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The success of virtualization and container-based application deployment has

fundamentally changed computing infrastructure from dedicated hardware provi-

sioning to on-demand, shared clouds of computational resources. One of the most

interesting effects of this shift is the opportunity to localize applications in multiple

geographies and support mobile users around the globe. With relatively few steps,

an application and its data systems can be deployed and scaled across continents

and oceans, leveraging the existing data centers of much larger cloud providers.

The novelty and ease of a global computing context means that we are closer

to the advent of an Oceanstore, an Internet-like revolution in personalized, per-

sistent data that securely travels with its users. At a global scale, however, data

systems suffer from physical limitations that significantly impact its consistency

and performance. Even with modern telecommunications technology, the latency

in communication from Brazil to Japan results in noticeable synchronization delays

that violate user expectations. Moreover, the required scale of such systems means

that failure is routine.



To address these issues, we explore consistency in the implementation of dis-

tributed logs, key/value databases and file systems that are replicated across wide ar-

eas. At the core of our system is hierarchical consensus, a geographically-distributed

consensus algorithm that provides strong consistency, fault tolerance, durability,

and adaptability to varying user access patterns. Using hierarchical consensus as a

backbone, we further extend our system from data centers to edge regions using fed-

erated consistency, an adaptive consistency model that gives satellite replicas high

availability at a stronger global consistency than existing weak consistency models.

In a deployment of 105 replicas in 15 geographic regions across 5 continents,

we show that our implementation provides high throughput, strong consistency, and

resiliency in the face of failure. From our experimental validation, we conclude that

planetary-scale data storage systems can be implemented algorithmically without

sacrificing consistency or performance.
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Chapter 1: Introduction

Eighteen years ago a dramatic vision for a globe-spanning distributed stor-

age infrastructure called Oceanstore [1] was presented as an economic model for

nomadic data. The central premise was a cooperative utility provided by a con-

federation of companies that could buy and sell capacity to directly support their

users. Additionally, regional providers like airports and cafes could install servers

to enhance performance for a small dividend of the utility. This economic model

meant that Oceanstore’s computational requirements centered around an untrusted

infrastructure: connectivity, security, durability, and location agnostic storage. To

meet these requirements, the Oceanstore architecture was composed of two tiers:

pools of byzantine quorums and an optimistic dissemination tree layer. Both tiers

propagated data in fundamentally different ways: the byzantine quorums localized

consistency and made data placement decisions, while the dissemination layer moved

data between quorums as correctly as possibly without providing any consistency

guarantees. The goal of this architecture was to facilitate grid computing storage,

truly decentralized and independent participation of heterogenous computational

resources across the globe [2]. Because of the heterogenous nature of grid com-

puting, the architecture relied heavily on encryption and key-based access control,
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prioritizing byzantine algorithms for distributed trust.

Unforeseen by Oceanstore, however, was a fundamental shift in how compa-

nies and users accessed computing infrastructure. Improvements in virtualization

management [3] and later container computing [4] allowed big Internet companies

to easily lease their unused computational resources and disk capacity to appli-

cation developers, making cloud computing [5] rather than independent hardware

purchasing and hosting the norm. Furthermore, from smarter phones to tablets

and netbooks, user devices have become increasingly mobile with reduced disk ca-

pacities, requiring applications to store user data in cloud silos even if they had

relatively modest data requirements (e.g. not just photo or video applications but

also email or contacts). Cloud storage further enhanced a user’s view of being able

to access their data anywhere, on any device, further increasing the popularity of

the centralizing tendency of the cloud. The cloud economy means that there is a

trusted infrastructure of virtual resources that span globe, provisioned by a single

provider rather than a confederation of services demonstrated by the major cloud

provider’s regional datacenters shown in Figure 1.1.

So what does cloud computing mean for the requirements and assumptions of

Oceanstore? First, Oceanstore’s strict requirements for security that meant per-user

encryption and byzantine agreement between untrusted servers can be relaxed to

application and transport-level encryption and non-byzantine consensus supported

by authenticated communication. Second, the requirements for performance have

dramatically increased as ubiquitous computing has become the norm and as more

non-human users are participating in networks. Increased capacity, however, cannot
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AWS
Digital Ocean
Google Cloud
Linode
Microsoft Azure 

Figure 1.1: Data center locations of popular cloud providers span the
globe, creating the possibility for the deployment of geo-replicated data
storage inside of a trusted infrastructure without Byzantine failure.

come at the cost of correctness or consistency, and the increased rate of requests

means that asynchronous commits and conflict resolution become far more difficult.

For these reasons, we believe that a vision for an Oceanstore today would focus on

consistency rather than security.

As system size and network distance increases, consistent behavior in dis-

tributed systems becomes increasingly complex to implement and reason about be-

cause larger systems have even larger coordination requirements. Addressing this

level of complexity is imperative for modern systems, because these systems are

constantly growing. In 2021, Cisco forecasts over 25 billion devices will contribute

to 105,800 GBps of global Internet traffic, 26% of which will be file sharing and ap-

plication data, and 51% of which will originate from machine to machine-to-machine

applications [6]. New types of networks including sensor networks [7], smart grid

solutions [8], self-driving vehicle networks [9], and an Internet of Things [10] will

mean an update model with many publishers, few subscribers, and increasingly dis-
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tributed accesses. To support this growth and facilitate speed, network traffic is

moving closer to edge services; Cisco predicts that cross-continent delivery will drop

from 58% of traffic in 2016 to 41% in 2021 and that metro delivery will grow from

22% to 35% [6]. The trend toward localization means that the cloud will be sur-

rounded by a fog of devices that participate in systems by contributing data storage

and computation to an extent greater than access-oriented clients might.

These trends mean even more computational regions are coming online cre-

ating a unique opportunity and need for systems that exist in both data centers

and edge network environments. Inspired by the work of Oceanstore, we propose a

planetary-scale data storage system made up of an adaptable, two tier architecture

of both cloud and fog infrastructure. The first tier, in the cloud, would be a strong

consistency, fault tolerant and highly resilient geo-replicated consensus backbone.

The second tier, via the fog, would be a high availability heterogenous network with

a relaxed consistency model that could quickly disseminate updates. Such a system

would be difficult to manually manage, therefore both tiers and the system as a whole

would also have to automatically monitor and adapt to changes in access patterns

and node and network availability during runtime. Our proposed design is therefore

a flexible data fabric with three facets: geo-replicated consensus, high-availability

dissemination and accesses, and online adaptability and optimization.

In this dissertation we explore all three of these facets that comprise a robust

geo-distributed data system. Because consensus algorithms have not been designed

to scale to large quorum sizes we propose hierarchical consensus, as the first tier

consensus backbone that can scale to hundreds or thousands of nodes while main-
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taining strong consistency guarantees. To implement the second tier, we propose

federated consistency, a hybrid consistency model that allows heterogenous repli-

cas varying guarantees depending on application requirements by integrating strong

and eventual consistency models. Finally, we propose adaptive consistency, a model

for emergent introspection that uses localized machine learning to optimize single-

replica behavior which, when taken together, leads to an increase in the overall

performance of the system. We hypothesize that the combination of hierarchical

consensus, federated consistency, and adaptive monitoring lay out a foundation for

truly large scale data storage systems that span the planet. The contributions of

this dissertation are therefore as follows:

1. We present the design, implementation, and evaluation of hierarchical con-

sensus, a consensus protocol that can scale to dozens or hundreds of replicas

across the wide area.

2. We also investigate the design and implementation of federated consistency,

a hybrid consistency model that allows strong, consensus-based systems to

integrate with eventually-consistent, highly available replicas and evaluate it

in a simulated heterogenous network.

3. We show the possibilities for machine learning-based system adaptation with

a reinforcement learning approach to anti-entropy synchronizations based on

accesses.

4. We validate our system by describing the implementation of a planetary-scale

5



key-value data store and file system using both hierarchical consensus and

federated consistency.

The rest of this dissertation is organized as follows. In the next chapter we

will more thoroughly describe our proposed geo-replicated architecture by describing

the motivations and challenges for our work and exploring case-studies of existing

systems. Next, we will focus on the core backbone of our system, hierarchical

consensus, and describe a globally fault tolerant approach to managing accesses

to objects in the wide area. Using hierarchical consensus as a building block, the

next chapter will focus on federated consistency, specifying a hybrid, heterogenous

consistency model in the fog that interacts with the cloud consensus tier. At this

point we will have enough background to introduce our system implementation and

describe our file system and key-value store. From there, we will explore learning

systems that monitor and adapt the performance of the system at runtime, before

concluding with related work and a discussion of related future research.
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Chapter 2: A Geo-Distributed System Architecture

The advent of cloud computing has accelerated both commercial and academic

interest in distributed systems connected via wide area networks and the Internet.

Cloud computing exists because large Internet companies, which had deployed ex-

tremely large data centers around the world to meet global user demand for their

services, created extra compute, network, and storage capacity that could be leased

to tenants on-demand. The global nature of cloud providers means that there is an

opportunity for more common usage of geographically replicated data systems be-

sides the specialized systems they developed for internal use. Though systems such

as Dynamo and Spanner have been made available to customers as provisioned ser-

vices, they suffer from application-specific data models too narrow to solve general

problems.

The specialization of the current generation of distributed systems is de-

signed to optimize their behavior and performance when deployed within a pristine

data center context. This environment, with strong facility support and backbone

communications, allows design choices that optimistically assume that repairs will

be made quickly and that redundancy need only protect from few failures at a

time [11–14]. This has led to a general architecture for geo-replication that provi-
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sions consistency requirements across transactions, individual objects, and within

blocks stored on disk, often leading to multiple, independent consistency models

within the same system. While component based design optimizes cloud develop-

ment and runtime debugging, it also creates confusion about where and how data

is stored and what guarantees can be made about each access.

To correctly reason about a single system’s global behavior, a single, global

consistency model is required. The central thesis of this dissertation is that this can

only be achieved with a globally-distributed consensus protocol.

Furthermore, consistency depends on the network environment. In highly

curated data centers, systems are built using localized consensus [15] because inter-

rack latency is low and disk failures are common. Outside the data center, however,

single process failures resulting from variable network conditions or heterogenous

resources show the impossibility of distributed consensus [16]. Therefore instead

of applying a single, brittle consistency protocol, our approach is a continuous,

flexible consistency model with geographic consensus at its core and a federated

hybridization at its edge. The result is a single, understandable consistency model

that leads to an architecture capable of supporting global systems both inside and

outside of the data center.

In this chapter, we will describe the details of our proposed architecture for

a planet-wide distributed data store. To motivate our architectural decisions, we

first describe the motivations and challenges for the design of such a system. We

motivate our work in two parts. First, we argue that there is a new software de-

ployment paradigm that requires geographic replication. Second, we argue that
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existing geo-replicated data stores are not general enough to meet the needs of that

paradigm. We follow these motivations with the challenges of geo-replication de-

scribed as requirements, which we will then use to present an overview of our system

architecture.

2.1 Challenges and Motivations

Many of the world’s most influential companies grew from the ashes of the dot-

com bubble of the 1990s, which paid for an infrastructure of fiber-optic cables, giant

server farms, and research into mobile wireless networks [17]. As these companies

filled market voids in eCommerce, search, and social networking, they created new

database technologies to leverage the potential of underused computational resources

and low latency/high bandwidth networks that connected them, eschewing more

mature systems that were developed with resource scarcity in mind [18, 19]. What

followed was the rise and fall of NoSQL data systems, a microcosm of the proceeding

era of database research and development [20].

Although there are many facets to the story of NoSQL, what concerns us most

is the use of NoSQL to create geographically distributed systems, as these systems

paved the way to the large-scale storage systems in use today. The commercial

and open source interest in geo-replicated systems both for big data analysis and

Web application development has led to the development of many database and

file systems. These systems share common traits, allowing us to describe a general

architecture for distributed systems. More importantly, the prevalence of such sys-
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tems has led to a new application development paradigm: modern software must be

designed as a global service.

2.1.1 A New Application Development Paradigm

The launch of the augmented reality game Pokémon GO in the United States

was an unmitigated disaster [21]. Due to extremely overloaded servers from the re-

lease’s extreme popularity, users could not download the game, login, create avatars,

or find augmented reality artifacts in their locales. The company behind the plat-

form, Niantic, scrambled quickly, diverting engineering resources away from their

feature roadmap toward improving infrastructure reliability. The game world was

hosted by a suite of Google Cloud services, primarily backed by the Cloud Datas-

tore [22], a geographically distributed NoSQL database. Scaling the application to

millions of users therefore involved provisioning extra capacity to the database by

increasing the number of shards as well as improving load balancing and autoscaling

of application logic run in Kubernetes [23] containers.

Niantic’s quick recovery is often hailed as a success story for cloud services

and has provided a model for elastic, on demand expansion of computational re-

sources. A deeper examination, however, shows that Google’s global high speed

network was at the heart of ensuring that service stayed stable as it expanded [24],

and that the same network made it possible for the game to immediately become

available to audiences around the world. The original launch of the game was in 5

countries – Australia, New Zealand, the United States, the United Kingdom, and
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Germany. The success of the game meant worldwide demand, and it was subse-

quently expanded to over 200 countries starting with Japan [25]. Unlike previous

games that were restricted with region locks [26], Pokémon GO was a truly interna-

tional phenomenon and Niantic was determined to allow international interactions

in the game’s feature set, interaction which relies on Google’s unified international

architecture and globally distributed databases.

