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Surface ozone is formed in the presence of NOx (NO + NO2) and volatile 

organic compounds (VOCs) and is hazardous to human health. A better 

understanding of these precursors is needed for developing effective policies to 

improve air quality. 

To evaluate the year-to-year changes in source contributions to total VOCs, 

Positive Matrix Factorization (PMF) was used to perform source apportionment using 

available hourly observations from June through August at a Photochemical 

Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. 

Results suggest that while gasoline and vehicle exhaust emissions have fallen, the 

contribution of natural gas sources to total VOCs has risen. 

 To investigate this increasing natural gas influence, ethane measurements 

from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a 

period of decline, daytime ethane concentrations have increased significantly after 



  

2009. This trend appears to be linked with the rapid shale gas production in upwind, 

neighboring states, especially Pennsylvania and West Virginia. Back-trajectory 

analyses similarly show that ethane concentrations at these monitors were 

significantly greater if air parcels had passed through counties containing a high 

density of unconventional natural gas wells. 

 In addition to VOC emissions, the compressors and engines involved with 

hydraulic fracturing operations also emit NOx and particulate matter (PM). The 

Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality 

for the Eastern U.S. in 2020, including emissions from shale gas operations in the 

Appalachian Basin. Predicted concentrations of ozone and PM show the largest 

decreases when these natural gas resources are hypothetically used to convert coal-

fired power plants, despite the increased emissions from hydraulic fracturing 

operations expanded into all possible shale regions in the Appalachian Basin. 

 While not as clean as burning natural gas, emissions of NOx from coal-fired 

power plants can be reduced by utilizing post-combustion controls. However, even 

though capital investment has already been made, these controls are not always 

operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show 

ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants 

limit NOx emissions to historically best rates. 
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Chapter 1  Introduction 
 

1.1 Ozone, Particulate Matter, and Human Health 
 

Air quality in the US remains a primary concern for human health, even as concentrations 

of pollutants continue to decrease (EPA, 2016a, 2016b). The U.S. Environmental Protection 

Agency (EPA) has outlined six criteria pollutants hazardous to human health and public welfare: 

carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM), 

and sulfur dioxide (SO2) (EPA, 2015a).  

In particular, ozone and PM still exist at hazardous levels. Ground level ozone is a 

colorless, odorless gas which can cause several health problems related to the respiratory system 

such as lung and throat irritation, coughing and wheezing, aggravation of asthma, and 

inflammation and damage to the lining of lungs (EPA, 2015a). Children and persons with 

respiratory disease are most at risk on high ozone days, and plants and animals are also 

negatively affected by ozone. PM can originate from a variety of sources such as dust, ash, mist, 

smoke, or fumes. PM2.5 refers to fine PM measuring less than 2.5μm in diameter, and particles 

less than 10μm in diameter, are referred to as PM10 or coarse. Particulate matter of any size can 

be harmful, but fine particles are able to penetrate deep into the lungs, causing serious damage. 

PM has been known to cause both pulmonary and cardiovascular problems and can even 

culminate in lung cancer or early death. Similar to ozone, children are most at risk from 

exposure, in addition to those with heart and lung diseases. PM can also deter plant growth and 

impair visibility (EPA, 2015a). 

As part of the Clean Air Act, the EPA is mandated to set National Ambient Air Quality 

Standards (NAAQS) for these criteria pollutants. For ozone, the current NAAQS established in 
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2015 is a daily maximum 8-hour average of 70 ppb, and the NAAQS established for PM2.5 in 

2012 is a 24-hour average of 35 μg/m3 and an annual average of 12 μg/m3 (EPA, 2016c). 

Nonattainment areas unable to meet these standards must provide a State Implementation Plan 

(SIP) to outline which air quality and emissions controls programs are planned or in effect to 

demonstrate attainment of the NAAQS (EPA, 2016d). Figures 1.1 and 1.2 show how 

Northeastern states (from Maryland northward along the East Coast) have succeeded in lowering 

concentrations of ozone and PM2.5. The NOx SIP Call from 2003-2008 created a cap and trade 

program to limit NOx (NO + NO2) emissions (EPA, 2009), and its effect on reducing ozone is 

visible in Figure 1.1. 

 
Figure 1.1 Ozone recorded in Northeastern states. The purple region delimits the 10th through 
90th percentiles, and the white line provides the average value (EPA, 2016a). 
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Figure 1.2 PM2.5 recorded in Northeastern states. The purple region delimits the 10th through 
90th percentiles, and the white line provides the average value (EPA, 2016b). 
 
 
1.2 Surface Ozone 

 The primary ozone precursors NOx (NO + NO2) and volatile organic compounds (VOCs), 

have been investigated to understand how to best limit concentrations of surface ozone. VOCs 

can come from a multitude of anthropogenic sources, but on a global scale, a significant majority 

of VOC emissions are biogenic in origin. The majority of NOx emissions are the result of fossil 

fuel combustion, although biomass burning, soils, and lightning have notable contributions 

(Seinfeld and Pandis, 2006; Sillman, 1999). 

 

1.2.1 Tropospheric Ozone Formation Mechanism 

The presence of VOCs and NOx will allow for the formation of ozone in the troposphere. 

Hydrocarbons (represented as RH in the reaction) will react with OH radicals to form alkyl 

peroxy radicals (RO2) (Equation 1-1). These formed peroxy radicals will next react quickly with 

NO to form NO2 and regenerate reactive radicals OH or HO2 (Equations 1-2, 1-3). The 

photolysis of NO2 by ultraviolet light leads to the formation of O(3P) radical (Equation 1-4), 

which quickly attaches to oxygen to produce ozone (Equation 1-5). 
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  RH + OH + O2 → RO2 + H2O   (1-1) 
   RH + OH → R + H2O    (1-1a) 
   R + O2 + M → RO2 + M [fast]  (1-1b) 

RO2 + NO + O2 → NO2 + R'CHO +HO2  (1-2) 
RO2 + NO → RO + NO2   (1-2a) 
RO + O2 → R'CHO +HO2 [fast]  (1-2b) 

HO2 + NO → NO2 + OH    (1-3) 
NO2 + hυ → NO + O(3P)    (1-4) 
O(3P) + O2 +M → O3 + M    (1-5) 
 

The rate of reaction between hydrocarbon species and OH (Equation 1-1a) varies 

depending on the properties of a given hydrocarbon molecule such as number of carbon atoms 

and types of bonds (Figure 1.3). Many aromatics and alkenes will react quickly, lasting less than 

a day; isoprene has a lifetime of only 1.5 hours. Shorter-chain alkanes, on the other hand, can last 

several days, or even multiple weeks in the case of ethane (Parrish et al., 2007; Blake and Blake, 

2003). 

 
Figure 1.3 Rate constants (left y-axis) and lifetimes (right y-axis) for select hydrocarbon species 
(Parrish et al., 2007). 

 
 

Radicals are ultimately terminated through the formation of nitric acid (Equation 1-6) or 

peroxides (Equations 1-7, 1-8). Ozone is also able to react with NO to regenerate NO2 and 

oxygen (Equations 1-9). However, peroxides and NO2 will undergo daytime photolysis to 

recreate radicals and ozone. 
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OH + NO2 + M → HNO3 + M   (1-6) 
HO2 + HO2 → H2O2 + O2    (1-7) 
RO2 + HO2 → ROOH + O2    (1-8) 
O3 + NO → NO2 + O2     (1-9) 

CO also serves as an ozone precursor, and acting similarly to hydrocarbons, yields HO2 by 

reacting with OH (Seinfeld and Pandis, 2006). 

  CO + OH + O2 → CO2 + HO2   (1-10) 

 
1.2.2 Ozone Isopleths and Nonlinearity 

  One useful tool for understanding ozone formation has been the ozone empirical kinetic 

modeling approach (EKMA) isopleth diagram (EPA, 1989), which helps to effectively visualize 

the sensitivity and nonlinear response of ozone production due to NOx and VOCs. Figure 1.4 

demonstrates that reducing both VOC and NOx emissions results in less ozone, but it can also be 

seen that if only NOx emissions are lowered from 1995, then ozone production would increase. 

This is an example of a VOC-limited region. On the other hand, the left part of Figure 1.5 

indicates that focusing only on reducing VOC emissions can yield no net change in ozone 

production. This is an example of a NOx-limited region. 

 
Figure 1.4 Isopleth displaying San Francisco Bay Area Ozone attainment strategy. Ozone is 
shown in ppb (Kear et al., 2008). 
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Figure 1.5 Ozone contours at 4pm simulating a rural eastern U.S. environment with NOx limited 
conditions using a two-layer box model. Ozone is shown in ppb (Sillman et al., 1990). 
 
 
 It can also be seen in Figures 1.4 and 1.5 that a straight line can be drawn through the 

ozone maximums of each contour; this “knee region” separates the VOC-limited region from the 

NOx-limited region. As a result, shifting the ratio significantly can alter the modeled isopleth. In 

addition to uncertainties with modeled data, daily emissions of NOx and VOC can be highly 

variable, and locations can change from being NOx-sensitive one day to being VOC-sensitive the 

next (and even within the same day), making it extremely difficult to prioritize emission 

regulations in policy making (Kear et al., 2008; Sandoval et al., 2001; Seinfeld and Pandis, 2006; 

Sillman, 1999; Thielmann et al., 2001). 

In addition to the difficulties previously mentioned, the chemical properties and NOx or 

VOC limitations can also vary depending upon climate and geography of a given city. Variables 

such as humidity, biogenic sources, and types of industrial facilities play a further role in 

complicating the NOx, VOC, and ozone relationship. A study of ozone and its precursors was 

performed by Kleinman et al. (2005) to investigate the differences in ozone production events in 

five metropolitan areas in the United States from 1995-2000. Events were found to be vastly 

different, ranging from highly NOx-limited to highly VOC-limited. In Nashville, an extreme 

event developed as a result of stagnation where a large air mass concentrated with high biogenic 
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isoprene combined with NOx. In the coastal city of Houston, petrochemical plants emit both NOx 

and light olefins to produce the highest levels of ozone for the cities studied. The arid 

environment of Phoenix has low OH and a low VOC/NOx ratio that leads to no high ozone 

production values. It was also found that Nashville and New York City were NOx-limited 

(although measurements were made outside of the population centers containing high NOx), but 

ozone production in Phoenix, Houston, and Philadelphia was VOC-limited.  

Over time, total emissions of NOx have been significantly reduced as major sources such 

as motor vehicles and power plants have been made cleaner, and ozone production sensitivities 

have shifted. A study of 2005-2007 OMI NOx observations by Duncan et al. (2010) showed most 

of the ozone produced in the United States is now sensitive to NOx. A CAMx simulation by 

Goldberg et al. (2016) similarly indicated the state of Maryland was almost exclusively NOx-

limited in July 2011. As widespread NOx reductions continue with cleaner combustion products, 

it would be expected that more areas will become NOx-limited. 

 

1.3 Air Quality Monitoring 

 The U.S. Environmental Protection Agency has established numerous sites for 

monitoring a variety of pollutants. Following the 1990 Clean Air Act Amendments, 

Photochemical Assessment Monitoring Stations (PAMS) were created to monitor ozone, its 

precursors of NOx and VOCs, and surface meteorology in regions of ozone nonattainment (EPA, 

2014a). During the summer months of June, July, and August when ozone levels can often be 

hazardous to human health, concentrations are recorded every hour, providing rich datasets for 

analysis. These measurements provide control agencies and policy makers with a way to monitor 

and adjust air quality strategies for reaching attainment of the ozone NAAQS.  
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In the Baltimore-Washington area, there are three monitors that collect VOC 

measurements. The monitor at Essex, MD was set up to track emissions for the Baltimore ozone 

nonattainment area (Figure 1.6). Similarly, a station at McMillan Reservoir monitors VOC 

concentrations for the Washington, D.C. area. The third site in Beltsville, MD has a significantly 

smaller sample size, only obtaining VOC measurements on every third hour of every third day. 

 

 

Figure 1.6 The PAMS monitor at Essex, MD (a) noted by the yellow pin marker on the map to 
the east of Baltimore. The monitor is located in the corner of a parking lot in a residential 
neighborhood. (b) noted by the yellow star in an aerial view of Essex. 
 
 

(b) 

(a) 
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1.4 Emissions and Air Quality Modeling 

Air quality models can be beneficial tools for both researchers and policymakers. These 

models can provide insight for the interactions between emissions, meteorology, and pollutant 

chemistry and dynamics (The Institute for the Environment, 2012). One such use is adjusting 

existing emissions inventories to demonstrate the effects of policies to control criteria pollutants 

or greenhouse gases, and model results can help users understand the efficiency or attainment 

feasibility from proposed regulatory programs. 

 A basic schematic for air quality modeling is shown in Figure 1.7. Meteorological 

models serve as inputs to emissions models for temperature and wind-sensitive calculations. An 

air quality model will finally perform photochemical reactions as determined by inputted 

emission rates of various pollutants and current meteorological conditions to predict 

concentrations of criteria air pollutant species. 

 

 
Figure 1.7 A simplified flowchart outlining the major components of air quality modeling 
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1.4.1 SMOKE Model 

 The Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system allows users 

to convert emissions inventories to a gridded format with hourly temporal resolution that can be 

used as input into a photochemical air quality model. SMOKE is primarily used to process the 

pollutants CO, NOx, VOCs, NH3, SO2, and PM2.5 and PM10, but can also include other various 

toxic species and has no limitation on the number of pollutants that can be processed.  

Emissions estimates are available from the National Emissions Inventory (NEI) or 

regional associations such as the Mid-Atlantic Regional Air Management Association 

(MARAMA). Regional air pollution control organizations such as Mid-Atlantic/Northeast 

Visibility Union (MANEVU), Lake Michigan Air Directors Consortium (LADCO), Southeastern 

States Air Resource Managers (SESARM), and Central States Air Resource Agencies 

(CENSARA) work to verify these emission values for use in air quality modeling. Emissions 

from these four regions combine to form the Ozone Transport Commission (OTC) modeling 

domain for the Eastern United States (Figure 1.8). 

 
Figure 1.8 The OTC modeling domain is outlined by the interior box nested in the domain for 
the continental United States. The states composing the MANEVU, SESARM, LADCO, and 
CENSARA regions are colored (OTC, 2013). 
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Emissions come from biogenic and various anthropogenic sources such as point, area, 

nonroad, and mobile sources. Point sources come from heavy industrial sites and can be emitted 

from the surface or elevated stacks. These sources include electricity generating units (EGU), 

industrial, commercial, and institutional (ICI) boilers, and various production and manufacturing 

facilities such as metals, solvents, plastic, food, and printing. Area emissions are emitted at the 

surface over a large region and because they cannot be pinpointed, they are averaged. These 

sources include residential heating and building surface coatings and can also include smaller 

industrial sources such as dry cleaning not included in point source emissions. Nonroad 

emissions cover vehicles that do not travel on roads. These emissions include vehicles and tools 

used for construction and lawn and garden in addition to marine, aircraft, and railway (MAR) 

sources which are sometimes counted as area sources. Mobile emissions are not processed 

directly with emissions inventories, but instead use vehicle miles traveled (VMT) and speed 

activity data cross-referenced with lookup tables from the Motor Vehicles Emissions Simulator 

(MOVES) model. These emissions include on-road vehicles such as light-duty gasoline cars and 

heavy-duty diesel trucks. Off-road mobile emissions also account for emissions from idling and 

refueling.  Other sources such as wildfire emissions and offshore emissions are needed for the 

OTC domain. 

Biogenic emissions are created outside of the SMOKE model, using either the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN), or the Biogenic Emission Inventory 

System (BEIS), but must be combined with anthropogenic emissions from SMOKE before use in 

an air quality model like CMAQ. Emissions are calculated based on leaf area index, plant 

functional type, plant specific species composition data, and emission factors such as 

meteorology and photosynthetically active radiation (PAR). The emission differences between 
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these models can strongly affect the formation of ozone and PM. MEGAN v2.10 was found to 

offer the most up-to-date algorithms, technical improvements, and most reasonable emissions 

distributions (Sakulyanontvittaya et al., 2012; Canty et al., 2015) when performing air quality 

modeling based on 2007 meteorology. BEIS v3.61 uses improved land use and canopy 

representation and best match observations for air quality modeling with 2011 meteorology 

(Bash et al., 2015; Goldberg et al., 2016). 

 SMOKE processes emissions inventories and transforms them through temporal 

allocation, spatial allocation, and chemical speciation.  While EGUs have hourly emissions data, 

most inventories are presented with units of tons/year, and temporal allocation provides a means 

to represent these emissions on an hourly basis. Emissions vary based on seasons, hour of day, as 

well as weekdays versus weekends and holidays, and these profiles are used to allocate the 

annual emissions. Emissions are also often provided by county and can be spatially allocated by 

comparing county lines to grid cells. The fraction of each county contained in a given grid cell is 

used to calculate emission rates for that cell. Finally, the pollutants provided in emissions 

inventories need to be speciated for use in a reaction mechanism. For example, VOCs encompass 

several carbon species which can have greatly differing lifetimes; ethane lasts for several weeks, 

whereas isoprene reacts in about an hour (Blake and Blake, 2003). To overcome this obstacle, 

speciation profiles are used to separate VOCs into groups with similar reactivities.  

Work shown here used SMOKE v3.1 to create emissions with hourly temporal resolution, 

12km x 12km spatial resolution, and speciated for the CB05 chemical mechanism. More 

information about this version of the SMOKE model can be obtained from: 

https://www.cmascenter.org/smoke/documentation/3.1/manual_smokev31.pdf. 

https://www.cmascenter.org/smoke/documentation/3.1/manual_smokev31.pdf


13 
 

 

1.4.2 CMAQ Model 

 In addition to the emissions rates provided by SMOKE, the Community Multiscale Air 

Quality (CMAQ) model incorporates meteorological data such as wind and temperature, and 

chemical reaction kinetics to calculate expected pollutant concentrations for various species. 

Because emissions are as much a regional issue as they are local, an air quality model is needed 

to simulate the formation and transport of air pollution, and CMAQ is designed to be transparent 

for users for both operation and optimization.  

To initiate the first time step of a modeling run, CMAQ uses initial conditions to estimate 

the existing chemical conditions at this time. Similarly, boundary conditions are used to account 

for horizontal emission fluxes at the edges of the modeling domain. CMAQ uses total column 

ozone above the surface to model photolysis frequencies assuming clear-sky conditions. Because 

of the approximations involved in these start-up processes, “spin-up time” is often factored into 

modeling runs, and the first several modeled days of modeling results are often discarded. 

 CMAQ v5.0 and v5.0.2 with the CB05 chemical mechanism (Yarwood et al., 2005) were 

used for modeling shown later, with two weeks allotted for spin-up time. This version of CMAQ 

includes notable upgrades over earlier versions such as incorporation of NOx emissions from 

lightning (Allen et al., 2012) and in-line photolysis calculations. The in-line photolysis module 

uses updated absorption cross sections and quantum yields and allows CMAQ to make use of the 

PM and ozone levels that have been predicted during a modeling run instead of relying solely on 

look-up tables. More information about CMAQ v5.0 and version updates can be obtained from: 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(February_2

010_release)_OGD. 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD
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1.5 Greenhouse Gases 

Air quality models are typically used with a primary interest in criteria air pollutants, but 

pollutants that contribute to climate change are also of concern. Unlike photons in the ultraviolet 

(UV) range of the spectrum, photons from the infrared (IR) region generally lack the energy to 

break bonds. However, if the energy of a photon matches a vibrational mode of a molecule, it 

can be absorbed, which causes the molecule to vibrate. These vibrations cause the bonds to either 

bend (lower energy) or stretch (higher energy) (Eubanks et al., 2006). 

 These vibrational modes can be seen using CO2, the earth’s most abundant greenhouse 

gas, as an example. In Figure 1.9a, the symmetric stretching of CO2 can be seen, and 

asymmetric stretching is shown in Figure 1.9b. Figures 1.9c and 1.9d show the bending 

vibrations in the vertical and horizontal planes. The oxygen atoms have partial negative charges 

due to the electrons surrounding them. When the molecule undergoes symmetric stretching, the 

shifts in charge distribution negate each other and IR absorption does not occur. However, when 

CO2 bends or stretches asymmetrically, the charges are no longer symmetrically distributed, 

creating a change in the dipole moment which allows the molecule to absorb corresponding IR 

radiation. After the molecules absorb and vibrate, they reemit IR radiation as they return to their 

ground state. This ability to absorb and return IR radiation from the earth’s surface makes 

molecules such as CO2 greenhouse gases (Eubanks et al., 2006). 

 

 
Figure 1.9 Symmetric (a) and asymmetric (b) stretching of CO2 and bending (c,d) of CO2. 
Adapted from Eubanks et al. (2006). 
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1.5.1 Methane 

Following CO2, methane is the next most prevalent greenhouse gas, accounting for about 

9% of total anthropogenic U.S. greenhouse gas emissions in 2012. Approximately 60% of 

methane emissions are caused by humans, and these sources include natural gas and petroleum 

usage, enteric fermentation and manure from domestic livestock, rice production, biomass 

burning, and landfills and waste. Methane is also naturally emitted from anaerobic bacteria in 

wetlands, the single largest source of methane. To a lesser degree methane can also come from 

termites, oceans, volcanoes, wildfires, and sediment (Eubanks et al., 2006; IPCC, 2007). The 

primary sink for methane is reaction with the OH radical in the troposphere, but it can also be 

removed by biological oxidation in dry soil, loss to the stratosphere, and oxidation by marine 

chlorine (IPCC, 2007). 

 Compared to CO2, methane has a much shorter lifetime (12 years as opposed to 50-100 

years) (Eubanks et al., 2006), but methane has a warming potential that is 30 times greater than 

CO2 (IPCC, 2013). In Figure 1.10 it can be seen that the abundance of CO2 in the atmosphere 

(~400 ppm) has created a broadened absorption band. As a result, adding small amounts of CO2 

will have a relatively small effect as the band is already saturated and the IR radiation emitted at 

that wavelength is already absorbed. However, no such saturation effect is present in the methane 

absorption band. Because the concentration of methane is much lower (~1.9 ppm), smaller 

increases can greatly increase the amount of IR absorbed by methane, making it a much more 

effective greenhouse gas (Archer, 2011; NOAA, 2016). The radiative forcing from CO2 can be 

described by a logarithmic expression, whereas methane has a square-root dependence shared 

with N2O because of overlapped absorption bands (IPCC, 2001). 
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Figure 1.10 The solid line shows model-generated spectrum of IR escaping the top of the 
atmosphere. The dashed and dotted lines represent blackbody spectrum for a range of 
temperatures (Archer, 2011). 

 
 

 Although the research shown in the following chapters does not directly address the 

effect of methane on climate, it is important to keep in mind that methane is the primary 

component of natural gas. If more than about 3.2% of methane is lost to the atmosphere between 

production and delivery of natural gas, the climate benefits over coal combustion are lost 

(Alvarez et al., 2012). Results from several studies display a wide range of estimates for methane 

loss from shale oil and gas operations, ranging between 0.18% and 17.3%; these findings are 

summarized in Table 1.1 (Allen et al., 2013; Caulton et al., 2014; Howarth et al., 2011; Karion et 

al., 2013; Kirchgessner et al., 1997; Peischl et al., 2013, 2015; Petron et al., 2012; Schneising et 

al., 2014). Increases in ethane concentrations from natural gas would not only suggest 

consequences for air quality, but are also indicative of increased concentrations of methane and 

climate change. 
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Table 1.1 A survey of estimates of methane leakage from natural gas production operations. 
Leakage Region Method Reference 

2.8% - 17.3% Southwestern PA Aircraft sampling compared to PA, WV,    
and OH production data Caulton et al., 2014 

12% Los Angeles Basin, CA Aircraft CalNex field measurements, 
emissions inventory estimates Peischl et al., 2013 

6.2% - 11.7% Uintah, UT Aircraft sampling-based mass balance Karion et al., 2013 
10.1 ± 7.3% Bakken (ND, SK) 

SCIAMACHY retrieval of CH4 Schneising et al., 2014 ~10% Marcellus (PA, WV) 
9.1 ± 6.2% Eagle Ford (TX) 

3.6% - 7.9% US national Estimates based on emission estimates from 
EPA and GAO reports Howarth et al., 2011 

2.3% - 7.7% Northeastern Colorado Ground level ambient tall tower and mobile 
sampling Pétron et al., 2011 

1.42% US national Source sampling Kirchgessner et al., 1997 
1.0 - 2.8% Fayetteville (AR) Aircraft sampling compared to natural gas 

production data 

 
1.0 - 2.1% Haynesville (LA, TX) Peischl et al., 2015 
0.18 - 0.41% Northeastern PA  

0.42% US national Source sampling and national emission 
inventory estimates Allen et al., 2013 
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Chapter 2  Source Apportionment and Changes from a Decade 

of VOC Measurements at Essex, MD 
 

2.1 Introduction 

Volatile organic compounds (VOCs) are important pollutants as they are precursors for 

ozone (Crutzen, 1974; Haagensmit et al., 1953) and secondary organic aerosols (SOA), which 

are a major component of particulate matter (Hallquist et al., 2009; Schuetzle et al., 1975). These 

resulting pollutants can have adverse human health effects, as pulmonary and cardiovascular 

complications can arise in the presence of high concentrations of these criteria pollutants (EPA, 

2016e; EPA, 2016f; Liao et al., 2004; Pope and Dockery, 2006; WHO, 2005). Some VOCs, 

especially aromatics such as benzene, are also classified as toxic, hazardous air pollutants having 

direct negative impacts on human health (EPA, 2016g). As a result, it is of critical importance to 

limit the emissions of VOCs, especially the most toxic and reactive species, and understand the 

sources of such species. 

In a typical urban environment, there can be a variety of anthropogenic VOC emission 

sources: vehicle exhaust, gasoline, natural gas, other fossil fuel usage, surface coatings, solvents, 

petroleum refineries, and other industrial and manufacturing processes. Additionally in areas 

such as Baltimore, Maryland which also feature an appreciable amount of vegetation, biogenic 

sources become a significant source of VOCs, especially the highly-reactive isoprene compound. 

Because the concentrations and reactivity rates of individual species are significantly varied, it is 

important to quantify and qualify the sources which compose the observed VOCs. 

