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Abstract

In this paper, we investigate the behavior of the various algorithms of TCP, the internet data

transport protocol, over wireless links with correlated packet losses. For such a scenario, we show

that the performance of NewReno is worse than the performance of Tahoe in many situations

and even OldTahoe in a few situations on account of the ine�cient fast recovery method of

NewReno. We also show that random loss leads to signi�cant throughput deterioration when

either the product of the square of the bandwidth-delay ratio and the loss probability when in

the good state exceeds 1 or the product of the bandwidth-delay ratio and the packet success

probability when in the bad state is less than two. The performance of Sack is always seen to

be the best and the most robust thereby arguing for the implementation of TCP SACK over

the wireless channel. We also show that under certain conditions the performance depends not

only on the bandwidth-delay product but also on the nature of timeout whether coarse or �ne.

We have also investigated the e�ects of reducing the fast retransmit threshold.

1 Introduction

The transport protocol used by many internet based applications like http, ftp, telnet etc. is TCP

(transmission control protocol). TCP is a reliable end to end window based transport protocol

designed for the wireline networks characterized by negligible random packet losses. The way that

�This research was supported in part by NSF under a CAREER award NCR-9502614 and by the AFOSR under

grant 95-1-0061.

yA partial version of this paper appeared in Sigmetrics99 Atlanta.

1



TCP works is that it keeps increasing the sending rate of packets as long as no packets are lost.

When packet losses occur, for e.g. due to the network becoming congested, TCP decreases the

sending rate. Thus, basically TCP infers that every packet loss is due to congestion and hence

backs o� in the form of reducing the send window. Extending TCP as used over the wireline links

to the wireless links also, may not be an e�cient solution due to the di�erent characteristics of

the wireline and the wireless links. This is because wireless networks are characterized by bursty

and high channel error rates unlike the wireline networks. Due to this the throughput of a TCP

connection over a wireless link su�ers. In spite of this, the TCP protocol is still used to transfer

data over the wireless link though a lot of attention is currently being given to the design of a better

protocol over the wireless link [16, 2, 3, 14, 4, 7]. Because of the di�culty of modelling the TCP

protocol analytically, many of these studies have been simulation based. On the other hand, it is

not possible to obtain insight into the e�ects of particular parameters on the behavior of the TCP

protocol using simulations of speci�c settings. Further, investigations to improve TCP or design

a better transport protocol can become less cumbersome given a simple and accurate analytical

model for TCP.

The �rst step towards the design of a better transport protocol for the wireless networks has

to be a better understanding of the way TCP works over the wireless links. This would reveal the

reasons for the ine�ciency of TCP over wireless links. In order to get a deeper understanding of

the way that TCP works over wireless links there has been some e�ort recently on the analytical

study of TCP over wireless links [10, 11, 17, 12]. Typically, the random losses on the wireless link

are modeled using two di�erent methods. In case of a simple model called the iid model, it can

be assumed that each packet is lost with a certain constant probability independent of the other

packets, which corresponds to a Bernoulli loss model. The second model namely the correlated

packet loss model is more realistic and it does not model the packet losses as being independent of

each other but does address the correlation between the losses of di�erent packets.

[10] deals with the e�ects of iid packet losses on TCP performance. They address the TCP

versions Tahoe, Reno and NewReno but only in the context of a local network scenario. They also

evaluate the various protocol features such as fast retransmit and fast recovery. But contrary to

the actual situation, the packet transmission times are assumed to be exponentially distributed as

is the transmission time of the packet on the lossy link. Further, they also model the congestion

avoidance phase probabilistically in which each ack causes the window to be incremented by 1 with
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a certain probability. Note that both these assumptions are untrue but have to be resorted to in

the approach taken by them so as to carry out the mean cycle time analysis. In this study the

authors also consider the less frequent case where the size of the receiver window is the constraint

on the sender's window increase and not the bandwidth delay product of the link. Thus, this study

precludes the study of the basic TCP mechanism whereby the window size is increased until there

is a loss due to congestion. This loss is caused on account of the bandwidth delay constraint. In

[13] only OldTahoe is considered over a link with iid losses. [12] also considers Tahoe and Reno in a

regime where the bandwidth-delay product of the network is high compared to the bu�ering in the

network. The key result that they provide is the characterization of a condition under which the

throughput over the lossy link degrades signi�cantly. They show using approximate analysis that

random independent packet loss leads to signi�cant throughput deterioration when the product of

the loss probability and the square of the bandwidth-delay product is larger than one.

[11] considers the behavior of TCP Tahoe and OldTahoe in the presence of correlated packet

losses. The results obtained though are applicable only in case of very low bandwidth wireless

links. More emphasis is also placed on analyzing a link layer solution, of hiding the losses from the

transport layer by link layer retransmissions, to the problem faced by TCP over the wireless link.

The approach used is also similar to the approach used in [10] and hence su�ers from the drawbacks

noted earlier. [17] which deals with TCP OldTahoe assuming a correlated loss model, also fails

to capture many interesting phenomena. The approach followed by them requires enumerating

the transmission time, acknowledgment time and timeout time of every packet in a cycle. This is

computationally cumbersome in case of the analysis of links with large bandwidth delay products

since in this case large number of packets have to be accounted for. Further, this approach cannot

be taken to model the fast retransmit and fast recovery mechanisms present in the newer TCP

versions like Tahoe, Reno, NewReno and Sack.

It should be pointed out that all the analytical studies and many of the simulation studies

reported have been concerned with just a single TCP connection. In addition to modeling of the

interaction between multiple TCP 
ows being notoriously di�cult, the main reason for this is to

develop insight into the interaction between random packet losses and the TCP dynamic window

adjusting mechanism. Note that while considering single connections if one were to ignore the

congestion control functions then the solution would be trivial. Some form of selective repeat ARQ

with a window large enough to exceed the bandwidth delay product of the link would be the best
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solution. It is quite obvious that such a scheme would be a disaster when many connections are

considered. Further, with the goal being to use the results of studies involving single 
ows to design

improvements in TCP for use by multiple users, congestion control functions would also have to be

considered and hence the above trivial solution is ruled out.

In this paper, we analyze the behavior of the di�erent TCP algorithms OldTahoe, Tahoe,

NewReno and Sack under conditions whereby the wireless channel is subjected to the more realistic

case of correlated packet losses. Since, the main aim of this study is to address the behavior of

the di�erent TCP versions under di�erent conditions of the wireless channel we do not consider

the e�ects of multiple 
ows at all. This, in fact could be a subject of future work. In this paper

we show that in certain circumstances characterized by bursty loss conditions, the performance

of NewReno can lag behind the performance of Tahoe. This performance gap can worsen against

NewReno as the bandwidth-delay product increases. We also show that the performance of Sack

is the best under all conditions, though at loss rates characterized by very small durations of good

periods the performance of the di�erent versions is equally bad. We also derive conditions under

which signi�cant throughput deterioration occurs under correlated loss conditions. Investigation

into the e�ects of reducing the fast retransmit threshold as well as using �ner timeout intervals is

also carried out and we show that these incremental changes to the TCP versions are e�ective only

in case of lossy conditions.

The plan of the paper is as follows. In section 2, we describe brie
y the various TCP versions.

In section 3, we specify the correlated loss model in detail. In section 4, we explain the approach

that we take in order to study the behavior of the di�erent TCP versions under di�erent wireless

channel conditions. In Section 5 we characterize the throughput of the di�erent TCP algorithms

as a function of the wireless channel parameters. Section 6 deals with the analytical study of

the performance of the di�erent TCP versions under various conditions. Finally conclusions are

presented in Section 7.

2 TCP Versions

We next look brie
y at the way the receiver and transmitter function in case of a transport protocol

like the TCP. The receiver sends back an ack for every packet received from the transmitter �. The

�For ease of description we ignore variations like acknowledging every other packet
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acks convey information about the next expected packet sequence that the receiver expects. Note

that if packet m is lost and packets after m get through, then the receiver sends back duplicate acks

all conveying information that the receiver expects packet with sequence number m. The number

of duplicate acks depends on the number of packets after m that the receiver gets. The acks are

cumulative in that an ack carrying sequence number k, acknowledges all data packets upto k. The

receiver presents packets in sequence to the user. Hence any packets received out of sequence are

stored in a bu�er maintained by the receiver with a maximum size corresponding to Wrec packets.

The acks also carry information about the size of the bu�er at the receiver. The transmitter window

strategy guarantees that no more than Wrec packets will be in transit.

