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The goal of this thesis is to re-evaluate both Teng-Man and attenuated total

reflection (ATR) methods for measuring the linear electro-optic (EO) coefficients of

poled organic thin films based on a multilayer structure containing a transparent

conducting oxide (TCO) layer.

The linear EO properties are often characterized using the Teng-Man reflection

method. However, it has been reported that experimental error can result from

ignoring multiple reflections and that an accurate determination of the EO effect

could be achieved only by a numerical calculation that applies anisotropic Fresnel

equations to the multilayer structure. We present new closed-form expressions for

analysis of Teng-Man measurements of the EO coefficients of poled polymer thin

films. These expressions account for multiple reflection effects using a rigorous

analysis of the multilayered structure for varying angles of incidence. The analysis

based on plane waves is applicable to both transparent and absorptive films and takes

into account the properties of the TCO electrode layer and buffer layers. Methods



for fitting data are presented and the error introduced by ignoring the TCO layer

and multiple reflections is discussed. We also discuss the effect of Gaussian beam

optics and the suitability of a thick z-cut LiNbO3 crystal as a reference to validate

the Teng-Man measurement.

Simply taking the metal electrode off the Teng-Man sample makes it feasible

to use the ATR method using a metal-coated prism. This technique has the capa-

bility of measuring anisotropic indices of refraction along with film thicknesses. In

addition, it enables measurement of r13 and r33 separately without an assumption

for the ratio of r13 to r33 as required in the Teng-Man method. We have found that

the ATR analysis based on a three-layer waveguide structure (air/film/substrate)

can produce a large error especially when the film supports a single guided mode and

the ATR analysis based on a multilayer structure containing a TCO layer gives you

a more reliable estimation. We discuss the error introduced by using the three-layer

waveguide structure and compare to using the multilayer structure.

Finally, we discuss the characterization of the optical property of TCO’s using

ellipsometeric analysis, which is required for both the rigorous Teng-Man and ATR

analysis. Representative experimental results showing that the result from the ATR

method based on the multilayer structure shows a good agreement with that from

the rigorous Teng-Man analysis are presented. We have measured a very high linear

electro-optic coefficient (r33 = 350 pm/V) from a NLO film (AJ-TTE-II, synthesized

by Alex Jen’s group at University of Washington) at 1310 nm wavelength, which is

∼12 times higher than the best inorganic electro-optic crystal LiNbO3.
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Chapter 1

Introduction

1.1 Motivation and contributions

Organic molecules have attracted great interest for their potential applications in

nonlinear optical (NLO) devices [1, 2, 3]. In particular, poled polymers based on

second-order nonlinearity have been widely studied because they are a class of pho-

tonic material that could substitute for inorganic nonlinear crystals in high-speed

optical communication and signal processing. Although poled polymers can have

disadvantages such as thermal instability (depending on glass transition tempera-

ture), their interest is motivated by the following advantages:

• Large NLO response - much higher than r33 of LiNbO3 [4, 5]

• Fast optical response - large bandwidth [6, 7]

• Low absorption loss at telecommunication wavelength [8]

• Ease of processing - conventional photolithography [9]

• Cost effectiveness [10]

• Possibility to change NLO properties by molecular engineering approach [4,

11] .

Since the first poled NLO polymers were reported [12], research has been car-

ried out on the development of new materials, the characterization of nonlinear
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properties such as linear electro-optic (LEO) effect, THz generation, second har-

monic generation (SHG), etc., and their applications to practical devices such as a

modulators, resonators, polarization controllers, and so on. A macroscopic second-

order NLO response requires orientation of chromophores, which can be achieved by

electric field poling. Many researchers have been striving to synthesize polymeric

EO materials and chromophores that will exhibit high nonlinearity in a poled poly-

mer thin film. Therefore, a reliable and simple method for characterizing EO effect

is indispensable to those who are extensively working on new material development.

The electro-optic (EO) properties are often characterized using the reflection method

introduced by Teng and Man (Teng-Man) [13] as well as Schildkraut [14] because

it is simple and quick. The vast majority of quoted values of the electro-optic co-

efficient that are obtained from Teng-Man measurements result from a simplified

analysis of the data that assumes the transparent conducting oxide (TCO) is per-

fectly transparent and the gold is perfectly reflective. However, it has been reported

that experimental error can result from ignoring the reflection off the substrate-

film interface and that an accurate determination of the EO coefficient could be

achieved only by a numerical calculation that applies anisotropic Fresnel equations

to the stratified layers containing the nonlinear poled polymer [13, 14, 15, 16, 17].

This limitation of the simple analysis in the Teng-Man reflection method motivates

us to develop a new closed-form expressions for the analysis of multi-angle Teng-

Man data including absorption of both the film and TCO layers. These expressions

account for multiple reflection effects using a rigorous analysis of the multilayered

structure for varying angles of incidence. We have also developed a stand-alone
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software program in Java language for the estimation of error resulting from the

simple Teng-Man method to offer convenience to those who want to estimate an er-

ror without any dependency on commercial numerical software such as MATLABTM

and Mathematica.

A thick z-cut LiNbO3 has been often used to validate a Teng-Man setup since

Shuto and Amano presented that the EO coefficients of 0.5 mm thick z-cut LiNbO3

measured by the simple Teng-Man method are in an excellent agreement with the

known values [18]. Based on the rigorous Teng-Man analysis, we have examined the

suitability of using a thick z-cut LiNbO3 to validate a Teng-Man setup for measuring

EO coefficients of poled polymer thin films.

We needed another characterization method that allows us to verify the rig-

orous Teng-Man method and that facilitates EO measurement because the rigorous

Teng-Man method requires a long time to obtain multi-angle Teng-Man data and

to analyze them numerically based on the multiple reflections in a multilayer struc-

ture. The attenuated total reflection (ATR) is another measurement method that

can be applied to Teng-Man samples. Simply taking the metal electrode off the

Teng-Man sample makes it feasible to use the ATR method using a metal-coated

high index prism. This has great advantages over the Teng-Man method such as

the measurement of anisotropic indices of refraction and thickness of the NLO film,

the separate measurement of r13 and r33, and so on. However, we have found that a

measured film thickness based on a three-layer waveguide structure (air/film/glass)

can introduce an error because of ignoring TCO layer. The ATR analysis based on

a multilayer structure containing a TCO layer gives a more reliable EO estimation
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than using a three-layer waveguide structure, especially when the film supports only

a single guided mode. We recommend that the ATR analysis should be based on a

multilayer structure containing a transparent conducting electrode layer for a more

accurate determination of the linear EO coefficient.

The characterization of the optical properties of a TCO layer is required for

both the rigorous Teng-Man and ATR analysis. For some cases, TCO is difficult to

characterize because it displays a complicated graded microstructure, resulting in op-

tical properties that can vary widely with deposition conditions and post-deposition

processing. We use both single and graded multilayer models to characterize the

optical property of TCO’s using ellipsometeric analysis. Our experimental results

have shown that the result from the ATR method based on the multilayer structure

shows a good agreement with that from the rigorous Teng-Man analysis. Finally, a

very high linear electro-optic coefficient (r33 = 350 pm/V) has been measured from

a NLO film (AJ-TTE-II) at 1310 nm wavelength, which is ∼12 times higher than

the best inorganic electro-optic crystal LiNbO3. This material was synthesized by

Alex Jen and coworkers at the University of Washington.

Through this thesis, we discuss

• the development of the rigorous Teng-Man analysis for an accurate measure-

ment

• the determination of the suitability of using thick z-cut LiNbO3 to validate a

Teng-Man setup

• the development of a stand-alone Java Teng-Man error estimator.

• the re-evaluation of the ATR analysis based on a multilayer structure
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1.2 Review of second-order nonlinear polymers

1.2.1 Linear susceptibility and second-order nonlinearity

Polarization vector

In nonlinear optics, the macroscopic polarization vector can be expressed as a power

series in the electric field in the form [19]

Pj = P
(0)
j + P

(1)
j + P

(2)
j + P

(3)
j + · · · , (1.1)

where the subscript j represents a coordinate index (j = 1, 2, 3) in the laboratory

frame. The first two terms are related to the spontaneous polarization and linear

optical effects, respectively. The next higher order terms are related to the nonlin-

ear optical effect. The third term is the second-order nonlinear effect that we are

interested in. Assuming the medium is time invariant, the most general form of the

polarization vector is, in the time domain, [19, 20]

Pj(t) = P
(0)
j (t)

+ εo

∫ ∞

−∞
χ

(1)
jk (τ)Ek(t− τ) dτ (1.2)

+ εo

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2 χ

(2)
jkl(τ1, τ2)Ek(t− τ1)El(t− τ2)

+ · · ·
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or

Pj(t) = P
(0)
j (t)

+ εo

∫ ∞

−∞
χ

(1)
jk (ω)Êk(ω)e−iωt dω (1.3)

+ εo

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 χ

(2)
jkl(ω1, ω2)Êk(ω1)Êl(ω2)e

−i(ω1+ω2)t

+ · · · ,

where

χ
(1)
jk (ω) =

∫ ∞

−∞
χ

(1)
jk (τ)eiωτdτ , (1.4)

χ
(2)
jkl(ω1, ω2) =

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2 χ

(2)
jkl(τ1, τ2)e

i(ω1τ1+ω2τ2) , (1.5)

and the electric field Ê(ω) in the frequency domain is given as

Ê(ω) =
1

2π

∫ ∞

−∞
E(t)eiωtdt . (1.6)

Here, we use the Einstein summation notation in the product of χÊ for simplicity.

From Eq. 1.2, we note that the polarization vector Pj(t) is the convolution of the

susceptibility and electric field. The εoχ is the impulse response of the medium. By
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Fourier transform, we have

P̂j(ω) = P̂
(0)
j (ω)

+ εo

∫ ∞

−∞
dω1χ

(1)
jk (ω1)Êk(ω1)δ(ω − ω1) (1.7)

+ εo

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 χ

(2)
jkl(ω1, ω2)Êk(ω1)Êl(ω2)δ(ω − ω1 − ω2)

+ · · · .

Linear susceptibility

Assuming that the polarization response of the material is instantaneous, that is,

χ
(1)
jk (t) = χ

(1)
jk δ(t), χ

(2)
jkl(t1, t2) = χ

(2)
jklδ(t1, t2), etc, Eq. 1.1 is rewritten as

Pj(t) = P
(0)
j (t) + εoχ

(1)
jk Ej(t) + εoχ

(2)
jklEj(t)Ek(t) + · · · , (1.8)

which one might be familiar with. From basic electro-magnetic (EM) theory, we

know

P
(1)
j = εoχ

(1)
jk Ek , (1.9)

where χjk is the second-order. Equation 1.9 is equivalent to




Px

Py

Pz




= εo




χxx χxy χxz

χyx χyy χyz

χzx χzy χzz







Ex

Ey

Ez




. (1.10)
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Second-order nonlinearity

From the second-order polarization vector terms in Eqs. 1.2 and 1.3, we note that

the last two subscripts k and l in the expression of χjkl, are interchangeable. This

is called intrinsic permutation symmetry1. So, the number of independent elements

in χ
(2)
jkl can be decreased from 27 to 18 and based on other symmetries some of these

18 elements are equivalent. The contracted form is given as

dj,kl =
1

2
χ

(2)
j,kl = dju =




d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




, (1.11)

where the relation between kl and u is given as

kl = 11 22 33 23, 32 13, 31 12, 21

u = 1 2 3 4 5 6

.

Electric fields of monochromatic waves can be expressed as

E(t) =
1

2

∑
ωn>0

[
E(ωn)e−iωnt + E∗(ωn)eiωnt

]
(1.12)

or

Ê(ω) =
1

2

∑
ωn>0

[
E(ωn)δ(ω − ωn) + E∗(ωn)δ(ω + ω)

]
. (1.13)

1This is also valid in the higher order susceptibility.
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Substituting Eq. 1.13 into Eq. 1.7 gives2

P
(2)
j =

1

4

∑
ωm>0

∑
ωm>0

[
χjkl(ωm, ωn)Ek(ωm)El(ωn)e−i(ωm+ωn)t (1.14)

+ χjkl(ωm,−ωn)Ek(ωm)E∗
l (ωn)e−i(ωm−ωn)t (1.15)

+ χjkl(−ωm, ωn)E∗
k(ωm)El(ωn)ei(ωm−ωn)t (1.16)

+ χjkl(−ωm,−ωn)E∗
k(ωm)E∗

l (ωn)ei(ωm+ωn)t
]
. (1.17)

Suppose we have only two monochromatic waves given as

Êj(ω) =
1

2
Ej(ω1)δ(ω − ω1) +

1

2
Ej(ω2)δ(ω − ω2) , (1.18)

then, we have different kinds of nonlinear effects in the form





χ(2) (−(ω1 + ω2); ω1, ω2) Sum frequency generation

χ(2) (−2ω1; ω1, ω1) Second harmonic generation

χ(2) (−(ω1 − ω2); ω1,−ω2) Difference frequency generation

χ(2) (0; ω1,−ω1) Optical rectification

χ(2) (−ω1; ω1, 0) Linear electro-optic effect or Pockel’s effect,

where the notation χ(2)(−ωp; ωm, ωn), ωp = ωm + ωn is used.

Now, we investigate the linear electro-optic effect, χ(2) (−ω1; ω1, 0), in more

detail. When a DC electric field parallel to the l-direction is applied to the sample,

2The number of subscript letters in the expression of χ also indicate the order of nonlinearity
as shown in the superscript. Henceforth, either subscript or superscript can be used for simplicity.
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the first two polarization terms are

Pj = εo{χjk(−ω; ω)Ek(ω) + 2χjkl(−ω; ω, 0)Ek(ω)El(0)} . (1.19)

Using D̄ = εoĒ + P̄, the effective dielectric tensor can be defined by

Dj = εo{δjk + χjk(−ω; ω) + 2χjkl(−ω; ω, 0)El(0)}Ek(ω) (1.20)

= εo{δjk + χjk(−ω; ω) + δχjk}Ek(ω) ≡ εeff
jkEω

k . (1.21)

The electro-optic effect can be defined by using the electric impermeability B ≡ 1/εr

induced by an electric field in the form

∆Bjk = Bjk(E)−Bjk(0) =

[
1

εr(E)

]

jk

−
[

1

εr(0)

]

jk

≡ rjk,lEl(0) , (1.22)

where rjk,l is the linear electro-optic or Pockels coefficient. From Eqs. 1.21 and 1.22,

we can derive

Bjk(0) + ∆Bjk = (δjk + χjk(−ω; ω) + δχjk)
−1 (1.23)

and equivalently,

δjk = δjk + ∆BjkBjk(0)−1 + Bjk(0)δχjk + ∆Bjkδχjk , (1.24)

where Bjk(0)−1 = δjk + χjk. Ignoring the last term in Eq. 1.24 and assuming B(0)

10



is diagonal3, we can obtain

∆Bjk = −Bjm(0)δχmnBnk(0) (1.25)

= −2Bjm(0)χmnl(−ω; ω, 0)El(0)Bnk(0) (1.26)

=
−2χjkl(−ω; ω, 0)El(0)

n2
jn

2
k

(1.27)

= rjklEl(0) . (1.28)

rjkl is symmetric with respect to the first two indices and can be written in reduced

tensor notation, rul, as described previously for the dju coefficient. In contracted

notation, the linear electro-optic coefficient is

rul =




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63




. (1.29)

A poled organic thin film prepared by spin coating belongs to the point-group sym-

metry∞mm (space group C∞v) [21]. Two independent electro-optic tensor elements

3Note that first rank tensor Bjk or εjk can be diagonalized by proper choice of a coordinate
system.
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exist in the form

rul =




0 0 r13

0 0 r13

0 0 r33

0 r13 0

r13 0 0

0 0 0




. (1.30)

The popular LEO crystal, LiNbO3, belongs to the 3m (space group C3v) and has

four independent tensor elements in the form [20, 18]

rul =




0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0




. (1.31)

1.2.2 Optical processes in orientationally ordered materials

The electric dipole moment is a measure of the polarity of a system such as electric

charges or molecules. The polarization of the medium can be estimated to be the

macroscopic sum of these electric dipole moments induced by an electric field. In

organic molecules, the nature of the bonds determine the magnitude of the binding

energy and consequently the ability of the electrons involved in these bonds to be
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distorted by an electric field. A chromophore containing systems of conjugated π

electrons is expected to have a large polarization because delocalized π electrons

by alternating single and double bonds, often in aromatic systems, are more easily

polarized than saturated materials. Since modulating frequencies are much lower

than optical frequencies, acoustic and optical phonons can contribute to the electro-

optic coefficients. However, one of the advantages of electro-optic polymers materials

is that the nonlinearity is primarily electronic in nature, as opposed to inorganic

materials in which the coupling to the lattice through acoustic and optical phonons

contributes strongly [22]. We briefly review the relations between the molecular

orientation and the optical susceptibility, concentrating on the ideal case that the

medium is assumed to be linear, nondispersive, homogeneous, and isotropic4 based

on Refs. [23, 24, 25, 26].

Linear susceptibility and birefringence

The bulk second-order susceptibilities in organic crystals are traceable to the non-

linear optical properties of the individual molecular units. Similar to Eq. 1.8, the

molecular polarization is given as

pJ(t) = µJ + αJK(t)EK(t) + βJKL(t)EK(t)EL(t) + · · · , (1.32)

where µJ is the molecular ground state dipole moment, αJK(t) the linear polariz-

ability, and βJKL(t) the nonlinear optical susceptibilities or hyperpolarizability.

4It is often called an oriented gas model (OGM).
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Figure 1.1: The j, k, and l axes represent the laboratory coordinates, while the J ,
K, and L the molecular system coordinates.
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Assuming an axially symmetric polar molecule with a permanent dipole mo-

ment µ lying in the L-axis as shown in Fig. 1.2, the linear polarizability is given as

[27]

α(ω) =




αxx(ω) αxy(ω) αxz(ω)

αyx(ω) αyy(ω) αyz(ω)

αzx(ω) αzy(ω) αzz(ω)




. (1.33)

Using the molecular polarization

pi(ω) = αii(ω)Ei(ω) , (1.34)

the linear susceptibility can be expressed by a linear sum over the individual molecules

with an orientational ensemble average:

χjk = N〈α∗JK〉jk = Nα∗JK〈ajJakK〉 , (1.35)

where N is a number density of the molecules and 〈α∗IJ〉 is an orientational average

of the linear susceptibility corrected by the local field factor given as

〈α∗〉 =

∫
α∗G(Ω, Ep)dΩ∫
G(Ω, Ep)dΩ

. (1.36)

The G is a Gibbs distribution function defined by

G(Ω, Ep) = exp [−U(Ω, Ep)/kT ] , (1.37)
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where Ω is the solid angle and Ep is the poling electric field. The transformation

matrix a is defined by [23]




cos θ cos φ cos ψ − sin φ sin ψ cos θ sin φ cos ψ + cos φ sin ψ − sin θ cos ψ

− cos θ cos φ sin ψ − sin φ cos ψ − cos θ sin φ sin ψ + cos φ cos ψ sin θ sin ψ

sin θ cos φ sin θ sin φ cos θ




.

(1.38)

Finally, the linear susceptibilities are

χ11 = N

[
1

4
(〈cos2 θ〉+ 1)(α∗xx + α∗yy) +

1

2
〈sin2 θ〉α∗zz

]
= χ22 (1.39)

and

χ33 = N

[
1

2
〈sin2 θ〉(α∗xx + α∗yy) + 〈cos2 θ〉α∗zz

]
. (1.40)

Using the ensemble average of the Legendre polynomial, 〈P2〉, we can rewrite

χ11 = N

{−1

3

[
α∗zz −

1

2
(α∗xx + α∗yy)

]
〈P2〉+

1

3
(α∗xx + α∗yy + α∗zz)

}
(1.41)

and

χ33 = N

{
2

3

[
α∗zz −

1

2
(α∗xx + α∗yy)

]
〈P2〉+

1

3
(α∗xx + α∗yy + α∗zz)

}
. (1.42)

For simplicity, assuming a one dimensional molecule, we have only one nonzero α∗zz.