To better quantify the precursor species and conditions leading to surface ozone 

formation, the EPA established the Photochemical Assessment Monitoring Station (PAMS) 
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network to collect measurements of ozone and its precursors. During the summer months of June 

through August, when surface ozone concentrations are expected to be most dangerous for 

human health, these measurements are made on an hourly basis. One such monitor was 

established in 1994 at Essex, MD, representing the Baltimore metropolitan ozone non-attainment 

area. In addition to meteorological parameters and other pollutants, measurements of 55 

individual hydrocarbon species plus a measurement for total non-methane organic compounds 

(TNMOC) are available from this site. 

Positive Matrix Factorization (PMF), the most commonly used (Hopke, 2016) and 

recently updated (Norris et al., 2014) source apportionment model, was used to find the sources 

of VOCs at the Essex monitor for recent years. The analysis in this chapter draws from the 

procedures and findings from a previous source apportionment study which used the Unmix 

model (Henry, 2003) with hourly measurements of 23 individual VOC species obtained from the 

Essex monitor during the summers of 1996-1999 (Choi and Ehrman, 2004). Six source factors 

were identified: liquid gasoline, gasoline vapor, vehicle exhaust, surface coatings, natural gas, 

and biogenic. Combined, the three gasoline-related factors represented nearly two-thirds of the 

total VOCs observed at the monitor. The other three sources made up mostly equal parts of the 

remaining total VOC concentrations.  

2.2 Methods 

The VOC measurements collected at PAMS monitors can be used in a technique called 

source apportionment, which is also often used for PM species. This method takes a matrix of 

ambient species concentrations recorded over several time intervals and separates it into a 

number of sources. These sources can be determined by identifying tracer species that make up a 

significant portion of the total source mass or mostly only appear in a certain source. Source 
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apportionment studies have been performed for cities all across the globe (Brown et al., 2007; 

Buzcu-Guven et al., 2008; Chen et al., 2002; Choi and Ehrman, 2004; Fujita, 2001; Leuchner 

and Rappenglück, 2010; Morino et al., 2011; Watson et al., 2001; Yuan et al., 2012), and can be 

very useful tool for understanding the magnitudes for sources of emissions and how these source 

contributions change over time. 

The EPA Positive Matrix Factorization (PMF) model is one available tool developed for 

source apportionment (Hopke, 2000; Norris et al., 2014). As a multivariate factor analysis tool, 

PMF takes a matrix of speciated data and decomposes it into two matrices: factor profiles and 

factor contributions, and these factors can then be identified by using tracer species. This process 

is described by Equation 2-1: 

𝑥𝑥𝑖𝑖𝑖𝑖 =  ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1       (2-1) 

Given matrix x of speciated data with i samples and j chemical species, PMF uses user-

determined p factors to identify g, the mass contributed by each factor to each sample, and f, the 

species profile of each source, with residuals eij.  

Like any model used for source apportionment, the PMF modeling system must also obey 

certain physical constraints to ensure realistic solutions are presented. The model must reproduce 

the original observations, predict non-negative source compositions and contributions, and, for 

each source, predict a mass contribution whose sum is less than or equal to the measured total 

mass (Hopke, 2003).  

PMF also allows users to apply uncertainty estimates to individual data points, as a 

similarly-formatted but separate input file must be provided to accompany the measurements 

used as data input. This is especially advantageous for measurements that are made below a 

detection limit, where the value of the measurement is low and possibly not recorded accurately. 
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Uncertainty weighting allows users to keep these lower value data points but also make them less 

influential on the solution than measurements recorded with more certainty above a detection 

limit. As shown in Equation 2-2, given uncertainties u, the PMF solution seeks to minimize the 

objective function Q, a goodness-of-fit parameter for assessing how well the model fits its inputs. 

𝑄𝑄 = ∑ ∑ [(𝑥𝑥𝑖𝑖𝑖𝑖 − ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 )/𝑢𝑢𝑖𝑖𝑖𝑖]2𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1    (2-2) 

Source apportionment can also be performed by the chemical mass balance (CMB) 

(Miller et al., 1972) and Unmix (Henry, 2003) models. In general, resolved factors from PMF are 

in good agreement with results from the other models (Norris et al., 2014; Song et al., 2008), 

although PMF does offer some advantages. Unlike PMF, data points cannot be individually 

weighted for uncertainty in Unmix (as an equal weight criterion is part of the Unmix approach), 

making measurements below the detection limit more difficult to work with. CMB requires the 

user to provide source profiles prior to apportioning mass (f would be a matrix of known values 

in Equation 2-1), so the model has knowledge of a solution to work toward, whereas PMF 

converges to a solution without fixed expectations (Norris et al., 2014).  

For this study, EPA PMF v5.0.14, was used to perform source apportionment of hourly 

VOC measurements obtained by Gas Chromatography – Flame Ionization Detector (GC-FID) 

with weekly calibration to standards from the Essex, MD PAMS monitor from the summers of 

2007 through 2015. These measurements were obtained from the EPA via the downloadable 

interface at: https://aqs.epa.gov/api. Similar to the Unmix source apportionment of VOCs from 

1996-1999 at this location (Choi and Ehrman, 2004; Choi, 2004), along with total non-methane 

organic compounds (TNMOC) measurements, 23 critical, individual VOC species were 

determined for this study: ethane, ethylene, propane, propylene, acetylene, n-butane, isobutane, 

n-pentane, isopentane, 3-methylpentane, n-hexane, isoprene, 3-methylhexane, 2,2,4-

https://aqs.epa.gov/api
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trimethylpentane, 2,3,4-trimethylpentane, 2-methylhexane, 2,3-dimethylbutane, 2-

methylpentane, m/p-xylene, benzene, toluene, o-xylene, and 1,2,4-trimethylbenzene. The other 

32 measured species were excluded from modeling because a significant percentage (20% or 

more) of measurements were consistently below the minimum detection limit (MDL) over at 

least four years. 

Uncertainties for these measurements were calculated based on the methodology outlined 

by Brown et al. (2007). If a measurement was missing at a given hour, the median value for the 

species was used and provided an uncertainty of four times the median value. Measurements 

below the detection limit were given the value of half the MDL and had an uncertainty of 

1.5*MDL. Measurements above the detection limit were given an uncertainty that followed the 

formula of (analytical uncertainty)*(concentration) plus MDL/3, where analytical uncertainty 

was set to 0.05 based on weekly calibrations to standards (Acefaw Belay, personal 

communication). Additional model uncertainty was set to 10% and applied to all values to help 

minimize and normally distribute residuals and account for modeling errors that could arise from 

atmospheric chemical transformations and source profile variations. 

In addition to applying uncertainties for specific measurements, the PMF model also 

provides users with the ability to apply additional uncertainty to a species. Species are by default 

categorized as ‘strong’ but can be changed to ‘weak’ or ‘bad’ if a user-defined threshold is 

exceeded for categories such as low measurements, low signal-to-noise ratios, or large, non-

normalized residuals. When a species is designated as ‘strong,’ no additional uncertainty is 

included. If a species is categorized as ‘weak,’ the uncertainties associated with all 

measurements are tripled, and setting a species as ‘bad’ will exclude its use by the model. 

TNMOC was used for the total variable, which is set to ‘weak’ by default. These species 
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exhibited a lower quartile of measurements below the MDL during a given year and were 

categorized as ‘weak’: 2- and 3-methylpentane in 2007, 1,2,4-trimethlybenzene in 2013, and 2-

methlyhexane in 2014. All other species were ‘strong.’ 

For each year, 100 base model runs were performed, and the run returning the lowest 

Q(robust) value (goodness-of-fit excluding uncertainty-scaled residuals greater than 4) was 

selected for reporting results. All base runs successfully converged to a solution, and exhibited 

stable Q(robust) values. Furthermore, Q(robust) values were at most 5% of the Q(true) value 

(goodness-of-fit considering all data points). 

Additionally, 100 bootstrap runs along with a displacement run were performed for the 

best run for each year to ensure no significant errors existed in the factor solutions found. 

Displacement error estimates accounts for rotational ambiguity, as having only one constraint 

(non-negative source contributions) will likely not provide a unique solution despite finding a 

minimum for Q. Bootstrap error estimates also account for rotational ambiguity to a lesser 

degree, but are most useful for determining random error effects and discerning if a subset of 

observations are strongly influencing the solution (Paatero et al., 2014; Brown et al., 2015). 

 
2.3 Results and Discussion 

2.3.1 Identification of Source Factors 

Figure 2.1a shows the five factor profiles returned for analysis of 2015 hourly 

measurements, and results from the other years displayed similar profiles (Figure 2.1b). Tracer 

species identified from previous studies were used to determine the factor solutions (Choi and 

Ehrman, 2004; Fujita, 2001; Sonoma Technology, 2011). The biogenic factor was determined by 

the large percentage of isoprene, and low percentages of other species. The natural gas factor 

was indicated by ethane and propane, gasoline sources by n-pentane, vehicle exhaust by 



24 
 

ethylene, propylene, and acetylene, and industrial sources by aromatics such as m/o/p-xylenes 

and 1,2,4-trimethylbenzene. 

 
Figure 2.1 (a) Base factor profiles for 2015 VOC measurements at Essex, MD. Species 
concentrations are shown in the blue bars, and species percentages are marked by the red dots. 
Note the left-side y-axis for concentration is log-scaled. 
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Figure 2.1 (b) 2007-2014 base factor profiles for VOC measurements at Essex, MD. Species 
concentrations are shown in the blue bars, and species percentages are marked by the red dots. 
Note the left-side y-axis for concentration is log-scaled. 
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Figure 2.1 (b) (continued) 2007-2014 base factor profiles for VOC measurements at Essex, MD. 
Species concentrations are shown in the blue bars, and species percentages are marked by the red 
dots. Note the left-side y-axis for concentration is log-scaled. 
 

2011 2012 
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After initially attempting the six source solution presented by Choi and Ehrman (2004), a 

five factor solution was finally determined to make the most mathematical and physical sense. 

Whereas the aforementioned study saw gasoline in separate liquid and vapor source categories, 

PMF results for the later years showed a singular gasoline factor. One explanation could be that 

liquid gasoline was the smallest overall source, and a third of the gasoline vapor source. As VOC 

emissions have decreased over the past two decades, determination of this small source could 

become more difficult, and would be more likely to combine with the larger gasoline vapor 

factor which shares similar emission sources and diurnal variations.  

With a six factor solution in PMF, results were not as consistent between base model 

runs, and the compositions of factors did not all make physical sense. While five of the six 

factors seemed similar to source patterns from previous studies, the sixth factor offered a small 

contribution (<5%) and contained only notable amounts of species such as 2- and 3-

methylhexane that are usually spread between factors representative of gasoline, vehicle exhaust, 

and industrial sources, suggesting fewer factors should be used for determining a solution. When 

a four factor solution was attempted, the solution suffered as the gasoline factor was split 

between the natural gas and industrial factors. 

In addition to looking at composition and tracer species to determine the resulting factors 

resolved by the model, diurnal profiles for each of the sources were also investigated to see if 

reasonable temporal trends existed (Figure 2.2a). Vehicle exhaust is seen to peak early in the 

morning as commuters head to work and again in the late afternoon and early evening as people 

head home. The biogenic source is seen to rise around sunrise, as photosynthesis begins, and 

trails off as the sun begins to set. The biogenic source exhibits a local minimum in the late 

morning where the emission rate is slower than the reaction rates consuming species such as 
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isoprene. Furthermore, these profiles matched the patterns observed in the Choi and Ehrman 

(2004) study. Diurnal profiles for the other years are shown in Figure 2.2b. 

 
Figure 2.2 (a) Diurnal profiles for median concentrations from each of the five different factor 
solutions for 2015 VOCs. 
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Figure 2.2 (b) Diurnal profiles for median concentrations from each of the five different factor 
solutions for VOCs, for each of the years 2007-2014. 
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2.3.2 Annual Results and Overall Trends 

The results from the base model runs for each of the years are presented by percentage in 

Figure 2.3 (along with the median and interquartile ranges found from each of the corresponding 

bootstrap error estimation runs, shown in Figure 2.4) and by total NMOC concentration in 

stacked bar plots (Figure 2.5). The gasoline and vehicle exhaust factors are closely related to 

mobile emission sources and are presented together as the sum of their contributions. On 

average, error estimations show an interquartile range of roughly 10% or less for each factor (or 

20% for the combined gasoline and exhaust factors). Additionally, the resulting trends presented 

in Figure 2.3 are also visible in Figure 2.4, indicating the solutions can be viewed with a 

reasonable degree of certainty. 

 
Figure 2.3 Percent of TNMOC mass provided by each factor for each year at Essex, MD. 
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Figure 2.4 Bootstrap error estimation results for percent of TNMOC mass provided by each 
factor for each year at Essex, MD. Markers show the median for each factor, with the error bars 
representing the 25th and 75th percentiles. 

 
 

 
Figure 2.5 Concentration of TNMOC mass contributed by each factor at Essex, MD. 
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an automobile in 2014 was 11.4 years (USDOT, 2015), and almost an entire generation of the 

vehicle fleet had turned over during the years of this study. As a result of better technology and 

regulations, car emissions have become much cleaner over the years and would be expected to be 

lower in 2015 than in 2007. In 2007, the Maryland Clean Cars Program began enforcing strict 

rules for low emission vehicles (LEV) to lower ozone precursors (MDE, 2012). Additionally, 

during the time period of this study multiple federal regulations came into effect that would have 

decreased the impact of the gasoline factor. In 2007, the U.S. EPA issued final regulations to 

limit the content of benzene in gasoline and the evaporation of gasoline from portable fuel 

containers (EPA, 2016h), and in 2008, regulations began to limit evaporative losses from bulk 

gasoline plants, terminals, and pipeline facilities (EPA, 2008a).  

Natural gas initially made up about 25% of the modeled VOC concentrations for 2007-

2009, but began to increase in 2010. This increasing percentage for natural gas is similar to the 

increasing concentrations of ethane reported by Vinciguerra et al. (2015), and could be 

attributable to the rapid increase of upwind natural gas operations in the Marcellus Shale regions 

that began around that time. Further analysis and discussion of measurements of ethane 

concentrations at the Essex, MD monitor and natural gas is presented in Chapters 3 and 4. 

The biogenic source is relatively constant by mass, contributing around 5-10% of the 

total NMOC. Isoprene emissions have a positive correlation with increasing temperatures up to  

~40°C (Rasulov et al., 2010). Thus, the impact of summers such as 2010 which are extremely 

warm, would result in larger concentrations and percentages from the biogenic factor. On the 

other hand, a much cooler summer such as 2009 would make up a lower percentage of total 

NMOC. A slight positive correlation (r2=0.21) was observed between daytime median biogenic 

factor concentration and median temperature (Figure 2.6). Although the trends for the biogenic 
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factor do not correlate as well as expected with temperature, it does generally explain the year-

to-year variability (Figures 2.6 and 2.7). 

 

 
Figure 2.6 A positive, albeit weak correlation between median daytime summer temperatures 
and PMF biogenic factor solutions for years 2007-2015.  
 

 
Figure 2.7 Daytime temperatures recorded at the Essex monitor. The median temperature is 
shown by red bars, the 25th and 75th percentiles marked by the blue boxes, and the 10th and 90th 
percentiles are represented by the whiskers. 
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decreased significantly over the next two years. Similarly, the 2013 value added was at its 

highest since the 2009 recession for the basic chemical and paint, coating, and adhesive 

manufacturing companies in Maryland reporting to the Annual Survey of Manufacturers (Figure 

2.8), and in 2014 the value decreased (2015 data is unavailable at the current time). 

Concentrations of industrial factor VOCs exhibited a positive correlation to value added 

(measure of manufacturing activity derived from value of shipments less cost of materials, 

contract work, etc.) by these manufacturers from 2009 to 2014 (Figure 2.9). Several chemical 

plants are located 10-15km upwind from the monitor around Curtis Bay (Figure 2.10) where a 

variety of chemical products are manufactured. There are also several auto body shops within 2-

3 km of the monitor, with one only two blocks away, whose surface coating services could make 

up a significant part of the industrial factor (Figure 2.11). The industrial factor varies over the 

years with increasing and decreasing contributions to total VOC, but it consistently trends with 

economic values. 

 

 
Figure 2.8 Value added for basic chemical and paint, coating, and adhesive manufacturers in the 
state of Maryland (Annual Survey of Manufacturers, 2016). 
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Figure 2.9 Strong, positive correlation between basic chemical and paint, coating, and adhesive 
manufacturing value added and the industrial factor solution for years 2009-2014.  

 
 

 
Figure 2.10 Google Maps results for Baltimore chemical plants (red markers) upwind of the 
Essex, MD monitor (blue marker). 
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Figure 2.11 Google Maps results for auto body shops (red markers) surrounding the Essex, MD 
monitor (blue marker). Johnson & Sons is only two blocks away from the monitor. 
Approximated street address for the monitor is shown in the inset. 

 
 

2.3.3 Reactivity-Weighted VOCs 

The analysis thus far has considered VOC mass, but ozone formation depends on 

concentration and reactivity, and could vary as the composition of total VOCs has evolved 

through the years. Similar to the analysis done by Choi and Ehrman (2004), reactivity-weighted 

concentrations for the source categories from the Essex site were calculated. Each measured 

VOC species concentration is multiplied by its corresponding calculated ozone impact value 

from the maximum incremental relativity (MIR) scale (g O3 formed/g C) listed in Table 2.1, to 

achieve this reweighting. Developed initially by Carter (1994), the MIR scale is derived from 

one-day box model simulations where the emissions of a given VOC species are gradually 

increased to quantify its capacity for ozone production.  The MIR values for all species were 

recently updated by employing the SAPRC-07 chemical mechanism (Carter, 2010), and aromatic 
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species were further updated with the SAPRC-11 mechanism (Carter, 2012), with non-aromatic 

species showing no significant changes with the newest mechanism.  

 

Table 2.1 Species and their respective MIR multipliers. 

Species MIR (g O3/g VOC)a Species MIR (g O3/g VOC)a 
Ethane 0.28 Isoprene 10.61 
Ethylene 9 3-Methylhexane 1.61 
Propane 0.49 2,2,4-Trimethylpentane 1.26 
Propylene 11.66 2,3,4-Trimethylpentane 1.03 
Acetylene 0.95 2-Methylhexane 1.19 
n-Butane 1.15 2-3-Dimethylbutane 0.97 
Isobutane 1.23 2-Methylpentane 1.5 
n-Pentane 1.31 M&P-Xylene 8.79 
Isopentane 1.45 Benzene 1.43 
3-Methylpentane 1.8 Toluene 5.3 
n-Hexane 1.24 O-Xylene 8.73 
  1,2,4-Trimethylbenzene 9.35 

a Based on results from the SAPRC-07 mechanism with updated values for aromatics from 
SAPRC-11 (Carter, 2010; Carter, 2013) 
 

This reactivity reweighting was applied to the factor solutions found for each year. The 

emphasis of this study is focused on the impacts of the VOC factors on ozone formation, so the 

profiles were estimated for the daytime hours (9am – 7pm EDT) when ozone is most efficiently 

formed. For each factor, the median factor concentration during this time interval was calculated 

and multiplied by each reweighted species contribution to determine the reweighted 

concentration. This process was repeated for each of the years, and the factor comparisons are 

presented by concentration in Figure 2.12 and percentage in Figure 2.13.  
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Figure 2.12 Daytime VOC mass presented based by measured concentration (left bar) and 
reweighted for reactivity (right bar) for each modeled year. 

 

 
Figure 2.13 Daytime VOC percentage by measured concentration (left bar) and reweighted for 
reactivity (right bar) for each modeled year. 
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factor would be underrepresented in these results, and be an even greater component of reactive 

VOC sources. 

The other large change occurs in the natural gas factor, which alternatively is cut in about 

half. Dominant species in natural gas such as ethane and propane are relatively unreactive, 

having MIR values under 0.5, causing this dramatic decrease. Natural gas was one of the largest 

VOC factors based on measurements, but with respect to reactivity, it contributes one of the 

smallest impacts on ozone formation. An increasing percentage of natural gas was observed over 

the later years in the previous analysis, but adjusting for reactivity removes any such trend, as the 

overall effect on ozone formation is minimal. 

The industrial factor is marginally larger but mostly unchanged when considering 

reactivity. While it does contain many reactive aromatic species, it is also composed of larger 

alkane species which have MIR values close to unity. In years where the industrial factor 

concentration was more abundant with aromatics, the MIR increase would be expected to be 

larger.  

Gasoline and exhaust factors are still grouped together in Figure 2.12, but presented in 

different shades because the individual factors respond differently to MIR adjustments. 

However, when taken together the gasoline decreases (less reactive alkanes) are offset by the 

vehicle exhaust increases (more reactive alkenes), leaving the overall combined factor 

unchanged by the process. When all factors are reweighted using MIR, gasoline and vehicle 

exhaust are seen to be the most significant anthropogenic source of VOCs. It is worth noting that 

the monitoring station is situated at the corner of a residential intersection, in the corner of a 

parking lot (Figure 1.6), so one might expect the influence of vehicular emissions, as well as 

gasoline sources to a lesser extent, to be potentially overrepresented for this location. However, 
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there are four-lane highways ~1.5 km away encompassing the monitor (with MD 150 passing 

through Essex two black away), and three gas stations with ~0.5 km, which would also make 

such emissions fairly ubiquitous for the area. 

While this methodology provides insight for appreciating the effects of VOC emissions 

on ozone formation, an uncertainty analysis is necessary. Due to low concentrations, the 

modeling process utilized less than half of the available measured species. In addition to the 

measured species, there are thousands of unmeasured VOC species exhibiting a wide range of 

reactivities that are not measured or available for this study. For example, in addition to isoprene, 

biogenic sources emit other unmeasured species (such as α- and β-pinene and other 

monoterpenes) that are also reactive (MIR ~4) (Carter, 2010), but unaccounted for in this 

analysis. Unmeasured isoprene oxidation products such as formaldehyde and methyl vinyl 

ketone (MVK) would also be expected to significantly impact results. Similarly, larger alkanes 

(heptane, octane, nonane, decane) exhibited low measurements that excluded them from PMF 

modeling. These species would be expected to appear in the industrial, gasoline, and vehicle 

factors, and their low MIR values (1.07, 0.90, 0.78, 0.68, respectively) could lower the impacts 

of these sources. Using only 23 VOC species to assess the reactivity of VOC factor solutions will 

contain inherent errors, however the species not included were a result of measurements below 

the detections limit, and would be unlikely to significantly impact these results. 

 
2.4 Conclusions 

Ambient hourly measurements of VOC species from 2007-2015 at the Essex, MD 

monitor were separated into source factors using the PMF model. The industrial and biogenic 

factors varied through the years, but have provided relatively consistent percentages of the total 

NMOC. The percentage of VOCs coming from the gasoline and vehicle exhaust factors has 
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shown a declining trend as vehicle and fuel standards have improved, but the percentage from 

the natural gas factor has increased. Results for 2015 may suggest a potential reversal of trends 

as a sharp increase was observed for the gasoline and exhaust factors, but it remains to be seen if 

this is a trend reversal or just part of year-to-year fluctuations. 

These PMF solutions were reweighted for reactivity using MIR, which provided a 

method for understanding the reduction of VOCs with respect to ozone formation. Biogenic 

sources, which make up a low percentage of total concentration, were shown to be one of the 

major contributors of VOCs forming ozone. Gasoline and vehicle exhaust appear to be the major 

source of anthropogenic VOCs contributing to ozone formation, despite the decreasing trend 

observed from modeled measurements. As these emissions continue to decline as expected over 

the following years, biogenic emissions could become the single most important source of 

ozone-forming VOCs. Although natural gas concentrations were seen to increase, the MIR 

weighting suggests the trend exhibits no significant, direct impact on ozone formation. However, 

if this increase is a result of upwind natural gas operations, other combustion-related emissions 

associated with obtaining shale gas such as NOx and more reactive VOCs could lead to increased 

ozone production. 
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Chapter 3  Regional Air Quality Impacts of Hydraulic 

Fracturing and Shale Natural Gas Activity: 

Evidence from Ambient VOC Observations  
 

The majority of this chapter appears as published in Vinciguerra et al. (2015). Content 

has been modified for clarity. 

 
3.1 Introduction 

As global energy demands continue to grow, new and alternative energy sources have 

been sought out. One emerging energy source, natural gas, is gaining favor over coal because of 

lower emissions of CO2 and significantly lower nitrogen oxides (NOx) and sulfur oxides (SOx) 

(de Gouw et al., 2014; EPA, 2014b). In the United States, natural gas production has quickly 

increased and its cost has dropped, making it an economically viable energy source (EIA, 

2014a). Because of these advantages, natural gas usage is expected to grow rapidly and displace 

coal as the second largest source of energy by 2025 (ExxonMobil, 2014).  

An increasingly popular method of obtaining natural gas resources is through the 

combination of horizontal drilling to allow access a large amount of the shale, followed by 

hydraulic fracturing, where a mixture of water, sand, and chemical additives is pumped at high 

pressure to free and extract natural gas trapped within shale layers (USGS, 2014). According to 

the U.S. Energy Information Agency (EIA) the amount of natural gas obtained from shale gas 

wells in the United States has tripled between 2009 and 2012 (EIA, 2014b), providing more than 

a third of total U.S. natural gas production by 2012 (EIA, 2014c). The major shale plays which 

account for more than 60% of total U.S. shale gas production since 2010 are the Barnett in 

Texas, the Haynesville in Texas and Louisiana, and the Marcellus, centered in Pennsylvania and 
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West Virginia where about a third of natural gas production since 2013 has occurred (EIA, 

2014d). 

Although its composition can vary due to geographical location, shale gas is 

predominately, and sometimes almost entirely, methane, a greenhouse gas with climate 

implications (Bullin and Krouskop, 2009). Compared to coal, combustion of natural gas for 

generating electricity produces only about half the CO2 and reduces climate forcing, but only if 

less than about 3% of the methane escapes into the atmosphere (Howarth et al., 2011; Alvarez et 

al., 2012). Several studies have been conducted to determine the total leakage-based emissions 

from natural gas operations; estimates range from as low as 0.42% up to 17.3% (Allen et al., 

2013; Caulton et al., 2014; Howarth et al., 2011; Karion et al., 2013; Kirchgessner et al., 1997; 

Pétron et al., 2012; Pieschl et al., 2013; Schneising et al., 2014). In 2013 the Intergovernmental 

Panel on Climate Change increased the 100 year global warming potential of methane to be 28 to 

34 times greater than that of CO2 (IPCC, 2013). Thus, it is vital to quantify the leakage rate, and 

apply necessary control technologies to curtail emissions. 