The transmitter operates on a window based transmission strategy. At any time t, the trans-

mitter knows the packets that have been successfully acked by the receiver. Let A(t) correspond

to a window edge of packets such that acks for all packets to the left of A(t) have been received at

the sender while the ack for the packet to the immediate right of A(t) has not been received by the

sender at time t. Further, the transmitter also has a window W (t) associated at time t such that

only A(t) +W (t) packets are allowed to be outstanding (without any acks received for those pack-

ets) at time t. On the receipt of acks, A(t) advances while the window adaptation policy followed

causes W (t) to increase in a predetermined fashion. Loss of packets is detected by the transmitter

either by a timeout or by the receipt of duplicate acks sent by the receiver. In the wireline network

loss of packets typically signals congestion. Hence, on detection of a packet loss, the window W (t)

is decreased in a fashion determined by the window adaptation policy and transmission restarts by

resending the lost packet. Note that A(t) does not advance in such a situation. Note also thatW (t)

cannot increase beyond a minimum of Wrec or Wm where Wm is the maximum possible window

size allowable on account of the constraint on the sum of the bandwidth delay product and the

bu�er size. In the sequel, we assume that only Wm restricts the window size while Wrec does not,

i.e. Wrec > Wm. The case where Wrec �Wm can also be addressed using our approach but we do

not do it here for lack of space.

Thus as can be seen, the window adaptation procedure depends on the policy followed. Based

on the policy followed, we have di�erent TCP algorithms. We next explain the di�erent TCP

algorithms that we study. Each di�ers on the response in the form of window size decrease to one

or more packet drops and the fashion of window increases on no packet drops. The algorithms

are of 5 types namely, TCP OldTahoe, TCP Tahoe, TCP Reno, TCP NewReno and TCP Sack.
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There are also other TCP algorithms like TCP Vegas but we do not concern ourselves with them

in the rest of the paper and hence do not describe them here. The window adaptation procedure

for the di�erent TCP versions was originally proposed and developed by Van Jacobson [8]. The

description next follows that of [6] and [12].

Data exchange using a transport protocol involves a session set up phase, a data transfer phase

and a session tear down phase. Since, in this paper we are interested only in the bulk throughput

performance, we describe and model only the data transfer phase of the protocol which dominates

the resulting performance. We �rst describe the basic window adaptation procedure common to

all TCP versions and then look at the speci�c congestion control and data loss recovery protocols

implemented in the di�erent TCP versions. At each time t, we denote the transmitter's congestion

window by W (t) and a threshold called the slow start threshold by !(t). These are de�ned for all

the protocol versions at all times. Hence, we have

� if W (t) < !(t), each new ack from the receiver results in W (t) being incremented by 1. This

constitutes the slow start phase. Thus this results in the window size doubling every round

trip time during this phase.

� if W (t) � !(t), each ack for a new packet results in W (t) being increased by 1=bW (t)c as

long as the congestion window W (t) is less than the receiver window. If W (t) equals the

receiver window size, then it remains unchanged on receipt of a new ack. This constitutes

the congestion avoidance phase. Thus, this results in the window size increasing by one

every round trip time during this phase provided the congestion window size is less than the

receiver window size .

� if timeout occurs at the transmitter, then set W (t+) = 1 and !(t+) = bW (t)=2c and retrans-

mission starts from the �rst lost packet detected

If a packet is lost or damaged while in transit from the sender to the receiver then no ack cor-

responding to this packet is issued and this packet will have to be retransmitted. But in order

to determine when to retransmit a timer is associated with every packet when it is sent. If the

timer expires before the packet is acknowledged, then the sender must retransmit. But a problem

that arises is how to determine the value of the timer. Using a very small value as well as using a

very large value for the retransmission timer both create problems. The approach normally taken
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is to have an adaptive scheme whereby an exponential smoothing technique is used to estimate

the round trip time of the connection. The variability in the estimate in the form of mean devi-

ation is then used along with the estimated round trip time to arrive at a dynamic estimate of

the value of the retransmit timer [8]. Further, many implementations then convert the calculated

round trip time in terms of a coarse timer granularity of 0.5 seconds. Hence, it is expected that

whenever a packet is not acked within this interval the probability that it is lost is far greater than

the probability that it is delayed for so long and in the rest of this work we do neglect the latter

possibility. Thus, timeouts always imply packet loss. Further, we also take the approach that only

one retransmission timer is maintained for an entire window of packets. If an ack is received then

the appropriate packets are removed from the active window and the timer is reset. If the timer

goes o� without the expected ack being received, then retransmit the packet at the front of the

window and reset the timer. Of course, it has to be remarked that the TCP standard does allow

other possible implementations but we do not consider those either because the other possibilities

are more complex to implement or because the other possibilities are less e�cient than the option

that we consider. We next provide version speci�c details of the di�erent TCP versions.

TCP Old Tahoe:[8] The window adaptation is as given above. A lost packet is always detected

by timeout. Hence, after a packet loss the transmitter has to wait for the timeout which is generally

coarse (timer interval in increments of 500ms).

TCP Tahoe: [6] In contrast to the case of Old Tahoe where every packet loss is detected by a

timeout, in Tahoe if the number of duplicate acks equalling 
 are received by the sender, the sender

behaves as if timeout has occurred and begins retransmission of the packet perceived to be lost. It

is to be remarked here that a duplicate ack signi�es either that the packet following the correctly

acked packet was delayed so that it ultimately arrived out of order or that the packet was lost. In

the former case the packet does ultimately reach the receiver and the sender should not retransmit

this packet. In the latter case the arrival of a duplicate ack serves as an early warning that a packet

is lost. In order to make sure that we have a case of a lost packet rather than a reordered packet

Jacobson [8] recommends that a TCP sender wait until it receives three duplicate acks to the same

packet. Thus in practical implementations the value of 
 is taken as 3. This is because it is seen

that for such a value of 
, it is highly likely that the following packet is lost and not reordered.

The sender window and slow start threshold are as given above. This method of detecting

packet loss on the basis of the duplicate acks is called the fast retransmit procedure. As is obvious,
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this can lead to higher channel utilization and better throughput which can be especially signi�cant

when dealing with coarse timers. Note that the strategy followed to recover from lost data in case

of TCP Tahoe is to retransmit packets that might already have been successfully delivered.

TCP Reno: [6] This version modi�ed the fast retransmit operation to include fast recovery.

Once the packet loss is detected by the fast retransmit procedure, the sender retransmits the packet

deemed to be lost and reduces its congestion window by half. Now, instead of entering the slow-

start phase, the sender uses additional incoming acks to clock subsequent outgoing packets. Thus,

if the packet loss was at a window of �, then !(t+) = b�=2c and W (t+) = !(t+) + 
, the addition

of 
 being done since 
 packets have successfully left the network leading to the 
 duplicate acks.

Now after retransmitting only the �rst lost packet, the sender waits for the ack of the retrans-

mitted (lost) packet. If the sender receives any more duplicate acks while waiting for the ack of

the retransmitted packet, W (t) is increased by 1 for each duplicate ack received. Thus the sender

"in
ates" its window by the number of duplicate acks received. After half a window of duplicate

acks are received, the sender transmits a new packet for each additional duplicate ack received. In

other words, until b�=2c + number of duplicate acks received exceeds �, the sender cannot transmit

any more new packets. Upon receipt of an ack for new data (recovery ack) the sender exits fast

recovery and starts transmission with a window of W (t+) = !(t+) = b�=2c.

When a single packet is dropped from a window of data then the ack for the �rst retransmission

will complete the recovery as is obvious from above. But, if there were multiple packet losses from

a window of data then the ack for the �rst retransmitted packet leads to a partial ack. A partial

ack takes out the sender from fast recovery and the usable window is de
ated back to the size of

the congestion window. If the resulting window size is su�cient to permit the sender to transmit

additional packets that can elicit further duplicate acks then the sender may enter fast recovery

again and repeat the process for the next lost packet. But if the number of duplicate acks are

insu�cient, then the recovery stalls and a timeout has to be waited for. After a timeout the basic

algorithm is followed.

The strategy followed by the Reno sender to recover from losses is to retransmit at most one

dropped packet per round trip time. For a single packet lost from a data window, Reno signi�cantly

improves upon the behavior of Tahoe but with multiple packet losses from a data window, Reno

su�ers from serious performance problems [6, 12].

TCP New-Reno: [6] This version addresses the problem faced by Reno when multiple packets
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are lost from a window of data. In Reno receipt of partial acks takes the sender out of fast

recovery. In contrast, the NewReno sender does not get out of fast recovery on the receipt of partial

acks. Instead, partial acks are treated as an indication that the packet immediately following the

acknowledged packet has been lost and should be retransmitted. Thus, when multiple packets

are lost from a single window of data, NewReno can recover without a retransmission timeout,

retransmitting one lost packet per round-trip time until all lost packets from that window have been

retransmitted [6]. Of course, if the number of packets lost is such that the sender cannot enter the

fast retransmit phase, then a timeout has to be resorted to. The sender remains in fast recovery

until all of the data outstanding when fast recovery was initiated has been acknowledged.