Stories such Niantic’s deployment are increasingly becoming common and

medium to large applications now require developers to quickly reason about how

data is distributed in the wide area, different political regions, and replicated for

use around the world.

It is not difficult to find many examples of companies and applications, from

large to small, that have international audiences and global deployments which

highlight the new challenges of software development. Dropbox has users in over

180 countries and is supported in 20 languages, maintaining offices in 12 locations

from Herzliya to Sydney [27]. Slack serves 9 million weekly active users around

the world and has 8 offices around the world, prioritizing North America, Europe,

and Pacific regions [28]. WeWork provides co-working space in 250+ international

applications and uses an app to manage global access and membership [29]. Tile has

sold 15 million of its RFID trackers worldwide and locates 3 million unique items a

day in 230 countries [30]. Trello, a project management tool, has been translated into

20 languages and has 250 million world-wide users in every country except Tuvalu;

their international rollout focused on marketing and localization [31]. Runkeeper [32]

and DarkSky [33] are iOS and Android apps that have millions of global users and
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struggled to make their services available in other countries, but benefitted from

international app stores. Signal and Telegraph, both encrypted messaging apps, have

grown primarily in countries at the top of Transparency International’s Corruption

Perception Index [34].

The new application development paradigm, even for small applications, is

to build with the thought that your application will soon be scaling across the

globe. None of the applications described above necessarily have geography-based

requirements in the same way that an augmented reality or airline reservations

application might, just a large number of users who regularly use the app from a

variety of geographic locations. Web developers are increasingly discussing and using

container based approaches both for development and small-scale production. Web

frameworks have built in localization tools that are employed by default. Services

are deployed on autoscaling cloud platforms from the start.

To address this paradigm shift, cloud service providers have expanded their

offerings to provide instances their internally-developed distributed data stores to

application developers, as in the case of Niantic. This presents two problems, how-

ever. First, those systems were designed for the huge applications of the Internet

companies themselves, not for the general needs of a large audience of developers.

Second, cloud providers organized their services around geographically distinct re-

gions, allowing their tenants the choice to deploy their applications in one or more

regions. As a result, tenants naturally choose cloud regions based on the locations

of their users and treat regions as independent deployments from both a software

and billing perspective. Even though there may be some cross-region backup to pre-
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vent catastrophic failures, region-specificity usually means that services are deployed

piecemeal and partitioned.

Region-based organization of cloud services has ensured that users are able

to minimize latencies and provide applications to areas of interest, but applications

have increasingly become more global. The possibility of region-agnostic deploy-

ment is tantalizing, particularly as larger applications spend a non-trivial amount

of administration time determining where writes to objects are going to optimize

their systems. Consistent updates across regions are not generally considered as

a possibility because in-house cloud services used data models that avoided large

latencies wherever possible. Moreover, as we will see in the next section, the de-

sign of provisioned cloud databases have made it difficult to reason about consistent

behavior. Not only is there a need for strong consistency semantics, data-location

awareness, and geo-replication in distributed data storage systems, there is also the

need for a familiar and standardized storage API.

2.1.2 Building Geo-Replicated Services

The growth of database systems distributed across the wide-area started with

large Internet companies like Yahoo [35], Google [36], and Amazon [37] but quickly

led to academic investigations. One reason that the commercial systems enjoyed this

academic attention was that at the time, the unique scale of their usage validated the

motivation behind their architecture. However their success has meant that these

types of scales are no longer limited to huge software systems. The development of
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geo-replicated services has therefore undergone several phase shifts, and has led to

a general framework that underlies most current systems. In this section we outline

these phases and describe the general framework with a blueprint for designing

large-scale distributed systems (see Figure 2.1), which we then use to motivate our

system architecture.

The first shift was the creation of highly available, sharded systems intended

to meet the demand of increasing numbers of clients. Commercially, these types of

systems include Dynamo [37] and BigTable [36], which in turn spawned open source

and academic derivatives such as Cassandra [38] and HBase [39]. Although these

systems did support many concurrent accesses, they achieved their availability by

relaxing consistency, which many applications found to be intolerable. The second

shift was a return to stronger consistency, even at the cost of decreased performance

or expensive engineering solutions. Again, commercial systems led the way with

Megastore [40] and Spanner [41] along with academic solutions such as MDCC [42]

and Calvin [43, 44]. Part of this realignment was a reconsideration of the base

assumptions that drove the NoSQL movement as expressed in the CAP theorem [45,

46]. The new thinking is that the lines between availability, partition tolerance, and

consistency may not be as strictly drawn as previously theorized [47–49]. This has

led to a final shift, the return of SQL, as the lessons learned during the first two

phases are applied to more traditional systems. As before, both commercial systems,

such as Aurora [50] and Azure SQL [51], and open source systems such as Vitess [52]

and CockroachDB [53] are playing an important role in framing the conversation

about consistency in this phase.
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These systems have defined several strategies from relaxed consistency to in-

terval time that are essential to understanding geo-replicated services. The first and

primary strategy, however, is to shard data into independent groups of semi-related

objects. A shard can be specifically defined either as buckets of objects, tablets of

contiguous rows, or in the most extreme cases, individual objects.

Sharding allows extremely massive databases and file systems to be broken

down into smaller, related pieces that are more easily managed in a distributed

context. Perhaps more importantly, this decomposition also allows concurrent access

to objects without latency-inducing synchronization. If a shard is defined within a

specific region, then it is easy to prioritize local accesses and coordination with that

region. Sharding also provides a data model for underlying redundant storage. If

a tablet can be written to a specific page on disk, that page can also be replicated

to more easily colocate replicas with data. If multiple shards need to be accessed

simultaneously in a transaction, then only the shards involved in the transaction

need be coordinated, while all other shards can remain independent.

The unit of coordination is therefore at the shard level. Objects must be

assigned to shards via a namespace, which must be allocated to individual com-

ponents of the system. The namespace must be globally available, and therefore

requires coordination to move part of the namespace from one region to another.

Accesses to data on disk for individual objects must also be allowed to happen in a

fault-tolerant manner, which requires coordination between several replicas to guar-

antee no data loss. Finally, transactions that require access to multiple objects must

be coordinated to ensure atomic guarantees. To support all of these features in a
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Figure 2.1: A generalized architecture of a geographically distributed ap-
plication using a basic sharding strategy. The namespace of the database
is coordinated by shard masters, which point to quorums of replicas who
replicate data over multiple disks. Accesses to multiple objects are co-
ordinated via transaction managers.

system, a multi-process architecture of independent components for geo-replication

is generally utilized, as shown in Figure 2.1.

Clients access geographically-replicated data systems either by making geo-

graphic based requests via domain name (e.g. requesting a .ca addressed service

vs. a .fr address) or by using IP and ping based network location [54]. Multiple,

concurrent requests are load-balanced to container based compute nodes that hold

application logic, elastically scaled to meet changing demand [55]. Though this as-

pect of distributed applications is outside the scope of a geo-replicated data store,

the increased frequency of accesses across multiple regions increases the likelihood of
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collisions – concurrent access by multiple clients to the same object(s), which leads

to the consistency concerns of this dissertation.

The data layer follows the application logic layer and is the layer that must

coordinate accesses from many simultaneous geographies. If the data layer supports

transactions [43,44,47,50,52,53] then the top level of coordination is the transaction

manager, which is responsible for identifying the shards being accessed and correctly

committing or rolling back the transaction. Other systems support snapshot isola-

tion for read-transactions [40,41], ensuring that all reads for a specified time window

are consistent.

If the data layer does not support transactions or if only a single object is being

accessed, then the system must coordinate with the shard master, a process that

allocates the namespace to the replicas that manage those objects. Some systems

use the data-model directly, using key-space addressing to determine the locality

of objects [36, 41], others use consistent hashing [56, 57] to balance objects around

a hash ring, coordinating the insertion and removal of name management servers.

However, if the preservation of data locale and the ability to move objects between

regions is required, then a synchronized lookup table must be used. The most

popular mechanism to achieve namespace synchronization is to use a lock service

such as Chubby [58] or etcd [59] to hand out leases for which an replica is expected

to manage accesses.

Once the replica that manages the shard is discovered, the actual access must

occur. There are several mechanisms for this that use quorums of replicas to make

decisions. Weak consistency models of access use overlapping read and write quo-
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rums of varying sizes along with eventual replication of the data [37]. Strong con-

sistency models of access use Paxos [60] as the basis for high performance data

storage [15,61] – consensus will be discussed in detail in the next section. To further

increase write throughput, accesses append commands to a distributed log that are

applied asynchronously to the underlying data store, so long as the command is

committed to the log, it is guaranteed to be written to storage [62–64].

Finally, data must be written to stable storage, usually on clusters of disks that

are also distributed so as to prevent data loss in the likely event that a disk fails.

Many geo-replicated data systems also use a distributed file system for underlying

storage. BigTable stores its data on GFS [65], f4 [66] on top of HDFS [67], an open

source implementation of GFS, and Spanner stores its data on Colossus [68], the

next generation of GFS. Other distributed databases such as BTrDB [69] use the

Ceph [70] file system for data replication and because of requirements for location-

fault tolerance, it is becoming increasingly rare that hardware based schemes such

as RAID [71] are used to ensure data durability.

The description above and Figure 2.1 are a useful blueprint for designing large

scale geo-replicated systems and generalizes many of the themes and attributes of a

wide variety of systems. The problem with this blueprint is that it imposes a multi-

process system architecture; replicas are coordinated by master processes and lock

services, and then store data on distributed file systems, yet more processes with

independent coordination. Multiprocess systems then must be further coordinated

so that the health and status of each process must be known, leading to the use

of monitoring and management tools like Ambari [72] and Zookeeper [73]. With so
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Figure 2.2: Figure 2.1 can be simplified to a single consensus architecture
with a top-level consensus quorum making namespace decisions and di-
recting requests to per-object quorums that are replicated within a single
data center or across regions or zones.

many layers of coordination, it becomes impossible to reason about consistency and

data locality, and such systems become very difficult to deploy without excellent

systems administration.

We propose that the complexity of this blueprint can be simplified instead

to a multiple consensus process model as shown in Figure 2.2. This model does

not eliminate the components described in the blueprint, but rather consolidates

them into two primary coordination activities: coordinating the namespace and

coordinating accesses to and storage of objects. In this model, a single geo-replicated

quorum manages the global namespace – the primary master process. Multiple

independent subquorums manage accesses to individual objects, replicated solely

within a single datacenter, replicated across zones, or replicated across the wide
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area.

This simplification makes it clear that the core of a fault-tolerant, geo-replicated

distributed system is effective distributed consensus that can scale to multiple repli-

cas across many regions and can survive failures that may occur in wide area systems.

In the next section, we will build upon this idea and describe an overview of our

proposed architecture along with consistency and failure requirements.

2.2 System Architecture

We propose a consistency-centric approach to designing distributed data stores,

centered on geographically distributed consensus. Modern software is developed

with international audiences in mind from the outset and requires data services that

span oceans, continents, and political regions. Existing large-scale database and file

systems were purpose built for gigantic applications created by large Internet com-

panies and include specializations for data-center level computer engineering. These

specializations resulted in complex coordination divided between levels to manage

transactions, namespace allocation, accesses, and storage. To ensure a wider audi-

ence of software developers can correctly reason about consistency across the wide

area a single, global consistency model is required.

Geographically distributed consensus is not sufficient, however, as system en-

vironments are migrating outside of the data center. The next generation of geo-

distributed systems will require edge replicas to support high-throughput writes

from sensor networks deployed on the energy grid, traffic coordination networks,
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and the Internet of Things. A consistency-centric approach requires therefore that

both strong consistency and high availability replicas are federated into a single

model of consistency. Our architecture therefore leverages a hierarchical consensus

model to provide strong consistency across regions, centralized by data center along

with a federated consistency model for a fog of edge devices surrounding data centers

to support heterogenous network environments.

In this section we will first describe a consistency model that informs our

architectural decisions. Next, we will describe the requirements for distributed sys-

tems that our architecture addresses. Finally, we will provide an overview of our

planet-scale architecture that serves as the foundation for this dissertation.

2.2.1 Consistency and Consensus

Our consistency model is a data-centric model, as opposed to a client-centric

model [74]. Client-centric models view the system as a black box and consistency

is described as guarantees made to processes or applications that interact with the

system such as “read your writes” or “write follows read” [75]. Data-centric consis-

tency on the other hand is concerned about the ordering of operations applied to a

replica and generally considers the problem of how those operations relate to each

other in a per-replica, append-only log.

Data-centric consistency can be reasoned about by considering a log-based

model of consistency. Replicas in a distributed system can be viewed as independent

state machines that apply commands in response to client requests or messages from
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other replicas [76]. Each command is appended to a log that records a time-ordered

sequence of operations such that from the same starting state, every time the log

is replayed the replica will reach the same ending state. Two replicas are locally

consistent (consistent with each other) if their logs are able to bring them to identical

states. Global consistency requires all replicas logs express a single, abstract ordering

that brings the entire system to identical states.

Neither local nor global consistency requires replica logs to be identical, only

that a log, when applied, leads to the same state. Consistency guarantees can

therefore be described by specifying how the logs of two replicas or all logs in a

system are allowed to vary. These variations can generally be described along two

dimensions: staleness and ordering.

