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ group of the ppe ligand, followed by nucleophilic attack of the $\mathrm{Pd}(\mathrm{II})$ center on the electrophilic HOOR group of the hydroperoxide adduct, the electron-withdrawing substituent $-\mathrm{CF}_{3}$ decreases the
electron density of the $\mathrm{Pd}(\mathrm{II})$ center. This favors addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand, while it inhibits the nucleophilic attack of the $\mathrm{Pd}(\mathrm{II})$ on the HOOR moiety. Since the trifluoromethyl substituted $\operatorname{Pd}(I I)$ complex 16 is less reactive than the unsubstituted complex 15, we propose that the nucleophilic attack of $\operatorname{Pd}(\mathrm{II})$ on the HOOR group has been inhibited to a greater extent by the presence of the $-\mathrm{CF}_{3}$ group.

Decomposition of complex $\mathbf{2 6}$ in acetic acid

Scheme 5.27

Similar to the decomposition of complex 25 in acetic acid at room temperature, complex $\mathbf{2 6}$ gradually decomposes in acetic acid at room temperature to produce the corresponding aryl acetate $\mathbf{4 5}$ as the only organic product and the $\mathrm{Pd}(\mathrm{II})$ complex 30 quantitatively, accompanied by color change from deep brown to pale yellow. This decomposition reaction was complete in less than 70 minutes. Compound 45 was isolated by removal of solvent and extraction with diethyl ether. The identity of compound $\mathbf{4 5}$ was confirmed by independent synthesis via literature procedures of palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bond using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant, ${ }^{50}$ while the synthesis and characterization of complex 30 has been described.

Figure 5. 8. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for: (a) Acetic solution of complex 26 (b) acetic acid solution of products of decomposition, including aryl acetate 45 and inorganic product 30.

Scheme 5. 28

The reactivity of the ppc ligand-supported organopalladium(IV) complex 26 towards $\mathrm{C}-\mathrm{O}$ bond coupling in acetic acid was compared to that of dpk ligandsupported organopalladium(IV) complex 44 under similar conditions. Decomposition of an acetic acid solution of complex 44 at room temperature led to formation of multiple products by ${ }^{1} \mathrm{H}$ NMR and ESI-MS, including the corresponding phenol and aryl acetate. However decomposition of an acetic acid solution of complex 44 at room temperature in the presence of 10% acetic anhydride by volume led to clean formation of the corresponding N -acetoxylated aryl acetate 46 in $>95 \%$ yield. This
reaction was however very slow, where 65% conversion was observed in ~ 16 hours. This indicates that the decomposition of the dpk ligand-supported organopalladium(IV) complex 44 in acetic acid is slower than that of ppe ligand supported $\mathrm{Pd}(\mathrm{IV})$ complexes.

A similar high reactivity for analogous ppc ligated complex $\mathbf{2 5}$ relative to its dpk ligated analogue 32 was observed, and this was proposed to result from the electron-withdrawing carboxylic acid functionality of the ppc ligand, which accelerates dissociation of the pyridine group, and this in-turn accelerates the overall $\mathrm{C}-\mathrm{O}$ reductive elimination reaction relative to the dpk-ligated complex 44.

Study of the electronic effects in the decomposition of complexes 25 and 26 at room temperature, in acetic acid

The electronic effects of ppc-ligated organopalladium(IV) complexes towards decomposition were also studied. The unsubstituted acetophenone oxime derived Pd(IV) complex 25 was observed to undergo complete decomposition in 2 hours while the $-\mathrm{CF}_{3}$ substituted acetophenone oxime derived $\mathrm{Pd}(\mathrm{IV})$ complex 26 was observed to undergo complete decomposition in under 70 minutes. This indicates that the more electron-deficient complex 26 is more reactive towards $\mathrm{C}-\mathrm{O}$ reductive elimination than complex 25, presumably as a result of the electron-withdrawing CF3 group on the aryl ring. In the study of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}$ reductive elimination at diaryl dicarboxylato $\mathrm{Pd}(\mathrm{IV})$ complexes, ${ }^{57,58}$ Sanford and co-workers observed faster $\mathrm{C}-\mathrm{O}$ reductive elimination reactions when electron-rich benzoate ligands and electron-poor arylpyridine fragments were employed, suggesting that the carboxylate ligands act as
nucleophilic coupling partners while the aryl rings act as electrophilic coupling partners in the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction. Similarly, the aryl ligand might act as electrophilic coupling partner while the carboxylate ligand might as nucleophilic coupling partner in our system. As a result, the electron-withdrawing CF_{3} group increases the electrophilicity of the aryl ring, and this in turn increases the reaction rate of complex 26 relative to complex 25.

5.3.3 Reactivity of Complex $\mathbf{1 7}$ with $\mathrm{H}_{2} \underline{O}_{2}$ in Acetic Acid at Room Temperature

Scheme 5. 29

The reaction of complex $\mathbf{1 7}$ in acetic acid was slow when 3.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was used, where $\sim 45 \%$ conversion was observed in ~ 30 minutes, and as a result 20 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were used instead. Addition of 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a 0.010 M acetic acid solution of complex 17 resulted in color change from light yellow to orange. ${ }^{1} \mathrm{H}$ NMR monitoring of this reaction several minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ revealed slow formation of one major product of oxidation whose structure was assigned as 48. The ${ }^{1} \mathrm{H}$ NMR resonances belonging to the product of oxidation are narrow and sharp relative to the $\mathrm{Pd}(\mathrm{II})$ precursor, indicative of no fluxional behavior. The reaction was very slow however, where 65% conversion of the organopalladium(II) complex was observed in ~ 8 hours, but the reaction was complete within two days at room temperature.

Figure 5. 9. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 17 and (b) a mixture of complexes 17 and 48 at room temperature.

Figure 5. 10. ESI-MS spectrum of acetic acid solution of a mixture of complexes 17 and $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature.

The ESI-MS analysis of the solution produced upon combining a 0.010 M acetic acid solution of complex $\mathbf{1 7}$ with 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ displayed major peaks at $\mathrm{m} / \mathrm{z}=518.0517$ which corresponds to the $\mathrm{Pd}(\mathrm{II})$ precursor plus OH and $\mathrm{H}_{2} \mathrm{O}$
groups assigned to complex $47, \mathrm{~m} / \mathrm{z}=560.0545$ corresponding to the $\mathrm{Pd}(\mathrm{II})$ precursor plus OAc group which was assigned to complex 49, and $\mathrm{m} / \mathrm{z}=578.0436$ corresponding to the $\mathrm{Pd}(\mathrm{II})$ precursor plus OAc and $\mathrm{H}_{2} \mathrm{O}$ groups which was assigned to complex 48 (Fig. 5.10).

Given that one major product of oxidation was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy during the oxidation of complex 17 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic, while three products were detected by ESI-MS of the same reaction solution, the product observed via ${ }^{1} \mathrm{H}$ NMR spectroscopy could either be a hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 47 or an acetato-ligated organopalladium(IV) complex 48 or 49 . Since similar ppc ligand-supported complexes $\mathbf{1 5}$ and $\mathbf{1 6}$ react with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solvent to produce acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes 25 and 26 respectively as the major products, the major product of oxidation of complex 17 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, as observed via ${ }^{1} \mathrm{H}$ NMR spectroscopy is assigned to the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 48 or 49. In addition, formation of the hydroxo-ligated $\operatorname{Pd}(I V)$ complex 47 requires the presence of water in the reaction solution. However the concentration of water in this system is not sufficient to produce complex 47 as the major product. In order to distinguish between complexes 48 and 49, DFT calculations were undertaken, where complexes with the structure of $\mathbf{4 8}$ were found to be lower in energy than complexes with the structure of 49 (this analysis was described previously). As a result, the product of oxidation of complex 17 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid was assigned to 48.

Similar to the mechanism proposed for the oxidation of acetophenone oxime derived $\mathrm{Pd}(\mathrm{IV})$ complexes $\mathbf{1 5}$ and $\mathbf{1 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$, the oxidation of complex $\mathbf{1 7}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ is proposed to involve addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ group of the ppc ligand of the N, N ligated isomer $\mathbf{1 7}_{\mathrm{N}-\mathrm{N}}$ to produce the hydroperoxide complex $\mathbf{3 6}$ (Scheme 5.30). A complex with a matching mass envelope was detected by ESI-MS at $\mathrm{m} / \mathrm{z}=$ 536.0282 (calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}^{106}=536.0438$), while addition of $\mathrm{H}_{2} \mathrm{O}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand of complex 17 has also been observed by ESI-MS at $\mathrm{m} / \mathrm{z}=520.0528$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}^{106}=520.0489$), indicating that addition of nucleophiles across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand is possible. The hydroperoxide adduct $\mathbf{3 6}$ could undergo nucleophilic attack by $\mathrm{Pd}(\mathrm{II})$, leading to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond, thereby giving the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 48, where a matching mass envelope was detected via ESI-MS at $\mathrm{m} / \mathrm{z}=578.0522$ (calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=578.0538$). Nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ on the peroxo adduct in the presence of water might also produce complex 47, which was detected by ESIMS at $\mathrm{m} / \mathrm{z}=518.0438$. Given that ~ 20.0 equivalents of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ were used for this oxidation reaction, complex 47 might be produced from water added with the oxidant.

1D difference NOE experiments were performed to determine the structure of this complex in solution.

1D difference NOE experiment of complex 48 was performed in deuterated acetic acid at room temperature. No NOE was observed between any hydrogen atoms in the molecule. Irradiation of the singlet H_{c} at 6.21 ppm did not result in enhancement of any signals while irradiation of doublets H_{b} and H_{a} at 9.09 ppm and 9.45 ppm did not show enhancement of any signals either.

Scheme 5.31

The reaction of the ppc ligand-supported, tolylpyridine-derived organopalladium(II) complex $\mathbf{1 7}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature was compared to the reaction of dpk ligand-supported organopalladium(II) complex 22 with $\mathrm{H}_{2} \mathrm{O}_{2}$ under similar conditions. When a 0.010 M acetic acid solution of complex 22 was combined with 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, both hydroxo- and acetato-ligated organopalladium(IV) complexes $\mathbf{5 1}$ and $\mathbf{5 1}$ were produced, but the reaction was slow where $\sim 60 \%$ conversion was observed in ~ 30 minutes. Ultimately, the corresponding phenol and aryl acetate products were produced in a 25% and 71% yields respectively.

Given that the reaction between 0.010 M acetic acid solution of the ppc ligand-derived complex 17 with 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature was very slow, where $\sim 65 \%$ conversion was observed in ~ 8 hours, while the reaction between a 0.010 M acetic acid solution of the dpk ligand-supported complex $\mathbf{2 2}$ with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was faster, where 60% conversion of the organopalladium(II) complex was observed in ~ 30 minutes, this indicates that dpkligated $\mathrm{Pd}(\mathrm{II})$ complexes undergo oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ at a faster rate relative to ppcligated $\mathrm{Pd}(\mathrm{II})$ complexes. The low reactivity of the ppc-ligated $\mathrm{Pd}(\mathrm{II})$ complexes has been proposed to result from the equilibrium between the $\mathrm{N}-\mathrm{N}$ and the $\mathrm{N}-\mathrm{O}$ ppcligated palladacycles, where the overall oxidation rate is dependent on the fraction of the $\mathrm{N}-\mathrm{N}$ coordination isomer in solution; no such equilibrium exists in the dpkligated complexes leading to faster oxidation reaction as described previously.

Decomposition of a mixture of complex 48 in acetic acid

Scheme 5. 32

Complex 48 decomposed in acetic acid at room temperature to generate the corresponding phenol 52 in 45% yield and aryl acetate 53 in 52% yield. However due to the slow oxidation reaction, the kinetics of the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction could not be studied. This is due to the slow oxidation reaction, where the organopalladium(IV) complexes were produced in the presence of the products of C -

O bond coupling, and the $\mathrm{Pd}(\mathrm{II})$ precursor. Complete conversion of 17 to the corresponding aryl acetate and phenol products was observed after 2 days. At the end of the reaction, the color of the solution had changed from orange to colorless, after addition of pyridine to free coordinated products. The organic products $\mathbf{5 2}$ and $\mathbf{5 3}$ were isolated by removal of solvent under vacuum and extraction with diethyl ether. The identity of the phenol $\mathbf{5 2}$ was confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum to literature publication, ${ }^{83}$ while the identity of aryl acetate 53 was confirmed by independent synthesis.

Figure 5. 11. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for (a) Acetic solution of organopalladium(IV) complex 48 in the presence of organopalladium(II) precursor 17; (b) acetic acid solution of the products of decomposition, including the aryl acetate 53, phenol 52, and inorganic product 30, in the presence of pyridine- d_{5} added to free coordination products.

Scheme 5. 33

The $\mathrm{C}-\mathrm{O}$ reductive elimination reactivity of organopalladium(IV) complexes supported by the ppc ligand were compared to the reactivity of the dpk ligand supported counterparts under similar conditions. The reaction between the organopalladium(II) complex 22 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature generates the hydroxo- and the acetato-ligated organopalladium(IV) complexes $\mathbf{5 0}$ and 51, which were both observed by ${ }^{1} \mathrm{H}$ NMR and detected by ESI-MS. The oxidation reaction is slow, and thus the $\operatorname{Pd}(\mathrm{IV})$ complexes 50 and $\mathbf{5 1}$, and the organopalladium(II) complex 22 were observed simultaneously in comparable amounts. As a result, the $\mathrm{Pd}(\mathrm{IV})$ complexes could not be characterized cleanly, and the reductive elimination kinetics could not be studied. However the decomposition of complexes $\mathbf{5 0}$ and $\mathbf{5 1}$ in acetic acid solvent produced the corresponding products of C-O reductive elimination, $\mathbf{5 2}$ and $\mathbf{5 3}$ in 25% and 71% yield respectively after two days.

Consequently, the $\mathrm{C}-\mathrm{O}$ reductive elimination reactivity from ppc ligandsupported organopalladium(IV) complexes and dpk ligand-supported organopalladium(IV) complexes could not be compared because these complexes are not produced cleanly.

Scheme 5. 34

18
In the reaction between an acetic acid solution of complex 18 and 4.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}, 28 \%$ conversion of complex $\mathbf{1 8}$ was observed in 10 minutes. In order to increase the reaction rate, 27 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were used. The combination of a 0.010 M acetic acid solution of complex $\mathbf{1 8}$ with 27.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to color change of the solution from light yellow to deep yellow, accompanied by gradual formation of a brown precipitate. When this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, two products of oxidation were observed upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\sim 70 \%$ and 20% yields relative to an internal standard. The ${ }^{1} \mathrm{H}$ NMR resonances belonging to these products are narrow and sharp relative to the $\mathrm{Pd}(\mathrm{II})$ precursor. The aromatic resonances belonging to the major product of oxidation are shifted downfield relative to the $\operatorname{Pd}(\mathrm{II})$ precursor, indicating a more deshielded environment. However the resonances belonging to the minor product of oxidation are not significantly shifted downfield relative to the $\mathrm{Pd}(\mathrm{II})$ precursor, indicative of less deshielding. In order to determine the identity of these products of oxidation, ESI-MS analysis was performed.

Figure 5. 12. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 18 and (b) a mixture of complexes 54 and $\mathbf{5 5}$ at room temperature.

Figure 5. 13. ESI-MS analysis of an acetic acid solution of complex 18 upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

ESI-MS analysis of the reaction solution produced upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to an acetic acid solution of complex $\mathbf{1 8}$ displayed a major mass envelope at $\mathrm{m} / \mathrm{z}=$ 592.0281, which corresponds to the $\mathrm{Pd}(\mathrm{II})$ precursor plus additional OAc^{-}and $\mathrm{H}_{2} \mathrm{O}$ molecules assigned to complex 55, and minor mass envelopes at $\mathrm{m} / \mathrm{z}=550.0190$, which corresponds to the mass of the $\mathrm{Pd}(\mathrm{II})$ precursor $\mathbf{1 8}$ plus additional OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ groups assigned to complex 56, and $\mathrm{m} / \mathrm{z}=574.0285$ which corresponds to the $\mathrm{Pd}(\mathrm{II})$ precursor $\mathbf{1 8}$ plus additional OAc^{-}, assigned to complex 57 (Fig. 5.13). The ESI-MS analysis indicates that both hydroxo-ligated Pd(IV) complex 56 and acetatoligated $\mathrm{Pd}(\mathrm{IV})$ complexes 55 and 57 are produced when an acetic acid solution of complex $\mathbf{1 8}$ is combined with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature. As a result, the two products of oxidation detected via ${ }^{1} \mathrm{H}$ NMR are assigned to organopalladium(IV) complexes $\mathbf{5 6}, \mathbf{5 5}$ and/ or $\mathbf{5 7}$. This assignment is supported by the reactivity of these complexes, where decomposition of these products of oxidation in acetic acid at room temperature produces the corresponding phenol $\mathbf{6 0}$ and aryl acetate 61, indicating the presence of hydrocarbyl and -OR ligands on the palladium coordination sphere, since $\mathrm{C}-\mathrm{O}$ reductive elimination reactions are proposed to take place via a 3-center, 4-electron transition state (the decomposition reaction will be discussed in greater details in the following sections). The major oxidation product was assigned to the acetato-ligated complex 55 or 57 based on the ESI-MS, where the major mass envelope detected at $\mathrm{m} / \mathrm{z}=592.0281$ corresponds to the acetoxyligated complex (Fig. 5.13). In addition, formation of the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 56 requires the presence of water in the reaction solution. However the concentration of water in this system is not sufficient to produce complex 56 as the
major product. Still, similar ppc-ligated $\mathrm{Pd}(\mathrm{II})$ complexes $\mathbf{1 5 - 1 7}$ react with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid to produce the acetato-ligated $\operatorname{Pd}(\mathrm{IV})$ complexes as major products of oxidation. The structure of the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex was assigned to $\mathbf{5 5}$ based on DFT calculations on similar ppc-ligated Pd(IV) complexes, where complexes with the structure of $\mathbf{5 5}$ were found to be lower in energy than complexes with the structure of 57. (this analysis was described previously).