Since NewReno addresses the shortcomings of Reno, it is obvious that Reno can never better

the performance shown by NewReno. Hence, in the rest of the paper, we do not concern ourselves

with Reno. Another reason for this is also that it has been shown for multiple losses, Reno can

perform worse than Tahoe [6, 12].

TCP Sack:[6] The Sack (selective ack) version of TCP that we consider is a conservative

extension of Reno in that they use the same policies for the window adaptation. Each ack received

by the sender contains information about any non-contiguous set of data that has been received

and queued at the receiver. From this the sender is able to infer the di�erent packets lost. The

Sack sender enters fast recovery on receiving 
 duplicate acks. The actual implementation during

fast recovery di�ers from the Reno implementation but the overall idea is the same and hence we

do not describe this here for lack of space. Details about the actual implementation can be found

in [6]. On receiving partial acks, the sender does not exit fast recovery just like in NewReno. But a

di�erence with NewReno is that since the sender has more information about the di�erent packets

lost, it is not constrained to retransmit at most one dropped packet per round trip time as NewReno

is. The sender exits fast recovery when a recovery ack is received. Even here, when the sender is

unable to enter the fast retransmit phase due to lack of adequate duplicate acks, timeout has to be

resorted to.

In the analysis though, we ignore the fact that on successive timeouts the actual value of the

timeout is increased exponentially. Further for the purpose of simplifying the analysis, we also

assume that packets retransmitted during fast recovery are not dropped. As a result it is to be

kept in mind that our analysis is less conservative and hence gives optimistic values compared to

the actual implementations during regimes of high loss probability. We would also like to remark
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that it is very much possible using our approach to give up these assumptions at the cost of

higher complexity. Since these assumptions a�ect the performance only in the region of high loss

probability where the e�ciency is already very low, we choose to reduce complexity by making

these assumptions. Note also that these approximations done to simplify the analysis in no way

a�ect the results that we obtain in this paper. As done in case of the other studies, we assume that

acks are not lost. This is justi�ed because of the fact that the ack packets have a very small loss

probability due to the small size of the packets. Further because of the cumulative nature of acks,

the only consequence of ack losses is increased burstiness on the forward path [15]. Our description

above of the di�erent TCP versions has been very brief. Readers requiring more details can refer

to [6].

3 Loss Models

It is well known that mobile radio channels in an actual physical environment are subject to

multipath fading. This multipath fading process can be slowly varying for typical user speeds and

carrier frequencies in a mobile environment. Due to this the assumption of iid packet losses as is

generally done is not entirely true. Hence, we consider a model incorporating correlated losses as

we specify next.

The multipath fading process in a mobile environment follows a Rayleigh distribution [9]. The

issue of modelling a correlated Rayleigh fading channel by means of a simple two state Markov

chain has been addressed in [11] from where the description next is adapted. The two states that

we consider are the "Good" state and the "Bad" state. We assume that the packet succeeds with

probability 1 while in the good state and is lost with probability 1 while in the bad state. The

transition probability matrix, Cm, of the simple two state Markov chain is then given by

Cm =

0
B@ 1� � �

� 1� �

1
CA (1)

The chain is assumed to be embedded at the beginnings of packet transmissions. Thus, if a number

of packets is being transmitted back to back, and if the channel is in a Good state when a packet is

about to be transmitted then this packet will be successful and the next packet will be successful

or unsuccessful with probabilities 1�� and � respectively. This model which is commonly adopted

in wireless fading channels [11, 17, 5] tracks fading but excludes impairments such as path loss and
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shadowing which vary on a much longer time scale. These phenomena are assumed to be taken care

of by power control mechanisms and hence are not considered. Thus, given � and � the channel

properties are completely characterized. Further, the steady state properties of the chain are then

given by �G and �B which symbolize the steady state probability that the channel is in the good

state and bad state respectively. These are given by

�G =
�

�+ �
�B =

�

�+ �
(2)

Note that the average duration of the bad state is given by 1=� while the average duration of

the good state is given by 1=� slots or packets since we assume that each slot corresponds to the

transmission time of a packet.

4 Approach

The behavior of the di�erent TCP algorithms is analyzed based on the concept of packet trains

which we introduce next. For ease of explanation we consider TCP NewReno. A NewReno sender

when sending new data is generally either in the slow start phase or the congestion avoidance phase.

The loss of a packet in either of these phases is subsequently followed by mechanisms to recover

the lost packet(s). A NewReno sender uses the fast retransmit mechanism whereby the arrival of

a certain number of duplicate acks signals a packet loss. Of course if not enough duplicate acks as

required by the fast retransmit mechanism arrive back at the sender, then a timeout, which is the

non-arrival of the ack of a packet within a certain time interval, is taken as an indication of the

packet loss. Following the detection of a packet loss through the fast retransmit mechanism the

NewReno transmitter resorts to the fast recovery mechanism whereby the window size is reduced

by half and the sender uses additional incoming acks to clock outgoing packets. The fast recovery

mechanism concludes successfully when all the lost packets have been recovered and this is followed

by the congestion avoidance mechanism. Of course if a retransmit timeout has to be resorted to,

then the sender always starts in the slow start phase after the timeout interval.

Hence, the operation of a NewReno transmitter can be considered in terms of cycles. A cycle

begins with either the slow start phase or the congestion avoidance phase following the detection of

a packet loss. The cycle ends either with the successful conclusion of the fast recovery mechanism

or on the basis of the retransmit timeout mechanism. This timeout can occur due to the absence

of the fast recovery mechanism. The fast recovery mechanism may be absent because of the lack
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of adequate duplicate acks to infer packet loss thereby causing the fast retransmit mechanism to

fail. Thus a typical cycle in case of New Reno can start in the congestion avoidance phase, have

the fast recovery phase and end on the conclusion of the fast recovery phase because all the packets

transmitted during the fast recovery stage have been successful.

Thus, every cycle can be considered to have three stages, the �rst stage in which the sender

is either in the slow start or the congestion avoidance phase. The fast recovery mechanism which

constitutes the second stage follows the detection of a packet loss. During this stage the window

size is reduced and the packets inferred to be lost are retransmitted. The third stage consists of

the retransmit timeout interval. While the �rst stage is present in every cycle, the second and

the third stages may or may not be present depending on the packet loss(es). Note that with our

assumptions only one of either the second or the third stages is present in a NewReno sender.

In order to explain the working of these algorithms we de�ne kth minicycle of the �rst stage

of ith cycle to be the time taken to transfer the kth window of packets during the �rst stage of

the ith cycle. Hence, the �rst minicycle corresponds to the �rst window of packets on the start

of a new cycle. Thus, every cycle of NewReno if in slow start phase begins with one packet being

transmitted in the �rst mini-cycle and if it is in the congestion avoidance phase, then the number

of packets transmitted in the �rst mini-cycle depends on the window size when the packet drop was

detected in the previous cycle. In every successive mini-cycle the number of packets transferred is

double the number of packets transferred during the present mini-cycle as long as the sender is in

the slow start phase. During the congestion avoidance phase the number of packets transferred in

each mini-cycle is one more than the number of packets transferred during the previous mini-cycle.y

This goes on until there are one or more packet drops in a particular cycle causing the ack cycle to

either dry up or generate enough duplicate acks resulting in the end of the �rst stage of the cycle.

End of the �rst stage can lead to the second stage. Since a NewReno sender recovers only one lost

packet per rtt during the fast recovery stage, we consider that each minicycle during the second

stage carries a single packet which is being retransmitted. In practice, there may also be some new

packets transmitted during this phase. We do not take these new packets into consideration. On

the other hand practical implementations have a bound on the number of packets which can be

transmitted once the fast recovery stage is �nished. We do not consider such bounds and hence

yFor ease of explanation, we are ignoring some constraints like delayed acks, which though can be easily incorpo-

rated into the description
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both these e�ects should cancel out each other in our analysis thereby having the analytical model

follow the practical TCP implementations closely.