In addition to climate impacts from methane emissions, air quality can also be affected by 

natural gas operations and the numerous emission sources associated with the drilling, hydraulic 

fracturing, and production processes and associated equipment. In the Mid-Atlantic States, the 

Marcellus shale in the Appalachian basin is estimated to contain 4x1012 m3 of unproved 

technically recoverable shale gas (EIA, 2012). A modeling effort for this shale play by Roy et al. 

(2014) considered numerous emission sources such as completion venting, a process in which 

fluid and debris are cleared from the well, and the natural gas and diesel engines powering 

various trucks, compressors, drilling rigs, and pumps. This study predicted that for the year 2020, 

Marcellus shale activities would, on average, account for 12% of the total NOx and volatile 
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organic compound (VOC) emissions and 14% of the total particulate matter (PM) in the region, 

and these emissions could complicate attainment of PM and ozone standards. 

Along with these standard emissions associated with drilling and fracturing a well, there 

are other sources related to hydraulic fracturing to consider. When liquid unloadings are 

performed to clear a well bore of accumulated liquids for increased production, methane can be 

released to the atmosphere, and most of the methane emitted in these instances comes from a 

small fraction of wells which are frequently unloaded (Allen et al., 2014). Large emissions of 

VOCs have been observed on oil and gas well pads because of leaks from dehydrators, storage 

tanks, compressor stations, and pneumatic devices and pumps, as well as evaporation and flow 

back pond water (Warneke et al., 2014). Another non-negligible source of methane emissions are 

abandoned wells - those no longer active in the natural gas production process.  There are an 

estimated 300,000 – 500,000 abandoned wells in Pennsylvania, and it has been suggested that 

they could account for up to 7% of Pennsylvania’s 2010 anthropogenic methane emissions 

(Kang et al., 2014). 

While the consequences for localized pollution from emissions associated with hydraulic 

fracturing processes are certainly of significance, the transport of these emissions to downwind 

regions is also a major issue, especially for major metropolitan areas already struggling to attain 

current standards (Kemball-Cook et al., 2010).  Although the State of Maryland does not 

currently have extensive shale natural gas operations within its borders (MDE, 2015), the 

neighboring states including Pennsylvania and West Virginia house thousands of wells 

responsible for a tenfold increase in natural gas production volumes from 2009 to 2013 (PADEP, 

2014).  Figure 3.1 shows counties in neighboring states where new unconventional natural gas 

wells were drilled from 2005 through 2012, the most recent year for which well production 
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information is available for all four states, and is also indicative of regions where hydraulic 

fracturing occurs. 

 
Figure 3.1 Number of total unconventional natural gas wells drilled by county in the Marcellus 
shale region from 2005 through 2012. The northern and southeast counties of Pennsylvania 
contain the most newly-drilled wells. Essex, MD and McMillan Reservoir (DC) monitor 
locations are also shown. 

 
            Ethane emissions in the Northern Hemisphere are mainly anthropogenic with about 70% 

originating from fossil fuels (mostly evaporative), and biomass burning and biofuel use making 

up the remainder of emission sources (Simpson et al., 2014). In northwestern Pennsylvania with 

nearby areas of oil and gas production, Pekney et al. (2014) observed average ethane 

concentrations of 9.2, 10.3, and 15.9 ppb. These concentrations are well above the ~1 ppb 

Northern Hemisphere background concentration of ethane (Rinsland et al., 1987; Rudolph et al., 

1996) and indicate the local impact of emissions from oil and gas wells. The transport of 

emissions by prevailing winds is a well-documented occurrence affecting Maryland and other 

East coast states (Hains et al., 2008; He et al., 2013a, 2013b, 2014; Ryan et al., 1998; Taubman 

et al., 2004, 2006). A back-trajectory investigation by Taubman et al. (2006) found that the 

majority of wind trajectories arriving in the Mid-Atlantic U.S. passed through the regions where 
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hydraulic fracturing now occurs. Wind data collected at the wind profiler in Beltsville, MD also 

show a high frequency of winds arriving from the northwest and west (Figure 3.2). Additional 

wind roses are available in the supporting information (Figures A1.1-A1.3). In this chapter, I 

quantify how observed concentrations of ethane monitored in Baltimore, MD and Washington, 

DC, have risen as a likely result of the development of the Marcellus Shale Play. 

 

 

Figure 3.2 Wind rose showing wind velocity frequencies and direction at 503 m AGL provided 
by the wind profiler at Beltsville, MD. Wind velocities are taken from daytime hours (10am – 
7pm) during the month of July in years 2012-2014. Winds are predominantly from the west 
where natural gas operations have increased in recent years. [Wind rose provided by Kostya 
Vinnikov]. 
 

3.2 Methods 

The U.S. Environmental Protection Agency (EPA) has established numerous sites for 

monitoring pollutants.  Following the 1990 Clean Air Act Amendments, Photochemical 

Assessment Monitoring Stations (PAMS) were created to monitor ozone, its precursors of NOx 

and VOCs, and surface meteorology in regions of ozone nonattainment (EPA, 2014a). The 

monitor at Essex, MD was set up to track emissions for the Baltimore ozone nonattainment area. 

This is the monitor closest to the Marcellus shale which provides a historical record of VOC 
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measurements with hourly resolution. During the summer months of June, July, and August 

when ozone levels can often be hazardous to human health, concentrations are recorded every 

hour, providing a rich dataset for analysis. A suite of 56 VOCs are measured by GC-FID and 

calibrated weekly to maintain analytical precision to within +/-5% (Acefaw Belay, MDE, 

personal communication). Although methane is not included, ethane is measured and can be used 

as a tracer for fugitive natural gas production emissions, as the ethane recovered from natural gas 

production is separated from the methane ultimately distributed commercially. The composition 

varies geographically, but ethane makes up a significant portion (3-16%) of the Marcellus shale 

gas (Bullin and Krouskop, 2009). Methane, with an atmospheric photochemical lifetime of about 

a decade, is relatively well mixed in the troposphere.  Ethane, with a photochemical lifetime of 

several weeks (Blake and Blake, 2003), is essentially inert with respect to photochemical loss on 

time scales of transport from the sources to the monitors (1-2 days), but still shows strong spatial 

and temporal gradients, making it a useful tracer.  

  In addition to the Essex, MD location, another Mid-Atlantic PAMS location with similar 

surroundings and conditions was considered: McMillan Reservoir in Washington, DC. Like 

Maryland, Washington, DC does not currently have hydraulic fracturing operations within its 

borders, but could easily be affected by transported emissions from neighboring states.  

Measurements from 1996-2013 are shown for these locations. A site outside the city of Atlanta, 

Georgia in Rockdale County was selected to serve as a control environment, as its air quality is 

influenced by urban emissions from heavy motor vehicle traffic and natural gas delivery, as well 

as biogenic emissions, similar to the Baltimore/Washington region, but Georgia and nearby 

states do not have extensive natural gas production. At this location, measurements from 1996-

2013 are also shown.  
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As the boundary layer collapses following sunset, the concentrations of ethane increase 

due to the change in mixing volume. Because of this strong dependency on boundary layer 

height, only the concentrations during local daytime hours from 10am to 7pm were considered 

since the boundary layer depth should show little long-term trend. For each site, each year 

analyzed in this study contains at least 200 concentration observations from at least two different 

months, with the exception of June only for 2010 and August only for 2013 at Rockdale County. 

 
3.3 Results and Discussion 

3.3.1 Trend Analysis 

The historical decline of total non-methane organic compounds (TNMOC) at Essex, MD 

(Figure 3.3) shows that strategies to curtail VOC emissions from sources such as solvent usage, 

gasoline storage and distribution, and other industrial processes have been successful (MDE, 

2011; EPA, 2015b). In Figure 3.4a, Essex, MD ethane concentrations followed this same 

general downward trend continuing for about a decade beginning in 1996.  However, around the 

same time that hydraulic fracturing operations began in surrounding states (circa 2009), ethane 

concentrations stopped decreasing, and were unmistakably increasing by 2012 and 2013 (Figure 

3.4). 
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Figure 3.3 Daytime TNMOC concentrations at Essex, MD from 1996 to 2013 are shown by box 
and whisker plots. The box provides the 25th and 75th percentiles, with the median represented by 
the red bar, and the whiskers extend to the 10th and 90th percentiles. 
 

 
To test for the possibility that ethane is increasing at Essex, MD because of a local 

source, the site at McMillan Reservoir in Washington, DC was also considered. Figure 3.4b 

shows an increase in ethane concentrations at McMillan Reservoir during the most recent years, 

despite several years exhibiting a decreasing trend. This new trend of increased ethane 

concentrations at more than one location suggests that several downwind areas could be affected 

by the transport of fugitive emissions and other pollutants associated with natural gas operations. 

In contrast (Figure 3.4c), ethane concentrations have continued to trend slightly 

downward since 1996, and no discernible increasing trend is evident in the Atlanta region in the 

more recent years. If increased ethane concentrations were attributable to sources other than 

natural gas production and associated operations, then this site should show similar increases, but 

the State of Georgia has no major hydraulic fracturing activity within its borders or in 

neighboring states. TNMOC plots for the McMillan and Rockdale sites are available in the 

supporting information (Figures A1.4 and A1.6). 
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Figure 3.4 From 1996 to 2013, hourly daytime ethane concentrations from (a) Essex, MD, (b) 
McMillan Reservoir (DC), and (c) Rockdale County, GA are presented by box and whisker plots 
with the same statistical parameters as Figure 3.3. 

 
 
Another approach taken was considering how the diurnal cycle of ethane has shifted at 

the Essex, MD site. Figure 3.5 demonstrates the departure of concentrations of ethane from a 

previously established baseline over the most recent years. While there are year-to-year 

differences in ethane concentrations from 2004-2010 shown in Figure 3.4a, the overall trend is 

nearly flat for the time period. As a result the concentrations from these years were averaged 

together to establish the lowest placed diurnal cycle seen as the blue squares in Figure 3.5. The 

overall concentrations of ethane have increased annually– in the past three years the baseline has 
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increased by 1.1 ppbC. This sudden rise, especially given that TNMOC is decreasing, is 

indicative of a rapidly growing emission source such as natural gas operations. 

 

 
Figure 3.5 The diurnal cycle of ethane at Essex, MD showing the geometric mean concentration 
at each hour. Concentrations of ethane from 2004 to 2010 were averaged to establish a period 
unaffected by natural gas operations, and subsequent years show a continuing departure from this 
baseline. 

 
 

Finally, the ratio of ethane to TNMOC at Essex, MD was examined and compared to 

natural gas production in the Marcellus shale (Figure 3.6). From 2000 to 2007, the median 

amount of ethane remained around 7-8% of the total NMOC, but rose quickly after 2010 to 

nearly 15% by 2013.  The upwind production rates exhibit a similar rapid increase. For each 

year, the median production rate from June through August was compared to the median 

observation at Essex, MD during the same months. With r2=0.82, a strong correlation was found 

between the Essex, MD ethane to total ratio and natural gas production in the Marcellus shale. 

Likewise, a positive correlation of r2=0.59 was found when daytime ethane concentrations at 

Essex, MD from June, July, and August of 2010-2013 were compared to production rates from 

the Marcellus shale (Figure 3.7). Additional ratio (Figures A1.5 and A1.7) and correlation 

(Figures A1.8-A1.10) plots are available in the supporting information. 
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Figure 3.6 The ratio of ethane to TNMOC observed at Essex, MD is shown by box and whisker 
plots with the same statistical parameters as Figure 3.3. In addition, the production rates from 
the Marcellus shale in Pennsylvania and West Virginia are shown in green. A strong correlation 
was observed with an r2 value of 0.82. 

 
 

 
Figure 3.7 Monthly summer values from 2010 through 2013 of observed daytime ethane 
concentrations at Essex, MD vs. Marcellus Shale production. The uncertainty bars provide the 
25th and 75th percentiles of measured ethane during each month. 
 

 
3.3.2 Other Measured VOCs at Essex, MD 

            In both Essex, MD and Washington, DC, the sum of observed VOC (TNMOC) has 

generally decreased over the past decades, leveling off since about 2009 (Figures 3.3 and A1.4).  
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Rockdale County, GA, has shown no discernable trend (Figure A1.6).  Propane has shown no 

increase in Essex, but has increased in Washington, DC (Figures A1.11 & A1.12).  The 

diversified uses of propane such as cooking, heating, and equipment and vehicular use (EIA, 

2015a) might hide slight increases from upwind natural gas operations.  From the limited 

measurements of well gas composition available in the public domain, propane is estimated to 

make up about 5% of wet Marcellus shale gas (Conder and Lawlor, 2014; Foster, 2013; Pace 

Global, 2010); the driest reported regional composition was 1% propane (Bullin and Krouskop, 

2009).  Only 30% of the shale gas produced in Pennsylvania since 2010 is wet gas (down from 

35% in 2009) (PADEP, 2014), indicating shale gas propane is much less abundant as ethane.  At 

the Atlanta site, the ethane to propane ratio is near unity, much lower than that found in natural 

gas, reflecting the use of propane fuel in urban areas (Figures A1.13 and A1.14).  The ratio of 

ethane to propane in Essex is rising to approach the natural gas emissions ratio (Figure A1.21).  

Total production of propane and propylene in the East Coast region slightly increased in 2013 

(EIA, 2015b), but a production  increase at natural gas plants (EIA, 2015c) has been offset by an 

overall decline from refineries (EIA, 2015d), and thus, industrial emissions are expected to have 

remained relatively constant.  The Sasol refinery in Baltimore was taken out of service in July 

2007, and this removed source of VOCs might also hide slight recent increases from upwind 

sources (Christopher Wheeling, MDE, personal communication). 

            Concentrations of n-butane have decreased significantly from initial values in 1996, but 

slight increases in 2012 and 2013 were observed (Figure A1.15). Concentrations of n-pentane, 

isopentane, ethylene, and benzene have continued to decrease from 1996 (Figure A1.16- A1.19). 

Isoprene, a dominant VOC from biogenic sources, shows no trend (Figure A1.20). 
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            The ratios of ethane to  n-butane, n-pentane, and ethylene were also investigated (Figures 

A1.22- A1.24) and demonstrated an increasing trend from around 2011, similar to what is seen in 

Figure 3.4. Finally, the ratio of isopentane to n-pentane was evaluated (Figure A1.25). Gilman 

et al. (2013) showed this ratio to be lower in regions with natural gas production and greater in 

urban environments. Essex, MD had a median ratio of 2.7 from 2000-2003, but the median ratio 

has since decreased to about 2, indicating an influence of natural gas production. 

 

3.3.3 Statistical Analysis  

It is necessary to apply statistical tests for significance. Because of the lognormal 

distribution of ethane concentrations, nonparametric tests were performed using the JMP Pro 

10.0.2 statistical software. The Essex, MD PAMS hourly daytime ethane concentrations from 

2004-2013 were collected and grouped by year for comparisons.  To test for differences between 

years, the Kruskal-Wallis test (McBean and Rovers, 1998) was used to determine if daytime 

ethane concentrations during at least one year were different from the concentrations during 

other years. The result returned a p-value less than 0.0001, indicating at least one of the years 

contained significantly different concentrations. 

To determine which year(s) had significantly different daytime ethane concentrations 

when compared to other years, the Steel-Dwass post-hoc test (SAS Institute Inc., 2013) was 

used, assuming a 95% confidence interval. The results (Table A1.2) suggest that, in general, the 

years of 2005, 2007, 2012, and 2013 had ethane concentrations significantly different from each 

of the other years. Looking at Figure 3.4a, it can be inferred that the years of 2005 and 2007 had 

significantly lower ethane concentrations, while 2012 and 2013 have significantly higher 

concentrations. It is also significant that a p-value less than 0.0001 was returned when comparing 
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2013 to 2012, indicating that ethane concentrations in 2013 were already significantly greater 

than they were a year prior. 

This procedure was repeated for daytime ethane concentrations from 2004-2013 at the 

other two sites. At McMillan Reservoir, ethane concentrations in 2005, 2006, 2007 and 2009 

were significantly lower than in the other years, and in 2011, 2012, and 2013 ethane 

concentrations were significantly greater (Table A1.4). McMillan Reservoir observed significant 

ethane concentration increases in recent years, but unlike Essex, these ethane concentrations 

have not significantly increased over each passing year. At the Rockdale County site, ethane 

concentrations were significantly lower in 2005, 2006, and 2012 and significantly greater in 

2008 and 2011 (Table A1.6). The shift from significantly greater in 2011 to lower in 2012 

suggests long-term effects are not causing increases in ethane concentrations at this location. 

Descriptive statistics for daytime ethane concentrations from all three sites are also available in 

the supporting information (Tables A1.1, A1.3, and A1.5). 

 
3.3.4 Local Natural Gas Sources 

The recent increase in ethane concentrations at Essex, MD has been demonstrated and 

coincides with the spread of wells promoting increased natural gas production, but it is also 

important to rule out other possible local natural gas sources. Landfills and waste water treatment 

plants are known sources of methane, but do not emit ethane (Aydin et al., 2011). Natural gas 

storage fields exist in Garrett County, MD (~250km west of Essex, MD) but there is no evident 

recent change in usage (EIA, 2014e), and it is unlikely that these storage fields have started to 

degrade so quickly since 2009 (Cleveland, 2004). 

The use of compressed natural gas in the transportation sector was also considered. Only 

~0.5% of total Maryland natural gas consumption is used for vehicles, whose usage peaked in 
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2006 and 2008, only to decline rapidly thereafter (EIA, 2014f). Additionally, while other 

metropolitan areas chose to convert public transportation vehicles to use natural gas, the 

Maryland Transit Authority instead switched diesel buses to diesel-electric hybrid buses 

(MDOT, 2013). The state of Maryland has ten compressed natural gas fueling stations: seven 

have been operational prior to 2006, two recently added stations are located more than 60 km 

away, and one was opened in 2012 over 10 km away from the Essex, MD receptor (DOE, 2014). 

Although nearby leaks from these stations could be significant, none of them are in the 

immediate vicinity of the monitor.  

Finally, fugitive emissions from pipeline leaks were evaluated as a source responsible for 

the observed increase in atmospheric ethane concentration. Information on methane loss for local 

utility companies was ambiguous, but Maryland’s total natural gas consumption has remained 

nearly constant from 1997 to 2013 (EIA, 2014e).  If fugitive loss rates were constant, fugitive 

emissions would also be expected to remain constant during this time period. 

 
3.4 Conclusions 

Recently, ethane concentrations have significantly increased at Essex, Maryland, and the 

emissions associated with hydraulic fracturing operations appear to be the only plausible source 

for this trend. This indicates that a substantial fraction of natural gas is escaping uncombusted, 

and the signal is detectable hundreds of kilometers downwind. This effect was also noticed in 

nearby Washington, DC, but not outside Atlanta, GA, a city without upwind hydraulic fracturing.  

As shale natural gas production continues to expand, this increasing trend will continue in 

downwind regions until more efficient control technologies are applied.  Although ethane is not a 

criteria pollutant, additional pollutants are likely transported at increasing rates; these could 

cause ozone and PM to rise and complicate attainment of air quality standards for major urban 
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centers downwind. The observed increase in ethane (1.1 ppbC) corresponds to an expected 

regional increase in methane of ~5 ppb.  In future analyses, concentrations of shorter-lived (e.g., 

NOx) monitored closer to natural gas operations will be evaluated, and back-trajectory analysis 

will be incorporated to further evaluate the influence of natural gas operations on climate and 

regional air quality. 
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Chapter 4 Updates to “Regional Air Quality Impacts of 

Hydraulic Fracturing and Shale Natural Gas 

Activity: Evidence from Ambient VOC 

Observations” 
 

4.1 Introduction 

At the time of publication of Vinciguerra et al. (2015), VOC measurements were only 

available through 2013. For the Essex, MD and McMillan Reservoir, DC monitoring locations, 

hourly measurements are now available for the summers of 2014 and 2015. No additional hourly 

VOC measurements are currently available from the Rockdale County, GA monitor. Key figures 

and tables from Chapter 3 have been updated to include these newly available measurements. 

 
4.2 Daytime Essex Ethane and TNMOC Observations Through 2015 

At Essex, daytime (10am – 7pm) concentrations of total non-methane organic compounds 

(TNMOC) have generally continued to decrease over the past two decades, although 2015 

concentrations were at their highest since 2010 (Figure 4.1). Daytime ethane concentrations at 

Essex continued to increase from 2011. Ethane concentrations decreased slightly from 2013 to 

2014, before again increasing in 2015 to the highest observed concentrations since 1996. Ethane 

concentrations for McMillan Reservoir also remained elevated from pre-2010 concentrations, 

although the 90th and 75th percentiles appear to have decreased in 2014 and 2015 (Figure 4.2a). 
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Figure 4.1 Daytime TNMOC concentrations at Essex, MD from 1996 to 2015 are shown by box 
and whisker plots. The box provides the 25th and 75th percentiles, with the median represented 
by the red bar, and the whiskers extend to the 10th and 90th percentiles. 

 
 

 
Figure 4.2 From 1996 to 2015, hourly daytime ethane concentrations from (a) Essex, MD and 
(b) McMillan Reservoir (DC) are presented by box and whisker plots with the same statistical 
parameters as Figure 4.1. 
 
 

The Steel-Dwass post-hoc test (SAS Institute Inc., 2013) was run again for Essex and 

McMillan using the JMP Pro 11.0.0 statistical software to compare daytime ethane 

measurements from 2004-2015. At Essex, ethane concentrations from the years 2005 and 2007 

remained significantly lower than other years, while measurements from 2012 and 2013 

remained significantly greater (Table 4.1). Ethane measurements in 2014 were significantly 
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greater than almost all previous years, except for 2013; no significant difference was found 

between these two years. 2015 ethane concentrations were found to be significantly greater than 

all previous years, returning a p-value less than 0.0001 for each comparison. 

At the McMillan Reservoir monitor, ethane concentrations in 2005, 2006, 2007 and 2009 

remained significantly lower than in the other years, and in 2011, 2012, and 2013 ethane 

concentrations were still significantly greater (Table 4.2). Ethane concentrations in 2014 and 

2015 were also found to be significantly greater than other years. Measurements of ethane in 

2012, 2014, and 2015 were not statistically different from each other, but were greater than other 

years (except 2011 and 2013). The ethane concentrations in 2011 and 2013 were not 

significantly different from each other, but were greater than all other years.
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Table 4.1. P-Values from Steel-Dwass All Pairs Comparisons of Ethane at Essex, MDa 
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
2004 * * * * * * * * * * * * 
2005 <0.0001 * * * * * * * * * * * 
2006 1 <0.0001 * * * * * * * * * * 
2007 0.0002 0.366 0.001 * * * * * * * * * 
2008 0.2113 <0.0001 0.1945 <0.0001 * * * * * * * * 
2009 0.2014 <0.0001 0.659 0.2002 <0.0001 * * * * * * * 
2010 1 <0.0001 0.9998 <0.0001 0.4005 0.0454 * * * * * * 
2011 1 <0.0001 1 <0.0001 0.2262 0.3049 1 * * * * * 
2012 <0.0001 <0.0001 <0.0001 <0.0001 0.2836 <0.0001 <0.0001 <0.0001 * * * * 
2013 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 * * * 
2014 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0394 0.2686 * * 
2015 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * 

aBolded values highlight significant p-values that fall below the assumed α=0.05 criteria 

 
Table 4.2. P-Values from Steel-Dwass All Pairs Comparisons of Ethane at McMillan Reservoira 

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
2004 * * * * * * * * * * * * 
2005 <0.0001 * * * * * * * * * * * 
2006 <0.0001 1 * * * * * * * * * * 
2007 <0.0001 <0.0001 <0.0001 * * * * * * * * * 
2008 1 <0.0001 <0.0001 <0.0001 * * * * * * * * 
2009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * * * * * 
2010 0.978 <0.0001 <0.0001 <0.0001 0.9984 <0.0001 * * * * * * 
2011 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * * * 
2012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * * 
2013 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9986 0.0001 * * * 
2014 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9976 0.0002 * * 
2015 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9989 0.0014 1 * 

aBolded values highlight significant p-values that fall below the assumed α=0.05 criteria 
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Table 4.3. Descriptive Statistics for Daytime Ethane Concentrations at Essex, MD 
Year Count Minimum 10% 25% Median 75% 90% Maximum 
2004 478 1.01 2.478 3.11 3.95 4.91 6.202 8.68 
2005 403 0.64 2.014 2.47 3.13 4.25 5.62 41.67 
2006 659 1.65 2.22 2.77 3.93 5.29 6.69 16 
2007 603 0.05 1.84 2.59 3.4 4.66 6.436 12.33 
2008 799 1.36 2.29 3.28 4.2 5.21 6.72 12.25 
2009 781 0.05 2.27 2.86 3.65 4.71 6.338 24.23 
2010 740 1.63 2.282 3.07 3.89 5.1475 6.43 16.89 
2011 850 0.05 2.23 2.84 3.88 5.2925 7.018 23.87 
2012 899 1.66 2.53 3.23 4.28 5.9 8.16 18.81 
2013 879 0.05 2.7 3.42 4.85 7.2 9.63 189.41 
2014 815 0.05 2.94 3.62 4.49 6.08 7.758 16.36 
2015 828 0.05 3.13 3.8925 5.73 8.27 11.322 24.03 

 

Table 4.4. Descriptive Statistics for Daytime Ethane Concentrations at McMillan Reservoir 
Year Count Minimum 10% 25% Median 75% 90% Maximum 
2004 789 0.005 2.62 3.43 4.5 6.12 8.2 31.16 
2005 555 0.005 1.96 2.4 3.11 3.97 4.95 14.76 
2006 705 0.005 1.606 2.22 3.16 4.21 5.27 10.59 
2007 807 0.005 1.69 2.76 3.79 4.96 6.492 13.56 
2008 847 0.15903 0.45416 3.1429 4.5959 6.7192 8.62606 19.1417 
2009 902 0.005 0.005 0.27 2.825 4.1725 5.527 18.15 
2010 746 0.005 2.614 3.55 4.73 5.9825 7.833 31.55 
2011 725 0.005 3.68 4.59 6.41 8.79 11.436 19.54 
2012 863 0.005 3.374 4.37 5.66 7.67 10.086 33.86 
2013 897 0.005 3.786 4.73 6.24 8.19 10.796 19.69 
2014 860 0.23 3.89 4.66 5.71 7.0675 9.474 22.73 
2015 826 0.47 3.751 4.58 5.74 7.375 9.233 29.04 

 

 

4.3 Essex Ethane Diurnal Profile Through 2015 

By 2013, daytime ethane concentrations were found to have increased by about 1.1 ppbC 

from the average concentrations observed between 2004 and 2010 (Figure 4.3). In 2015, this 

departure from 2004-2010 values continued and had roughly doubled to a 2 ppbC increase. The 

diurnal profile for ethane concentrations in 2014 showed a slight decrease, residing between the 

values found in 2012 and 2013. 
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Figure 4.3 The diurnal cycle of ethane at Essex, MD showing the geometric mean concentration 
at each hour. Concentrations of ethane from 2004 to 2010 were averaged to establish a period 
unaffected by natural gas operations, and subsequent years show a continuing departure from this 
baseline. 