Therefore in summary, the oxidation of complex $\mathbf{1 8}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature produces the acetato-ligated Pd(IV) complex $\mathbf{5 5}$ as the major product and the hydroxo-ligated $\operatorname{Pd}(I V)$ complex $\mathbf{5 6}$ as the minor product.

Scheme 5.35

Similar to the oxidation of complex 15, 16, and 17 discussed previously, the oxidation of complex 18 with $\mathrm{H}_{2} \mathrm{O}_{2}$ could proceed via addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand of the N, N coordinated complex to produce the hydroperoxo adduct 54; this intermediate was not observed by ${ }^{1} \mathrm{H}$ NMR, but a matching mass envelope was detected by ESI-MS at $\mathrm{m} / \mathrm{z}=550.0190$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=550.0230$). In addition, the $\mathrm{C}=\mathrm{O}$ group of the ppc ligand of complex 18 has been observed to undergo nucleophilic attack by $\mathrm{H}_{2} \mathrm{O}$ to generate the corresponding hydrated complex observed by ESI-MS at $\mathrm{m} / \mathrm{z}=534.0340$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}^{106}=534.0281$). Nucleophilic attack of the hydroperoxide moiety by the $\mathrm{Pd}(\mathrm{II})$ center leads to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond to produce the
acetato-ligated $\operatorname{Pd}(I V)$ complex 55 , where a complex with a matching mass envelope was detected at $\mathrm{m} / \mathrm{z}=592.0281$ (calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}^{106}=592.0336$). The hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 56, where a matching mass envelope was detected at $\mathrm{m} / \mathrm{z}=550.0190$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=550.0230$), might be produced via nucleophilic attack of the $\operatorname{Pd}(\mathrm{II})$ center on the hydroperoxide moiety in the presence of water. In this reaction, water comes from the $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidant, where 27.0 equivalents of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ were used.

Scheme 5.36

The reactivity of ppc ligand-supported complex $\mathbf{1 8}$ with 4.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature was compared to that of dpk ligandsupported complex 23 with $\mathrm{H}_{2} \mathrm{O}_{2}$ under similar conditions. When a 0.010 M acetic acid solution of complex 23 was combined with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature, the corresponding acetato-ligated organopalladium(IV) complex $\mathbf{5 9}$ was produced within 5 minutes. The characterization of this complex has been reported in chapter $2 .{ }^{233}$

Given that the reaction of the dpk ligand-supported organopalladium(II) complex 23 with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid at room temperature was complete within 5 minutes, while the reaction between the ppc ligand-supported organopalladium(II) complex $\mathbf{1 8}$ and 4.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was extremely slow with 28% conversion observed in ~ 10 minutes, this indicates that the ppc ligand-
supported complex 18 undergoes oxidation at a slower rate than the dpk ligandsupported complex 23. As has been discussed previously, the slower reactivity of the ppc-ligated complexes might be due to the equilibrium between the reactive $\mathrm{N}-\mathrm{N}$ vs. the less reactive $\mathrm{N}-\mathrm{O}$ ligated isomers, while no such equilibrium exists for the dpkligated complexes.

Decomposition of the organopalladium(IV) complexes 55 and 56

Scheme 5. 37

55

30

R=H, 60
$\mathrm{R}=\mathrm{Ac}, 61$

When an acetic acid solution of complexes 55 and 56 was left at room temperature, formation of the corresponding phenol 60 and aryl acetate 61 was observed in 56% and 41% respectively within two days (Scheme 5.37). The generation of phenol and aryl acetate products from the decomposition of complexes 55 and 56 supports our assignment of the two intermediates as hydroxo- and acetatoligated organopalladium(IV) complexes, given that $\mathrm{C}-\mathrm{O}$ reductive elimination from $\operatorname{Pd}(\mathrm{IV})$ complexes has been proposed to take place via a 3-center, 4-electron transition state, ${ }^{45}$ indicating that the hydroxo, acetato, and hydrocarbyl groups ought to be present on the palladium coordination sphere for this reaction to take place.

Figure 5. 14. Room temperature ${ }^{1} H$ NMR spectra for the, (a) Acetic solution of complex 55 and $\mathbf{5 6}$; (b) acetic acid solution of products of decomposition, including the aryl acetate 61, phenol 60, and inorganic product $\mathbf{3 0}$.

Scheme 5. 38

The decomposition of ppc ligand-supported organopalladium(IV) complexes 56 and 58 was compared to that of dpk ligand-supported $\mathrm{Pd}(\mathrm{IV})$ complexes 59. When an acetic acid solution of complex $\mathbf{8 1}$ was left at room temperature, products of $\mathrm{C}-\mathrm{O}$ bond coupling 60 and 61 were observed in 41% and 57% yield respectively, together with complex $\mathbf{4 1}$ as the only inorganic product after two days.

The reactivity of ppc ligand-supported organopalladium(IV) complexes towards $\mathrm{C}-\mathrm{O}$ bond coupling could be compared to that of the dpk ligand-supported $\operatorname{Pd}(\mathrm{IV})$ complex only qualitatively. This is because a heterogeneous reaction mixture
was produced during the reaction of the $\mathrm{Pd}(\mathrm{II})$ complex 18 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, and thus the decomposition of this heterogeneous mixture could not be monitored, although the corresponding $\mathrm{C}-\mathrm{O}$ bond coupling products were ultimately produced in a total quantitative yield after two days. Since oxidation of $\mathbf{1 8}$ is slower than that of 23, we presume that reductive elimination from the ppc ligated complexes $\mathbf{5 5}$ and $\mathbf{5 6}$ takes place at a faster rate than from the dpk ligated Pd(IV) complex 59.

5.3.5 Reactivity of Complex 19 with $\mathrm{H}_{2} \underline{O}_{2}$ in Acetic Acid at Room Temperature

Scheme 5. 39

The reaction between complex 19 and $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid was similar to that of complex $\mathbf{1 8}$ under similar conditions. Upon addition of 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ into a 0.010 M acetic acid solution of complex $\mathbf{1 9}$, the light yellow solution changed color to deeper yellow, followed by gradual formation of a brown precipitate. When this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, two products of oxidation were observed in 55% to 20% yields upon combination of the acetic acid solution of complex 19 with $\mathrm{H}_{2} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$ NMR resonances belonging to these products are narrow and sharp relative to the $\mathrm{Pd}(\mathrm{II})$ precursor 19. The resonances belonging to the major product of oxidation are collectively shifted downfield relative to the $\mathrm{Pd}(\mathrm{II})$ precursor, indicating a more deshielded environment. However the low-field shift of the resonances belonging to the minor product of oxidation relative to the $\operatorname{Pd}(\mathrm{II})$ precursor is not significant, indicative of less deshielding.

Figure 5. 15. ${ }^{1} \mathrm{H}$ NMR spectra of acetic acid solution of (a) complex 19 and (b) a mixture of complexes 62 and 63 at room temperature.

Figure 5. 16. ESI-MS analysis of an acetic acid solution of complex 19 upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

The ESI-MS analysis of the reaction solution after combining an acetic acid solution of complex 19 with 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ displayed major peaks at $\mathrm{m} / \mathrm{z}=$ 564.0447 corresponding to the mass of the $\mathrm{Pd}(\mathrm{II})$ precursor plus OH and $\mathrm{H}_{2} \mathrm{O}$ groups, which was assigned to complex 63, and $\mathrm{m} / \mathrm{z}=606.0595$ corresponding to the $\operatorname{Pd}(\mathrm{II})$ precursor with an additional OAc and $\mathrm{H}_{2} \mathrm{O}$ groups, which was assigned to complex
64. Given that complex 18, which is a near identical analogue of 19 reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic to produce both hydroxo- and acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes, where the acetato-ligated complex was identified as the major product, we propose that the two products generated in this reaction are the hydroxo- and acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes, as has also been revealed by ESI-MS. Similarly, we propose that the major product is the acetato-ligated $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{6 4}$ while the minor product is the hydroxo-ligated complex 63. The structures of these complexes was proposed based on DFT calculations on similar ppc-ligated Pd(IV) complexes, described previously.

Scheme 5. 40

The mechanism of oxidation of complex 19 is proposed to be similar to that of complex 18, where addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand of the N, N ligated complex $\mathbf{1 9}_{\mathrm{N}-\mathrm{N}}$ produces the hydroperoxo adduct 62. A complex with a matching mass envelope at $\mathrm{m} / \mathrm{z}=564.0447$ was observed (calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=564.0387$). The addition of water molecule across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand in complex 19 has also been observed via ESI-MS, at $\mathrm{m} / \mathrm{z}=$ 548.0549 (calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Pd}^{106}=548.0432$). Nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ on the hydroperoxide moiety leads to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond, resulting in formation of the acetato ligated $\mathrm{Pd}(\mathrm{IV})$ complex 64, where a matching mass envelope was detected by ESI-MS at $\mathrm{m} / \mathrm{z}=606.0595$ (calculated for
$\left.\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}^{106}=606.0493\right)$. Nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ on the hydroperoxide moiety of complex $\mathbf{6 2}$ in the presence of water produces the hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complex 63, where complex with a matching mass envelope at $\mathrm{m} / \mathrm{z}=564.0447$ was detected (calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Pd}^{106}=564.0387$). Thus, formation of complex 63 requires the presence of water in the solution. In this reaction, water came from $\mathrm{H}_{2} \mathrm{O}_{2}$, where 20.0 equivalents of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ was used as oxidant.

Scheme 5. 41

The reactivity of the ppc ligand-derived organopalladium(II) complex 19 was compared to that of dpk ligand-supported organopalladium(II) complex 24 under similar conditions. The combination of a 0.010 M acetic acid solution of complex $\mathbf{2 4}$ with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ produced the corresponding organopalladium(IV) complex 66 within 5 minutes at room temperature.

Given that the ppc ligand-supported complex 19 undergoes a very slow reaction with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and requires 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to generate the corresponding organopalladium(IV) complexes fast enough, while the dpk ligand-supported complex 24 reacts with 3.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solvent at room temperature to produce the corresponding organopalladium(IV) complex 66 within 5 minutes, this indicates that organopalladium(II) complexes supported by the dpk ligand react with $\mathrm{H}_{2} \mathrm{O}_{2}$ faster than $\mathrm{Pd}(\mathrm{II})$ complexes supported by the ppc ligand. As discussed previously, the slower reactivity of ppc-ligated
complexes relative to dpk-ligated complexes may be due to the equilibrium between the $\mathrm{N}-\mathrm{N}$ and the $\mathrm{N}-\mathrm{O}$ ligated complexes, where the reaction rate is dependent on the fraction of the more reactive $\mathrm{N}-\mathrm{N}$ ligated complex in the solution; this equilibrium is absent in the solutions of dpk-ligated complexes.

Decomposition of complexes 157 and 158 in acetic acid

Scheme 5. 42

After several hours, ${ }^{1} \mathrm{H}$ NMR analysis of the reaction solution containing organopalladium(IV) complexes 63 and 64 revealed the presence of the corresponding phenol 67 and aryl acetate 68 in 71% and 20% yields respectively relative to an internal standard (Fig. 5.17)). The organic products were isolated by removal of the solvent, and extraction of the residue with diethyl ether. The decomposition of the products of oxidation upon combining an acetic acid solution of complex 19 with $\mathrm{H}_{2} \mathrm{O}_{2}$ supports our assignment of these complexes as hydroxo- and acetato-ligated organopalladium(IV) complexes 63 and 64.

Figure 5. 17. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra for (a) Acetic solution of complex 63 and 64 ; (b) acetic acid solution of products of decomposition, including the aryl acetate 68 , phenol 67 , after addition of pyridine- d_{5} to the reaction solution.

Scheme 5. 43

67, 41 \%

68, 57 \%

41

The decomposition of the ppc ligand-derived organopalladium(IV) complexes 63 and 64 at room temperature in acetic acid was compared to that of dpk ligandderived organopalladium(IV) complex 66 under similar conditions. Complex 66 was observed to undergo decomposition to produce the corresponding phenolic and aryl acetate products in 39% and 57% respectively after 2 days. Given that a heterogenous reaction mixture is produced during the oxidation of complex 19 to produce the ppc-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes 63 and $\mathbf{6 4}$, only qualitative comparison
could be performed, where the decomposition of complex $\mathbf{6 6}$ was qualitatively slower than that for complexes $\mathbf{6 3}$ and $\mathbf{6 4}$ in acetic acid at room temperature.

5.4 Summary and Conclusions

In summary, $\mathrm{Pd}(\mathrm{II})$ complexes supported by the ppc ligand were prepared. These complexes were found to exist in a slow equilibrium between the N, O and the N, N coordination modes of the ppc ligand, and this equilibrium was found to be more significant in protic solvents than aprotic solvents. This may be due to the fact that protic solvents stabilize the charged N, N chelated zwitterion better than aprotic solvents.

The reaction between organopalladium(II) complexes $\mathbf{1 5 - 1 9}$ supported by the ppc ligand with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solvent was investigated. These reactions were observed to produce the corresponding acetato- and sometimes hydroxo-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes. The structures of these $\mathrm{Pd}(\mathrm{IV})$ complexes were proposed based on ESI-MS, NMR experiments, DFT calculations, and the reactivity of these complexes. In particular, the observation of intermediates by both ${ }^{1} \mathrm{H}$ NMR spectroscopy and ESI-MS, and the reactivity of these intermediates to generate the corresponding $\mathrm{C}-\mathrm{O}$ bond-coupling products enabled the assignment of the intermediates as acetato- and/ or hydroxo-ligated Pd(IV) complexes. The chelation mode of the ppc ligand in these complexes was computed using the DFT, where a facially chelating mode involving the hydrated, deprotonated ppc adduct with a $\mathrm{N}, \mathrm{O}, \mathrm{N}$ binding mode was the lowest energy conformation found, after optimizing for various possible geometries.

These oxidation reactions were proposed to take place via preliminary addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ onto the $\mathrm{C}=\mathrm{O}$ group of the N , N -ligated ppc ligand, where mass envelopes matching the hydroperoxide adducts were detected by ESI-MS. Nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ onto the hydroperoxide moiety results in heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond, leading to the formation of acetato-ligated organopalladium(IV) complexes in acetic acid solvent, and hydroxo-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in the presence of water; matching mass envelopes were detected by ESIMS. The acetato-ligated $\operatorname{Pd}(\mathrm{IV})$ complexes were usually produced as major complexes.

In the study of electronic effects in the oxidation reactions, complexes with electron-withdrawing substituents were found to be less reactive towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ than those with electron rich substituents. Given that two overall steps are involved in the oxidation reaction, including addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ligand, and nucleophilic attack of $\operatorname{Pd}(\mathrm{II})$ on to the HOOR moiety of the hydroperoxide adducts, the overall reactivity depends on which of these steps is affected to a greater extent. In this case, the more electron-rich palladacycles were found to be more reactive than the electron-poor palladacycles towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$, indicating that the energy associated with the nucleophilic attack of $\mathrm{Pd}(\mathrm{II})$ on the HOOR moiety of the hydroperoxide adducts is lowered to a greater extent.

The reactivity of the ppc ligand-supported $\mathrm{Pd}(\mathrm{II})$ complexes towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ was also compared to that of the dpk ligand-supported counterparts, where the ppc supported complexes were found to be less reactive. This was proposed to result from the slow equilibrium between the N, O and the N, N ppc-supported
chelates. Given that the N, N chelated complexes are more reactive towards $\mathrm{H}_{2} \mathrm{O}_{2}$ addition across the $\mathrm{C}=\mathrm{O}$ bond of the ppc ligand than the N, O chelated complexes, the relative fraction of the N, N ligated complex determines the rate of the oxidation reaction. Since no such equilibrium exists in the dpk-ligated $\mathrm{Pd}(\mathrm{II})$ complex, these complexes react faster than ppc ligated complexes.

Decomposition of the ppc-supported organopallaidum(IV) complexes was also studied, where $\mathrm{C}-\mathrm{O}$ reductive elimination in acetic acid produced the corresponding aryl acetate, and sometimes phenolic products in a total quantitative yield, together with complex $\mathbf{3 0}$ as the only inorganic product of decomposition. In these studies, complexes with electron-withdrawing substituents on the aromatic rings were found to undergo decomposition at a faster rate compared to those containing electron-donating substitutents on the aromatic rings. For example the ppc-supported complex 25 underwent complete decomposition to produce the corresponding aryl acetate product in 2 hours while complex 26 which contains a trifluoromethyl substituted aromatic ligand underwent decomposition in 70 minutes. Given that aryl ligands act as electrophilic coupling partners while carboxylate ligands act as nucleophilic coupling partners in the $\mathrm{C}-\mathrm{O}$ reductive elimination reactions, ${ }^{58}$ the electron-withdrawing groups on the aromatic rings were proposed to increase the electrophilicity of the aryl ligands, which in turn increases the rate of the $\mathrm{C}-\mathrm{O}$ coupling reaction.

Decomposition of the ppc ligand supported organopalladium(IV) complexes was compared to that of their dpk counterparts, where the ppc supported complexes were observed to be more reactive. The higher reactivity of the ppc-ligated complexes
was attributed to the electron-withdrawing carboxylic acid group present on the ppc ligand. Given that the mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination at dpk-ligated $\mathrm{Pd}(\mathrm{IV})$ complexes in acetic acid was proposed to involve pyridine dissociation followed by reductive elimination from a 5-coordinate intermediate, the electron-withdrawing carboxylic acid group on the ppe ligand increases the rate of dissociation of the pyridine group, which in turn increases the overall reaction rate.