1. Staleness refers to how far behind the latest global state a local log is and can

be expressed by the visibility latency of distributing a command to all replicas

or simply by how many updates the log is behind by.

2. Ordering refers to how closely individual logs adhere to an global chronological

ordering of commands. A strict ordering requires all logs or some prefix of the

log to be identical, whereas weaker ordering allows some divergence in order

updates applied to the log.

Most data-centric consistency models refer to the strictness of ordering guar-

antees and the method by which updates are applied to the state of the replica [77].

The least strict model, weak consistency (WC) makes no guarantees whatsoever

about the relationship of local and remote writes and requires no coordination.
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Eventual consistency (EC) is primarily concerned with the final state of all logs

given some period of quiescence that allows the system to converge [78]. Though

two logs may have an entirely different ordering of commands and not all commands

may be present in all logs, EC guarantees that all replicas will achieve the same state,

eventually. Causal consistency (CC) ensures that a log is as up to date as all other

logs with respect to a subset of dependencies [79, 80]. Sequential consistency (SC)

is a strong consistency model that requires all replicas have the same exact log or-

dering on a per-object or multi-object basis, but does not make guarantees about

staleness [81, 82]. Finally, linearizablity (LIN), the strongest form of consistency,

requires that clients see a single, externalizable log no matter which part of the

system they access [83].

Consensus algorithms [60,84–92] are used to coordinate the logs of replicas to

provide strong consistency in a distributed system. Consensus requires two phases

to ensure a command is correctly committed to a majority of replica logs. The first

phase, PREPARE, allows a replica to nominate a slot in the log for a specific com-

mand. If the majority of the replicas agree to allow the replica that slot, the second

phase, ACCEPT, allows a majority of replicas to agree that they have placed a spe-

cific command in specified log slot. At the cost of multiple coordination messages

per access, consensus guarantees that all replicas will always have identical logs.

Because enforcing log ordering requires increased coordination between repli-

cas, there is a trade-off between ordering strictness and staleness that often defines

the choice of consistency model used in a distributed system. Coordination adds de-

pendencies to accesses that introduces latency when responding to clients and total
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failure if part of the system is not available [16]. Eventually consistent models reduce

coordination and susceptibility to failure by creating relaxing quorum membership

and using asynchronous synchronization. By relaxing ordering strictness, the system

is able to respond more quickly but the reduction in coordination causes staleness,

which is the root of all observed inconsistencies in the system [93, 94]. Staleness is

entirely dependent on latency, therefore, in a data-center context, eventual consis-

tency has been considered consistent enough. In a geo-replicated context, however,

the requirements for data systems change as the physical properties of networks

become more apparent.

2.2.2 Requirements for Data Systems

We contend that consistency depends on the network environment. A network

with instantaneous and perfectly reliable communications would never be inconsis-

tent because all updates could be applied simultaneously with no latency. Real

world networks have to contend with physical systems and distances that create

meaningful delays when coordinating messages. Eventually consistent systems de-

pend on the speed at which updates are disseminated through the network – the

slower the dissemination, the more likely that an inconsistency is observed. Strong

consistency systems implemented with consensus are provably correct but will fail

to make progress as network conditions deteriorate. In a geo-replicated system, con-

sistency challenges are even greater because latencies are larger and outages more

widespread. Most proposed geo-replicated systems [47, 95–99] therefore attempt to
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find some balance of consistency models, trading off between the types of expected

failures. In this section we will briefly describe our expectations for network condi-

tions and the requirements for our data system.

In large systems with thousands of replicas and millions of clients, failure is

common and should be expected [13]. Disk failure is the most destructive form of

failure in a system because it leads to permanent data loss and can only be managed

through redundancy. Replica failure either due to hardware failure or power loss,

though temporary, reduces the total availability of the system. Homogeneity in

both disks and replicas can also lead to correlated failures, causing an extremely

destructive cascading effect [66].

In addition to node failures, communication failure must also be resolved. We

assume a reliable network protocol that buffers messages and ensures delivery if a

replica can be communicated with, messages are not dropped so long as the recipient

is online. We therefore treat network failures as partitions such that replicas cannot

communicate with some subset of its peers. In the case of either replica or network

failure, once replicas can communicate and are back online, they must be able to

gracefully rejoin the system.

In a geo-replicated context, large latencies are not primary issue, rather vari-

ability in expected latencies are. Access patterns are typically location-dependent

and correlated with respect to time (e.g. there are more accesses during daylight

business hours). There is a known physical limit to message traffic and with deter-

ministic latency a network could be constructed to efficiently and correctly propa-

gate data around the system. Unfortunately, because both partitions and latency
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are variable, systems must be designed to be fully connected to all areas of the

network.

In the face of failure, the primary requirements for a geo-replicated system

are therefore durability, fault-tolerance, heterogeneity, and adaptability. Durability

normally considers three disk replication to ensure that 2 failures do not lead to data

loss. In a geo-replicated context, regions provide robustness in the case of catas-

trophic failures, e.g. a natural disaster that causes wide-spread power failures [100].

Therefore durability and fault tolerance require not just disk replication but also

zone and region replication. Heterogeneity prevents both cascading, correlated fail-

ure, but also allows many different types of systems to participate in the network.

Finally adaptability allows the system to respond to changes in the network envi-

ronment, both in terms of outages and user access patterns. An adaptable system

will also be able to dynamically add and remove nodes and scale with an increased

number of regions. With these requirements in mind, in the next section we describe

our proposed architecture.

2.2.3 A Planetary Scale Architecture

We envision a consistency-centric, planetary-scale distributed system as a two

tier architecture shown in Figure 2.3. The first tier resides inside of a data center

environment and relies on high-speed backbone connections and high performance

machines to implement geo-distributed consensus using the hierarchical consensus

protocol, which we describe in Chapter 3. The second tier is a highly-available

26



Figure 2.3: A global architecture composed of a core backbone of hier-
archical consensus replication (red) and a fog of heterogenous, federated
consistency replicas (blue).

network of edge replicas that disseminate updates in the wide area between data

centers using a federated consistency model, which we will describe in Chapter 4.

Such a large system requires machine learning mechanisms to monitor and adapt

behavior according to changing network conditions, maximizing the consistency of

the entire system, which we will describe in Chapter 6.

Modern software applications require a strong consistency model that is region-

agnostic. Hierarchical consensus provides that consistency model by unifying co-

ordination into a single-process model rather than having multiple, independent

processes all coordinating accesses. Hierarchical consensus ensures that there is

an intersection between namespace coordination and access coordination so that

there is a provably strong relationship between the participation of all replicas in

consensus across the globe. This relationship ensures that a general audience of de-
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velopers can reason about consistency, geolocate data, and deploy systems without

the complexity of most systems.

The next generation of systems will also require high-throughput writes from

a mobile, heterogenous network. Rather than relying on the centralizing effect of

the cloud, we also propose to augment our system with a decentralized fog of highly

available replicas. These replicas use traditional eventually consistent systems to

ensure high-availability for writes at the cost of a high likelihood of stale reads.

We propose that this outer edge layer is not independent of the centralized applica-

tions, but rather we propose a federation of consistency models that increases global

consistency. Federated consistency allows replicas to choose at which consistency

level they participate in the system, creating a continuous, hybrid consistency across

independent objects.

The base application we have constructed is a key/value store as described

in Chapter 5. Keys serve as the basis for sharding in our system and allow us to

generically apply dependency relationships depending on the application. Key/value

stores can be seen as the underlying storage for databases, but we target two other

applications: a distributed ledger and a file system. Distributed ledgers have recently

grown in popularity thanks to decentralized blockchain protocols [101]. Hierarchical

consensus can be used to quickly export a per-object or multi-object distributed

log. Key/value stores can also be used for underlying file systems [102]. Many high-

performance distributed databases rely on an underlying replicated file system [36,

40, 41, 50, 69]. We believe that a planet-scale file system will therefore provide the

best platform to construct a myriad of services that are themselves planet-scale.
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2.3 Conclusion

In this chapter we have presented the challenges, motivations, and background

of today’s geo-replicated data systems. Modern software systems are now developed

with international audiences in mind, largely due to the success of large Internet

companies that provide cloud infrastructure around the world. As the demand for

global-scale software has grown, so to has the need for geo-replicated services, how-

ever, while cloud providers have provided access to provisioned large scale databases,

these database have been specialized and optimized for the applications they were

built for, not a general audience. The result is that software developers have to

deeply consider consistency and localization semantics at the application level, which

leads to confusion.

The challenge is that the current generation of geo-distributed systems rely on

a pristine data-center environment, able to support a multi-process architecture on

high-performance machines and networks. Multi-process architectures have multiple

levels of coordination and replication, making it extremely difficult to reason about

the consistency model. Moreover, the next generation of geo-distributed system will

not reside in data-centers, but in more variable, mobile network environments. To

accommodate both of these trends, we have proposed a consistency-centric archi-

tecture for planet-scale systems.

The primary challenges for a planet-scale systems are their scale and the vari-

ability of the connections between participants. Our architecture places primary

importance on durability, fault-tolerance, heterogeneity, and adaptability by speci-
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fying two federated tiers of access. The first tier, inside of data centers, uses hierar-

chical consensus to provide strong geo-replicated consistency as well as catastrophic

failure tolerance by replicating data cross zones and regions. The second tier, at

the edge in the mobile network federates a highly available system model with a

strong consistency model to provide stronger global guarantees. Finally, our system

self-organizes by monitoring access patterns and the network environment, adapting

to change to provide resilience over time.

In the next chapter, we will explore the core component of this dissertation:

hierarchical consensus.
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Chapter 3: Hierarchical Consensus

The backbone of our planetary scale data system is hierarchical consensus [103].

Hierarchical consensus provides a strong consistency foundation that totally orders

critical accesses and arbitrates the eventual consistency layer in the fog, which raises

the overall consistency of the system. To be effective, an externalizable view of con-

sistency ordering must be available to the entire system. This means that strong

consistency must be provided across geographic links rather than provided as lo-

calized, independent decision making with periodic synchronization. The problem

that hierarchical consensus is therefore designed to solve is that of geographically

distributed consensus.

Solutions to geo-distributed consensus primarily focus on providing high through-

put, low latency, fault tolerance, and durability. Current approaches [43,87,89,104–

106] usually assume few replicas, each centrally located on a highly available, power-

ful, and reliable host. These assumptions are justified by the environments in which

they run: highly curated environments of individual data centers connected by ded-

icated networks. Although replicas in these environments may participate in global

consensus, our architecture requires us to accommodate replicas with heterogenous

capabilities and usage modalities. Widely distributed replicas might have neither
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high bandwidth nor low latency and might suffer partitions of varying durations.

Such systems of replicas might also be dynamic in membership, unbalanced across

multiple regions to support variable sized workloads in each region. Most impor-

tantly, to provide a backbone for a planetary scale data system, the consistency

backbone must scale to include potentially thousands of replicas around the world.

As a result, straightforward approaches of running variants of Paxos [60, 84],

ePaxos [87], or Raft [92] across the wide area, even for individual objects, will

perform poorly for several reasons. First, distance (in network connectivity) between

the most active consensus replicas and their followers decrease the performance of the

entire system; said another way, consensus is only as fast as the final vote required to

make a decision, even when making “thrifty” requests. Second, network partitions

are common, which causes consensus algorithms to fail-stop if they cannot receive a

majority [107]; a criticism that is often used to justify eventual consistency systems

for high availability. Finally, the fault tolerance model of small quorum algorithms

can be disrupted by only a few unreliable hosts. Given the scale of the system in

question and the heterogenous nature of replicas, the likelihood of individual failure

is so high so as to be considered inevitable, requiring much stronger fault tolerance

guarantees.

We propose another approach to building large consensus systems. Rather

than relying on a few replicas to provide consensus to many clients, we propose to

run a consensus protocol across replicas running at or near all of these locations.

The key insight is that large problem spaces can often be partitioned into mostly

disjoint sets of activity without violating consistency. We exploit this decomposition
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property by making our consensus protocol hierarchical so that the problem space

encompasses the entire system and individual consensus groups fast by ensuring

they are small and coordinate with other consensus groups only when required.

We exploit locality by building subquorums from colocated replicas, and locating

subquorums near clients they serve, minimizing wide-area latency. But because all

replicas participate, the fault tolerance of a large system is realized.

In this chapter we describe hierarchical consensus, a tiered consensus struc-

ture that allows high throughput, localization, agility, and linearizable access to a

shared namespace. We show how to use delegation (§ 3.2.3) to build large consen-

sus groups that retain their fault tolerance properties while performing like small

groups. We describe the use of fuzzy epoch transitions (§ 3.2.5) to allow global re-

configurations across multiple consensus groups without forcing them into lockstep.

Finally, we describe how we reason about consistency by describing the structure of

grid consistency (§ 3.3.1).

3.1 Overview

Hierarchical Consensus (HC) is a leader-oriented implementation and exten-

sion of Vertical Paxos [108–110] designed to scale to hundreds of nodes geo-replicated

around the world. Vertical Paxos divides consensus decisions both horizontally, as

sequences of consensus instances, and vertically as individual consensus decisions

are made. Spanner [41], MDCC [42], and Calvin [43], can all be thought of as

implementations of Vertical Paxos. These systems shard the namespace of the ob-
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jects they manage into individual consensus groups (the horizontal division) each

independently reaching consensus about accesses (the vertical division). A general

implementation of Vertical Paxos therefore requires multiple independent quorums,

one to manage the namespace and keep track of the health of all replicas in the

system, and many other subquorums to independently manage tablets or objects.