Using 1 + χ = n2, the relationship between birefringence and 〈P2〉 can be expressed

16



as

n2
3 − n3

1 = χ33 − χ11 = Nα∗zz〈P2〉 . (1.43)

Second-order nonlinearity

In a similar way to the first-order susceptibility, the second-order nonlinear suscep-

tibility can be expressed as

χjkl = N〈β∗JKL〉jkl = Nβ∗JKL〈ajJakKalL〉 . (1.44)

For the one dimensional molecule we have only one nonzero β∗zzz. Then we have

χjkl = Nβ∗zzz〈ajzakzalz〉 . (1.45)

The nonzero tensor components in the material we are interested in are χ113 and

χ333. Finally, we have

χ113 = Nβ∗zzz〈a1za1za3z〉 =
N

2
β∗zzz〈cos θ − cos3 θ〉 (1.46)

and

χ333 = Nβ∗zzz〈a3za3za3z〉 = Nβ∗zzz〈cos3 θ〉 , (1.47)

which can be expressed in terms of the Legendre polynomials as

χ113 =
Nβ∗zzz

5
(〈P1〉 − 〈P3〉) (1.48)
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and

χ333 =
Nβ∗zzz

5
(2〈P3〉+ 3〈P1〉) . (1.49)

The Legendre polynomials can be constructed by using the recurrence relations in

the form

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1 , (1.50)

where x = cos θ.

Orientational distribution functions

The electro-optic coefficient r33 can be expressed in terms of the order parameter

〈cos3 θ〉. To determine the orientational average, we have to figure out the Gibbs

distribution function shown in Eq. 1.37. In that function, U is the potential energy

of the chromophore including intermolecular interactions of the chromophore and

interactions with the chromophore and the local poling field. Various models can be

found in Refs. [23, 28, 25, 26, 29] to describe the potential energy term. The approx-

imations generally made in considering the potential energy as U ≈ µf(0)Ep cos θ

by an oriented gas model (OGM) gives [24]

〈cosn θ〉 = Ln[µf(0)Ep/kT ] , (1.51)

where Ln are the Langevin functions, f(ω) a local-field correction, and Ep the electric
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poling field [24]. Then, we can write

〈cos θ〉 = L1(y) = coth y − 1

y
(1.52)

〈cos2 θ〉 = L2(y) = 1 +
2

y2
− 2

y
coth y (1.53)

〈cos3 θ〉 = L3(y) = (1 + 6y2) coth y − 3

y

(
1 +

2

y2

)
, (1.54)

where y = µf(0)Ep/kT . For µEp/kT ¿ 1Equation 1.54 can be approximated by

〈cos3 θ〉 = µf(0)Ep/5kT . (1.55)

Under the weak poling condition, that is, assuming that y is small, χ113 becomes

1/3 of χ333.

1.2.3 Polymer systems

The second order NLO properties originate from noncentrosymmetric alignment of

chromophores in poled polymer. To obtain device quality from NLO materials, a

NLO polymer should satisfy some conditions: high nonlinearity, high intrinsic tem-

poral stability in environments such as heat, oxygen, chemicals, light, and humidity

and low optical loss at communication wavelengths. However, there can be a trade-

off in that excessive nonlinearity may relinquish other advantages and vice versa.

In general, the polymeric materials are comprised of guest-host system, side-chain,

main-chain type, and crosslinked polymers from the point of view of the distribution

and bonding types of chromophores [1, 30, 31].
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Figure 1.2: Simplified schematics of chemical structures of (a) guest host, (b) side
chain, (c) main chain, and (d) crosslinked polymer system.
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Guest Host (GH) Unattached chromophores (guest) dissolved in a polymer host are

shown in Fig. 1.2(a). At high temperature, they can diffuse to the surface of the film

and evaporate to the air. High concentrations of guest lead to dipole-to-dipole aggre-

gation and phase-separate causing light scattering. The glass transition temperature

(Tg) of the polymer host decreases due to plasticization by the guest chromophore.

Tg is important in satisfying the device stability requirements for commercializa-

tion. Generally, GH-type NLO polymer with high glass transition temperature and

chromophore with large molecular mass increases long term stability.

Side Chain (SC) Better thermal stability can be obtained if the nonlinear chro-

mophore is chemically attached to the backbone as shown in Fig. 1.2(b). This type

of polymer has the advantage that a high nonlinear chromophore concentration can

be incorporated into the polymer system without aggregation, crystallization, or

phase separation. The relaxation of polar order might be expected to be substan-

tially slower than GH-type NLO polymer, because the motion of the chromophore

is hindered by its attachment to the polymer backbone. Mostly, the glass transi-

tion temperature of a SC-type NLO polymer is higher than that of GH-type NLO

polymer system containing the same concentration of chromophores.

Main Chain (MC) If the chromophore were to be chemically incorporated into the

polymer backbone as shown in Fig. 1.2(c), poled order relaxation can be expected

to be more restricted. The large segmental motions of the polymer backbone are

required for efficient poling, so poling may be more difficult for MC than for GH
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and SC-type NLO polymers. However, The relaxation of poled order is significantly

inhibited. Additionally, the mechanical properties are improved.

Crosslink (XL) Crosslinking reactions increase the long term temporal stability be-

low the glass transition temperature. Crosslinks are covalent bonds linking one

polymer chain to another as shown in Fig. 1.2(d). They have the characteristic

property of a thermosetting polymer that cures to a rigid form through the addition

of energy. Crosslinking can be formed by heat, pressure, chemical reaction, or ra-

diation. Once the material is crosslinked, it is generally difficult or even impossible

to repole.

1.2.4 Chromophore orientation techniques

The orientation of molecular dipoles in an electric field is necessary to break the

centrosymmetry and generate nonlinearity. The creation of macroscopic noncen-

trosymmetry is one of the important tasks in getting functionalized polymers for

second order NLO applications. There are a few techniques to achieve second order

nonlinearity in an amorphous polymer:

• Static field poling.

• Photo induced poling.

• All optical poling.

• Langmuir-Blodgett-Kuhn processing.
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The static poling technique takes advantage of the interaction between dipole

moments and the applied static field; e.g., corona poling, electrode contact poling,

photothermal poling, and electron beam poling. Photo-assisted and all optical pol-

ing utilize the cooperative effect of static and optical field and purely optical field,

respectively. In Langmuir-Blodgett-Kuhn processing, the polymers have hydrophilic

and hydrophobic properties and their forces are used to orient chromophores normal

to the film surface.

Corona and electrode contact poling setups are illustrated in Fig. 1.3(a) and

(b), respectively. The NLO polymer is heated to a temperature near the glass

transition temperature (Tg) and then a DC electric field is gradually applied to the

film, after which the sample is cooled down to room temperature while maintaining

the applied electric field. These techniques have some advantages and drawbacks.

Although corona poling allows one to apply a high poling field, it often leads to

dielectric damage of the thin film surface. The corona creates the surface charges

on the film surface, causing the dipoles to orient in the direction of the field. On

the other hand, electrode contact poling is limited by the applied voltage because

(a) (b)

V polymer
polymer

bottom electrode

metal electrode

TCO electrode

glass substrate

+

V
 +    +    +   +  + +  +   +    +    + 

Under nitrogen environment

+

Figure 1.3: Schematics of (a) Corona and (b) electrode contact poling.
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of dielectric breakdown.

Photothermal poling uses a focused laser beam to heat the polymer film lo-

cally to near the Tg under the external applied voltage [32]. It is useful to make a

periodical poling pattern which is necessary for quasi-phase matching second har-

monic generation (QPM SHG). Electron beam poling uses a monoenergetic electron

beam which allows constant current corona poling as the sample is charged with a

constant current [33]. The electrons decelerate in the sample and are trapped inside

and the dipoles are oriented by the field of the trapped electrons.

1.2.5 Applications of second-order nonlinear polymers

The second-order nonlinear polymer has been exploited in the fields of photonic

integrated circuits (PIC) such as the MZ-type electro-optic modulator [6, 7, 34, 35,

36], second harmonic generation [37], mode converter [38], resonators [39], optical

rectification, sensor, and so on. We discuss briefly the EO modulator and quasi

phase matching (QPM) SHG.

MZ EO modulator This waveguide device uses the principles of the Mach-Zehnder

interferometer [40]. One or both arms can be poled by using the electrode contact

poling method so that a relative phase difference between each light in the two arms

can be controlled by a voltage applied to the electrodes. Figure 1.4(a) shows a push-

pull type of MZ EO modulator which allows a reduction in the half-wave voltage

Vπ by half of the traditional Vπ [41]. The half-wave voltage of a traditional MZ EO
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modulator is defined by

Vπ =
λh

n3r33LΓ
, (1.56)

where λ is the wavelength, h the thickness of the layers, L is the length of the

electrode, and Γ is the confinement factor.

QPM SHG The second harmonic power will oscillate along the direction of the

poled waveguide structure because the poled polymer is not phase matched. One

way of overcoming the problem is to pole periodically so that the second harmonic

intensity interfere constructively as it propagates. The schematic of typical QPM

SHG is shown in Fig. 1.4(b). The NLO waveguide is periodically poled to have a

different χZZZ direction in each segment. This structure results in no decrease in the

second harmonic (SH) intensity because the guided SH wave interferes constructively

as it propagates. Ju et al. demonstrated QPM SHG with a side-chain polymer

waveguide whose normalized SHG efficiency shows 2.2% W−1cm−2 [37].
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Figure 1.4: Schematic of (a) Mach-Zehnder electro-optic modulator and (b) quasi
phase matching second harmonic generation.
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1.2.6 Characterization methods

There are various techniques for measuring LEO effects of NLOP thin films. Meth-

ods include Mach-Zehnder (MZ) interferometry [42, 43, 44], Fabry-Perot (FP) inter-

ferometry [45], attenuated total reflection (ATR) [46, 47, 48, 49], waveguide method

[50, 51], and two slit interference method [52]. One of the most popular measure-

ment techniques is a reflection method introduced by Teng and Man [13] (Teng-

Man) as well as by Schildkraut [14]. A transmission method was first mentioned

by Schildkraut [14, 53], and was later discussed in some detail by Lundquist, et al.

[54]. This method, which also measures a relative phase-shift, affords a somewhat

simpler alignment compared to the reflection method, but requires two transparent

electrodes. In almost all of these techniques, a modulated electric field is applied to

the sample as this allows for the use of lock-in techniques to improve the signal-to-

noise ratio. Jiang et al. presented an ATR technique which doesn’t require the use

of lock-in amp [49]. We discuss the Teng-Man reflection method and ATR in this

thesis.
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1.3 Convention

Almost all undergraduate physics texts, as well as engineering books at all levels,

employ the international system (SI) of units throughout. Here we adopt the SI

system as well. Regarding the notation for a plane wave, the one used in most

physics texts is employed. That is, the x̂-polarized electric field of the plane wave

propagating in the r̂-direction is expressed as

Ē(r, t) = Re{x̂Eoe
i(k0ñẑ−ωt)} , (1.57)

where k0 is the wave vector in free space and ñ is the complex index of refraction of

a medium. As a result, the complex index of refraction has the form of ñ = n + iκ

where the imaginary part κ is equal to or larger than 0.

To describe the circular polarization, the trajectory of the endpoint of the

electric field vector toward the propagating direction is considered at a fixed time t.5

For the right-handed circular polarization, the trajectory rotates counterclockwise

when viewed from the propagation direction as shown in Fig. 1.5. Using Jones

vector representations, the right-handed and left-handed circularly polarized (RCP

and LCP, respectively) light can be written as

RCP :




Ex

Ey


 = eiφ 1√

2




1

−i


 (1.58)

5Sometimes, the trajectory of the electric field is considered at a fixed position For a more
information, see [40]
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Figure 1.5: The trajectory of the electric field in the plane wave propagating in the
z-direction represents the right-handed circularly polarized (RCP) light.

and

LCP :




Ex

Ey


 = eiφ 1√

2




1

i


 , (1.59)

where φ is an arbitrary phase of the electric field.
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1.4 Scope of thesis

This thesis is separated into three principal parts: two parts for two characterization

methods and one for experimental results.

Chapter 2 discusses the analysis of Teng-Man measurements of the electro-

optic coefficients of poled polymer thin films. In this chapter, we provide new

closed-form expressions for analysis of Teng-Man data including absorption of both

the film and TCO layers. The analysis also applies to any uniaxial nonlinear thin

film with the c-axis perpendicular to the nonlinear film surface, such as poled poly-

mer thin films and z-cut LiNbO3 crystal. In general, the modulation of both the real

and imaginary parts of the complex refractive index under application of an electric

field depends on both the real and imaginary parts of the complex EO coefficient,

particularly inside the linear absorption band of the polymer [53]. Two models, both

allowing for absorption of the nonlinear polymer layer, are analyzed and compared:

a simple model that takes into account only the properties of the nonlinear polymer

layer without multiple reflections and a rigorous model accounting for properties

of the complete stratified layers of the test structure including multiple reflections.

In both models, analytic expressions that are linearly dependent on the real and

imaginary parts of the complex EO coefficient are presented so that standard linear

least squares data analysis can be performed. In the case of the simple model, we

obtain equations to characterize the imaginary part of the complex EO coefficients

that are somewhat different from those reported earlier [16, 53, 55] as well as an

identical equation to that usually used in the Teng-Man method for the real part
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[18] outside the absorption band of the polymer. The rigorous model has the same

fundamental starting point as that of Ref. [16], namely, the description of the total

reflectivity of the multilayer structure. But we provide explicit analytic expressions

for all derivatives involved along with a new compact formalism that allows a matrix

representation of the dependence of the real and imaginary parts of the complex EO

coefficient on the reflectivity and phase modulation. The rigorous model analysis

is used to show that simple model calculations, which do not include the effects of

multiple reflections, can, in some cases, either grossly underestimate or overestimate

the complex electro-optic coefficient. In addition, it is shown that the relative error

in using the simple model can undergo a large cyclic variation, an asymptotic behav-

ior, or an irregular FP effect with increasing film thickness depending on operating

wavelengths.

We examine the suitability of using thick z-cut LiNbO3 to validate a Teng-Man

setup for measuring EO coefficients of thin films. We use rigorous expressions for the

analysis of Teng-Man data that include the absorption of a transparent conducting

oxide (TCO) layer. We also examine the effect of the beam waist of a Gaussian beam

optics in the Teng-Man measurement to validate the use of plane wave analysis.

Chapter 3 discusses the attenuated total reflection method. We examine the

ATR method for the measurement of the EO coefficients of poled polymer thin films

in multilayer structures containing a transparent conducting oxide layer. A more

accurate determination of the film thickness can be achieved by considering a four-

layer waveguide structure containing TCO layer (air/film/TCO/substrate) instead

of the three-layer approximation to the waveguide structure (air/film/substrate).
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This treatment is also applied to the determination of, ∂N/∂n, the change of effec-

tive index N with respect to the EO-induced change in the refractive index n for

better estimation of EO coefficients. We provide closed-form expressions of ∂N/∂n

and ∂N/∂d based on the three-layer waveguide structure. The four-layer waveguide

model (WGM) analysis is compared to show that the three-layer waveguide model

analysis applied to a single mode NLO film can result in a large error in the de-

termination of EO coefficients. The relative error in r33 using both the three-layer

and four-layer waveguide models shows an asymptotic behavior with increasing film

thickness, while the error from the simple Teng-Man analysis shows a large cyclic

variation.

Chapter 4 discusses experimental results including the characterization of TCO

such as ITO and ZnO by using the ellipsometric analysis. Selected poled NLO

polymers are analyzed by the rigorous Teng-Man analysis and/or ATR method. We

show that the result from the ATR method based on multilayer structure containing

TCO layer is in a good agreement with that from the rigorous Teng-Man analysis.

AppendixA describes the mathematical expressions of the variation of propa-

gation constant β and H functions used in the rigorous Teng-Man analysis in details.

AppendixB presents MATLABTM codes for the calculation of the estimate of

the error resulting from the simple Teng-Man method. A free Java Teng-Man error

estimator software program is introduced.
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Chapter 2

Teng-Man Method

2.1 Introduction

2.1.1 Characterization methods

The EO effect can be determined by measuring the change of the dielectric constant

or index of refraction when a field is applied across the NLO sample of interest. As

we briefly discussed in Section 1.2.6, methods for measuring the linear electro-optic

(LEO) effect include free space or fiber-optic Mach-Zehnder (MZ) interferometry

[42, 43, 44], Fabry-Perot (FP) interferometry [45], attenuated total reflection (ATR)

[46, 47, 48, 49], waveguide method [50, 51], and two slit interference method [52].

One of the most popular measurement techniques is a reflection method introduced

by Teng and Man [13] (Teng-Man) as well as by Schildkraut [14]. The reflection

measurement is generally easier to make compared to techniques such as MZ in-

terferometry because it simply takes advantage of a relative phase-shift difference

between the s(TE)- and p(TM)- polarized waves of a single laser beam reflected

from the sample when a modulating voltage is applied across two parallel-plate

electrodes. A transmission method was first mentioned by Schildkraut [14, 53], and
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later discussed in some detail by Lundquist, et al. [54]

2.1.2 Teng-Man method

The EO properties of NLO films are often characterized using the Teng-Man reflec-

tion method because it is simple and quick [13, 14]. The vast majority of quoted

values of the electro-optic coefficient that are obtained from Teng-Man measure-

ments result from a simplified analysis of the data that assumes the transparent

conducting oxide (TCO) is perfectly transparent and the gold is perfectly reflective.

Consequently only the properties of the EO material [refractive indices (generally

anisotropic in poled films), EO coefficients, and angle of incidence] are taken into

account. However, it was realized that experimental error can result from ignoring

the reflection off the substrate/film interface and that an accurate determination of

the EO coefficient could be achieved only by a numerical calculation that applies

anisotropic Fresnel equations to the stratified layers containing the nonlinear poled

polymer [13, 14]. This requires a knowledge of the refractive index and thickness of

all the layers. In addition, the simple analysis is valid only when the absorption of

the film is negligible. Furthermore, Michelotti, et al. [15] reported that the simple

Teng-Man analysis can give unreliable measurements if the experimental setup is

operated in a spectral region where the TCO layer is absorbing, and suggested that

if it is only slightly absorbing it is still possible to evaluate the EO properties of the

polymer films with reasonable precision. Another disadvantage of the ellipsometric

method is the impossibility in determining the r13 and r33 EO tensor coefficients
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separately.

Shuto and Amano measured the EO coefficient of 0.5 mm thick z-cut LiNbO3

crystal for validation of the Teng-Man setup. Wang et al. claimed a precise Teng-

Man measurement by the cautious selection of near-infrared (NIR) In2O3 thin film

electrodes [56]. In Section 2.3, we evaluate the suitability of using thick LiNbO3 to

validate a Teng-Man setup for a thin film measurement.

The effect of electrochromism (variation of the imaginary part of the index

of refraction under application of an electric field) and the complex EO coefficient

were added in Ref. [53], followed by efforts by a few researchers to characterize

other nonlinear properties, such as the complex quadratic EO coefficient, based on

a simple analysis of Teng-Man data [55]. Levy, et al. [16] and Chollet, et al. [17]

presented both simple and rigorous expressions for estimation of the complex EO

coefficient. Numerical solutions to the rigorous expressions were obtained using the

simplex method [17]. They also pointed out that the modulated intensity at the

maximum of the optical bias curve and some of the modulation dependence on the

angle of incidence are attributed to absorption of the film and to multiple reflections,

respectively. Ignoring the multiple reflections inside the polymer film, Khanarian,

et al. [57] derived an approximate equation for the real part of the EO coefficient

that takes into account the effects of reflectivity modulation at the glass/polymer

and polymer/metal interfaces. Han and Wu [58] measured the modulated intensity

as a function of optical bias, optical polarization, and angle of incidence in an effort

to distinguish FP effects from EO phase modulation.
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2.1.3 Outline of this chapter

In this chapter, we provide new closed-form expressions for analysis of Teng-Man

data including absorption of both the film and TCO layers. The analysis also applies

to any uniaxial nonlinear thin film with the c-axis perpendicular to the nonlinear

film surface, such as thin z-cut LiNbO3. In the case of the simple model, we provide

equations to characterize the imaginary part of the complex EO coefficients that are

somewhat different from those reported earlier [16, 53, 55] as well as an identical

equation to that usually used in the Teng-Man method for the real part [18] outside

the absorption band of the polymer. We provide explicit analytic expressions for

all derivatives involved along with a new compact formalism that allows a matrix

representation of the dependence of the real and imaginary parts of the complex EO

coefficient on the reflectivity and phase modulation. The rigorous model analysis

is used to show that simple model calculation can either grossly underestimate or

overestimate the complex electro-optic coefficient. We also show the relative error

in using the simple model undergo a large cyclic variation, an asymptotic behavior,

or an irregular FP effect with increasing film thickness depending on operating

wavelength.

We discuss the estimate of error in the anisotropic case and the rigorous Teng-

Man analysis for thick films. We also examine the suitability of using thick z-cut

LiNbO3 to validate a Teng-Man setup for measuring EO coefficients of thin films.