 
 

4.4 Essex Ethane and Marcellus Production Through 2015 

Ethane made up roughly 7% of total NMOC from 2000-2010, and was seen to increase to 

~15% in 2013. For 2014 and 2015, this percentage did not continue to increase along with 

natural gas production, but instead leveled off at around 14% of total NMOC. In 2014 ethane 

concentrations were not significantly different from 2013, so the percentage of the total would 

not have been expected to increase. For 2015, ethane concentrations increased significantly, but 

TNMOC was also much higher than in previous years. As a result the ratio would not be 

expected to change significantly. 

The r2 value, comparing the median Marcellus production rate to the median observed 

ratio at Essex from June through August of each year, was recalculated and found to maintain the 

same value (0.82). The green production line was originally overlaid to visually match with 

observations through 2013, so it appears to not match the later years as well (Figure 4.4a). If the 
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range of the right y-axis were adjusted to shift the production curve downward, it would still fit 

all values from 2010 onward well, and thus maintaining r2=0.82 seems reasonable (Figure 4.4b).  

 

 
Figure 4.4 (a) The ratio of ethane to TNMOC observed at Essex, MD is shown by box and 
whisker plots with the same statistical parameters as Figure 4.1. In addition, the production rates 
from the Marcellus shale are shown in green. A strong correlation was observed with an r2 value 
of 0.82. (b) Production curve overlay rescaled to better fit visually among 2014 and 2015 data. 

 
 

There were also newer regulations affecting onshore oil and gas production (EPA, 2012; 

Healey and Pergande, 2014) that might have contributed to the leveled-off ratios observed in 

2014 and 2015. In October 2013, continuous bleed pneumatic devices at production facilities 

needed to limit gas venting to 6 standard cubic feet per hour (~0.17 m3/hour). While occurring in 
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the 2013 calendar year, these reductions would not have been observable at the Essex monitor 

until 2014 because measurements were only made during June through August. Gas production 

storage tanks with an expected VOC emission rate of six tons per year were required to reduce 

VOCs by 95% by April 2014 for vessels commissioned after April 2013 and April 2015 for older 

storage tanks. In January 2015, the completion venting procedure (clearing fluid and debris from 

a well before production) required removal of VOC emissions through reduced emissions 

completion (REC) processing and could no longer be flared.  

June, July, and August production data were matched with median ethane concentrations 

for the same months for 2014 and 2015, and a positive correlation still remained (Figure 4.5). 

The r2 value decreased from 0.59 to 0.48, as observed ethane values in 2014 did not increase, but 

the inclusion of newer measurements still shows a positive correlation between upwind 

Marcellus shale production and observations at the Essex monitor. 

 

 
Figure 4.5 Monthly summer values from 2010 through 2015 of observed daytime ethane 
concentrations at Essex, MD vs. Marcellus Shale production. The uncertainty bars provide the 
25th and 75th percentiles of measured ethane during each month. 
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4.5 Summary 

The additions of 2014 and 2015 ethane measurements did not seem to significantly 

change most of the conclusions presented in Vinciguerra et al. (2015). Ethane concentrations still 

remained greater after 2010 than in earlier years at both the Essex and McMillan monitors, and 

ethane measurements at Essex still continue to correlate with upwind Marcellus shale production 

rates. Notably, the ethane/TNMOC was found to hold relatively constant at ~15% from 2013 to 

2015, instead of continuing to increase. Based on these newly available measurements, if upwind 

shale gas operations continue to increase or maintain current production rates, observations at the 

Essex and McMillan monitors would be expected to maintain ethane concentrations elevated 

from levels before 2010.  
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Chapter 5 Regional Influences of Marcellus Shale Natural Gas 

Activity: Trajectory Analysis of 

Baltimore/Washington Ethane Concentrations 
This study was made possible with assistance from several undergraduate researchers. 

Rahma Zakaria reran HYSPLIT to create new outputs that included mixing depth estimates. 

Alexa Chittams calculated county well densities, Thomas Deskins developed the Matlab program 

used for determining a back-trajectory’s grouping, and Brian Constantine performed the Mann-

Whitney tests. Mr. Constantine and Mr. Deskins performed 5-hour clustering. 

 
5.1 Introduction 

Over the past decade, natural gas production has rapidly increased with the combined 

practices of high volume hydraulic fracturing and horizontal drilling to extract the natural gas 

trapped in shale formations. In the Appalachian Basin, an abundance of natural gas continues to 

be obtained (over 500 million m3 per day at the beginning of 2016) from the Marcellus and Utica 

shale formations (EIA, 2016a). A 2013 assessment of U.S. shale gas resources estimated 14.2 

trillion m3 of remaining reserves and undeveloped shale gas resources in the Marcellus and Utica 

shale formations (ARI, 2013), suggesting current production rates could potentially continue for 

well over half a century. 

These large quantities of available natural gas have also driven down dependency on coal 

for electricity generation. In 2015, the amount of electricity generated in the U.S. by natural gas 

was equivalent to coal (EIA, 2016b), and the burning natural gas instead of coal reduces the 

atmospheric burden of CO2 and climate impacts (de Gouw et al., 2014). However, methane is a 

greenhouse gas with a 100 year global warming potential of methane about 30 times greater than 

CO2 (IPCC, 2013), and if more than about 3% of methane is lost to the atmosphere between the 
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production and combustion stages, the benefits of natural gas over coal are lost with respect to 

climate (Howarth et al., 2011; Alvarez et al., 2012). Several studies, with varying sampling 

methods, display a wide range of methane loss estimates from shale oil and gas operations, 

ranging from as low as 0.18% upwards to 17.3% (Allen et al., 2013; Caulton et al., 2014; 

Howarth et al., 2011; Karion et al., 2013; Kirchgessner et al., 1997; Peischl et al., 2013, 2015; 

Petron et al., 2012; Schneising et al., 2014). 

Similarly, while natural gas combustion also provides cleaner emissions of particulate 

matter, hydrocarbons, and nitrogen oxides (as well as SO2 and Hg) compared to coal (Roy and 

Choi, 2015), there are concerns about air quality impacts regarding the additional emissions 

involved with shale gas operations to obtain the natural gas. A shale gas well has numerous 

emission sources and processes such as completion venting, a process in which fluid and debris 

are cleared from the well, storage tanks, pneumatic devices, and the natural gas and diesel 

engines powering various trucks, compressors, drilling rigs, and pumps (Roy et al., 2014). In 

addition to affecting local air quality, these emissions could also impact attainment of air quality 

standards in downwind metropolitan areas (Kemball-Cook et al., 2010). 

Shale gas operations are widespread in the states of Pennsylvania and West Virginia, but 

are not permitted in the neighboring states of New York and Maryland (MGA, 2015; NYSDEC, 

2015). Emissions, however, do not remain confined to state borders, and occurrences of 

prevailing winds transporting emissions that affect Maryland and other East coast states are well-

documented (Hains et al., 2008; He et al., 2013a, 2013b, 2014; Ryan et al., 1998; Taubman et al., 

2004, 2006). Taubman et al. (2006) showed that the majority of wind trajectories arriving in the 

Mid-Atlantic U.S. passed through regions where shale gas operations now occur. Wind profiler 
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data collected in Beltsville, MD during the summers of 2010-2015 similarly show a high 

frequency of winds that arrived from the northwestern and western directions (Figure 5.1). 

 

    

   
Figure 5.1 Wind roses showing wind velocity frequencies and direction at 400 m AGL provided 
by the wind profiler at Beltsville, MD. Wind velocities are taken from daytime hours (10am - 
7pm) during the months of June-August for each of the years 2010-2015. Winds often arrived 
from the west where natural gas operations have increased in recent years. [Wind roses provided 
by Kostya Vinnikov]. 
 
 

In Chapter 3, measurements of ethane, the second-largest component in natural gas, were 

found to increase after 2009, following years of declining ethane and total VOC concentrations 

at Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore and DC areas. 

These increased ethane concentrations were also found to correlate with the rapid growth of 

shale gas production in the upwind states such as Pennsylvania and West Virginia. This chapter 

continues the investigation of ethane concentrations from these monitors and utilizes back-

trajectories to further inspect the influence of upwind shale gas production. 
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5.2 Methods 

The Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was 

used to create back-trajectories for air parcels arriving at the PAMS monitors in Essex, MD and 

McMillan Reservoir in D.C. Using meteorological inputs, HYSPLIT follows an air parcel from a 

fixed location backward (as well as forward) through time and space (Drexler, 1999; Stein, 

2015).  

The 12 km grid-resolution North American Mesoscale (NAM) archived meteorological 

data were used for this analysis, as this dataset provides the highest horizontal resolution 

available from the HYSPLIT meteorological archives for the period of investigation and is often 

used in HYSPLIT studies across the United States (e.g., Crippa and Pryor, 2013; Hahnenberger 

and Nicoll, 2012; He et al., 2014).  

Back-trajectories were generated from the Essex and McMillan PAMS sites for each 

local daytime (10am – 7pm) hour during the months of June, July, and August of 2008 through 

2015. Concentrations of ethane exhibited a strong dependency on mixing volume, especially as 

the boundary layer collapses following sunset, and only measurements during local daytime 

hours were considered as the boundary layer depth should show little long-term trend. 

Trajectories were run backward in time for 48 hours, and air parcels were given an arrival height 

of 100 m, similar to other ambient receptor-based studies (e.g., Atwood et al., 2013; Burley et al., 

2014; Jaars et al., 2014; Riuttanen et al., 2013). Although an arrival height at a higher altitude 

could be used, Essex’s close proximity to the Chesapeake Bay creates lower daytime boundary 

heights than what would be observed more inland (Goldberg et al., 2014). 
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5.2.1 Assignments of Back-Trajectories to Groups 

The number of active unconventional natural gas wells were obtained for counties in the 

upwind states of Ohio, Pennsylvania, Virginia, and West Virginia from 2008-2015 (OOGA, 

2016; PADEP, 2016a; VDMME, 2016; WVDEP, 2016). Well densities were calculated for each 

county by dividing the number of active unconventional wells by the area of each county. After 

comparing histograms of well densities for numerous counties, a value of 0.05 wells/km2 was 

empirically selected to represent the threshold for determining if a county had a high density of 

wells or a low density of wells.  

For each of the analyzed years, maps were generated to delimit the counties exhibiting a 

high density of active unconventional wells. These counties are generalized by Figure 5.2. In 

2008, high well density counties were mostly confined to West Virginia and southwestern 

Pennsylvania. In 2009, counties in northeastern Pennsylvania began to cross the threshold to 

high density. Both high density areas continued to expand in subsequent years, but fewer 

counties crossed the threshold to high well density after 2011, with 2015 having no new high 

density counties. 

 
Figure 5.2 Counties containing a high density (>0.05 wells/km2) of active unconventional wells. 
Colors progress from black to red to yellow to delimit counties passing the threshold in 
subsequent years. The monitor locations are indicated by blue stars. 
 

Essex 
McMillan 
Reservoir 
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A Matlab program was created for comparing the coordinates of the back-trajectories to 

the maps of high well density counties. For each year from 2008 to 2015, each 48-hour hourly 

back-trajectory was plotted, and the program logged any high density county that it passed 

through (Figure 5.3). If a trajectory failed to pass through a county with a high density of wells, 

it was assigned to the low well density grouping. 

 
Figure 5.3 Example of a back-trajectory (red line) passing through a county containing a high 
density of wells. County shapes are seen in yellow if below the 0.05 wells/km2 threshold, and 
blue if there are no reported unconventional wells. 
 

High well density trajectories were further screened by comparing the mixing height, 

estimated from the NAM meteorological input, to the height of the trajectory when it passed over 

the high density county. If a back-trajectory’s height was between the surface and 10% above the 

mixing height, the trajectory was assigned to the high well density grouping. Trajectories which 

failed to meet this height criterion were excluded from further analysis, as it would be unlikely 

for the air parcel to be affected by surface emissions from natural gas production. 

 

Marion County, WV 

Monongalia County, WV 

Harrison County, WV          Taylor County, WV 
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5.2.2 Sensitivity Testing 

5.2.2.1 Sensitivity to Arrival Height of 100 m 

Back-trajectories were tested using an arrival height of half of the mixing layer over 

Essex. An arrival height higher than 100 m did not affect the number of days when a trajectory 

passed over a county with a high density of unconventional wells, but roughly half of these days 

would be excluded because trajectories were greater than 10% above the mixing height while 

over a high density county. Because of this limitation, the arrival height of half the boundary 

layer was not used.  

Ensemble trajectories, which initiate concurrent back-trajectories from surrounding 

horizontal and vertical grid cells, were run to investigate wind shearing for the test hours of 1800 

UTC during the month of July 2011 (31 total ensembles). Overall, these trajectory ensembles 

demonstrated similar paths, with only four instances where individual trajectories in an ensemble 

differed depending on starting location. Ensembles were similarly initiated from McMillan 

Reservoir for the test hours of 1800 UTC during the month of July 2013 (31 total ensembles), 

and only two ensembles containing individual trajectories traveling in different directions. With 

limited wind shear evident from the sample ensembles performed, the 100m arrival height 

appears sufficient for this study. 

 
5.2.2.2 Sensitivity to 48-hour Back-Trajectory Run-length 

Since ethane has a lifetime of several weeks, 168 hour (7 day) back-trajectories were run 

for 1800 UTC for each day of July 2011 (31 total trajectories) to investigate the possibility of 

winds shifting back toward high density counties following the initial 48 hours. Only four 168 

hour back-trajectories returned to high density well counties; two of these trajectories passed at a 



74 
 

height greater than 10% above the mixing height and would be excluded. As a result, 48 hours 

appears to be an adequate duration for classifying a trajectory as high or low well density. 

 

5.2.2.3 Sensitivity to Meteorological Inputs: NAM 12 km vs NAM 4 km 

At the beginning of 2016, 4 km NAM meteorology became available, but are only 

archived for a week before being removed. The file sizes for the 4 km NAM are significantly 

larger (8 GB vs 0.4 GB), and only two days (June 21-22, 2016) were used to briefly compare 48-

hour back-trajectories calculated with 4 km and 12 km resolutions. The overall paths from both 

meteorological inputs are generally the same, but differences do exist. In Figure 5.4, both back 

trajectories from Essex on June 21, 2016 arrived from Kentucky and Tennessee, roughly 

following along the Ohio River. However, the trajectory from the 12km NAM reaches Essex by 

passing through West Virginia, whereas the 4 km trajectory arrives from Pennsylvania. Although 

the final 24-hour approaches to Essex differ geographically, both of these areas would contain 

high well density counties, and the trajectory’s designation would be unlikely to change. 

 

 
Figure 5.4 Back-trajectories from Essex, MD at 1500 UTC on June 21, 2016 using (a) 12 km 
NAM meteorology and (b) 4 km NAM meteorology inputs. 

(a) (b) 
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Winds from the northeast arrived at Essex on June 22, 2016 (Figure 5.5), showing 

similar paths from both meteorological inputs. The final 24-hour approaches to Essex are 

comparable, originating from around the Michigan/Canada border. Beyond that time, some 

vertical differences do arise. The 12 km trajectory passes over land from Minnesota, starting 

from a higher altitude, whereas the 4 km trajectory spends significant time slightly north, but 

over the Great Lakes with lower altitudes. 

 
Figure 5.5 Back-trajectories from Essex, MD at 1900 UTC on June 22, 2016 using (a) 12 km 
NAM meteorology and (b) 4 km NAM meteorology inputs. 

 
 

The resulting trajectories from 12 km and 4 km meteorological input can have 

differences, but overall the trajectories appear similar enough to suggest the 12 km meteorology 

represents general wind patterns such that conclusions for this study should not be drastically 

affected. 

 

5.2.2.4 Sensitivity to Well-Density Threshold of 0.05 wells/km2 

The well density threshold was empirically selected at 0.05 wells/km2 after comparing 

histograms of well densities for numerous counties. To investigate the possible sensitivity of 

(a) (b) 
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results based on this threshold, the process was repeated using values of 0.01, 0.04, and 0.1 

wells/km2 for classifying high-density counties in 2014. With the currently-used threshold of 

0.05 wells/km2, 45 counties were classified as high-density. When the density threshold was 

reset to values of 0.01, 0.04, and 0.1 wells/km2, the number of high-density counties was 72, 49, 

and 37, respectively. However, even though there were different numbers of counties determined 

from varying thresholds, identical results were found for all four of the different thresholds that 

showed no statistical difference in ethane observations between high density trajectory days and 

low density days in 2014. This is likely a result of trajectories passing through multiple high-

density counties en route to Essex, and additional counties would not change a trajectory’s 

classification. These results indicate the well density threshold is not a sensitive parameter and 

should not affect results. 

 
5.2.3 Dispersion Modeling 

The HYSPLIT dispersion model was also utilized to provide a proof-of-concept 

validation for upwind counties causing noticeable increases of ethane concentrations. After 

identifying several sequential hourly trajectories that passed through a county containing a high 

density of wells, the dispersion of ethane gas was modeled as emitting from the center of this 

county. To estimate the emissions of ethane, annual methane emissions estimates from 

unconventional natural gas operations were obtained from the Pennsylvania Department of 

Environmental Protection (PADEP, 2016b). Using this annual estimate for methane emissions, 

hourly ethane emissions were calculated assuming that the shale gas composition was 90% 

methane and 10% ethane (Bullin and Krouskop, 2009; Conder and Lawlor, 2014) and that the 

emission rates were constant throughout the entire year. 
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5.2.4 Trajectory Clustering and 5-Hour Local Source Analysis  

Individual hour back-trajectories can be grouped by similar paths through a process 

called clustering. When the clustering process is initialized, each trajectory is defined as a unique 

cluster (N trajectories and N clusters), and the total spatial variance is zero. In the first iteration, 

the cluster spatial variance (sum of squared distances between the endpoints of trajectories in a 

given cluster and the mean of the cluster’s trajectories) is calculated for each combination of 

trajectory pairs. Next, the total spatial variance (TSV), the sum of every cluster spatial variance 

is calculated, and the pair of clusters resulting in the lowest increase in TSV are combined. The 

second iteration thus contains N-1 clusters, and paired clusters will remain together. For each 

following iteration, variances are recalculated and clusters are paired by the same process until N 

trajectories are in a single cluster (ARL, 2013). 

The number of clusters to use can be selected by viewing a plot like one shown in Figure 

5.6 that displays the percent change in TSV as more and more clusters are combined. The 

number of clusters can be selected by locating the number of clusters before a large increase 

(~5%) in TSV occurs. For example, in Figure 5.6, at least four clusters should be used, as using 

three or fewer results in a substantial increase in TSV. It can also be seen that using up to 11 

clusters would also help to minimize TSV, but no significant TSV reductions occur when 

selecting additional clusters. 
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Figure 5.6 Percent change in total spatial variance. Large increases, such as the one seen 
between 3 and 4 clusters, should be avoided when selecting the number of clusters to use. 
 

Although there are numerous upwind counties containing a high density of 

unconventional wells, there are also more local natural gas storage and transmission sources that 

could be influencing the concentrations of ethane (Figure 5.7). The analysis in Chapter 3 found 

no increases from other sources, but trajectory clustering can be used for further examination. To 

investigate possible effects from local sources, the first five hours were used from each of the 

previously generated 48-hour back-trajectories and clustered together. For both high well density 

trajectories and low well density trajectories, five clusters were generated, providing two 

different maps for each year. 
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Figure 5.7 Natural gas pipelines (red-orange line), compressor stations (yellow dots), and 
underground storage facilities (blue dots) within and around Maryland and Washington, D.C. 
Modified from Auch (2014). 
 

5.3 Results 

5.3.1 Comparison of Daytime Ethane Concentrations by Trajectory Grouping 

 Although hourly observations are available and hourly back-trajectories can be 

calculated, wind patterns are often similar enough that consecutive observations are not truly 

independent. To test for autocorrelation, two different approaches were employed, using 

observations and trajectories from 2015 as a basis for all years. In the first approach, ethane 

concentrations were correlated with observations one hour apart, two hours apart, etc. The lowest 

correlation was found between observations at 10am and those at 7pm. HYSPLIT’s clustering 

feature was also utilized to determine the duration of episodic wind patterns. On average, winds 

shifted from belonging to one cluster grouping to another every ten hours. As a result, one day 

consisting of ten daytime hours of measurements was used as an independent observation in this 

study. 
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 For each day, the ten-hour daytime average ethane concentration was obtained. If the 

majority of hours in a day contained high density back-trajectories, the day was categorized as 

being high density and assigned the daily average ethane concentration. Alternatively, a day 

consisting of a majority of hours with low density back trajectories was classified as low density. 

Days that contained an equal number of hours of high density trajectories and low density 

trajectories were excluded from further analysis. Additionally, some days were dominated by 

trajectories that passed through high density counties but at altitudes above the mixing height; 

observations from such days were excluded. 

  For each year, ten-hour daytime average concentrations at Essex, MD were found to be 

greater for days associated with high well density back-trajectories (Figure 5.8). The Mann-

Whitney U-test was performed using the Minitab 17 statistical software to find if days where 

trajectories passed through high well density counties were associated with significantly greater 

ethane concentrations than those observed when trajectories arrived from low well density 

counties. The results are summarized in Table 5.1. With 80% confidence, each of the years 

except 2014 were found to have ethane concentrations significantly greater when air parcels 

passed through high well density counties than if they had not. 
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Figure 5.8 Comparison of ten-hour daytime average ethane concentrations at Essex, MD by 
trajectory path groupings. Median concentrations for each group are shown by the markers, with 
the whiskers denoting the 25th and 75th percentiles. 
 

Table 5.1 Descriptive statistics for daytime ethane concentrations at Essex, MD and p-values 
returned from testing for medianhigh well density > medianlow well density.a 

Year High Well Density Low Well Density Mann-Whitney 
 N Median N Median p-value 

2008 12 4.7 68 4.0 0.0131 
2009 18 4.8 49 3.5 0.0015 
2010 11 4.6 42 3.9 0.1118 
2011 14 4.7 48 4.0 0.1930 
2012 21 5.5 55 3.6 0.0001 
2013 12 4.8 57 4.4 0.1632 
2014 13 4.4 58 4.4 0.3578 
2015 28 7.5 50 4.5 0.0001 

aA bolded p-value less than α=0.2 signifies significantly greater ethane concentrations for days with high well 
density trajectories. 
 
 

Unlike other years, winds in 2014 were more frequent from the southeast, which would 

result in fewer trajectories arriving from high well density counties. This overall lower impact on 

ethane concentrations observed at the Essex monitor in 2014 could explain the lack of 

dissimilarity between the well density grouping measurements. Additionally, 2014 featured over 

half of the high well density trajectories passing through northeastern Pennsylvania counties 

(more than any other year). 2013 featured a similar number of high and low well trajectories, but 
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only had 20% of high well density trajectories passing through northeastern Pennsylvania. Wells 

in these counties would be expected to contain natural gas composed of less ethane than the gas 

found in southwestern Pennsylvania and West Virginia (Bullin and Krouskop, 2009), and would 

increase ethane concentrations at slower rate. 

Well density processing was repeated for back-trajectories from McMillan Reservoir, and 

corresponding ethane measurements yielded similar results to the Essex monitor (Figure 5.9, 

Table 5.2). For each of the years analyzed, with the exception of 2012 and 2014, days with high 

well density ethane concentrations were significantly higher than those with low density 

concentrations. Observing similar results at both these monitors continues to affirm that the 

cause of elevated ethane concentrations is more regional in nature, and less localized. 

 

 
Figure 5.9 Comparison of ten-hour daytime average ethane concentrations at McMillan 
Reservoir by trajectory path groupings. Median concentrations for each group are shown by the 
markers, with the whiskers denoting the 25th and 75th percentile. 
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Table 5.2 Descriptive statistics for daytime ethane concentrations at McMillan Reservoir; p-
values returned from testing for medianhigh well density>medianlow well density.a 

Year High Well Density Low Well Density Mann-Whitney 
 N Median N Median p-value 

2008 11 5.0 65 4.3 0.0660 
2009 19 4.4 39 3.4 0.0102 
2010 11 5.9 45 4.5 0.0227 
2011 15 7.8 38 6.0 0.0517 
2012 21 6.0 54 5.8 0.2163 
2013 16 6.6 56 5.7 0.0708 
2014 12 5.8 63 5.7 0.3271 
2015 34 6.3 50 5.6 0.0658 

a A bolded p-value less than α=0.2 signifies significantly greater ethane concentrations for days with high well 
density trajectories. 
 

5.3.2 Dispersion Modeling 

Using detailed information obtained from hourly back-trajectory paths, forward plume 

dispersion simulations were performed to validate the potential impact on ethane observations at 

the Essex monitor following a release in an upwind county. High ethane concentrations were 

observed at Essex on June 20, 2012, which contained several back trajectories which had passed 

through Armstrong County, PA. Ethane gas was modeled to continuously emit and disperse from 

a 10 meter height at the center of the county from June 19 at 7pm local time until June 20 at 

7pm. 

Over the first 10 hours of the dispersion simulation, the modeled plume moved to the 

southwest, in the direction of Maryland (Figure 5.10a). The plume continued in this direction 

and arrived over Essex, remaining throughout the duration of daytime observations from the 

monitor; the mid-afternoon plume, 19 hours after the start of the simulation, is shown in Figure 

5.10b. As the modeled plume persisted over Essex, MD throughout June 20, observed ethane 

concentrations were greater than they were during the previous day, when winds had arrived 

from low well density regions (Figure 5.11).  
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Although the plume was over Essex, a large modeled concentration was not seen to 

correspond with the highest observations in the last two daytime hours of June 20. This is likely 

a limitation of modeling only a single county, as wells in surrounding counties are realistically 

always emitting as well and would also contribute to observations.  

 

 
 
  

(a) 

10 hours 
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Figure 5.10 Snapshots of ethane dispersion plume from Armstrong County, PA (a) 10 hours 
after release and (b) 19 hours after release, as the plume persists over Essex, MD. The black disc 
approximates the location of Essex. 
 

