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Abstract: A minimum mean square error (MMSE) estimation scheme is employed to identify the
synaptic connectivity in neural networks. This new approach can substantially reduce the amount
of data and the computational cost involved in the conventional correlation methods, and is suitable
for both nonstationary and stationary neuronal firings. Two algorithms are proposed to estimate
the synaptic connectivities recursively, one for nonlinear filtering, the other for linear filtering. In
addition, the lower and upper bounds for the MMSE estimator are determined. It is shown that
the estimators are consistent in quadratic mean. We also demonstrate that the conventional cross-
interval histogram is an asymptotic linear MMSE estimator with an inappropriate initial value.
Finally, simulations of both the nonlinear and linear (Kalman filter) estimates demonstrate that

the true connectivity values are approached asymptotically.

1 Introduction

The experimental identification of the topology of a neural network deals with the following
question: Given a set of neural spike trains (or action potential processes), what can we say
about the synaptic connectivity among the neurons recorded? The conventional method for ac-
complishing this task is to use correlation histograms, such as the cross-interval histogram, the
cross-correlation histogram, the cross-covariance histogram and the joint post stimulus time (PST)
histogram (Gerstein 1970; Habib and Sen 1985). Such a histogram is a linear estimate for the joint

probability of firings of both presynaptic and postsynaptic neurons (Knox 1974; Brillinger 1975;



van den Boogaard et al. 1986; Yang and Shamma May 1990). A linear estimate needs sufficient ob-
servation data to assure its accuracy. However, besides the computational cost, a stable single unit
recording usually lasts only for several minutes, making it difficult to collect sufficient data. Our
objective in this report is to discuss alternative nonlinear estimates of the synaptic connectivity in

biological neural networks.

Recently, several articles concerning the use of nonlinear methods for the correlation analysis
have appeared in the literature. Borisyuk et al. (1985) presented a hazard procedure to extract
the connectivity between neurons. Van den Boogaard (1986) used maximum likelihood (ML)
estimation for a nonlinear self-exciting point process model (proposed by Ozaki (1979)) to study
the feedback connectivity of a single neuron. Brillinger (1988) applied ML estimation in both
continuous and discrete cases to analyze sea hare (Aplysia californica) data, where the transfer
function of the neuron model was the standard normal distribution function. Finally, Chornoboy
et al. (1988) employed the ML method to identify functional connectivities and to characterize

neural interactions for linear neuron models.

To draw a statistical inference, it is essential to determine the bias, the consistency, and asymp-
totic Behavior of the estimate. Under the assumption of stationarity, Ogata (1978) was able to
show the asymptotic property of the ML estimation for point processes. The asymptotic behavior
was also studied without assuming stationary conditions by Chornoboy et al. (1988) where the
point process was decomposed into the sum of a predictable compensator and a zero-mean mar-
tingale, and Lenglart’s inequality was used to ensure the consistency of the ML method. However,
this procedure was only successfully applied to a neuron model whose transfer function was linear.
A linear neuron model can not be used to study inhibition because the intensity process (firing
rate) is restricted to be nonnegative. Therefore, nonlinear estimation methods are necessary to

study the connectivities in nonlinear neural network.

In this work, we focus on the minimum mean square error (MMSE) estimation method. Two

recursive algorithm are developed to estimate the synaptic parameters by a nonlinear and a linear



(Kalman) filtering methods. An obvious advantage of the MMSE method is its unbiasness. Al-
though it is difficult in general to obtain the explicit expression of the MMSE for point process
systems, we are able to obtain expressions of two lower bounds and an upper bound under some
reasonable conditions. A comparison of the two lower bounds is also discussed. We prove that
both nonlinear and linear MMSE estimators are consistent in quadratic mean by showing that
the upper bound converges to zero. We also show that the linear MMSE estimation approaches
the conventional cross-interval histogram estimates, with the advantage that it converges to the
true value at a faster rate, and hence with less data required. All these issues are elaborated in
section 3. Simulation results are given in section 4. All the proofs are contained in the appendix.
For readers only interested in the implementation, algorithms 1 and 2 in subsections 3.2 and 3.3,
respectively, are sufficient to serve as a manual. We begin our discussion in the next section with

a description of the neuron model used in this study.