We use rigorous expressions for the analysis of Teng-Man data that include the

absorption of both the NLO film and transparent conducting oxide (TCO) layers.
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Two types of analyses, one using simplified and the other using rigorous reflectance

expressions, based on the plane wave analysis are employed. These are referred to

as the simple and the rigorous model, respectively. We also examine the influence

of the beam waist of a Gaussian beam on Teng-Man measurements.
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2.2 Theory and analysis

2.2.1 Expression for variation of index of refraction

A poled organic thin film prepared by spin coating belongs to the point-group sym-

metry ∞mm (space group C∞v) [21] and has complex ordinary and extraordinary

indices of refraction, ño (= no+iκo) and ñe (= ne+iκe) , respectively. Two indepen-

dent complex electro-optic tensor elements r̃13 (= r13 + is13) and r̃33 (= r33 + is33)

determine the variations δño (= δno + iδκo) and δñe (= δne + iδκe) of the complex

refractive indices when an electric field V is applied to the film according to [53]

δñµ = −1

2
ñ3

µ(rµ3 + isµ3)E3 , (2.1)

where µ = 1 or 3 (n1 = no and n3 = ne ). For a parallel plate structure, E3 = V/d,

where V is the peak voltage of the AC signal applied to the sample and d is the

thickness of the film. Usually it is argued that the real part, δnµ , of δñµ depends

only on rµ3 and the imaginary part, κµ , depends only on sµ3 outside the polymer

absorption band under the assumptions that n À κ, nδκ À κδn, [53] and κδκ ¿

nδn.

Separation of Eq. 2.1 into real and imaginary parts gives

δnµ = −n3
µ

2

[(
1− 3

κ2
µ

n2
µ

)
rµ3 +

(
κ2

µ

n2
µ

− 3

)
κµ

nµ

sµ3

]
E3 (2.2)
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and

δκµ = −n3
µ

2

[(
1− 3

κ2
µ

n2
µ

)
sµ3 +

(
3− κ2

µ

n2
µ

)
κµ

nµ

rµ3

]
E3 . (2.3)

It can be seen that the change in both the real and imaginary parts of the refractive

index depends in general on both the real and imaginary parts of the electro-optic

coefficients. Even for a highly absorptive medium, at communication wavelengths

the extinction coefficient is small (10 dB/cm loss corresponds to an extinction co-

efficient κ = 0.000024), so κ/n ¿ 1 is a reasonable approximation. With these

considerations in mind, for communication wavelengths in the 1300-1600 nm range,

Eqs. 2.2 and 2.3 can be simplified to

δnµ = −n3
µ

2

(
rµ3 − 3

κµ

nµ

sµ3

)
E3 (2.4)

and

δκµ = −n3
µ

2

(
sµ3 + 3

κµ

nµ

rµ3

)
E3 . (2.5)

Outside the absorption band, we expect rµ À 3(κµ/nµ)sµ , which simplifies Eq. 2.4

to

δnµ = −1

2
n3

µrµ3E3 . (2.6)

Furthermore, still outside the absorption band, the assumption sµ À 3(κµ/nµ)rµ

reduces Eq. 2.5 to

δκµ = −n3
µ

2
sµ3E3 . (2.7)

We note that the conditions rµ À 3(κµ/nµ)sµ and sµ À 3(κµ/nµ)rµ are equivalent

39



to those in Ref. [53] and Eqs. 2.6 and 2.7 are valid outside the polymer absorption

band. Consequently, in this case δn and δκ depend only on r33 and s33, respectively.

Within the absorption band of the polymer, however, this is not true and Eq. 2.1

or, equivalently, Eqs. 2.2 and 2.3 should be used.

2.2.2 General expressions

Figure 2.1 is the schematic for the Teng-Man measurement setup. As shown in

the figure, 45 ◦ polarized light is incident at an angle on the multilayered sample

structure containing the nonlinear poled thin film. The polymer material is usu-

ally spin-coated on a glass substrate coated with TCO, commonly indium tin oxide

(ITO), and poled electrically to generate the second order nonlinearity. The first

reflection off the air-glass interface and subsequent beams resulting from reflection

of the first pass on its way out at the glass/air interface back into the polymer and

out again are blocked [13, 14, 53]. The remaining light reflected off the sample expe-

riences an additional controllable phase retardation introduced by a Soleil-Babinet

Compensator (SBC). The intensity of the light is detected after passing through

the analyzer using a lock-in amplifier. At each angle of incidence, two different

data sets, the optical bias curve Idc(Ω) and the modulated intensity Im(V, Ω) are

collected. The optical bias curve is the intensity profile obtained by varying the

retardation generated by the SBC with no applied voltage to the sample, while the

modulation data set is obtained by applying an AC voltage V sin(ωt) to the sample

and using a lock-in amplifier synced to the fundamental frequency of the applied
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Figure 2.1: Schematic of the experimental Teng-Man setup. L is laser, P polarizer,
A aperture, S slit, SBC Soleil-Babinet Compensator, and PD photodetector.

voltage to record the resulting modulation of Idc(Ω) for a given retardation. Idc(Ω)

can be expressed in terms of the complex reflection coefficients rs and rp of the s- and

p- polarized waves, the intensity of the incident laser Io, and the phase retardation

Ω [15, 17, 16].

Using Jones vector representation, the electric field at the photodetector can

be expressed by




Ex

Ey


 =

Eo

2




1 1

1 1







eiΩ 0

0 1







rs 0

0 −rp







1√
2

1√
2


 , (2.8)

where the first 2 × 2 matrix represents the crossed polarizer, the second one the

SBC, the third the reflectance from the sample, and the last 2×1 matrix the vector
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for 45 ◦ polarized light after the 45 ◦ polarizer. Note that the first 2 × 2 matrix

representation for the crossed polarizer doesn’t look crossed compared to the input

polarization. This is because the y-axis (horizontal) of the coordinate system is

flipped after the reflection. For the same reason, the sign of the rp is the minus in

the third matrix for the reflectance from the sample. The measured optical intensity,

I, is proportional to the square of the electric field, |Ē|2 = E2
x + E2

y . Varying the

optical bias Ω generates the optical bias curve, which is given by

Idc =
Io

4
|rse

iΩ − rp|2 = A + B sin2

(
Ψsp + Ω

2

)
, (2.9)

where

A =
Io

4

(|rs|2 − |rp|2
)
, B = Io|rs||rp| , (2.10)

rs = |rs|eiΨs , rp = |rp|eiΨp , (2.11)

and

Ψsp = Ψs −Ψp . (2.12)

A and B can be expressed in terms of the ellipsometric parameter tan Φ, where

rp

rs

= tan Φ exp(−iΨsp) , (2.13)

as follows,

A =
Io

4
|rs|2 (1− tan Φ)2 , B = Io|rs|2 tan Φ . (2.14)
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To first order in V , the modulated intensity Im(V, Ω) is obtained by differentiating

Eq. 2.9 to get

Im = δA + δB sin2

(
Ψsp + Ω

2

)
+

B

2
sin (Ψsp + Ω) δΨsp . (2.15)

Representative data curves for optical bias Idc and modulation Im are shown in

Fig. 2.2. We note in general that Im is not symmetric with respect to the horizontal

axis and the modulated intensities at points 1 and 2 are not maximum and minimum,

respectively. From Eq. 2.15, δΨsp can be extracted by measuring the modulated

intensities Im1 and Im2 at the two optical bias points corresponding to Ψsp + Ω =

π/2, 3π/2 as

δΨsp =
Im(π/2)− Im(3π/2)

2Ic

, (2.16)

where Ic = B/2. δB/B can be obtained from the modulated intensities Im3 and Im4

at the two bias points corresponding to Ψsp + Ω = 0, π according to

δB

B
=

Im(π)− Im(0)

2Ic

. (2.17)

Typically, in the Teng-Man method, Im is measured only at points 1 and 2 as a

function of voltage and the average of the difference in the slopes in the plot of Im

versus V is used in Eq. 2.16 to extract δΨsp. This verifies that the applied voltage

is low enough to stay in the linear regime, as required for the validity of Eq. 2.16.

Usually, Im is positive at point 1 and negative at point 2 or vice versa. But this
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Figure 2.2: The optical bias curve and modulated intensity obtained as a function
of SBC retardation setting x for a representative set of experimental data on a
film. Points 1, 2, 3, and 4 correspond to compensator settings such that Ψsp + Ω =
π/2, 3π/2, 0, and π, respectively.
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is not always the case so care must be taken to note the phase of the reading on

the lock-in amplifier, synced to the fundamental frequency of the applied voltage

V sin(ωt). A similar technique can be applied to obtain δB/B from data at points

3 and 4 using Eq. 2.17. To measure modulated intensities at only points 1 and 2 in

Fig. 2.2, an often employed quick measurement technique is to

(a) vary the compensator to determine the minimum Idc (point 3) and maximum

Idc (point 4)

(b) set the compensator to obtain the average of these two intensities to locate

point 1 and measure Im1

(c) dial the compensator through the maximum to the same dc average on the

other side to locate point 2 and measure Im2

(d) use Eq. 2.16 to determine δΨsp.

This can be expected to give as accurate a value for δΨsp as fitting a full mod-

ulation curve, provided multiple measurements are averaged. However, to measure

δB/B using Eq. 2.17 requires precisely locating the maximum and minimum in the

bias curve, but these are points where the slope of Idc versus Ω is zero. One can

show that for a small error ∆Ω in the compensator setting in locating points 3 and 4,

the relative error in δB/B from using Eq. 2.17 is −[δΨsp/δB/B]∆Ω. With moderate

reflectivity modulation and (δB/B)/δΨsp ≈ 1 (higher ratios are possible), and if the

error in determining the maximum Idc is only 1% corresponding to Ω ≈ 0.2, then the

relative error in determining δB/B is already 20%. Better accuracy can be obtained
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by fitting the full Idc versus Ω curve to reduce ∆Ω. After verifying voltage values to

be in the linear regime, we prefer to measure the full Im(V, Ω) curves [15, 55] as well

as Idc(Ω) as shown in Fig. 2.2 and then fit these data to Eqs. 2.16 and 2.17 to extract

A, B, Ψsp, δA, δB, and δΨsp. Acquiring the full modulation curve provides a visual

check for consistency as well as improved statistics on the extracted parameters.

Note that in fitting the optical bias curve we put Ψsp + Ω → cx + d, where x is the

SBC setting, and obtain c and d along with A and B from the fit. These are then

used in fitting Eq. 2.17 to extract δA, δB, and δΨsp. To facilitate relating these

parameters to the complex EO coefficients, we define a new complex parameter B̃

as

B̃ ≡ Iorsr
∗
p = BeiΨsp (2.18)

so that

δB̃

B̃
=

δB

B
+ iδΨsp =

δrs

rs

+

(
δrp

rp

)∗
. (2.19)

Thus, the modulated reflectivity and phase are just the real and imaginary parts,

respectively, of δB̃/B̃ . From Eq. 2.19, assuming r̃13 = γr̃33 ( γ is generally assumed

to be 1/3 for weak poling [1, 31]), and assuming no piezoelectric contribution and

making a Taylor expansion to first order in δño,e, the complex quantity δB̃/B̃ can

be written as a linear function of r33 and s33 in the form

δB̃

B̃
=

1

rs

∂rs

∂ño

δño +

(
1

rp

∂rp

∂ño

δño +
1

rp

∂rp

∂ñe

δñe

)∗
≡ Hrr33 + Hss33. (2.20)
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Separating into real and imaginary parts, we have




δΨsp

δB
B


 =




Im(Hr) Re(Hs)

Re(Hr) −Im(Hs)







r33

s33


 . (2.21)

We note in general that the ratio r13/r33 is not equal to δno/δne because of bire-

fringence and that both δΨsp and δB/B depend on both r33 and s33. Once δΨsp

and δB/B are determined experimentally at any single angle of incidence, Eq. 2.21

can be inverted to solve for r33 and s33, provided that Hr and Hs which determine

the 2 × 2 matrix are known. This matrix depends on the linear properties of the

multilayered structure and its form for the simple and rigorous models is discussed

in the next two sections.

2.2.3 Simple model

The simple model ignores the properties of the TCO layer and simplifies the multi-

layered structure of the sample to three layers, air/film/PEC(Perfect Electric Con-

ductor), as shown in Fig. 2.3(a). By also ignoring the reflectance at the air-film

interface, the reflection coefficients of the s- and p- waves can be expressed as

rs = −e2iβsd, rp = −e2iβpd , (2.22)

where the propagation constants of the s- and p- waves normal to the film surface

are defined by

βs = koñs cos(θ̃s), βp = koñp cos(θ̃p) , (2.23)
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where ko = 2π/λ is the wave vector in free space, ñs = ño, ñp is given in Eq.A.2, and

the complex propagation angles θ̃s and θ̃p inside the anisotropic nonlinear medium

are given in Eq. A.1. Inserting Eq. 2.22 into the general expression Eq. 2.9 gives the

optical bias curve. We introduce lower-case letters a, b, and ψsp instead of A, B,

and Ψsp to designate the simple model values. We emphasize the complex nature of

the propagation constants βs,p by writing βs ≡ βsr + iβsi and βp ≡ βpr + iβpi . Then

the phase retardation inside the film is given by

ψsp = 2(βsr − βpr)d , (2.24)

which is purely real. In this simple model, the coefficients a and b depend only on

the imaginary parts of the propagation constants, while ψsp depends only on the

real parts. From Eqs. 2.9-2.15 together with Eq. 2.24, we have

δψsp = 2(δβsr − δβpr)d (2.25)

and

δb/b = −2(δβsi + δβpi)d . (2.26)

Inserting Eq. 2.22 into the general expression Eq. 2.19, we have

δb̃

b̃
=

δb

b
+ iδψsp (2.27)

= 2id

[
∂βs

∂ño

δño −
(

∂βp

∂ño

δño +
∂βp

∂ñe

δñe

)∗]

≡ hrr33 + ihss33 ,
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Figure 2.3: Multilayered structures in a simple model (a) and a rigorous model (b).
For simplicity, subscripts s and p in the reflection coefficients are omitted in (b).

and separating into real and imaginary parts gives




δψsp

δb
b


 =




Im(hr) Re(hs)

Re(hr) −Im(hs)







r33

s33


 . (2.28)

The functions hr and hs are complex quantities given by

hr = iV

[(
koñ

3
o

ñe

√
ñ2

e −N2

)∗
γ − koñ

4
o√

ñ2
o −N2

γ +

(
koñoñeN

2

√
ñ2

e −N2

)∗]
(2.29)

and

hs = −iV

[
koñ

4
o√

ñ2
o −N2

γ +

(
koñ

3
o

ñe

√
ñ2

e −N2

)∗
γ +

(
koñoñeN

2

√
ñ2

e −N2

)∗]
, (2.30)
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where N = sin θ as defined in Eq.A.1 and we have used r13 = γr33 and s13 = γs33.

The functions hr and hs have nonzero real and imaginary parts inside the absorp-

tion band. Outside the absorption band, we make the approximations discussed

in Section 2.2.1 to compare with the formulas reported earlier [14, 16, 18, 53, 55].

Then, the 2× 2 matrix in Eq. 2.28 is diagonalized because the real parts of hr and

hs vanish, and we get

δψsp = −
(

n4
o√

n2
o −N2

− n3
o

ne

√
n2

e −N2

)
koγr33V +

noneN
2

√
n2

e −N2
kor33V

= Im(hr) · r33 (2.31)

and

δb

b
=

(
n4

o√
n2

o −N2
+

n3
o

ne

√
n2

e −N2

)
koγs33V +

noneN
2

√
n2

e −N2
kos33V

= −Im(hs) · s33 . (2.32)

For no ≈ ne ≡ n (isotropic) , Eqs. 2.31 and 2.32 further reduce to

δψsp =
n2N2

√
n2 −N2

(1− γ)kor33V = Im(hr) · r33 (2.33)

and

δb

b
=

(
2n4 − n2N2

√
n2 −N2

γ +
n2N2

√
n2 −N2

)
kos33V = −Im(hs) · s33 . (2.34)

Equations 2.31 and 2.33 are identical with those reported previously [14, 18], but

our Eqs. 2.32 and 2.34 describe the electrochromic effect somewhat differently from
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that reported in Refs. [16], [53], and [55]. In Refs. [53] and [55], the ellipsomet-

ric parameter tan Φ(= |rp/rs|) was used to calculate the electrochromic effect, but

δ|rs| = 0 was assumed. In Ref. [16], the variation of complex phase retardation

was introduced to estimate the electrochromic effect in the simple model, but their

formula for the electrochromic effect is equivalent to that in Refs. [53] and [55] where

δ|rs| = 0 is assumed.

2.2.4 Rigorous model

In this section, we use rigorous expressions for the s- and p- reflectance based on

multilayer stack reflectivity model (MSRM) [16, 17, 59]. In the case of a thin film

on a TCO-glass substrate, the first reflection off the glass is blocked from reaching

the detector [14], as is a second-pass beam resulting from reflection of the first

pass on its way out at the glass/air interface back into the polymer and out again.

This eliminates reflection fluctuations from the glass layer. Greater care is required

to block these beams at high and low angles of incidence, because the transverse

separation between reflections becomes narrow at these angles of incidence [60]. If

the glass is sufficiently thick, it is possible to block the gross multiple reflections

efficiently, i.e., the first reflection off the glass and the second, third, etc. passes

resulting from back-reflection off the glass/air interface as shown in Fig. 2.1, but it

is generally not possible to avoid the multiple reflections inside a thin polymer film.

These multiple reflections inside the film are accounted for in the rigorous model

but not in the simple model. Assuming that the incident light is a plane wave,
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the iteration of the Airy formula [61] gives the reflection coefficient in the whole

multilayered sample as shown in Fig. 2.3(b). As given in Refs. [16] and [17], the

resulting expressions for rs and rp have the form

r =
r23 + r̂34e

2iβ3d3

1 + r23r̂34e2iβ3d3
⇐ r̂34 =

r34 + r̂45e
2iβ4d4

1 + r34r̂45e2iβ4d4
⇐ r̂45 =

r45 + r56e
2iβ5d5

1 + r45r56e2iβ5d5
, (2.35)

where ⇐ represents a substitution and we have omitted the s- and p- subscripts to

prevent the notation from becoming unduly cumbersome. In Eq. 2.35 the s- or p-

propagation constant βj in each layer j is defined in Eq. 2.23 and the corresponding

reflection coefficient from layer j to k is given by

rij =
Zk − Zj

Zk + Zj

(2.36)

with the s- and p- wave impedances [62] of each layer given by

Zs =
1√

ñ2
o −N2

, Zp =
1

ño

√
1−

(
N

ñe

)2

. (2.37)

In principle, these reflection coefficients should be multiplied by two transmittances,

t12 and t21, at the air-glass interface [17], but in practice these terms do not con-

tribute to the calculation of δΨsp and δB/B in our analysis. We derive expressions

for the functions Hr and Hs that appear in Eq. 2.20. Performing the operations

described in Eq. 2.20 , we have

Hr = − V

2d4

[
γ

rs

∂rs

∂ño

ñ3
o + γ

(
1

rp

∂rp

∂ño

ñ3
o

)∗
+

(
1

rp

∂rp

∂ñe

ñ3
e

)∗]
(2.38)
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and

Hs = − V

2d4

[
γ

rs

∂rs

∂ño

ñ3
o − γ

(
1

rp

∂rp

∂ño

ñ3
o

)∗
−

(
1

rp

∂rp

∂ñe

ñ3
e

)∗]
. (2.39)

The detailed expressions for the function H that appear in Eqs. 2.38 and 2.39 are

given in Appendix C.

2.2.5 Data analysis

At a single angle and with knowledge of the linear parameters of the sample struc-

ture, the matrix equation shown in Eq. 2.21 can simply be inverted to solve for r33

and s33. Data at multiple angles can be analyzed by solving Eq. 2.21 for r33 and s33

at each angle and then calculating mean values for r33 and s33. Alternatively, for

experimental data at n angles of incidence, we can construct a 2n × 2 matrix that

is derived by stacking up Eq. 2.21 to form a large matrix equation




δΨsp(θ1)

...

δΨsp(θn)

δB/B(θ1)

...

δB/B(θn)




=




Im [Hr(θ1)] Re [Hs(θ1)]

...
...

Im [Hr(θn)] Re [Hs(θn)]

Re [Hr(θ1)] −Im [Hs(θ1)]

...
...