In conclusion, the ppc ligand has been observed to enable oxidation of organopalladium(II) complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, and the subsequent $\mathrm{C}-\mathrm{O}$ reductive elimination at ambient conditions. Organopalladium(II) complexes supported by the ppc ligand were found to be less reactive towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ and more reactive towards $\mathrm{C}-\mathrm{O}$ reductive elimination relative to their dpk counterparts under similar conditions.

With successful oxidation and reductive elimination reactions of organopalladium(II) complexes enabled by the ppc ligand, we next sought to establish whether the ppe ligand would enable $\mathrm{C}-\mathrm{H}$ bond activation of aromatic substrates. Successful C-H bond activation would complete the catalytic cycle shown in Scheme 5.1 and enable the development of a ligand enabled, palladium catalyzed $\mathrm{C}-\mathrm{H}$ oxygenation reaction using $\mathrm{H}_{2} \mathrm{O}_{2}$ as the terminal oxidant.

5.5 Application of the ppc Ligand Towards C-H Bond Activation

In order to determine whether $\mathrm{C}-\mathrm{H}$ activation is possible using the ppc ligand, the ppc derived palladium(II) complex $\mathbf{3 0}$ was prepared. This complex was prepared by the reaction between ppc ligand and $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid at $50^{\circ} \mathrm{C}$ under ambient conditions, where the target complex $\mathbf{3 0}$ precipitated out of the solution as a yellow
solid and was filtered off. The complex could also be prepared by the reaction of the N,N-diethyl-6-(pyridyn-ylcarbonyl)pyridine-2-carboxamide with $\operatorname{Pd}(\mathrm{OAc})_{2}$ in acetic acid as shown below. It was characterized fully by NMR spectroscopy, ESI-MS, and X-ray diffraction, while its purity was confirmed by elemental analysis.

Scheme 5. 44

Figure 5. 18. ORTEP drawing (50% probability ellipsoids) of complex 30

In order to determine whether $\mathrm{C}-\mathrm{H}$ bond activation of aromatic substrates is possible using complex 30, an $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ (1:1) solution of this complex was combined with either 2-tolylpyridine or 2-benzoylpyridine substrates in stoichiometric quantities and heated at $100^{\circ} \mathrm{C}$ under an argon atmosphere. After 2 days, the ${ }^{1} \mathrm{H}$ NMR spectra of these solutions were examined to determine the possibility of H / D exchange.

Scheme 5. 45

Indeed, in the ${ }^{1} \mathrm{H}$ NMR analysis of the solution containing compound 71, the integration of the ortho $\mathrm{C}-\mathrm{H}$ bonds had decreased to $1.81 / 2.0$, indicating $\sim 10 \%$ deuteration. Analysis of this reaction solution by ESI-MS revealed major peaks at $\mathrm{m} / \mathrm{z}=170.0883$ which was assigned to the protonated compound 71, 171.0911 assigned to singly deuterated 71, 172.0967 assigned to doubly deuterated 71, and 506.0534 which could be assigned to either complex 17 which is the product of $\mathrm{C}-\mathrm{H}$ bond activation, or complex 73 which is a cationic product of coordination of tolylpyridine onto complex $\mathbf{3 0}$ upon dissociation of the acetate ligand. The ESI-MS mass envelope at 506.0534 indicates that coordination of tolylpyridine onto the palladium complex $\mathbf{3 0}$ is possible upon dissociation of the acetato ligand, and it also indicates that $\mathrm{C}-\mathrm{H}$ activation may be possible, since coordination of tolylpyridine brings the ortho $\mathrm{C}-\mathrm{H}$ bond of this substrate in close proximity to the palladium center. In this reaction, $\mathrm{C}-\mathrm{H}$ bond activation was confirmed by the presence of the singly and doubly deuterated tolylpyridine molecules in the reaction solution by ESIMS, where the deuteration indicates a reversible ortho $\mathrm{C}-\mathrm{H}$ activation of 2 tolylpyridine in the presence of deuterated solvents. This analysis indicates that complex 30 enables $\mathrm{C}-\mathrm{H}$ bond activation, but this reaction is not favorable thermodynamically.

Scheme 5. 46

Similarly, in the ${ }^{1} \mathrm{H}$ NMR analysis of the solution containing compound 70, the integration of the ortho $\mathrm{C}-\mathrm{H}$ bonds had decreased to $1.9 / 2.0$, indicating a 5% deuteration. Analysis of the reaction mixture by ESI-MS revealed major signals at $\mathrm{m} / \mathrm{z}=184.0704$ which was assigned to protonated benzoylpyridine 70, 185.0732 which was assigned to singly deuterated 70, 186.0786 which was assigned to doubly deuterated 70, and 516.0189 which could be assigned to cationic complex $\mathbf{7 5}$ which is product of coordination of 2-benzoylpyridine onto complex $\mathbf{3 0}$ upon dissociation of an acetato ligand, or complex $\mathbf{1 8}$ which is a product of $\mathrm{C}-\mathrm{H}$ activation of benzoylpyridine by complex 30. The mass envelope at 516.0189 indicates that coordination of 2-benzoylpyridine onto complex $\mathbf{3 0}$ upon dissociation of an acetato ligand is possible, and this also indicates that $\mathrm{C}-\mathrm{H}$ bond activation may be possible. Indeed, $\mathrm{C}-\mathrm{H}$ bond activation was also confirmed by observation of singly and doubly deuterated molecules of 2-benzoylpyridine by ESI-MS, where the deuteration indicates a reversible $\mathrm{C}-\mathrm{H}$ bond activation reaction in the presence of deuterated solvents. This analysis also indicates that complex $\mathbf{3 0}$ enables $\mathrm{C}-\mathrm{H}$ bond activation of aromatic substrates, although this reaction is not favorable thermodynamically.

Given that the $\mathrm{C}-\mathrm{H}$ bond activation reaction was found to be reversible and the equilibrium lies towards the reactants, we attempted to drive this equilibrium
forward by adding $\mathrm{H}_{2} \mathrm{O}_{2}$ into the reaction solutions. The oxidant was expected to oxidize the product of $\mathrm{C}-\mathrm{H}$ bond activation, thus driving the equilibrium forward as shown below.

Scheme 5.47

Thus a mixed $\mathrm{AcOD} / \mathrm{D}_{2} \mathrm{O}$ (2:1) reaction solution containing complex 30 and 2-benzoylpyridine substrate 70 was prepared by combining a 0.010 M aqueous solution of complex $\mathbf{3 0}$ with a 0.010 M acetic acid solution of 2-benzoylpyridine substrate 70. ${ }^{234} 10.0$ equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added and the resulting solution was stirred at room temperature for several days. 10.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added to the reaction solution after every 8 hours, for a total of 40.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$. After 2 days, ${ }^{1} \mathrm{H}$ NMR analysis of reaction mixture revealed the presence of the corresponding phenol in 3% yield. This indicates that complex $\mathbf{3 0}$ enables $\mathrm{C}-\mathrm{H}$ bond activation of 2-benzoylpyridine, and subsequent functionalization of the resulting organopalladium(II) complex. However these reactions are too slow leading to only 3 \% product yield. Analysis of the reaction solution by ESI-MS indicated the presence of the corresponding phenol, together with singly and doubly deuterated 2 benzoylpyridine molecules. Control reactions in the absence of palladium did not yield any phenol.

In summary, the ppc ligand has been found to enable $\mathrm{C}-\mathrm{H}$ bond activation of aromatic molecules, oxidation of the corresponding organopalladium(II) complex with $\mathrm{H}_{2} \mathrm{O}_{2}$, and $\mathrm{C}-\mathrm{O}$ reductive elimination from the resulting monohydrocarbyl $\operatorname{Pd}(\mathrm{IV})$ complexes under similar reaction conditions. With all these steps enabled by the ppc ligand, we next sought to develop a ppc ligand-enabled palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization of aromatic molecules with $\mathrm{H}_{2} \mathrm{O}_{2}$ as the sole oxidant.

5.6 Application of the ppc Ligand Towards Catalytic C-H Bond Functionalization

Scheme 5. 48

We began by attempting ortho oxygenation of tolylpyridine using 10% of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid solvent using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant at $35^{\circ} \mathrm{C}$. In this reaction, 0.1 mmoles of tolylpyridine were combined with 0.01 mmoles of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 1.0 ml of deuterated acetic acid, and $1.0 \mu 1$ of 1,4 dioxane was added as internal standard. ${ }^{1} \mathrm{H}$ NMR was taken, and 20.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added into the reaction solution. The resulting solution was placed in oil bath at $35^{\circ} \mathrm{C}$, one more batch of 20.0 equivalents $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution after 1 hr , and 2 more batches were added after every 2 hours for a total of 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$. After 7 hours, the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution revealed the presence of 20% biphenyl product 74 and 2.3% of the corresponding phenol 52. The presence of phenol was also confirmed by ESI-MS with $\mathrm{m} / \mathrm{z}=186.0964$ (Calculated for protonated phenol $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}=186.0919$) while the presence of the corresponding biphenyl product was confirmed by ESI-MS
at $\mathrm{m} / \mathrm{z}=337.1691$ (Calculated for protonated biphenyl product $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}{ }^{+}=$ 337.1705). These products were also confirmed by independent synthesis, where the phenol 52 was synthesized according to literature procedures, ${ }^{21}$ where the biphenyl product was isolated from the reaction solution and its ${ }^{1} \mathrm{H}$ NMR was compared to that published in literature. ${ }^{207}$

Scheme 5. 49

This reaction was repeated in the presence of 10% ppc ligand. Thus 0.1 mmoles of 2-tolylpyridine was dissolved in 1.0 ml of deuterated acetic acid, and 0.010 mmoles of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ppc ligand were added. $1.0 \mu \mathrm{l}$ of 1,4 dioxane was added to the solution as internal standard and ${ }^{1} \mathrm{H}$ NMR spectrum was taken. 20.0 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added and the resultant solution was placed in oil bath at $35^{\circ} \mathrm{C} .20 .0$ more equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added, and 2 more batches of 20.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added after every two hours for a total of 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution after 7 hours revealed the presence of the corresponding phenol 52 in $\sim 4 \%$ yield, and biphenyl 74 in $\sim 20 \%$ yield. Considering that a similar product distribution is observed in the absence of the ppc ligand, this indicates that the ppc ligand does not affect this reaction. However given that 2.3% phenol is produced in the absence of the ppc ligand, while $\sim 4 \%$ phenol is produced in the presence of the ligand, this suggests that it may be possible to optimize the reaction conditions and increase the yield of the phenol $\mathbf{5 2}$.

The unsuccessful $\mathrm{C}-\mathrm{H}$ bond functionalization reaction led us to design a new ligand which would enable catalytic oxygenation of the aromatic $\mathrm{C}-\mathrm{H}$ bonds utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant.

5.6 Experimental

Preparation of the acetato-ligated hydrocarbyl Pd(II) complexes 10-14 has been described previously in chapter 2 . The palladacyclic ppc ligand-supported complexes 15 and 16 were prepared by dissolving 0.10 mmol of the ppe ligand in dichloromethane and addition of 1.0 eq of the corresponding acetato-bridged palladacycle $\mathbf{1 0}$ or $\mathbf{1 1}$ to the dichloromethane solution. A clear solution was formed upon stirring the reaction mixture for a few minutes, but further stirring resulted in precipitation of a white solid. The reaction mixture was stirred for a total of 3 hours, after which it was concentrated and filtered off. The residue was washed with a small amount of cold thf and dried under vacuum at room temperature to afford the pure target complexes 15 and 16 . These complexes were characterized by NMR spectroscopy and electrospray ionization mass spectrometry, while their purity was confirmed by elemental analysis. Complex 17 was prepared following a similar procedure, but further stirring of the reaction solution did not lead to precipitation of the product, and therefore the solution was concentrated and triturated with thf to afford white precipitate of the target compound $\mathbf{1 7}$. The reaction mixture was filtered off, washed with a small amount of cold diethyl ether, and dried under high vacuum at room temperature to afford the pure target complex. Complex $\mathbf{1 7}$ was characterized by NMR spectroscopy and electrospray ionization mass spectrometry, while its purity was confirmed by elemental analysis. Complexes 18 and 19 were also prepared and isolated using the procedure above, but benzene was used as solvent instead of dichloromethane. Diethyl ether or hexanes could also be used instead of tetrahydrofuran to precipitate the products. Complexes $\mathbf{1 8}$ and 19 were characterized
by NMR spectroscopy and electrospray ionization mass spectrometry, while complex 18 was also characterized by X-ray diffraction. The purity of these complexes was confirmed by elemental analysis.

Complex 15

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.16(\mathrm{~s}, 3 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.00 to $7.05(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.29$ to $8.32(\mathrm{~m}$, 2H), 9.05 (br s, 1H).
${ }^{13} \mathrm{C}$ NMR not obtained due to poor solubility in common NMR solvents.
Anal. Found: C, 50.23; H, 3.55; N, 8.63. Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4.5}{ }^{106} \mathrm{Pd}(+$ $0.5 \mathrm{H}_{2} \mathrm{O}$ molecule); C, 50.38; H, 3.38; N, 8.81.

ESI-MS of solution of $\mathbf{1 5}$ in aqueous acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=$ 468.0197 and 486.0140. Calculated for $(\mathbf{1 5 + H})^{+} \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd}^{106+}=468.0176$ and $\left(\mathbf{1 5}+\mathbf{H}_{3} \mathbf{O}\right)^{+}$(hydrated ketone group) $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}^{+}=486.0281$.

Complex 16

${ }^{1} \mathrm{H}$ NMR (AcOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 2.21(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}$ $1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 3 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H}), 9.05(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR not obtained due to poor solubility in common NMR solvents.
Anal. Found: C, 46.90; H, 2.33; N, 7.78. Calculated for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}$; C, 47.08; H, 2.63; N, 7.84.

ESI-MS of solution of $\mathbf{1 6}$ in aqueous acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=$ 536.0056, 554.0053. Calculated for $(\mathbf{1 6}+\mathbf{H})^{+} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}^{+}: 536.00494$, with $\left(\mathbf{1 6}+\mathbf{H}_{3} \mathbf{O}\right)^{+}$hydrated ketone fragment $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}^{+}: 554.0155$

Complex 17

${ }^{1} \mathrm{H}$ NMR (dmso- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 1.86-1.90(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{bs}, 2 \mathrm{H}), 7.16(\mathrm{bs}, 1 \mathrm{H})$, 7.45 (bs, 1 H), $7.70(\mathrm{dd}, J=7.9,5.3 \mathrm{~Hz} 1 \mathrm{H}), 7.92-8.04(\mathrm{~m}, 4 \mathrm{H}), 8.13(\mathrm{~d}, J=5.9 \mathrm{~Hz} 1 \mathrm{H})$, $8.25(\mathrm{bs}, 2 \mathrm{H}), 8.35(\mathrm{bs}, 1 \mathrm{H}), 8.75(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{dmso}_{\mathrm{d}}^{6}, 22^{\circ} \mathrm{C}\right), \delta: 20.8,119.0,122.2,123.6,124.6,125.6,127.2$, $127.5,129.0,134.2,137.6,138.5,139.4,140.2,142.4,149.1,149.3,151.6,152.9$, 154.1, 155.4, 164.4, 168.6, 191.4

ESI-MS of solution of $\mathbf{1 7}$ in aqueous acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=$ 502.0397 and 520.0436. Calculated for $(\mathbf{1 7}+\mathbf{H})^{+} \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{106} \mathrm{Pd}^{+}: 502.0383$, with $\left(\mathbf{1 7}+\mathbf{H}_{\mathbf{3}} \mathbf{O}\right)^{+}$hydrated ketone fragment $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}^{+}: 520.0489$

Anal. Found: C, 53.57; H, 3.75; N, 7.69. Calculated for hydrated complex with one additional molecule of $\mathrm{H}_{2} \mathrm{O} ; \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}$; C, 53.59; $\mathrm{H}, 3.94 ; \mathrm{N}, 7.81$.

Complex 18

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H})$, $7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ to $7.45(\mathrm{~m}, 2 \mathrm{H}) 7.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.26(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 124.2,125.4,125.8,127.6,127.7,128.4,129.1$, $130.3,131.4,133.2,136.8,137.2,139.8,140.1,147.0,148.5,150.3,152.1,152.9$, $156.3,156.9,169.3,190.1,190.6$

Anal. Found: C, 50.17; H, 3.51; N, 7.23. Calculated for doubly hydrated complex with 1.3 additional $\mathrm{H}_{2} \mathrm{O}$ molecules; $\mathrm{C}, 50.06 ; \mathrm{H}, 3.79 ; \mathrm{N}, 7.30$.

ESI-MS of solution of $\mathbf{1 8}$ in acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=516.0089$, 534.0368. Calculated for $(\mathbf{1 8}+\mathbf{H})^{+} \mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}^{+}: 516.0176$, with $\left(\mathbf{1 8}+\mathbf{H}_{\mathbf{3}} \mathbf{O}\right)^{+}$ hydrated ketone fragment $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}^{+}$: 534.0281.

Complex 19

${ }^{1} \mathrm{H}$ NMR ($\mathrm{dmso}^{\left.-\mathrm{d}_{6}, 22^{\circ} \mathrm{C}\right), ~ \delta: ~} 2.12(\mathrm{~s}, 3 \mathrm{H}), 6.60(\mathrm{bs}, 1 \mathrm{H}), 7.09(\mathrm{bs}, 1 \mathrm{H}), 7.26$ (s, 1H), 7.33 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{bs}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}$, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-8.06(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=7.7,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{dmso}^{-} \mathrm{d}_{6}, 22^{\circ} \mathrm{C}$), $\delta: 19.9,123.5,125.6,127.4,128.0,128.1,128.3$, $130.1,131.4,132.5,134.1,135.4,137.4,140.6,140.7,142.8,148.7,149.5,151.2$, 152.2, 154.7, 168.7, 190.0, 190.2.