2 The Neuron Model and the Approach

The neuron model we use is the common model studied by Johannesma and van den Boogaard

(1984), van den Boogaard et al. (1986), and Melssen and Epping (1987). The model and the
estimation scheme is shown in Fig. 1, where {T{, T4!,---} and {T8,T£,---} are the postsynaptic
and presynaptic spike trains, respectively, and T,f, T, kB represent the occurrence instant of the k-th

spike in trains A and B.

The objective is to estimate the total effective synaptic connection hx (¢, s) which acts as a time-
varying (in general) lowpass filter with constant parameters X = (W, o), where W is the connection
strength, and o is the integration time. Note that since there can be many synapses between any
two neurons, it is impractical in modeling the neural network to account for individual synapses;
rather, it is more fruitful both for experimental investigation and for mathematical description to
consider the total effective influence of one neuron on another. The influence (on neuron A) from
other neurons (including self-excitation) is summarized as an unknown random component in the

membrane potential which triggers a firing when it exceeds some threshold. Consequently, the



firing process can be adequately modeled as doubly stochastic point process. For further details,
please refer to (Yang and Shamma May 1990), where in addition, the identification of connectivity

among more than two neurons is also discussed.

The membrane potential V;(X) is related to postsynaptic potential U; = 3, hx (t,T2) via an

invertible sigmoid mapping g(u), i.e.,

Np(t)
Vi(X) =g( > hx(t,TP)), (1)
=1

where Np(t) is the spike count in train B in the observation interval (0,¢]. An important observa-
tion here is that if the membrane potential ({V;(X) : t > 0}) and spike train B ({T}? : 1 > 1}) are

simultaneously observed by an intracellular recording of the postsynaptic neuron and an extracel-

lular recording of the presynaptic neuron, then one can identify the connectivity via

Ng(t)
g7 Vo) = Y hx(t,TF).

k=1

For example, suppose that the synapse is parametrized in the form known as a leaky integrator

(Knox 1974):

We=(t=9)/o ¢ >
hx (tvs) = (2)
0, t<s

where W is the connection strength, and the time constant o is small. They are treated as simple

time-invariant random variables. Therefore, we have

g V) =Wy =TT [0 o, yyo=(t=TP)/o 3)
k

where T2 = max{TP : TP <t} and I(-) is an indication function. Then, W is estimated as

W= g (Vgp)y 1=1,2,---. (4)



Similarly, we have g} (VT,B+At) ~ Webt7 o

| At = At
In(g—?! (VT,B)/Q_1 (VTIB—*—At)) "' (VAV/Q_1 (VT,B+At))

o=

Ia l:1127"" (5)

Unfortunately, such a simultaneous intracellular and extracellular recording is extremely diffi-
cult. In most practical situations, only simultaneous extracellular recordings of postsynaptic and
presynaptic neurons are available. To make the above example work, we need first to estimate
the membrane potential process {V;(X) : ¢ > 0}. There are two schemes to do it. One is to use
a hidden Markov model (Yang and Shamma Jan. 1990}, in which the optimization criterion is to
maximize the joint probability of the observed spike train pattern and the estimated state path in

the underlying Markov chain. The other uses the minimum mean square error estimation which

we elaborate in this report.

3 The Minimum Mean Square Error Estimation

Denote by {N{! : t > 0} the counting process representing the spike pattern of neuron A (the
postsy'naptic neuron), and by {NtB :t > 0} the counting process representing that of neuron B
(the presynaptic neuron). Note that they are associated with the point processes {T{& : k& > 1}
and {T8 : k > 1}, respectively. The physical meanings of these notations are stated in algorithm

1 in subsection 3.2.