Re [Hr(θn)] −Im [Hs(θn)]







r33

s33


 ⇔ P = M · x. (2.40)

It is easy to calculate r33 and s33 simultaneously using several matrix decomposition

methods such as QR and singular value decomposition (SVD) to implement least

squares fitting [63]. Using QR decomposition, the matrix M can be decomposed
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into Q and R which are 2n× 2n orthogonal and 2n× 2 upper triangular matrices,

respectively and we define P̂ as

M · x = P ⇒ QR · x = P (QR decomposition)

⇒ R · x = QT P ≡ P̂ (by multiplying QT ) , (2.41)

where QT is the transpose matrix of Q that is identical to Q−1. Taking the 2 × 2

upper triangular matrix from R and the 2 × 1 upper matrix from P̂ allows one to

obtain x,

R · x = P̂ ⇒




R2×2

Rlow


 · x =




P2×1

Plow


 ⇒ x = R−1

2×2 · P2×1, (2.42)

where Rlow is the (2n − 2) × 2 null matrix and the magnitude of Plow represents

the goodness of least squares fitting. Because the linear parameters (including the

refractive index and thickness of the film) that determine the H functions have

experimental errors associated with their measurement, it is possible to tweak their

values within their experimental uncertainty range and recalculate Eqs. 2.40-2.42 to

attempt to improve the fit of r33 and s33. Reference [17] followed a more complicated

approach by finding numerical fits to the rigorous expressions using the simplex

method to fit the modulated intensities at three bias points as a function of angle.

The interdependent variations of complex refractive indices as shown in Eqs. 2.2

and 2.3 were not taken into account although it should be included for a highly

absorptive medium.
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2.2.6 Uncertainty and sensitivity

We can estimate the uncertainties in r33 and s33 which result from the uncertainties

in the parameters such as the index of refraction, thickness, δΨsp, and δB/B. From

Eq. 2.40, we have

x = M−1 · P , (2.43)

where x is a 2× 1 matrix and each matrix component (r33 and s33) is a function of

the indices of refraction, thicknesses, δΨsp, and δB/B. Then, the uncertainties in

r33 and s33 are expressed by

∆r33 =

√√√√
l∑

k=1

[(
∆ξk

∂r33

∂ξk

)2
]

+
2n∑

k=1

(
M−1

1,k∆Pk,1

)2
(2.44)

∆s33 =

√√√√
l∑

k=1

[(
∆ξk

∂s33

∂ξk

)2
]

+
2n∑

k=1

(
M−1

2,k∆Pk,1

)2
, (2.45)

where l is the number of uncertain variables and ξ represents the index of refraction,

extinction coefficient, or thickness. n is the number of angles of incidence and ∆P

is a 2n × 1 matrix representing the uncertainties in each experimental value. In

addition, we can define the sensitivities to r33 in each parameter as

Sξ =
∂r33

∂ξ
. (2.46)

55



2.2.7 Results

Error

We estimate the relative error that results from using the simple model for a number

of different cases. Assuming the rigorous model gives the correct value, the relative

error is defined by

Error =
rSM
33 − r33

r33

. (2.47)

For a given modulated phase and reflectivity, r33 and s33 from the rigorous model are

calculated from Eq. 2.21 together with Eqs. 2.38 and 2.39, while the simple model

values rSM
33 and sSM

33 are calculated from Eqs. 2.28-2.30. To evaluate the error we

equate the right hand sides of Eqs. 2.21 and 2.28 and rearrange to obtain

Error =
Im(hs)[Im(Hr)− Im(hr)] + Re(hs)[Re(Hr)− Re(hr)]

Im(hr)Im(hs) + Re(hr)Re(hs)

+
Im(hs)Re(Hs)− Re(hs)Im(Hs)

Im(hr)Im(hs) + Re(hr)Re(hs)

s33

r33

. (2.48)

The result depends on the ratio s33/r33, but not on the absolute magnitude of either

coefficient. Outside the absorption band of the polymer, Re(hr) = Re(hs) = 0 for

the simple model as discussed in Section 2.2.3.

Index-matched multilayer structure

As a first example, we consider the case of a sample structure with a thick gold

electrode where the index of the nonlinear film and the TCO are matched with the

glass substrate under the assumption of no electrochromic effect and no optical loss
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in the polymer or TCO layer. That is, n2 = n3 = n4 = 1.5 in the absence of an

applied voltage. One might think that the simple model should apply exactly in

this case, but the index matching condition is broken upon application of a voltage

leading to some reflectivity modulation, which is ignored in the simple model. Using

r23 = r34 = 0 and r̂45 = r45 (valid for gold thicker than ∼ 75 nm), the reflection

coefficient in Eq. 2.35 simplifies to

r = r45e
2iβ3d3e2iβ4d4 , (2.49)

and the f ’s and g’s in Eq.A.15 are

f q
234 = e2iβq3d3, f q

345 = e2iβq4d4, gq
345 = 1− (rq

45)
2e2iβq4d4, gq

345 = 1. (2.50)

Then, Hr in Eq. 2.38 can be expressed as

Hr ≡ −V n3
4

2d4

(K1 cos 2β4d4 − iK2 sin 2β4d4 + K3)− iV n3
4K4 , (2.51)

where

K1 =
[
1− (rs

45)
2
] γ

rs
45

∂rs
34

∂ño

+
[
1− (rp∗

45)
2
] (

γ

rp∗
45

∂rp
34

∂no

+
1

rp∗
45

∂rp
34

∂ñe

)
, (2.52)

K2 =
[
1 + (rs

45)
2
] γ

rs
45

∂rs
34

∂ño

− [
1 + (rp∗

45)
2
] (

γ

rp∗
45

∂rp
34

∂no

+
1

rp∗
45

∂rp
34

∂ne

)
, (2.53)

K3 =
γ

rs
45

∂rs
45

∂ño

+
γ

rp∗
45

∂rp∗
45

∂no

+
1

rp∗
45

∂rp∗
45

∂ñe

, (2.54)

K4 = γ
∂β4s

∂ño

− γ
∂β4p

∂no

− ∂β4p

∂ñe

. (2.55)
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and the derivatives in these expressions are given in Eqs.A.16-A.18. The first two

terms in Eq. 2.51 are due to modulation of the reflectivity at the TCO/polymer

interface and contribute oscillation as the thickness d4 of the polymer film changes,

while the third term is due to modulation of the reflectivity of the polymer-gold

interface and contributes an offset. The terms involving the complex quantities

K1, K2, and K3 are inversely proportional to the film thickness, but the last term

involving the real quantity K4 is independent of film thickness and equal to hr in

the simple model shown in Eq. (24). With s33 = 0, the error expression Eq. (33)

takes the form

Error =
1

2d4K4

[Im(K1) cos 2β4d4 − Re(K2) sin 2β4d4 + Im(K3)] . (2.56)

The error percentage is plotted as a function of film thickness in Fig. 2.4. This

calculation was obtained by using MATLABTM codes as given in AppendixB.1. It

is notable that the error oscillates from overestimation to underestimation and the

envelope decreases with increasing thickness even in the index-matched case.
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Figure 2.4: Error percentage plot for varying film thickness when the refractive
indices of film and TCO are matched with glass (n = 1.5) at 1.3 µm wavelength.
The positive and negative envelopes are proportional to ±1/d4 with a negative offset.
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Isotropic case

As additional examples, we consider the relative error for different refractive

index and thickness combinations of the polymer film for selected values of complex

index and thickness of ITO at four wavelengths, 0.8, 1, 1.3, and 1.55 µm and the

ratio s33/r33 is assumed to be 1 and 2 at 0.8 µm, and to be 0.1 at wavelengths 1, 1.3,

and 1.55 µm for the simulation. The complex index of refraction of ITO measured

by ellipsometry and the complex index of refraction of a representative doped NLO

polymer film are shown in Fig. 2.5. The optical properties of ITO are strongly

dependent on the manufacturing process so there are wide variations in commercial

ITO properties. Free carrier absorption is usually noticeable in the near infrared

range, whereas interband transitions dominate in the visible range [64]. The gold

metal layer is assumed to be thicker than ∼75 nm, because we have found that for

thicknesses greater than this the thickness of the gold layer can be ignored because

no light is reflected back from the gold/air interface.
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Figure 2.5: Optical properties (n + iκ) of (solid) a representative ITO (Abrisar)
measured by ellipsometry and (dashed) a representative polymer film selected for
the simulation. (real part : black, imaginary part : red).
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Figure 2.6: Error plots by varying the thickness of the film for fixed indices of
refraction of ITO and the film and two thicknesses of ITO, 100 nm (a-d) and 50 nm
(e-h) at various wavelengths and 45 ◦ angle of incidence under assumption of γ =
1/3. For plots (a) and (e), s33/r33 = 1 (black solid), and s33/r33 = 2 (red dashed).
For the wavelengths other than 0.8 µm, values of s33/r33 between 0 and 0.1 produce
curves that are indistinguishable on this scale. For (a) and (e), the errors approach
-107% and -110%, respectively. For (b), (f), (c), (g), (d), and (h), the error extremes
are -18% to 12%, -15% to 10%, -86% to 38%, -40% to 25%, -80% to 350%, and -37%
to 63%, respectively.
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Figure 2.6 shows the error plots as a function of thickness of the polymer for

polymer indices of refraction shown in Fig. 2.5 (ignoring birefringence). Noteworthy

is that for a given refractive index, the error cycles from positive to negative (over-

estimation to underestimation) as a function of film thickness when the loss of the

film is negligible as shown in Figs. 2.6(b)-2.6(d) and 2.6(f)-2.6(h). This is so because

increasing the thickness causes a periodic phase retardation. The error extremes also

tend to increase as the wavelength increases because the ITO becomes more reflec-

tive, which enhances FP effects inside the polymer layer. Thicker ITO also tends to

increase the reflectivity. When the operating wavelength is in the absorption band

of the polymer film as shown in Figs. 2.6(a) and 2.6(e), the error initially fluctuates

irregularly when the film is thin and finally converges to a constant negative value

as the film thickness increases. This is so because propagation loss in the film has a

dual effect of reducing multiple reflections as well as reducing the relative amount

of phase modulation from the polymer bulk compared to the phase modulation of

the light reflected from the ITO/polymer interface, which is not accounted for in

the simple model. Within the absorption band, a thick film results in a constant

error, but the correct value is not predictable without the rigorous analysis.
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and s33/r33 = 0.1 with thickness of ITO = 100 nm, 45 ◦ angle of incidence, and
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thickness of film irrespective of index of refraction of film, respectively.

64



20 30 40 50 60 70

-200

-100

0

100

200

300

400

20 30 40 50 60 70

20 30 40 50 60 70

20 30 40 50 60 70

-200

-100

0

100

200

300

400

0.5 1 1.5
0

1

2

0.5 1 1.5
0

1

2

 λ = 0.8 µm 
 λ = 1.0 µm
 λ = 1.3 µm
 λ = 1.55 µm
 Correct r

33

 λ = 0.8 µm
 λ = 1.0 µm
 λ = 1.3 µm
 λ = 1.55 µm
 Correct r

33

r 33
 b

y 
th

e 
Si

m
pl

e 
m

od
el

 (p
m

/V
)

Angle of incidence (degree)

λ

ITO

(b)

 

 Angle of incidence (degree)

r 33
 b

y 
th

e 
Si

m
pl

e 
m

od
el

 (p
m

/V
)

 

λ

(a)

n
ITO

ITO

n
ITO

Figure 2.8: EO coefficients r33 calculated by the simple model at various wave-
lengths and angles of incidence using thickness of film and ITO, 1.4 µm and 100 nm,
respectively. EO coefficient r33 = 100 pm/V was used for the simulation. The ratios
s33/r33 are 2 at 0.8 µm and 0.1 µm at the other wavelength. Insets in (a) and (b)
show the optical properties of ITO selected for the simulation. The crossover points
of n and κ of ITO are around 1.54 and 1.92 µm in (a) and (b), respectively.

The error in using the simple model versus the film thickness shows qualita-

tively similar behavior irrespective of the index of refraction of the film as shown in

Figs. 2.7(a) and (b). We also note, contrary to earlier suggestions [16, 57], that the

error from using the simple model is not in general reduced by using film thicknesses

on the order of a wavelength or less.

Figure 2.8 shows simple model r33 values as a function of angle of incidence for

two different ITO samples where the ITO for Fig. 2.8(b) is less reflective than for

Fig. 2.8(a). In Fig. 2.8(a), most EO coefficients calculated by the simple model with

a varying angle of incidence are far away from the correct r33. Note that although the

simple model EO coefficient values seem to be flat at 1.3 µm for angles of incidence

between 30 ◦and 60 ◦, they are nevertheless overestimated by about 50%. Thus,
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obtaining nearly constant simple model r33 values as a function of angle of incidence

does not guarantee that the value is correct. When the ITO is less absorptive as

shown in the inset of Fig. 2.8(b), the correct r33 is approached for wavelengths of 1

and 1.3 µm because these wavelengths are in a spectral region where both polymer

and ITO are more transparent.

In Figs. 2.9(a) and 2.9(b), the simulated δΨsp and δB/B are plotted at wave-

lengths 1.3 and 1.55 µm using the rigorous model. We notice that the δΨsp’s are

quite different from those of the simple Teng-Man method [53, 55]. Also, δB/B

at a wavelength of 1.55 µm passes through 0 at several angles of incidence. Thus,

measuring δB/B = 0 at a fixed angle of incidence does not mean that there is no

electrochromic effect, contrary to the suggestion in Ref. [16]. We observe that δΨsp

and δB/B fluctuate more at 1.55 µm than at 1.3 µm because of the more reflective

ITO.
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Figure 2.9: (a) δΨsp and (b) δB/B versus angle of incidence at wavelengths 1.3 and
1.55 µm. The ratio s33/r33 = 0.1 and film thickness = 1.4 µm were used at both
wavelengths for the ITO properties shown in Fig. 2.5.
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Anisotropic case

Poled polymer thin film is generally anisotropic as discussed in Section 1.2.1. In

this case, the error is somewhat different from that in the isotropic case. Figure 2.10

shows error percentages with different birefringence, 0, 0.03, 0.06, and 0.09 at 1.3 µm

wavelength. The error profiles look quite similar with one another, but we notice that

there can be a drastic change in error percentage by an introduction of birefringence

when the film thickness is in the sharp edge of the error curves (steep slope in

curves).

In an isotropic case, we have shown that the estimate of error can oscillate

from overestimation to underestimation and the envelope of the error can converge

with increasing thickness. However, in an anisotropic case, the estimate of error
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shows a beating behavior with increasing thickness as shown in Fig. 2.11.

Thick films

EO polymer films can be used in optical rectification and electro-optic sensing to

generate and detect terahertz (THz) radiation, respectively. The THz amplitude

obtained from the polymer increases with the film thickness [65]. When the film is

thick, the small change of angle of incidence can make a large phase change, which

results in large variation of δΨsp with a varying angle of incidence. Figure 2.12 shows

representative δΨsp’s with three different film thicknesses at wavelength 1.3 µm. The

δΨsp with 1 µm thick film is smooth, whereas that with 50 µm has many oscillations

throughout the range of angles of incidence. The oscillations become dense as the
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Figure 2.11: Representative error percentage in anisotropic case at 1.3 µm wave-
length. The error shows a beating behavior unlike asymptotic one as shown in the
isotropic case.
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Figure 2.12: Representative δΨsp with three different film thicknesses at 1.3 µm
wavelength. Red, green, and blue lines are for the film thickness of 1, 10, 50 µm,
respectively.

angle of incidence approaches 90 ◦, because the slight change of angle of incidence

make a large phase retardation with increasing angle of incidence. For the rigorous

Teng-Man analysis, multi-angle Teng-Man data is necessary for a better estimation

of the EO coefficient. Therefore, a large number of data points are needed for the

fit of δΨsp. Thick films make the rigorous Teng-Man analysis difficult.
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be considered as a single interface.

2.3 Thick z-cut LiNbO3 crystal for validation of Teng-Man method

2.3.1 Rigorous analysis

As stated in Section 2.1, Shuto and Amano measured EO coefficients of a 0.5 mm

thick z-cut LiNbO3 crystal using the simple Teng-Man method and found agreement

with standard values [18]. In addition, they also presented a mathematical expres-

sion for r33 that includes the effect of birefringence. For this reason, z-cut LiNbO3

has often been adopted as a standard to verify the Teng-Man method. Here we

examine the suitability of using z-cut LiNbO3 to validate a Teng-Man setup for

measuring EO coefficient of thin films [66].

Using Smith’s technique [60, 67], the air/TCO/LiNbO3 interface can be re-

duced to a single virtual interface characterized by reflection and transmission co-

efficients rf , rb, tf , and tb in the forward and backward directions, as shown in

Fig. 2.13. The advantage of this technique is to be able to isolate any single or mul-
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tilayer combination. Then, as usual, the total reflection coefficient at the sample is

represented by the infinite sum

r = rf + tf tbr34e
2iβ3d3 + tf tbrbr

2
34e

4iβ3d3 + · · · , (2.57)

where r34 and β3 are given in Eq. 2.36 and in Eqs.A.3 and A.4, respectively. The

reflection and transmission coefficients at the virtual interface are defined as

rf =
r12 + r23e

2iβ2d2

1 + r12r23e2iβ2d2
, (2.58)

rb =
r21 + r32e

2iβ2d2

1 + r21r32e2iβ2d2
, (2.59)

tf =
t12t23e

iβ2d2

1 + r12r23e2iβ2d2
, (2.60)

tb =
t21t32e

iβ2d2

1 + r21r32e2iβ2d2
. (2.61)

If the beam size is focused by a lens or narrowed by an aperture, the first term

and the multiple reflection terms in Eq. 2.57 can be blocked by a slit as shown in

Fig. 2.13, so only the second term contributes and the reflectance is

r = tf tbr34e
2iβ3d3 . (2.62)

Using this reflectance and Eq. 2.19, the imaginary part of δB̃/B̃, that is, δΨsp is

given by

δΨsp = Im

(
δB̃

B̃

)
= Im

(
δC

C

)
+ 2(δβ3s − δβ3p)d3. (2.63)

where C = tsf t
s
br

s
34(t

p
f t

p
br

p
34)

∗. Note that the last term in the Eq. 2.63 is identical
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Figure 2.14: Solid and dashed lines are the ratios of |Im(δC/C)| to |2(δβ3s−δβ3p)d3|
when the LiNbO3 is 0.5 mm and 1 µm thick, respectively.

to the simple model expression as given in Eq. 2.25. This means that the simple

Teng-Man analysis works only if δC/C is negligible compared to 2(δβ3s − δβ3p)d3.

2.3.2 Results

It turned out that it is difficult to show in general whether Im(δC/C) or 2(δβ3s −

δβ3p)d3 is dominant. So we pick a particular example and calculate Im(δC/C) and

2(δβ3s− δβ3p)d3 for a selected index of refraction of TCO to see if the simple Teng-

Man analysis works.
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Figure 2.14 shows the ratio of |Im(δC/C)| to |2(δβ3s − δβ3p)d3| when the

LiNbO3 is 0.5 mm and 1 µm thick, respectively. We note that in the case of thick

LiNbO3, Im(δC/C) is negligible compared to 2(δβ3s−δβ3p)d3, which means that the

simple Teng-Man method works well. When the LiNbO3 is only 1 µm thick (although

this is not the real case), the ratio is still much less than 1. However, it doesn’t

mean that the simple Teng-Man method can be applied to the thin NLO film. We

are reminded that we only included the second reflection term in Eq. 2.57 for this

calculation, but for the thin LiNbO3 the higher order reflections must be included.

In other words, as long as only the second reflection term can be detected without

any interference with the neighboring reflections, the simple Teng-Man method will

work well even in the case of thin LiNbO3 film, but in practice, these neighboring

reflections cannot be blocked.

We found that the modulation of transmission at the virtual interface and of

the reflection at the electrode are small compared to that resulting from propagation

through the thick LiNbO3 layer. Equation 2.63 can be approximately reduced to

Im

(
δB̃

B̃

)
≈ 2(δβ3s − δβ3p)d3. (2.64)

If the input laser beam size is large compared to the thickness of LiNbO3, then it

is impossible to separate each reflection to detect the second reflection only. In this

case, the multiple reflections are similar to those of a thin film so the rigorous model

must be applied. However, the reflectance then fluctuates rapidly as a function of

incident angle because the thickness of the LiNbO3 is much larger than the operating
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wavelength, which makes using the rigorous analysis unless data can be taken at a

very fine angular resolution.
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2.4 Gaussian beam optics

2.4.1 Theory

Both the simple and rigorous models assume an infinite plane wave, but the actual

experimental setup uses a laser with a finite Gaussian beam profile. For a Gaussian

beam analysis, the single virtual layer, air/TCO/NLO film as shown in Fig. 2.13 is

considered again [66]. The electric field of the incident beam has the transversal

dependence

Ei(r, z) = Eo
wo

w(z)
exp

( −r2

w2(z)

)
exp

(
−ikz − ik

r2

2R(z)
+ iζ(z)

)
, (2.65)

where r = x2 + y2 and wo is the width of the beam waist. The variation of the spot

size is given by

w(z) = wo

√
1 +

(
z

zo

)2

, (2.66)

where

zo =
πw2

o

λ
, (2.67)

which is called the Rayleigh range. R(z) is the radius of curvature of the wavefronts

comprising the beam. Its value as a function of position is

R(z) = z

[
1 +

(zo

z

)2
]

. (2.68)

Assuming that the beam waist is located at z = 0 of the virtual layer interface as
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Figure 2.15: Simplified multilayer structure using a virtual interface.

shown in Fig. 2.15, the total electric field of the reflected light is represented by the

infinite sum

Et(x, y) = Eorf exp

(−(x2 + y2)

w2
o

)

+ Eo

∞∑
p=1

Ap
wo

w(p)
exp (−ipkoβ) exp

(
−x2 + (y − p∆y)2

w(p)2

)
(2.69)

exp

[
i arctan

(
pβ

zo

)]
exp

[
−i

π

λ

x2 + (y −∆y)2

pβ + z2
o

pβ

]
,

where Ap = tf tbr
p−1
b rp

34 and β = 2n2d2

√
n2

2 −N2.