Anal. Found: C, $54.13 ;$ H, $3.51 ;$ N, 7.52. Calculated for singly hydrated complex with 0.5 additional $\mathrm{H}_{2} \mathrm{O}$ molecule; $\mathrm{C}, 53.92 ; \mathrm{H}, 3.62 ; \mathrm{N}, 7.55$.

ESI-MS of solution of $\mathbf{1 9}$ in acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=530.0343$ and 548.0459. Calculated for $(\mathbf{1 9 +}+\mathbf{H})^{+} \mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{106} \mathrm{Pd}^{+}$: 530.0332 , with $\left(\mathbf{1 9}+\mathbf{H}_{\mathbf{3}} \mathbf{O}\right)^{+}$ hydrated ketone fragment $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}^{+}: 548.0438$.

Selective 1D-difference NOE experiments $\left(D_{2} O\right)$ for 19

In the 1D difference NOE experiment, irradiation of the ortho $-\mathrm{H}_{\mathrm{a}}$ doublet at 8.86 ppm belonging to the pyridyl fragment of the 2-(3-methylbenzoyl)pyridine ligand, and ortho $-\mathrm{H}_{\mathrm{b}}$ doublet at 8.68 ppm belonging to the pyridyl fragment of the pcpe ligand, did not result in any NOE effect (mixing time of 0.6 s , delay time 4 s).

Complex 25

${ }^{1} \mathrm{H}$ NMR (AcOH- $\left.\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$. (the acetoxy group attached to palladium could not be observed in the $\mathrm{AcOH}-\mathrm{d}_{4}$ solution, this complex could not be isolated either.)
${ }^{13} \mathrm{C}$ NMR couldn't be obtained because the complex was not stable.
ESI-MS of solution of $\mathbf{2 5}$ in acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=544.349$. Calculated for $\mathbf{2 5}^{+} \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Pd}^{106+}$: 544.0336 .

Selective 1D-difference NOE experiments (AcOD) for 25

In the 1D difference NOE experiment, no NOE was observed between any hydrogen atoms in the molecule. Irradiation of a resonance H_{a} at $6.96 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{b}}$ on the dpk ligand) did not show enhancement of any other signals (positive NOE) while irradiation of resonance H_{b} at 9.13 did not show enhancement of any signals either (positive NOE) (mixing time of 0.3-0.8s, delay time 5 s).

Compound 38

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00 (dd, $J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, 1H), 11.2 (s, 1H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 13.0,19.4,117.3,118.2,119.3,128.6,132.5,158.7$, 164.2, 167.0.

ESI MS of $\mathrm{H}_{2} \mathrm{O}$ solution of (38) $\mathbf{N a}^{+}, \mathrm{m} / \mathrm{z}$ observed: 216.0593, Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{3}, 216.0637$.

Compound 41

This compound was prepared by acetoxylation of compound 38 in acetic anhydride. Compound 38 was dissolved in acetic anhydride solvent and stirred at $60^{\circ} \mathrm{C}$ for 6 hours. The solvent was removed under vacuum, and pure 41 was obtained.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.0,7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 16.9,19.9,21.3,123.5,126.3,128.9,129.8,131.1,148.3$, 161.9, 168.6, 169.6.

ESI MS of $\mathrm{H}_{2} \mathrm{O}$ solution of (41) $\mathrm{Na}^{+}, \mathrm{m} / \mathrm{z}$ observed $=258.0768$. Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{4}=258.0742$.

Compound 30

${ }^{1} \mathrm{H}$ NMR (AcOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{ds}, J=1.1 \mathrm{~Hz} 1 \mathrm{H}), 7.65(\mathrm{dd}$, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOH-d4, $22^{\circ} \mathrm{C}$) , $\delta: 21.0,23.2,128.8,129.8,129.9,130.5,141.1$, $142.6,144.8,145.9,150.1,151.4,170.2,171.9,175.6,182.1$

ESI-MS of solution in acetic acid: $\mathrm{m} / \mathrm{z}=$ 392.9770: Calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{106} \mathrm{Pd}^{+}: 392.9703$

Complex 26

${ }^{1} \mathrm{H}$ NMR (AcOH-d $\left.4,22^{\circ} \mathrm{C}\right), \delta: 2.48(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.89(\mathrm{~d}, J=5.32 \mathrm{~Hz}, 1 \mathrm{H})$. (The acetoxy group attached to palladium could not be observed in the $\mathrm{AcOH}-\mathrm{d}_{4}$ solution.)
${ }^{13} \mathrm{C}$ NMR couldn't be obtained because the complex was not stable.
ESI-MS of solution of $\mathbf{2 6 . \mathbf { H } ^ { + }}$ in acetic acid, positive mode, $\mathrm{m} / \mathrm{z}=612.0220$. Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{106} \mathrm{Pd}^{+}=612.0210$

Compound 45

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (vs, 1H), 7.56 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$),
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 13.2,19.3,115.6(\mathrm{~m}), 120.2,122.3,125.0,129.2,134.1$ (q), 158.9, 163.2, 166.7.

ESI MS of an aqueous solution of (45) \mathbf{H}^{+}, positive mode, m / z observed; 262.0701, Calculated for $\mathbf{4 5 .} \mathbf{H}^{+}, \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3}=262.0691$.

Compound 46

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.52$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 16.8,19.8,21.2,120.9$ (q), 121.9, 123.1 (q), 124.7, $130.5,132.4,133.2$ (q), 148.5, 160.9, 168.3, 169.1.

ESI MS of an aqueous solution of $(\mathbf{4 6 + N a})^{+}$, positive mode, $\mathrm{m} / \mathrm{z}=326.0593$. Calculated for $\mathbf{4 6} \cdot \mathbf{N a}^{+}, \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaO}_{4}=326.0616$.

Selective 1D-difference NOE experiments (AcOD) for 48

In the 1D difference NOE experiment, no NOE was observed between any hydrogen atoms in the molecule. Irradiation of a resonance H_{a} at $6.21 \mathrm{ppm}\left(\right.$ ortho $-\mathrm{H}_{\mathrm{a}}$ on the tolylyridine ligand) did not show enhancement of any other signals (positive NOE) while irradiation of resonances H_{b} and $\mathrm{H}_{\mathrm{c}} 9.09 \mathrm{ppm}$ and 9.45 ppm did not show enhancement of any signals either (positive NOE) (mixing time of 0.3-0.8 s, delay time 5 s).

The phenolic product 23 is a known compound. ${ }^{21}$

Compound 28

Compound 28 was prepared by acetoxylation of phenol 23 in acetic anhydride. Compound 23 was dissolved in acetic anhydride, and the resulting solution was heated at $60^{\circ} \mathrm{C}$ for 6 hours. Removal of the solvent afforded pure compound $\mathbf{2 8}$.
${ }^{1} \mathrm{H}$ NMR (AcOD, $22^{\circ} \mathrm{C}$), $\delta: 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.11 (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (AcOD, $22^{\circ} \mathrm{C}$) , $\delta: 20.9,21.3,124.6,124.7,126.4,128.3,128.5$, 131.7, 141.0, 142.9, 148.1, 149.1, 154.8, 170.8.

ESI-MS of solution of $\mathbf{2 9}$ in methanol, m / z observed: 228.1108, Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}, \mathrm{~m} / \mathrm{z}=228.1025$.

The phenols 60 and 67 and aryl acetates 61 and 68 are known compounds (See Chapter 3 for the preparation and characterization of these compounds).

Synthesis of $N, N, N^{\prime}, N^{\prime}$-tetraethylpyridine-2,6-dicarboxamide

The $N, N, N^{\prime}, N^{\prime}$-tetraethylpyridine-2,6-dicarboxamide was synthesized according to literature. ${ }^{235}$

Synthesis of 6-(pyridine-2-ylcarbonyl)pyridine-2-carboxylic acid (ppc) ligand

Scheme S5. 1

5.50 g (35.0 mmoles) of bromopyridine was added to a 150.0 ml of dry THF under argon and the solution stirred to $-78{ }^{\circ} \mathrm{C} .14 .0 \mathrm{ml}$ of 2.5 M n -Buli (35.0 mmoles) in hexanes was added slowly to the solution, and the resulting dark red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for an additional 1.25 hours.

Another solution of 9.3 g of pyridyl dicarboxamide (33.6 mmoles) was dissolved in 250.0 ml THF and cooled to $-78{ }^{\circ} \mathrm{C}$. The pyridyl lithium solution was slowly cannulated to the pyridyl dicarboxamide/ THF solution over 30 minutes. The resulting dark red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes and stirred overnight as it slowly warmed up to room temperature.

Water (12.6 mL) was added to quench the solution and remove the inorganic products. The resulting red organic solution was transferred to another container and dried with anhydrous MgSO_{4}. Solvent was removed under vacuum and the product was obtained by column chromatography (hexane/ethyl acetate $70: 30$ to $60: 40$), together with excess pyridine dicarboxamide. The solvent was removed and the resulting residue was dissolved in diethyl ether because the impurity, pyridyl dicarboxamide is more soluble in ether than our target compound, dpk carboxamide. Continuous removal of solvent and dissolution in ether increased the yield. Removal of solvent under vacuum gave the analytically pure dpk carboxamide product in ~ 35 \%.

Hydrolysis of the DPK carboxamide in refluxing concentrated hydrochloric acid for 7 days afforded the DPK carboxylic acid ligand. The solution was concentrated by distillation and diluted with NaOH to a pH of $\sim 3-4$ to give white crystals of dpk carboxylic acid. Removal of solvent under vacuum gave a yield of 58.5 \%.

N,N-diethyl-6-(pyridin-2-ylcarbonyl)pyridine-2-carboxamide

${ }^{1} \mathrm{H}$ NMR (AcOH- $\left.\mathrm{d}_{4}, 22^{\circ} \mathrm{C}\right), \delta: 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ to $7.70(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ to $8.19(\mathrm{~m}, 4 \mathrm{H}), 8.81(\mathrm{td}, J=4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{AcOH}-\mathrm{d} 4,22^{\circ} \mathrm{C}\right), \delta: 12.1,13.4,41.2,44.0,125.9,126.0,127.4$, 138.7, 139.0, 148.5, 152.9, 153.1, 153.8, 168.5, 192.2

Anal. Found: C, 67.69; H, 6.30; N, 14.61. Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} ; \mathrm{C}$, 67.83; H, 6.05; N, 14.83.
ppc ligand
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right), \delta: 7.58(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dt}, J=7.7,1.7$
$\mathrm{Hz}, 1 \mathrm{H}), 8.15-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz} 1 \mathrm{H}), 8.42(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.75(\mathrm{dd}, J=4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d6, $22^{\circ} \mathrm{C}$) , $\delta: 124.5,126.7,127.1,127.2,137.3,138.2$, $148.0,149.0,153.3,154.7,165.6,192.9$

Anal. Found: C, 62.83; H, 3.07; N, 12.08. Calculated for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} ; \mathrm{C}$, 63.16; H, 3.53; N, 12.28.

ESI-MS of solution of ppc ligand in methanol, positive mode, $\mathrm{m} / \mathrm{z}=$ 229.08696. Calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 229.06132$.

Application of the pepc ligand towards catalytic C-H bond oxidation

Scheme S5. 2

$4.6 \mathrm{mg}(0.01 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 4.8 mg of pcpc ligand were placed in a vial and 1.0 ml of either deuterated methanol or acetic acid was added. $17.0 \mathrm{mg}(0.1$ mmol) of 2-p-tolylpyridine substrate was added and the reaction mixture was transferred to a NMR tube and 1.0μ of 1,4-dioxane standard was added. ${ }^{1} \mathrm{H}$ NMR spectrum was taken, and 2.0 eq of HOOH was added and the NMR tube was placed in an oil-bath set at $35^{\circ} \mathrm{C}$. Additional 2 eq HOOH were added 1 hr later and 2 more portions of 2.0 eq of HOOH were added every 2 hours. ${ }^{1} \mathrm{H}$ NMR was taken after 5 hours, 7 hours and 10 hours. ${ }^{1} \mathrm{H}$ NMR analysis reveal the presence of phenol in $\sim 5 \%$ yield in both methanol and acetic acid, among other products. The presence of phenol was also confirmed by ESI-MS with $\mathrm{m} / \mathrm{z}=186.0964$ (Calculated for protonated phenol $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}=186.0919\right)$.

Chapter 6: Ligand-Enabled Oxidative Palladium Catalyzed Functionalization of Aromatic C-H Bonds

6.1 Introduction

The development of palladium catalyzed processes for selective, direct functionalization of $\mathrm{C}-\mathrm{H}$ bonds remains a significant challenge in organic chemistry. Mild and selective transformations of this type will find widespread application in the synthesis of pharmaceuticals, natural products, polymers, and feedstock commodity chemicals. Traditional approaches for such functionalization reactions rely on prefunctionalized starting materials for both reactivity and selectivity, thus adding costly steps to the overall functionalization of a molecule. As such, procedures for the direct functionalization of $\mathrm{C}-\mathrm{H}$ bonds will improve atom economy, and also increase the overall efficiency of multistep synthetic sequences. ${ }^{24}$

Palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions have undergone significant development during the past 17 years, although such reactions have been known for a very long time. ${ }^{45,127}$ The catalytic acetoxylation of benzene with $\operatorname{Pd}(\mathrm{OAc})_{2}$ was first reported in 1966 by Triggs and co-workers. ${ }^{47}$ In 1971, another example of aromatic $\mathrm{C}-\mathrm{H}$ acetoxylation using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ as oxidant was reported by Henry and co-workers, where the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes was proposed. ${ }^{48}$ Crabtree ${ }^{49}$ also reported a palladium catalyzed acetoxylation of benzene using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant, where he proposed the intermediacy of $\mathrm{Pd}(\mathrm{IV})$ complexes. In 2004, Sanford optimized the procedure developed by Crabtree for the acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant. ${ }^{50}$ Since then, a
variety of aromatic compounds bearing nitrogen-based directing groups such as imines, oxime ethers, azobenzene derivatives, and nitrogen heteroxycles (eg pyrazoles and isoxazolines) have undergone palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond acetoxylation using $\operatorname{PhI}(\mathrm{OAc})_{2}$ as oxidant (Scheme 6.1). ${ }^{33,236}$

Scheme 6.1

When the solvent of these reactions was changed from acetic acid to alcohol, aryl ether products were produced in high yields. Sanford proposed that in situ reaction of the alcohol solvent with $\mathrm{PhI}(\mathrm{OAc})_{2}$ affords $\mathrm{PhI}(\mathrm{OR})_{2}$ which functions as the oxidant in these transformations. ${ }^{50}$

Scheme 6. 2

$\mathrm{X}=\mathrm{Me}$	95%
$\mathrm{X}=\mathrm{Et}$	80%
$\mathrm{X}=i-\mathrm{Pr}$	72%
$\mathrm{X}=\mathrm{CF}_{3} \mathrm{CH}_{2} 71 \%$	

The palladium catalyzed acetoxylation reaction using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant has also been applied to aliphatic $\mathrm{C}-\mathrm{H}$ bonds as shown in Scheme 3 below. ${ }^{33,50,128}$ In this transformation, both benzylic and unactivated $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds were converted to the corresponding alkyl acetates, and no products from β-hydride elimination were observed. The reactions also proceeded with high selectivity for
primary vs. secondary $\mathrm{C}-\mathrm{H}$ bonds, and compounds that form 5-membered palladacycles were favored over those that form 6-membered palladacycles. Although the functionalization of secondary and tertiary $\mathrm{C}-\mathrm{H}$ bonds was not efficient in this system, secondary $\mathrm{C}-\mathrm{H}$ bonds adjacent to activating groups were acetoxylated (Scheme 6.3).

Scheme 6. 3

The palladium catalyzed transformations using $\mathrm{PhI}(\mathrm{OR})_{2}$ as oxidant were proposed to involve the $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox couple. The mechanism proposed involves ligand-directed cyclometalation at $\mathrm{Pd}(\mathrm{II})$ to produce cyclopalladated intermediate, which undergoes two-electron oxidation to produce a monomeric $\operatorname{Pd}(I V)$ species. Subsequent $\mathrm{C}-\mathrm{O}$ reductive elimination from the $\mathrm{Pd}(\mathrm{IV})$ species releases the product and regenerates the catalyst. ${ }^{50,57,58}$ The intermediacy of dimeric $\operatorname{Pd}(\mathrm{III})$ intermediates in these reactions has also been considered by Ritter and coworkers. ${ }^{46,59,127}$

Iodine(I) oxidants have also been applied as oxidants in the acetoxylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds. The IOAc oxidant was used in the palladium catalyzed acetoxylation
of Boc-protected N-methylamine derivatives (eq. 6.1). ${ }^{62}$ This oxidant is generated in situ by the reaction of I_{2} with either $\mathrm{PhI}(\mathrm{OAc})_{2}$ or AgOAc . In this system, no reaction was observed when either $\operatorname{PhI}(\mathrm{OAc})_{2}$ or I_{2} was used independently. High selectivity was observed for the functionalization of $\mathrm{N}-\mathrm{CH}_{3}$ over N -aryl substituents. The mechanism of this reaction was proposed to involve amide directed $\mathrm{C}-\mathrm{H}$ activation, followed by oxidation by IOAc to $\mathrm{Pd}(\mathrm{IV}), \mathrm{C}-\mathrm{I}$ bond-forming reductive elimination, and ultimately nucleophilic displacement of I^{-}by OAc^{-}under the reaction conditions. Direct $\mathrm{C}-\mathrm{OAc}$ elimination to generate the acetoxylated products was not ruled out.