In a geo-replicated context, there are two problems with this scheme. First,

sharding does not allow for inter-object dependence (in the horizontal division) with-

out relying on coordination from the management quorum. Second, the management

quorum must be geo-replicated and able to scale to handle monitoring of the entire

system. In both cases, the management quorum becomes a bottleneck. Current

solutions to the bottleneck include batching decisions or using specialized hardware

to produce extremely accurate timestamps. These solutions, however, are outside of

the scope of the safety properties provided by Vertical Paxos, which make it difficult

to reason about consistency guarantees. The challenge is therefore in constructing a

multi-group coordination protocol that configures and mediates per-object quorums

with the same level of consistency and fault tolerance as the entire system.

Hierarchical consensus organizes all participating replicas into a single root

quorum that manages the namespace across all regions as shown in Figure 3.1.

The root quorum guarantees correctness and failure-free operation by pivoting the

overall system through two primary functions. First, the root quorum reconfigures

its membership into subquorums, reserving extra members as hot-spares if needed.

Second, the root quorum adjusts the mapping of the object namespace defined by

the application layer to the underlying partitions, which subquorums are responsi-
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Region 1

Region 3

Region 2

Root Leader

Follower

Subquorum Leader

Hot Spare

Figure 3.1: A simple example of an HC network composed of 12 replicas
with size 3 subquorums. Each region hosts its own subquorum and
subquorum leader, while the subquorum leaders delegate their votes to
the root quorum, whose leader is found in region 1. This system also
has 2 hot spares that can be used to quickly reconfigure subquorums
that experience failures. The hot spares can either delegate their vote,
or participate directly in the root quorum.
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ble for managing. These adjustments adapt the system to replica failures, system

membership changes, varying access patterns, and ensure that related objects are

coordinated together. Much of the system’s complexity comes from handshaking

between the root quorum and the lower-level subquorums during reconfigurations.

These handshakes are made easier, and much more efficient, by using fuzzy

transitions. Fuzzy transitions allow individual subquorums to move through re-

configuration at their own pace, allowing portions of the system to transition to

decisions made by the root quorum before others. Given our heterogenous, wide-

area environment, forcing the entire system to transition to new configurations in

lockstep would be unacceptably slow. Fuzzy transitions also ensure that there is no

dedicated shard-master that has to synchronize all namespace allocations. At the

possible cost of multiple redirections, clients can be redirected by any member of

the root quorum to replicas who should be participating in consensus decisions for

the requested objects. Fuzzy transitions ensure that root quorum decisions need not

be timely since those decisions do not disrupt accesses of clients.

Though root quorum decisions are rare with respect to the throughput of ac-

cesses inside the entire system, they still do require the participation of all members

of the system, which could lead to extremely large quorum sizes, and therefore

extremely slow consensus operations that may be overly sensitive to partitions. Be-

cause all subquorums make disjoint decisions and because all members of the system

are part of the root quorum, we propose a safe relaxation of the participation re-

quirements for the root quorum such that subquorum followers can delegate their

root quorum votes to their leader. Delegation ensures that only a few replicas par-
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Root Leader
• Broadcast command to all replicas. 
• Resolve conflicting delegations by
  comparing subquorum terms.
• If current vote count is a majority,   
  begin epoch transition.  

Root Delegates
• if epoch < current epoch: send no votes
• if vote undelegated: send self vote 
• if candidate: send self vote 
• if delegate: send all votes 

Vote: (epoch e, quorum q, term t, votes v) 
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Epoch D
ecisions

“Nuclear” Option

Initiated by request, reconfiguration, 
localization, quiescence procedures. 

Root Leader
• Monotonically increase epoch number,  
  Define subquorums, initial leaders. 
• Initiate delegated vote on epoch-change.
• On commit, begin fuzzy transition. 

Subquorum Replicas
• Write tombstone into current log. 
• Finalize commit for accesses prior to the 
  tombstone record, forward new requests. 
• On tombstone commit: truncate and archive 
  log, join new subquorum configuration. 

Epoch Changes

Initiating: leader of subquorum in e-1
Remote: leader of subquorum in e

• Initiating sends last committed command 
  for every object required by remote, 
  Null for objects without accesses, and 
  number of outstanding entries.
• Remote appends last entries and performs 
  batch consensus to bring subquorum to the 
  Same state. 
• On remote commit, reports to root leader
  and begins accepting new accesses. 

Note: background anti-entropy optimizes 
handoff process by reducing data volume.

Fuzzy Transitions

Clients are forwarded to the subquorum 
leader with responsibility for requested 
object(s). 

• Read(o): Leader responds with last    
  committed entry; marks response if 
  uncommitted entry for object exits. Adds 
  read access to log but does not begin 
  consensus (aggregates reads with writes). 

• Write(o): Leader increments objects 
  version number and creates a 
  corresponding log entry. Sends consensus 
  request and responds to client when the 
  entry is committed.   

Consensus and Accesses

In a multi-object transaction, remote 
accesses serialize inter-quorum access. 

Initiating: append entries in log and send 
remote access request to remote leader. 

Remote: create sub-epoch to demarcate 
remote access, add entry and respond to 
initiating replica when committed. 

Initiating: on remote commit, create local 
sub-epoch, and commit entries appended to 
logs. 

Remote Accesses

Delegations are only valid for the next 
epoch change. If enough delegates have 
failed that the epoch change cannot be 
made, a “nuclear” option resets delegates.

Triggered by a nuclear timeout ⪢ root 
election timeout to ensure root leader is 
dead and delegates can’t establish leader. 

• Increment epoch beyond vote delegation 
  limit, resetting all delegations. 
• Conduct new root election/epoch change 
  with all available replicas. 
• Update health of all failed nodes and 
  reconfigure epoch. 

Figure 3.2: A condensed summary of the hierarchical consensus protocol.
Operations are described top-to-bottom where the top level is root quo-
rum operations, the bottom is subquorum operations, and the middle is
transition and intersection.
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ticipate in most root quorum decisions, though decisions are made for the entire

system.

In brief, the resulting system is local, in that replicas serving clients can be

located near them. The system is fast because individual operations are served

by small groups of replicas, regardless of the total size of the system. The system

is nimble in that it can dynamically reconfigure the number, membership, and re-

sponsibilities of subquorums in response to failures, phase changes in the driving

applications, or mobility among the member replicas. Finally, the system is con-

sistent, supporting the strongest form of per-object consistency without relying on

special-purpose hardware [41,111–114].

A complete summary of hierarchical consensus is described in Figure 3.2.

3.2 Consensus

The canonical distributed consensus used by systems today is Paxos [60, 84].

Paxos is provably safe and designed to make progress even when a portion of the

system fails. As described in § 2.2.1, consensus operations maintain a single, ordered

log of operations that consistently change the state of the replica. Raft [92] was

designed not to improve performance, but to increase understanding of consensus

behavior to better allow efficient implementations. HC uses Raft as a building block,

so we describe the relevant portions of Raft at a high level, referring the reader to

the original paper for complete details. Though we chose to base our protocol on

Raft, a similar approach could be used to modify Paxos or one of its variants into a
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hierarchical structure.

Consensus protocols have two phases: leader election (also known as PREPARE)

and operations commit (also known as ACCEPT). Raft is a strong-leader consensus

protocol, a common optimization of Paxos variants called multi-Paxos [85, 86, 89,

115]. Multi-Paxos allows the election phase to be elided while a leader remains avail-

able, therefore the protocol requires only a single communication round to commit

an operation in the common case.

Raft uses timeouts to trigger phase changes and provide fault tolerance. Cru-

cially, it relies on timeouts only to provide progress, not safety. New elections occur

when another replica in the quorum times out waiting for communication from

the leader. Such a replica increments its term until it is greater than the existing

leader, and announces its candidacy by sending a VoteRequest. Other replicas vote

for the candidate if they have not seen a competing candidate with a larger term

and become followers, waiting for entries from the leader to be appended to its log.

During regular operation, clients send requests to the leader, which broadcasts

AppendEntries messages carrying operations to all followers. Term-invariants guar-

antee safety, followers will only accept an append entry request from a leader with

a term as high or higher than the follower’s term. Additionally, followers will not

append an entry to a log unless the leader can prove that the follower’s log is as

up to date as its own, determined by the index and term of the leader’s previous

entry. An operation is committed and can be executed when the leader receives

acknowledgments of the AppendEntries message from more than half the replicas

(including itself).
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HC implements an adapted Raft consensus algorithm at both the root and

subquorums. We chose Raft both for its understandability in implementation and

to easily describe operations in a leader-oriented context – for example delegation is

more understandable in the context of voting to elect a leader. We describe differ-

ences in our Raft implementation from the canonical implementation in Chapter 5.

3.2.1 Terminology and Assumptions

Throughout the rest of this chapter we use the term root quorum to refer

to the upper, namespace-mapping and configuration-management tier of HC, and

subquorum to describe a group of replicas (called peers) participating in consensus

decisions for a section of the namespace. The root quorum shepherds subquorums

through epochs, each with potentially different mappings of the namespace and

replicas to subquorums. An epoch corresponds to a single commit phase of the root

quorum. We use the term Raft only when describing details particular to our current

use of Raft as the underlying consensus algorithm. We refer to the two phases of

the base consensus protocol as the election phase and the commit phase. We use

the term vote as a general term to describe positive responses in either phase.

Epoch x is denoted ex when referring to the numeric counter and Qx when

referring to a configuration of subquorums. Subquorum i of epoch ex is represented

as qi,x, or just qi when the epoch is obvious, e.g. qi ∈ Qx. The namespace is divided

into tags, disjoint subsets of the namespace. It is equivalent to refer to qi,x as a

tag since every subquorum manages at least one tag so that Qx covers the entire
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namespace. However, for specificity we may refer to ti,x and ti ∈ Tx when referring

to objects rather than the subquorums that manage them. A system is composed of

R replicas, an individual replica may be designated rk to distinguish an individual

replica from a subquorum.

We assume faults are fail-stop [107] rather than Byzantine [116]. We do not

assume that either replica hosts or networks are homogeneous, nor do we assume

freedom from partitions and other network faults.

3.2.2 Root Consensus

Hierarchical consensus is a leader-oriented protocol that organizes replicas into

two tiers of quorums, each responsible for fundamentally different decisions (Fig-

ure 3.3). The lower tier consists of multiple independent subquorums, each commit-

ting operations to local shared logs. The upper, root quorum, consists of subquorum

peers, usually their leaders, delegated to represent the subquorum and hot spares

in root elections and commits. Hierarchical consensus’s main function is to export

a linearizable abstraction of shared accesses to some underlying substrate, such as a

distributed object store or file system. We assume that nodes hosting object stores,

applications, and HC are frequently co-located across the wide area.

The root quorum’s primary responsibilities are mapping replicas to individual

subquorums and mapping subquorums to tags within the namespace. Each such

map defines a distinct epoch, ex, a monotonically increasing representation of the

term of the configuration of subquorums and tags, Qx. The root quorum is effectively
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Root Quorum
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Q1
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root leader

delegation quorum

leader

follower
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P

Q

Figure 3.3: The root quorum coordinates all replicas in the system in-
cluding hot spares, though active participation is only by delegated rep-
resentatives of subquorums, which do not necessarily have to be leaders
of the subquorum, though this is most typical. Subquorums are con-
figured by root quorum decisions which determine epochs of operation.
Each subquorum handles accesses to its own independent portion of the
namespace.
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a consensus group consisting of subquorum leaders. Somewhat like subquorums, the

effective membership of the root quorum is not defined by the quorum itself, but

in this case by leader election or peer delegations in the lower tier. While the root

quorum is composed of all replicas in the system, only this subset of replicas actively

participates in root quorum decision making.

The root quorum partitions (shards) the namespace across multiple subquo-

rums, each with a disjoint portion as its scope. The namespace is decomposed into

a set of tags, T where each tag ti is a disjoint subset of the namespace. Tags are

mapped to subquorums in each epoch, Qx 7→ Tx such that ∀t ∈ Tx ∃!qi,x 7→ t. The

intent of subquorum localization is ensure that the domain of a client, the portion of

the namespace it accesses, is entirely within the scope of a local, or nearby, subquo-

rum. If true across the entire system, each client interacts with only one subquorum,

and subquorums do not interact at all during execution of a single epoch. This silo-

ing of client accesses simplifies implementation of strong consistency guarantees and

allows better performance at the cost of restricting multi-object transactions. We

relax this restriction in § 3.3.2 to allow for the possibility of transactions.

3.2.3 Delegation

The root quorum’s membership is, at least logically, the set of all system

replicas, at all times. However, running consensus elections across large systems is

inefficient in the best of cases, and prohibitively slow in a geo-replicated environment.

Root quorum decision-making is kept tractable by having replicas delegate their
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votes, usually to their leaders, for a finite duration of epochs. With leader delegation,

the root membership effectively consists of the set of subquorum leaders. Each leader

votes with a count describing its own and peer votes from its subquorum and from

hot spares that have delegated to it.

Fault tolerance scales with increasing system size and consensus leadership is

intended to be stable. A quorum leader is elected to indefinitely assign log entries to

slots (access operations for subquorums, epoch configurations for the root quorum).