We assume that all the packets in a mini-cycle travel in what we call a train. Thus, there is

a packet train in every mini-cycle and the size of the packet train in the kth mini-cycle k > 1,

depends on the size of the packet train in the previous mini-cycle and the phase of the NewReno

sender. A new packet train starts once the ack for the �rst successful packet of the previous packet

train comes back. This train ends when the packets corresponding to the last ack of the previous

train have been transmitted by the sender or a certain number of duplicate acks reach the sender

thus giving some length to the train. Start of a successful timeout at any point also terminates a

train. The length of the packet train which is the distance between the �rst packet of the train

and the last packet of the train keeps on increasing since the number of packets in successive trains

is an increasing function. A great convenience o�ered by the packet train concept is that it helps

to di�erentiate packets on the basis of the mini-cycle that they belong to. This as we see later

greatly helps in calculating the throughput of a 
ow. This is because once we know the number

of trains in a cycle as well as the window size � when the packet drop was detected in the last

cycle, the expected number of packets in the cycle as well as the mean cycle duration can be easily

calculated. As we see later, this is the approach that we take to characterize the throughput of a


ow. Of course, the expected number of trains in a cycle as well as the mean loss window depend on

the TCP algorithm followed as well as on the packet loss probability characteristics of the wireless

channel.

Example: Before proceeding further, we illustrate the above concepts using an example of a

TCP NewReno sender. Consider the evolution of a TCP NewReno sender as shown in table 4a.

We start observation when the ack for packet 14 reaches the sender. We assume that packets 15-18

is lost. Thus the �rst stage of this cycle ends on account of the fast retransmit feature when the

third duplicate ack reaches the sender since the receiver has received packet 21. The second stage

starts with the transmission of packet 15. On the receipt of the ack for packet 15, the next packet

16 is retransmitted. This repeats until packet 18 is retransmitted. Thus all the lost packets are

recovered by retransmitting only one lost packet per rtt. This cycle ends once the ack for packet

18 comes back. following which a new cycle begins.

Since the previous cycle did not have the third stage, the sender starts in the congestion avoid-

ance phase in the �rst stage of the new cycle. Packets 23-26 are transmitted on the start of the
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new cycle and these packets constitute the �rst train. A new train (second train) starts once the

ack for packet 23 reaches the sender and ends when the packets corresponding to the last ack of

the previous train (for packet 26) have been transmitted. Thus the second train starts with packet

27 and ends with packet 31. We assume that the �rst packet dropped in this cycle is in the second

train which is packet 29. Packets 30 and 31 are also assumed to be lost.

Pkt Recd info in ack Ack for pkt ! W Pkt sent

14 14 5(say) 8 22

14 I dup ack 19 5 8 (pkt 15-18 lost)

14 II dup ack 20 5 8 -

14 III dup ack(II stage) 21 4 7 15

14 IV dup ack 22 4 8

15 15 4 4 16

16 16 4 4 17

17 17 4 4 18

22(New cycle, I train) 18 4 4 23,24,25,26

23(II train) 23 4 4.. 27

24 24 4 4.. 28

25 25 4 4.. 29(lost)

26 26 4 5 30 (lost),31(lost)

27(III train) 27 4 5.. 32

28 28 4 5.. 33

Timeout(III Stage)

28(I dup ack) 32 4 5... -

28(II dup ack) 33 4 5.. -

New cycle - 2 1 29
.

Table 4a: A TCP NewReno cycle

Since packet 27 is successful, the third train starts on the receipt of the ack for packet 27 with

the transmission of packet 32. Note that the TCP sender has not yet detected the loss of packet 29.

Packet 33 is sent on the receipt of the ack for packet 28. Since the next three packets (29-31) are

lost no acks arrive for those packets. This signi�es the end of the �rst stage of this cycle. At the
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same time the timeout clock starts ticking after the transmission of packet 33. The acks for packet

32 and packet 33 are duplicate acks and hence do not result in the transmission of any packets.

Note that if not for the packet losses, then a new train starts with the receipt of the ack for packet

32. Because of the lack of enough duplicate acks this cycle ends with the third stage of a timeout.

In this cycle we have two stages the �rst stage and the third stage. The next cycle starts with the

retransmission of packet 29 and the process continues. Note that since the last cycle ended with a

timeout, hence the sender in the new cycle begins in the slow start phase while in the �rst stage.

Now consider the other TCP algorithms. Any TCP sender, whether OldTahoe, Tahoe or Sack

when sending new data is generally either in the slow start phase or the congestion avoidance phase.

An OldTahoe sender uses timeout as the mechanism to infer packet losses. A Tahoe sender on the

other hand can also use the fast retransmit mechanism. Both these senders, resort to slow-start

after the detection of a packet loss by reducing the window size to one. The Sack sender on the

other hand uses the fast retransmit mechanism to infer packet losses. But following the detection

of a packet loss the Sack sender like the NewReno sender resorts to the fast recovery mechanism

whereby the window size is reduced to half and the sender uses additional incoming acks to clock

outgoing packets. The fast recovery mechanism concludes successfully when all the lost packets have

been recovered and this is followed by the congestion avoidance mechanism. Of course, if there are

not enough duplicate acks as required by the fast retransmit mechanism then a retransmit timeout

has to be resorted to, following which the sender always starts in the slow start phase.

Thus, a cycle of a Tahoe or OldTahoe sender starts with the slow start phase and ends following

the detection of a packet loss either on the basis of the ack based fast retransmit mechanism or the

timer based retransmit timeout mechanism. On the other hand a cycle of the Sack sender begins

with either the slow start phase or the congestion avoidance phase following the detection of a

packet loss. The cycle ends either with the successful conclusion of the fast recovery mechanism or

on the basis of the retransmit timeout mechanism. Thus the OldTahoe, Tahoe and Sack senders

always have the �rst stage in a cycle. An OldTahoe sender does not have the second stage of fast

recovery and always has the third stage of retransmit timeout. The Tahoe sender will not have

the second stage and may or may not have the third stage of a timeout depending on whether

enough packets are successful after the lost packet for the fast retransmit mechanism to succeed. In

contrast a Sack sender like the NewReno sender can have either the second stage of fast recovery or

the third stage of a retransmit timeout if adequate acks to activate the fast retransmit mechanism
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are not present.

We now go back to the analysis. Let the number of trains in a cycle be denoted by n. On the

basis of our explanation above it is clear that there are two types of trains, type 1 trains during

Stage 1 and type 2 trains during Stage 2. The �rst type of trains are the normal trains constituting

the �rst stage of a cycle. Let n1 denote the number of such trains. The type 2 trains are those

constituting Fast Recovery. In case of NewReno these trains have only one packet such that the

particular packet has been detected to be lost previously. Let n2 denote the number of such trains.

Note also that n2 = 0 for Tahoe and OldTahoe. n2 = 1 for Sack if the cycle does not end in

a timeout. This is because Tahoe and OldTahoe do not have fast recovery while Sack has fast

recovery but it does not have many of these trains since it is not constrained to retransmit at most

one dropped packet per round trip time as in case of Reno or NewReno.

As is clear from the above explanation every cycle of OldTahoe and Tahoe starts with a slow

start. In case of NewReno and Sack, a cycle begins in the slow start phase only after a timeout

has occurred. In the sequel the size of the kth type 1 train in case of such cycles is denoted by �k.

Thus, �k denotes the number of packets in the kth train. Further, �k = f(�k�1) and thus depends

on the TCP algorithm followed. We also let �0 = 0. For the cycles of NewReno and Sack starting

in the congestion avoidance phase, the size of the kth type 1 train is denoted by ��k.

The size of the loss window i.e. the window size at which the packet loss is detected by the

sender is denoted by �. Wm denotes the maximum size that the window can grow to, which by

our earlier assumptions is given by Wm = �T + 1, where � denotes the bandwidth of the wireless

link while the round trip time (rtt) of the link is denoted by T . Further P� denotes the steady

state probability of a timeout in a cycle. We would like to remark that we will introduce further

notation as we go along when necessary.

With this let us consider the packet trains. The metric that we consider to evaluate the di�erent

TCP algorithms is the throughput which we de�ne next. Let the number of packets transferred

during a cycle be denoted by Q̂ while the duration of the cycle be denoted by �. Note that both

Q̂ and � are random variables. The steady state throughput � obtained by the TCP connection is

given as

� =
E(Q̂)

E(�)
(3)

To determine the number of packets sent in a cycle, we need to know not only the number of trains
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in the cycle but also the window size in the previous cycle at which a packet loss was detected.