 
Figure 5.11 Daytime measurements of ethane at the Essex, MD monitor during the Armstrong 
County, PA dispersion simulation. Markers change from blue dots to red stars when the plume 
passed over Essex, MD. The measurement corresponding with the event shown in Figure 5.10b 
is also noted. 
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This process was also repeated for July 1, 2012, when ethane concentrations had 

continued to increase, following three consecutive days dominated by winds arriving from high 

density counties. Many trajectories arriving on this day passed through Fayette County, PA. The 

dispersion began at 7pm (local time) on June 30, 2012, and the resulting plume pushed eastward 

toward Essex over the following hours (Figure 5.12a). The plume arrived at Essex as daytime 

observations began (Figure 5.12b), with a corresponding modeled and observed maximum 

around 3pm (Figure 5.12c, Figure 5.13). Winds later pushed this plume southward (Figure 

5.12d), and by the next day, observed concentrations, no longer influenced by high density wells, 

were drastically lower (Figure 5.13). 

 

(a) 

8 hours 



87 
 

 

 

(b) 

(c) 

15 hours 

19 hours 
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Figure 5.12 Snapshots of ethane dispersion plume from Westmoreland County, PA (a) 5 hours 
after release, (b) as the plume first appears over Essex, MD during daytime hours. 
 

 
Figure 5.13 Daytime measurements of ethane at the Essex, MD monitor during the Fayette 
County, PA dispersion simulation. Markers change from blue dots to red stars when the plume 
passed over Essex, MD. No measurement was available for hour 10 on June 30. The 
measurement corresponding with the events shown in Figures 5.12b, c, and d are also noted. 
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5.3.3 Isopentane to n-Pentane Ratio 

In addition to methane and ethane, the ratio of isopentane/n-pentane has been reported as 

another indicator of natural gas (Gilman et al., 2013). A natural gas signal will show an 

isopentane/n-pentane ratio around 0.9, whereas an urban environment rich in gasoline-related 

emissions will have exhibit a ratio two to three times greater (Figure 5.12). This study in 

Colorado did not feature areas as densely populated with gasoline vehicles as in the Baltimore 

area, but still provides an additional approach for analyzing measurements trends at the Essex 

monitor. 

 

 
Figure 5.14 Ratio of isopentane to n-pentane in various environments (Gilman et al., 2013) 

 

Using the same well density trajectory groupings, the isopentane/n-pentane concentration 

ratios were analyzed, similar to the ethane concentrations shown earlier. From 2008 through 

2012, the pentane ratios for high well trajectories were not consistently lower than their low well 

trajectory counterparts, and were sometimes greater. However, from 2013 through 2015, pentane 

ratios for the two groups diverged. While the pentane ratios for low well trajectories remained at 

roughly 2 over the three years, the ratios associated with high well trajectories were significantly 
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lower and continued to decrease as natural gas production increased, reaching around 1.9 in 2015 

(Figure 5.15, Table 5.3). While the significant differences took longer to appear than when 

considering ethane concentrations, both analyses demonstrate a significant impact of natural gas 

operations on downwind VOC observations. 

 

 
Figure 5.15 Comparison of isopentane/n-pentane concentration ratios at Essex, MD by trajectory 
path groupings. Median concentrations for each group are shown by the marker, with the 
whiskers denoting the 25th and 75th percentiles. 
 

Table 5.3 Descriptive statistics for daytime isopentane to n-pentane concentration ratios at 
Essex, MD and p-values returned from testing for medianhigh well density < medianlow well density.a 

Year High Well Density Low Well Density Mann-Whitney 
 N Median N Median p-value 

2008 10 2.04 67 2.01 >0.9999b 
2009 19 1.97 50 1.98 0.1718 
2010 12 2.30 42 2.20 N/A>0.9999b 
2011 15 2.10 51 2.10 0.4033 
2012 22 2.03 56 1.99 >0.9999b 
2013 14 2.02 55 2.08 0.0398 
2014 15 1.98 57 2.01 0.1337 
2015 30 1.92 53 2.03 0.0003 

aA bolded p-value less than α=0.2 signifies significantly lower ratios for days with high well density trajectories. 
bMedianhigh well density was greater or roughly equal to medianlow well density, p-values of >0.9999 were assigned. 
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5.3.4 Consideration of Possible Local Emission Sources 

Trajectories that passed through counties with a high density of wells were shown to have 

an association with high ethane observations. However, these trajectories that pass through 

counties with a high density of wells could also pass through natural gas transmission sources 

that lay to the northwest and west of the monitors (Figure 5.7), which could also impact 

observed ethane concentrations. For each year from 2008 to 2015, trajectories for the first five 

hours of the 48-hour back-trajectories were clustered to investigate possible influences from 

other natural gas sources such as leakage from transmission pipelines or compressor stations that 

are closer the monitoring stations. Back-trajectories from the high well density groupings were 

clustered separately from the low well density trajectories; this was done for both the Essex and 

McMillan monitors, creating four different cluster maps for each year (Figures 5.16-5.23). 

Median cluster concentrations are reported next to each mean cluster trajectory. 

First, the high well density trajectory clusters were investigated (Figures 5.16-5.23a,b). 

Clusters with higher median ethane concentrations often came from the west, and mean 

trajectories paths from the west often traveled far (on average ~75 km) in five hours from the 

West Virginia border suggesting influences from farther away. Clusters associated with lower 

concentrations of ethane often came from the east or north. Average trajectory paths for clusters 

arriving from the east did not tend to travel nearly as far (only ~20 km) as those from the west. In 

general, shorter trajectories did not have higher ethane concentrations, indicating high 

concentrations are not likely a result of leakage from local natural gas transmission 

infrastructure. 
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There are pipelines and compressor stations to the north of Baltimore and Washington 

D.C. (Figure 5.7), yet several trajectory clusters arriving from the north cross these natural gas 

sources and are associated with low ethane concentrations, suggesting these locations would not 

be expected to be sources of large ethane concentrations. Clusters arriving at Essex from the west 

could be associated with upwind shale gas production, but there are also natural gas pipelines, 

compressor stations, and underground storage sites in this direction. However, clusters arriving 

from north or northwest of the McMillan monitor would pass through some of these same 

potential sources, yet did not contain higher concentrations (and often had lower ethane 

concentrations); Figure 5.19a and b provide an example of this. Thus, it seems that the natural 

gas pipeline transmission infrastructure is an unlikely consistent contributor to higher ethane 

concentrations.  

Low well density trajectory clusters were similarly investigated (Figures 5.16-5.23c,d). 

The results were mostly consistent with what was found for the high well density clusters. 

Higher concentrations of ethane were typically associated with trajectories from the west, while 

lower concentrations tended to arrive from the east. McMillan had some higher ethane 

concentrations in 2010-2012 coming from the south, but were later lower from 2013 to 2015. As 

with the high well density trajectory clusters, there was no discernible local source that could 

serve as a consistent source of increased ethane concentrations.  

While pipelines and compressor stations in Maryland appear unlikely to be significant 

contributors to higher ethane concentrations at the Essex monitor, several compressor stations 

are west of D.C. and the McMillan monitor that cannot be distinguished from upwind natural gas 

wells in the Marcellus Shale region. Similarly, several underground facilities exist in West 

Virginia as well as one in western Maryland that are co-located with natural gas operations. 
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However, over the past decade, the amounts of injections and withdrawls from these 

underground storage facilities have shown no trends (EIA, 2016c), and it is doubtful that the 

structural integrity of a majority of these storage facilities would have rapidly deteriorated over 

the past years. Thus, while natural gas distribution infrastructure might contribute to ethane 

observations, upwind shale gas production remains the most reasonable, significant contributor 

to higher ethane observations.  
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Figure 5.16 2008 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory. 
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Figure 5.17 2009 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory.  
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Figure 5.18 2010 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory. 
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Figure 5.19 2011 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory.  
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Figure 5.20 2012 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory. 
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Figure 5.21 2013 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory.  
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Figure 5.22 2014 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory. 
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Figure 5.23 2015 clusters from high well density back-trajectories from the (a) Essex and (b) 
McMillan monitors, and low well density back-trajectories from (c) Essex and (d) McMillan 
monitors. The median ethane concentration for the cluster is printed next to each cluster’s mean 
trajectory. 
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5.4 Conclusions 

When examining measurements based on back-trajectories, ethane 

concentrations from the monitors at Essex, MD and McMillan Reservoir in D.C. were 

significantly greater when trajectories passed through counties containing a high 

density of unconventional natural gas wells. The ratio of isopentane/n-pentane at 

Essex was significantly lower from 2013 onward, further indicating an influence of 

natural gas on observations. Analysis of five-hour back-trajectories failed to reveal a 

consistent local source of natural gas emissions, and did not indicate an influence 

from local natural gas storage, compressors, and transmission pipelines. This wind 

trajectory analysis further supports the assertion from Chapter 3 that increasing 

ethane concentrations are attributable to upwind natural gas production operations. 
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Chapter 6 Impacts of Increased Hydraulic Fracturing 

Activity and Natural Gas Usage 
This study was performed with Atmospheric and Oceanic Science graduate 

student Linda Hembeck and funded by the University of Maryland Council on the 

Environment’s Green Fellowship. I processed and prepared the emissions, and Ms. 

Hembeck modified the emissions of VOC, NOx and PM2.5 in grid cells containing 

unconventional natural gas wells and ran the photochemical model. 

6.1 Introduction 

Air quality pollutants, including oxides of nitrogen and sulfur (NOx and SOx), 

volatile organic compounds (VOCs), ozone, and particulate matter of diameter 2.5 

μm or smaller (PM2.5), can be harmful to the health and welfare of humans and the 

environment (EPA, 2015a). Changing the fuel sources which power engines, 

electronic devices, heat and cool homes, etc. can significantly reduce one pollutant 

but sometimes increase another, resulting in different environmental effects. Not only 

is it important to consider the different mixture of pollutants in this analysis but also 

the change in their origin.  

Over the past several years, the combined techniques of horizontal drilling and 

hydraulic fracturing have rapidly increased unconventional natural gas production in 

the United States, especially in the Appalachian Basin (Figure 6.1). Throughout the 

different stages of a well, various pollutants are emitted, notably VOCs, NOx, and 

PM2.5. Sources of these emissions include the diesel compressors and trucks needed 

for drilling and fracturing, and condensate tanks, wellhead compressors, and 

compressor stations needed for gas recovery. A large amount of VOC emissions can 
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also occur during the flowback process, where the well is vented to remove liquids 

and debris prior to the recovery process. A study by Roy et al. (2014) predicted that in 

the year 2020, activities related to unconventional natural gas production will account 

for 12% of the total NOx and VOC emissions and 14% of the total PM2.5 in the 

Marcellus Shale region (within the Appalachian Basin). 

 

 
Figure 6.1 Dry shale gas production rates for the largest shale regions in the U.S 
through April 2016. The Utica and Marcellus shale residing in the Appalachian Basin 
are shown in blue and green, respectively. Adapted from EIA (2016a). 
 

Natural gas is projected to displace coal as the 2nd largest overall energy 

source by 2025 (ExxonMobil, 2014). By the end of 2015, equivalent amounts of 

electricity were generated from natural gas and coal (EIA, 2016b), making power 

plant emissions much cleaner. While natural gas extraction operations emit many 

pollutants even with recent regulations (EPA, 2012), burning natural gas in power 

plants releases significantly less NOx and SOx compared to traditional coal 

combustion (Roy and Choi, 2015). Reductions in power plant NOx would be expected 

to decrease levels of surface ozone, which would have an enormous benefit on human 
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health and agriculture, but increases in pollutants due to installation and operation of 

hydraulic fracturing well pads could negate those potential benefits. 

In response to the redistribution of pollutant emissions, two possible scenarios 

were considered for the year 2020: A) Unconventional wells are assumed in areas of 

current operation, but no future policies are enacted, leaving power plant emission 

rates unchanged, and B) All coal-fired power plants are converted to burn natural gas 

instead, but hydraulic fracturing operations are expanded into all states that lie within 

the Appalachian Basin to provide this energy resource. These two 2020 scenarios 

were compared to each other as well as to a 2007 base case. 

 
6.2 Methods 

6.2.1 Preparation of Emissions 

Emissions were created for the summer months of June, July, and August 

using the Sparse Matrix Operator Kernel Emissions (SMOKE) version 3.1 emissions 

inventory modeling system, assuming 2007 meteorology for the base case and both 

2020 scenarios. More information about this model version is available at: 

https://www.cmascenter.org/smoke/documentation/3.1/html/. 

 
6.2.1.1 2007 Base Case 

Existing hourly Level 3 2007 emissions inventory estimates developed by the 

Mid-Atlantic Regional Air Management Association (MARAMA) and the New York 

State Department of Environmental Conservation (NYSDEC) as part of the Ozone 

Transport Commission (OTC) were used for the 2007 base case (MARAMA, 2016a). 

For the base case and following scenarios, the anthropogenic emissions generated 

https://www.cmascenter.org/smoke/documentation/3.1/html/
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with SMOKE were combined with 2007 biogenic emissions from the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN) version 2.10 (Guenther et 

al., 2012). 

 
6.2.1.2 Scenario A  

Existing hourly MARAMA Level 3 2020 projections from 2007 have been 

used in several OTC modeling efforts and were used as a basis of both 2020 scenarios 

(MARAMA, 2016b). These emission estimates were further adjusted to account for 

newer policies and transitions not included when the 2020 inventories were initially 

created.  U.S. mobile emissions were reduced to account for Tier 3 fuel standards 

finalized by the EPA in March of 2014: -9.9% NOx, -55.9% SO2, -2.4% VOC, -0.4% 

PM2.5, and -1.6% CO (EPA, 2014c).  Electric Generating Unit (EGU) emissions were 

updated by using inventories created by the Eastern Regional Technical Advisory 

Committee (ERTAC) EGU growth model. The ERTAC model implements the most 

up-to-date control policies through coordination between numerous eastern states as 

part of a technical-driven process (MARAMA, 2016c). ERTAC EGU (Version 1.7) 

2020 inventories for the continental U.S. were used for this study and processed 

through SMOKE. Area and point sources in the U.S. were also slightly reduced 

following previous OTC modeling runs to account for recently planned controls on 

Industrial, Commercial, and Institutional (ICI) boilers (Table 6.1). 
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Table 6.1 Adjustments made to 2020 sectors containing ICI boilers, by region and 
pollutant. 

Emission Sector Region NOx PM SO2 

Non-EGU Point Sources 

MANEVU -8.6% -12.6% -35.2% 
LADCO -6.4% -3.6% -28.3% 

SESARM -1.6% -2.7% -9.7% 
CENSARA -10.7% -0.9% -23.5% 

Area Sources 

MANEVU -6.4% -2.2% -51.1% 
LADCO -3.0% -0.7% -61.5% 

SESARM -7.4% -1.5% -77.9% 
CENSARA -1.0% -0.1% -70.1% 

 

For Scenario A, emissions were grown in grid cells that contained at least one 

unconventional gas well as of February 2014 (FracTracker Alliance, 2014), with the 

assumption that wells would populate in similar areas in the near future. Following 

the 2020 estimates presented by Roy et al. (2014), emissions of NOx and VOCs were 

increased by 13.6% and PM2.5 by 16.3% in these regions to account for the air quality 

effects of natural gas operations. The affected grid cells are shown in red in Figure 

6.2a. The states of Maryland and New York do not currently allow hydraulic 

fracturing operations (MGA, 2015; NYSDEC, 2015), and were assumed to likewise 

not permit such activities in 2020. Visible areas of red in Figure 6.2a within the 

borders of these states are a result of grid cells shared with neighboring states that do 

allow these practices. 
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Figure 6.2 (a) Grid cells adjusted in Scenario A based on operational unconventional 
wells as of February 2014, and (b) grid cells adjusted in Scenario B, spanning the full 
Appalachian Basin. 
 

6.2.1.3 Scenario B  

For Scenario B, 2020 emissions from sources unrelated to natural gas 

operations or EGUs remained unaltered from Scenario A. To convert emissions from 

coal-fired EGUs to natural gas equivalent rates, 2012 and 2013 coal and natural gas 

EGU emissions monitoring data from the U.S. EPA’s Clean Air Markets Division 

(EPA, 2014d) were compared to compute reduction values for NOx and SO2. These 

measurements come from states participating in the Clean Air Interstate Rule, 

excluding states such as Texas and Florida which reside outside the modeling 

domain. On average, natural gas EGUs produced approximately 80% less NOx and 

99% less SO2, and these values match well with the values found in a nation-wide 

review of 2013 US Emissions & Generation Resource Integrated Database (eGRID) 

values by Roy and Choi (2015). The study also found natural gas units emit 75% less 

PM2.5 and 33% less VOCs than coal-fired units, and these estimates were also used as 

reduction values applied to coal-fired facilities in Scenario B. 

(a) (b) 
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Table 6.2 Summary of reductions applied to coal-fired EGUs in Scenario B 
Pollutant NOx SO2 VOC PM2.5 
Reduction -80% -99% -33% -75% 

 

To obtain the large quantities of natural gas that would be required to fuel the 

new EGUs in this scenario, hydraulic fracturing hypothetically expands into regions 

that are currently void of such operations. As a result, emissions within the entire 

Appalachian Basin (red regions shown in Figure 6.2b (EIA, 2013)) were adjusted by 

applying the same growth factors used for regions containing wells in Scenario A. 

 
6.2.2 CMAQ 

The Community Multiscale Air Quality (CMAQ) modeling system version 

5.0 is used as a regulatory tool and a platform to understand the complex interactions 

of atmospheric chemistry. CMAQ uses SMOKE emission fluxes as inputs, 

incorporating meteorological data and chemical reaction kinetics to calculate the 

expected formation and dispersion of various pollutant species. The CMAQ 

simulations have 12 km × 12 km horizontal grid resolution, 34 layer sigma-coordinate 

vertical levels (from surface to ~20 km), and hourly output for an Eastern United 

States modeling domain. CMAQ uses the Weather, Research and Forecasting (WRF) 

Model version 3.1.1 as the meteorological driver (Skamarock and Klemp, 2008), and 

the Meteorology-Chemistry Interface Processor (MCIP) to further process these 

meteorology fields for modeling utilization. Boundary conditions were provided from 

a 36 km CMAQ run derived from 2007 GEOS-Chem (Bey et al., 2001), and the 

chemical mechanism CB05-TU (Whitten et al., 2010) was used along with the AE6 
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scheme for aerosols (Carlton et al, 2010). More information about this version of the 

model is available at: 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(

February_2010_release)_OGD.  

 
6.3 Results and Discussion 

The National Ambient Air Quality Standards (NAAQS) were established as 

part of the Clean Air Act to limit pollutants that are harmful to human health and the 

environment (EPA, 2016c). For ozone, attainment of the standard is determined by 

the fourth-highest, daily maximum 8-hour average concentration; for PM2.5 the 98th 

percentile of 24-hour daily averages is used. Because of their significance in 

determining attainment of healthy ambient conditions, these calculated values are 

shown for simulated concentrations of ozone (Figures 6.3-6.5) and PM2.5 (Figures 

6.6-6.7). 

For both 2020 cases, concentrations of ozone are substantially reduced from 

2007 levels. In the 2007 baseline, several metropolitan areas showed fourth-highest, 

daily maximum 8-hour average concentrations exceeding 90 ppb (Figure 6.3a). By 

2020, many of the metropolitan areas have decreased to around 70-75 ppb in Scenario 

A (Figure 6.3b) and even lower in Scenario B (Figure 6.3c). High ozone 

concentrations are seen as a result of low boundary layers over large water bodies 

such as the Great Lakes and Atlantic Ocean (e.g., Goldberg et al., 2014). 

 

 

 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD
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Figure 6.3 Fourth-highest, 8-hour maximum daily average ozone for (a) the 2007 
baseline, (b) Scenario A, and (c) Scenario B (all coal-fired power plants replaced with 
natural gas). 
 

For both Scenarios A and B, concentrations of ozone improve from 2007, and 

this comes primarily from the overall reduction of emissions from other sources, 

especially cars, over time (Tables 6.3-6.5). Results for Scenario A (Figure 6.4a) 

show that in regions such as West Virginia and western Pennsylvania with an 

(a) 

(b) (c) 



 

112 
 

abundance of wells will not observe as great of an improvement in ozone, when 

compared to areas without such operations (eastern Pennsylvania). Greater 

improvement of ozone was observed by converting coal fired power plants to natural 

gas fired power plants, despite increased drilling and production activity (Figure 

6.4b). The largest differences between Scenarios A and B occur close to and 

downwind of these power plants, often resulting in 10-15 ppb decreases of ozone 

concentrations (Figure 6.4c).  

 
 
Table 6.3 Eastern U.S. modeling domain emissions of NOx (tons/year) a 

Year Area Marine, Aircraft, 
and Railroad Nonroad Non-EGU 

Point EGU Mobile 

2007 512,092 904,378 803,268 1,066,032 2,093,155 4,452,693 
2020 A 446,933 714,497 407,566 990,416 1,154,392 1,484,528 
2020 B 446,933 714,497 407,566 990,416 272,543 1,484,528 

aEmissions do not include adjustments for grid cells containing natural gas operations 

 
Table 6.4 Eastern U.S. modeling domain emissions of VOC (tons/year) a 

Year Area Marine, Aircraft, 
and Railroad Nonroad Non-EGU 

Point EGU Mobile 

2007 2,731,151 63,350 1,318,108 622,167 23,348 2,131,860 
2020 A 2,453,655 63,215 707,223 634,511 19,764 863,302 
2020 B 2,453,655 63,215 707,223 634,511 16,049 863,302 

aEmissions do not include adjustments for grid cells containing natural gas operations 

 

Table 6.5 Eastern U.S. modeling domain emissions of PM2.5 (tons/year) a 
Year Area Marine, Aircraft, 

and Railroad Nonroad Non-EGU 
Point EGU Mobile 

2007 715,022 41,784 78,134 231,918 245,507 181,357 
2020 A 705,743 25,057 67,579 220,344 165,263 93,747 
2020 B 705,743 25,057 67,579 220,344 53,305 93,747 

aEmissions do not include adjustments for grid cells containing natural gas operations 
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Figure 6.4 Difference of fourth-highest, 8-hour maximum daily average ozone 
between (a) the 2007 baseline and Scenario A, (b) the 2007 baseline and Scenario B, 
and (c) Scenario A and Scenario B. Color bar neglects regions where ozone increases. 
 

There are a few notable regions where ozone concentrations increase between 

2007 and 2020 (Figure 6.5a and 6.5b). Between these years, ozone concentrations 

were seen to increase around New York City and along the Lake Michigan shoreline 

from Chicago to Milwaukee. Some city centers such as Pittsburgh and Philadelphia 

show almost no change between years. These increases and non-improvements are 

most likely more a result of NOx titration than natural gas operations. In 2007, NOx 

emissions were so large that NO2 was destroying ozone, but in 2020, NOx emissions 

(c) 

(b) (a) 
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were lower, and ozone was no longer being destroyed and instead increased. 

Eventually ozone will decrease in later years in these locations, as NOx emissions 

continue to decrease, but in 2020 they appear to be in a transitional regime where 

reductions of both NOx and VOC emissions will be needed to reduce ozone 

concentrations. From Scenario A to Scenario B, hydraulic fracturing operations were 

expanded. Because the Appalachian Basin extends under the southern parts of Lake 

Erie and Lake Ontario, and there is precedent for offshore hydraulic fracturing (Ross, 

2013), some ozone increases were seen over these bodies of water (Figure 6.5c). 

 

 

 
Figure 6.5 Difference of fourth-highest, 8-hour maximum daily average ozone 
between (a) the 2007 baseline and Scenario A, (b) the 2007 baseline and Scenario B, 

(a) (b) 

(c) 
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and (c) Scenario A and Scenario B. Regions where ozone concentrations increase 
between scenarios are shown in red, whereas regions where ozone decreases are blue. 
Negative values reflect regions where ozone increases. 

 
Similar to ozone, large decreases occurred between 2007 and 2020 for 98th 

percentile, 24-hour average PM2.5. In 2007, several regions had high PM2.5 

concentrations of 40-45 μg/m3 (Figure 6.6a). In 2020, these high concentrations were 

greatly reduced (Figures 6.7a and b) to around 20-25 μg/m3 (Figure 6.6b and c), 

with the size of areas containing high concentrations decreasing further between 

Scenario A and Scenario B. Most improvements of PM2.5 between Scenario A and 

Scenario B appeared mostly along the Ohio River, like ozone (Figure 6.7c). Unlike 

ozone PM2.5 reductions between Scenario A and Scenario B were not as significant in 

the southeastern U.S. This could possibly be a result of the large emissions of 

biogenic VOCs dominating secondary organic aerosol formation in this region 

(Weber et al., 2007), limiting potential benefits from reduced direct emissions of 

PM2.5. In both 2020 cases, Canadian concentrations of PM2.5 remained high, 

especially around the Toronto and Montreal metropolitan areas, exceeding 50 μg/m3, 

but adjustments were not made to Canadian EGUs. Concentrations around Chicago 

also remained high, but the area of high concentrations decreased in size. 
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Figure 6.6 98th percentile, 24-hour average PM2.5 for (a) the 2007 baseline, (b) 
Scenario A, and (c) Scenario B. 
 
 

 

(a) 

(c) (b) 
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Figure 6.7 Difference of 98th percentile, 24-hour average PM2.5 between (a) the 2007 
baseline and Scenario A, (b) the 2007 baseline and Scenario B, and (c) Scenario A 
and Scenario B.  
 

For both ozone and PM2.5, emissions from widespread natural gas extraction 

did not become a liability, as EGU reductions had a significantly larger impact. While 

the overall results would not be expected to change, some approximations made in 

this approach could have affected the presented results from grid cell to grid cell. 

Estimations for natural gas operations were likely underestimated in regions with a 

high density of wells, and overestimated in regions with a lower density of wells as a 

result of this approach. Average estimates from Roy et al. (2013) were used, but if 

(c) 

(b) (a) 
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further regulations are enacted, such as those reducing emissions from flowback and 

pneumatic devices (EPA, 2012), natural gas operations would make up a lower 

percentage of total emissions in 2020. The adjustments to coal-fired power plant units 

were applied using the same reduction values on every coal unit. However, some coal 

units may utilize several controls to minimize NOx emissions, while others might not. 

As a result the reductions from switching to natural gas would be expected to be 

much larger for less-controlled and uncontrolled coal units than those applying full 

controls. 