3.1 Nonlinear Filtering

The MMSE estimators are expressed as the conditional expectations of the parameters to be

estimated, given the observed spike patterns of train A and B:
X)) =E[XINA,NE:0<s< 1] (6)

where X = (W, o). Under a mild condition, namely, if the unknown random threshold (mentioned

the second paragraph of section 2) has an exponential probability density function, then {N# :
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t > 0} is a doubly stochastic Poisson process. The Poisson process model has been discussed and
its adequacy demonstrated in many situations (Correia and Landolt 1977; van den Boogaard et al.
1986). Hence, the conditional sample function density given the parameter X can be expressed as

(Snyder 1975)

Pyix({N£:0< s < 8}|X) = HVTA (X))e~ ko VrX)dr = (H(X) (7)

where

t t
_/ VT(X)dT—}—/ In(V,(X))dNA = /V dT-}—Zln (Vra(X)) (8
0] 0

is a filtering process of V;(X), and {V;(X) : t > 0} is the intensity process of the counting process
{N# :t > 0} representing the membrane potential of the postsynaptic neuron (see formula (1)).
We will show that VT]? (X) is a nonlinear function of the cross-interval between spike trains A and

B, and all the correlation information is contained in H;(X). By Bayes’ rule the MMSE estimator

can be expressed as

¢ty  FXexp{ ()]
X0 = e 00)] ©

with the posterior probability density function of X as

exp{H(e)} Px (=)
Elexp{H,(X)}] '

Pxv(z|N&, NP :0<s<t) = (10)

where Py (z) is the prior probability density function of X. Since we do not have any knowledge of
X = (W, o), W and o are assumed to be uniformly distributed in [w,, w;] and (0, o], respectively.

Therefore, (9) can be explicitly written as a nonlinear filtering form of

Wi f:;” ISt wexp{H:(w,0)}do dw
() = ;U: fg” exp{ H;(w, o) }do dw

(11)



and

S (1 fuib oUbUeXP{Ht(?U,G)}dU dw
6= Sk [7> exp{H, (w, 0)}do dw

3.2 Recursive Algorithms

Assume that the function V;(-) is known, i.e., g(-) in (1) is known. If we compute X (t) at every
t , the computational requirements become large as the observation time ¢ increases. To avoid
this, we propose a recursive algorithms for computing X (t). The idea is to create a look-up table
storing the updated values of H;(X) for different values of X in the distribution range. Then we

make a recursive calculation for H;(X) as

Hy(X) = Hy(X) - /t VT(X)dT-{—/t In(V,(X))dN# (13)

with Ho(X) = 0, where

NA

/ tln(v,(X))dN;‘z > InVpa(X). (14)

k::N_;“—i—l

Hence, the up-dating of the posterior density (10) is implemented using the up-dated H;(X). The

above argument is summerized in the following algorithm.
Algorithm 1.

Step 0. Specify the function ¢(:) in (1). For instance, a common assumption for g(-) is a
sigmoid function in (25). Specify an € - value as a criterion to terminate the algorithm when a
satisfactory convergence is achieved. Have spike trains A and B ready. N and NP are spike
count up to time ¢ in A and B; TlA and T,B are the occurrence time of the [-th spike in A and B,

respectively.

Step 1. Set s =0 and 7 = 1.



Step 2. Set t = iA; Use (13) and (14) to compute H;(X) for different values of X = (W, 0) in

the range W € [w,, wp], o € (0,03].
Step 3. Use (11) and (12) to compute X (t).

Step 4. If | X (t) — X (s)| < ¢, stop. Otherwise, set s = ¢, increase 1 by 1, and goto 2.
3.3 Linear Filtering

If no assumptions about the function form for V;(-) are made, the following linear filtering and
corresponding algorithm 2 can be used instead where only the average firing rate E[V;] and its
variance (or deviation) var(V;) are known a priori. And they can be obtained from experiment,

for instance, E[V;] is an average firing rate usually estimated by averaging PST histograms.