2.4.2 Results

When the beam waist is small compared to the thickness of the sample and all

reflections are collected at the detector (we observed that the first two terms are

dominant in Eq. 2.57), the reflectance and its phase are quite different from those

of the plane wave analysis. As one might expect, the reflectance of the Gaussian

beam converges to that predicted by the infinite plane wave analysis as the beam

76



0 5 10 15 20
0.0

0.2

0.4

0.6
 R

s

 R
p

 

 

R
ef

le
ct

an
ce

Beam width ( m)

Figure 2.16: Calculated reflectances of the s(red)- and p(blue)- wave of a Gaussian
beam versus beam width at 45 ◦ angle of incidence.

waist increases. When the beam waist is less than the thickness of the NLO film,

there are severe deviations of the optical bias curve and modulated intensity from a

plane wave analysis. Figure 2.16 shows calculated reflectances of the s- and p- wave

of a Gaussian beam as a function of beam waist at a 45 ◦ angle of incidence. The

refractive indices, no, ne, and thickness of NLO film we used in Fig. 2.16 are 1.6,

1.65, and 2 µm, respectively. We also observed that reflectance deviations at low

beam waist increase with the angle of incidence from a low angle to 45 ◦ because the

transverse separations between reflected beams also increase.
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The required beam waist is recommended to be larger than at least ∼10 times

the thickness of the film so that the measurement should not be affected by a focused

Gaussian beam causing deviations from the plane wave analysis.

As stated above, in the case of a thick sample such as LiNbO3 and a glass

substrate in a Teng-Man sample, the beam should be narrow enough to resolve the

second reflection. The large beam waist generates rapid reflectance fluctuations with

angle because of the large thickness to wavelength ratio. In our setup, an aperture

was used in front of the sample to make a small beam size while maintaining beam

divergence as well as a large beam waist and blocking unnecessary reflections as

shown in Fig. 2.13. When we used a lens with a 10 cm focal length instead of

an aperture, the beam waist was 24 µm which is still large compared to the film

thickness. In this case, we needed another lens after the sample because the reflected

beam diverged too much before reaching the detector.
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Chapter 3

Attenuated Total Reflection Method

3.1 Introduction

3.1.1 Prism coupling technique

We have discussed both the reflection and transmission of light in a multilayered

structure for the rigorous Teng-Man analysis. In addition, a multilayered structure

can support confined electromagnetic wave propagation for the proper refractive

index relationships [68, 69]. These modes of wave propagation are called guided

modes and the structures that support guided waves are called waveguides. For

many years, guided waves in integrated optics have led to numerous new appli-

cations in the laser and optical communication fields [70]. In earlier experiments,

coupling light into waveguides had been studied when the light was incident to the

edge of the waveguide [71]. This method was usually limited by multimode excita-

tion and excessive scattering at the edge of the junction. A grating on the waveguide

and tapered film light wave coupler are also means for coupling light [72, 73]. The

prism coupling technique has been widely used for evaluating the propagation char-

acteristics of waveguides as well as for coupling light in and out [74, 75, 76]. It
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Figure 3.1: The prism coupling technique for coupling light in and out.

makes use of a high-refractive-index prism placed in close proximity to a waveguide

as shown in Fig. 3.1. The laser light is incident at a certain angle in order to have a

total reflection at the prism/air interface, and then an evanescent wave is generated

in the air gap. When its wave vector matches with one of the propagation constants

of the waveguide modes, the evanescent field is coupled, so called optical tunneling,

into the waveguide and the reflected light off the prism/air interface is drastically

attenuated. A practical application of the prism coupling technique is characteri-

zation of the optical properties of thin film, bulk material and optical waveguide.

These properties include the anisotropic index of refraction, the thickness, and the

propagation loss.

3.1.2 ATR for EO measurement

ATR is another method for EO measurement [46, 47, 77]. For sample preparation,

the NLO polymer can be coated directly on a metal-coated prism [77] or onto a free-

standing substrate which is then pressed against the prism using index-matching

fluid [46]. When an EO sample is designed for Teng-Man measurement, it is usu-

ally not appropriate to apply the ATR method directly because the metal electrode
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layer, normally Au, can be too thick for the light to be coupled into the NLO film

layer. However, simply taking the metal electrode off the Teng-Man sample makes

it feasible to use the ATR method with a metal-coated high index prism [48]. It

enables measurement of r13 and r33 separately without an assumption for the ratio

of r13 to r33 as required in the Teng-Man method. In addition, the anisotropic in-

dices of refraction (no and ne) and the thickness of the film can be determined in

the ATR measurement when the thin film waveguide supports two or more prop-

agation modes. However, the film thickness estimated from the simple calculation

by ignoring the TCO layer may be quite different from the actual one.

The refractive indices are crucial for the determination of EO coefficients. The

film thickness is particularly important because the calculation of EO coefficients is

directly proportional to the thickness. However, the film thickness estimated from

the simple calculation by ignoring the TCO layer may be quite different from the

actual one. A more accurate determination of the film thickness can be achieved by

considering a multilayer waveguide structure instead of the three-layer approxima-

tion to the waveguide structure air/film/glass. This treatment is also applied to the

determination of ∂N/∂n, the change of the effective index N with respect to the

EO-induced change in refractive indices, for better estimation of EO coefficients.

3.1.3 Outline of the chapter

In this chapter, we re-evaluate the ATR method for the measurement of the EO

coefficients of poled polymer thin films based on multilayer structure containing a
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transparent conducting oxide layer. We review planar waveguide theory in an asym-

metric anisotropic three-layer or multilayer waveguide structure and derive closed-

form expressions of ∂N/∂n and ∂N/∂d from the three-layer waveguide structure.

A more accurate determination of the film thickness can be achieved by consid-

ering a multilayer waveguide structure containing TCO layer (glass/TCO/film/air)

instead of a three-layer approximation to the waveguide structure (glass/film/air)

[78]. This treatment is also applied to the determination of ∂N/∂n, the change of

effective index N with respect to the EO-induced change in the refractive index

n for better estimation of EO coefficients. We present mathematical formulations

for the ATR analysis based on the multilayer structures. The four-layer waveguide

model (WGM) analysis is compared with the three-layer waveguide model to show

that the three-layer waveguide model analysis applied to a single mode NLO film

can result in a large error in the determination of the EO coefficients. The relative

error in r33 using both the three-layer and four-layer waveguide models shows an

asymptotic behavior with increasing film thickness, while the error from the simple

Teng-Man analysis shows a large cyclic variation. We also discuss the accuracy of

∂N/∂n at higher order modes.
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3.2 Theory and analysis

3.2.1 Principle of ATR

As shown in Fig. 3.2, a sample consisting an NLO film spun on TCO-coated glass

substrate is pressed against the bottom of the high-index prism by the coupling

head which is controlled by pneumatic pressure. In reality, the air gap is not uniform

because the sample is bent as illustrated in the small inset of Fig. 3.2. Assuming that

the air gap is uniform, we can apply the Fresnel equation to simulate the reflection

coefficient. The s- or p- polarized light is incident to the prism and the light reflected

from the prism/air interface makes an evanescent wave in the air gap between the

prism and the NLO film when the internal angle θp is equal to or larger than the

critical angle for total internal reflection. The evanescent wave is coupled into a

slab waveguide (NLO film) and travels along the waveguide only at certain angles

of incidence which satisfy the guided mode condition. The intensity reflected from

the prism/air interface at these incident angles drastically drops. One can estimate

the anisotropic indices of refraction and the thickness of the film from the angles of

incidence giving rise to each pair of guided modes.
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Figure 3.2: Schematic of the experimental ATR setup.
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The intensities of multilayer stack reflectivity (MSR) Rdc are collected at dis-

cretely varying angles of incidence. The modulated data set Rm is also obtained

by applying an AC voltage V sin ωt to the sample and using a lock-in amplifier to

record the modulation of Rdc for a given angle of incidence. Rdc can be expressed

as

Rdc(θi, no, ne, df ) = IoTap(θi)R(θi, no, ne, df )Tpa(θo), (3.1)

where Io is the incident intensity and Tap, Tpa, and R are the transmissivities at the

entrance air/prism and exit prism/air interfaces and reflectivity at the prism/metal

interface including the air gap and multilayered sample structure. When a DC volt-

age V is applied to the sample, a small change in the refractive index and thickness

induced by a DC voltage V generates a slightly different MSR curve Rdc(V ).

We define N = np sin θp where np is the refractive index of the prism. The

relationships between N and θi,o are given by

sin θi = N cos θ1 −
√

n2
p −N2 sin θ1 , (3.2)

sin θo = N cos θ2 −
√

n2
p −N2 sin θ2 . (3.3)
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We assume that the new MSR curve Rdc(V ) is shifted slightly in N from

Rdc(V = 0) as shown in Fig. 3.3. Then, by expanding to 1st order, we have

Rs
m =

∂Rs
dc

∂V
δV =

∂Rs
dc

∂N s

∂N s

∂no

δno +
∂Rs

dc

∂N s

∂N s

∂df

δdf , (3.4)

Rp
m =

∂Rp
dc

∂V
δV =

∂Rp
dc

∂Np

∂Np

∂no

δno +
∂Rp

dc

∂Np

∂Np

∂ne

δne +
∂Rp

dc

∂Np

∂Np

∂df

δdf , (3.5)

where Rs
dc and Rp

dc are MSR curves and Rs
m and Rp

m are modulated reflectivities for

the TE and TM cases, respectively. The piezoelectric coefficient p is defined by

δdf = dfpE3 . (3.6)

Assuming no piezoelectric effect, that is, δdf = 0, we can write

Rs
m =

∂Rs
dc

∂N s

∂N s

∂no

δno , (3.7)

Rp
m =

∂Rp
dc

∂Np

∂Np

∂no

δno +
∂Rp

dc

∂Np

∂Np

∂ne

δne . (3.8)

Using Eqs. 2.6, 3.7, and 3.8, the linear electro-optic coefficients are

r13 = − Rs
m

∂Rs
dc

∂Ns
∂Ns

∂no

· 2df

n3
oV

, (3.9)

r33 = −
Rp

m +
∂Rp

dc

∂Np
∂Np

∂no

1
2
n3

or13
V
df

∂Rp
dc

∂Np
∂Np

∂ne

· 2df

n3
eV

. (3.10)

Rs,p
m is obtained from a lock-in amplifier and ∂Rs,p

dc /∂N is simply the derivative of

the MSR curve Rs,p
dc . The refractive indices no and ne, and the thickness df can be
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calculated from a pair of reflectivity dips in Rs,p
dc curves, as discussed in the next

section. The derivatives ∂N s/∂no, ∂Np/∂no, and ∂Np/∂ne can be calculated from

mode equations which will also be treated in the following sections.

3.2.2 Asymmetric and anisotropic slab waveguides

Three-layer slab waveguide

The simplest optical waveguides are dielectric slabs which consist of a thin dielec-

tric layer, called the guiding layer or the core, sandwiched between two semi-infinite

bounding media (cladding layer). The index of refraction of the guiding layer must

be greater than those of the cladding layer to guide the light inside the core. Most

textbooks on photonics treat a symmetric slab waveguide first because it is the sim-

plest form as a three-layer waveguide. Here we start with a three-layer asymmetric

slab waveguide containing an anisotropic NLO film layer as shown in Fig. 3.4 because

it is useful for the actual sample structure we are interested in [69, 70].

From Maxwell’s equations, two of the most important results can be obtained

[79]: the wave equations and the existence of electromagnetic waves that are solu-

x

y

z0

-df

1: Top cladding : n1

3: Bottom cladding : n3

2: Core layer (NLO film): no, ne k
2

k
2x

k
2z

q

Figure 3.4: Schematic of the three-layer slab waveguide.
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tions to them. Assuming a homogeneous and nonmagnetic medium, we have the

wave equation in the form

∇2Ē− µε
∂2Ē

∂t2
= 0, ∇2H̄− µε

∂2H̄

∂t2
= 0 , (3.11)

where ε is a tensor of rank 2 in the form




εon
2
e 0 0

0 εon
2
o 0

0 0 εon
2
o




. (3.12)

They are satisfied by the monochromatic plane wave equation,

Ψ = Aei(k̄·r̄−ωt), (3.13)

where A is a constant amplitude. The angular frequency ω and the magnitude

of the wave vector k̄ are related by |k̄| = ω
√

µε = kon
√

µoεo. The medium is

homogeneous in each layer of the structure. So all we have to do is to write the

plane wave equations for each layer and then match the boundary condition at the

layer interfaces. The medium is homogeneous in the direction of y and z, so solutions

to the wave equations can be

E(x, t) = E(x)ei(kzz−ωt), H(x, t) = H(x)ei(kzz−ωt) (3.14)

where kz is propagation constant. By substituting these expressions in the wave
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equation Eq. 3.11, we have

[
d2

dx2
+ (kon)2 − k2

z

]
E(x) = 0 , (3.15)

[
d2

dx2
+ (kon)2 − k2

z

]
H(x) = 0 . (3.16)

We must consider two possible electric field polarizations, transverse electric

(TE) and transverse magnetic (TM). The longitudinal axis of the waveguide is

oriented in the z direction. We have the solution of the equation in the form

Ey(x) = Eoe
±i
√

(kon)2−k2
zx , (3.17)

Hy(x) = Hoe
±i
√

(kon)2−k2
zx . (3.18)

in the TE and TM cases, respectively. kz should be preserved in each layer by Snell’s

law. In the core layer, kz is the z component of the wave vector k2 which is identical

to k2 sin θ or koN as illustrated in Fig. 3.4. To find the values of kz that lead to

allowed solutions to the wave equation, we must apply the boundary conditions to

the general solutions developed. For a guided wave, the following condition should

be satisfied:

kon1,3 < kz < kono,e . (3.19)

In the TE mode, the transverse electric field amplitudes in the three regions
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are

layer 1 : Ey(x) = Ae−k1xx , (3.20)

layer 2 : Ey(x) = B cos k2xx + C sin k2xx , (3.21)

layer 3 : Ey(x) = Dek3x(x+df ) . (3.22)

where A, B, C, and D are amplitude coefficients to be determined by the boundary

conditions and kx’s, which are called a transverse wave vector, are defined by

k1x = ko

√
N2 − n2

1 , (3.23)

k2x = ko

√
n2

o −N2 , (3.24)

k3x = ko

√
N2 − n2

3 . (3.25)

The boundary conditions that enable us to find the unknown amplitude coefficients

are 1) tangential E and 2) tangential H are continuous. Recall that

∇× Ē = −∂B̄

∂t
. (3.26)

Because there is no x component in the electric field for the TE case, we get an

explicit relation for the tangential component of the magnetic field

∂Ey

∂x
= jωµHz , (3.27)
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for a sinusoidal field. Applying the boundary condition for the electric field to two

interfaces and the boundary condition for the magnetic field from Eq. 3.27 at the

interface x = 0, we can obtain

Ey(x) = Ae−k1xx , (3.28)

Ey(x) = A

(
cos k2xx− k1x

k2x

sin k2xx

)
, (3.29)

Ey(x) = A

(
cos k2xx +

k1x

k2x

sin k2xx

)
ek3x(x+d) . (3.30)

Applying the boundary condition for the magnetic field at the interface x = −df ,

we get finally

tan k2xdf =
k1x + k3x

k2x − k1xk3x

k2x

. (3.31)

Similarly for the TM case, we can get

tan k2xdf =

k1xn2
o

n2
1

+ k3xn2
o

n2
3

k2x − k1xk3xn4
o

k2xn2
1n2

3

, (3.32)

where k1x and k3x are same as in Eqs. 3.23 and 3.25, respectively and k2x is defined

by

k2x = ko
no

ne

√
n2

e −N2 . (3.33)

The mode equations Eqs. 3.31 and 3.32 are equivalent to

ko

√
n2

o −N2df − tan−1

√
N2 − n2

1√
n2

o −N2
− tan−1

√
N2 − n2

3√
n2

o −N2
= mπ (3.34)
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and

ko
no

ne

√
n2

e −N2df − tan−1 none

√
N2 − n2

1

n2
1

√
n2

e −N2
− tan−1 none

√
N2 − n2

3

n2
3

√
n2

e −N2
= mπ , (3.35)

for TE and TM modes, respectively.

For ATR, we need the derivatives of the effective index N with respect to

the refractive indices and thickness. Using Eq. 3.34 for the three-layer waveguide

structure, we calculate

∂N

∂no

=
no

N

kodf +

√
N2−n2

1

n2
o−n2

1
+

√
N2−n2

3

n2
o−n2

3

kodf + 1√
N2−n2

1

+ 1√
N2−n2

3

, (3.36)

for the TE case and from Eq. 3.35 we get for the TM case

∂N

∂no

=
n2

e −N2

noN

kodf −
√

N2−n2
1

n2
1−n2

o+N2

(
n2

o
n2
1
−n2

1
n2

e

) −
√

N2−n2
3

n2
3−n2

o+N2(
n2

o
n2
3
−n2

3
n2

e
)

kodf +

n2
e−n2

1√
N2−n2

1

n2
1−n2

o+N2

(
n2

o
n2
1
−n2

1
n2

e

) +

n2
e−n2

3√
N2−n2

3

n2
3−n2

o+N2(
n2

o
n2
3
−n2

3
n2

e
)

(3.37)

and

∂N

∂ne

=
N

ne

kodf +

√
N2−n2

1

n2
1−n2

o+N2

(
n2

o
n2
1
−n2

1
n2

e

) +

√
N2−n2

3

n2
3−n2

o+N2(
n2

o
n2
3
−n2

3
n2

e
)

kodf +

n2
e−n2

1√
N2−n2

1

n2
1−n2

o+N2

(
n2

o
n2
1
−n2

1
n2

e

) +

n2
e−n2

3√
N2−n2

3

n2
3−n2

o+N2(
n2

o
n2
3
−n2

3
n2

e
)

, (3.38)

where we have omitted the s, p designations in N .

In addition, for piezoelectric effect, the variations of N induced by the change
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in thickness df are

∂N

∂df

=
ko

N

n2
o −N2

kodf + 1√
N2−n2

1

+ 1√
N2−n2

3

(3.39)

and

∂N

∂df

=
ko

N

n2
e −N2

kodf +
n2

e

(
n2

e
n2
1
−1

)

√
N2−n2

1

[
n2

e−N2+
n2

on2
e

n2
1

(
N2

n2
1
−1

)] +
n2

e

(
n2

e
n2
3
−1

)

√
N2−n2

3

[
n2

e−N2+
n2

on2
e

n2
3

(
N2

n2
3
−1

)]

,

(3.40)

for TE and TM modes, respectively.

Multilayer slab waveguide

We describe the mode equation for a general multilayer structure having more than

3 layers. Solving the boundary conditions in each layer gives the mode condition

which enables us to find the propagation constants of the modes in a given sample

structure. Geometric optics can also be used to obtain the mode condition. As

shown in Fig. 3.5, the phase change that the light experiences while passing through

A to C should be an integer multiple of 2π for constructive interference.
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Figure 3.5: Schematic of the multilayer slab waveguide.
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Then we obtain

2ks
xdf + ]rs

top + ]rs
bottom = 2mπ : TE (3.41)

and

2kp
xdf + ]rp

top + ]rp
bottom = 2(m + 1)π : TM , (3.42)

where kx is the transverse wave vector in the x-direction as defined in Eqs. 3.24 and

3.33 for TE and TM modes, respectively. ]rtop and ]rbottom are the phases of the

reflectance in the top and bottom layer including multilayer structures and m is the

mode number. The mode number starts with m = 0 for the 0th order mode and

increases by one for each higher order mode. Note that in the TM mode case the

phase in the lefthand side is 2π for the zeroth order because each phase shift of the

TM reflectances, ]rtop and ]rbottom, include π which does not affect the resonance

condition.