 
6.4 Conclusions 

When compared to 2007, the overall emissions improvements gained by the 

year 2020 outweigh any disbenefits to concentrations of ozone or PM2.5 from 

increased unconventional natural gas production emissions. In both future year 

scenarios benefits to human health would be expected from the lowered 

concentrations of these criteria pollutants, with the greatest benefits occurring as a 

result of converting power plants from coal to natural gas. Overall improvements for 

concentrations of both species were also seen in regions affected by additional 

emissions from unconventional natural gas wells. 

It is also important to recognize that this study focused solely on impacts to air 

quality and did not take into consideration any other major concerns commonly 

associated with hydraulic fracturing, such as the effects on climate, water quality, or 

geological stability, which could also significantly impact human health and 

wellbeing. Further analyses should be performed to estimate the total combined 

impacts from all these other components before further encouraging such a drastic 
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overhaul of the energy sector which could create localized harm to health and 

welfare. Nonetheless, the benefits of reduced emissions from coal-fired EGUs are 

significant, and reductions of these emissions should be pursued, especially if shale 

gas operations can be conducted safely and efficiently. 
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Chapter 7 Expected Ozone Benefits of Reducing NOx 

Emissions from Coal-Fired Electricity 

Generating Units in the Eastern United 

States 
 

This chapter has been submitted to The Journal of the Air & Waste 

Management Association and is currently in the review process. Content has been 

modified for clarity. 

 
7.1 Introduction 

The 2008 National Ambient Air Quality Standard (NAAQS) for surface ozone 

is a daily maximum 8-hour average of 75 ppb (EPA, 2008b). Regions failing to meet 

this standard are designated as non-attainment areas (NAAs) and required to submit a 

State Implementation Plan (SIP) to outline regulatory measures that would result in 

attainment (EPA, 2016d). In October 2015, a stricter ozone NAAQS was mandated, 

lowering the 8 hour standard to 70 ppb (EPA, 2015c).  

Surface ozone is formed most abundantly in the presence of volatile organic 

compounds (VOCs) and NOx (NO + NO2) during hot, sunny summer days (Crutzen, 

1974; Haagensmit et al., 1953). One significant source of NOx comes from electricity 

generating units (EGUs) that often run heavily to meet demand for air conditioning 

on hot summer days in the U.S. EGUs also have smokestacks that emit at elevated 

heights and allow for long-range transport of pollutants. Various regulations such as 

the recent Cross-State Air Pollution Rule (EPA, 2015d) have been implemented to 

limit emissions in one state that could adversely affect another downwind state. 
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During the summer, the Bermuda high, a high pressure system that can last 

several consecutive days, often moves westward to a position off the Mid-Atlantic 

coast, and the anticyclonic flow promotes transport of emissions from sources along 

the Ohio River and in Pennsylvania into Mid-Atlantic and Northeastern states (Hains 

et al., 2008; He et al., 2013a; He et al., 2013b; He et al., 2014; Ryan et al., 1998; 

Smith and Tirpak, 1988; Taubman et al., 2004; Taubman et al., 2006). Figure 7.1 

shows that most of the largest coal-fired EGU NOx emitters in the Eastern U.S. are 

located in these regions upwind of the East Coast, based on 2011 reported emissions 

(EPA, 2015e), and emissions from EGUs can have substantial impacts on downwind 

air quality (He, 2013a). 

 

 
Figure 7.1 Total annual emissions of NOx (in units of thousands of metric tons NO2 
equivalent) from coal-fired EGUs at the facility level as reported in 2011 to the Clean 
Air Markets Division (CAMD) (EPA, 2014d). 
 
 

An analysis of 2005-2007 Ozone Monitoring Instrument (OMI) NOx satellite 

observations found ozone production in most of the U.S. was sensitive to 



 

122 
 

concentrations of NOx, and more so at higher temperatures (Duncan et al., 2010), 

making summertime NOx critical to ozone formation. Similarly, CAMx modeling 

results for July 2011 also indicated ozone formation in and around the state of 

Maryland to be almost exclusively NOx-sensitive (Goldberg et al., 2016). This has 

been a result of reducing local sources of NOx, such as cleaner motor vehicles and 

power plants (Duncan et al., 2010). Further NOx emission reductions will produce 

direct ozone decreases, but increased NOx would have adverse effects. 

Although many EGUs have recently switched to natural gas as a fuel source, 

coal remains an equally important source for electricity in the United States, with 

both fuel sources used to produce roughly a third of total generated electricity each in 

2015; other non-renewable fuels contributed less than 1% (EIA, 2016b). While 

natural gas power plants emit NOx, coal-fired units emit, on average, four times as 

much on a mass/MWh basis (Roy and Choi, 2015). One effective method of reducing 

NOx emissions from coal-fired power plants is the use of devices such as selective 

catalytic and non-catalytic reduction (SCR and SNCR, respectively) following the 

combustion process that can eliminate up to 90% and 50%, respectively, of produced 

NOx (EPA, 2003a; EPA, 2003b).  

Under federal regulations, EGU operators are mandated to keep NOx 

emissions under an allotted amount, based on a given state’s emissions budget (EPA, 

2016i), and installation of SCR or SNCR is often needed to meet the requirement. As 

long as the unit’s annual and ozone season emission caps are not exceeded, current 

rules and regulations allow for these controls to be shut off to limit fiscal burden. 

Once the capital investment has been made to install such controls, the cost of 
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chemical reagent and efficiency reductions are the only major maintenance and 

operational costs (EPA, 2015f), yet emissions monitors indicate these controls are not 

always being utilized to their fullest potential (EPA, 2015f; EPA, 2015g; He et al., 

2013b). 

An investigation of average ozone season NOx emission rates from coal-fired 

EGUs in the Eastern U.S. revealed several units where rates increased from 2004-

2014. This trend suggested unit owners and operators found it cost-effective to limit 

operations of SCR or SNCR systems and instead use lenient regulatory or market 

mechanisms to legally meet their caps (OTC, 2015). This increase in NOx emissions 

from not utilizing post-combustion controls can lead to increased ozone production 

locally and downwind. Alternatively, operating these controls at optimal rates could 

decrease ozone concentrations. Using a chemical transport model, we quantify the 

regional impacts of EGU NOx controls on ozone formation. 

 

7.2 Model Description 

The U.S. Environmental Protection Agency (EPA) provided state agencies 

with air quality model-ready surface emission estimates (EPA’s ed_v6_11f modeling 

case) for 2011 and estimated emissions for 2018, based on the 2011 National 

Emissions Inventory (NEI) (EPA, 2014e). The 2018 emissions estimates reflect 

planned “on-the-books” controls and regulations such as more efficient technologies 

and fuel usage for vehicles and facilities, but they do not include additional measures 

needed for attainment of the 2008 ozone NAAQS. We used the Sparse Matrix 

Operator Kernel Emissions (SMOKE) System version 3.1 (SMOKE, 2012) to process 
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plume rise for elevated point source inventories, such as EGUs, and combine them 

with the surface emissions. These emissions included the Biogenic Emission 

Inventory System (BEIS) version 3.14 for biogenic sources (2011 emissions were 

used for both 2011 and 2018), Motor Vehicle Emission Simulator (MOVES) 2010b 

for mobile sources, and the Integrated Planning Model (IPM) version 5.13 for the 

EGU sources.  

These emissions processed by SMOKE were then input into to the 

Community Multi-scale Air Quality (CMAQ) version 5.0.2, which also incorporates 

meteorological data and chemical reaction kinetics to calculate expected formation 

and dispersion of various pollutant species (CMAQ, 2015; Foley et al., 2010). The 

CMAQ simulations have 12 km × 12 km horizontal grid resolution, 34 layer sigma-

coordinate vertical levels (from surface to ~20 km), and hourly output for an Eastern 

United States modeling domain. Meteorological fields for 2011 were generated using 

the Weather Research and Forecasting (WRF) version 3.4 model (EPA, 2014f) and 

further processed through the Meteorology-Chemistry Interface Processor (MCIP) to 

prepare the meteorology fields for use in CMAQ. Boundary conditions were supplied 

by GEOS-Chem version 8-03-02 (Bey et al., 2001), and version 5 of the Chemical 

Bond mechanism with updates to toluene and chlorine chemistry (CB05TUCl) 

(Sarwar et al., 2012) was used with AE6 scheme for aerosols (Appel et al., 2013; 

Nolte et al., 2015). Plume-in-grid treatment was not used for the EGUs in this study, 

but similar results for modeled ozone would be expected, with impacts reaching even 

farther downwind (Karamchandani et al., 2014). 
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7.3 Methods 

To determine and quantify the impact of NOx emissions from coal-fired EGU 

sources on surface ozone concentrations, baseline runs for July 2011 and 2018, and 

four sensitivity scenarios for 2018 were performed by adjusting EGU NOx emission 

rates based on historic records.  For both 2011 and 2018, while emissions are varied, 

meteorology for July 2011 was held constant throughout to remove the influence of 

meteorological conditions on model results. The 2011 Baseline and 2018 Baseline 

were run using EPA-approved emissions, with the sensitivity scenarios building off of 

the 2018 Baseline emissions. 

The Clean Air Markets Division (CAMD) of the U.S. EPA supports several 

regulatory programs that require continuous monitoring of large point source 

emissions of SO2 and NOx (U.S. EPA, 2015h). CAMD NOx emission data were 

obtained (available for download from https://ampd.epa.gov/ampd/) for the ozone 

seasons during the years of 2005 through 2012 and analyzed for the states of Illinois, 

Indiana, Kentucky, Maryland, Michigan, North Carolina, Ohio, Pennsylvania, 

Tennessee, Virginia, and West Virginia. Rates can vary from unit to unit depending 

on multiple factors, such as installed controls, sequence of controls, gas temperature 

(which affects efficiency), and operational load. To capture some of these concerns, 

we use the average ozone season rates for each individual unit instead of simply 

applying only a single rate to every unit. The lowest, highest, and 2011 ozone season 

average NOx emission factors [lbs./mmBtu] were found for each individual coal-fired 

unit equipped with SCR or SNCR controls.  
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The average ozone season historic CAMD NOx emission rates for each coal-

fired unit from each year from 2005 through 2012 were compared to the rates from 

the 2018 IPM inventory files. For each unit, the ratio between lowest historic NOx 

rates and 2018 IPM NOx rates was calculated and used as a multiplier that was 

applied to the hourly and annual IPM emissions inventory files and reprocessed 

through the SMOKE model. These new EGU emissions representing coal-fired units 

operating at their lowest rates were combined with the other 2018 emissions to create 

2018 Scenario A.  

Using a similar approach, NOx rates for coal-fired units were instead increased 

to represent operation at the highest historic rates in 2018 Scenario B. In 2018 

Scenario C, NOx emissions were increased to match the observed 2011 emission rates 

from coal-fired units, with emission projections for 2018 in all other sectors 

remaining unchanged. Finally, 2018 Scenario D has units operating at lowest NOx 

rates (Scenario A), and additionally includes SCR NOx reductions for the 2018 EGUs 

that are expected to lack post-combustion controls. To assume SCR reductions on 

uncontrolled units in Scenario D, a multiplier was calculated for each unit by dividing 

the 2018 ozone season emission rate by the state-average SCR-controlled lowest 

average ozone season emission rate. The unit-specific reductions applied for each 

scenario are provided in Table A2.2, and a summary of the model scenarios is 

provided in Table 7.1. 
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Table 7.1 Brief descriptions of the modeling scenarios. 

Scenario Name Brief Description 
2011 Baseline 2011 EPA-provided emissions were used with no modifications 
2018 Baseline 2018 EPA-provided, projected emissions were used with no modifications 
2018 Scenario A 2018 SCR/SNCR EGU NOx emissions are reduced to match lowest rates observed 

in 2005-2012 historical data. 
2018 Scenario B 2018 SCR/SNCR EGU NOx emissions are reduced to match highest rates observed 

in 2005-2012 historical data. 
2018 Scenario C 2018 SCR/SNCR EGU NOx emissions are increased to match rates observed in 

2011. Emission projections for 2018 in all other sectors remain unchanged. 
2018 Scenario D 2018 SCR/SNCR EGU NOx emissions are reduced to match lowest rates observed 

in 2005-2012 historical data. 
And 2018 EGUs lacking post-combustion controls modeled to include SCR NOx 
reductions. 

 
 

A comparison of the annual NOx emissions for all EGUs in the Eastern U.S. 

from each of these scenarios can be seen in Table 7.2. The largest reductions occur in 

Scenario D, followed by Scenario A. Even with NOx emissions increased from the 

2018 Baseline, Scenarios B and C still have lower emissions than what is shown for 

2011. This is a result of unit shutdowns, fuel-switching, and additional controls 

between 2011 and 2018, and that only select coal-fired EGUs were adjusted for these 

scenarios (Table A2.2), leaving other coal-fired units, as well as units powered by 

other fuel sources, unchanged. Reported values for the Eastern U.S. include the 

western borders of Texas, Oklahoma, Kansas, Nebraska, South Dakota, and North 

Dakota and all states eastward.  

 

Table 7.2 2011 and 2018 Anthropogenic Annual Eastern US EGU NOx Emissions (in 
tons) 

 2011 Baseline 2018 
Baseline 

2018 
Scenario A 

2018 
Scenario B 

2018 
Scenario C 

2018 
Scenario D 

Total annual EGU 
NOx (tons) 1,695,870 1,262,505 1,117,819 1,437,663 1,302,481 1,053,253 

Percent Change 
from 2011 --- -26% -34% -15% -23% -38% 

Percent Change 
from 2018 +34% --- -11% +14% +3% -17% 
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Table 7.3 2011 and 2018 Annual Eastern U.S. Anthropogenic NOx Emissions (in 
tons) by Sector 

 2011 Baseline 2018 Baseline Percent Change 
Area 707,844 720,594 +2% 
Nonroad 1,337,283 867,419 -35% 
Onroad 4,476,491 2,031,596 -55% 
EGU Point Sources 1,695,870 1,262,505 -26% 
Other Point Sources 1,457,899 1,452,572 -0% 
Oil and Gas Extraction 557,911 684,604 +23% 
Locomotive and Marine Vessels 911,521 760,914 -17% 
Residential Wood Combustion 27,349 29,839 +9% 
Fire 246,027 246,027 0% 
Total 11,418,195 8,056,069 -29% 

Adapted from EPA, 2014g. 
 

From 2011 to 2018, various sectors are expected to see reductions of 

anthropogenic NOx emissions (Table 7.3), as well as anthropogenic VOC emissions 

(Table A2.1). The largest NOx reductions come from the onroad and nonroad 

sources, with sizeable reduction percentages from EGUs as well as locomotives and 

marine vessels. Oil and gas sector emissions included in the inventory are projected to 

significantly increase to future year 2018. Overall for the Eastern U.S. when 

compared to 2011, anthropogenic emissions of NOx are forecasted to be down 29% 

and VOC by 11% (EPA, 2014g). 

July 2011 meteorology was chosen for these scenarios because it was an 

unusually hot summer for the Eastern U.S., causing several ground based ozone 

monitoring sites to exceed the 75 ppb standard (Figure A2.1) and because auxiliary 

data are available from NASA’s DISCOVER-AQ (Crawford et al., 2014).  Wind 

patterns also contributed to a variety of ozone events, with some influenced by local 

pollution during times of stagnation, whereas other ozone events were a result of 

transported emissions.  For the Mid-Atlantic region, model design values calculated 

for July were similar to the design values found for the entire ozone season, with most 
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of the ozone exceedance days occurring in July. Observed 2011 design values for air 

quality monitors are calculated as the average of the fourth-highest 8-hour daily 

maximum ozone concentrations from the base year and the two previous years. 

An analysis was performed by EPA using a similar, albeit slightly newer 2011 

modeling framework (EPA’s ef_v6_11g modeling case), verifying reasonable 

modeled ozone concentrations when using 2011 National Emissions Inventory (NEI) 

version 1 emissions with the CMAQ model.. Both emissions sets have 12-km 

resolution and are based on the 2011 NEI version 1, and the same version of CMAQ 

was used with the same initial and boundary conditions. There are some minor, but 

notable differences in the newer EPA setup: mobile emissions reflected the final Tier 

3, low-sulfur gasoline rule instead of the proposed rule, oil and gas spatial surrogates 

were updated, agricultural and residential wood combustion temporal profiles were 

updated, and fugitive dust emissions were updated (EPA, 2014h). Preliminary results 

showed some low biases for modeled 8-hour maximum ozone in the Eastern U.S. (-

10 ppb in many urban environments), but many Mid-Atlantic coastal areas appear to 

generally be in good agreement (+/-5 ppb) with surface ozone observations (Dolwick 

et al., 2014). The different boundary conditions used in the Dolwick et al. continental 

U.S. study and for our eastern U.S. domain may affect modeled ozone concentrations, 

but some of the inaccuracies of ozone precursor emissions and reaction mechanisms 

can make it difficult to fully validate the model (Anderson et al., 2014; Canty et al., 

2015; Travis et al., 2016). 
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7.4 Results  

7.4.1 2011 Baseline 

Calculations of average 8-hour daily maximum surface ozone from the 2011 

Baseline simulation show several regions across the Eastern U.S. well above 75 ppb.  

Figure 7.2 shows, as minimum criteria, the average of daily maximum 8-hour 

average ozone for each model grid cell from at least the top six days over 60 ppb in 

2011.  

When evaluating results from an ozone-season length CMAQ run, the top ten 

days containing the highest modeled daily maximum 8-hour average ozone 

concentrations are typically used, based on EPA modeling guidance (Wayland, 2014).  

However, considering only the month of July can limit the number of total days 

exceeding the 60 ppb threshold in a given area.  For each model grid cell, we first 

looked for instances of at least six, but no more than 10, days exceeding 75 ppb 

ozone. If six days exceeding 75 ppb were not available, the search progressed down 

to 74 ppb, and stepwise down until 60 ppb. For each model grid cell the 8-hour daily 

maximum ozone concentration for a given scenario was determined as the maximum 

value found from the 3 × 3 grid surrounding a given grid cell. The spatial location of 

the cell contributing the maximum ozone concentration, as well as the top days found, 

for a given grid cell are determined in the 2011 baseline and used in all future-year 

scenarios (Wayland, 2014). 

Regulatory testing uses the ratio of a future-year scenario as a relative 

reduction factor and applies this ratio to base-year design values from monitoring 

stations to calculate its predicted future-year ozone concentrations. However, 
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showing concentrations only in locations with ozone monitoring stations severely 

limits the scope of understanding the broader impacts of the changes presented in 

each scenario. We wish to provide a better sense of regional change in each scenario, 

and thus, do not show reduction factors and future-year design values.  

Low ozone concentrations in areas hat do not have six days where the daily 

maximum 8-hour average ozone concentration is above 60 ppb are represented as 

white regions seen in Figure 7.2 and subsequent figures. High ozone concentrations 

are seen as a result of low boundary layers over large water bodies such as the Great 

Lakes and Atlantic Ocean (e.g., Goldberg et al., 2014). In July 2011, most urban 

regions exceed the 75 ppb standard (Figure 7.2). 

 

 
Figure 7.2 Average 8-hour daily maximum surface ozone from the top 6-10 days of 
the July 2011 baseline run. Regions shown in red-orange to red exceed 75 ppb. 
 
 
7.4.2 2018 Baseline 

Projecting forward to the future year 2018 Baseline, surface ozone 

concentrations are much lower than in 2011 (Figure 7.3) as a result of the decreased 
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emissions of NOx and VOCs across various sectors.  In the 2018 Baseline run, most 

of the modeling domain appears to show predicted ozone concentrations below the 75 

ppb standard. Almost 10 ppb of modeled ozone reduction can be seen in the future 

year across the domain, with up to 20 ppb around many city centers, although the St. 

Louis, MO and Cincinnati, OH areas and a spot in southeastern Pennsylvania near a 

large EGU are right at 75 ppb. Despite large improvements, many regions along the 

east coast, notably along the Chesapeake Bay and Long Island, still show surface 

ozone concentrations exceeding 75 ppb. 
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Figure 7.3 (a) Average 8-hour daily maximum surface ozone from the top 6-10 days 
of the July 2018 baseline run. Regions shown in red-orange to red exceed 75 ppb. (b) 
Difference plot (note different color bar) between surface ozone concentrations from 
the 2011 Baseline and 2018 Baseline runs. 
 
 
7.4.3 2018 Scenario A 

Scenario A explores the effects of all coal-fired EGUs in states considered for this 

study operating with their SCR or SNCR controls at historically lowest rates. By 

running EGUs with SCR and SNCR at the most effective observed rates, projected 

surface ozone in 2018 improves by at least 2-3 ppb along the Ohio River and into 
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Pennsylvania, with some areas improving up to 5 ppb (Figure 7.4b). Most regions are 

below or near 75 ppb, except for the areas along the east coast. Ozone concentrations 

in the areas around Cincinnati and southeastern Pennsylvania are now well below 75 

ppb (Figure 7.4a), showing benefits from the 2018 Baseline. Roughly 10% of the 

total U.S. population resides in the Ohio River Basin (ORSANCO, 2016), so these 

widespread ozone reductions would benefit a substantial number of people. Areas 

along the western edge of the modeling domain, such as the St. Louis metropolitan 

area, remain unaffected in this scenario and do not change significantly in the other 

scenarios, because ozone concentrations can be significantly influenced by model 

boundary conditions.  
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Figure 7.4 (a) Average 8-hour daily maximum surface ozone from the top 6-10 days 
of the July 2018 Scenario A run. Regions shown in red-orange to red exceed 75 ppb. 
(b) Difference plot between model surface 8-hour ozone concentrations from the 
2018 Baseline and 2018 Scenario A (lowest rates) runs. 
 
 
7.4.4 2018 Scenario B 

Contrary to Scenario A, EGUs were adjusted to reflect historical highest rates 

in Scenario B. When compared to the ideal rates of Scenario A, 4-7 ppb increases in 

modeled ozone are seen along the Ohio River and into Pennsylvania (Figure 7.5b); 

some city regions below 75 ppb in Scenario A are now predicted to be above 75 ppb.  
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A few orange-colored areas reappear in Figure 7.5a in response to NOx not being 

effectively removed from EGU sources, indicating possible risk of nonattainment. 

One notable area along the North Carolina and Virginia border showed an 8 ppb 

increase in ozone in a less populated area, where ozone concentrations approach 75 

ppb. Figure 7.1 shows a few EGUs in the vicinity of this region, likely driving this 

large local increase in modeled ozone concentrations. Similarly, a small area in 

southwestern Indiana is close to 75 ppb in Scenario B due to its proximity to several 

large power plants. 
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Figure 7.5 (a) Average 8-hour daily maximum surface ozone from the top 6-10 days 
of  the July 2018 Scenario B run. Regions shown in red-orange to red exceed 75 ppb. 
(b) Difference plot between surface ozone concentrations from the 2018 Scenario B 
(highest rates) and 2018 Scenario A (lowest rates) runs. 
 
 
7.4.5 2018 Scenario C 

Scenario C assumed 2018 EGU emissions rates matched observed NOx rates 

from 2011. While not as widespread as seen in Scenario B, Figure 7.6a has many of 

the same orange-colored areas, and only a few city regions outside the east coast 

appear to show modeled ozone above 75 ppb. Similarly the difference plot shows 
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smaller regions with a 4-5 ppb ozone increase between lowest rates and 2011 rates 

(Figure 7.6b). Areas in Indiana and Pennsylvania near the largest power plants 

appear to be the most affected by NOx increases in this scenario. EGUs operating at 

highest rates in Scenario B would be detrimental to meeting the 75 ppb ozone 

standard, but Scenario C also demonstrates a significant disadvantage if the planned, 

future improvements to units from 2011 fail to occur. 
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Figure 7.6 (a) Average 8-hour daily maximum surface ozone from the top 6-10 days 
of the July 2018 Scenario C run. Regions shown in red-orange to red exceed 75 ppb. 
(b) Difference plot between surface ozone concentrations from the 2011 Scenario C 
(2011 rates) and 2018 Scenario A (lowest rates) runs. 
 
 
7.4.6 2018 Scenario D 

In Scenario D, we targeted the coal-fired power plants that are not anticipated 

to shut down or install SCR technology by 2018. In addition to the benefits gained 

from running installed controls at historic lowest rates, NOx emissions from these 

uncontrolled units were reduced to reflect benefits of full SCR adoption in the states 
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considered for this study. “Uncontrolled” refers only to the lack of post-combustion 

controls, as these units may utilize less efficient combustion controls such as low-

NOx burners or overfire air (U.S. EPA, 2015e; U.S. EPA, 2015f). Figure 7.7a shows 

all areas along the Ohio River and into Pennsylvania below 75 ppb in this scenario, 

and only a couple of urban regions outside the east coast cities appear to still show 

modeled ozone concentrations greater than 75 ppb. Two regions in particular seem to 

gain the most significant benefits from this additional reduction strategy. One area is 

along the Ohio River separating the states of Indiana and Kentucky, where ozone is 

predicted to decrease an additional 2-3 ppb, and another is around the shared 

Maryland, Pennsylvania, and West Virginia borders, where ozone is predicted to 

decrease an additional 3-4 ppb (Figure 7.7b). 
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Figure 7.7 (a) Average 8-hour daily maximum surface ozone from the top 6-10 days 
of the July 2018 Scenario D run. Regions shown in red-orange to red exceed 75 ppb. 
(b) Difference plot between surface ozone concentrations from the 2018 Scenario D 
(lowest rates with additional SCR) and 2018 Scenario A runs (lowest rates). 
 
7.4.7 Improvements to Mid-Atlantic East Coast 

Results for Scenario A demonstrated large, noticeable modeled ozone 

improvements to areas along the Ohio River and into Pennsylvania when EGUs are 

operated at lowest rates when compared to the 2018 Baseline, but there are also 

important improvements to coastal states in the Mid-Atlantic region, where ozone 
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concentrations can be high (Figure 7.8a). In addition to the larger, more obvious 

benefits in Pennsylvania, 1.5-2 ppb of predicted reduction is seen in much of the 

state. A majority of Maryland and Delaware is predicted to see about a 1.5 ppb ozone 

reduction from Scenario A, as do parts of Virginia.  