Let us consider a linear MMSE estimator. It is known that the linear estimator of the intensity

function for a point process {N{! : t > 0} can be written as (Macchi and Picinbono 1972)

Fina() = BV + [ 706N = BIV,(01ds), (15)

where the linear filter f(t,s) is the solution of the following integral equation:

f(t,s)EVs(X)]+ /Otf(t,u)Kv(u,s)du = K,(t,5),0 <u <t (16)

where K, (t,s) is the covariance function of the intensity process {V;(X) : t > 0}. The resulting

linear MMSE is
E[(Vims(t) = V2)?] = £ (t,8) E[Vi(X)]. (17)

As usual, it is difficult to solve the above integral equation. However, the design of filter f(¢,s)
depends only on the first and the second moments of {V;(X)}. Hence one can construct another

process model with the same K,(t,s) and E[V{(X)], and come up with same filter f(t,s) and
the same mean square error, regardless of the nature of process. This explains why the specific

functional form of V;(-) is not necessary in linear MMSE estimation. Let us consider a process



{y:}, generated by the model

Yo = Vi+ VE[Vi] wy
where {w;} is a zero-mean white noise process with variance 1, and is independent of {V;}. It is
not difficult to see that the process {y;} has the same optimal linear f(¢,s) for the estimation of
{V;} and the same mean square error. Furthermore, since the presynaptic spike pattern is known,
we collect data {y;} occurring only at t = TP +At, (I = 1,2,---), at which the membrane potential
does not depend on the integration time o. Consequently, V(W) := VTIB +A¢ 18 a constant which

depends only on the unknown W, forall{ = 1,2,---, and a Kalman filter can be used to estimate V'

(Srinath and Rajasekaran, 1979). The linear estimator in (15) can therefore be explicitly written

as
» B > B var(V) ) B
Vims(T17 + At) = Vs (Ti2 + At) + FVTT var(V)lAt(AMTIB = Vims (1721 + At)AL), 1 >0 (18)
with
R N var(V
Vlms(TlB + At) = Vs (At) = E[V] + E[E/]) (Mag), =0
or
. B var(V)
Vims (11" + A1) = BV + gromryiag (Mrpeae — BVIAY, 1=01,-- 0 (19)

where At is the observing time bin and My is a cross-interval counting process:
M; = Number of spikes in A immediately (within At) following a spike in B (20)
with a correlation increment:
AM,; = My pe — My = Nfipe = N, for t=0,T8, T8, - (21)
The resulting MMSE is then given by

E[V]-var(V)

E[(Vlms(t) - V)z] = E[V] + va’r(V)NtBAt,

(22)

which can be obtained from the integral equation (16) as well. And it approaches 0 when £ — oo

— consistent in quadratic mean. Based on the above, we have the following



Algorithm 2.

Step 0. Assume that the average firing rate E[V] and its variance var(V;) are estimated.
For instance, E[V] can be estimated by the sample mean of a PST histogram of neuron 4 (i.e.,
EV]~ [ V,dt), and var(V) by the sample variance of the PST histogram (i.e., var(V) >~ [ V;?dt —
(J Vidt)?). Specify an e - value as a criterion to terminate the algorithm when a satisfactory

convergence is achieved. Given spike trains A and B, NtA is spike count up to time ¢t in A, and TlB

is the occurrence time of the [-th spike in B.
Step 1. Set [ = 0.

Step 2. Set t = TE. (Note T8 = 0). Use (21) to determine AM, ( = 1, if there is an A-spike

in interval (¢,¢ + At]; = 0, otherwise).
Step 3. Use (18) or (19) to compute Vip, (T} + At).
Step 4. If [Vips (TP + At) — Vipns (TE, + At)| < ¢, stop. Otherwise, increase [ by 1, and goto 2.

One may decide that neuron B excites, or inhibits, or does not effect neuron A if the trend of
V;ms(TlB + At) is greater than, or less than, or close to E[V]. Moreover, if the function form V()

is available and invertible, then the estimate of W, W), is uniquely determined by Vlms.