If the leader fails, then so long as the quorum has enough online peers, they can

elect a new leader, and when the leader comes back online, it rejoins the quorum as

a follower. The larger the size of the quorum, the more failures it is able to tolerate.

This means that there might be multiple subquorum leaders in a single epoch as

shown in Figure 3.4.

Consider an alternative leader-based approach where root quorum membership

is defined as the current set of subquorum leaders. Both delegation and the leader

approach have clear advantages in performance and flexibility over direct votes of

the entire system. However, the leader approach causes the root quorum to become

unstable as its membership changes during partitions or subquorum elections. These

changes would require heavyweight joint consensus decisions in the root quorum for

correctness in Raft-like protocols [92]. By delegating at the root level, we introduce

the possibility that a delegate fails, removing many root votes, to ensure root quorum

stability (we address this possibility in § 3.4.2).
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Delegation ensures that root quorum membership is always the entire system

and remains unchanged over subquorum leader elections and even reconfiguration.

Delegation is essentially a way to optimistically shortcut contacting every replica for

each decision. Subquorum repartitioning merely implies that a given replica’s vote

might need to be delegated to a different leader. To ensure that delegation happens

correctly and without requiring coordination, we simply allow a replica to directly

designate another replica as its delegate until some future epoch is reached. Replicas

may only delegate their vote once per epoch and replicas are not required to delegate

their vote. To simplify this process, during configuration of subquorums by the root

quorum, the root leader provides delegate hints, e.g. those replicas that have been

stable members of the root quorum without partitions. When replicas receive their

configuration they can use these hints to delegate their vote to the closest nearby

delegate if not already delegated for the epoch. If no hints are provided, then replica

followers generally delegate their vote to the term 1 leader and hot spares to the

closest subquorum leader.

Delegation does add one complication: the root quorum leader must know all

vote delegations to request votes when committing epoch changes. We deal with

this issue, as well as the requirement for a nuclear option (§ 3.4.2), by simplifying

our protocol. Instead of sending vote requests just to subquorum leaders, the root

quorum leader sends vote requests to all system replicas. This is true even

for hot spares, which are not currently in any subquorum. Delegates reply with the

unique ids of the replicas they represent so that root consensus decisions are still

made using a majority of all system replicas.
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This is correct because vote requests now reach all replicas, and because repli-

cas whose votes have been delegated merely ignore the request. We argue that it is

also efficient, as a commit’s efficiency depends only on receipt of a majority of the

votes. Large consensus groups are generally slow (see Figure 3.9) not just because

of communication latency, but because large groups in a heterogeneous setting are

more likely to include replicas on very slow hosts or networks. In the usual case for

our protocol, the root leader still only needs to wait for votes from the subquorum

leaders. Leaders are generally those that respond more quickly to timeouts, so the

speed of root quorum operations is unchanged.

3.2.4 Epoch Transitions

Every epoch represents a new configuration of the system as designated by

the root leader. Efficient reconfiguration ensures that the system is both dynamic,

responding both to failures and changing usage patterns, and minimizes coordination

by colocating related objects. An epoch change is initiated by the root leader in

response to one of several events, including:

• a namespace repartition request from a subquorum leader

• notification of join requests by new replicas

• notification of failed replicas

• changing network conditions that suggest re-assignment of replicas

• manual reconfigurations, e.g. to localize data
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The root leader transitions to a new epoch through the normal commit phase

in the root quorum. The command proposed by the leader is an enumeration of

the new subquorum partition, namespace partition, and assignment of namespace

portions to specific subquorums. The announcement may also include initial leaders

for each subquorum, with the usual rules for leader election applying otherwise, or

if the assigned leader is unresponsive. Upon commit, the operation serves as an

announcement to subquorum leaders. Subquorum leaders repeat the announcement

locally, disseminating full knowledge of the new system configuration, and eventually

transition to the new epoch by committing an epoch-change operation locally.

The epoch change is lightweight for subquorums that are not directly affected

by the overarching reconfiguration. If a subquorum is being changed or dissolved,

however, the epoch-change commitment becomes a tombstone written to the logs of

all local replicas.4 No further operations will be committed by that version of the

subgroup, and the local shared log is archived and then truncated. Truncation is

necessary to guarantee a consistent view of the log within a subquorum, as peers

may have been part of different subquorums, and thus have different logs, during the

last epoch. Replicas then begin participating in their new subquorum instantiation.

In the common case where a subquorum’s membership remains unchanged across

the transition, an epoch-change may still require additional mechanism because of

changes in namespace responsibility.
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3.2.5 Fuzzy Handshakes

Epoch handshakes are required whenever the namespace-to-subquorum map-

ping changes across an epoch boundary. HC separates epoch transition announce-

ments in the root quorum from implementation in subquorums. Epoch transitions

are termed fuzzy because subquorums need not all transition synchronously. There

are many reasons why a subquorum might be slow. Communication delays and

partitions might delay notification. Temporary failures might block local commits.

A subquorum might also delay transitioning to allow a local burst of activity to

cease such as currently running transactions 1 . Safety is guaranteed by tracking

subquorum dependencies across the epoch boundary.

The most complex portion of the HC protocol is in handling data-related

issues at epoch transitions. Transitions may cause tags to be transferred from one

subquorum to another, forcing the new leader to load state remotely to serve object

requests. Transition handshakes are augmented in three ways. First, an replica

can demand-fetch an object version from any other system replica. Second, epoch

handoffs contain enumerations of all current object versions, though not the data

itself. Knowing an object’s current version gives the new handler of a tag the ability

to demand fetch an object that is not yet present locally. Finally, handshakes start

immediate fetches of the in-core version cache from the leader of the tag’s subquorum

in the old epoch to the leader in the new.

Figure 3.5 shows an epoch transition where the scopes of qi, qj, and qk change

1The HC implementation discussed in this chapter does not currently support transactions.
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Figure 3.5: Readiness to transition to the new epoch is marked by a thin
vertical bar; actual transition is the thick vertical bar. Thick gray lines
indicate operation in the previous epoch. Subquorum qj transitions from
tag c, d to c, b, f , but begins only after receiving version information from
previous owners of those tags. The request to qk is only answered once
qk is ready to transition as well.
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across the transition as follows:

qi,x−1 = ta, tb −→ qi,x = ta (3.1)

qj,x−1 = tc, td −→ qj,x = tc, td, tf (3.2)

qk,x−1 = te, tf −→ qk,x = td, te (3.3)

All three subquorums learn of the epoch change at the same time, but become

ready with varying delays. These delays could be because of network lags or ongoing

local activity. Subquorum qi gains no new tags across the transition and moves

immediately to the new epoch. Subquorum qj’s readiness is slower, but then it sends

requests to the owners of both the new tags it acquires in the new epoch. Though qi

responds immediately, qk delays its response until locally operations conclude. Once

both handshakes are received, qj moves into the new epoch, and qk later follows suit.

These bilateral handshakes allow an epoch change to be implemented incre-

mentally, eliminating the need for lockstep synchronization across the entire sys-

tem. This flexibility is key to coping with partitions and varying connectivity in

the wide area. However, this piecewise transition, in combination with subquorum

re-definition and configuration at epoch changes, also means that individual replicas

may be part of multiple subquorums at a time.

This overlap is possible because replicas may be mapped to distinct subgroups

from one epoch to the next. Consider qk in Figure 3.5 again. Assume the epochs

shown are ex and ex+1. A single replica, ra, may be remapped from subquorum qk,x
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to subquorum qi,x+1 across the transition. Subquorum qk,x is late to transition, but

qi,x+1 begins the new epoch almost immediately. Requiring ra to participate in a

single subquorum at a time would potentially delay qi,x+1’s transition and impose

artificial synchronicity constraints on the system. One of the many changes we made

in the base Raft protocol is to allow a replica to have multiple distinct shared logs.

Smaller changes concern the mapping of requests and responses to the appropriate

consensus group.

3.2.6 Subquorum and Client Operations

A subquorum, qi,x, logically exists only for the duration of an epoch, ex and

maps accesses to a subset of tags in T such that qi,x 7→ ti,x ⊂ Tx. Each subquorum

elects a leader to coordinate local decisions. Fault tolerance of the subquorum is

maintained in the usual way, detecting leader failures and electing new leaders from

the peers. Subquorums do not, however, ever change system membership on their

own. Subquorum membership is always defined in the root quorum.

Subquorum consensus is used to manage client accesses by committing object

writes and designating a responding replica for object reads. Clients can generally

Get a key (a read operation), and can Put values and Del objects (write operations).

Client accesses are forwarded to the leader of the subquorum for the appropriate tag

the object being accessed belongs to. Because the root quorum manages the names-

pace, all replicas can correctly forward a client to a member of the subquorum, at

worst requiring two redirects to reach a leader. The underlying Raft semantics en-
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sure that leadership changes do not result in loss of any commits. Hence, individual-

or multiple-client accesses to a single subquorum are totally ordered.

All writes are committed as operations by consensus decisions, appending the

operation to a log shared by all replicas. On commit, the write is applied to the

underlying storage asynchronously, so long as the write is committed, it is guaran-

teed to be applied in the order specified by the log. The shared logs also provide a

complete version history of all distributed objects. Subquorum leaders use in-core

caches to provide fast access to recently accessed objects in the local subquorums’s

tag. Replicas perform background anti-entropy [37, 78, 117], disseminating log up-

dates a user-defined number of times across the system, providing both durability

as well as fast transitions between configurations.

Reads are not committed with consensus decisions by default. Leaders re-

spond to Get requests by replying with the latest applied (committed) value. This

introduces the possibility of a stale read, e.g. that a read occurs before a committed

operation is applied. To ensure a subquorum has linearizable consistency, reads

would also need to be committed. Another option is to commit read-leases to a

specified client, so that they are guaranteed to read a snapshot of object values.

Committing multi-object leases is the basis for implementing transactions in sub-

quorums, however they also play an important role in accessing multiple objects

across subquorum boundaries.

Although we have not yet implemented transactions in our system, we have

provided a mechanism for multi-object coordination in the case where objects span

multiple subquorums. A remote access is conducted from one subquorum to another
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(e.g. leader to leader) transparently from the client. Remote accesses have implica-

tions for consistency as described in § 3.3.1. For now we simply point out that all

remote accesses, both reads and writes, require the subquorum to commit the op-

eration or grant a temporary lease to the remote quorum. To optimize this process,

batch commands may be used to limit the amount of cross-region communication

required for remote accesses.

3.3 Consistency

Hierarchical consensus provides the strongest possible per-object and global

consistency guarantees. Pushing all writes through subquorum commits and serv-

ing reads at leaders allows us to guarantee that per-object accesses are linearizable

(Lin), which is the strongest non-transactional consistency [81,83]. As a recap, lin-

earizability is a combination of atomicity and timeliness guarantees about accesses

to a single object. Both reads and writes must appear atomic, and also instanta-

neous at some time between a request and the corresponding response to a client.

Reads must always return the latest value. This implies that reads return values

are consistent with any observed ordering, i.e., the ordering is externalizable [118].

Linearizability of object accesses can be composed. If operations on each object

are linearizable, the entire object space is also linearizable. This allows our subquo-

rums to operate independently while providing a globally consistent abstraction.

The resulting consistency model can be reasoned about as grid consistency
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3.3.1 Grid Consistency

Hierarchical consensus implements a multi-quorum model of consistency we

call grid consistency. Grid consistency uses the Vertical Paxos three-dimensional

log model to also model a global ordering of operations that ensure the state of

the system is always consistent. We express total orderings as “happened-before”

(→) relationships [119]. The grid is defined along the horizontal by each epoch or

configuration. Epochs are totally ordered, such that ex−1 → ex, determined by the

root log’s consensus operations. This implies that any access in qi,x−1 → qj,x, which

is guaranteed by the tombstone and hand-off operation during epoch transition.

The grid is defined vertically by logs of all qi ∈ Qx. Because subquorums operate

independently with the exception of remote accesses, operations in each log can

be applied concurrently. Said another way, all subquorum logs within an epoch

implement a fuzzy log [120]. In this section we show how remote accesses and

independent subquorums in a single epoch create a linearizable total ordering via

composability and in the following section we describe how to extract a sequentially

consistent global log.

Figure 3.6 shows a system with subquorums qi and qj, each of which performs

a pair of writes. Dotted lines show one possible event ordering for replicas qi (re-

sponsible for objects a and b), and qj (c and d). Without cross-subquorum reads

or writes, ordering either subquorums’s operations first creates a SC total ordering:

qi → qj implies wi,1 → wi,3 → wj,1 → wj,3, for example. If the epoch has not

been concluded, then the best the system can guarantee is sequential consistency,

55



epoch 1

epoch 2

qi
(a, b)

qj
(b, c)

wi,1(b)

wi,3(b)

wj,1(c)

wj,3(c)

Figure 3.6: Without remote accesses, once an epoch has been concluded
a default total ordering is: wi,1 → wi,3 → wj,1 → wj,3. Once the epoch
is concluded, this ordering is guaranteed and exposes an externalizable
total ordering of events.
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we can only guarantee that wj,1 → wj,3 and that wi,1 → wi,3. Once the epoch is

concluded, however, there is no other ordering other than the one expressed by the

grid – therefore at the epoch’s conclusion a linearizable total ordering exists, though

it cannot be read from. However, because only a single subquorum will handle reads

within an epoch (no other quorum will issue a read unless the epoch has changed)

we posit that a client that reads only objects handled by a single subquorum has

a linearizable view of those objects. Because linearizability is composable across

objects, the system is linearizable.