Given that the iodine based oxidants are relatively expensive and also produce stoichiometric amount of waste products, it would be more attractive to develop C-H functionalization reactions that utilize dioxygen and hydrogen peroxide, since these oxidants are inexpensive and benign to the environment. In addition, dioxygen and peroxide based oxidants will make the resulting transformations "greener" and more practical for large scale synthesis. ${ }^{33}$ Such transformations however remain a significantly challenging task in both chemical industry and organic synthesis. ${ }^{63-67} \mathrm{An}$ early result on the palladium catalyzed hydroxylation of benzene using molecular oxygen was reported by Fujiwara and co-workers in 1990. ${ }^{68}$ This transformation was however conducted under harsh reaction conditions and low yields were produced (eq. 6.2). In another study, Rybak-Akimova and Que reported the ortho-
hydroxylation of benzoic acid with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of a stoichiometric amount of a reactive iron complex $\left[\mathrm{Fe}(\mathrm{II})(\mathrm{BPMEN})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} 7$ (eq. 6.3). ${ }^{69}$

Recently, more efficient palladium catalyzed reactions have been developed for the oxygenation of sp^{3} and $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds using various peroxide-based oxidants. In 2006, Sanford and co-workers reported a palladium catalyzed acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using Oxone as terminal oxidant in acetic acid solvent. ${ }^{33}$ The inorganic peroxides were proposed to oxidize $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ while the solvent was proposed to be the source of oxygen functionality. Substrates with a variety of directing groups including oxime ethers, amides, and isoxazolines reacted in acetic acid solvent to afford aryl esters, ${ }^{70}$ and in alcohol solvents to afford aryl ethers (Scheme 6.4). ${ }^{33}$

Scheme 6.4

While Oxone and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were effective oxidants for the oxygenation of aromatic $\mathrm{C}-\mathrm{H}$ bonds, only modest activity was observed when these oxidants were used for the oxygenation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{33}$ The combination of Oxone with $\mathrm{Mn}(\mathrm{OAc})_{2}$ however promoted efficient oxygenation of secondary $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds in amidoquinolines (Scheme 6.5). ${ }^{71}$ The authors proposed that the reaction between $\mathrm{Mn}(\mathrm{OAc})_{2}$ and Oxone affords $\mathrm{Mn}_{3} \mathrm{O}(\mathrm{OAc})_{7}$, which then functions as a Lewis acid to increase the reactivity of the $\mathrm{Pd}(\mathrm{II})$ catalyst.

Scheme 6.5

Tert-butyl peroxyacetate has also been used as terminal oxidant for the palladium catalyzed oxygenation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds (Scheme 6.6). ${ }^{72}$ Acetic anhydride was an important additive in this reaction, where it was proposed to increase the catalytic turnover. Oxazolines were used as directing groups, and the
reaction conditions applied were compatible with ketals, imides, esters, and alkyl chlorides. $\mathrm{A} \operatorname{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalytic cycle was proposed.

Scheme 6.6

The tert-butyl peroxyacetate oxidant has also been utilized for the acetoxylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{73}$ In 2010, Jin-Quan Yu and co-workers reported a palladium catalyzed acetoxylation of phenylalanine and ephedrine derivatives with tert-butyl peroxyacetate as terminal oxidant in dichloroethane solvent (Scheme 6.7). In this transformation, additives such as DMF, acetonitrile, acetic acid and acetic anhydride were used to increase the yields. The role of these additives was however not discussed.

Scheme 6.7

Dioxygen has also been used as a terminal oxidant in palladium catalyzed oxygenation of both aliphatic and aromatic $\mathrm{C}-\mathrm{H}$ bonds. In the acetoxylation of aliphatic $\mathrm{C}-\mathrm{H}$ bonds, our group reported a quinoline-directed transformation using dioxygen as the terminal oxidant (Scheme 6.8). ${ }^{82}$ This transformation proceeded with $\operatorname{Pd}(\mathrm{acac})_{2}$ as the catalyst in conjuction with a 2,6-pyridinedicarboxylate ligand in
$\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ under an atmosphere of oxygen. This transformation was compatible with a wide array of substituents, including all aryl halides. The possibility of $\operatorname{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalytic cycle where dioxygen acts as a terminal oxidation for the oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ was suggested.

Scheme 6.8

Palladium catalyzed ortho-hydroxylation of potassium benzoates with dioxygen as the terminal oxidant in DMF, DMA and DMP was recently reported by Yu and co-workers (Scheme 6.9). ${ }^{83}$ In this transformation, benzoquinone and bases such as KOAc and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ were found to increase the product yields. Labeling studies using ${ }^{18} \mathrm{O}_{2}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ supported a direct oxygenation of the arylpalladium intermediates instead of an acetoxylation/hydrolysis sequence.

Scheme 6.9

Given that very few palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions utilizing molecular oxygen and/ or hydrogen peroxide oxidants have been developed, our ultimate goal has been to develop mild, efficient, and environmentally friendly catalytic $\mathrm{C}-\mathrm{H}$ functionalization reactions utilizing molecular oxygen or hydrogen peroxide as terminal oxidants. Our approach involves the use of facially chelating
tridentate ligands to aid in these transformations. Stoichiometric studies have shown that bidentate ligands which can adopt a tridentate, facially chelating mode such as the 2-dipyridylmethanesulfonate (dpms) or 2-dipyridylketone (dpk) ligands enable functionalization of $\mathrm{C}-\mathrm{Pd}$ bonds using hydrogen peroxide as oxidant. ${ }^{233}$ These organometallic reactions have been shown to proceed via the $\operatorname{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ redox cycle, and thus the corresponding palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions in the presence of such ligands may also proceed via the $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalytic cycle. This is important because under the $\operatorname{Pd}(\mathrm{IV})$ catalysis, common problems associated with the $\operatorname{Pd}(\mathrm{II})$ catalysis such as β-hydride elimination and the decomposition of Pd black from $\mathrm{Pd}(\mathrm{II})$ are usually eliminated. In addition, many functional groups are tolerated such as aryl halides, which are generally not usually tolerated under the $\operatorname{Pd}(0) / \operatorname{Pd}(\mathrm{II})$ catalysis. ${ }^{43}$

Scheme 6. 10

(A)

(C)

We aim to develop efficient aromatic $\mathrm{C}-\mathrm{H}$ bond oxygenation reactions by conducting each of the steps depicted in Scheme 6.10 above, under similar reaction conditions. According to this Scheme, the $\mathrm{C}-\mathrm{H}$ bond functionalization reaction is proposed to proceed via (a) $\mathrm{C}-\mathrm{H}$ activation to produce cyclopalladated species \mathbf{A}.

Stoichiometric ligand-directed $\mathrm{C}-\mathrm{H}$ activation reactions to produce cyclopalladacyclic complexes have been demonstrated in literature. ${ }^{17}$ The following step (b) involves oxidation of the palladacycle to produce a high-valent palladium intermediate \mathbf{B} or \mathbf{C}. The oxidation of organopalladium(II) compounds to generate monomeric $\operatorname{Pd}(\mathrm{IV}){ }^{118}$ or dimeric $\operatorname{Pd}(\text { III })^{127}$ complexes has been demonstrated using strong oxidants such as NCS or PhIX_{2}. The functionalization of $\mathrm{C}-\mathrm{Pd}$ bonds using peroxide based oxidants such as MCPBA, ${ }^{74-77}$ tert-butylhydroperoxide in the presence of a vanadium catalyst, ${ }^{120}$ and hydrogen peroxide in the presence of an iron catalyst ${ }^{121}$ have also been demonstrated. Most of these reactions were proposed to proceed via $\operatorname{Pd}(I V)$ intermediates, although these species were not detected in the solution. The final step in the catalytic cycle involves $\mathrm{C}-\mathrm{O}$ reductive elimination from the high valent palladium complexes (step c) to release the product and regenerates the catalyst. This step has also been demonstrated. ${ }^{132}$

Given that we aim to develop palladium catalyzed $\mathrm{C}-\mathrm{H}$ functionalization reactions using hydrogen peroxide as the terminal oxidant, we started our work by exploring the oxidation of $\mathrm{C}-\mathrm{Pd}$ bonds using $\mathrm{H}_{2} \mathrm{O}_{2}$, and the subsequent $\mathrm{C}-\mathrm{O}$ reductive elimination step. Since very few examples of C-Pd bond functionalization using hydrogen peroxide as oxidant have been reported in literature, ${ }^{81,121}$ we started by investigating the oxidation reaction of monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ complexes to their $\operatorname{Pd}(\mathrm{IV})$ analogues using the di(2-pyridyl)ketone (dpk) and 6-(pyridin-2-ylcarbonyl)pyridine-2-carboxylic acid (ppc) ligands (see chapters 2 and 5). In these studies, dpk- and ppc-ligated organopalladium(II) complexes were observed to undergo oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in water and acetic acid solvents to generate the
corresponding hydroxy-ligated monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ species. These complexes were observed to undergo $\mathrm{C}-\mathrm{O}$ bond-forming reductive elimination in acidified water to produce the corresponding phenol or a mixture of phenol and aryl acetate in acetic acid solvent. In the absence of the dpk and ppc ligands, the oxidation reaction of the analogous acetato-bridged palladacycles was too slow, indicating that the dpk and ppc ligands are required for efficient functionalization of $\mathrm{C}-\mathrm{Pd}$ bonds.

As a result, our goal is to perform $\mathrm{C}-\mathrm{H}$ functionalization reactions with $\operatorname{Pd}(\mathrm{OAc})_{2}$ as catalyst in the presence of potentially tridentate, facially chelating ligand such as dpk, ppc, and dpms with $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant. This catalytic reaction will combine the $\mathrm{C}-\mathrm{H}$ activation ability of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and the $\mathrm{C}-\mathrm{Pd}$ bond functionalization ability of the dpk ligand with $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant.

6.2 Results and Discussion

We started by attempting $\mathrm{C}-\mathrm{H}$ bond oxygenation of the 2-benzoylpyridine substrate $\mathbf{1 7}$ with $\operatorname{Pd}(\mathrm{OAc})_{2}$ in the presence of the di(2-pyridyl)ketone (dpk) ligand and $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant (eq. 6.4). This ligand was used because it had enabled $\mathrm{C}-\mathrm{Pd}$ bond functionalization of palladacycles derived from 2-benzoylpyridine using $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid. We combined 0.10 mmoles of compound $17,0.010$ mmoles of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 0.010 mmoles of the dpk ligand in 1.0 ml of deuterated acetic acid. 1,4 dioxane was added and a ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting solution was collected at room temperature. 1.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidant were added and the resulting solution was stirred at room temperature. 1.5 more equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added after 2 hours, and 3 more batches of 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added after every 4 hours. The solution was stirred at room temperature for a total of ~ 24 hours and a ${ }^{1} \mathrm{H}$

NMR spectrum was collected at the end of the reaction. The spectrum revealed the presence of the corresponding phenol 33 in $2.5 \%{ }^{1} \mathrm{H}$ NMR yield relative to the internal standard. The identity of the phenol $\mathbf{3 3}$ was confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum to literature. ${ }^{237}$ The reaction was repeated in acetic acid in the presence of 5 equivalents of acetic anhydride in order to simplify the spectrum. The corresponding aryl acetate 34 was observed by ${ }^{1} \mathrm{H}$ NMR in $\sim 5 \%{ }^{1} \mathrm{H}$ NMR yield relative to an internal standard. The identity of compound $\mathbf{3 4}$ was confirmed by independent synthesis via acetoxylation of compound $\mathbf{3 3}$ in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ (1:1) solvent mixture. The compound was characterized by NMR spectroscopy and electrospray ionization mass spectrometry techniques.

These results indicate that oxygenation of $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in the presence of dpk ligand is possible, but the reaction is slow under the present reaction conditions. The slow reactivity of the 2-benzoylpyridine compound 17 towards functionalization with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of the dpk ligand might result from the ability of both benzoylpyridine and dpk ligand to produce tridentate facially chelating ligands that would stabilize a $\mathrm{Pd}(\mathrm{IV})$ intermediate species. Hydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes stabilized by bis-anionic facially chelating ligands such as complex 8 (chart 6.1) have been observed to be very stable, such that such they can be stored at room temperature for more than two weeks without decomposition. ${ }^{233}$ In contrast, analogous $\mathrm{Pd}(\mathrm{IV})$ complexes stabilized by a single
tridentate facially chelating ligand such as complex 9 (chart 1) have been found to be less stable, where they undergo decomposition at room temperature in the solid state, and are thus stored at $-20^{\circ} \mathrm{C}$ in the solid state.

Chart 6.1

8

9

As a result, we attempted palladium catalyzed oxygenation of 2-tolylpyridine compound $\mathbf{1 2}$ in order to determine whether this compound would react faster than compound 17, given that this substrate can only bind palladium via a bidentate coordination mode. A 0.10 M AcOD solution of complex $\mathbf{1 2}$ with $10 \% \mathrm{dpk}$ and 10% $\operatorname{Pd}(\mathrm{OAc})_{2}$ catalyst was prepared in the presence of 1,4 dioxane as internal standard, 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added as described previously, and the reaction was monitored at room temperature over a period of 22 hours via ${ }^{1} \mathrm{H}$ NMR. At the end of the reaction, the $\mathrm{C}-\mathrm{C}$ coupling compound 2 -(5,5'-dimethyl-2'-pyridin-2-yl-1,1'-biphenyl-2-yl)pyridine $\mathbf{2 0}$ was produced as the major reaction product in 12.1% yield and the $\mathrm{C}-\mathrm{O}$ coupling compound 5-methyl-2-pyridine-2-ylphenol 28 was generated as a minor product in 2.0% yield (eq. 6.5), while a 17% conversion of compound $\mathbf{1 2}$ was observed relative to the internal standard. The major product was identified as $\mathbf{2 0}$ while the minor product was identified as $\mathbf{2 8}$ by comparison of their ${ }^{1} \mathrm{H}$ NMR spectra to literature. ${ }^{21,207}$

Given the successful $\mathrm{C}-\mathrm{H}$ functionalization of compound $\mathbf{1 2}$ to give $\mathbf{2 0}$ and
28, we aimed to increase the yield of product 28 by using ligands that kinetically stabilize $\operatorname{Pd}(\mathrm{IV})$ intermediates to a lesser extent than the dpk ligand. A variety of ligands were examined (See table 6.1 below).

Table 6. 1. Palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of various ligands.

Entry	Ligand		
1	NONE	17 \%	3 \%
2		12 \%	2 \%
3		2 \%	$\sim 1 \%$
4		58 \%	8 \%

| 5 | 29% | 4% |
| :--- | :--- | :--- | :--- |
| 5 | 60% | 8 |

*Reaction conditions applied include 0.10 mol of compound 12, 1.0 ml of AcOD, 10 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \%$ ligand, 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}, 22^{\circ} \mathrm{C}$, and 24 hours reaction time. ${ }^{1} \mathrm{H}$ NMR yields are reported relative to an internal standard.

The most efficient ligands are the Me_{2}-dpms and PDA, which give the $\mathrm{C}-\mathrm{C}$ coupling product 20 in 58% and 60% yields respectively and the $\mathrm{C}-\mathrm{O}$ coupling product 28 in 8% yields each. As a result, the Me_{2}-dpms ligand was used in the subsequent transformations.

In order to increase the reaction rate, the temperature of the reaction solution was raised. The reaction solutions were prepared as described before. The solutions were placed in constant temperature oil baths set at either $35^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ in order to determine the optimum temperature for the catalytic reaction. Into these solutions, 2.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added immediately, another 2.0 equivalents were added after 1 hour, and after every two hours for a total of 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$. The results are presented in the table 6.2 below.

Table 6. 2. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization of compound $\mathbf{1 2}$ in acetic acid using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of $\mathrm{Me}_{2}-\mathrm{dmps}$ ligand, showing relative fractions of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ coupling products as a function of temperature.

Entry	Conversion of 12	$\mathrm{R}-\mathrm{R} \mathrm{(20)}$	$\mathrm{R}-\mathrm{OH}(\mathbf{2 8})$	Temp
1	68.0 ± 1	58 ± 0.5	8.0 ± 0.5	$25^{\circ} \mathrm{C}$
2	70 ± 0.5	57.0 ± 0.5	9.0 ± 0.5	$35^{\circ} \mathrm{C}$
3	55 ± 0.5	46 ± 0.5	6.0 ± 0.5	$50^{\circ} \mathrm{C}$

*The reactions were carried out using 0.10 M AcOD solutions of $12,10 \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{Me}_{2}$-dpms ligand, and 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $22^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}$, and $50^{\circ} \mathrm{C}$.

According to table 6.2 above, the highest conversion was obtained at $35^{\circ} \mathrm{C}$, while a lower conversion was observed at $50^{\circ} \mathrm{C}$. As a result, $35^{\circ} \mathrm{C}$ was used for the subsequent reactions.

The catalyst loading was also optimized. The reaction solution was prepared as described previously but different amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and Me_{2}-dpms were used as shown on the table below.

Table 6. 3. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization of compound $\mathbf{1 2}$ in acetic acid using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of Me_{2}-dmps ligand, showing the conversion of compound $\mathbf{1 2}$ and yield of compound $\mathbf{2 0}$ as a function of catalyst loading.