3.4 Performance of the Estimates

The performance of an estimate is measured by its error and its asymptotic behavior. For
the nonlinear MMSE estimation, the mean square error can not be explicitly analyzed. Instead,
we shall discuss two lower bounds and an upper bound for the mean square error, as well as its
consistency. The relation of the asymptotic behavior to the conventional cross-interval histograms

is examined at the end of this subsection.

10



3.4.1 Lower Bounds

A usual lower bound for the mean square error is the Cramer-Rao (CR) bound which states
that under some regularity assumptions, the MMSE of an estimator for W is bounded below by
Flie,

E[(W -w)" > F~? (23)

where I is the Fisher information defined as

F = B[ Py (V10 < s < )W = w) Py (2)]1 (24)

The explicit analytic form of the Fisher information can be obtained if the following assumptions

are used.

Assumption 1. Let us adopt a Boltzmann sigmoid function for the nonlinearity of the neuron:

5 = a R, (29

where ¢ is a deterministic positive constant, and §; > 0 for all ¢.

Ciearly, o acts as a spontaneous firing rate which can estimated by measuring spontaneous firing
rate (=af;/1+ B;). O: represents the effects of the refractory (or self-inhibiting) mechanisms. For
instance, the absolute refractory effect of duration § can be modeled as ; = 1 — I(t — TA < 6),

where I(E) is an indication function (I =1, if F is true; I = 0, otherwise).

Assumption 2. The duration of the refractory effects is very small and hence is negligible. So

B; is a constant.

Assumption 3. For mathematical simplicity, we assume that the leaky integrator of the synapse

of (2) is modified as
hx(t,s) =WI0<t-s<o), (26)
and it reponds to only the latest incoming spike (usually this is a dominating term) so that

Vi(X) = g(hx(t,TP)) where, again, TP = max{TP : TP < ¢}.

11



Note that these assumptions are made only to discuss the bounds for mean square error. They
are independent of the algorithms discussed in subsections 3.2 and 3.3, although they could be
used in algorithm 1 as a special case. Applying these assumptions here allows us to express the

membrane potential at the occurrence instant of a postsynaptic spike as

ﬂeWI(T,:‘—T,f«r)

ViaX) =«

, Vk 27
k 1+ﬁeWI(T,;‘—T,f<a) (27)

where Tlf = max{TP : TP < T{£}. This is a nonlinear function of the cross-interval between spike

trains A and B mentioned earlier. Based on the assumptions, we have propositions 1, 2, and 3

below; the proofs are given in the appendix.

Proposition 1. Under the conditions in assumptions 1, 2, and 3, the Fisher information for the

MMSE of an estimator for W has the form of

F= NtBE[ pe” ] mi in{t, TB,} — TB)} L mp )] 28
__.a; mmm{a,(mm TG —T7)) - [an n Px(z)]. (28)

In particular, if W is uniformly distributed in [—w;, ws] and o is an unknown constant, it follows

that

NEB

_ a(l+pe)? — (14 fe™™)? ¢~ (s TP B
F = Twn(1+ B 7(1 1 Be=)? ;mm{a, (min{t, T3, } - T17) }- (29)
Obviously, F~! — 0 as t — co. In some cases the CR bound can become trivial. Hero (1989)
concluded, for example, that the CR bound is not tight for rapidly varying intensity functions.

Therefore, he suggested using an information theoretic (IT) lower bound. An IT bound is related

to the MMSE with the mutual information between a quantity and its estimate (Berger 1971).