Also let Q denote the number of packets sent before the �rst dropped packet. ~Q denotes the sum

of Q and the number of packets in the second stage if present. � denotes the number of packets

successfully sent by the source after the packet loss but before the packet loss is detected by the

sender while still in the �rst stage. Hence, we have

E(Q̂) = E[E( ~Q=n1; n2; �)] +E(�)

=
X
�

X
n1

X
n2

P (n1; n2; �)E( ~Q=n1; n2; �) +E(�)

=
X
�

P (�)
X
n1

P (n1=�)
X
n2

P (n2=n1; �)E( ~Q=n1; n2; �)

+E(�)

=
X
�

P (�)
X
n1

P (n1=�)
X
n2

P (n2=n1; �) [n2 +E(Q=n1; �)]

+E(�)

= E[E(n2=n1; �)] +E[E(Q=n1; �)] +E(�) (4)

E(Q=n1; �) =
n1X
k=0

�k (5)

The fourth equation above follows from the third equation since E( ~Q=n1; n2; �) = n2+E(Q=n1; �).

For the derivation above for simplicity we assume that E(�) = E(�).

Remark: In the above P (�) denotes the steady state probability of the loss window, i.e. the

window size in the cycle at which the �rst stage ends due to a packet loss which is also the same

as the window size at which the packet loss is detected by the sender. P (n1=�) denotes the steady

state conditional probability on the number of type 1 trains given the loss window while P (n2=n1; �)

is the steady state conditional probability on the number of type 2 trains given the loss window

and the number of type 1 trains. E(Q=n1; �) denotes the expected number of packets in stage 1 of

a cycle given the loss window and the number of trains in the �rst stage.

We next look at the expected cycle time. Let �k denote the round trip time taken by a packet

of the kth type 1 train. Then we have

�OT =
n1+1X
k=1

�k + �t (6)

�T =
n1+1X
k=1

�k + I��t (7)
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Figure 1: Gap between di�erent trains

�NR =
n1+1X
k=1

�k + (1� I� )n2T + I��t (8)

�S =
n1+1X
k=1

�k + (1� I� )T + I��t (9)

where I� denotes the indicator function of the timeout event and �t denotes the value of the timeout

interval which is typically a multiple of 500ms. OT refers to OldTahoe, T refers to Tahoe, NR

to NewReno and S to Sack. We would also like to point out that the summation in the above

equations is over n1+1 type 1 trains since a packet lost in the n1th type 1 train can be detected by

the sender only in the n1+1th type 1 train as also seen in case of the example given earlier. Further,

e�ect of the exponential backo� in case of multiple timeouts can be incorporated by substituting

a random variable denoting the size of the timeout interval instead of I��t in the equations above.

Taking expectations, assuming E(�k) = T we have

E(�OT ) = (E(n1) + 1) T + �t (10)

E(�T ) = (E(n1) + 1) T + �tP�

E(�NR) = (E(n1) + 1) T +E(n2)T + �tP�

E(�S) = (E(n1) + 1) T + (1� P� )T + �tP�

At this point, we can use equations 4 and 10 in equation 3 in order to calculate the throughput

of a TCP 
ow for any of the TCP senders namely OldTahoe, Tahoe, NewReno or Sack. But in order

to use equations 4 and 10 for any TCP versions, we need to specify expressions for P (�), P (n1=�)

and P (n2=n1; �), E(Q=n1; �) and P� . Hence, we next try to evaluate the expressions P (�), P (n1=�)

and P (n2=n1; �), E(Q=n1; �) and P� calling them as the loss window probability calculation, train

probability calculation, packet count calculation and timeout probability calculation respectively for

the di�erent TCP algorithms. We would like to point out that due to the di�erent mechanics of the

various TCP algorithms, the required expressions above would highly depend on the TCP algorithm

being considered. We remark here that this entire approach to characterize the throughput of a

window based protocol is what we call the packet train model.
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Since, we are considering the packet train model, the success or failure of a particular packet

depends on the success or failure of the previous packet as long as both the packets are in the

same train. As far as the �rst packet of a train is concerned, in the sequel we assume that the �rst

packet of every train �nds the wireless link in its steady state. In other words, the �rst packet of

every train �nds the wireless link in the good state with probability �G and in the bad state with

a probability �B . This implies that, as shown in �gure 1, e�ect of the success or failure of packet

A on packet B is negligible. This is realistic as long as the intertrain gap is large enough which

happens when we consider large bandwidth links under scenarios whereby the window does not

grow to the maximum possible values. In such a case the duration between trains is quite large

compared to the packet transmission time and hence our assumption does in fact re
ect reality.

Another reason for making this assumption is also that the mean intertrain gap in case of the

di�erent TCP algorithms is also large enough. Finally this assumption is also justi�ed due to the

fact that we are interested in the comparison of di�erent TCP algorithms operating over a wireless

link and hence this assumption a�ects all the di�erent algorithms to the same extent.

Scenarios whereby the window does grow to the maximum possible values such that the in-

tertrain gap in �gure 1 is low enough can also be very easily taken care of. This can be done by

calculating the window size W until which our assumption holds. This window sizeW is a function

of the intertrain gap which depends on the bandwidth of the link and the packet size. For window

sizes beyond W , we consider that the success or failure of the �rst packet of a train depends on the

success or failure of the last packet of the previous train while for window size less than W we use

the same approach as above. We do not further pursue this approach for simplicity.

5 Throughput Characterization

In this section we proceed to specify expressions for the loss window probability calculation, train

probability calculation, packet count calculation and timeout probability calculation. We do this

only for TCP Tahoe for lack of space. Expressions for the other algorithms follow similarly as the

expressions for Tahoe and are provided in detail in [1].
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5.1 Loss Window Probability Calculation

We next describe the approach that we take in order to calculate P (�). LetW� denote the maximum

window size reached in the �th cycle. Thus fW�g� denotes the sequence of window sizes at which

packets are dropped in successive cycles. It is obvious that the loss window sequence fW�g� forms

a Markov chain. Hence, in order to determine the steady state probability of the loss window

P (�); � = 1; 2; � � � ;Wm we seek to characterize the probability P (W�+1 = �=W� = �). Given the

transition probability matrix, we can generate the stationary distribution P (�) using any of the

standard methods. Thus during the window probability calculation we characterize the transition

probability matrix P (W�+1 = �=W� = �).

Proposition 1 Transition Probability| Consider TCP OldTahoe or TCP Tahoe. Let the

wireless link be governed by the correlated loss model with parameters � and �. Then, with ! as

the slow start threshold we have,

P (W� = ! + k=W��1 = �) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

�(1� �)!+k�1
�
�G + �B�

1��

�
1
�! < k < 0& log2(! + k) not int

(1� �)!+k�1
�
�G + �B�

1��

�
1
: �! < k < 0& log2(! + k) int

(�G�+ �B(1� �))

(1� �)
3
h
�G + �B�

1��

i
2
: 0 � k < Wm � !

(1�  !1 �  !2 )

(1� �)
3
h
�G + �B�

1��

i
2
k =Wm � !

(11)

where


1 = dlog2(! + k)e


2 = dlog2(!)e+ k


3 = s(! � 1; k) = ! � 1 + ! + � � � + ! � 1 + k

 !1 = �G(1� �)!+k

 !2 = �B�(1� �)!+k�1

Proof: Consider a TCP Tahoe cycle. Every cycle starts with a window of one and a slow start

threshold of !. Then during the slow start phase, the window advances by one for every successful
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packet. Hence, to achieve a window of �, � < !, � � 1 packets have to be successful. Let Ss(�)

denote the probability of packets successfully reaching the receiver so as to attain a window size of

� such that � belongs to the slow start phase and Fs(�) denote the probability of a packet loss so

as to have a loss window size of �, such that � belongs to the slow start phase. Thus, during the

slow start phase the probability of having a loss window of � in the �th cycle given that the loss

window during the previous cycle is � is given by Ss(�)Fs(�). We need to show that

Ss(�) = (1� �)��1
�
�G +

�B�

1� �

�dlog2(�)e

Fs(�) =

8><
>:
�G�+ �B(1� �) log2(�)is an integer

� log2(�)is not an integer

!+k is the drop window size during the cycle of interest. Since we consider TCP Tahoe during

the slow start phase, we have k < 0. Now, the window size and the slow start phase together imply

that !+ k � 1 packets have been successful while the !+ kth packet has been dropped. The train

number corresponding to packet !+k� 1 is dlog2(!+k)e. Let log2(!+k) not be an integer which

implies that the !+kth packet is not the �rst packet of any train. In such a case, the probability of

dropping the !+kth packet is a�ected by what happened to packet !+k�1. But packet !+k�1

has been successful. Hence

Fs(! + k) = � if log2(! + k) is not an integer (12)

Now consider that log2(!+k) is an integer. In such a case the !+kth packet is the �rst packet

of a train. Hence, it is not a�ected by what happened to the previous packet. The probability of

dropping the ! + kth packet is then given by

Fs(! + k) =
X

i=good,bad

Prob that channel is in ith state . probability of dropping packet

= �G�+ �B(1� �) if log2(! + k) is an integer (13)

Now consider the probability of ! + k � 1 packets being successful. ! + k � 1 packets occupy

dlog2(!+k)e trains. The channel is in a good state before the start of a new train with probability

�G. Hence, the �rst packet of the train in such a condition is successful with probability 1 � �.