3.3.2 Remote Accesses

The constraint that clients access only a single subquorum per epoch is ac-

ceptable in the common case, but because epoch changes require root quorum

decisions, we allow cross-quorum communication via remote accesses. Figure 3.7

shows additional dependencies created by issuing remote writes to other subquo-

rums: wi,2 → wj,3 and wj,2 → wi,3. Each remote write establishes a partial ordering

between events of the sender before the sending of the write, and writes by the

receiver after the write is received. Similar dependencies result from remote reads.

These dependencies cause the epochs to be logically split (not shown in pic-

ture). The receipt of write wi,2 in qj causes qj,1 to be split into qj,1.1 and qj,1.2.

Likewise, the receipt of write wj,2 into qi causes qi to be split into qi,1.1 and qi,1.2.

Any topological sort of the subepochs that respects these orderings, such as qi,1.1 →

qj,1.1 → qj,1.2 → qi,1.2, results in a valid SC ordering.
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wi,1(b)

wi,3(b)

wj,1(c)

wj,3(c)

wi,2(c)

wj,2(b)

epoch 1

epoch 2

qi
(a, b)

qj
(b, c)

Figure 3.7: Remote writes add additional ordering constraints: wi,1 →
wi,2 → wj,3, and wj,1 → wj,2 → wi,3. By creating subepochs, we can
guarantee linearizability even for accesses across multiple subquorums.
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As before, presenting a sequentially consistent global log across the entire

system, then, only requires tracking these inter-subquorum data accesses, and then

performing an O(n) merge of the subepochs. By definition, this log’s ordering

respects any externally visible ordering of cross-subquorum accesses (accesses visible

to the system). So long as these dependencies are maintained, then the log is

externalized at epoch boundaries.

However, the log does not necessarily order other accesses according to external

visibility. Extracting a global log could not be mined to find causal relationships

between accesses through external communication paths unknown to the system.

For example, assume that log events are published posts, and that one user claimed

plagiarism. The accused would not be able to prove that his post came first unless

there were some causal chain of posts and references visible to the protocol.

3.3.3 Globally Consistent Logs

Our default use case is in providing linearizable access to an object store.

Though this approach allows us to guarantee all observers will see linearizable re-

sults of object accesses in real-time, the system is not able to enumerate a total order

or create a linearizable shared log. Such a linear order would require fine-grained

(expensive) coordination across the entire system or fine-grained clock synchroniza-

tion [41]. Though many or most distributed applications (objects stores, file sys-

tems, etc.) will work directly with HC, shared logs are a useful building block for

distributed systems.
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HC can be used to build a sequentially consistent (SC) shared log as shown in

Figure 3.8. Because SC does not require an externalizable total ordering, it merely

has to conform to local operation orders and all reads-from dependencies created

by remote accesses. Therefore to construct a global log in real time, clients simply

have to read from the logs of the subquorums, appending new entries as needed.

If a client gets to a remote access in the log of a subquorum, it must read from

the remote subquorums log until the access has completed, before continuing to

append entries of the current log. This operation can be parallelized across multiple

subquorum logs, requiring synchronization only at remote access points.
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We do not currently gather the entire shared log onto a single replica because

of capacity and flexibility issues. Capacity is limited because our system and ap-

plications are expected to be long-lived. Flexibility is a problem because HC, and

applications built on HC, gain much of their value from the ability to pivot quickly,

whether to deal with changes in the environment or for changing application ac-

cess patterns. We require handoffs to be as lightweight as possible to preserve this

advantage.

Instead, we propose a checkpoint strategy based on epochs. Global logs may

be used to recover side by side systems (such as a development environment) or for

auditing purposes. Once an epoch has been fully concluded the state of the system

remains constant and can be represented by a version-vector of metadata for each

object. Auditing or recovery operations can then apply ongoing log accesses to the

checkpoint state either for the entire system or simply a portion of the system. Once

the desired state has been reached, the version-vector can then be used to extract

the specific objects or history required. We utilized this method during development

to provide consistency verification auditing across the system.

3.4 Safety and Correctness

Distributed consensus requires provable safety and correctness so as to be

relied upon when building consistency-centric systems. Safety ensures that any

update to the system, if committed, will be represented by the system even in the

case of limited failure [121]. Correctness is described by the consistency model,
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if a distributed algorithm always produces an expected system state, then it is

correct [122]. Safety and correctness are proved as part of the scientific process

of introducing new consensus algorithms. Although we view hierarchical consensus

as a consensus protocol rather than a new consensus algorithm, we provide a brief

overview of our safety proof as follows.

We assert that consensus at individual subquorums is correct and safe because

decisions are implemented using well-known leader-oriented consensus approaches.

Hierarchical consensus therefore has to demonstrate linearizable correctness and

safety between subquorums for a single epoch and between epochs. Briefly, lineariz-

ability requires external observers to view operations to objects as instantaneous

events. Within an epoch, subquorum leaders serially order local accesses, thereby

guaranteeing linearizability for all replicas in that quorum. Remote accesses and

the internal subepoch invariant also enforce linearizability of accesses between sub-

quorums inside of a single epoch as described in § 3.3.1. Given a static system of

subquorum configurations that each manage independent shards, we claim that our

system implements vertical paxos.

A static configuration would not require a root quorum, but it would also not

allow reconfiguration to move quorums to locales of access or to repair system fail-

ures. Therefore to prove safety and correctness, we must show that root quorum

behavior, specifically epoch transitions and delegation, is correct. Epoch transi-

tions raise the possibility of portions of the namespace being re-assigned from one

subquorum to another, with each subquorum making the transition independently.

Correctness is guaranteed by an invariant requiring subquorums to delay serving

63



newly acquired portions of the namespace until after completing all appropriate

handshakes. Tombstones ensure that an update cannot be applied to a subquorum

then lost when the transitioning subquorum takes over. Delegation is protected by

bookkeeping that ensures that no replica can be counted twice in a vote, therefore

in the worst case, delegation means that a single failure can eliminate many votes.

Safety and correctness are important parts of distributed consensus, but only

if they also allow a system to make progress in the event of failure. We define the

system’s safety property as guaranteeing that non-linearizable (or non-sequentially-

consistent, see Section 3.3.3) event orderings can never be observed. We define

the system’s progress property as the system having enough live replicas to commit

votes or operations in the root quorum. In the rest of this section, we will specifically

identify types of expected failures that may harm our proposed guarantees and what

amount of failure is tolerated before preventing progress. We then describe two

additional mechanisms that we use to ensure the safety of hierarchical consensus:

the nuclear option and obligation leases.

3.4.1 Fault Tolerance

The system can suffer several types of failures, as shown in Table 3.1. Both

subquorum leaders and the root leaders send periodic beacons and heartbeat mes-

sages to their followers. If a heartbeat message is missed, e.g. if a follower does not

receive an expected heartbeat from its leader or if a leader does not receive a re-

sponse from the heartbeat, then the system takes action to ensure it’s still available
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Table 3.1: Failures include either node failure or network partitions which are de-
tected by missed beacon or heartbeat messages. A replicas role and a threshold for
the number of missed messages determines how the system responds.

Failure Type Response

subquorum peer request reconfiguration from root quorum
subquorum leader local election, request replacement from root quorum
subquorum reconfiguration after obligations timeout
root leader root election (with delegations)
majority of delegates delegations time out (nuclear option)

to respond to clients. Failures of subquorum and root quorum leaders are handled

through the normal consensus mechanisms and a new leader is elected. Failures of

subquorum peers are handled by the local leader petitioning the root quorum to

re-configure the subquorum in the next epoch. Failure of a root quorum peer is the

failure of a subquorum leader with delegated votes, this can be handled by a recon-

figuration which reallocates the delegated votes to a new peer so long as a majority

of delegates are available in the root quorum. Root quorum beacon messages help

inform replicas of leadership and configuration changes, which ensures the system

adapts to temporary outages and failures.

HC’s structure means that some faults are more important than others. Proper

operation of the root quorum requires the majority of replicas in the majority of

subquorums to be non-faulty. Given a system with 2m+1 subquorums, each of 2n+1

replicas, the entire system’s progress can be halted with as few as (m+1)(n+1) well-

chosen failures – e.g. the assassination of the delegates. Therefore, in worst case, the

system can only tolerate: fworst = mn+m+ n failures and still make progress. At

maximum, HC’s basic protocol can tolerate up to: fbest = (m+1)∗n+m∗(2n+1) =
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3mn+m+ n failures. As an example a 25/5 system, that is a system of 25 replicas

with size 5 subquorums (m = 2, n = 2), can tolerate at least 8 and up to 16 failures.

A 21/3 system can tolerate at least 7, and a maximum of 12, failures out of 21 total

replicas.

To tolerate the most faults, the root quorum operates strategically to handle

failures. For example, individual subquorums might still be able to perform local

operations despite an impasse at the global level. The root quorum chooses carefully

whether a failure type should involve a reconfiguration or whether the system should

wait for an outage to be repaired.

There are two primary types of failures though that have to be dealt with

specifically. Total subquorum failure can temporarily cause a portion of the names-

pace to be unserved (or only served locally). In this case we use obligation timeouts

to determine when the root quorum should force a configuration change. Addition-

ally in the face of delegate assassination, where no root quorum decisions can be

made, we use the nuclear option to eliminate delegates and require every replica to

contribute their own votes.

3.4.2 The Nuclear Option

Singleton consensus protocols, including Raft, can tolerate just under half

of the entire system failing. As described above, HC’s structure makes it more

vulnerable to clustered failures. Therefore we define a nuclear option, which uses

direct consensus among all system replicas to tolerate any f replicas failing out of
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2f + 1 total replicas in the system.

A nuclear vote is triggered by the failure of a root leader election. A nuclear

candidate increments its term for the root quorum and broadcasts a request for

votes to all system replicas. The key difficulty is in preventing delegated votes

and nuclear votes from reaching conflicting decisions. Such situations might occur

when temporarily unavailable subquorum leaders regain connectivity and allow a

wedged root quorum to unblock. Meanwhile, a nuclear vote might be concurrently

underway.

Replica delegations are defined as intervals over specific slots. Using local

subquorum slots would fall prey to the above problem, so we define delegations as a

small number (often one) of root slots, which usually correspond to distinct epochs.

During failure-free operation, peers delegate to their leaders and are all represented

in the next root election or commit. Peers then renew their delegations to their

leaders by appending them to the next local commit reply. This approach works for

replicas that change subquorums over an epoch boundary, and even allows peers to

delegate their votes to arbitrary other peers in the system (see replicas rN and rO

in Figure 3.3).

This approach is simple and correct, but deals poorly with leader turnovers

in the subquorum. Consider a subquorum where all peers have delegated votes

to their leader for the next root slot. If that leader fails, none of the peers will

be represented. We finesse this issue by re-defining such delegations to count root

elections, root commits, and root heartbeats. The latter means that local peers

will regain their votes for the next root quorum action if it happens after the next
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heartbeat.

Consider the worst-case failure situation discussed in § 3.4.1: a majority of the

majority of subquorums have failed. None of the failed subquorum leaders can be

replaced, as none of those subquorums have enough local peers.

The first response is initiated when a replica holding delegations (or its own

vote) times out waiting for the root heartbeat. That replica increments its own

root term, adopts the prior system configuration as its own, and becomes a root

candidate. This candidacy fails, as a majority of subquorum leaders, with all of

their delegated votes, are gone. Progress in the root quorum is not made until

delegations time out. In our default case where a delegation is for a single root

event, this happens after the first root election failure.

At the next timeout, any replica might become a candidate because delegations

have lapsed (under our default assumptions above). Such a nuclear candidate incre-

ments its root term and sends candidate requests to all system replicas, succeeding

if it gathers a majority across all live replicas.

The first candidacy assumed the prior system configuration in its candidacy an-

nouncement. This configuration is no longer appropriate unless some of the “failed”

replicas quickly regain connectivity. Before the replica announces its candidacy for

a second time, however, many of the replica replies have timed out. The candidate

alters its second proposed configuration by recasting all such replicas as hot spares

and potentially reducing the number and size of the subgroups. Subsequent epoch

changes might re-integrate the new hot spares if the replicas regain connectivity.
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3.4.3 Obligations Timeout

The second type of specific failure the root quorum must deal with is a sub-

quorum stranded behind a network partition. In this case the subquorum may be

operating and serving local requests but its leader (or delegate) is unable to com-

municate to the root quorum. In the majority of cases, the root quorum should wait

out the presumably temporary system partition if client requests are being served.

However, it is also possible that all replicas in the subquorum have failed due to

cascading correlated failure and no accesses to that portion of the namespace are

being granted.

We therefore propose a configurable obligations timeout. Subquorums are

considered obligated to serve requests from clients for the duration of the epoch

in which the subquorum is configured. However to ensure that subquorums are

in fact meeting those obligations, we introduce another timeout during which the

subquorum has to communicate with the root leader, reconfirming its obligation

for the next period. If the obligation period times out without being renewed, the

subquorum is obligated to stop handling client requests and the root quorum is

obligated to reconfigure the system.

The problem is that the subquorum that is reallocated that portion of the

namespace presumably would not be able to achieve a hand-off with the partitioned

system. It is also possible that the region the subquorum was configured in simply

cannot be reconfigured through a root consensus decision. In this case, there would

be an unacceptable period of unavailability for that portion of the namespace.
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To deal with this situation, both the newly configured subquorum and the

previous subquorum must go into an “unstable” state, informing clients that their

writes are not guaranteed the level of consistency the system normally provides.