We can obtain an identical mode equation to Eqs. 3.34 and 3.35 in a three-layer

waveguide structure using Eqs. 3.41 and 3.42 and the phases of the reflectances at

a single interface

]rtop =





−2 tan−1

√
N2−n2

1√
n2

o−N2
TE

π − 2 tan−1 none

√
N2−n2

1

n2
1

√
n2

e−N2
TM

(3.43)
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and

]rbottom =





−2 tan−1

√
N2−n2

3√
n2

o−N2
TE

π − 2 tan−1 none

√
N2−n2

3

n2
3

√
n2

e−N2
TM .

(3.44)

In a multilayer waveguide structure, one can use a numerical software tool to

calculate

∂N s

∂no

=

∂fs

∂no

∂fs

∂Ns

,
∂Np

∂no

=

∂fp

∂no

∂fp

∂Np

,
∂Np

∂ne

=

∂fp

∂ne

∂fp

∂Np

, (3.45)

where

f s,p = 2ks,p
x df + ]rs,p

top + ]rs,p
bottom . (3.46)

In addition, for the piezoelectric effect, the variations of N induced by the change

of the thickness df are

∂N s

∂df

=

∂fs

∂df

∂fs

∂Ns

,
∂Np

∂df

=

∂fp

∂df

∂fp

∂Np

. (3.47)

3.2.3 Data analysis

Assuming no piezoelectric effect, Eqs. 3.9 and 3.10 can be used to calculate EO

coefficients. When the piezoelectric effect is included, at least two guided modes

should be excited for the calculation. For the TE mode, the variations of N0 and

N1 with respect to the EO-induced change in the refractive index no for the 0th and

1st guided modes, respectively, are given by




δN0

δN1


 =




∂N0

∂no

∂N0

∂df

∂N1

∂no

∂N1

∂df







δno

δdf


 , (3.48)
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where

δN =
Rm

∂Rdc

∂N

. (3.49)

Rm is the modulated data collected by the lock-in amplifier and ∂Rdc/∂N is the

derivative of reflectivity curve Rdc with respect to N . The 2× 2 matrix in Eq. 3.48

can be inverted to get both r13 and p. For the TM mode, substituting both δno and

δdf into Eq. 3.5 gives r33.

3.2.4 Results

Error

We discuss the errors in the determination of refractive index, thickness, and EO

coefficients resulting from ignoring the TCO layer (1) for selected values of indices

of refraction, rMSRM
13 and rMSRM

33 of NLO film and TCO at the wavelengths 1310 nm

and 1550 nm. For the anisotropic indices of refraction no and ne, 1.67 and 1.75 were

used at 1310 nm, and 1.65 and 1.71 at 1550 nm, respectively. The complex index

of refraction for TCO was obtained from an ITO/glass substrate manufactured by

Thin Film Devices, Inc. To estimate the errors, we used the MSR model to generate

a reflectivity scan and a modulated reflectivity. These are then treated as data input

to be analyzed by the three- and four- layer WGM. We have found the MSR model

to fairly well represent actual scans from the prism coupling setup.
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At a given NLO film thickness, (2) we calculate MSR curves Rdc’s and their

derivatives ∂Rdc/∂N ’s from a multilayer stack reflectivity model (MSRM) including

the Ni-coated prism (prism/Ni/air/NLO film/TCO/glass) as a function of N (=

np sin θp) for TE and TM modes and find the reflectivity dips of this projected Rdc.

These dip positions correspond to effective indices of the slab waveguide structure

as shown in Fig. 3.3. We note that Tap and Tpa as shown in Eq. 3.1 can be ignored

in calculating the projected Rdc because they don’t contribute to the calculation of

effective indices. (3)The indices of refraction and thickness of the NLO film can be

estimated from the effective indices using the three-layer or the four-layer waveguide

mode equation, as given in Eqs. 3.34 and 3.35 or Eqs. 3.41 and 3.42, respectively.

When the film thickness is too small to excite two or more guided modes, the correct

film thickness was fed to the calculation in order to be able to estimate the indices

of refraction.

(4) We calculate ∂N/∂n’s by using both the three-layer and the four-layer

waveguide models at the 0th order mode obtained from the reflectivity dip, N0 as

shown in Fig. 3.3 and also calculate these derivatives from the complete multilayer

structure model (including the prism) using

∂N s

∂no

=

∂Rs
dc

∂no

∂Rs
dc

∂Ns

,
∂Np

∂no

=

∂Rp
dc

∂no

∂Rp

∂Np

,
∂Np

∂ne

=

∂Rp
dc

∂ne

∂Rp
dc

∂Np

. (3.50)

where N is selected in the vicinity of the reflectivity dip at the 0th order mode, Nexp

as shown in Fig. 3.3, so that ∂2N/∂n2 is equal to 0 and −∂N/∂n is maximized.

(5) We assume a DC voltage V applied to the NLO film, which is small enough
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for the Rdc to be in the linear regime at Nexp. Then Rm(= Rdc(V ) − Rdc(V = 0))

can be calculated using the complete multilayer structure model. (6) Based on the

anisotropic indices of refraction, NLO film thickness, ∂N/∂n’s, and Rm, the rWGM
13

and rWGM
33 can be calculated by three-layer and four-layer waveguide model using

Eqs. 3.9 and 3.10. Steps (2)-(6) are repeated with varying NLO film thickness 1-

3 µm. Finally, the relative errors versus NLO film thickness can be calculated using

Error =
rMSRM
13 − rWGM

13

rMSRM
13

· 100, Error =
rMSRM
33 − rWGM

33

rMSRM
33

· 100 , (3.51)

where rMSRM
13 and rMSRM

33 are EO coefficients from MSRM and rWGM
13 and rWGM

33

are EO coefficients from three or four-layer WGM.
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Figure 3.7: Plots of error and ∂Np/∂ne by varying the film thickness for selected
index of refraction of TCO and the film and two TCO thickness, 45 nm (a-d) and 150
nm (e-h) at wavelength of 1310 nm. For plots (a) and (e), black and red lines show
errors in the estimation of no for the three- and the four-layer waveguide model,
respectively. Green dashed and solid lines show errors in the estimation of df from
the three- and the four-layer waveguide model, respectively. In (b) and (f), ∂Np/∂ne

is plotted. For plots (c) and (g), dashed line shows error in the estimation of r13

from the three-layer waveguide model and solid lines from the four-layer waveguide
model. For plots (d) and (h), dashed line shows error in the estimation of r33 from
the three-layer waveguide model and solid lines from the four-layer waveguide model.
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Figure 3.8: Plots of error and ∂Np/∂ne by varying the film thickness for selected
index of refraction of TCO and the film and two TCO thickness, 45 nm (a-d) and
150 nm (e-h) at wavelength of 1550 nm. For plots (a) and (e), black and red lines
show errors in the estimation of no for the three- and the four-layer waveguide model,
respectively. Green dashed and solid lines show errors in the estimation of df from
the three- and the four-layer waveguide model, respectively. In (b) and (f), ∂Np/∂ne

is plotted. For plots (c) and (g), dashed line shows error in the estimation of r13

from the three-layer waveguide model and solid lines from the four-layer waveguide
model. For plots (d) and (h), dashed line shows error in the estimation of r33 from
the three-layer waveguide model and solid lines from the four-layer waveguide model.
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Figure 3.7(a) and (e) plot the relative errors in the determination of the re-

fractive index and thickness of the NLO film as a function of film thickness at the

wavelength of 1310 nm using a TCO thickness of 45 nm and 150 nm, respectively.

Noteworthy is that the relative error in no (black and red) is negligible in both the

three-layer (black) and the four-layer (red) waveguide model. However, the relative

error in the film thickness from the three-layer waveguide model (green dashed) is

not negligible compared to that from the four-layer waveguide model (green solid).

The error tends to increase as the TCO thickness increases.

Figure 3.7(b) and (f) plot ∂Np/∂ne’s. The black solid lines were calculated by

taking into account the actual multilayer structure as discussed above. When the

film thickness is in the single mode region (shaded), ∂Np/∂ne from the three-layer

waveguide model (dashed) shows a large difference with that from Eq. 3.50 (black

solid), whereas that from the four-layer waveguide model (red solid) has a rather

small difference with that from Eq. 3.50. It implies that when the NLO film supports

only one guided mode, the assumption of the slight shift in MSR curve (Rdc) under

a bias is not quite correct. We note that all of three ∂N/∂n’s are approaching 1

with increasing thickness.

In Fig. 3.7(c,d) and (g,h), the relative errors in r13 and r33 are plotted using

the estimated n, df , and ∂N/∂n’s from the three-layer waveguide (dashed) and the

four-layer waveguide model (solid). The dashed line in the single-mode region was

calculated assuming that the film thickness was given correctly. As expected from

the errors in df and ∂N/∂n’s by the three-layer waveguide model, the relative error

in r33 increases as the film thickness decreases. In the multimode region, it decreases
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asymptotically with increasing thickness in both models. In both three-layer and

four-layer waveguide models, thick TCO introduces a somewhat large relative error

because of the large error in the film thickness.

Figure 3.8 is plots at the wavelength of 1550 nm. It shows similar behaviors to

Fig. 3.7. We note that the relative error in r33 from the three-layer waveguide model

are larger than that at the wavelength of 1310 nm. It is because the TCO is more

index-mismatched with glass at the wavelength of 1550 nm.
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Figure 3.9: Error percentages from the ATR based on the three-layer and four-
layer waveguide models and the simple Teng-Man method at 45 ◦. Plots of error
by varying the film thickness for selected index of refraction of TCO and the film
and two TCO thickness, 45 nm (a,b) and 150 nm (c,d) at wavelength of 1310 nm
(a,c) and 1550 nm (b,d). Red dashed line shows error in the estimation of r33 from
the three-layer waveguide model and red solid lines from the four-layer waveguide
model. Black solid line shows error from the simple Teng-Man method. Shaded
region represents a single mode film.
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Figure 3.9 plots the relative errors (red) in r33 by the three-layer and four-

layer waveguide models at the wavelengths of 1310 and 1550 nm. For comparison,

the relative error in r33 from the simple Teng-Man method at 45 ◦ is also plotted.

The errors from the simple Teng-Man method shows a large cyclic variation with

increasing thickness in the given range 1-3 µm. The error extremes increase as the

TCO thickness increases because the FP effect is enhanced inside the NLO film layer

and they increases as the wavelength increases because the TCO becomes reflective,

which also enhances FP effect [80, 81, 82]. We note that the relative error from

ATR based on the three-layer waveguide model is quite smaller than the simple

Teng-Man error when the sample has a multimode film.

The ATR method based on the three-layer waveguide model can introduce a

substantial error in the estimation of EO coefficients when the film has only one

guided mode, which implies that the assumption of the slight shift in MSR curve

(Rdc) under a bias is not quite correct.

Higher order modes

So far, we have discussed the relative errors in the ATR method and found that

the error is relatively small in both three-layer and four-layer waveguide models

when the film supports two or more guided modes and the error can be large in

the case of a single mode film when a three-layer waveguide model is used. One

might think that when the NLO film supports two or more guided modes, the three-

layer waveguide model works well and the EO coefficients calculated from higher

order modes (N1, N2,. . . ) rather than the fundamental mode N0 are also reliable.
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However, the estimation of EO coefficients from the highest order mode is expected

to produce a large error just as expected in the case of a single mode film, especially

when the three-layer waveguide model is used.

Figure 3.10 shows ∂Np/∂ne’s by using three-layer and four-layer waveguide

models with varying NLO film thickness for selected indices of refraction and thick-

ness of TCO and the film at a wavelength of 1310 nm. In regions B, C, and D,

the difference between two ∂Np/∂ne’s increases as the mode number increases for a

given film thickness. For this reason, the r33 calculation based on the higher order

mode can give a large error, especially when the three-layer waveguide model is

used. Therefore, a multimode film and the analysis based on the four-layer waveg-

uide model using the fundamental mode (N0) are required for a reliable estimation

of EO coefficients. Special care should be taken in order to include the piezoelectric

effect in the calculation using a higher order mode, because the use of the first order

mode is required for the calculation as shown in Eq. 3.48. The use of a higher order

mode may introduce an error in both the EO and piezoelectric coefficients when the

film has only two guided modes and the three-layer waveguide model is used. For

the use of the 0th and the 1st order modes, a multimode film having more than two

guided modes and the analysis based on the four-layer waveguide model are required

for a more reliable estimation of both EO and piezoelectric effects.
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Figure 3.10: Plots of ∂Np/∂ne by varying the film thickness for selected indices of
refraction and thickness of TCO and the film at wavelength of 1310 nm. Solid and
dashed lines are ∂Np/∂ne’s calculated by using four-layer and three-layer waveguide
models, respectively. A, B, C and D represent the regions of film thickness where
the film supports single, two, three, and four or more than four guided mode/modes,
respectively.
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Chapter 4

Measurement

4.1 Introduction

4.1.1 Measurement procedures

Up to this point, we have discussed how to measure the EO coefficients of nonlinear

optical polymer (NLOP) films using the rigorous Teng-Man and ATR methods. We

have found that it is essential to characterize the optical properties of the TCO layer

as well as the NLOP film in a multilayered Teng-Man sample for the application

of these methods. For the characterization of TCO, it is strongly recommended

that the TCO/glass substrate be obtained from the same batch as in the NLO

sample structure because the optical property of TCO can widely vary depending

on the manufacturing process. The optical properties of poled NLO films can be

characterized by the prism coupling technique during the ATR measurement. When

NLO films were poled by electrode contact poling, the metal electrode, generally

gold, performs its duty as a reflector in Teng-Man experiment. For ATR, Au and

Al metal electrodes can be removed by using the solution of KI+I2+H2O and Al

etchant type D (Transene, Inc), respectively.
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To summarize, (a) we characterize the optical properties of TCO, (b) take

multi-angle Teng-Man data, (c) etch off the metal electrode on the NLO film surface,

(d) take ATR data (Rdc and Rm) for TE and TM modes using a metal-coated prism,

(e) measure the anisotropic refractive indices of poled NLO film as well as the film

thickness using an uncoated prism, (f) analyze the ATR data and get r13 and r33,

and (g) use the ratio of r13 and r33 obtained from the ATR to analyze the multi-angle

Teng-Man data.

4.1.2 Outline of the chapter

In this chapter, we briefly describe the basic physics of TCO’s with the Drude

model. We present some of the results of TCO films such as ITO and ZnO using a

spectroscopic ellipsometry. We describe our experimental setups: electrode contact

poling, Teng-Man and ATR. For EO measurements, we characterized four different

NLOP films synthesized by Alex Jen’s group at the University of Washington such

as AJ3021, AJ404L, AJLS102, and AJ-TTE-II. Every NLOP film here was charac-

terized by the rigorous Teng-Man method. Additionally, AJLS102 and AJ-TTE-II

were characterized by the ATR method.

1We reported the experiment and analysis for this sample [80]. Here, we correct the mistake
resulting from using wrong optical property of TCO layer.
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4.2 Characterization of transparent conducting oxides

4.2.1 Transparent conducting oxides

Transparent conducting oxides (TCO) are indispensable materials in various appli-

cations such as flat panel display, collector electrodes in solar cells, deicing elec-

trodes, electromagnetic shielding, and other optoelectronic devices, because it has

both the electrical conductivity and optical transparency. Most electric conductors

are opaque in the visible wavelength range. When one is fabricating a device which

must be electrically connected to other devices, but requires light transmission to

obtain the desired response, TCO is a logical choice for the conductor. Since dis-

covery of the first TCO (thin film CdO) was reported in 1907 by Baedeker [83],

various TCO’s has been investigated and some TCO’s are now commercially avail-

able. Sn-doped In2O3 (In2−xSnxO3) and In2O3−x are the well-known TCO’s because

of their high conductivity (103-104 S/cm) and high optical transparency (>80%) in

the visible range [83, 84]. The chemical dopant Sn produces the shallow donor or im-

purity energy states in the proximity of the conduction band, which result in high

conductivity. The oxygen vacancy impurity energy states in In2O3−x contributes

to the conductivity. Those electrons in the states can be thermally ionized into

the conduction band at room temperature. Other transparent conducting oxides

such as zinc oxide (ZnO) and Zn-doped indium oxide (ZnxIn2Ox+3) have also been

investigated by many researchers.

The Drude model of electrical conduction explains well the transport proper-

ties of those electrons [85]. The Drude model is simply the application of kinetic
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theory to electrons in a solid under the assumption that solids have fixed immobile

positive ions and free electrons (electron gas : non-interacting each other). Under

an applied electric field E, the equation of motion is

m∗ d

dt
〈v̄〉 = eĒ− γ〈v̄〉 , (4.1)

where m∗ is the effective mass of an electron, 〈v̄〉 is the average velocity of electrons

(¯ represents vector quantity.), and γ/m∗ is the scattering rate. Multiplying both

sides by Ne and using J̄ = Ne〈v̄〉 give

m∗ d

dt
J̄ = Ne2Ē− γJ̄ . (4.2)

From J̄ = σ(ω)Ē, assuming an e−iωt time dependence and using γ/m∗ = 1/τ , we

have

σ(ω) =
Ne2τ

m∗
1

1− iωτ
≡ σ0

1− iωτ
, (4.3)

where the DC conductivity is defined by σ0 = Ne2τ/m∗ [86]. Since ∇ × H̄ =

J̄− iωε0ε∞Ē = iωε0ε(ω)Ē, the dielectric function is

ε(ω) = ε∞

(
1− ω2

p

ω2 + iω/τ

)
, (4.4)

where ωp is the plasma resonance frequency. The optical transmission drops drasti-
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cally near the plasma resonance frequency which is given by

ω2
p =

Ne2

ε0ε∞m∗ . (4.5)

4.2.2 Spectroscopic ellipsometry for characterization of TCO

Before the characterization of TCO, the refractive index of a glass substrate is mea-

sured for later use. We characterize the optical properties of a blank TCO/glass

substrate which is preferably from the same batch as used in the NLO sample

structure. The refractive indices of glass are measured using a MetriconTM at wave-

lengths of 632, 1032, 1310, and 1550 nm. Then, the indices are fitted using the series

expansion with respect to inverse of wavelength in the form [87]

n(λ) = A +
B

λ
+

C

λ2
+

D

λ3
. (4.6)

where λ is the wavelength and A, B, C, and D are the unknown coefficients. We

measure four refractive indices at four different wavelengths using MetriconTM, and

the fitting coefficients can be determined by a least squares fitting.

The fitted coefficients are plugged into the variable angle of incidence spectro-

scopic ellipsometry (VASETM) software for the refractive index of a glass substrate.

The thickness of TCO at the edge after wet etching a small part of it is measured

by a profilometer in order to use it as the initial guess in the software.

Ellipsometric measurement is made to obtain a complex index of refraction

of some blank TCO samples. VASETM system manufactured by J.A. Woollam
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Inc. is a useful non-destructive optical technique often used to characterize the

optical properties of thin films and multilayered structures [87]. A monochromatic,

polarized beam of light is reflected from a sample surface at a known angle of

incidence and the resulting polarization state and amplitude of the reflected beam

are measured as a function of wavelength and angle of incidence. Two parameters

obtained from this measurement are given in the form

rp

rs

= tan Ψei∆ . (4.7)

where Ψ is the arctangent of the ratio of |rp| to |rs| and ∆ the phase retardation.

In the case of ITO, free carrier absorption is usually noticeable in the infrared

range, while interband transition dominates in the visible range [64]. The char-

acterization of ITO on glass is relatively difficult, because the reflected light off

the sample is weak and the back-surface reflection (air/glass interface) effects the

measurement. The back surface of the glass substrate should be roughened prior

to measurement of the experimental data so that the reflected light from the back

surface is scattered. Ellipsometric data are numerically fitted to a built-in oscillator

model which describes free carrier absorption in the infrared region and interband

transition in the visible region. The complex dielectric function having one or more

Lorentz harmonic oscillators is generally expressed as [64, 87]

ε(λ) = ε∞ +
n∑

k=1

An

−E(λ)2 + E2
n − iΓnE(λ)

. (4.8)
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where ε∞, An, En and Γn are the permittivity at infinite frequency, amplitude

of oscillators, center energy and broadening of each oscillator, respectively. The

Lorentz model allows us to simulate the optical constants of the ITO over both the

transparent and absorbing spectral range while maintaining Kramers-Kronig (K-K)

consistency between the real and imaginary parts of the index of refraction. Setting

the center energy to zero turns the Lorentz model into the Drude model which

describes the free carrier absorption edge in the infrared region.