$\mathrm{Pd}(\mathrm{OAc})_{2}=\mathrm{Me}_{2}$-dpms (\%)	\% yield of 20	Conversion of $\mathbf{1 2}(\%)$
5	18	32
10	47	65
15	38	62
20	42	65

*The reactions were carried out using 0.10 M AcOD solutions of 12, 5-20 \% $\mathrm{Pd}(\mathrm{OAc})_{2}, 5-20 \% \mathrm{Me}_{2}$-dpms ligand, and 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $35^{\circ} \mathrm{C}$.

According to table 6.3, use of 5% catalyst gives a conversion of 32%, while 10% catalyst loading gives a conversion of 65%. Increase of the catalyst loading from $10-20 \%$ does not significantly change the conversion. As a result, 10% catalyst loading was used for the subsequent transformations.

Therefore, the optimized conditions include the use of $10 \% \operatorname{Pd}(\mathrm{OAc})_{2}$ as catalyst, $10 \% \mathrm{Me}_{2}$-dpms ligand in acetic acid solvent, the oxidant is added in 2.0 equivalent batches immediately upon combining the reagents, 1 hour later, and after every 2.0 hours for a total of 8.0 equivalents. The reactions were also be conducted for 7 hours.

The scope and selectivity of the oxidative $\mathrm{C}-\mathrm{H}$ bond functionalization reaction with $10 \% \mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of Me_{2}-dpms ligand, in acetic acid, with $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant was investigated for a wider array of substrates with N -donor directing groups. As summarized in table 6.4, the functionalization of phenylpyridinederived substrates yielded predominantly $\mathrm{C}-\mathrm{C}$ bond coupling products, while substrates which can form 6-membered rings with palladium produced the corresponding $\mathrm{C}-\mathrm{O}$ bond coupling products predominantly.

Table 6. 4. Palladium catalyzed ortho $\mathrm{C}-\mathrm{H}$ bond functionalization in acetic acid using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant in the presence of $\mathrm{Me}_{2}-$ dmps ligand

Entry

1

28 11\% (2.5\%)

2

2151% (30\%)
3

22 21\% (7\%)

30 2\% (0\%)

4

24 (0\%)

6

7

8

19 15\%

* Reaction conditions include 0.10 M AcOD solution, $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10$ $\mathrm{mol} \% \mathrm{Me}_{2}$-dpms ligand, 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}, 35^{\circ} \mathrm{C}$ for entries $1-3,50^{\circ} \mathrm{C}$ for entries 4-8, 7 hours reaction time each. The conversions and yields in the parentheses represent reactions in the absence of the ligand. The entries below compounds 12-19 represent the ${ }^{1} \mathrm{H}$ NMR \% conversions relative to an internal standard while the entries below the products $\mathbf{2 0 - 3 4}$ represent the ${ }^{1} \mathrm{H}$ NMR \% product yield relative to an internal standard.

The substituted phenylpyridine compounds $\mathbf{1 2 - 1 4}$ produce the corresponding $\mathrm{C}-\mathrm{C}$ coupling products $\mathbf{2 0 - 2 2}$ predominantly, while phenols $\mathbf{2 8 - 3 0}$ are produced as minor products. The identity of compounds $\mathbf{2 0 - 2 2}$ and $\mathbf{2 8 - 3 0}$ was confirmed by isolation of the compounds and comparison of the ${ }^{1} \mathrm{H}$ NMR to literature reports. No doubly hydroxylated products are observed by ESI-MS.

The preference of $\mathrm{C}-\mathrm{C}$ over $\mathrm{C}-\mathrm{O}$ coupling in the reaction of compounds 12-
14 indicates that a different mechanism might be operative in this reaction relative to that involving compounds $\mathbf{1 5} \mathbf{- 1 7}$, where the $\mathrm{C}-\mathrm{O}$ coupling product was preferred. The formation of $\mathrm{C}-\mathrm{C}$ coupling products requires both hydrocarbyl ligands to be coordinated onto the palladium center, since reductive elimination from $\mathrm{Pd}(\mathrm{II})$ and $\operatorname{Pd}(\mathrm{IV})$ has been proposed to take place via 3-center, 4-electron transition state. ${ }^{45}$ Consequently, the size of the metalacycle produced upon C-H activation might play an important role in this reaction. In contrast, the $\mathrm{C}-\mathrm{O}$ reductive elimination reaction requires the hydrocarbyl and the alkoxy ligands to be coordinated on the palladium center, and considering the small size of the alkoxy ligand, the size of the metalacycle might not be important in this case. Given that compounds 12-14 form 5-membered
palladacycles upon cyclometalation while compounds $\mathbf{1 5 - 1 7}$ produce 6 -membered palladacycles, the smaller size of the 5 -membered palladacycles such as $\mathbf{1 0}$ might allow for two hydrocarbyls to be coordinated onto the palladium center at the same time, thus allowing for $\mathrm{C}-\mathrm{C}$ coupling to take place, while the larger size of 6 membered palladacycles such as $\mathbf{1 1}$ might not allow for another hydrocarbyl to be coordinated onto the palladium center, thus preventing the $\mathrm{C}-\mathrm{C}$ coupling reaction.

Chart 6.2

We thus propose a $\mathrm{C}-\mathrm{C}$ coupling mechanism depicted in Scheme 6.11 below, where cyclometalation of compound $\mathbf{1 2}$ produces a palladacyclic complex of structure A. This complex is not reactive towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid, given that no reaction was observed in the stoichiometric oxidation of complex $\mathbf{1 0}$ with 8.0 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid in over 12 hours at room temperature. ${ }^{233}$ Disproportionation of complex A produces a bis-hydrocarbyl Pd(II) complex of structure B. Given that complex \mathbf{B} is more electron-rich than \mathbf{A}, oxidation of \mathbf{B} with $\mathrm{H}_{2} \mathrm{O}_{2}$ is more facile, to generate a $\mathrm{Pd}(\mathrm{IV})$ complex with structure \mathbf{C}. The oxidation of \mathbf{B} with $\mathrm{PhI}(\mathrm{OAc})_{2}$ to generate $\mathrm{Pd}(\mathrm{IV})$ complexes of structure \mathbf{C} has been reported, and both $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ reductive elimination from this $\operatorname{Pd}(\mathrm{IV})$ complex have also been reported, ${ }^{57,58}$ where $\mathrm{C}-\mathrm{C}$ reductive elimination was proposed to take place via the 6 -coordinate $\mathrm{Pd}(\mathrm{IV})$ complex while $\mathrm{C}-\mathrm{O}$ reductive elimination was proposed to take place from a cationic 5-coordinate intermediate produced upon dissociation of an OR^{-}ligand.

Scheme 6. 11

The $\mathrm{C}-\mathrm{C}$ bond-forming reaction might also proceed through a mechanism similar to the palladium catalyzed arylation of aromatic $\mathrm{C}-\mathrm{H}$ bonds using Oxone as oxidant, reported by Sanford and co-workers (Scheme 6.12). ${ }^{42}$ This reaction was proposed to take place via $\mathrm{C}-\mathrm{H}$ activation to generate a cyclopalladated intermediate, followed by oxidation of the palladacycle to a Pd(IV) species. This was followed by a second $\mathrm{C}-\mathrm{H}$ activation reaction at the $\mathrm{Pd}(\mathrm{IV})$ center, and ultimately $\mathrm{C}-\mathrm{C}$ bondcoupling reductive elimination to release the product and regenerate the catalyst (see Scheme 6.12). $\mathrm{C}-\mathrm{H}$ activation at $\mathrm{Pt}(\mathrm{IV})$ centers ${ }^{63}$ and other metals ${ }^{238}$ have been reported. Given that $\mathrm{C}-\mathrm{C}$ coupling products are generated in our system, a similar mechanism might be operative. However no detailed mechanistic studies were conducted for the $\mathrm{C}-\mathrm{C}$ coupling reactions.

Scheme 6. 12

The palladium catalyzed functionalization of compounds $\mathbf{1 5 - 1 7}$ in the presence of the Me_{2}-dpms ligand produces the corresponding phenolic 31-33 as the only products. The identity of these products was confirmed by ESI-MS, and comparison of their ${ }^{1} \mathrm{H}$ NMR data with literature reports. No $\mathrm{C}-\mathrm{C}$ coupling products were detected in these reactions by either ${ }^{1} \mathrm{H}$ NMR spectroscopy or ESI-MS. In addition, no products of double $\mathrm{C}-\mathrm{H}$ bond hydroxylation are detected in the ESI-MS analysis of the reaction solutions after the reaction. Products of double hydroxylation are however detected when the reaction of compound $\mathbf{1 5}$ is carried out in the absence of the ligand. In the absence of the Me_{2}-dpms ligand, compound $\mathbf{1 5}$ undergoes $\mathrm{C}-\mathrm{H}$ functionalization to produce the corresponding phenol in $19 \%{ }^{1} \mathrm{H}$ NMR yield, while another product is detected in 19 \% yield. ESI-MS analysis of this reaction solution exhibits mass envelopes at $\mathrm{m} / \mathrm{z}=186.0874$ which was assigned to the corresponding phenol 30 (calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}=186.0919$), and $\mathrm{m} / \mathrm{z}=202.0834$ which was assigned to the corresponding doubly ortho-hydroxylated compound 35 (Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}=202.0868$). Thus, the second product may be a doubly hydroxylated
product 35. The ligand is observed to increase the reaction rate, indicating that it is involved in the rate-limiting step.

We propose that the mechanism of $\mathrm{C}-\mathrm{O}$ bond coupling is different from the mechanism of $\mathrm{C}-\mathrm{C}$ coupling presented above (Scheme 6.13). According to Scheme 6.13, the proposed mechanism of $\mathrm{C}-\mathrm{H}$ bond oxygenation begins by cyclopalladation of the aromatic compound to yield a dimeric acetato-bridged palladacycle of structure A. ${ }^{50,127}$ Ligand enabled oxidation of complex \mathbf{A} with $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $\mathrm{Pd}(\mathrm{IV})$ intermediate \mathbf{B}. Ligand enabled oxidation of palladacycle \mathbf{A} is proposed because stoichiometric reactions between the dimeric acetato-bridged palladacycle derived from phenoxypyridine and $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic at room temperature did not result in any reaction. The intermediate \mathbf{B} undergoes $\mathbf{C}-\mathrm{O}$ reductive elimination to release the product, and regenerate the catalyst.

Scheme 6. 13

(B)

For the benzoquinoline compound $\mathbf{1 7}$, no changes were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum, and no product of $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{O}$ coupling was detected by ESI-MS, indicating that the palladium catalyzed functionalization of this substrate is not facile.

The para-tolylbenzylamine compound $\mathbf{1 8}$ produced the corresponding monohydroxylated product $\mathbf{3 5}$ according to both ${ }^{1} \mathrm{H}$ NMR and ESI-MS.

6.3 Summary and Conclusion

In conclusion, we have achieved ligand-directed palladium catalyzed functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant, which are significantly accelerated by the Me_{2}-dpms ligand. The substituted phenylpyridine compounds 12-14 underwent $\mathrm{C}-\mathrm{H}$ bond functionalization to afford the corresponding $\mathrm{C}-\mathrm{C}$ bond-coupling compounds $\mathbf{2 0 - 2 2}$ as major products while the $\mathrm{C}-\mathrm{O}$ bondcoupling compounds 28-30 were produced as minor products. Complexes 15-17 underwent $\mathrm{C}-\mathrm{H}$ bond functionalization to produce the corresponding $\mathrm{C}-\mathrm{O}$ bondcoupling products 31-33; no $\mathrm{C}-\mathrm{C}$ bond-coupling products were detected in these reactions. Compound 18 did not undergo functionalization while 19 underwent oxygenation to give the corresponding phenol; no $\mathrm{C}-\mathrm{C}$ coupling product was detected in this reaction.

The mechanism of these reactions was not studied. The future goal will involve studying the mechanism of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond formation reactions, and optimize these catalytic transformations further. In addition, the substrate scope of these reactions needs to be increased.

6.4 Experimental

6.2

The identity of the compounds 20, ${ }^{207} \mathbf{2 1},{ }^{207}$ and 22, and 28, ${ }^{21} \mathbf{2 9},{ }^{239} \mathbf{3 0},{ }^{21} \mathbf{3 1},{ }^{240}$ 32, ${ }^{241}$ and $33{ }^{157}$ was confirmed by comparison of their ${ }^{1} \mathrm{H}$ NMR data to that reported in literature.

Preparation of $\mathrm{Li}\left(\mathrm{Me}_{2}\right.$-dpms)

Bis(6-methyl-2-pyridyl)methane, $\mathbf{M e}_{2}$-dpm, was prepared as described previously. ${ }^{10}$

Lithium bis(6-methyl-2-pyridyl)methanesulfonate

$1.98 \mathrm{~g} \mathrm{Me}_{2}$-dpm (10 mmol) were dissolved in dry THF (20 mL) under argon in a Schlenk flask and cooled to $-78^{\circ} \mathrm{C}$. 1 eq of $2.5 \mathrm{M} n-\mathrm{BuLi}$ was added dropwise to the solution while stirring. The solution temperature was raised to room temperature and after 2 h 1 eq of $\mathrm{SO}_{3} \cdot \mathrm{NMe}_{3}$ was added. The Schlenk flask was then closed with a Teflon seal and the mixture was heated for 1 day at $120^{\circ} \mathrm{C}$ in an oil bath. After cooling to $0^{\circ} \mathrm{C}$, the reaction was quenched with water. Ether was added and the remaining solid was filtered off. The solid was dissolved in water and the solution
neutralized with $\mathrm{H}_{2} \mathrm{SO}_{4}$. The sold resulting upon removal of water was extracted with ethanol. The product can be isolated from the ethanol solution and recrystallized from $\mathrm{H}_{2} \mathrm{O}$ to obtain 1.4 g of $\mathrm{Li}\left(\mathrm{Me}_{2}-\mathrm{dpms}\right)(50 \%$ yield) as a crystalline, white solid.
${ }^{1} \mathrm{H}$ NMR $\left(22^{\circ} \mathrm{C}, \mathrm{D}_{2} \mathrm{O}\right), \delta: 8.12(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.61$ (d, $2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (22 $\left.{ }^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}\right), \delta: 156.8,150.3,143.1,126.4,125.5,66.9,22.19$.
ESI-MS of solution of $\mathbf{L i (M e} \mathbf{M e}_{2}$-dpms) in water, negative mode: $\mathrm{m} / \mathrm{z}=$ 277.0681; calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}=277.0647$.

Chapter 7: Conclusion

7.1 Summary and Conclusion

In summary, the functionalization of $\mathrm{C}-\mathrm{Pd}$ bonds enabled by dpk and ppc ligands using $\mathrm{H}_{2} \mathrm{O}_{2}$ in various media to produce the corresponding oxapalladacycles, phenols, aryl acetates, and aryl halides has been demonstrated.

In particular, both the dpk and ppc ligands have been shown to enable oxidation of $\mathrm{Pd}(\mathrm{II})$ hydrocarbyls to the corresponding monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes in water and acetic acid solvents. These complexes were characterized in solution, and sometimes isolated in pure form and characterized fully, including Xray diffraction. $\operatorname{Pd}(I V)$ monohydrocarbyls bearing two facially chelating tridentate ligands were observed to be significantly stable, where they could be stored at room temperature in the solid state for over two weeks without decomposition, while those bearing one facially tridentate ligand are less stable and have to be stored at $-20^{\circ} \mathrm{C}$.

The mechanism for the oxidation of $\mathrm{Pd}(\mathrm{II})$ monohydrocarbyls with $\mathrm{H}_{2} \mathrm{O}_{2}$ was studied experimentally and computationally, and a mechanism that involves addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the ligand, followed by nucleophilic attack by $\mathrm{Pd}(\mathrm{II})$ onto the hydroperoxide moiety leading to heterolytic cleavage of the $\mathrm{O}-\mathrm{O}$ bond was proposed. Oxidation of ppc-supported organopalladium(II) complexes was proposed to take place via a similar mechanism, but these complexes were observed to undergo oxidation at a lower rate compared to their dpk-supported counterparts.

C-O reductive elimination from the monohydrocarbyl $\mathrm{Pd}(\mathrm{IV})$ complexes was conducted in both water and acetic acid solvents. Pd(IV) complexes bearing two
facially chelating tridentate ligands were less reactive towards $\mathrm{C}-\mathrm{O}$ reductive elimination in water, where no reaction was observed in over two days at room temperature, while those bearing one facially chelating tridentate ligand were more reactive with formation of the corresponding oxapalladacycle quantitatively in under 24 hours. Both complexes however underwent clean $\mathrm{C}-\mathrm{O}$ reductive elimination in acetic acid to produce the corresponding phenols and aryl acetates quantitatively in under two days. The mechanism of $\mathrm{C}-\mathrm{O}$ reductive elimination in water was studied experimentally and computationally, and a mechanism that involves reductive elimination from a 6 -coordinate $\mathrm{Pd}(\mathrm{IV})$ complex was proposed. This reaction was found to be insensitive to the substituents on the aromatic ring. Mechanistic studies on $\mathrm{C}-\mathrm{O}$ reductive elimination in acetic acid were also performed, and a mechanism that involves pyridine group dissociation from the $\mathrm{Pd}(\mathrm{IV})$ coordination sphere, followed by reductive elimination from a 5-coordinate complex was proposed. Ppcligated $\mathrm{Pd}(\mathrm{IV})$ complexes were proposed to undergo $\mathrm{C}-\mathrm{O}$ reductive elimination in acetic acid via a similar mechanism. These complexes were found to undergo faster reductive elimination reaction than their dpk-supported $\mathrm{Pd}(\mathrm{IV})$ counterparts.