While if the channel is in a bad state before the start of a train, which happens with probability

�B, then the packet is successful with a probability �. Thus, note that we have dlog2(!+k)e places
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to �ll with either �G or �B in all possible combinations. Hence, we have

Ss(�) = �
dlog2(!+k)e
G (1� �)!+k�1 + �

dlog2(!+k)e�1
G (1� �)!+k�2�B� + � � � +

�
dlog2(!+k)e�j
G (1� �)!+k�1�j�jB�

j + � � �+ (1� �)!+k�1�dlog2(!+k)e(�B�)
dlog2(!+k)e

= (1� �)!+k�1
dlog2(!+k)eX

i=0

0
B@ dlog2(! + k)e

i

1
CA�dlog2(!+k)e�i

G

h
�B�(1� �)�1

ii

= (1� �)!+k�1
�
�G +

�B�

1� �

�dlog2(!+k)e
(14)

Thus the expression for the transition probability for the case k < 0 i.e. the slow start phase,

follows from equations 12, 13 and 14.

Now consider the case k � 0 i.e. the congestion avoidance phase. Let S�c (�) denote the

probability of packets successfully reaching the receiver so as to attain a window size of � such that

� belongs to the congestion avoidance phase. Further, let Fc(�) denote the probability of a packet

loss so as to have a loss window size of �, such that � belongs to the congestion avoidance phase.

Thus, during the congestion avoidance phase the probability of having a loss window of � in the

�th cycle given that the loss window during the previous cycle is � is given by S�c (�)Fc(�). In this

case we need to show that

S�c (�) = (1� �)s(!�1;��!)
�
�G +

�B�

1� �

�dlog2(!)e+��!

Fc(�) = 1� �G(1� �)� � �B�(1� �)��1 � < Wm

= 1 � =Wm

During the congestion avoidance phase, the window advances by one packet for every successful

window of packets delivered. Further, for a drop window of !+ k during the present cycle at least

one of the !+k packets has to be unsuccessful. Probability that not a single packet of a train with

size ! + k is dropped is given by �G(1� �)!+k + �B�(1� �)!+k�1. Hence, we have

Fc(! + k) = 1� �G(1� �)!+k � �B�(1� �)!+k�1 ! + k < Wm (15)

while if ! + k =Wm, then Fc(! + k) = 1 since a packet is surely dropped.

Further, the congestion avoidance phase starts after !�1 packets are successful. Hence to reach

a window of ! + k k � 0, we require s(! � 1; k) = ! � 1 + ! + ! + 1 + � � � + ! + k � 1 successful

packets. These s(!� 1; k) packets occupy dlog2(!)e+ k trains. Hence, we have using an approach
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similar to equation 14

S�c (! + k) = (1� �)s(!�1;k)
�
�G +

�B�

1� �

�dlog2(!)e+k
(16)

Thus the expression for the transition probability for the case k � 0 i.e. the congestion avoidance

phase, follows from equations 15 and 16.

�

Remark: Note that by letting � = 1 � � we obtain an iid packet loss model. The transition

probability for such a case with p = � is given as

P (W� = ! + k=W��1 = �) =

8>>>><
>>>>:

(1� p)!+k�1p �! < k < 0

(1� p)s(!�1;k)
h
1� (1� p)!+k

i
0 � k < Wm � !

(1� p)s(!�1;k) k =Wm � !

5.2 Timeout Probability Calculation

For the timeout probability calculation we have

P� =
WmX
�0=1

P (�0)��0 (17)

where ��0 is the probability of timeout in a cycle given that the loss window is �0. Hence, we next

proceed to specify the expression for ��0 .

We would like to remark here that the starting point for the channel is the bad state. But we

calculate the timeout probability assuming that all the packets in the loss window belong to the

same train. Note that this is an approximation in the case whereby a packet is lost from the middle

of a train in which case the entire loss window consists of packets from two di�erent trains. For

such a case, we also have to consider the channel state that the �rst packet of the second train

encounters. This could be taken care of at the cost of extra complexity but we choose not to do

so. Further, since this assumption is done for all the TCP algorithms it does not a�ect the results.

Proposition 2 Timeout Probability: Consider TCP Tahoe during the �th cycle. Let 
 > 0

denote the number of duplicate acks on the receipt of which the sender enters the fast retransmit

phase. Then ��0 , the probability of timeout given that the loss window is �0 is given by

��0 =
�0�2X

i=�0�


min(�0�1�i;i+1)X
m=1

min(m;i)X
l=m�1

0
B@ �0 � i� 2

�0 � 1� i�m

1
CA
0
B@ i

i� l

1
CA (1� �)i�l�l�m(1� �)�

0�1�i�m

+ (1� �)�
0�1 (18)
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Proof: A timeout results if and only if less than 
 duplicate acks arrive at the sender. In a

loss window of �0, one packet is already lost. Hence, a timeout occurs if and only if the number of

packets lost after the �rst packet loss is greater than or equal to �0 � 
. Note that the maximum

number of packets which can be lost at this point is � = �0 � 1 since a packet is already lost in a

window of �0.

Hence, with this let us consider the case of i drops. We remark here that a timeout results if

and only if i � �0 � 
. Note that if i = �0 � 1 then probability of timeout is given by (1 � �)� .

Hence, we next consider �0�1 > i. These i drops are possible either by having the channel in a bad

state at the beginning of a transmission and transitioning to the bad state itself, which happens

with probability 1� � or by having the channel in a good state at the beginning of a transmission

and transitioning to a bad state which happens with probability �. Let l indicate the number of

times that the channel starts in a good state. Hence, we have the probability of i drops as

(1� �)i�l�l (19)

i packet drops also imply that the rest of the packets are not dropped and result in duplicate acks.

Again two scenarios result here with the channel beginning in a good state or a bad state. Let m

denote the number of times that the channel starts in the bad state. Hence, the probability of i

drops implies that � � i packets get through which is given by the probability

�m(1� �)��i�m (20)

The probability of one such way of a timeout occurring is (1 � �)i�l�l�m(1 � �)��i�m. + + � �

�� + +� � �� � � � � �� denotes the general form of a trace of packet successes or losses leading to

a timeout with 1 � � raised to appropriate power occupying the ++ spaces and 1 � � raised to

appropriate power occupying the �� spaces. Note that a � cannot occur after a � unless an � has

occurred between them and vice versa. Hence, we have l = m or l = m� 1 i.e.

m � l � m� 1

Further,

� � i�m � 0 ! � � i � m (21)

i� l � 0 ! i � l (22)

! i+ 1 � m � l (23)
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Thus, given i; l and m we next look at the number of possible combinations of a trace leading

to a timeout. Consider the pair � and 1��. Note that since we are starting with a lost packet, the

pattern (1��)f f = 0; 1; 2; � � � can occur only after � has occurred. Thus, � occurs m times, while

the pattern 1�� can occur �� i�m times such that � precedes the trace. Hence, m� 1 �'s each

raised to power 1, can appear in any order with �� i�m repetitions of 1� � with no restrictions

on consecutive appearances of 1��. Thus, we are asking for the number of subpopulations of size

� � i�m in a population of size � � i�m+m� 1 which equals
0
B@ � � i� 1

� � i�m

1
CA (24)

Similarly, considering the pattern of � and 1� �, we are asking for the number of subpopulations

of size i� l in a subpopulation of size i� l + l which equals
0
B@ i

i� l

1
CA (25)

since the �rst occurrence of � can be after 1�� has occurred. Thus the total number of combinations

is given by the product of equations 24 and 25. Hence, probability of a timeout given i losses � i�0 ,

such that � > i � �0 � 
 is given by

� i�0 =

min(��i;i+1)X
m=1

min(m;i)X
l=m�1

0
B@ � � i� 1

� � i�m

1
CA
0
B@ i

i� l

1
CA (1� �)i�l�l�m(1� �)��i�m

Thus, the probability of a timeout given a loss window size of �0 then follows as

��0 =
��1X

i=�0�


min(��i;i+1)X
m=1

min(m;i)X
l=m�1

0
B@ � � i� 1

� � i�m

1
CA
0
B@ i

i� l

1
CA (1� �)i�l�l�m(1� �)��i�m

+(1� �)�

�

It is to be remarked that in case of OldTahoe, every packet loss is accompanied by a timeout

and hence ��0 = 1 8�0

5.3 Train Probability Calculation

Proposition 3 Consider TCP Tahoe or TCP OldTahoe. Then the probabilities of the di�erent
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trains is given as