First, ITO manufactured by Abrisar was characterized. The thickness, n and

κ were fitted using ellipsometric data measured at 55 ◦, 60 ◦, 65 ◦, 70 ◦, and 75 ◦, as

well as transmission data at normal incidence. Figure 4.1 shows n and κ with the

transmission data in the inset. The projected transmission curve matches well with

the experimental one.
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Figure 4.1: A representative optical property of ITO manufactured by Abrisar.
The inset shows the transmission data (red) at normal incidence. It is well matched
with projected transmission curve (black).
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For some cases, spectroscopic ellipsometry at a single angle of incidence is

sufficient for the characterization of a sample, but in many cases the additional

information from acquiring data such as ellipsometric data at several angles and

transmission data is necessary to eliminate parameter correlations which otherwise

prevent the finding of a unique solution for the variable parameters. In our case,

four or five angles of incidence are chosen around the pseudo-Brewster angle to get

ellipsometric data, and the transmission measurement at normal incidence is also

made.

The optical properties of ITO are strongly dependent on the manufacturing

process so there are wide variations in commercial ITO properties. For some cases,

ITO can be difficult to characterize because it displays a complicated graded mi-

crostructure and the optical properties of ITO can vary widely with deposition

conditions and post-deposition processing. For this reason, it is considered to be a

well-defined multiple set of single layers (graded layer) rather than one layer. From

an ellipsometry point of view, assuming a single uniform layer with fixed optical

constants, even along with a small roughness layer, can be insufficient to obtain a

good fit between the measured data and the modeled data. A graded layer model

is normally required to properly describe this material.
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Figure 4.2: A representative optical property of ITO manufactured by Thin Film
DevicesTM. A graded layer model was used to obtain a complex refractive index.
The n and κ of top and bottom layers are shown.
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A representative ITO/glass substrate manufactured by Thin Film DevicesTM

(TFD) was characterized. In this characterization, the index grading of the film is

assumed to have 5 layers with the same depth and each layer has a constant index

of refraction at each wavelength. Figure 4.2 shows the complex index of refraction of

the top and bottom layers, n+ iκ, in the range of 500-1700 nm wavelength. You can

see the large difference between the two curves, denoting that the film properties

along the deposition direction are not uniform. Figure 4.3 shows complex graded

indices of refraction for five layers at a wavelength of 1310 nm. The closer the layer

is to the air/ITO interface, the less conductive (more transparent) it is.
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Figure 4.3: Graded indices of refraction at 1310 nm. The solid line is the real part
n and the dotted one the imaginary part κ of the complex index of refraction.
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The fitted complex index of refraction is used to calculate the transmittance

using Fresnel’s equation and then compared to the transmission data, as shown

in Fig. 4.4. Note that the interference effect from multiple reflections in the glass

substrate is ignored because the coherence length of the light used in this instrument

is too small compared to the glass thickness to have an interference effect. For

example, the bandwidth of the light is around 50 nm, so the coherence length is

expected to be ∼20 µm at the wavelength of 1000 nm using [68]

lc = cτc =
c

∆f
=

λ2

∆λ
, (4.9)

where lc is the coherent length, c the speed of light, ∆f the spectral line width, and

∆λ the bandwidth.
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Figure 4.4: Transmittance at normal incidence. The Red line was obtained by UV-
VIS spectroscopic scan by Varianr and the black one is a projected transmittance.
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We also characterized ZnO samples provided by Northwestern University using

a single layer model as described in Eq. 4.8. However, the Drude and Lorentz model

didn’t work well. Typically, these TCO films have much less conductivity (50-150

S/cm) than ITO. Therefore, they do not have a strong Drude response in the near-

IR (NIR) spectrum, unlike ITO as shown in Fig. 4.5. In other words, ZnO does

not have enough free-carrier absorption to be represented by a Drude model. For

this reason, it is primarily transparent over the entire measured spectral range and

displays a high sheet resistance. We used two or three Gaussians to describe the

UV absorption spectra instead of a Drude model. The Gaussian model is given as

Im [ε(E)] = A exp−(E−Ec
B )

2

+A exp−(E+Ec
B )

2

, (4.10)

where E is energy, Ec center energy, and B the broadening of the Gaussian. The

real part of the dielectric function is generated K-K consistent.
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Figure 4.5: Optical property (n + iκ) of a ZnO measured by spectroscopic ellip-
sometry. Black solid and red dotted lines are the real and imaginary parts of the
complex refractive index, respectively. Inset shows UV-VIS-NIR transmission spec-
trum. Black and red lines are projected and experimental transmission, respectively.
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As we described before, it is always better to add transmission data to your el-

lipsometric data to get improved measurement and insure an unique answer. When

the spectroscopic ellipsometric fit does not match transmission, it says that some-

thing is wrong with the model. For this case, we require the model to fit both data

simultaneously. A graded layer model often satisfies these requirements.
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4.3 Experimental setup

4.3.1 Electrode contact poling setup

Figure 4.6 shows a picture of the electrode contact poling setup. We used an

FP90 control processor (Mettler Toledo, Inc.) to communicate with the hot stage,

FP82HT (Mettler Toledo, Inc.). The hot stage is enclosed with the box where

nitrogen gas is filled. A small amount of the inner gas is extracted to measure the

amount of oxygen by the oxygen sensor, Series 3000 trace oxygen analyzer (Alpha

Omega Instrumentsr). Poling is performed after the amount of oxygen is less than

∼200 ppm to avoid oxidation of the sample. The current temperature of the hot

stage is taken from the FP90 control processor through RS232C serial port. The

237 high voltage source measure unit (Keithley, Inc) was used to apply the voltage

to the sample.
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Figure 4.6: Electrode contact poling setup.
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Metricon 2010 Prism CouplerMulti-anlge Teng-Man setup

(a) (b)

Figure 4.7: (a) Schematic of multi-angle Teng-Man setup and (b) commercial
MetriconTM prism coupler 2010.

4.3.2 Teng-Man and ATR setup

Figure 4.7(a) shows a picture of the Teng-Man experimental setup. There are two

arms, one of which contains the sample holder and is automatically controlled by

a Newport Motion controller MM3000 to make a desired angle of incidence. The

sample is firmly held by a vacuum chuck to maintain the given angle of incidence.

Initially, a lens was used to focus the incident light, but this required another in

the other arm because the light diverged too fast. Currently, the ∼0.3 mm wide

aperture is being used to make the beam width narrow. After the reflection off the

sample, a slit less than 0.5 mm is needed to block the unwanted light. A Soleil-

Babinet compensator SBC-IR (Thorlabs), two 9807 linear polarizers (Thorlabs),

SR540 optical chopper (Stanford Research Systems) and large area photodetector

(New Focus, Inc) are used in this setup.

We used a MetriconTM 2010 Prism Coupler as shown in Fig. 4.7(b). It has been

a well-known measuring instrument for index of refraction, thickness, and propaga-

tion loss of thin films. We modified it in order to perform the ATR measurement.
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Using this instrument relieved a lot of labor in building an ATR setup for EO mea-

surement. The instrument has a built-in capacitor to filter out 60/120Hz power

line noise and a built-in OP amp to amplify the signal from the detector. When

an AC signal is applied to the sample, the modulated reflectivity Rm should not be

affected by these two components, so we clipped the lead of the capacitor to avoid

the 60/120Hz filtering. The appropriate frequency was determined to be 20-40Hz

or 100-250 Hz so that the built-in OP amp does not affect the measurement.

Because of such a low frequency, the sampling rate of the modulated intensity

should be lower than the frequency. The modulated data is read by the 7265 DSP

digital lock-in amplifier (Signal Recovery, Inc) every second and is recorded through

a General Purpose Interface Bus (GPIB) interface.
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4.4 EO measurements

4.4.1 AJ302

The sample AJ302 consists of a pure mixture of two chromophores rather than a

standard nonlinear polymer system such as the guest-host and side-chain polymer,

synthesized by Alex Jen’s group at the University of Washington. Electrode con-

tact poling was performed to orient the chromophores. The atmosphere inside the

experimental poling setup was filled with an overpressure of nitrogen gas to avoid

oxidation during the poling process. The sample was heated to a temperature near

the glass transition temperature (Tg ∼80 ◦C) and then a DC electric field was grad-

ually applied to the the film up to ∼70MV/m, after which the sample was cooled

down to room temperature maintaining the applied electric field.
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Figure 4.8: Molecular structures of AJC168 and AJC146.
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The Teng-Man setup is equipped with a rotational arm where the 1.3 µm

laser source, 45 ◦ polarizer and lens are located in order to measure the incident

angle dependence. The focused beam is reflected at the sample in the center of the

rotational arm, and then passed through a 0.5mm wide slit so that unwanted beams

can be blocked. The beam collimated by another lens passes through the SBC and

analyzer and reaches the detector. The beam is chopped at 1 kHz by an optical

chopper to allow measurement of Idc with a lock-in amplifier, which is also used

to measure the modulated intensity Im when the sinusoidally alternating voltage is

applied to the sample.

In our experiment, the full profiles of Idc(Ω) and Im(V, Ω) were measured,

and then δΨsp as well as A, B, δA, δB, and Ψsp were extracted by curve fitting

to Eqs. 2.9 and 2.15. The linear EO coefficient was calculated by using the simple

expression in Eq. 2.33 on the condition that the ratio of r33 to r13 is assumed to be

3. We made measurements on two sample structures fabricated from the organic

glass AJ302 that consisted of 50%-AJC168 and 50%-AJC146 as shown in Fig. 4.8

[5]. Using the simple model, r33 values of 306 pm/V and 297 pm/V were measured.

The polar order induced by electrode contact poling decays slowly to its equilibrium

state after the external electric field is off. Compared to measurements made 1-4

hours after poling, the EO coefficient calculated by simple expression relaxed to a

value about 15% lower in a period of one week and thereafter remained relatively

stable at room temperature.
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Figure 4.9: Fits (dashed lines) to the rigorous model of δΨsp, δB/B, tan Φ, and Ψsp

extracted by curve fitting to Eqs. 2.9 and 2.15. In (a), both possible values of tan Φ
resulting from A/B using Eq. 2.14 are shown.
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A better estimation of the EO coefficient can be obtained by numerical meth-

ods, which requires knowing more detailed information about the multilayered struc-

ture of the sample, such as the refractive index and thickness of the individual layers.

To perform the numerical analysis, Idc(Ω) and Im(Ω, V ) are measured as a function

of Ω at 10 angles of incidence from 20 ◦ to 65 ◦ and the data set of A, B, Ψsp, δA,

δB, and δΨsp are extracted by curve fitting to Eqs. 2.9 and 2.15. The tan Φ can

be extracted from the ratio A/B in Eq. 2.14, but there are two possible values at

each incident angle because this equation is quadratic in tan Φ. From a separate

measurement of tan Φ, we confirmed that tan Φ < 1 for this sample. Projected tan Φ

and Ψsp reflect the goodness of the fit as shown in Fig. 4.9(a,b). The index of refrac-

tion of ITO was obtained from the ellipsometric measurement of Abrisar ITO. The

index of refraction of Au was obtained from Refs. [88, 89, 90]. From the fit of δΨsp

and δB/B as shown in Fig. 4.9(c), the rigorous model gave a lower r33 (∼150 pm/V)

than the one (235 pm/V) obtained using the simple model at a 45 ◦ angle of inci-

dence, because the multilayered structure of the sample produces a positive error

correction term, resulting in an overestimation of the EO coefficient.

The poled refractive indices are expected to be anisotropic, but we have not

measured them for these samples. We used anisotropic refractive indices no and

ne, 1.69 and 1.72, respectively, based on an unpoled refractive index of AJ302 film

on silicon measured by a MetriconTM. Because the TM index in a polymer film

generally increases upon poling, and the TE index decreases by half the amount of
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the TM increase, we put [27]

no = nunpoled − δ, ne = nunpoled + 2δ , (4.11)

where nunpoled is unpoled index of refraction. The ratio of r13 to r33 was calculated

based on

γ =
χ113

χ333

(
ne

no

)4

, (4.12)

where χ113/χ333 is assumed to be 1/3 [23, 27]. The fit of δB/B in Fig. 4.9(c) was very

sensitive to the thickness of the polymer film. The fitted value of s33 was 3 pm/V.

4.4.2 AJ404L

A poled Teng-Man sample consisting of the crosslinked polymer AJ404L synthesized

by Alex Jen’s group at the University of Washington was analyzed. The indices of

refraction of a different unpoled thin film of AJ404L were measured by the prism

coupling technique using a MetriconTM. Measured unpoled values of ordinary and

extraordinary indices of refraction were 1.75 and 1.74 at 1310 nm and 1.71 and 1.70

at 1550 nm, respectively. The MetriconTM can also measure optical loss using an

optical fiber scanning over the waveguided streak. Unfortunately, we were not able to

get good data to measure the loss at 1310 nm, but at 1550 nm the slab waveguided

optical loss was in the range of 1.6-1.8 dB/cm. Two lasers with wavelengths of

1310 nm and 1550 nm (LaserMaxr) were used to perform the rigorous analysis,

which requires full information of the multilayered structure such as thickness and
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index of refraction for the TCO (ITO in AJ404L) and film layers.

Figure 4.10 shows the complex index of refraction of six ITO samples obtained

by VASETM. The real part of the refractive index at 1310 nm and 1550 nm for these

samples was in the range 0.98-1.06 and 0.43-0.55 and the imaginary part was in the

range 0.16-0.22 and 0.52-0.65, respectively. By a profilometer, the thickness of the

ITO in Teng-Man sample AJ404L was measured to be ∼130 nm and the thickness

of the polymer film was in the range 1.15-1.3 µm.
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Figure 4.10: Complex index of refraction of six ITO’s on glass substrate measured
by ellipsometric technique.
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Teng-Man measurements were performed at 7 angles of incidence between 30 ◦

and 60 ◦ for a wavelength of 1310 nm and at 9 angles of incidence over that same

range for a wavelength of 1550 nm. Instead of a lens, a small aperture with a width

of ∼0.3 mm was used to make the beam width of the incident light small. A slit

with a width of ∼0.25 mm placed just after the sample was used to efficiently block

the reflection off the glass and also block multiple reflections between the glass/air

interface and the gold electrode.

Figure 4.11 shows fits using the rigorous model to the multi-angle data for

δΨsp, δB/B as well as Ψsp and tan Φ. These fits were performed using the least

squares fitting technique described in Section 2.2.4 while simultaneously fitting Ψsp

and tan Φ. The ability to fit all data sets indicates that the analysis is consistent at

two different wavelengths using the ranges of refractive index and thickness discussed

above. The tweaked value of δ for the birefringence was ∼0.015-0.025 based on

Eq. 4.11 to generate poled indices. The fitted results for r33 were in the range 200-

220 pm/V at 1310 nm and 120-140 pm/V at 1550 nm, respectively; the ranges reflect

the uncertainties in the actual film thickness, indices, and refractive index of the

ITO.
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Figure 4.11: Experimental data (triangle, square) of (a), (b), (c), and (d) show good
agreement with numerical fits (solid, dashed) at 1310 nm and 1550 nm, respectively.
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Figure 4.12 shows the value of r33 at different angles of incidence calculated

by the simple Teng-Man analysis assuming that the ratio of r13/r33 = 1/3. We note

that the simple model values of r33 at 1310 nm were around 300-350 pm/V and much

larger variations with angle of incidence are observed at 1550 nm . This behavior

is due to a FP effect in the ITO-film-Au resonator structure, i.e., the increase of

reflection of ITO at 1550 nm enhances the multiple reflections inside the resonator.

This results in a large variation of r33 with angles of incidence when the simple

Teng-Man model is used. The value of r33 at 1310 nm was ∼318 pm/V averaged

over 7 angles of incidence, while r33 at 1550 nm was ∼324 pm/V averaged over 9

angles of incidence.
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Figure 4.12: The r33 calculated by simple Teng-Man analysis at each angle of inci-
dence at 1310 nm (open circle) and 1550 nm (triangle).
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Figure 4.13 shows a plot of the dispersion in the EO coefficient. The solid

circles represent the two r33 values obtained by the rigorous analysis and the solid

line was generated assuming a two-level model when the molecular second-order

susceptibility is dominated by the change in dipole moment between the ground

and first excited electronic states. The electro-optic molecular hyperpolarizability

along the z-axis is then given as [23]

βzzz(−ω; ω, 0) =
β0

3

ω2
0(3ω

2
0 − ω2)

(ω2
0 − ω2)2

, (4.13)

where β0 is the zero frequency value of β and a constant related to the transition

dipole moments and ω0 is the angular frequency of the first excited state. The λ0 of

the film is estimated to be around 0.86 µm by UV-VIS-NIR absorption measurement

using a Cary 5000 spectrophotometer.
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Figure 4.13: Dispersion characteristics of r33 versus wavelength. Triangles are r33

calculated by the rigorous analysis at 1310 nm and 1550 nm and solid line is obtained
by a two-level model.
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4.4.3 AJLS102

A poled AJLS102/PMMA NLO film was analyzed. The NLO film was spin-coated

on TFD ITO/glass substrate and was poled at Lumera, Inc. A laser with a wave-

length of 1550 nm (LaserMaxr) was used to perform ATR measurement along with

the rigorous Teng-Man analysis. A 4mm-diameter round Au electrode was on the

NLO film for allowing the applied voltage. Each analysis requires full information

of the multilayered structure such as thickness and index of refraction for the NLO

film layer and the ITO.

Ellipsometric measurement was made using a VASE spectroscopic ellipsometer

(J. A. Woollam Co.) to obtain the complex index of refraction of a blank ITO/glass

substrate. Figure 4.14 shows the complex index of refraction, n and k profile with

transmission spectrum. The real part of the refractive index at 1550 nm for these

samples was in the range 0.82-0.84 and the imaginary part was in the range 0.36-

0.38. The simultaneous analysis of ellipsometric and transmission data was used to

yield more reliable results. By a separate measurement using a profilometer, the

thickness of the ITO in the Teng-Man sample was estimated to be ∼45 nm.
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Figure 4.14: Optical property (n+ iκ) of a ITO (Thin Film DeviceTM) measured by
spectroscopic ellipsometry. Inset shows UV-VIS-NIR transmission spectrum.
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Using a gold etchant (KI/I2/H2O = 4:1:40), the Au electrode on the top of the

NLO film was removed without sacrificing the film quality. The waveguide modes of

the poled thin film were measured by a prism coupling technique using a MetriconTM

2010 Prism Coupler. The anisotropic indices of refraction and the thickness of

the poled thin film were calculated from a pair of waveguide modes by using the

four-layer waveguide model described earlier. Estimated ordinary and extraordinary

indices of refraction were 1.65 and 1.71 at 1550 nm and the film thickness was 2.3 µm

instead of 2 µm obtained from three-layer waveguide (air/film/glass) model.

As shown in Fig. 4.15, we measured the full Rm versus N with an applied

voltage as well as Rdc in TE and TM modes, after verifying the applied voltage V to

be in the linear regime in order to validate Taylor expansion to the first order. Using

the four-layer waveguide model, r13 and r33 were estimated to be 28 and 83 pm/V

compared to 26 and 76 pm/V from the three-layer waveguide model.
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Figure 4.15: Rdc (black) and Rm (red) versus N at 1550 nm in (a) TE and (b) TM
modes. The peak voltage 1 Volt with an AC frequency of 200Hz was applied to the
NLO film to get the modulated signal Rm.
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The Teng-Man measurement was performed before the Au electrode was re-

moved for the ATR measurement. The Au electrode was thicker than ∼70 nm, so

the thickness of the Au layer can be ignored because of no reflection at the Au/air

interface. The index of refraction of Au was obtained from Ref. [89, 90]. To per-

form the rigorous Teng-Man analysis [82], the optical bias curve and the modulation

intensity are measured as a function of Ω introduced by SBC at discretely varying

angle of incidence ranging from 40 ◦ to 60 ◦ and the data set of δΨsp and δB/B are

extracted by curve fitting at each angle of incidence as shown in Fig. 4.16(a). The

ratio of r13 to r33 obtained from the ATR method was used to fit δΨsp and δB/B

in the rigorous Teng-Man analysis.
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Figure 4.16: (a) Measured δΨsp and δB/B versus angle of incidence. Dashed and
short dash lines are numerical fit to δΨsp and δB/B. (b) EO coefficients r33 cal-
culated by the simple model (triangle) and the rigorous model (circle) at discrete
angle of incidence. The r33 by the rigorous model at each angle are well aligned
with fitted r33.
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As shown in Fig. 4.16(b), the rigorous model gave a smaller r33 (82 pm/V) than

the one (99 pm/V) obtained using the simple model at a 45 ◦ angle of incidence,

because the multilayered structure of the sample produces a positive error resulting

in an overestimation of the EO coefficient (∼20% overestimated) from the simple

Teng-Man method.