Using a federated consistency model (discussed in Chapter 4), replicas would simply

assume a lower level of consistency. An unstable mode of operation is repaired in

one of two cases. First, the partitioned subquorum may come back on line and is

able to automatically negotiate the epoch transition, fixing conflicts where necessary.

Otherwise, the root quorum must manually determine that the subquorum had been

destroyed, which results in data loss anyway. Optimizations such as anti-entropy

replication (described in § 4.2.1) of data across regions and global views of data

versions minimize the impact of such loss, but cannot prevent it.

3.5 Performance Evaluation

HC was designed to adapt both to dynamic workloads as well as variable net-

work conditions. We therefore evaluate HC in three distinct environments: a homo-

geneous data center, a heterogeneous real-world network, and a globally distributed

cloud network. The homogeneous cluster is hosted on Amazon EC2 and includes 26

“t2.medium” instances: dual-core virtual machines running in a single VPC with

inter-machine latencies (λ) normally distributed with a mean, λµ = 0.399ms and

standard deviation, λσ = 0.216ms. These machines are cost-effective and, though

lightweight, are easy to scale to large cluster sizes as workload increases. Experi-

ments are set up such that each instance runs a single replica process and multiple
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client processes.

The heterogeneous cluster (UMD) consists of several local machines distributed

across a wide area, with inter-machine latencies ranging from λµ = 2.527ms, λσ =

1.147ms to λµ = 34.651ms, λσ = 37.915ms. Machines in this network are a va-

riety of dual and quad core desktop servers that are solely dedicated to running

these benchmarks. Experiments on these machines are set up so that each instance

runs multiple replica and client processes co-located on the same host. In this en-

vironment, localization is critical both for performance but also to ensure that the

protocol can elect and maintain consensus leadership. The variability of this network

also poses challenges that HC is uniquely suited to handle via root quorum-guided

adaptation. We explore two distinct scenarios – sawtooth and repartitioning – using

this cluster; all other experiments were run on the EC2 cluster.

In our final experiment, we explore the use of hierarchical consensus in an

extremely large, planetary-scale system comprised of 105 replicas in 15 data cen-

ters in 5 continents spanning the northern hemisphere and South America. This

experiment was also hosted on EC2 “t2.medium“ instances in each of the regions

available to us at the time of this writing. In this context, reporting average laten-

cies is difficult as inter-region latencies depend more on network distance than can

be meaningfully ascribed to a single central tendency.

HC is partially motivated by the need to scale strong consistency to large

cluster sizes. We based our work on the assumption that consensus performance

decreases as the quorum size increases, which we confirm empirically in Figure 3.9.

This figure shows the maximum throughput against system size for a variety of
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Figure 3.9: Mean throughput of workloads of up to 120 concurrent clients

workloads, up to 120 concurrent clients. A workload consists of one or more clients

continuously sending writes of a specific object or objects to the cluster without

pause.

Standard consensus algorithms, Raft in particular, scale poorly with uniformly

decreasing throughput as nodes are added to the cluster. Commit latency increases

with quorum size as the system has to wait for more responses from peers, thereby

decreasing overall throughput. Figures 3.9 and 3.10 clearly show the multiplicative

advantage of HC’s hierarchical structure. Note that though HC is not shown to scale

linearly in these figures, this is due to performance bottlenecks of the networking

implementation in these experiments. In our final experiment, we show linear scaling

with our latest implementation of HC.
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Figure 3.10: Performance of distributed consensus with an increasing
workload of concurrent clients. Performance is measured by throughput,
the number of writes committed per second.
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There are at least two factors limiting the HC throughput shown in our initial

experiments. First, the HC subquorums for the larger system sizes are not saturated.

A single 3-node subquorum saturates at around 25 clients and this experiment has

only about 15 clients per subquorum for the largest cluster size. We ran experi-

ments with 600 clients, saturating all subquorums even in the 24-node case. This

throughput peaked at slightly over 50,000 committed writes per second, better but

still lower than the linear scaling we had expected.

We think the reason for this ceiling is hinted at by Figure 3.10. This figure

shows increasingly larger variability with increasing system sizes. A more thorough

examination of the data shows widely varying performance across individual subquo-

rums in the larger configurations. After instrumenting the experiments to diagnose

the problem, we determined it was a bug in the networking code, which we repaired

and improved. By aggregating append entries messages from clients while consen-

sus messages were in-flight, we managed to dramatically increase the performance

of single quorums and reduce the number of messages sent. This change also had

the effect of ensuring that the variability was decreased in our final experiment.

The effect of saturation is also demonstrated in Figure 3.11, which shows cumu-

lative latency distributions for different system sizes holding the workload (number

of concurrent clients) constant. The fastest (24/3) shows nearly 80% of client write

requests being serviced in under 2 msec. Larger system sizes are faster because the

smaller systems suffer from contention (25 clients can saturate a single subquorum).

Because throughput is directly related to commit latency, throughput variability

can be mitigated by adding additional subquorums to balance load.
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Figure 3.11:

Besides pure performance and scaling, HC is also motivated by the need to

adapt to varying environmental conditions. In the next set of experiments, we

explore two common runtime scenarios that motivate adaptation: shifting client

workloads and failures. We show that HC is able to adapt and recover with little loss

in performance. These scenarios are shown in Figures 3.12 and 3.13 as throughput

over time, where vertical dotted lines indicate an epoch change.

The first scenario, described by the time series in Figure 3.12 shows an HC

3-replica configuration moving through two epoch changes. Each epoch change is

triggered by the need to localize tags accessed by clients to nearby subquorums. The

scenario shown starts with all clients co-located with the subquorum serving the tag

they are accessing. However, clients incrementally change their access patterns first
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Figure 3.12: 9/3 system adapting to changing client access patterns by
repartitioning the tag space so that clients are co-located with subquo-
rums that serve tags they need.

76



11:09:00 11:10:0011:08:30 11:09:30

time

0

2000

4000

6000

8000

10000

12000

14000

nu
m

be
r o

f w
rit

es
 p

er
 s

ec
on

d

eris
hyperion
lagoon

Figure 3.13: 9/3 System that adapts to failure (partition) of entire sub-
quorum. After timeout, the root quorum re-partitions the tag allocated
to the failed subquorum among the other two subquorums.

to a tag located on one remote subquorum, and then to the tag owned by the other.

In both cases, the root quorum adapts the system by repartitioning the tagspace

such that the tag defining their current focus is served by the co-located subquorum.

Figure 3.13 shows a 3-subquorum configuration where one entire subquorum

becomes partitioned from the others. After a timeout, the root uses an epoch

change to re-allocate the tag of the partitioned subquorum over the two remaining

subquorums. The partitioned subquorum eventually has an obligation timeout, after

which the root quorum is not obliged to leave the tag with the current subquorum.

The tag may then be re-assigned to any other subquorum. Timeouts are structured

such that by the time an obligation timeout fires, the root quorum has already
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Figure 3.14: Throughput of the final implementation of Alia across 105
replicas in 15 AWS regions with size 3 subquorums colocated in each
region. HC linearly scales as the number of replicas increases, also in-
creasing the fault tolerance and the durability of the system.

re-mapped that subquorum’s tag to other subquorums. As a result, the system is

able to recover from the partition as fast as possible. In this figure, the repartition

occurs through two epoch changes, the first allocating part of the tagspace to the

first subquorum, and the second allocating the rest of the tag to the other. Gaps

in the graph are periods where the subquorums are electing local leaders. This may

be optimized by having leadership assigned or maintained through root consensus.

In our final implementation we ran our repaired version of HC at a planetary

scale. We created a system with 105 replicas in 15 regions in 5 continents. The

system allocated size 3 subquorums round-robin to each region such that the largest

system was comprised of 6 subquorums per region with 1 hot-spare per region. Fig-
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ure 3.14 shows the global blast throughput of the system, the sum of throughput of

client process that fired off 1000 concurrent requests, timing the complete response.

To mitigate the effect of global latency, each region ran independent blast clients

to its local subquorums, forwarding to remote quorums where necessary. To ensure

that the system was fully throttled during the throughput experiment, we timed

the clients to execute simultaneously using the AWS Time Sync service to ensure

that clocks were within 100 nanoseconds of each other. In these results we show

that our HC implementation does indeed scale linearly. Adding more nodes to the

system increases the fault tolerance (e.g. by allocating hot spares) if enough nodes

are added to add another subquorum, the capacity of the system to handle client

requests is also increased.

3.6 Conclusion

Most consensus algorithms have their roots in the Paxos algorithm, originally

described in parliamentary terms. The metaphor of government still applies well

as we look at the evolution of distributed coordination as systems have grown to

include large numbers of processes and geographies. Systems that use a dedicated

leader are easy to reason about and implement. However, as in chess, if the leader

fails the system cannot make any progress. Simple democracies for small groups

solve this problem but do not scale, and as the system grows, it fragments into

tribes. Inspired by modern governments, we have proposed a representative system

of consensus, hierarchical consensus, such that replicas elect leaders to participate

79



in a root quorum that makes decisions about the global state of the system. Local

decision making, the kind that effects only a subset of clients and objects is handled

locally by subquorums as efficiently as possible. The result is a a hierarchy of decision

making that takes advantage of hierarchies that already exist in applications.

Hierarchical Consensus is an implementation and extension of Vertical Paxos.

Like Vertical Paxos, HC reasons about consistency across all objects by identifying

commands with a grid ordering (rather than a log ordering) and is reconfigurable to

adapt to dynamic environments that exist in geo-replicated systems. Adaptability

allows HC to exploit locality of access, allowing for high performance coordination,

even with replication across the wide area. HC extends Vertical Paxos to ensure

that intersections exist between the subquorums and the root quorum, to guarantee

operations between subquorums, and to ensure that the system operates as a coor-

dinated whole. To scale the consensus protocol of the root quorum, we propose a

novel approach, delegation, to ensure that all replicas participate in consensus but

limit the number and frequency of messages required to achieve majority. Finally,

we generalized HC from primary-backup replication to describe more general online

replication required by distributed databases and file systems.

In the next chapter we will explore a hybrid consistency model implemented by

federating replicas that participate in different consistency protocols. In a planetary

scale network, HC provides the strong consistency backbone of the federated model,

increasing the overall consistency of the system by making coordinating decisions at

a high level, and allowing high availability replicas in the fog operate independently

where necessary.
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Chapter 4: Federated Consistency

The next generation of globally distributed systems will not only reside in

carefully managed cloud data centers connected by multiple communication trunks.

To handle increasing mobile demand, application services have migrated closer to

the edge of the computing environment [123]. Non-human users and machine-to-

machine communication will also require geography-specific data systems to handle

traffic coordination and electrical grid data [6–10]. To support these trends, a fog of

partial-replicas that serve clients in specific extra-datacenter locations is required to

bridge the gap between the centralizing tendency of the cloud and the decentralizing

tendency of edge computing [124–126]. For that reason, we propose that in addition

to first tier strong-consistency backbone, a planetary-scale distributed system also

requires a second-tier dissemination network that provides a high-availability mesh

between quorum decision making [1].

Outside of a data center context, strong coordination using consensus is sim-

ply not feasible [127]. In a stable network environment, systems are able to adapt

consistency at runtime [128–132]. Systems outside of this context are expected to

have heterogenous hardware which leads to variability both in terms of capacity

and failure rates. The farther the network diameter, the more partition prone a
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network becomes, and the higher latencies are experienced between nodes. Mobility

also means dynamic membership with many peers, therefore even adaptable config-

uration provided by hierarchical consensus is not sufficient. Taken together, these

challenges require a minimization of coordination, instead a focus on cacheing and

a high-throughput of writes to the rest of the system. In other words, a relaxation

of consistency guarantees in the fog layer.

In this chapter, we present a novel approach to flexible consistency that feder-

ates replicas that participate in a system with different consistency guarantees. By

allowing individual replicas to maintain strong consistency for their clients if they

are part of a strongly connected part of the network (e.g. in a datacenter or in the

cloud) or to relax consistency guarantees if they are in a more variable network, we

ensure that the entire system behaves as a single, integrated entity. Individual repli-

cas in the system are allowed to adapt to a changing network environment while

providing as strong a local guarantee or minimum quality of service as required.

The global state of a federated system is defined by the replica topology and their

interactions. If a subset of replicas implement strong consistency models such has

hierarchical consensus, then the global probability of conflict is reduced. Conversely,

a subset of replicas implementing weaker consistency can increase global through-

put. We find that it is more often the tension between local vs. global views of

consistency that cause the greatest concerns about application performance. Be-

cause each node can select and change local consistency policies, client applications

local to the replica server have greater control of tuning consistency, maximizing

timeliness or correctness as needed.
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A federated consistency protocol can find a middle ground in the trade-off

between performance and consistency. In this chapter we consider two extremes: an

eventually consistent system implemented with gossip-based anti-entropy [37,78] and

a sequential consistency model as implemented by the Raft consensus prtocol [92]

(we use Raft as a stand-in for hierarchical consensus to simplify the discussion in this

chapter). By exploring these two extremes in the consistency spectrum we show that

the overall number of inconsistencies in the system is reduced over a homogenous

eventual system, and that the access latency is decreased from the homogenous

sequential system.