P (n1 = k=�) = (1� �)�1+�2+���+�k�1

�
�G +

�B�

1� �

�k�1
[1�  1k �  2k] 0 < k < tm

P (n1 = tm=�) = (1� �)�1+�2+���+�tm�1

�
�G +

�B�

1� �

�tm�1

(26)

where

 1j = �G(1� �)�j

 2j = �B�(1� �)�j�1

tm = Wm � ! + dlog2(!)e + 1 (27)

Proof: For n1 to be k, we require that k � 1 trains experience no packet loss while there is at

least one packet lost in the kth train. Since the number of packets in the jth train is given to be �j,

we have following the remarks made in the proof of the loss window probability calculation, that

P (n1 = k=�) = (1� �)
Pk�1

i=1
�i

2
64
k�1X
i=1

0
B@ k � 1

i

1
CA�k�i�1G

�
�B�(1 � �)�1

�i
3
75

n
1� �G(1� �)�k � �B�(1� �)�k�1

o
0 < k < tm

= (1� �)
Pk�1

i=1
�i

�
�G +

�B�

1� �

�k�1 n
1� �G(1� �)�k � �B�(1� �)�k�1

o
(28)

When k = tm, a packet is lost from the tmth train with probability 1 and hence

P (n1 = tm=�) = (1� �)�1+�2+���+�tm�1

�
�G +

�B�

1� �

�tm�1

(29)

�

Calculating E(n1) given the above probability distribution can then be done as

E(n1) = E[E(n1=�)] (30)

=
X
�

P (�)
X
j

jP (n1 = j=�) (31)

Remark: tm in this case denotes the maximum number of trains possible in a cycle.

Remark: Note that n2 = 0 w.p. 1 in case of Tahoe/OldTahoe.
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5.4 Packet Count Calculation

Proposition 4 Consider TCP Tahoe or TCP OldTahoe. The number of packets during a cycle

given the number of trains and the loss window during the previous cycle is given by

E(Q=n1 = k; �) = �1 + �2 + � � �+ �k 0 < k � tm 0 < � �Wm (32)

where

�1 = 1

�j�1 = 2j�2�1 < ! � 2j�1�1

�j = ! = b�=2c where j = dlog2(!)e+ 1

�j+l = �j + l 0 < l � tm � j

Proof: Note that every cycle of Tahoe starts with 1 packet, i.e. �1 = 1. The packets in a

train keep on doubling as long as the window size is less than the slow start threshold. Following

this the number of packets in a train increases by one in each successive train. Let the slow start

threshold be reached in the jth train. Hence, j = dlog2(!)e + 1 and the maximum size of a train

is Wm. With this the expressions for the terms given above as well as for E(Q=n1; �) are obvious.

�

6 Analytical Study

Now that the loss window probability, train probability, packet count and the timeout probability

are speci�ed, we use these expressions in equations 4 and 10 to calculate the throughput using

equation 3. Since it is di�cult to obtain a closed form solution for the throughput we graph the

di�erent expressions given in order to obtain an understanding of the way TCP versions work

over a wireless link with correlated losses. While in the earlier section, expressions only in case of

Tahoe are speci�ed, we do consider all the TCP algorithms namely OldTahoe, Tahoe, NewReno

and Sack in this section. The di�erent parameters that we consider while studying the behavior of

the TCP versions under correlated losses are �, �, packet size S (bits), link bandwidth � (Mbps),

timeout value (s), rtt T (s) and the fast retransmit threshold 
 (packets). The default values of

the parameters are S = 125bytes, timeout granularity of 0.5 seconds for coarse timeout and 0.05

seconds for �ne timeout [10] while 
 = 3 unless otherwise speci�ed.
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Figure 2: Behavior of di�erent TCP algorithms with correlated packet loss model under bursty loss

conditions over a link with a bandwidth delay product of 20 packets

Before proceeding, we next obtain approximate conditions under which random packet losses

lead to signi�cant throughput deterioration. There are two factors that have to be taken into

consideration. The �rst is � which governs the maximum window size possible in each cycle. The

second factor is � which governs the probability of a timeout.

Concentrating on the �rst factor, every cycle can have atmost tm trains which is a function of

Wm and �. The duration of each train is T seconds which is the rtt. Hence for good performance,

noting that the duration of each slot equals the transmission time of a packet, we require

1

�
� tm:T:number of packets transmitted per unit time

� tmT� (33)

This follows since the reciprocal of � denotes the mean number of successful packets in a cycle and

we desire that the mean duration of the good period exceed the duration of an entire cycle. It

is quite obvious that by ensuring this, not only does the window grow to the maximum possible

size Wm, but also the next cycle begins with a high slow-start threshold which is desirable. Now,

since tm is proportional to Wm, approximating tm by Wm, we have a necessary condition for good

behavior that
1

�
� (�T )2
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Correlated losses over a  2Mbps link with 0.01s rtt, beta=0.9

Figure 3: Illustration of the e�ects of non-bursty loss conditions showing much performance im-

provement compared to the bursty loss conditions

Looking at the second factor next, for good performance a necessary condition is that

1

�
< �T=2

This follows since the reciprocal of � denotes the mean number of packets lost in the loss window.

If this is comparable to the size of the loss window, then it will result in a timeout which has to be

avoided for good performance. Hence, we require that this quantity be smaller than the average

window size assuming that the window can grow to it's maximum possible values. It has to be

remarked here that this condition would not be necessary if the connection is using �ne timeout

values since in that case the e�ect of a timeout is not severe at all. As we see later, for all the

scenarios considered both the above conditions are necessary to ensure good link utilization.

Now, consider �gure 2 which illustrates the performance of a wireless link with a bandwidth

of 2Mbps and an rtt of 0.01s. � is assumed to be 0.1 while � is varied and shown on the x-axis.

The throughput normalized to the link bandwidth is shown on the y-axis. Similar scenarios with

� = 0:9 is shown in �gure 3. As can be seen from these �gures as the value of � increases , the

performance of the di�erent TCP algorithms (except OldTahoe) also improves. Also as � increases,

the performance of all the algorithms decreases. Note that the reciprocal of � gives the average

number of packets lost while the reciprocal of � gives the average number of good packets. Hence,

as � increases, the probability of timeout decreases and the performance is hence better. But since
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Figure 4: Performance of TCP versions under very bursty conditions showing signi�cant perfor-

mance improvement at low � for a higher bandwidth-delay product of 50 packets with � = 0:1

OldTahoe always depends on a timeout to infer packet loss, there is no performance improvement

in contrast to the other TCP versions. At moderate values of �, there are more chances of multiple

packet drops in a window while at high values of � around 1, generally only single packet drops

occur.

Pkt info in ack Ack for pkt ! W Pkt sent

14 14 - 8 22

14 I dup ack 20 - 8 -

14 II dup ack 21 - 8 -

14 III dup ack 22 4 1 15

15 15 4 2 16,17

16 16 4 3 18,19

17 17 4 4 20,21

18 18 4 4.25 22

22 19 4 4.5 23,24,25,26
.

Table 6a: Evolution of Tahoe when packets 15-19 are lost taking 3 rtts to recover the lost packets
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Figure 5: Illustrating that at low values of � the performance depends only on the bandwidth-delay

product when using a �ne timeout interval

Pkt info in ack Ack for pkt ! W Pkt sent

14 14 - 8 22

14 I dup ack 20 - 8 -

14 II dup ack 21 - 8 -

14 III dup ack 22 4 7 15

15 (Partial ack) 15 4 4 16

16 (Par ack) 16 4 4 17

17 (Par ack) 17 4 4 18

18 (Par ack) 18 4 4 19

22 (Par ack) 19 4 4 23,24,25,26
.

Table 6b: Fast Recovery for New Reno when packets 15-19 (inclusive) are lost taking 5 rtts to

recover the lost packets

Another important observation from these �gures is also that for low values of �, NewReno

performs worse than Tahoe. This is because of the nature of NewReno of taking one rtt to recover

each lost packet which leads to a smaller throughput than achievable by Tahoe. For e.g. in a

window of 10 as in these �gures, assuming 5 bursty packet losses (read 5 consecutive packets lost)
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Figure 6: Illustrating that at low values of � the performance depends only on the bandwidth-delay

product when using a �ne timeout interval

in a loss window of 9 or more a timeout does not occur since there are enough successful packets to

inform the sender of packet losses through the duplicate ack mechanism. In this scenario NewReno

takes 5 rtts to recover from these 5 packet losses by sending one lost and utmost two packets in each

rtt. In contrast, Tahoe by resorting to slow start recovers these packets more e�ciently by sending

more number of packets on the average. We show an example of one such possibility in Table 6a

and 6b. As shown, when 5 consecutive packets 15-19 are lost, Tahoe recovers these packets within

3 rtts while NewReno takes 5 rtts to recover these packets thereby causing a higher ine�ciency

in the link utilization. Of course the drawback may be that Tahoe had had to retransmit some

packets unneccessarily but yet in terms of throughput the Tahoe sender is more e�cient than the

NewReno sender. Thus Tahoe is able to send 14 packets not present at the receiver during these 5

rtts while NewReno is able to send only 5 packets not present at the receiver during these 5 rtts.