In the simulation where currently uncontrolled units now include SCRs, 

Scenario D, much of the Mid-Atlantic coast realizes a 1.5-2 ppb of modeled ozone 

reduction from the 2018 Baseline, with some downwind regions closer to affected 

units reaching widespread modeled reductions of 2.5-3 ppb (Figure 7.8b). This 

scenario also now brings a predicted reduction of up to 1.5 ppb to much of New 

Jersey as well. Although the quantity of total modeled ozone benefit along the coast 

from these scenarios may not seem very significant given the much larger reductions 

found in other upwind areas, an overall 2 ppb reduction could be monumental for 

areas that have been on the edge of meeting attainment. 
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Figure 7.8 Ozone difference plots demonstrating modeled reductions from the 2018 
Baseline in the coastal Mid-Atlantic states from (a) Scenario A (lowest rates) and (b) 
Scenario D (lowest rates with additional SCR). 
 
 
7.4.8 New Ozone Standard – 70 ppb 

Regions that have already struggled with meeting a 75 ppb standard will 

undoubtedly require further regulations to attain the new 70 ppb standard. Areas that 

have historically or recently been in attainment of the NAAQS may require further 

emissions restrictions to attain the new standard. This study may provide valuable 
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insight into the efficacy of EGU control strategies and a model framework to test 

ways for attaining the new standard. 

The modeling results in Figure 7.9 show only model grid cells where average 

8-hour ozone is predicted to be 70ppb or greater.  Figure 7.9a suggests several 

regions could exceed a 70 ppb standard in 2018 with expected controls in place 

(future case baseline), but many regions could demonstrate attainment if EGU 

controls are operated at their historic lowest rates (Figure 7.9b). Ozone decreased in 

Scenario A, bringing modeled ozone in all of Indiana and Kentucky below 70 ppb. 

The area east of Pittsburgh with modeled ozone previously over 70 ppb completely 

disappears, and the area west of Philadelphia decreases in size significantly. 

However, if EGUs operate at their highest rates (Figure 7.9c), most regions along the 

Ohio River and throughout Pennsylvania have modeled ozone exceeding 70 ppb, and 

while not as extreme, 2011 rates could also leave these regions with ozone 

concentrations above 70 ppb (Figure 7.9d). Adding SCRs to uncontrolled units, in 

addition to running other EGUs at lowest rates, further decreases the size of the areas 

around Cincinnati and west of Philadelphia with predicted ozone concentrations 

greater than 70 ppb (Figure 7.9e). Scenarios A and D marginally decrease the size of 

the widespread area exceeding 70 ppb over the East Coast, decreasing modeled ozone 

below 70 ppb most in the inland/western-most grid cells of Maryland and Virginia. 
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Figure 7.9 July average daily 8-hour maximum surface ozone from the top 6-10 days 
of (a) 2018 Baseline, (b) Scenario A (lowest rates), (c) Scenario B (highest rates), (d) 
Scenario C (2011 rates), and (e) Scenario D (lowest rates with additional SCR). Areas 
where modeled ozone exceeds the 70 ppb NAAQS are plotted, while areas below the 
new standard are in white. 
 
7.5 Discussion 

Table 7.4 Summary of surface ozone changes for affected areas in each modeling 
scenario. 

2018 Scenario EGU NOx rates Average Surface Ozone Change Maximum Change 

Scenario A Historic lowest 2-3 ppb decrease from 2018 baseline 5 ppb decrease in 
several locations 

Scenario B Historic highest 4-7 ppb increase from Scenario A 8 ppb increase at 
NC/VA border 

Scenario C Same as 2011 4-5 ppb increase from Scenario A 7 ppb increase in 
south-central PA 

Scenario D Historic lowest + SCR 
on uncontrolled units 2-3 ppb decrease from Scenario A 4 ppb decrease at 

MD/PA/WV borders 
 

Model results show beneficial ozone reductions in coastal Mid-Atlantic States 

from running existing SCR and SNCR at optimal rates on upwind EGUs. Although 

these cost-effective reductions prove beneficial to citizens of areas along the coast, 

the greatest modeled benefits are seen nearby where the largest EGUs are located 

(Figure 7.4b). For many areas along the Ohio River and through Pennsylvania, the 

difference between EGUs running their controls and not running controls can often 
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result in an improvement of 5 ppb modeled ozone or greater (Table 7.4). Notably, 5 

ppb is the difference between the 2008 and 2015 ozone standards, suggesting optimal 

use of EGU controls could play a critical and beneficial role in making the difference 

needed for attainment of the 2015 ozone standard in the coming years. 

Scenario A provides the most achievable approach, as no additional capital 

investment is required. This scenario represented coal-fired units operating with their 

lowest average ozone season NOx emission rates, which accounts for a certain level 

of variability (start-ups, shut-downs, variable loads, cycling the SCR/SNCR system 

off, etc.) throughout the ozone season, and not the absolute lowest rates that would 

constrain the unit with an emission factor that may not be sustainable over the long 

term. In the 2015 ozone season, CAMD data revealed roughly a third of units were 

found to have average ozone season emission rates that achieved rates even lower 

than what was used from the timeframe in this study. Units which did not achieve the 

lowest rates did not fail to do so because these low rates were unattainable, but 

because regulatory and market mechanisms were used to comply. Cap and trade 

policies were implemented with the general idea to incentivize utilization of 

SCR/SNCR while also allowing for flexibility. Over time, the market has evolved to a 

point where it can sometimes be cheaper to purchase allowances than to run existing 

controls (OTC, 2015). In order to achieve meaningful NOx reductions that would 

allow areas to achieve attainment of the ozone NAAQS, the market system would 

need to be adjusted as current regulatory limits and costs of allowances appear too 

lenient to require widespread, optimal use of SCR/SNCR systems. 
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Operating EGUs at optimal rates will provide important benefits, but overall 

much of the East Coast will require additional pollutant reductions from other 

emission sources to attain the new 70 ppb standard. Although NOx emissions from 

onroad and nonroad sources will decrease from 2011 to 2018, they are expected to 

still comprise over a third of total NOx emissions (Table 7.3) and in addition to 

EGUs, and could be another two possible source groups targeted for significant NOx 

reductions. Other point sources not belonging to the EGU or oil and gas sectors make 

up almost 20% of remaining NOx emissions expected in 2018. Moving forward, NOx 

reductions from sources in this category, such as cement kilns, 

Industrial/Commercial/Institutional (ICI) Boilers, and other industrial and 

manufacturing facilities may be required to drive down total NOx emissions (Table 

7.3). 

Evaluations of the 2011 U.S. emissions inventories suggest estimates of NOx 

emissions from vehicular sources are overestimated by roughly a factor of two 

(Anderson et al., 2014, Travis et al., 2016), and that the recycling of NO2 is 

underestimated in CB05 (Canty et al., 2015); although revision 2 of version 6 of the 

Chemical Bond mechanism (CB6r2) appears to simulate NOx chemistry more 

accurately (Goldberg et al., 2016). As a result, emissions of NOx from EGUs would 

be expected to have an even broader range of influence and greater impact on ozone 

compared to onroad sources. Thus, the results presented here could be viewed as 

conservative and may represent a lower limit for significant ozone reductions 

achieved from running SCR and SNCR controls on EGUs at optimal rates. 
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7.6 Conclusions 

Numerical simulations indicate that the substantial investment in SCR and 

SNCR units on power plants in the Eastern U.S. has provided an appreciable 

beneficial impact on air quality.  Current regulations allow these units to be turned off 

for considerable periods as long as annual and ozone-season emissions caps are met.  

However, our model results indicate that the difference between the recorded least-

effective NOx removal rates and the rates from complete adoption and optimal 

utilization of NOx removal systems on coal-fired power plants produces a calculated 

change in ozone that approaches 10 ppb. Even without new capital investment, 

predicted concentrations of ozone in 2018 could be improved by up to 5 ppb solely by 

running existing, operable technology at optimal rates. 
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Chapter 8 Conclusions and Recommendations for 

Future Work 
 

8.1 Overall Conclusions 

Upwind shale gas activity has significantly affected the Baltimore/Washington 

area. At the Essex, MD monitor, source apportionment results showed the 

contribution of natural gas to total VOCs increased from 2009, rising from 25% to 

~35%, and the ratio of ethane/TNMOC likewise doubled from 7% to 15% during this 

time. Ethane concentrations were significantly greater in the years following 2009 

(when rapid shale production began) at both the Essex and McMillan Reservoir 

monitors, as well as significantly greater when arriving winds had passed through 

counties with a high density of unconventional wells. 

A significant increase in ethane concentrations indicates the effects of shale 

gas operations are detectable hundreds of kilometers downwind, and other production 

pollutants are also likely being transported. These associated emissions could 

complicate the attainment of ozone and PM air quality standards for downwind 

metropolitan areas in the Mid-Atlantic region. Additionally, the observed 2 ppbC 

increase in ethane would correspond to an expected regional increase in methane of 

~10 ppb from Marcellus Shale operations (assuming shale gas content is 10% 

ethane). 

Although the emissions from natural gas operations negatively affect air 

quality, the emissions from coal-fired power plants were found to have an even larger 

impact on regional ozone concentrations. Converting all coal units in the Eastern U.S. 
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to instead burn natural gas led to a significant decrease in modeled ozone 

concentrations. While the magnitude of reductions was not as large, modeled ozone 

concentrations were also appreciably decreased when running post-combustion 

controls on coal units at optimal rates. In both instances, a majority of the Eastern 

U.S. would be expected to demonstrate concentrations of ozone below the 70 ppb 

standard. 

Marcellus Shale gas activity appears to have regional impacts and could be 

introducing various reactive species to major cities in the Mid-Atlantic, further 

burdening the difficulty of demonstrating attainment of air quality standards. 

However, with regulations and more efficient operations, emissions can not only be 

limited directly at the well pad, but the produced natural gas can additionally be used 

to reduce emissions by providing a cleaner fuel source for electricity generation. 

Coal-fired plants having already installed post-combustion controls can easily 

improve regional air quality by operating at optimal rates. Uncontrolled units adding 

SCR controls would lower ozone concentrations further, improving conditions 

downwind in densely-populated coastal cities; these reductions would be expected to 

be even larger and more impactful if utilizing natural gas instead. 

 
8.2 Source Apportionment 

PMF results suggested an increasing contribution of natural gas sources to 

total VOCs, while gasoline and vehicle exhaust contributions have declined. For the 

biogenic and industrial sectors, contributions to total VOC varied from year to year. 

After reweighting with respect to each VOC’s predisposition toward ozone formation, 

motor vehicle-related emissions remained the primary anthropogenic source of 



 

153 
 

VOCs, whereas the increasing contributions from natural gas sources showed a 

limited direct impact with respect to reactivity. Biogenic sources contribute 

substantially (30-40%) to total VOC when reactivity is considered. 

Assuming the Essex monitor remains active and continues making hourly 

measurements, new observations should be available for each forthcoming year.  As 

these measurements become available, they can be similarly processed to see how the 

composition of total NMOC changes (or remains the same). Additional years could 

also show if contributions from the industrial factor to total NMOC will continue to 

decrease, or instead return to an average 20-25% contribution.  

The motor vehicle fleet will continue to turnover, replacing cars with cleaner, 

more efficient models. In 2017, the Tier 3 Motor Vehicle and Fuel Standards will 

begin, and vehicular VOC emissions are expected to decrease by 3% by 2018 and by 

16% by 2030 (EPA, 2014i). While vehicle and gasoline emissions would be expected 

to generally decrease over the years, economic factors could also be affecting the 

results from year to year. Trends in the price of gasoline and vehicle miles traveled 

(VMT) could also be investigated to further explore potential contributing factors. 

In the Choi and Ehrman (2004) study, measurements from four years (1996-

1999) were used together for source apportionment analysis. A similar approach 

could be used by grouping multiple years together, which could allow for a broader 

understanding of how source contributions to total NMOC have evolved over the past 

two decades without needing to use PMF over 20 different times. 
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8.3 Analysis of Ethane Concentrations 

After a decade of decline, ethane measurements from PAMS sites in Essex, 

MD and Washington, D.C. exhibited greater concentrations after 2009, growing from 

~7% of total measured NMOC to ~15% from 2013 onward. These observations 

correlate with the rapid shale gas production in upwind, neighboring states, as back-

trajectories traveling through counties with a high density of unconventional wells 

were associated with significantly greater ethane observations. Ethane concentrations 

failed to display an increasing trend at a PAMS site outside of Atlanta, GA, a region 

without new widespread natural gas operations.  

Similar to PMF, newer measurements could be used to see if ethane 

concentrations remain at elevated levels or even continue to increase. Shale gas 

production rates currently appear to have currently stagnated, and even decreased in 

some shale formations, but it remains to be seen if this will be a continuing trend, or 

just a periodic event as has occurred in the past. If production continues to decline, a 

decrease in observed ethane concentrations should be noticeable over the coming 

years. The addition of methane monitoring at the Essex and McMillan site would also 

be beneficial for tracking natural gas emissions. 

New regulations might also play a role in decreasing future observations of 

ethane. On May 12, 2016 the EPA finalized additional rules for the oil and gas sector, 

to complement the 2012 standards (EPA, 2016j). Well operators will now be required 

to monitor for fugitive emissions, whose emissions are widely varied in the reported 

literature. Monitoring will be performed semiannually using optical gas (infrared) 

imaging, and repairs would need to be made with 30 days of discovery. Initial 
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monitoring surveys must take place within one year of the date of official publication 

in the Federal Register. Additionally, pneumatic pumps will route VOC emissions to 

existing control device/process to achieve a 95% reduction. This rule goes into effect 

180 days after publication in the Federal Register. 

Analysis of local HYSPLIT trajectory clusters showed the natural gas pipeline 

transmission network was not a significant contributor to the largest ethane 

concentrations. However, the large amounts of shale gas production are believed to 

have increased the ethane content in the natural gas pipelines. At the current time, I 

have been unable to obtain composition records from Baltimore Gas & Electric, but a 

colleague found natural gas from his kitchen stove to be ~8% ethane, which is much 

higher than expected for dry gas (Ren, personal communication). While increased 

ethane content in the local natural gas delivery system does not appear to be the main 

cause of increased ethane observations at the Essex and McMillan monitors, it could 

play a partial role and should be quantified. 

Although the file sizes are substantially larger than 12 km NAM meteorology 

(8 GB vs. 0.4 GB per day), 4 km NAM files with hourly resolution are available from 

NOAA upon request (Ren, personal communication). Using finer resolution 

meteorology input would increase the accuracy of the HYSPLIT results. Using these 

4 km files should prove most useful for modeling forward dispersion episodes more 

accurately. High ethane concentrations did not always perfectly coincide with the 

arrival of a plume, but this could have been a spatial and temporal limitation of the 

meteorological input. Even at 4 km, land/water interface issues might inhibit accurate 

modeling of wind vectors around Essex (Loughner et al., 2011). 
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8.4 Increased Shale Gas Production and Natural Gas Usage 

Overall emissions reductions from 2007 to 2020 lead to improved air quality 

with lower concentrations of ozone and fine particulate matter. In Scenario B, 

hydraulic fracturing operations were expanded, and the acquired natural gas was used 

to convert coal-fired power plants, reducing their emissions of NOx by 80%, SO2 by 

99%, VOC by 33%, and PM2.5 by 75%. Burning natural gas in favor of coal causes 

concentrations of both ozone and PM2.5 to further improve from Scenario A, despite 

widespread shale gas operations. 

As a continued investigation of these results, the Environmental Benefits 

Mapping and Analysis Program (BenMAP) model can be used to evaluate the 

changes in concentrations of air pollutants to determine health and economic benefits. 

When comparing concentrations of fine particles and surface ozone between two 

scenarios, BenMAP computes the number of avoided health-related issues such as 

asthma attacks, lost days of school or work, non-fatal heart attacks, and premature 

death (Figure 8.1). Based on population and incorporation of “cost of illness” and 

“willingness to pay” metrics, an economic value can be assigned to associated 

benefits (EPA, 2016k). This process is summarized in Figure 8.2. More information 

about BenMAP is available from: https://www.epa.gov/benmap. 

https://www.epa.gov/benmap
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Figure 8.1 Air pollution health effects considered by BenMAP (EPA, 2016k) 

 
 

 
Figure 8.2 An example of applying dollar value to reduced hospital admissions 

(EPA, 2016k). 

 

 This study was also performed using the 2007 modeling platform, which did 

not contain any oil and natural gas emissions except the ones that were estimated 

independently as part of this study. Air quality modeling has since shifted to the 2011 

modeling platform, and 2011 and future year 2018 oil and gas emissions inventories 

are available. This process could be repeated using these more recent inventories for 

2018, which might provide better estimates for emissions when expanding these 

operations in Scenario B. This study worked from the assumption that emissions of 
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NOx and VOC from the oil and gas sector would account for 12% of the total 

anthropogenic emissions in 2020.  For Pennsylvania, the new 2018 inventories show 

agreement with this value for VOC, but the oil and gas sector is expected to account 

for ~20% of the state’s total NOx emissions (Table 8.1). 

 

Table 8.1 2018 Annual Emissions for Pennsylvania [tons/year] 
 NOx VOC 
Oil and Gas 83,900 35,430 
Total Anthropogenic 424,900 315,809 
O&G Percent of Total 20.2% 11.2% 

Adapted from MARAMA (2016d) 

 

Climate models should also be utilized to better evaluate these scenarios. In 

Scenario B, widespread methane emissions in the Appalachian Basin would have a 

negative climate impact, but converting coal-fired plants and consequentially 

decreasing ozone would be beneficial. Lower emissions of CO2 from converted units 

would also be helpful, but it could be argued the almost complete removal of SO2 

would remove an aerosol cooling effect that has mitigated the warming effects of 

greenhouse gases.  

 
8.5 Expected Ozone Benefits from EGU NOx Reductions 

In 2018, running existing controls on coal-fired EGUs at best historic rates is 

predicted to decrease surface ozone by ~5 ppb or greater in areas along the Ohio 

River and through Pennsylvania when compared to not running controls. If further 

capital investment is made to add SCR to uncontrolled units, ozone decreases an 

additional 2-4 ppb. As the ozone standard has been tightened from 75 ppb to 70 ppb, 



 

159 
 

optimal use of post-combustion would be a key approach for demonstrating 

attainment of this standard.  

SCR and SNCR post-combustion controls are beneficial, but still not as clean 

as using natural gas instead. If shale gas operations continue to produce large 

quantities of natural gas, power plants will continue to shift from coal to natural gas 

as a fuel source. In Scenario D, units having not installed any post-combustion 

controls were modeled to include reductions as if SCR was added. Given current 

trends, it may be equally likely for these units to switch to natural gas instead of 

investing large capital expenses toward SCR or SNCR. Updating these units to 

instead have natural gas-like emissions, would be expected to provide even larger 

decreases of ozone concentrations. 
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Appendix 1 

 
Regional air quality impacts of hydraulic fracturing and shale 

natural gas activity: Evidence from ambient VOC observations 
 

Supporting Information 

 

Wind roses from the Beltsville, MD wind profiler are provided for the months 

of June (Figure A1.1), July (Figure A1.2), and August (Figure A1.3) from heights of 

0.266, 0.385, 0.503, 0.681, 0.859, and 1.036 km AGL. Wind data is taken from years 

2012 – 2014 during the daytime hours of 10am – 7pm. The frequency of winds from 

the directions of unconventional natural gas operations is substantial during these 

months. 
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Figure A1.1. Wind roses for the month of June from the wind profiler in Beltsville, 
MD during daytime hours at various heights. Wind speeds have units of m/s. [Wind 
roses provided by Kostya Vinnikov]. 
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Figure A1.2. Wind roses for the month of July from the wind profiler in Beltsville, 
MD during the daytime hours at various heights. Wind speeds have units of m/s. 
[Wind roses provided by Kostya Vinnikov]. 
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Figure A1.3. Wind roses for the month of August from the wind profiler in 
Beltsville, MD during the daytime hours at various heights. Wind speeds have units 
of m/s. [Wind roses provided by Kostya Vinnikov]. 
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It should be noted that for some years, hourly measurements are currently 

unavailable for certain months. At Essex, no hourly measurements were available for 

the month of August in 1999, 2004, or 2005. At McMillan Reservoir, June 1996 was 

unavailable. At Rockdale County, Georgia, no hourly measurements are currently 

available from August 1999, July and August 2010, August 2012, or June and July 

2013. 

In Figure A1.4, TNMOC concentrations at McMillan declined from 1996, but 

increased after 2009. However, when looking at Figure A1.5, it can be seen that even 

though TNMOC increased, ethane increased even more as the ratio of ethane to 

TNMOC has increased over the years. Alternatively, TNMOC at Rockdale has 

remained relatively constant over the same time frame (Figure A1.6), and no increase 

is seen in the ratio of ethane to TNMOC (Figure A1.7). 

 
Figure A1.4. Daytime Total NMOC concentrations from 1996 to 2013 at McMillan 
Reservoir (DC) are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Figure A1.5. The ratio of ethane to TNMOC concentrations from 1996 to 2013 at 
McMillan Reservoir (DC) are presented by box and whisker plots with the same 
statistical parameters as Figure 3.3. 
 

 
Figure A1.6. Daytime Total NMOC concentrations from 1997 to 2013 at Rockdale 
County, GA are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Figure A1.7. The ratio of ethane to TNMOC concentrations from 1997 to 2012 at 
Rockdale County, GA are presented by box and whisker plots with the same 
statistical parameters as Figure 3.3. 
 

Similar to Figure 3.7, June, July, and August Essex, MD ethane 

measurements were compared to production rates, but values dating back to 2000 are 

also considered in Figure A1.8. This process was repeated comparing instead the 

ethane/TNMOC ratio to production rates from 2010-2013 (Figure A1.9) and 2000-

2013 (Figure A1.10). 
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Figure A1.8. June, July, and August values from 2000 through 2013 of observed 
ethane concentrations at Essex, MD vs. Marcellus Shale production. The uncertainty 
bars provide the 25th and 75th percentiles for 2010-2013. 
 
 

 
Figure A1.9. June, July, and August values from 2010 through 2013 of observed 
ethane to TNMOC ratio concentrations at Essex, MD vs. Marcellus Shale production. 
The uncertainty bars provide the 25th and 75th percentiles. 
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Figure A1.10. June, July, and August values from 2000 through 2013 of observed 
ethane to TNMOC ratio concentrations at Essex, MD vs. Marcellus Shale production. 
The uncertainty bars provide the 25th and 75th percentiles for 2010-2013. 
 

 

Figure A1.11. Daytime propane concentrations from 1996 to 2013 at Essex, MD are 
presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
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Figure A1.12. Daytime propane concentrations from 1996 to 2013 at McMillan 
Reservoir (DC) are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
 

 

Figure A1.13. Daytime propane concentrations from 1996 to 2013 at Rockdale 
County, GA are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Figure A1.14. The ratio of ethane to propane concentrations from 1996 to 2013 at 
Rockdale County, GA are presented by box and whisker plots with the same 
statistical parameters as Figure 3.3. 
 