Proposition 2. Under the conditions in assumptions 1, 2, and 3, the MMSE estimation of the

synaptic strength W is bounded below by

B0V = W) 2 5 explomax{h(W) — ot + | BV, (X)lir, 01 ()

12



where h(W) denotes the differential entropy of W defined as

h(W) = —E[ln Py (w)], (31)
and
[ B0 =
o g & B B (1+ B)e” B B
m{Tl + Z, min{(min{t,T}3,} — T/°), U}E[W} + max{(min{t, T3, } = T;° - 0),0}}.
=1

(32)

A comparison can be made between the CR and IT bounds . We set § = 1 for simplicity. First,

if the firing rate of neuron B is low, then ¢ < min(¢,75;) — T. The bounds are simplified as

dw,  (1+e”)’(14+e7)?
acNP (1+ew)? — (14 e"ws)2’

CR:F.‘]': (33)

2
IT = 2% g~(ett1), (34)

T
Note that A(W)} = In(2w) and In((1 + €*»)/(1 + e7**))/wp, = 1 are used in the derivation of the

above IT bound. Next, if the firing rate of neuron B is high, then ¢ > min(t, Tlﬁl) —TE. The CR

bound is simplified as

duy, (14 e¥»)2(1 + e wv)2

R = F_l =
¢ alt—TP) (1 +em) — (1 +ew)?

(35)

where T (the instant of the first B-spike) is negligible. The IT bound remains the same. The

CR bound in (33) can become that in (35) when neuron B fires stationarily with rate up = 1/0 so

that o NP = opupt =t. Both CR and IT bounds are shown in Fig. 2 together with an upper bound
discussed next. They approach zero asymptotically. For small w,, we have CR < IT, meaning

that the CR bound is tighter than the IT bound (see Fig. 2 (a)). However, for large w;, there is a

13



region of ¢ in which the IT bound is tighter. This region is usually more practical since observation

time ¢ is moderate there (see Fig. 2(b)).
3.4.1 Upper Bound

A linear MMSE estimator is necessarily inferior to the nonlinear MMSE estimator of (9), and

hence its error can be used as an upper bound. We can approximate the MMSE for W from the

MMSE for V in (22) as follows.

Proposition 3. Under the conditions in assumption 1 and 2, the MMSE estimation of the synaptic

strength W has an approximately asymptotic upper bound

. 9 . 27, (1+ Bexp(wpsgn(8 - 1)) 4 E[V]-var(V)
E[(W(t) - W) ] S E[(WlmS(t) - W) ] - (aﬁexp(wbsgn(ﬂ - 1)))2 E[V] + ’l)(J,’I‘(V)NtBAt. (36)
Further,
R e e s _ (Lt Bexplupsgn(f =)' E[V] _
tl—l»Dgo E[(W(t) - W) ] < tl_l_’rgoE[(Wlms(t) - W) ] - (aﬂexp(wbsgn(ﬁ _ 1)))2 t—l—>oo NtBAt =0,

i.e., both MMSE estimators W (t) and Wiy, (t) are consistent in quadratic mean.
3.4.3 Asymptotic Behavior of the Estimates vs. Cross-Interval Histograms

As summarized in proposition 3, the upper bound for the mean square error approaches zero,

so does the mean square error itself. In addition, the asymptotic behavior of the linear MMSE
estimate Vi, (t) does not depend on the accuracy of E[V] and var(V). In other words, a deviation

in E[V] or/and var(V) will not effect Vi, (t) when ¢ is sufficiently large. To show this, we rewrite

(19) as a function of u = E[V]:

. var(V
Wms(TlB + At,ﬂ) =p+ ( ) IAL (MT‘B-{-At - /‘LlAt)

g+ var(V)
Then a deviation of p results in

var(V)
p+ 6+ var(V)IAL

Vima (TP + At;p+6) = p+ 6+ (Mgppn: — (1 — 8)IAY)

14



p+var(V)IAL 6(2p+ 6)
p+6+var(V)IAt * p+§+var(V)IAL

= Vime (TzB + At p) — Vims (TIB + At; )

as t (and hence !) increases. A similar argument can be discussed for a deviation in var(V). In

fact, when t is sufficiently large, we have

. M5
Jim Vims (TE + At) = lim —t T2

This limit does not depend on E[V] or var(V). And this average cross-interval counting process

MTIB +a¢/lAt is just the conventional cross-interval histogram valued at the first bin (bin width
= At) from the center. On the other hand, algorithm 2 with an initial p = E[V] = 0 results
in Vims(TE + At 1)]u=0 = Mrpae/ (IAt), becoming a cross-interval histogram. In conclusion,

algorithm 2 estimates what cross-interval histograms estimate with the advantage that it converges
faster (hence requires less data) at a cost of providing accurate E[V] and var(V') a priors; the cross-
interval histograms are asymptotically the linear MMSE estimators with an erroneous initial value

of E[V] = 0 (meaning a zero average firing rate).