When the hydroxy-ligated Pd(IV) complexes were dissolved in aqueous HX solutions $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$, the corresponding aryl halides were produced in high yields. The rates of $\mathrm{C}-\mathrm{X}(\mathrm{X}=\mathrm{OH}, \mathrm{Cl}$, and Br$)$ reductive elimination from the corresponding $\operatorname{Pd}(\mathrm{IV})-\mathrm{X}$ complexes were found to be similar, indicating that this process is not sensitive to the nature of the -X ligand. Given that the $\mathrm{C}-\mathrm{X}$ reductive elimination process is not sensitive to the nature of the substituents on the aromatic
ring and the halide ligand, it was proposed that the transition state in these reactions is too early, leading to a near barrierless, exergonic reaction.

Ppc-ligand enabled $\mathrm{C}-\mathrm{H}$ bond activation with $\mathrm{Pd}(\mathrm{II})$ was also demonstrated in neat and aqueous acetic acid solutions.

Scheme 7. 1

(B)
(C)

Consequently, each step in the oxidative palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reaction depicted in Scheme 7.1, including (a) C-H bond activation, (b) oxidation of $\mathrm{Pd}(\mathrm{II})$ complexes using $\mathrm{H}_{2} \mathrm{O}_{2}$, and (c) $\mathrm{C}-\mathrm{X}$ reductive elimination, has been demonstrated under similar reaction conditions. These steps were combined to produce environmentally benign, palladium catalyzed $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond-forming reactions utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant, and $\mathrm{Me}_{2}-\mathrm{dpms}$ ligand. Substrates that form 5membered palladacycles produced predominantly $\mathrm{C}-\mathrm{C}$ coupling products while substrates which form 6-membered palladacycles predominantly produced $\mathrm{C}-\mathrm{O}$ coupling products.

7.2 Future Work

The mechanism of the palladium catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions will be studied in order to improve the efficiency of these reactions, and increase the substrate scope.

The $\mathrm{C}-\mathrm{X}$ bond-forming reductive elimination reactions will also be studied. The structure of the $\mathrm{Pd}(\mathrm{IV})$ complexes bearing various X ligands will be determined unambiguously using X-ray diffraction studies. The mechanism of $\mathrm{C}-\mathrm{X}$ reductive elimination will also be studied, and palladium catalyzed $\mathrm{C}-\mathrm{X}$ bond-forming reactions utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ in aqueous HX solutions will be explored.

Appendices

NMR Spectra

Fig. A1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 5}(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $22{ }^{\circ} \mathrm{C}$

Fig. A2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 5}(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $22{ }^{\circ} \mathrm{C}$

Fig. A3. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 6}(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $22{ }^{\circ} \mathrm{C}$

Fig. A4. ${ }^{13} \mathrm{C}$ NMR of $76(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $22{ }^{\circ} \mathrm{C}$

Fig. A5. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 1}(\mathrm{OAc})$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at 295 K

Fig. A6. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 2}(\mathrm{OAc})$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at 295 K

Fig. A7. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 3}(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A8. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 3}(\mathrm{OAc})$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 4}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

Fig. A10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 4}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$

Fig. A11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 5}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

Fig. A12. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 5}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$

Fig. A13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 6}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

Fig. A14. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 6}(\mathrm{OAc})$ at $5^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$

Fig. A15; ${ }^{1} \mathrm{H}$ NMR of 93 in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A16; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9 3}$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A17; 1 H NMR of 94 in $\mathrm{MeOH}-\mathrm{d}^{4}$ at $22^{\circ} \mathrm{C}$

Fig. A18; ${ }^{13} \mathrm{C}$ NMR of 94 in $\mathrm{MeOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A19; ${ }^{1} \mathrm{H}$ NMR of 96 in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A20; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9 6}$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A21; ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 9}(\mathrm{Cl})$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A22; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 9}(\mathrm{Cl})$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A23; ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 5 (B r) ~ i n ~} \mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A24; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 5}(\mathrm{Br})$ in $\mathrm{D}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$

Fig. A25; ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 1 (B r) ~ i n ~} \mathrm{MeOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A26; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 1}(\mathrm{Br})$ in $\mathrm{MeOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A27, ${ }^{1} \mathrm{H}$ NMR of 25 in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A28, ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7}$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

NMR Spectra of Organic Compounds

Fig. A29, ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 4}$ in CDCl_{3} at $22^{\circ} \mathrm{C}$

$$
\star L \cdot 0 z
$$

$$
\begin{aligned}
& \angle V^{\prime} 8 I I \\
& 90 \cdot 6 I I
\end{aligned}
$$

$$
\begin{aligned}
& 90^{\circ} 6 \text { IT }
\end{aligned}
$$

$$
\begin{aligned}
& 0 L \cdot \nabla Z 亡 \\
& 6 I \cdot 9 Z \tau= \\
& 9 L \cdot 8 Z I
\end{aligned}
$$

$$
06 \cdot \varepsilon \varepsilon \tau
$$

$$
\begin{aligned}
& 29^{\circ} \angle \varepsilon \tau \\
& \varepsilon 0^{\circ} 8 \varepsilon \tau
\end{aligned}
$$

エナ・8カレ—
0L'SSI-
8G•T9I—

St＇L6I－

Fig．A30，${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 4}$ in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A31, ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 6}$ in CDCl_{3} at $22^{\circ} \mathrm{C}$
$\downarrow \angle \cdot 0 Z$
$\varepsilon 0 \cdot \tau Z$
と0＇ε てT
98＇とてI
99．9てI
0ヶ．0とT
L9＇TET
ャ9．รとะ
ャモ＇LE亡
Lて＇\llcorner ロー

L6．カGI
ゅг 69 －
6I＇カ6T－

Fig．A32，${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 6}$ in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A33, ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 5}$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A34, ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 5}$ in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A35, ${ }^{1} \mathrm{H}$ NMR of 29 in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A36, ${ }^{13} \mathrm{C}$ NMR of 29 in $\mathrm{AcOH}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$

Fig. A37, ${ }^{1} \mathrm{H}$ NMR of complex 49 in CDCl_{3} at $22^{\circ} \mathrm{C}$
$6 ⿰ 70 \cdot \varepsilon \tau-$
$688 \cdot 6 I-$
$\left.\begin{array}{l}\mathrm{st6} \cdot 9 \angle \\ \varepsilon \varepsilon \tau \cdot \angle L \\ \mathrm{ZSG} \cdot \angle L\end{array}\right\rangle$
StE．$\angle I I>$ ZsZ．8II 092．6โโ

てعL．8乌I－
 ع96．99โ－

Fig．A38，${ }^{13} \mathrm{C}$ NMR of complex 49 in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A39; ${ }^{1} \mathrm{H}$ NMR of complex 51 in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A40; ${ }^{13} \mathrm{C}$ NMR of complex 51 in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A41; ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{5 6}$ in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A42, ${ }^{13} \mathrm{C}$ NMR of complex 56 in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A43, ${ }^{1} \mathrm{H}$ NMR of complex 57 in CDCl_{3} at $22^{\circ} \mathrm{C}$
0GL'9T
TE8.6T
$80 Z \cdot \tau Z$
-

七L8'09L
082.89I七80.691

Fig. A44; ${ }^{13} \mathrm{C}$ NMR of complex 57 in CDCl_{3} at $22^{\circ} \mathrm{C}$

Fig. A45; ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$ in $\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$.

Fig. A46; ${ }^{13} \mathrm{C}$ NMR spectrum of 25 in $\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$.

Fig. A47; ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}$ in $\mathrm{CD}_{3} \mathrm{COOD}, 22^{\circ} \mathrm{C}$.

Fig. A48; ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 2}$ in $\mathrm{CD}_{3} \mathrm{COOD}, 22^{\circ} \mathrm{C}$.

Fig．A49；${ }^{1} \mathrm{H}$ NMR spectrum of 46 in $\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$ ．

Fig. A50; ${ }^{13} \mathrm{C}$ NMR spectrum of 46 in $\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$.

Fig. A51; ${ }^{1} \mathrm{H}$ NMR spectrum of 51 in $\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}$.

Fig. A52; ${ }^{13} \mathrm{C}$ NMR spectrum of 51 in $\mathrm{AcOH}-\mathrm{d}_{4}, 22^{\circ} \mathrm{C}$.

Fig. A53; ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 3}$ in dmso- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$.

Fig. A54; ${ }^{13} \mathrm{C}$ NMR spectrum of 53 in dmso- $\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$.

Fig. A55; ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$ in acetone $-\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$.

Fig. A56; ${ }^{13} \mathrm{C}$ NMR spectrum of 25 in acetone $-\mathrm{d}_{6}, 22^{\circ} \mathrm{C}$.

Bibliography

(1) Alonso, D. A.; Najera, C.; Pacheco, M. C. Organic Letters 2000, 2, 1823.
(2) Backvall, J. E. Modern Oxidation Methods; Wiley _VCH: Weinheim, 2004.
(3) Crabtree, R. H. Chemical Reviews 1985, 85, 245.
(4) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Accounts of Chemical Research 1995, 28, 154.
(5) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
(6) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. Journal of the American Chemical Society 2009, 131, 15996.
(7) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. Journal of the American Chemical Society 2008, 130, 2448.
(8) Shi, F.; Larock, R. C. In C-H Activation 2010; Vol. 292, p 123.
(9) Campeau, L. C.; Fagnou, K. Chemical Communications 2006, 1253.
(10) Beck, E. M.; Gaunt, M. J. In C-H Activation 2010; Vol. 292, p 85.
(11) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angewandte Chemie-International Edition 2009, 48, 9792.
(12) Bandini, M.; Eichholzer, A. Angewandte Chemie-International Edition 2009, 48, 9608.
(13) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269.
(14) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Accounts of Chemical Research

2008, 41, 1013.
(15) Hickman, A. J.; Sanford, M. S. Acs Catalysis 2011, 1, 170.
(16) Dunina, V. V.; Zalevskaya, O. A.; Potapov, V. M. Uspekhi Khimii 1988, 57, 434.
(17) Ryabov, A. D. Chemical Reviews 1990, 90, 403.
(18) Dyker, G. Angewandte Chemie-International Edition 1999, 38, 1699.
(19) Dupont, J.; Consorti, C. S.; Spencer, J. Chemical Reviews 2005, 105, 2527.
(20) Cope, A. C.; Siekman, R. W. Journal of the American Chemical Society 1965, 87, 3272.
(21) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. Journal of the American Chemical Society 2006, 128, 6790.
(22) Sen, A. Accounts of Chemical Research 1998, 31, 550.
(23) Dangel, B. D.; Johnson, J. A.; Sames, D. Journal of the American Chemical Society 2001, 123, 8149.
(24) Lyons, T. W.; Sanford, M. S. Chemical Reviews 2010, 110, 1147.
(25) Stahl, S. S. Angewandte Chemie-International Edition 2004, 43, 3400.
(26) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chemical Reviews 2007, 107, 5318.
(27) Huheey, J. E. Inorganic Chemistry: Principles of Structure \& reactivity; 5th ed.; Addison-Wesley, 2009.
(28) James, A. M.; Lord, M. P. Macmillan's Chemical and Physical Data; Macmillan: London, 1992.
(29) Ballhausen, C. J. Introduction to Ligand Field Theory; McGraw-Hill: New York, 1962.
(30) Pope, W. J.; Peachey, S. J. Proc. Chem. Soc. 1907, 23, 86.
(31) Deprez, N. R.; Sanford, M. S. Inorganic Chemistry 2007, 46, 1924.
(32) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Organic Letters 2006, 8, 2523.
(33) Desai, L. V.; Malik, H. A.; Sanford, M. S. Organic Letters 2006, 8, 1141.
(34) Alexanian, E. J.; Lee, C.; Sorensen, E. J. Journal of the American Chemical Society 2005, 127, 7690.
(35) Desai, L. V.; Sanford, M. S. Angewandte Chemie-International Edition 2007, 46, 5737.
(36) Li, Y.; Song, D.; Dong, V. M. Journal of the American Chemical Society 2008, 130, 2962.
(37) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. Journal of the American Chemical Society 2005, 127, 14586.
(38) Streuff, J.; Muniz, K. Journal of Organometallic Chemistry 2005, 690, 5973.
(39) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. Journal of the American Chemical Society 2007, 129, 5836.
(40) Schroeder, K.; Tong, X.; Bitterlich, B.; Tse, M. K.; Gelalcha, F. G.; Bruckner, A.; Beller, M. Tetrahedron Letters 2007, 48, 6339.
(41) Desai, L. V.; Stowers, K. J.; Sanford, M. S. Journal of the American Chemical Society 2008, 130, 13285.
(42) Hull, K. L.; Lanni, E. L.; Sanford, M. S. Journal of the American Chemical Society 2006, 128, 14047.
(43) Fu, Y.; Li, Z.; Liang, S.; Guo, Q. X.; Liu, L. Organometallics 2008, 27, 3736.
(44) Hartwig, J. F. Inorganic Chemistry 2007, 46, 1936.
(45) Muniz, K. Angewandte Chemie-International Edition 2009, 48, 9412.
(46) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. Journal of the American Chemical Society 2010, 132, 14530.
(47) Davidson, J. M.; Triggs, C. Chemistry \& Industry 1966, 457.
(48) Henry, P. M. Journal of Organic Chemistry 1971, 36, 1886.
(49) Yoneyama, T.; Crabtree, R. H. Journal of Molecular Catalysis a-Chemical 1996, 108, 35.
(50) Dick, A. R.; Hull, K. L.; Sanford, M. S. Journal of the American Chemical Society 2004, 126, 2300.
(51) Canty, A. J.; Denney, M. C.; Skelton, B. W.; White, A. H. Organometallics 2004, 23, 1122.
(52) Canty, A. J.; Denney, M. C.; van Koten, G.; Skelton, B. W.; White, A. H. Organometallics 2004, 23, 5432.
(53) Canty, A. J.; Jin, H. Journal of Organometallic Chemistry 1998, 565, 135.
(54) Valk, J. M.; Boersma, J.; vanKoten, G. Organometallics 1996, 15, 4366.
(55) Canty, A. J.; Jin, H.; Skelton, B. W.; White, A. H. Inorganic Chemistry 1998, 37, 3975.
(56) Yamamoto, Y.; Kuwabara, S.; Matsuo, S.; Ohno, T.; Nishiyama, H.; Itoh, K. Organometallics 2004, 23, 3898.
(57) Dick, A. R.; Kampf, J. W.; Sanford, M. S. Journal of the American Chemical Society 2005, 127, 12790.
(58) Racowski, J. M.; Dick, A. R.; Sanford, M. S. Journal of the American Chemical Society 2009, 131, 10974.
(59) Powers, D. C.; Ritter, T. Nature Chemistry 2009, 1, 302.
(60) Powers, D. C.; Geibel, M. A. L.; Klein, J.; Ritter, T. Journal of the American Chemical Society 2009, 131, 17050.
(61) Yamamoto, Y.; Ohno, T.; Itoh, K. Angewandte Chemie-International Edition 2002, 41, 3662.
(62) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J. Q. Organic Letters 2006, 8, 3387.
(63) Shilov, A. E.; Shul'pin, G. B. Chemical Reviews 1997, 97, 2879.
(64) Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Chemical Reviews 2003, 103, 2385.
(65) Lucke, B.; Narayana, K. V.; Martin, A.; Jahnisch, K. Advanced Synthesis \& Catalysis 2004, 346, 1407.
(66) Que, L.; Tolman, W. B. Nature 2008, 455, 333.
(67) Hartwig, J. F. Nature 2008, 455, 314.
(68) Jintoku, T.; Nishimura, K.; Takaki, K.; Fujiwara, Y. Chemistry Letters 1990, 1687.
(69) Taktak, S.; Flook, M.; Foxman, B. M.; Que, L.; Rybak-Akimova, E. V.;

Akimova, R. Chemical Communications 2005, 5301.
(70) Wang, G. W.; Yuan, T. T.; Wu, X. L. Journal of Organic Chemistry 2008, 73, 4717.
(71) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Organic Letters 2006, 8, 3391.
(72) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.;