 

Figure A1.15. Daytime n-butane concentrations from 1996 to 2013 at Essex, MD are 
presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
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Figure A1.16. Daytime n-pentane concentrations from 1996 to 2013 at Essex, MD 
are presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
 
 

 
Figure A1.17. Daytime isopentane concentrations from 1996 to 2013 at Essex, MD 
are presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
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Figure A1.18. Daytime ethylene concentrations from 1996 to 2013 at Essex, MD are 
presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
 

 
Figure A1.19. Daytime benzene concentrations from 1996 to 2013 at Essex, MD are 
presented by box and whisker plots with the same statistical parameters as Figure 
3.3. 
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Figure A1.20. Daytime isoprene concentrations (biogenic) from 1996 to 2013 at 
Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
 

 

 
Figure A1.21. The ratio of ethane to propane concentrations from 1996 to 2013 at 
Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Figure A1.22. The ratio of ethane to n-butane concentrations from 1996 to 2013 at 
Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
 
 

 
Figure A1.23. The ratio of ethane to n-pentane concentrations from 1996 to 2013 at 
Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Figure A1.24. The ratio of ethane to ethylene concentrations from 1996 to 2013 at 
Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
 

 
Figure A1.25. The ratio of isopentane to n-pentane concentrations from 1996 to 2013 
at Essex, MD are presented by box and whisker plots with the same statistical 
parameters as Figure 3.3. 
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Table A1.1. Descriptive Statistics for Daytime Ethane Concentrations at Essex, MD 
Year Count Minimum 10% 25% Median 75% 90% Maximum 
2004 478 1.01 2.478 3.11 3.95 4.91 6.202 8.68 
2005 403 0.64 2.014 2.47 3.13 4.25 5.62 41.67 
2006 659 1.65 2.22 2.77 3.93 5.29 6.69 16 
2007 603 0.05 1.84 2.59 3.4 4.66 6.436 12.33 
2008 799 1.36 2.29 3.28 4.2 5.21 6.72 12.25 
2009 781 0.05 2.27 2.86 3.65 4.71 6.338 24.23 
2010 740 1.63 2.282 3.07 3.89 5.1475 6.43 16.89 
2011 850 0.05 2.23 2.84 3.88 5.2925 7.018 23.87 
2012 899 1.66 2.53 3.23 4.28 5.9 8.16 18.81 
2013 879 0.05 2.7 3.42 4.85 7.2 9.63 189.41 

 
 
Table A1.2. P-Values from Steel-Dwass All Pairs Comparisons of Ethane at Essex, MDa 

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
2004 * * * * * * * * * * 
2005 <0.0001 * * * * * * * * * 
2006 1 <0.0001 * * * * * * * * 
2007 0.0001 0.2908 0.0007 * * * * * * * 
2008 0.1616 <0.0001 0.148 <0.0001 * * * * * * 
2009 0.11536 <0.0001 0.5635 0.1526 <0.0001 * * * * * 
2010 1 <0.0001 0.999 <0.0001 0.3209 0.0328 * * * * 
2011 1 <0.0001 1 <0.0001 0.1736 0.2387 0.9999 * * * 
2012 0.0001 <0.0001 <0.0001 <0.0001 0.2208 <0.0001 <0.0001 <0.0001 * * 
2013 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * 

aBolded values highlight significant p-values that fall below the assumed α=0.05 criteria 
 
Table A1.3. Descriptive Statistics for Daytime Ethane Concentrations at McMillan Reservoira 

Year Count Minimum 10% 25% Median 75% 90% Maximum 
2004 789 0.005 2.62 3.43 4.5 6.12 8.2 31.16 
2005 555 0.005 1.96 2.4 3.11 3.97 4.95 14.76 
2006 705 0.005 1.606 2.22 3.16 4.21 5.27 10.59 
2007 807 0.005 1.69 2.76 3.79 4.96 6.492 13.56 
2008 847 0.15903 0.45416 3.1429 4.5959 6.7192 8.62606 19.1417 
2009 902 0.005 0.005 0.27 2.825 4.1725 5.527 18.15 
2010 746 0.005 2.614 3.55 4.73 5.9825 7.833 31.55 
2011 719 0.005 3.68 4.61 6.47 8.79 11.46 19.54 
2012 863 0.005 3.374 4.37 5.66 7.67 10.086 33.86 
2013 897 0.005 3.786 4.73 6.24 8.19 10.796 19.69 
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Table A1.4. P-Values from Steel-Dwass All Pairs Comparisons of Ethane at McMillan Reservoir 
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
2004 * * * * * * * * * * 
2005 <0.0001 * * * * * * * * * 
2006 <0.0001 1 * * * * * * * * 
2007 <0.0001 <0.0001 <0.0001 * * * * * * * 
2008 1 <0.0001 <0.0001 <0.0001 * * * * * * 
2009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * * * 
2010 0.9515 <0.0001 <0.0001 <0.0001 0.9942 <0.0001 * * * * 
2011 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * 
2012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * 
2013 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9823 <0.0001 * 

aBolded values highlight significant p-values that fall below the assumed α=0.05 criteria 
 

Table A1.5. Descriptive Statistics for Daytime Ethane Concentrations at Rockdale, GA 
Year Count Minimum 10% 25% Median 75% 90% Maximum 
2004 302 0.46 1.409 1.8075 2.465 3.37 4.325 7.15 
2005 748 0.4 0.88 1.4025 2.31 3.0075 3.58 14.97 
2006 877 0.38 0.798 1.15 1.57 2.035 2.444 6.93 
2007 632 0.9 1.3 1.7 2.3 3.075 4.4 11.9 
2008 762 0.005 1.5 2.1 2.735 3.3 3.8 6.53 
2009 838 0.4 1.1 1.8 2.3 3 3.6 9.6 
2010 222 0.8 1.2 1.8 2.6 3.125 4 5.1 
2011 231 0.005 0.046 2.59 3.17 3.73 4.642 9.31 
2012 497 0.005 0.49 1.02 1.6 2.44 3.342 6.37 
2013 278 0.005 0.38 0..995 1.62 3.43 4.322 5.44 

 

 
Table A1.6. P-Values from Steel-Dwass All Pairs Comparisons of Ethane at Rockdale, GAa 

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

2004 * * * * * * * * * * 
2005 0.0003 * * * * * * * * * 
2006 <0.0001 <0.0001 * * * * * * * * 
2007 0.5891 0.0493 <0.0001 * * * * * * * 
2008 0.7573 <0.0001 <0.0001 <0.0001 * * * * * * 
2009 0.1656 0.4944 <0.0001 0.9998 <0.0001 * * * * * 
2010 0.9969 0.0398 <0.0001 0.9951 0.2235 0.7652 * * * * 
2011 0.0007 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * * 
2012 <0.0001 <0.0001 0.9688 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 * * 
2013 <0.0001 0.1304 0.4356 <0.0001 <0.0001 0.0004 0.0004 <0.0001 0.687 * 

aBolded values highlight significant p-values that fall below the assumed α=0.05 criteria 
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Appendix 2 

 
Expected ozone benefits from electricity generating unit NOx 

reductions in the Eastern United States 
 

Supporting Information 

 

Table A2.1. 2011 and 2018 Annual Eastern US Anthropogenic VOC Emissions (in 
tons) by Sector 

 2011 Baseline 2018 Baseline Percent Change 

Area 3,129,669 2,996,415 -4% 
Nonroad 1,675,927 1,115,838 -33% 
Onroad 1,960,210 945,115 -52% 
EGU point sources 29,654 34,003 +15% 
Other Point Sources 745,140 746,513 +0% 
Oil and Gas 1,755,287 2,037,590 +16% 
Locomotive and Marine Vessels 38,608 27,876 -28% 
Residential Wood Combustion 361,105 380,673 +5% 
Fire 3,195,727 3,195,727 0% 
Total 12,891,326 11,479,749 -11% 

Adapted from EPA, 2014g. 
 

 

 
Figure A2.1. Observed design values for surface ozone monitoring sites in 2011. 
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Table A2.2. EGU NOx Unit Reductions by Scenario 

Plant 
ID 

Stat
e 

Facility 
Name Unit ID Scenario 

A 
Scenario 

B 
Scenario 

C 
Scenario 

D 

    

Adjust 
IPM 
2018 

Down by 
X % 

Adjust 
3A  Up  
by X % 

Adjust 
3A Up  
by X % 

Adjust 
3A 

Down 
by X % 

889 IL 
Baldwin 
Energy 

Complex 
1 -10.48% 52.52% 8.04% --- 

889 IL 
Baldwin 
Energy 

Complex 
2 -11.73% 42.24% 15.52% --- 

861 IL Coffeen 01 --- 143.43% 5.05% --- 

861 IL Coffeen 02 --- 134.96% 35.17% --- 

963 IL Dallman 4 --- 22.30% 1.24% --- 

6016 IL Duck Creek 1 -18.79% 56.11% 29.76% --- 

856 IL E D Edwards 2 --- --- --- -72.74% 

856 IL E D Edwards 3 -4.95% 110.34% 9.66% --- 

891 IL Havana 9 -53.47% 165.17% 165.17% --- 

892 IL Hennepin 
Power Station 2 --- --- --- -61.05% 

384 IL Joliet 29 71 -32.88% --- --- --- 

384 IL Joliet 29 72 -33.31% --- --- --- 

384 IL Joliet 29 81 --- 1.71% --- --- 

384 IL Joliet 29 82 --- 1.20% --- --- 

874 IL Joliet 9 5 --- 102.65% --- --- 

876 IL Kincaid 
Station 1 -8.80% 295.72% 248.52% --- 

876 IL Kincaid 
Station 2 -21.25% 258.67% 231.17% --- 

976 IL Marion 123 -33.77% 49.39% 41.16% --- 

976 IL Marion 4 -30.85% 121.99% 42.12% --- 

879 IL Powerton 51 -12.15% --- --- --- 

879 IL Powerton 52 -11.89% --- --- --- 

879 IL Powerton 61 -11.57% --- --- --- 

879 IL Powerton 62 -11.32% --- --- --- 

55856 IL 
Prairie State 
Generating 
Company 

01 -3.14% --- --- --- 
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55856 IL 
Prairie State 
Generating 
Company 

02 --- 176.71% --- --- 

883 IL Waukegan 7 --- --- --- -62.78% 

883 IL Waukegan 8 --- --- --- -58.91% 

884 IL Will County 3 -35.07% --- --- --- 

884 IL Will County 4 -27.20% --- --- --- 

6137 IN 
A B Brown 
Generating 

Station 
1 -50.96% 120.90% 118.52% --- 

6137 IN 
A B Brown 
Generating 

Station 
2 -27.85% 62.93% 40.04% --- 

6705 IN 

Alcoa 
Allowance 

Management 
Inc 

4 -31.98% 120.57% 45.25% --- 

995 IN 
Bailly 

Generating 
Station 

8 --- 277.75% 12.33% --- 

983 IN Clifty Creek 1 -58.91% 457.41% 154.29% --- 

983 IN Clifty Creek 2 -58.83% 481.20% 152.67% --- 

983 IN Clifty Creek 3 -59.01% 459.57% 154.58% --- 

983 IN Clifty Creek 4 -34.24% 76.56% 60.66% --- 

983 IN Clifty Creek 5 -36.90% 63.47% 59.85% --- 

983 IN Clifty Creek 6 --- --- --- -74.13% 

1004 IN Edwardsport CTG1 --- 64.01% --- --- 

1012 IN 
F B Culley 
Generating 

Station 
2 -16.79% 29.53% 7.55% --- 

1012 IN 
F B Culley 
Generating 

Station 
3 -2.45% 74.82% 7.88% --- 

6113 IN Gibson 1 -77.74% 425.07% 425.07% --- 

6113 IN Gibson 2 -4.00% 224.70% 224.70% --- 

6113 IN Gibson 3 -61.12% 175.11% 152.35% --- 

6113 IN Gibson 4 -54.28% 134.97% 134.97% --- 

6113 IN Gibson 5 -66.14% 205.70% 205.70% --- 

990 IN 
Harding Street 
Station (EW 

Stout) 
70 -19.78% 118.77% 15.77% --- 

6213 IN Merom 1SG1 -7.86% 68.06% 4.56% --- 

6213 IN Merom 2SG1 -24.55% 83.48% 25.72% --- 
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997 IN 
Michigan City 

Generating 
Station 

12 -7.57% 44.90% 22.62% --- 

994 IN Petersburg 1 --- --- --- -61.71% 

994 IN Petersburg 2 -67.46% 426.86% 239.61% --- 

994 IN Petersburg 3 -65.21% 235.62% 163.73% --- 

994 IN Petersburg 4 --- --- --- -60.01% 

6085 IN 
R M Schahfer 

Generating 
Station 

14 --- 232.52% 12.65% --- 

6085 IN 
R M Schahfer 

Generating 
Station 

17 --- --- --- -46.99% 

6085 IN 
R M Schahfer 

Generating 
Station 

18 --- --- --- -47.83% 

6166 IN Rockport MB1 -7.40% 7.99% --- --- 

6166 IN Rockport MB2 -10.88% 12.21% --- --- 

1381 KY Coleman C1 --- --- --- -80.05% 

1381 KY Coleman C2 --- --- --- -80.01% 

1381 KY Coleman C3 --- --- --- -80.09% 

6823 KY D B Wilson W1 -21.02% 46.96% 19.92% --- 

1355 KY E W Brown 3 -1.28% 1.29% --- --- 

6018 KY East Bend 2 -58.32% 201.16% 167.18% --- 

1374 KY Elmer Smith 1 -52.65% 184.05% 149.39% --- 

1374 KY Elmer Smith 2 -20.94% 28.68% 23.63% --- 

1356 KY Ghent 1 -41.88% 92.41% 67.19% --- 

1356 KY Ghent 2 --- --- --- -61.52% 

1356 KY Ghent 3 -83.22% 518.38% 518.38% --- 

1356 KY Ghent 4 -65.57% 767.65% 190.81% --- 

6041 KY H L Spurlock 1 -7.07% 66.47% 7.24% --- 

6041 KY H L Spurlock 2 -11.50% 41.56% 18.24% --- 

6041 KY H L Spurlock 3 -7.52% 75.53% --- --- 

6041 KY H L Spurlock 4 -6.64% 6.95% 6.79% --- 

1382 KY HMP&L 
Station 2 H1 -10.57% 70.79% 2.15% --- 

1382 KY HMP&L 
Station 2 H2 -12.17% 34.98% 25.23% --- 

1364 KY Mill Creek 1 --- --- --- -75.62% 

1364 KY Mill Creek 2 --- --- --- -76.49% 

1364 KY Mill Creek 3 -38.25% 136.67% 136.67% --- 
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1364 KY Mill Creek 4 -63.58% 207.49% 182.09% --- 

1378 KY Paradise 1 -20.11% 23.12% 23.12% --- 

1378 KY Paradise 2 -23.84% 83.30% 47.57% --- 

1378 KY Paradise 3 -69.79% 286.11% 286.11% --- 

6639 KY R D Green G1 --- --- --- -66.72% 

6639 KY R D Green G2 --- --- --- -65.02% 

1379 KY Shawnee 10 --- --- --- -72.14% 

6071 KY Trimble 
County 1 -51.61% 240.13% 76.05% --- 

6071 KY Trimble 
County 2 --- 47.02% 22.51% --- 

10678 MD AES Warrior 
Run 001 -67.74% 179.61% 179.61% --- 

602 MD Brandon 
Shores 1 -59.37% 83.19% 79.46% --- 

602 MD Brandon 
Shores 2 -14.20% 60.27% 29.95% --- 

1571 MD Mirant Chalk 
Point 1 --- 24.27% 13.00% --- 

1571 MD Mirant Chalk 
Point (SACR) 2 -20.80% 108.30% 17.33% --- 

1572 MD Mirant 
Dickerson 1 -6.51% 3.83% 2.78% --- 

1572 MD Mirant 
Dickerson 2 -7.70% 3.09% 1.56% --- 

1572 MD Mirant 
Dickerson 3 -5.93% 1.48% 0.08% --- 

1573 MD Mirant 
Morgantown 1 -17.09% 58.62% 31.35% --- 

1573 MD Mirant 
Morgantown 2 -6.09% 77.67% --- --- 

6034 MI Belle River 1 --- --- --- -52.17% 

6034 MI Belle River 2 --- --- --- -52.45% 

1702 MI Dan E Karn 1 -37.70% 124.88% 82.32% --- 

1702 MI Dan E Karn 2 -25.95% 124.47% 34.10% --- 

1832 MI Erickson 1 --- --- --- -55.83% 

1825 MI J B Sims 3 --- --- --- -58.00% 

1710 MI J H Campbell 1 --- --- --- -49.29% 

1710 MI J H Campbell 3 -37.27% 71.03% 62.88% --- 

1733 MI Monroe 1 -8.25% 70.49% 4.06% --- 

1733 MI Monroe 2 -13.33% 15.38% --- --- 

1733 MI Monroe 3 -2.43% 54.45% --- --- 

1733 MI Monroe 4 -13.09% 360.20% 12.21% --- 
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1740 MI River Rouge 2 --- --- --- -53.01% 

1740 MI River Rouge 3 --- --- --- -65.72% 

1843 MI Shiras 3 --- --- --- -30.68% 

1743 MI St. Clair 1 --- --- --- -63.45% 

1743 MI St. Clair 2 --- --- --- -72.31% 

1743 MI St. Clair 3 --- --- --- -74.40% 

1743 MI St. Clair 4 --- --- --- -69.16% 

1743 MI St. Clair 6 --- --- --- -37.40% 

1743 MI St. Clair 7 --- --- --- -44.98% 

1745 MI Trenton 
Channel 16 --- --- --- -81.32% 

1745 MI Trenton 
Channel 17 --- --- --- -82.20% 

1745 MI Trenton 
Channel 18 --- --- --- -81.99% 

1745 MI Trenton 
Channel 19 --- --- --- -81.32% 

1745 MI Trenton 
Channel 9A --- --- --- -43.44% 

1866 MI Wyandotte 7 --- --- --- -49.88% 

1866 MI Wyandotte 8 --- --- --- -54.13% 

2706 NC Asheville 1 -41.01% 99.12% 74.73% --- 

2706 NC Asheville 2 -60.83% 132.84% 132.84% --- 

8042 NC Belews Creek 1 -51.98% 191.07% 87.14% --- 

8042 NC Belews Creek 2 -27.01% 81.41% 39.53% --- 

2721 NC Cliffside 5 -2.14% 42.50% --- --- 

10380 NC Elizabethtown 
Power UNIT1 --- --- --- -91.08% 

10380 NC Elizabethtown 
Power UNIT2 --- --- --- -91.69% 

2727 NC Marshall 1 --- 207.80% 203.48% --- 

2727 NC Marshall 2 --- 211.54% 199.45% --- 

2727 NC Marshall 3 --- 105.36% 2.92% --- 

2727 NC Marshall 4 -17.63% 55.16% 16.78% --- 

6250 NC Mayo 1A -23.14% 199.84% 21.31% --- 

6250 NC Mayo 1B -21.67% 196.25% 16.29% --- 

2712 NC Roxboro 1 -33.47% 91.55% 86.43% --- 

2712 NC Roxboro 2 -25.29% 242.78% --- --- 

2712 NC Roxboro 3A -44.75% 227.09% 56.47% --- 

2712 NC Roxboro 3B -44.42% 218.12% 52.78% --- 
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2712 NC Roxboro 4A -27.88% 137.45% 26.36% --- 

2712 NC Roxboro 4B -28.24% 139.34% 26.10% --- 

54035 NC 

Westmoreland
-LG&E 
Roanoke 
Valley I 

1 --- --- --- -82.20% 

2878 OH Bay Shore 1 --- --- --- -39.08% 

2828 OH Cardinal 1 -34.42% 95.98% 68.10% --- 

2828 OH Cardinal 2 -28.13% 45.07% 45.07% --- 

2828 OH Cardinal 3 -63.37% 933.19% 171.24% --- 

8102 OH Gen J M 
Gavin 1 --- 29.17% 18.87% --- 

8102 OH Gen J M 
Gavin 2 -15.85% 57.32% 49.01% --- 

2850 OH J M Stuart 1 -6.10% 66.45% 17.15% --- 

2850 OH J M Stuart 2 --- 43.70% 22.50% --- 

2850 OH J M Stuart 3 -3.90% 77.11% 20.08% --- 

2850 OH J M Stuart 4 --- 96.70% 21.80% --- 

6031 OH Killen Station 2 -46.88% 297.06% 94.80% --- 

2876 OH Kyger Creek 1 -54.44% 134.64% 107.74% --- 

2876 OH Kyger Creek 2 -50.77% 128.91% 109.09% --- 

2876 OH Kyger Creek 3 -49.37% 125.67% 113.34% --- 

2876 OH Kyger Creek 4 -50.62% 119.72% 102.67% --- 

2876 OH Kyger Creek 5 -51.28% 121.40% 106.50% --- 

2832 OH 
Miami Fort 
Generating 

Station 
7 -59.41% 180.60% 180.60% --- 

2832 OH 
Miami Fort 
Generating 

Station 
8 -59.47% 269.26% 120.56% --- 

2866 OH W H Sammis 1 --- --- --- -70.21% 

2866 OH W H Sammis 2 --- --- --- -70.42% 

2866 OH W H Sammis 3 --- --- --- -70.35% 

2866 OH W H Sammis 4 --- --- --- -70.05% 

2866 OH W H Sammis 5 --- 253.24% 104.43% --- 

2866 OH W H Sammis 6 --- 248.30% 6.95% --- 

2866 OH W H Sammis 7 --- 13.15% 13.15% --- 

6019 OH 
W H Zimmer 
Generating 

Station 
1 -77.78% 341.99% 289.50% --- 

10676 PA AES Beaver 
Valley LLC 032 -23.87% 8.78% 3.18% --- 
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10676 PA AES Beaver 
Valley LLC 033 -51.14% 78.21% 60.54% --- 

10676 PA AES Beaver 
Valley LLC 034 --- 513.70% 513.70% --- 

10676 PA AES Beaver 
Valley LLC 035 -49.53% 52.37% 47.09% --- 

6094 PA Bruce 
Mansfield 1 -44.01% 63.05% 63.05% --- 

6094 PA Bruce 
Mansfield 2 -25.74% 59.30% 32.96% --- 

6094 PA Bruce 
Mansfield 3 -2.87% 158.87% 5.91% --- 

3140 PA Brunner Island 1 -23.04% 29.94% --- --- 

3140 PA Brunner Island 2 -20.42% 25.66% --- --- 

3140 PA Brunner Island 3 -33.23% 49.76% --- --- 

8226 PA Cheswick 1 -64.26% 265.70% 164.82% --- 

3118 PA Conemaugh 1 --- 387.29% 387.29% --- 

3118 PA Conemaugh 2 --- 355.29% 352.86% --- 

10603 PA 
Ebensburg 

Power 
Company 

031 -10.32% 11.51% 9.41% --- 

10113 PA 
Gilberton 

Power 
Company 

031 -49.76% 99.03% 42.05% --- 

10113 PA 
Gilberton 

Power 
Company 

032 -50.15% 100.62% 43.53% --- 

3122 PA Homer City 1 -69.61% 186.96% 181.26% --- 

3122 PA Homer City 2 -55.95% 174.21% 171.07% --- 

3122 PA Homer City 3 -54.60% 171.56% 127.75% --- 

3136 PA Keystone 1 -88.65% 762.41% 762.41% --- 

3136 PA Keystone 2 -88.33% 738.34% 738.34% --- 

3149 PA Montour 1 -82.27% 591.57% 471.94% --- 

3149 PA Montour 2 -79.64% 616.61% 446.54% --- 

50039 PA 
Northeastern 

Power 
Company 

031 -63.36% 172.92% 24.75% --- 

50776 PA 
Panther Creek 

Energy 
Facility 

1 -20.65% 29.12% 23.69% --- 

50776 PA 
Panther Creek 

Energy 
Facility 

2 -11.31% 16.65% 10.43% --- 

54144 PA Piney Creek 
Power Plant 031 -31.07% 90.73% 53.03% --- 

50974 PA 
Scrubgrass 
Generating 

Plant 
1 -56.89% 135.43% 107.50% --- 
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50974 PA 
Scrubgrass 
Generating 

Plant 
2 -45.02% 90.54% 61.66% --- 

3130 PA Seward 1 -23.26% 36.84% 13.67% --- 

3130 PA Seward 2 -27.04% 43.36% 19.06% --- 

54634 PA 
St. Nicholas 

Cogeneration 
Project 

1 -53.58% 115.41% 38.79% --- 

50879 PA Wheelabrator 
- Frackville GEN1 --- --- 76.81% --- 

50611 PA 

WPS 
Westwood 
Generation 

LLC 

031 --- --- 29.65% --- 

3393 TN Allen 1 -44.56% 69.54% 40.67% --- 

3393 TN Allen 2 -35.07% 31.79% 22.22% --- 

3393 TN Allen 3 -36.62% 47.74% 33.28% --- 

3396 TN Bull Run 1 -10.73% 57.12% 11.97% --- 

3399 TN Cumberland 1 -9.00% 56.80% 18.54% --- 

3399 TN Cumberland 2 -5.67% 67.38% 11.63% --- 

3403 TN Gallatin 1 --- --- 29.58% --- 

3403 TN Gallatin 2 --- --- 29.18% --- 

3403 TN Gallatin 3 --- --- 29.58% --- 

3403 TN Gallatin 4 --- --- 29.05% --- 

3407 TN Kingston 1 -18.40% 116.06% 12.85% --- 

3407 TN Kingston 2 -11.54% 149.70% 12.18% --- 

3407 TN Kingston 3 -17.37% 124.01% 11.90% --- 

3407 TN Kingston 4 -15.34% 94.61% 12.77% --- 

3407 TN Kingston 5 -15.44% 126.95% 17.08% --- 

3407 TN Kingston 6 -10.09% 166.60% 14.55% --- 

3407 TN Kingston 7 -13.41% 169.60% 14.26% --- 

3407 TN Kingston 8 -16.25% 185.71% 22.54% --- 

3407 TN Kingston 9 -18.46% 141.20% 22.27% --- 

54304 VA Birchwood 
Power Facility 001 -8.42% 135.49% 26.62% --- 

3797 VA Chesterfield 
Power Station 4 -48.00% 332.31% 116.15% --- 

3797 VA Chesterfield 
Power Station 6 -37.53% 174.23% 58.90% --- 

7213 VA Clover Power 
Station 1 -12.06% 18.48% 6.32% --- 

7213 VA Clover Power 
Station 2 -17.31% 21.38% 13.10% --- 
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10377 VA Cogentrix-
Hopewell 

BLR01
A --- --- --- -88.09% 

10377 VA Cogentrix-
Hopewell 

BLR01
B --- --- --- -88.38% 

10377 VA Cogentrix-
Hopewell 

BLR01
C --- --- --- -88.24% 

10377 VA Cogentrix-
Hopewell 

BLR02
A --- --- --- -88.15% 

10377 VA Cogentrix-
Hopewell 

BLR02
B --- --- --- -88.18% 

10377 VA Cogentrix-
Hopewell 

BLR02
C --- --- --- -87.89% 

10071 VA Cogentrix-
Portsmouth 

BLR01
A --- --- --- -82.66% 

10071 VA Cogentrix-
Portsmouth 

BLR01
B --- --- --- -81.93% 

10071 VA Cogentrix-
Portsmouth 

BLR01
C --- --- --- -81.91% 

10071 VA Cogentrix-
Portsmouth 

BLR02
A --- --- --- -81.92% 

10071 VA Cogentrix-
Portsmouth 

BLR02
B --- --- --- -81.28% 

10071 VA Cogentrix-
Portsmouth 

BLR02
C --- --- --- -81.24% 

52007 VA Mecklenburg 
Power Station 1 --- --- --- -77.70% 

52007 VA Mecklenburg 
Power Station 2 --- --- --- -78.76% 

54081 VA Spruance 
Genco, LLC 

BLR01
A -25.03% 30.60% 14.88% --- 

54081 VA Spruance 
Genco, LLC 

BLR01
B -25.17% 28.54% 14.81% --- 

54081 VA Spruance 
Genco, LLC 

BLR02
A -26.83% 20.49% 19.58% --- 

54081 VA Spruance 
Genco, LLC 

BLR02
B -26.78% 23.28% 19.32% --- 

54081 VA Spruance 
Genco, LLC 

BLR03
A -41.01% 16.11% 10.79% --- 

54081 VA Spruance 
Genco, LLC 

BLR03
B -40.91% 16.51% 11.09% --- 

54081 VA Spruance 
Genco, LLC 

BLR04
A -37.10% 10.73% 4.38% --- 

54081 VA Spruance 
Genco, LLC 

BLR04
B -36.78% 10.28% 4.76% --- 

56808 VA 
Virginia City 

Hybrid Energy 
Center 

1 -30.00% --- --- --- 

3943 WV Fort Martin 
Power Station 1 --- --- --- -84.66% 

3943 WV Fort Martin 
Power Station 2 --- --- --- -82.59% 

3944 WV Harrison 
Power Station 1 -66.79% 394.01% 207.73% --- 
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3944 WV Harrison 
Power Station 2 -5.43% 358.91% 211.48% --- 

3944 WV Harrison 
Power Station 3 -6.00% 367.93% 226.60% --- 

3935 WV John E Amos 1 -28.19% 79.50% 69.72% --- 

3935 WV John E Amos 2 -35.45% 113.78% 61.54% --- 

3935 WV John E Amos 3 --- 109.59% 21.30% --- 

56671 WV Longview 
Power 001 -2.71% --- --- --- 

3948 WV Mitchell (WV) 1 --- 17.77% 17.77% --- 

3948 WV Mitchell (WV) 2 --- 94.98% 3.32% --- 

3954 WV Mount Storm 
Power Station 1 -29.79% 59.37% 49.54% --- 

3954 WV Mount Storm 
Power Station 2 -39.95% 68.87% 67.22% --- 

3954 WV Mount Storm 
Power Station 3 -10.71% 16.41% 11.85% --- 

6264 WV Mountaineer 
(1301) 1 -28.53% 81.40% 46.25% --- 

6004 WV Pleasants 
Power Station 1 -71.80% 265.74% 251.78% --- 

6004 WV Pleasants 
Power Station 2 -69.13% 489.49% 227.95% --- 
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