Toextend the above, one can imagine that if Vi, (TIB +At) estimates g(w), then Vims (TP+2A¢)
will estimate g(wexp(—At/c), and Vi, (T + kAt) will estimate g(wexp(~—(k — 1)At/a). To do

s0, just replace M; in (19) with Mt(k):

Mt(k) = Number of spikes in A following a spike in B after ((k — 1)At, kAt], (38)

and repeat algorithm 2 for £ = 1,2,---,K + 1 to construct the right-half of a cross-interval
histogram. Then interchange spike trains A and B, repeat the above to obtain the left-half. This
generates a fast version of a cross-interval histogram. Further, as a by-product, & can be estimated

(similar to (5)) as
1 & ) .
Oims(O)|s=TB1A: = I z 1A/ g™ (Vims (T + #80)) /g7 (Vims (TF + (k + 1) A} (39)
k=1

15



4. Simulations and Discussions

To illustrate the nature of the estimates, we show the results from simulations of networks of
both inhibitory and excitatory neurons. The neuron model used in the simulations is depicted
in Fig. 1 where the sigmoid function is g(u) = ae*/(1 + e*) (with @ = 10). And the random
threshold in the spike generator has an exponential distribution with variance 1. Figure 3 shows
an inhibitory synaptic connection of (26) where the strength W = —0.5 and the time constant
o0=12 ms. Formula (11) is calculated using algorithm 1 with wy = —w, = 2 and o, = 20 ms.
In addition, Kalman filtering is implemented using algorithm 2 with E[V] = «/2, var(V) =
a? [ (e”/(1 + €*))?dw — o?/4, and bin resolution At = 1 ms. Figure 4 shows an excitatory
connection of (2) where W = 0.3 and ¢ = 6 ms. In Fig. 5, formulas (12) and (39) are used to

estimate the integration time ¢ with a synaptic connection of (2) where W = —0.8 and o == 4 ms.

As shown in these figures, both Kalman filter and nonlinear estimates approach the true W and

o asymptotically, although Kalman filter estimates Wims (t) are inferior to the nonlinear estimates

W (t). Note that although the form of the synaptic connection in Fig. 3 is different from that in
Figs. 4 and 5, the Kalman estimates perform uniformly well without any corresponding changes.
This supports the notion that Kalman filtering can be used in general regardless the detail of the
synaptic connection. In contrast to the conventional linear correlation histogram in which minutes
of data are required for the estimation, the MMSE estimation in these simulations need only 10

seconds of data with an acceptable accuracy.
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Appendix

Proof of Proposition 1: For fixed ¢, we see that

/ E{[a% In V;(2)]?V, (2)}dr < t < o0,
0

since V;(z) < 1 and 81nV,(z)/0w < 1. It follows that (Hero 1989, proposition 1)

F= /0 E{[B%lnmz)rvr(z)}dr + E[-a%ln Px(2)]% (40)

Because (31n V;(z)/0w)V(z) = al(t — TP < o) B 0-TF<) /(1 4 B,evT-TF<))3  the first
term in Fisher information becomes

t 9 ) ~ NF min{T}f +o,min{T}5,1}} ﬁ(l)eW
B /0 (VoV} = Bla /T . rgrrEdrh @)

which is the first term in (28). For the second term, it is shown that (Srinath and Rajasekaran

1979))

E[g% In Py (2)]? = —E[E% In Px(z)],

which completes the proof.