Figure 4.17 shows the estimate of error from the simple Teng-Man method

generated from a Java Teng-Man error estimator program discussed in SectionB.2.

The error at the film thickness df = 2.26 µm is estimated to be 20%, which is much

the same as the one we calculated from the Teng-Man experiment. As summarized

in Table 4.1, the result from ATR based on the four-layer waveguide model shows a

good agreement with that from the rigorous Teng-Man analysis. Figure 4.17 shows

the estimate of error from the simple Teng-Man method for this case.
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Figure 4.17: The estimate of error from the simple Teng-Man analysis generated
using Java Teng-Man estimator.
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Table 4.1: Summary of EO coefficients of AJLS102 NLO film.

r13 (pm/V) r33 (pm/V) df ( µm)
ATR by 3-layer 27 80 2.1
ATR by 4-layer 28 83 2.3
Simple Teng-Man 33 99 -
Rigorous Teng-Man 28 82 2.3

4.4.4 AJ-TTE-II

A poled Teng-Man sample containing AJ-TTE-II synthesized by Alex Jen’s group

was measured. Unfortunately, r33 can not be measured using the ATR method,

because the refractive indices of the NLO film (no = 1.95 and ne = 2.18) are too

high to measure r33 with the current prism (prim index = 2.13 at 1310 nm). Only

r13 was measured and was plugged into the fitting program for the rigorous Teng-

Man analysis. Measured δΨsp and δB/B were fitted as shown in Fig. 4.18(a). The

tweaked value of γ for the ratio of r13 to r33 was ∼0.34 to get r33 = 350 pm/V. The

extinction coefficient of the NLO film is estimated to be ∼0.01 to get the best fit.

Figure 4.18(b) shows the r33’s by the simple model and the rigorous model. The

r33’s by the rigorous model at all angles of incidence are consistent, while the ones

by the simple model are not. The simple model r33 is 470 pm/V at a 45 ◦ angle of

incidence, which is ∼34% overestimated. The rigorous model s33 is estimated to be

30 pm/V.
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Figure 4.18: (a) Measured δΨsp and δB/B versus angle of incidence. Dashed and
short dash lines are numerical fit to δΨsp and δB/B. (b) EO coefficients r33 cal-
culated by the simple model (triangle) and the rigorous model (circle) at discrete
angle of incidence. The r33’s by the rigorous model at each angle are well aligned
with fitted r33.
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Chapter 5

Conclusions

5.1 Summary

First, we have briefly reviewed the basic principles of second-order nonlinearity of

poled NLO films. We have studied the relation between the chromophore orientation

and second-order nonlinearity based on the oriented gas model.

Second, we have presented new mathematical expressions for analyzing Teng-

Man data in both transparent and absorptive films that take into account the optical

properties of the TCO layer. The formulas presented were derived using a rigorous

model that includes the effect of multiple reflections inside the multilayered struc-

ture at any angle of incidence. In addition, a new expression has been derived for

the electrochromic effect in the simple model. A curve fitting procedure has been

described for the full profiles of angle dependent Idc and Im to extract more accurate

complex EO coefficient values from the experimental data. Based on a linear least

squares fitting, this method is expected to facilitate the use of a rigorous model to

obtain reliable EO coefficients for poled Teng-Man samples. In order to use the

rigorous model, however, it is necessary to know detailed information about the

sample because simultaneously fitting multiple parameters does not give a unique

fit. We have shown that the relative error from using the simple model can exhibit

cyclic, asymptotic, and irregular behaviors depending on the operating wavelength

as the thickness of the polymer film increases. The error extremes can be reduced
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by choosing an operating wavelength where the absorption of the polymer and TCO

are small simultaneously, not by decreasing the thickness of the polymer film on the

order of a wavelength or less. We also note that the complex quadratic EO coeffi-

cient can be measured by detecting the signal at twice the fundamental frequency

or by applying a DC offset to the polymer film with a sinusoidal bias as discussed

in Ref. [55]. Our formulas can easily be modified to include these effects. We also

expect that our analysis can be applied to the interferometric types of measurement

to estimate the relative error introduced by the TCO layer.

In addition, we have investigated the suitability of using thick LiNbO3 crystal

to validate a Teng-Man setup for measuring EO coefficients of poled thin films. We

used our new mathematical expressions for the rigorous analysis of Teng-Man data

that we discussed earlier. We found that if the light reflected once through the

sample is detected and other spurious reflections are blocked, thick crystals such as

z-cut LiNbO3 can be analyzed using the simple model because the thickness is large

enough to avoid multiple reflections. Consequently, the EO measurement of thick

z-cut LiNbO3 can be used to verify that the Teng-Man simple model is valid, but

it is not appropriate for validating thin film measurements.

Generally, if no reflections are blocked, the reflectance depends on the beam

waist. Reflections from a tightly focused beam can produce an reflectance discrep-

ancy between the plane wave analysis and Gaussian beam analysis. When the beam

waist is large compared to the thickness in order to be able to apply plane wave

analysis, rapid reflectance fluctuations occur with angle of incidence in the case of

thick samples.

Third, we have discussed the advantages and accuracy of the ATR method

for EO measurement of a poled NLO film containing a TCO layer. We have shown

that the NLO film indices of refraction estimated by using the three-layer waveg-
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uide model are quite reliable but the estimation of the film thickness is not. The

closed-form expressions of ∂N/∂n’s were presented for the three-layer waveguide

model. They were used to show a large difference with ∂N/∂n’s from the four-layer

waveguide model. The ATR method based on the three-layer waveguide model can

introduce a considerable error in r33 when the film has only one guided mode. So

multimode films are recommended for more accurate analysis. The error can be

reduced by using the four-layer waveguide model containing a TCO layer because

it gives a reasonable estimate of the film indices, thickness and ∂N/∂n’s. We note

that the relative error in r33 from a single-mode film is larger than that from a mul-

timode film and decreases asymptotically as the film thickness increases, whereas

the error from the simple Teng-Man method shows a large cyclic variation. We have

found that as the film is thinner and the mode used in the calculation goes higher,

the assumption of the slight shift in reflectivity curve (Rdc) under a bias is more

incorrect.

Lastly, we have presented the experimental results. The ellipsometric mea-

surement of TCO such as ITO and ZnO was discussed for the determination of

the optical properties. It is shown that a Lorentz and/or Drude model is suitable

for ITO, while a Gaussian model is better for ZnO. For some cases, TCO can be

difficult to characterize because the optical properties can vary widely with deposi-

tion conditions and post-deposition processing. A graded layer often satisfies these

requirements. Selected poled NLO polymers were analyzed by a rigorous Teng-

Man analysis and/or ATR method. We have showed that the result from the ATR

method based on a multilayer structure containing a TCO layer shows good agree-

ment with that from the rigorous Teng-Man analysis. A very high EO coefficient

(r33 = 350 pm/V) has been measured for AJ-TTE-II at 1310 nm. Table 5.1 shows

the summary of EO coefficients of the NLO films that we have discussed. We also
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Table 5.1: Summary of EO coefficients of four NLO films and LiNbO3 at 1310 nm.

r33 (pm/V) ne n3
er33 (pm/V)

AJ302 150 1.72 763
AJ404L 210 1.8 1225
AJLS1021 83 1.71 415
AJ-TTE-II 350 2.2 3727
LiNbO3 30 2.15 298
1AJLS102 was measured at 1550 nm.

listed the value of n3
er33 because it is a meaningful parameter in determining the

change of the refractive index. Notably, the EO coefficient of AJ-TTE-II was ∼12

times higher than the best inorganic crystal LiNbO3.
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5.2 Research directions

So far, we have focused on the measurement of the LEO effect of poled polymer thin

films. Other research areas as an extension of the work presented in this thesis are

discussed below.

The quadratic EO effect is one of the third-order nonlinear phenomena called

DC Kerr effect, χ(3)(−ω; 0, 0, ω). Using Teng-Man method, it can be characterized

by detecting the signal at twice the fundamental frequency or by applying a DC offset

to the polymer film with a sinusoidal bias. However, our formulas should be modified

to include these effects. The piezoelectric effect produces useful applications such as

sensors, actuators, motors and so on. When the NLO film has three or more guided

modes, piezoelectric effects can be characterized using ATR method, but we have

not presented an experimental result.

As we pointed out earlier, it is difficult to characterize the LEO effect from

thick films (> a few tens microns). The reason is that δΨsp fluctuates fast with

increasing film thickness in Teng-Man method. In addition, the guided modes in

ATR are too dense to identify each individual mode. Above all, a very high voltage

supply is needed to get a measurable change of the refractive index.

A large second-order nonlinearity opens possibilities for low voltage operation

in various polymer optoelectronic devices such as MZ EO modulator, phase-shifter,

resonator, mode converter, and so on. In addition to large nonlinearity, NLO poly-

mer should satisfy high intrinsic temporal stability and low optical loss etc., for

device quality. There has been considerable progress in MZ EO modulator develop-

ment in the last few decades, but research is still ongoing.
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You don’t have to be a fantastic hero to do certain things − to com-

pete. You can be just an ordinary chap, sufficiently motivated to reach

challenging goals. - Edmund Hillary
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Appendix A

δβ and H Functions in Teng-Man

Method

A.1 Variation of the propagation constants inside the NLO film

Here, we present detailed expressions for the variation of the s- and p-wave propa-

gation constants. From Snell’s law we have

ñs sin θ̃s = ñp sin θ̃p = sin θ ≡ N, (A.1)

where ñs = ño and

1

ñ2
p

=
cos2 θ̃p

ñ2
o

+
sin2 θ̃p

ñ2
e

. (A.2)

Using N , which is of course constant at a given angle of incidence, we can write the

propagation constants in the forms

βs = ko

√
ñ2

o −N2 (A.3)

and

βp = ko
ño

ñe

√
ñ2

e −N2. (A.4)

An advantage of expressing the β’s in terms of N is that we do not have to explicitly

deal with changes in the internal angles θs and θp as the refractive index changes -

they are automatically accounted for in this representation. The variations of βs,p
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induced by the applied voltage are given by

δβs =
koño√
ñ2

o −N2
δño (A.5)

and

δβp =
ko

ñe

√
ñ2

e −N2δño +
koñoN

2

ñ2
e

√
ñ2

e −N2
δñe . (A.6)

Outside the absorption band, we can make the approximations discussed in Section

2.2.1 to obtain

δβs ≈ kono√
n2

o −N2
(δno + iδκo) (A.7)

and

δβp ≈ ko

ne

√
n2

e −N2(δno + iδκo) +
konoN

2

n2
e

√
n2

e −N2
(δne + iδκe) . (A.8)

A.2 H functions in the rigorous model

In this appendix, we derive detailed expressions for the functions Hr and Hs that

appear in Eq. 2.20 and describe the linear dependence of δB̃/B̃ on r33 and s33 for the

rigorous expression of reflectance. Also, because many software analysis packages

can handle complex numbers efficiently, we retain the complex expressions for δño

and δñe as described in Eq. 2.1.

Performing the operations described in Eq. 2.20, we have

Hr = − V

2d4

[
γ

rs

∂rs

∂ño

ñ3
o + γ

(
1

rp

∂rp

∂ño

ñ3
o

)∗
+

(
1

rp

∂rp

∂ñe

ñ3
e

)∗]
(A.9)

and

Hs = − V

2d4

[
γ

rs

∂rs

∂ño

ñ3
o − γ

(
1

rp

∂rp

∂ño

ñ3
o

)∗
−

(
1

rp

∂rp

∂ñe

ñ3
e

)∗]
. (A.10)

Next, we derive detailed expressions for the derivatives in Eqs.A.9 and A.10

using the rigorous reflection coefficients rs and rp. Expanding Eq. 2.35, we see that
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the required derivatives in Eqs. A.9 and A.10 are off the form

1

r

∂r

∂ño,e

=
1

r

∂r

∂r̂34

(
∂r̂34

∂r34

∂r34

∂ño,e

+
∂r̂34

∂r̂45

∂r̂45

∂r45

∂r45

∂ño,e

+
∂hr̂34

∂β4

∂β4

∂ño,e

)
, (A.11)

where we have omitted the s, p designations to prevent the notation from becoming

unduly cumbersome. The three derivatives with respect to ño and ñe are given by
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where the f ’s and g’s are defined by
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with q = s, p . The remaining derivatives in Eqs.A.12-A.14 are given by
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Here, the wave impedance Z’s are defined in Eq. 2.37. For writing a computer

program, it is straightforward to start with the definition of the wave impedance

163



Z’s in Eq. 2.37 and substitute from Eq.A.18 sequentially back to Eqs.A.9 and A.10

using also the definition of the total reflection coefficients rs and rp from Eq. 2.35

However, it is in general unduly cumbersome to express the functions Hr and Hs in

Eqs.A.9 and A.10 as explicit functions of the linear parameters (complex refractive

index and thickness) of the multilayer sample structure.
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Appendix B

Error Estimator

B.1 Teng-Man error estimator in MATLABTM

We present the MATLABTM codes for the estimate of error from the simple Teng-

Man method as defined in Eq. 2.47. These include 7 functions and 1 main code as

an example. The main code allows you to handle a Teng-Man sample containing

buffer layers at both sides of the thin film.

TE reflectance at single layer

% function for reflectance of s-polarized light at two different medium
% out=rs(n1,n2,N)
% n1, n2 : ordinary refractive indices at medium 1 and 2
% N : index*sine of angle of incidence
function out=rs(n1,n2,N)
out=(1/sqrt(n2^2-N^2)-1/sqrt(n1^2-N^2))/(1/sqrt(n2^2-N^2)+1/sqrt(n1^2-N^2));

TM reflectance at single layer

% function for reflectance of p-polarized light at two different medium
% out=rp(n1o,n1e,n2o,n2e,N)
% n1o, n1e : ordinary and extraordinary refractive indices at medium 1
% n2o, n2e : ordinary and extraordinary refractive indices at medium 2
function out=rp(n1o,n1e,n2o,n2e,N)
out=(sqrt(1-(N/n2e)^2)/n2o-sqrt(1-(N/n1e)^2)/n1o)/(sqrt(1-(N/n2e)^2)

/n2o+sqrt(1-(N/n1e)^2)/n1o);

TE reflectance at multilayer

% function for reflectance of s-polarized light at multilayered medium
% nd is the matrix containing index and thickness information
% if it has 8 layers,
% nd=[ no1, ne1, 0; no2, ne2, d2; ... ; no6, ne6, d6; ... ;no8, ne8, 0];
% :..>ordinary index @ 2 layer :..> thickness of 6 layer
% no, ne : ordinary and extraordinary refractive indices
% d : thickness (micrometer)
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% wl : wavelength (micrometer)
% N : index*sine of angle of incidence
function out=rsm(nd,wl,N)
row=size(nd,1);
in=row-1;
y=rs(nd(in,1),nd(in+1,1),N);
for in=row-2:-1:1

x=rs(nd(in,1),nd(in+1,1),N);
z=exp(2i*bs(wl,nd(in+1,1),N)*nd(in+1,3));
y=(x+y*z)./(1+x*y*z);

end;
out=y;

TM reflectance at multilayer

% function for reflectance of p-polarized light at multilayered medium
% function out=rpm(nd,wl,N)
% nd is the matrix containing index and thickness information
% if it has 8 layers,
% nd=[ no1, ne1, 0; no2, ne2, d2; ... ; no6, ne6, d6; ... ;no8, ne8, 0];
% :..>ordinary index @ 2 layer :..> thickness of 6 layer
% parameters as defined in rsm
function out=rpm(nd,wl,N)
row=size(nd,1);
in=row-1;
y=rp(nd(in,1),nd(in,2),nd(in+1,1),nd(in+1,2),N);
for in=row-2:-1:1

x=rp(nd(in,1),nd(in,2),nd(in+1,1),nd(in+1,2),N);
z=exp(2i*bp(wl,nd(in+1,1),nd(in+1,2),N)*nd(in+1,3));
y=(x+y*z)/(1+x*y*z);

end
out=y;

TE propagation constant

% function for propagation constant of s wave
% out=bs(wl,n,N)
% n : ordinary refractive index
function out=bs(wl,n,N)
out=2*pi*sqrt(n^2-N^2)/wl;

TM propagation constant

% function for propagation constant of p wave
% out=bp(wl,no,ne,N)
% no, ne : ordinary and extraordinary refractive indices
function out=bp(wl,no,ne,N)
out=2*pi*no*sqrt(1-(N/ne)^2)/wl;

Error from the simple Teng-Man model
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% function to find error of r33 from simple model
% in multilayered structure with buffer.
% function out=error(nd,wl,N,r33,s33,a)
% input argument
% nd : index and thickness matrix
% wl : wavelength (micron)
% N : sine of incident angle
% a : r13/r33
function out=error_r33(nd,wl,N,r33,s33,a)
r13=a*r33;
s13=a*s33;
V=1; % applied peak voltage

dno=-0.5*nd(4,1)^3*(r13+i*s13)*V/nd(4,3);
dne=-0.5*nd(4,2)^3*(r33+i*s33)*V/nd(4,3);
nd_V=nd+[0,0,0;0,0,0;0,0,0;dno,dne,0;0,0,0;0,0,0;0,0,0];

Bt=rsm(nd,wl,N)*conj(rpm(nd,wl,N)); % B
dBt=rsm(nd_V,wl,N)*conj(rpm(nd_V,wl,N)); % dB
dBt_Bt=dBt/Bt; % dB/B

no=real(nd(4,1)); ne=real(nd(4,2));

% simple model EO coefficient
r33SM=wl*imag(dBt_Bt)/2/pi/V/(no*ne*N^2/sqrt(ne^2-N^2)+a*(no^3*sqrt(ne^2-N^2)

/ne-no^4/sqrt(no^2-N^2)));
out=(r33SM/r33 - 1)*100;

Main

% main code
clear all;
% Decide nFlag value to get the graph you want
% nFlag =1 : Plot error(%) vs. film layer
% nFlag =2 : Plot error(%) vs. buffer1 layer
% nFlag =3 : Plot error(%) vs. buffer2 layer
nFlag=input(’Input nFlag number (1, 2, or 3) :’);

% Specify indices and thicknesses at each layer
% [glass/TCO/buffer1/NLO film/buffer2/gold/air]
n2=1.5; % glass
n3=1.26+0.12i; d3=0.045; % TCO
n4=2.4; n4e=2.5; d4=0.1; % buffer1
n5o=1.7; d5=2; n5e=1.7; % NLO film
n6=1.5; n6e=1.5; d6=0; % buffer2
n7=0.42+8.12i; d7=0.1; % Au electrode
N=sin(45*pi/180); % sine of angle of incidence
wl=1.319; % wavelength (um)
r33=100e-6; % r33 (10^-6 m/V)
s33=0; % s33 (10^-6 m/V)
a=1/3; % ratio of r13 to r33

nd=[n2,n2,0;n3,n3,d3;n4,n4e,d4;n5o,n5e,d5;n6,n6e,d6;n7,n7,d7;1,1,0];
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xd=0.5:0.01:3;
for xi=1:length(xd)

if nFlag == 1
nd(4,3)=xd(xi);

elseif nFlag == 2
nd(3,3)=xd(xi);

elseif nFlag == 3
nd(5,3)=xd(xi);

end;
% Error between simple model r33 and correct r33
Err(xi)=error_r33(nd,wl,N,r33,s33,a);

end;

plot(xd,Err,’r-’);
if nFlag == 1

xlabel ’polymer thickness (\mum)’;
elseif nFlag == 2

xlabel ’buffer1 thickness (\mum)’;
elseif nFlag == 3

xlabel ’buffer2 thickness (\mum)’;
end;

ylabel ’Error (%)’;
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B.2 Java Teng-Man error estimator

We have developed a stand-alone program1 for the estimation of error resulting

from the simple Teng-Man method in Java language to offer convenience to those

who wish to estimate the error without any dependency on commercial numerical

software such as MATLABTM and Mathematica. In addition, it runs on any OS

(Operating System) as long as JVM2 (Java Virtual Machine) is installed. This is

simply conversion of MATLABTM codes to Java application. It allows inclusion

of buffer layers between both TCO/film and film/electrode layers in the multilayer

structure.

This was developed under Netbeans IDE3 (Integrated Development Environ-

ment) and used a free Java chart library called JFreechart4 for the GUI (Graphical

User Interface).

1For a free copy, email park.donghun@gmail.com or herman@lps.umd.edu.
2http://www.java.com/
3http://www.netbeans.org/
4http://www.jfree.org/jfreechart/
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Figure B.1: Snap shot of Java Teng-Man error estimator.
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