Of course, Sack by virtue of the selective ack option recovers most e�ciently and hence exhibits

the best performance. Note also that as the maximum possible window size (Wm) grows larger, the

performance of NewReno lags the performance of Tahoe by a larger degree. We see this later in

�gure 4 and 10. This is because the size of the bursts may not be enough to cause a timeout due to

the large loss window leading to lost packet recovery through the ine�cient fast recovery method

of NewReno. As a corollary this implies that at higher values of �, performance of NewReno can
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Figure 7: Illustrating that reducing the fast retransmit threshold has a marginal e�ect in the regime

of low �

be better compared to the performance of Tahoe since at high values of � the maximum possible

value to which the window can grow to is limited, thereby masking the weakness of NewReno's fast

recovery mechanism. We can observe this from �gure 2.

It is to be remarked here that if packet losses were more staggered like in the iid model, NewReno

while being constrained to send at most one lost packet per rtt, can also send more than two packets

per rtt. This plus the nature of Tahoe of retransmitting even the packets successfully received in

such a scenario ensures that the performance of NewReno is better than the performance of Tahoe in

an iid loss regime (causing staggered packet losses). We remark here that it can be seen from these

�gures that the link utilization achieves the maximum possible for the concerned TCP algorithm

whenever the necessary conditions derived earlier are satis�ed. Note that with a link bandwidth

delay of 20 packets, the two necessary conditions for good performance translate into � � 0:0025

and � > 0:1.

Figure 4 considers a wireless link with a bandwidth of 1Mbps and 0.05s rtt. Thus the two

conditions for a bandwidth delay product of 50 packets translate into � � :0004 and � > 0:04. The

same observations made earlier hold in this case, the most notable being that the performance of

NewReno is worst than that of Tahoe under very bursty loss conditions (read � around 0.1 and

lower) at higher bandwidth delay products as expected. Further from these �gures it can also be
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Figure 8: Illustrating that reducing the fast retransmit threshold has a signi�cant e�ect in the regime

of high � only for high � values

seen that the normalized throughput becomes better for low values of � as the rtt increases. This

is because of the large bandwidth-delay product link which implies that even with � = 0:1, the

chances of an entire window of packets being dropped for window sizes high enough are quite low.

Further, the timeout duration also becomes a smaller multiple of the rtt as the rtt increases and

hence the use of coarse timeout becomes less signi�cant. Note that this e�ect is predominant only

with low values of � as can be seen from �gures 2 and 4. Thus, it can be inferred that at low values

of � the performance does not depend on just the bandwidth-delay product but also on the value of

the rtt. This is not the case for high values of �. This is because at high � values Tahoe, NewReno

and Sack experience timeouts very infrequently leading to insensitivity to the granularity of the

timeout interval. Thus it can also be expected and it has also been veri�ed that at relatively high

values of �, �ne timeout does not make much of a di�erence compared with the coarse timeout.

To show that the performance di�erence is indeed due to the coarse timeout granularity for low

values of �, in �gures 5 and 6 we consider link bandwidths of 1 Mbps and 2 Mbps respectively while

ensuring that the bandwidth delay products remain the same at 20 packets by properly choosing the

rtt values. Comparing these two �gures, it can be seen that the performance of the di�erent TCP

versions is nearly similar with the performance becoming identical as the timeout granularity is

decreased further. Comparing �gure 6 with �gure 2, the performance improvement for the di�erent
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Figure 9: Illustrating the e�ects of varying � for a link with a bandwidth-delay product of 50 packets

TCP versions using a �ne timeout is obvious. Another point to be noted is that as the granularity

of the timeout interval becomes �ner and less signi�cant with respect to the rtt, the behavior gap

of Tahoe and OldTahoe decreases and hence NewReno exhibits the worst performance of all the

TCP versions as expected in this regime. This is also seen in �gures 5 and 10. Validity of our

earlier remark that while using �ne timeouts the second condition is not important is also proven

by looking at these �gures.

E�ects of changing the fast retransmit threshold from 3 to 1 are shown in �gures 7 and 8 with

values of � being 0.1 and 0.9 respectively. Comparing these with �gures 2 and 3 it can be seen

that at low values of �, the reduction in the fast retransmit threshold improves the performance

marginally only at low � values. At high � and low � values the threshold reduction does not lead

to a signi�cant performance change since in this regime small windows and large bursts are the

norm. From �gures 3 and 8 it can be seen that the lower threshold makes a signi�cant di�erence

only at high values of �. Thus, the threshold reduction makes a signi�cant di�erence only in the

regime of small window values and small bursts (big � and big �). In the other regimes the e�ect is

not that signi�cant. Hence going for a reduction in threshold may not be that good an idea unless

this is accompanied by some way to sense the state of the channel. Note also that a threshold of

one is not robust to packet reordering by the network. So the option of reducing the fast retransmit

threshold if chosen would have to be done with care.
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Figure 10: Illustrating the e�ects of varying � for a link with a bandwidth-delay product of 100

packets

We next investigate the e�ects of � while keeping � constant. Since, these results can only

enhance some of the conclusions drawn earlier, we just look at two scenarios. These are shown in

�gures 9 and 10. In �gure 9, we consider a scenario with a bandwidth-delay product of 50 packets

and a wireless link bandwidth of 1Mbps. At very low values of �, timeouts are the norm and

hence the performance of all TCP versions is similar. The robustness of Sack and Tahoe to values

of � above a threshold as remarked earlier is also seen. This is because Sack and Tahoe recover

the same way for single and multiple packet drops (with Sack resorting to Fast Recovery in both

cases and Tahoe going through slow start for both scenarios), they exhibit similar behavior for

both moderate and high values of �. In contrast, NewReno recovers from multiple packet drops by

retransmitting one lost packet per rtt and hence it's behavior improves continually as � increases

until at high values of � the performance of NewReno and Sack becomes very similar. From �gure

10 which considers a link with a bandwidth delay product of 100 packets and a link bandwidth of

2Mbps, it can be seen that the minimum robustness threshold decreases as the bandwidth-delay

product increases. The performance of NewReno though is very sensitive to the value of �. It can

also be seen that at high values of the rtt with a corresponding high value of the bandwidth delay

product, the performance of NewReno is also the worst of all the TCP versions under bursty loss

conditions as mentioned earlier. The performance is also seen to become better when � > 0:02
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since � � 0:0001 which are the two conditions for a link with a bandwidth delay of 100.

7 Conclusion

In this paper we have looked at the behavior of the di�erent TCP algorithms over a wireless channel

with correlated packet losses. We �rst provide an analytical model for studying the performance of

the di�erent TCP algorithms namely OldTahoe, Tahoe, NewReno and Sack operating over a wireless

link with correlated packet losses. We then provide conditions on the wireless channel satisfaction

of which ensures that the throughput of the TCP algorithm tends to the best possible throughput.

We see that the behavior of Sack is the best in all regimes. Another important result that we have

shown is that for situations of even moderately bursty losses the performance of NewReno is worse

than Tahoe with performance gap widening with higher values of Wm. This is a serious 
aw in

the performance of NewReno which also argues for the widespread implementation of Sack. Also

at values of high �, the performance di�erence between the di�erent versions decreases with the

di�erence becoming insigni�cant as the value of � decreases. It is also seen that Sack and Tahoe

are insensitive to the value of � as long as � is not low enough while NewReno's performance

improves continually as � increases. This implies that Sack and Tahoe are less sensitive to the

bursty conditions above a certain threshold.

We have also shown that performance of the di�erent TCP versions under correlated packet

loss depends not only on the bandwidth delay product but also on the granularity of the timeout

timer for low values of �. For high values of � the performance depends just on the bandwidth

delay product. Further, it is also seen that reducing the granularity of the timeout interval as also

reducing the value of the fast retransmit threshold makes a di�erence only in case of very bursty

loss conditions and in scenarios where the window cannot grow to large sizes for high values of

�. We have also shown that at very high bursty loss conditions the performance of all the TCP

versions is similar.
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