Guo, C. Y.; Foxman, B. M.; Yu, J. Q. Angewandte Chemie-International Edition 2005, 44, 7420.
(73) Vickers, C. J.; Mei, T. S.; Yu, J. Q. Organic Letters 2010, 12, 2511.
(74) Mahapatra, A. K.; Bandyopadhyay, D.; Bandyopadhyay, P.; Chakravorty, A. Journal of the Chemical Society-Chemical Communications 1984, 999.
(75) Mahapatra, A. K.; Bandyopadhyay, D.; Bandyopadhyay, P.; Chakravorty, A. Inorganic Chemistry 1986, 25, 2214.
(76) Sinha, C.; Bandyopadhyay, D.; Chakravorty, A. Inorganic Chemistry 1988, 27, 1173.
(77) Sinha, C. R.; Bandyopadhyay, D.; Chakravorty, A. Journal of the Chemical Society-Chemical Communications 1988, 468.
(78) Pal, C. K.; Chattopadhyay, S.; Sinha, C.; Chakravorty, A. Journal of Organometallic Chemistry 1992, 439, 91.
(79) Bhawmick, R.; Biswas, H.; Bandyopadhyay, P. Journal of Organometallic Chemistry 1995, 498, 81.
(80) Bhawmick, R.; Bandyopadhyay, P. Transition Metal Chemistry 1995, 20, 415.
(81) Milet, A.; Dedieu, A.; Canty, A. J. Organometallics 1997, 16, 5331.
(82) Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Vedernikov, A. N. Chemical Communications 2008, 3625.
(83) Zhang, Y. H.; Yu, J. Q. Journal of the American Chemical Society 2009, 131, 14654.
(84) Rostovtsev, V. V.; Labinger, J. A.; Bercaw, J. E.; Lasseter, T. L.; Goldberg, K. I. Organometallics 1998, 17, 4530.
(85) Rostovtsev, V. V.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. Inorganic Chemistry 2002, 41, 3608.
(86) Vedernikov, A. N.; Binfield, S. A.; Zavalij, P. Y.; Khusnutdinova, J. R. Journal of the American Chemical Society 2006, 128, 82.
(87) Butler, A.; Walker, J. V. Chemical Reviews 1993, 93, 1937.
(88) Sotomayor, N.; Lete, E. Current Organic Chemistry 2003, 7, 275.
(89) Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents, 1996.
(90) Zhang, Y. H.; Shibatomi, K.; Yamamoto, H. Synlett 2005, 2837.
(91) Prakash, G. K. S.; Mathew, T.; Hoole, D.; Esteves, P. M.; Wang, Q.; Rasul, G.; Olah, G. A. Journal of the American Chemical Society 2004, 126, 15770.
(92) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. Chemistry Letters 2003, 32, 932.
(93) Firouzabadi, H.; Iranpoor, N.; Shiri, M. Tetrahedron Letters 2003, 44, 8781.
(94) Vyas, P. V.; Bhatt, A. K.; Ramachandraiah, G.; Bedekar, A. V. Tetrahedron Letters 2003, 44, 4085.
(95) Widenhoefer, R. A.; Buchwald, S. L. Journal of the American Chemical Society 1998, 120, 6504.
(96) Lee, K. J.; Cho, H. K.; Song, C. E. Bulletin of the Korean Chemical Society 2002, 23, 773.
(97) Iskra, J.; Stavber, S.; Zupan, M. Synthesis-Stuttgart 2004, 1869.
(98) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Organic Letters 2003, 5, 4501.
(99) Tamhankar, B. V.; Desai, U. V.; Mane, R. B.; Wadgaonkar, P. P.; Bedekar, A.
V. Synthetic Communications 2001, 31, 2021.
(100) Roche, D.; Prasad, K.; Repic, O.; Blacklock, T. J. Tetrahedron Letters 2000, 41, 2083.
(101) Braddock, D. C.; Cansell, G.; Hermitage, S. A. Synlett 2004, 461.
(102) Evans, P. A.; Brandt, T. A. Journal of Organic Chemistry 1997, 62, 5321.
(103) Merkushev, E. B. Synthesis-Stuttgart 1988, 923.
(104) Snieckus, V. Chemical Reviews 1990, 90, 879.
(105) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 1533.
(106) van Belzen, R.; Elsevier, C. J.; Dedieu, A.; Veldman, N.; Spek, A. L. Organometallics 2003, 22, 722.
(107) Alsters, P. L.; Engel, P. F.; Hogerheide, M. P.; Copijn, M.; Spek, A. L.; Vankoten, G. Organometallics 1993, 12, 1831.
(108) Kubota, M.; Boegeman, S. C.; Keil, R. N.; Webb, C. G. Organometallics 1989, 8, 1616.
(109) Wong, P. K.; Stille, J. K. Journal of Organometallic Chemistry 1974, 70, 121.
(110) Alsters, P. L.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; Vankoten, G. Organometallics 1993, 12, 1639.
(111) Lagunas, M. C.; Gossage, R. A.; Spek, A. L.; van Koten, G. Organometallics 1998, $17,731$.
(112) Backvall, J. E. Tetrahedron Letters 1977, 467.
(113) Backvall, J. E. Accounts of Chemical Research 1983, 16, 335.
(114) Fahey, D. R. Journal of the Chemical Society D-Chemical Communications 1970, 417.
(115) Fahey, D. R. Journal of Organometallic Chemistry 1971, 27, 283.
(116) Kodama, H.; Katsuhira, T.; Nishida, T.; Hino, T.; Tsubata, K. Chem. Abstr. 2001, 135.
(117) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483.
(118) Whitfield, S. R.; Sanford, M. S. Journal of the American Chemical Society 2007, 129, 15142.
(119) Balcells, D.; Clot, E.; Eisenstein, O. Chemical Reviews 2010, 110, 749.
(120) Alsters, P. L.; Teunissen, H. T.; Boersma, J.; Spek, A. L.; Vankoten, G. Organometallics 1993, 12, 4691.
(121) Wadhwani, P.; Bandyopadhyay, D. Organometallics 2000, 19, 4435.
(122) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.; Richmond, M. K. Organometallics 1996, 15, 2845.
(123) Zhang, F. B.; Broczkowski, M. E.; Jennings, M. C.; Puddephatt, R. J. Canadian Journal of Chemistry-Revue Canadienne De Chimie 2005, 83, 595.
(124) Wieghardt, K.; Koppen, M.; Swiridoff, W.; Weiss, J. Journal of the Chemical Society-Dalton Transactions 1983, 1869.
(125) Vedernikov, A. N.; Pink, M.; Caulton, K. G. Inorganic Chemistry 2004, 43, 3642.
(126) Vedernikov, A. N. Chemical Communications 2009, 4781.
(127) Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Ritter, T. Journal of the American Chemical Society 2010, 132, 14092.
(128) Desai, L. V.; Hull, K. L.; Sanford, M. S. Journal of the American Chemical Society 2004, 126, 9542.
(129) Lapointe, D.; Fagnou, K. Chemistry Letters 2010, 39, 1119.
(130) Ye, Y. D.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. Journal of the American Chemical Society 2010, 132, 14682.
(131) Powers, D. C.; Ritter, T. Nature Chemistry 2009, 1, 419.
(132) Vedernikov, A. N. In C-X Bond Formation 2010; Vol. 31, p 101.
(133) Arnold, P. L.; Sanford, M. S.; Pearson, S. M. Journal of the American Chemical Society 2009, 131, 13912.
(134) Ball, N. D.; Sanford, M. S. Journal of the American Chemical Society 2009, 131, 3796.
(135) Furuya, T.; Ritter, T. Journal of the American Chemical Society 2008, 130, 10060.
(136) Shabashov, D.; Daugulis, O. Journal of the American Chemical Society 2010, 132, 3965.
(137) Hull, K. L.; Anani, W. Q.; Sanford, M. S. Journal of the American Chemical Society 2006, 128, 7134.
(138) Wang, X. S.; Mei, T. S.; Yu, J. Q. Journal of the American Chemical Society 2009, 131, 7520.
(139) Kaspi, A. W.; Yahav-Levi, A.; Goldberg, I.; Vigalok, A. Inorganic Chemistry 2008, 47, 5.
(140) Vigalok, A. Chemistry-a European Journal 2008, 14, 5102.
(141) Furuya, T.; Kaiser, H. M.; Ritter, T. Angewandte Chemie-International Edition 2008, 47, 5993.
(142) Boisvert, L.; Denney, M. C.; Hanson, S. K.; Goldberg, K. I. Journal of the American Chemical Society 2009, 131, 15802.
(143) Khusnutdinova, J. R.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics 2007, 26, 2402.
(144) Khaskin, E.; Zavalij, P. Y.; Vedernikov, A. N. Angewandte ChemieInternational Edition 2007, 46, 6309.
(145) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. Organometallics 1990, $9,826$.
(146) Trofimenko, S. Chemical Reviews 1993, 93, 943.
(147) Sobanov, A. A.; Vedernikov, A. N.; Dyker, G.; Solornonov, B. N. Mendeleev Communications 2002, 14.
(148) Bennett, M. A.; Canty, A. J.; Felixberger, J. K.; Rendina, L. M.; Sunderland, C.; Willis, A. C. Inorganic Chemistry 1993, 32, 1951.
(149) Gulliver, D. J.; Levason, W. Journal of the Chemical Society-Dalton Transactions 1982, 1895.
(150) Klaui, W.; Glaum, M.; Wagner, T.; Bennett, M. A. Journal of Organometallic Chemistry 1994, 472, 355.
(151) Fuchita, Y.; Hiraki, K.; Kage, Y. Bulletin of the Chemical Society of Japan 1982, 55, 955.
(152) de Geest, D. J.; O'Keefe, B. J.; Steel, P. J. Journal of Organometallic Chemistry 1999, 579, 97.
(153) Annibale, G.; Canovese, L.; Cattalini, L.; Natile, G.; Biaginicingi, M.;

Manottilanfredi, A. M.; Tiripicchio, A. Journal of the Chemical Society-Dalton Transactions 1981, 2280.
(154) Khutia, A.; Miguel, P. J. S.; Lippert, B. Inorganica Chimica Acta 2010, 363, 3048.
(155) Sommerer, S. O.; Jircitano, A. J.; Westcott, B. L.; Abboud, K. A.; Bauer, J. A. K. Acta Crystallographica Section C-Crystal Structure Communications 1997, 53, 707.
(156) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; 4 ed., 2005.
(157) Thienthong, N.; Bergman, Y. E.; Perlmutter, P. Synthetic Communications 2009, 39, 2683.
(158) Shah, R. C.; Raman, P. V.; Shah, B. M.; Vora, H. H. Drug Development Communications 1976, 2, 393.
(159) Glasoe, P. K.; Long, F. A. Journal of Physical Chemistry 1960, 64, 188.
(160) Beyer, H.; Lassig, W.; Schudy, G. Chemische Berichte-Recueil 1957, 90, 592.
(161) Stowers, K. J.; Sanford, M. S. Organic Letters 2009, 11, 4584.
(162) Whitfield, S. R.; Sanford, M. S. Organometallics 2008, 27, 1683.
(163) Kamaraj, K.; Bandyopadhyay, D. Organometallics 1999, 18, 438.
(164) Rashidi, M.; Nabavizadeh, M.; Hakimelashi, R.; Jamali, S. Journal of the Chemical Society-Dalton Transactions 2001, 3430.
(165) Yassin, A. A.; Elreedy, A. M. European Polymer Journal 1973, 9, 657.
(166) Parr, R. G.; Yang, W. Density-functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.
(167) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
(168) Laikov, D. N. Chemical Physics Letters 1997, 281, 151.
(169) Anslyn, E. A.; Dougherty, D. A. Mordern Physical Organic Chemistry; University Science Books, 2006.
(170) Cundari, T. R.; Stevens, W. J. Journal of Chemical Physics 1993, 98, 5555.
(171) Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1992, 70, 612.
(172) Stevens, W. J.; Basch, H.; Krauss, M. Journal of Chemical Physics 1984, 81, 6026.
(173) Inc., S.; 7.6 ed.; Shrodinger Inc.: Portland, OR, 2009.
(174) Bercaw, J. E.; Durrell, A. C.; Gray, H. B.; Green, J. C.; Hazari, N.; Labinger, J. A.; Winkler, J. R. Inorganic Chemistry 2010, 49, 1801.
(175) Zhang, J.; Vedernikov, A.; University of Maryland: College Park, 2008.
(176) Canty, A. J.; Traill, P. R.; Skelton, B. W.; White, A. H. Journal of Organometallic Chemistry 1992, 433, 213.
(177) Canty, A. J.; Jin, H.; Roberts, A. S.; Skelton, B. W.; White, A. H. Organometallics 1996, 15, 5713.
(178) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chemical Reviews 2010, 110, 824.
(179) Williams, B. S.; Holland, A. W.; Goldberg, K. I. Journal of the American Chemical Society 1999, 121, 252.
(180) Williams, B. S.; Goldberg, K. I. Journal of the American Chemical Society 2001, 123, 2576.
(181) Luinstra, G. A.; Labinger, J. A.; Bercaw, J. E. Journal of the American Chemical Society 1993, 115, 3004.
(182) Khusnutdinova, J. R.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics 2007, 26, 3466.
(183) Khusnutdinova, J. R.; Newman, L. L.; Zavalij, P. Y.; Lam, Y. F.; Vedernikov, A. N. Journal of the American Chemical Society 2008, 130, 2174.
(184) Canty, A. J. Accounts of Chemical Research 1992, 25, 83.
(185) Vanasselt, R.; Rijnberg, E.; Elsevier, C. J. Organometallics 1994, 13, 706.
(186) Canty, A. J.; Vankoten, G. Accounts of Chemical Research 1995, 28, 406.
(187) Suginome, M.; Kato, Y.; Takeda, N.; Oike, H.; Ito, Y. Organometallics 1998, 17, 495.
(188) Campora, J.; Palma, P.; del Rio, D.; Lopez, J. A.; Alvarez, E.; Connelly, N. G. Organometallics 2005, 24, 3624.
(189) Smythe, N. A.; Grice, K. A.; Williams, B. S.; Goldberg, K. I. Organometallics 2009, 28, 277.
(190) Mann, G.; Hartwig, J. F. Journal of the American Chemical Society 1996, 118, 13109.
(191) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. Journal of the American Chemical Society 1997, 119, 6787.
(192) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. Journal of the American Chemical Society 1999, 121, 3224.
(193) Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A. Organometallics 1985, 4, 1130.
(194) Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J. Journal of the American Chemical Society 2000, 122, 10718.
(195) Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775.
(196) Stambuli, J. R.; Weng, Z. Q.; Incarvito, C. D.; Hartwig, J. F. Angewandte Chemie-International Edition 2007, 46, 7674.
(197) Crumpton, D. M.; Goldberg, K. I. Journal of the American Chemical Society 2000, 122, 962.
(198) Crumpton-Bregel, D. M.; Goldberg, K. I. Journal of the American Chemical Society 2003, 125, 9442.
(199) Arthur, K. L.; Wang, Q. L.; Bregel, D. M.; Smythe, N. A.; O'Neill, B. A.; Goldberg, K. I.; Moloy, K. G. Organometallics 2005, 24, 4624.
(200) Goldberg, K. I.; Yan, J. Y.; Winter, E. L. Journal of the American Chemical Society 1994, 116, 1573.
(201) Goldberg, K. I.; Yan, J. Y.; Breitung, E. M. Journal of the American Chemical Society 1995, 117, 6889.
(202) Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. Journal of the American Chemical Society 2007, 129, 10382.
(203) Yahav-Levi, A.; Goldberg, I.; Vigalok, A.; Vedernikov, A. N. Journal of the American Chemical Society 2008, 130, 724.
(204) Driver, M. S.; Hartwig, J. F. Journal of the American Chemical Society 1997, 119, 8232.
(205) Baranano, D.; Hartwig, J. F. Journal of the American Chemical Society 1995, 117, 2937.
(206) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. Journal of the American Chemical Society 1998, 120, 9205.
(207) Chen, X.; Dobereiner, G.; Hao, X. S.; Giri, R.; Maugel, N.; Yu, J. Q. Tetrahedron 2009, 65, 3085.
(208) Higgs, A. T.; Zinn, P. J.; Sanford, M. S. Organometallics 2010, 29, 5446.
(209) Taylor, R. Electrophilic Aromatic Substitution, 1990.
(210) De La Mere, P. B. Electrophillic Halogenation.
(211) Yahav-Levi, A.; Goldberg, I.; Vigalok, A. Journal of the American Chemical Society 2006, 128, 8710.
(212) Ettorre, R. Inorganic \& Nuclear Chemistry Letters 1969, 5, 45.
(213) Canty, A. J.; Hoare, J. L.; Davies, N. W.; Traill, P. R. Organometallics 1998, 17, 2046.
(214) Canty, A. J.; Watson, A. A.; Skelton, B. W.; White, A. H. Journal of Organometallic Chemistry 1989, 367, C25.
(215) Archer, G. A.; Stempel, A.; Ho, S. S.; Sternbac.Lh Journal of the Chemical Society C-Organic 1966, 1031.
(216) Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919.
(217) Lee, C. T.; Lipshutz, B. H. Organic Letters 2008, 10, 4187.
(218) Kim, S. H.; Rieke, R. D. Tetrahedron 2010, 66, 3135.
(219) Limited, H. E. C. C.
(220) Fujikawa, K. I.; Kondo, K.; Yokomich.I; Kimura, F.; Haga, T.; Nishiyam.R Agricultural and Biological Chemistry 1970, 34, 68.
(221) Lin, Z. Y. Coordination Chemistry Reviews 2007, 251, 2280.
(222) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Transactions 2009, 5820.
(223) Winstein, S.; Traylor, T. G. Journal of the American Chemical Society 1955, 77, 3747.
(224) Corwin, A. H.; Naylor, M. A. Journal of the American Chemical Society 1947, 69, 1004.
(225) Klapproth, W. J.; Westheimer, F. H. Journal of the American Chemical Society 1950, 72, 4461.
(226) Brown, H. C.; McGary, C. W. Journal of the American Chemical Society 1955, 77, 2300.
(227) Brown, H. C.; McGary, C. W. Journal of the American Chemical Society 1955, 77, 2306.
(228) Brown, H. C.; McGary, C. W. Journal of the American Chemical Society 1955, 77, 2310.
(229) Brown, H. C.; Nelson, K. L. Journal of the American Chemical Society 1953, 75, 6292.
(230) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. Journal of the Chemical Society-Dalton Transactions 1985, 2629.
(231) Kurzeev, S. A.; Kazankov, G. M.; Ryabov, A. D. Inorganica Chimica Acta 2002, 340, 192.
(232) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. Journal of the American Chemical Society 2005, 127, 13754.
(233) Williamson, O., 2011.
(234) Oloo, W. 2011.
(235) Fabien, R.; Claude, P.; Gerald, B.; Jean-Claude, G.; Gerard, H. European Journal of Chemistry 1997, 3.
(236) Kalyani, D.; Sanford, M. S. Organic Letters 2005, 7, 4149.
(237) Basil, B.; Coffee, E. C. J.; Gell, D. L.; Maxwell, D. R.; Sheffiel.Dj;

Wooldrid.Kr Journal of Medicinal Chemistry 1970, 13, 403.
(238) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
(239) Uemura, T.; Imoto, S.; Chatani, N. Chemistry Letters 2006, 35, 842.
(240) Sammes, P. G.; Serraerrante, G.; Tinker, A. C. Journal of the Chemical Society-Perkin Transactions 1 1978, 853.
(241) Friedle, S.; Lippard, S. J. European Journal of Inorganic Chemistry 2009, 5506.