Proof of Proposition 2: Let us start with a distortion-rate function (Berger 1971) defined as

D(R) = PR, E[(W - W)*] (42)

where P is the set of transition probabilities P(i|w) for all estimation schemes, for a given Px(z),
with the property that the mutual information does not exceed a given constant R, namely,

P = {P(db|w) : [(W; W) < R}.
And

1 -
D(R) > Dy(R) = Q—M;eZh(W)e 2R
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where Dr,(R) is known as Shannon lower bound. Because the minimum in (42) is achieved at the

boundary of P, it follows that
. 1 R
w2 2h(W) ,~2I(W;W)
E[(W -W)*]1 > 55¢ e .

It is obvious that I(W; W) < I(N;W), because W is a function of {N# :0 < s < t}.

To complete the proof, it suffices show that
t
[(N:; W) < min{h(W), at - / EV.(X)]dr)
0

where [ E[V,(X)]dr is expressed in (32).

First, it is known that I(N;W) < ~(W). Next, we show that I(N; W) < at — fot E[V,(X))dr.

By definition, we have

Pyw({N#:0< s <t}[W)

I(N3W) = Eln( =g o e s <)) )).

From-(7) and (8), the numerator becomes

Elln(Py ({N 0 < 5 < }|W))] = / " B (V2 (X)) Vi (X))dr - / E[V, (X)]dr.

Then the denominator is lower bounded by

N
E{ln(Py({N&:0 < s < t}))} = E{n(Ele b "M [TV (X))

k=1

NA N¢
> B{in(Ble [] Vga (X))} = —ot + E{n(E[ ] Vra GO}
k=1 k=1

NA

> —ta-+ B(EIn([ Vag (X)) = ~at + | B0V, ()] V()
k=1
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To get the first inequality, the fact that V;(X) < 1 was used; to get the second inequality,

Jenssen’s inequality In(E'V) > E(InV) was played. The last equality was obtained by the fact that

E[Zivfl (T3, X)) = fot Elg(r, X) V.(X)]dr (see (Larson and Shubert 1979, p.635) for a proof).

Combining (44), (45), and (46), we obtain (43). And (32) follows that

B
Nt Hlin{T,B+Uyrr\in{thz_B;1}} aﬂeW

/0 E[V;(X)ldr = E]) /T . Wdr].

=1

Proof of Proposition 3: We express w = ¢~ !(v) = In(v/(e — v)) — In 8 in a Talor form as w =
9 (vo) + dg ™ (v)/dv|y=¢ (v — vp), where € satisfies vg < & < v (or v < € < ), and vy corresponds

to w = 0. Therefore, for 0 < A < 1 we have

(1+ Bexp(AW)

BlWins(8) = )"} = B St (i) 1)

< (L Bexp(wysgn(B ~ 1)))*

(aBexp(wpsgn(B — 1)))? E[(Vims(t) = V)3

Then, applying (22) completes the proof.
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Figure 1: The Neuron Model and the Estimation Scheme.

Figure 2: A Comparison of the CR and IT Bounds. (a) The two lower bounds (34) and (35) and
the upper bound (36) are plotted against ot where wy = —w, = 2.5. Also N? = E[V]t and § = 1.
The CR bound is always tighter than the IT bound in this case. (b) The two lower bounds (34)

and (35) are plotted against at where wy, = —w, = 64. In this case, the IT bound is tighter than

the CR bound in the region [0.45, 1.95].

Figure 3: Estimation of the Connection strength. Results from the simulation of an inhibition
neural network of Fig. 1, where the synaptic connectivity has a form of (26) where the connection

strength w = —0.5 and the integration time ¢ = 12 ms.

Figure 4: Estimation of the Connection strength. Results from the simulation of an excitatory
neural network of Fig. 1, where the synaptic connectivity has a form of (2) where the connection

strength w = 0.3 and the integration time o = 6 ms.

Figure 5: Estimation of the Integration Time. Results from the simulation of an inhibition neural
network of Fig. 1, where the synaptic connectivity has a form of (2) where the connection strength

w = —0.8 and the integration time o = 4 ms.
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