4.1 Hybrid Consistency

Federating replicas that participate in multiple protocols leading to different

consistency levels creates a hybrid consistency model [133]. Hybrid consistency

models attempt to use strong consistency with application semantics demand it and

weak consistency when not required. We propose a hybridization not due to required

semantics, but rather based on network environment. Our consistency model is

therefore topology-dependent and more than simply hybridizing consistency, can be

said to have flexible or dynamic consistency. We have found that large systems with

variable latency in different geographic regions can perform well by allowing most

nodes to operate optimistically, but also maintaining a strong central quorum to

reduce the amount of global conflict.

In § 2.2.1 we defined a data-centric consistency model that viewed consistency
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in terms of per-replica logs that describe the sequence of operations that modify

a replica’s state. Consistency models express the correctness of a system based on

two metrics: the strictness of log ordering and how stale a log is allowed to be [74].

Ordering refers to how closely individual logs adhere to an abstract global ordering.

Strong consistency requires all logs to be identically ordered, and consensus algo-

rithms coordinate a majority of replicas to correctly appended entries to the log in

the same order. Weak consistency allows divergence of the order operations applied

to the log.

On the other hand, Staleness refers to how far local logs are behind the lat-

est version of the global log, which can be expressed by the average latency of

replicating updates, or how far behind the average replica is from the log. Most

data-centric models do not consider staleness, instead referring to guarantees on

ordering strictness. However, the symptoms of inconsistency are primarily due to

staleness [93, 94].

Consider a system where each update creates a new version of the object that

maintains the parent version the update was created from. In a distributed system

with multiple nodes, two forms of inconsistencies can occur. First, a stale read occurs

if the version read is not the latest global version, e.g. it is incorrect that reading

from two parts of the system may return different answers. Second, stale reads lead

to forks on updates: when two replicas concurrently write a new version to the same

parent object. Forks introduce inconsistency because they allow multiple potential

orderings of operation logs and from the client’s perspective, because they introduce

conflicts.
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Figure 4.1: Accesses before synchronization cause stale reads and forked
writes. In this case if Ri and Rj both attempt to write object a at version
1, a1, the result will be two new versions, a2 and a3 both of which have
the parent version a1, which could mean a potential conflict.

Object coherence requires an objects’ version history to be a linear sequence [134],

which demonstrates that the system was in a consistent state during all accesses.

Version history forks violate coherence and occur, for example, when replicas i and j

read object version a1 then concurrently attempt to write new versions: Wi(a1 → a2)

and Wj(aq → a3) as shown in Figure 4.1. A delay in synchronization between Ri and

Rj could lead one replica to continue farther down the fork paths, e.g. Wi(a2 → a4).

Forks can be caused by concurrent reads, but the fork between a2 and a3 actually

occurs because Rj’s read is stale. Forks are a useful model for exposing how ordering

and staleness are considered in different consistency approaches.

In an eventually consistent system, a replica’s log does not depend on any

other replica’s log except that the last entry appended must eventually be identical

for each object in the namespace. In practice, this means that eventually consistent

logs keep track of monotonically increasing versions and that not all versions are
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required to be present in the log, so long as the same final state is achieved. This

suggests that eventual consistency requires a synchronization mechanism to propa-

gate writes asynchronously and a policy to handle convergence [117]. Forks occur

in the eventually consistent model because it optimistically accepts writes without

very much coordination, allowing to concurrent versions to be appended to two dif-

ferent logs. Generally speaking, conflict resolution is left to the application layer,

but in practice each conflict must be resolved as it reaches each replica.

Eventually consistency convergence is typically implemented by a last writer

wins policy. When replicas synchronize, they compare the latest version of each

object based on all updates prior to their synchronization, then accept whichever

version is latest. As a result, eventually consistent logs may temporarily diverge, so

long as the final version of objects eventually converge. It is therefore acceptable to

alternate between writes to competing forks (a fairly weak semantic) or to drop a

branch with more updates in favor of a more recent, shorter branch. In § 4.2.1 we

will describe in more detail the likelihood of forks in bilateral anti-entropy.

In a sequentially consistent system, the ordering of updates to individual ob-

jects must be identical and no versions must be missing. However, it is possible

that the logs of lagging replicas may only be prefixes of the latest log in the sys-

tem [135]. Sequential consistency therefore does not make guarantees about stale-

ness (or the ordering of reads) but does require all writes become visible in the same

order [74]. Sequential consistency can be implemented with consensus algorithms

such as Paxos [60] or Raft [92], which coordinate logs by defining a transitive global

ordering for all conflicts. Alternatively, sequential consistency can be implemented
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with warranties – time-based assertions about groups of objects that must be met

on all replicas before the assertions expire [136]. In both implementations, forks can

be immediately observed because sequential consistency requires coordination when

any update occurs.

Stale reads in a sequentially consistent system are possible because of lagging

replicas. However, only a single branch of a forked write can be committed to any

copy of the log. Preventing forks would require either a locking mechanism or an

optimistic approach that allowed operations to occur but rejects all but one branch.

Therefore in a sequentially consistent system implemented by consensus, forks are

rejected and appear to the user as dropped writes, at which point the client must

retry or immediately resolve conflicts. In § 4.2.2 we investigate cache read policies

for consensus that modulate the probability of a dropped write.

At both ends of the consistency spectrum we have presented, eventual and

sequential consistency, it is clear that flexibility is primarily in the amount of forks

that may occur. In a hybrid model, we therefore express consistency as a likelihood

that a fork occurs. If a client accesses a strong consistency replica, the likelihood is

low and the client is immediately notified of a conflict. If the access is to an eventu-

ally consistent replica, the likelihood is higher, and conflicts must be handled after

the access. Our key insight is that eventually consistent replicas participating in a

federated system do not affect the likelihood or behavior of consistency at sequen-

tially consistent replicas. Although we have discussed strong and weak consistency

models, this observation also applies to other consistency models such as causal

consistency [79,80,137,138], for simplicity however, we continue our discussion with
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only strong and weak models.

4.2 Replication

A federated consistency model allows individual replicas to engage in replica-

tion according to locally-specified consistency policies. Each replica maintains its

own local state, modified in response to local accesses and receipt of messages from

remote replicas. Each replica sends messages to other replicas to propagate new

writes. Every federated replica must have the ability to handle all types of RPC

messages required by different protocols and each protocol must be expressed by

separate RPC endpoints. So long as this is true, then federation primarily has to be

defined at the consistency boundaries, that is when replicas of one consistency type

send messages to that of another.

We consider a system where clients can Put values (write) and Get (read) in-

dependent objects specified by a key. Get requests are fulfilled by reading from the

local cache of a replica depending on its read policy. On Put, a new instance of the

object is created and assigned a monotonically increasing, conflict-free version num-

ber [139, 140]. For simplicity, we assume a fixed number of replicas, therefore each

version is made up of two components: the update and precedence ids. Precedence

ids are assigned to replicas during configuration, and update ids are incremented

to the largest observed value during synchronization. As a result, any two versions

generated by a Put anywhere in the system are comparable such that the latest

version of the key-value pair is the version with the largest update id, and in the
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case of ties, the largest precedence id.

For simplicity, we assume that all object instances must become fully replicated

to the entire system. In practice we observe that metadata about the objects usually

becomes fully replicated, which points to the locations the object data is stored for

retrieval. Consistency models define how replication occurs. An eventually consis-

tent model propagates updates asynchronously using gossip-based anti-entropy to

synchronize pairs of replicas without congesting the network with broadcasts. Con-

sensus, on the other hand, replicates the object and commits it before the access is

completed.

4.2.1 Gossip-Based Anti-Entropy

Eventual consistency is implemented using read/write quorums and back-

ground anti-entropy. In this model, clients select one or more replicas to perform

a single operation. The set of replicas that responds to a client creates a quorum

that must agree on the state of the operation at its conclusion. Clients can vary

read and write quorum sizes to improve consistency or availability – larger quorums

reduce the likelihood of inconsistencies caused by concurrent updates, but smaller

quorums respond much more quickly, particularly if the replicas in the quorum are

co-located with the client. In large, geo-replicated systems we assume that clients

will prefer to choose fewer, local replicas to connect with, optimistic that collisions

across the wide-area are rare, e.g. that writes are localized but reads are global. We

therefore primarily focus on anti-entropy synchronization.
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As clients make accesses to individual replicas, their state diverges as they

follow independent object version histories. If allowed to remain wholly indepen-

dent, individual requests from clients to different replicas would create a lack of

order or predictability, a gradual decline into inconsistency, e.g. the system would

experience entropy. To combat the effect of entropy while still remaining highly

available, servers engage in periodic background anti-entropy sessions [37, 78, 117].

Anti-entropy sessions synchronize the logs of two replicas ensuring that, at least

briefly, the local state is consistent with a portion of the global state of the system.

If all servers engage in anti-entropy sessions, the system will converge barring any

accesses that produce entropy.

Anti-entropy is conducted using gossip protocols such that pairs of replicas

synchronize each other on a periodic interval to ensure that the network is not

saturated with synchronization requests that may reduce client availability [141–

143]. At each interval, every replica selects a synchronization partner such that

all replicas have a uniform likelihood of selection. This ensures that an update

originating at one replica will be propagated to all online replicas given the continued

operation of replication. This mechanism also provides robustness in the face of

failure; a single unresponsive replica or even network partition does not become a

bottleneck to synchronization, and once the failure is repaired synchronization will

occur without reconfiguration.

There are two basic forms of synchronization: push synchronization is a fire-

and-forget form of synchronization where the remote replica is sent the latest version

of all objects, whereas pull synchronization requests the latest version of objects and
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minimizes the size of data transfer. To get the benefit of both, we consider bilateral

synchronization which combines push and pull in a two-phase exchange. Bilateral

synchronization increases the effect of anti-entropy during each exchange because it

ensures that in the common case each replica is synchronized with two other replicas

instead of one during every anti-entropy period.

Bilateral anti-entropy starts with the initiating replica sending a vector of

the latest local versions of all keys currently stored, usually optimized with Merkel

tree [144] or prefix trie [145] to make comparisons faster. The remote replica com-

pares the versions sent by the initiating replica with its current state and responds

with any objects whose version is later than the initiating replica’s as well as another

version vector of requested objects that are earlier on the remote. The initiating

replica then replies with the remote’s requested objects, completing the synchro-

nization. We refer to the first stage of requesting later objects from the remote as

the pull phase, and the second stage of responding to the remote the push phase.

There are two important things to note about this form of anti-entropy ex-

change. First, this type of synchronization implements a latest writer wins policy.

This means that not all versions are guaranteed to become fully replicated – if a

later version is written during propagation of an earlier version, then the earlier

version gets stomped by the later version because only the latest versions of objects

are exchanged. If there are two concurrent writes, only one write will become fully

replicated, the write on the replica with the greater precedence.

Forks are caused by staleness due to propagation delays. The visibility latency

of anti-entropy synchronization can be modeled as:
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tvisibility ≈
T

4
log3N + ε (4.1)

The parameter T
4

represents the delay between anti-entropy sessions, e.g. the

periodicity of synchronizations. This delay is parameterized by the stability of the

network environment, informed by a tick parameter, T , which is discussed in § 4.2.3.

Bilateral anti-entropy in the best case would exponentially propagate updates across

the network, therefore the visibility latency would depend on how often synchroniza-

tions occur and the diameter of the network, expressed by the number of replicas,

N . However, the randomness of peer selection, which ensures safety, also means

that two replicas that do not require synchronization may select each other, causing

additional latency and noise represented by ε. If ε = 0, this would mean that each

replica perfectly selected another replica which had not seen the write being prop-

agated. In Chapter 6, we describe a reinforcement learning approach to optimizing

tvisibility.

4.2.2 Sequential Consensus

In this chapter we consider a sequential consistency model implemented by

replicating the operation log through the Raft consensus algorithm [92]. In § 3.2,

we briefly described Raft consensus, though we focused on its use to implement

linearizablity rather than sequential consistency, in this section, we will briefly sum-

marize the differences of consensus for relaxed consistency. Raft is a leader-oriented
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consensus protocol that uses timing parameters to detect failures and ensure that a

leader is available to handle requests with minimal downtime. The leader has the

primary responsibility of serializing and committing new operations to the repli-

cated log. To that end, the leader will broadcast periodic heartbeats to maintain

its leadership for a given term.

All write accesses, even those that originate at followers, must be forwarded to

the leader who arbitrates the order in which commands are appended by the order in

which they are received. In this way, the leader can guarantee a sequential ordering

of updates so long as a majority of followers agree to commit the entries in the log

at the specified positions. Our implementation differs from generic implementations

in that the leader is also responsible for detecting forks – a write having a parent

version that is already listed as a parent version in the log. Because the leader

arbitrates all writes, it has the ability to detect forks and can reject (drop) the later

write.

Dropped writes suggest that clients must submit writes containing its version

history, and that stale reads are possible. In Chapter 3 we described a linearizable

mode of consensus where both reads and writes must be totally ordered through

the leader. Sequential consistency relaxes this requirement, allowing reads to be

responded to by the caches of the followers, introducing a potential delay between

when an updated is committed at the leader and when the follower is notified of the

commit. We therefore define several possible read polices:

1. read committed – Raft replicas only read the latest committed version of an
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object, which occurs at best on the second round of communication. Com-

mitted writes are guaranteed not to be rolled back, but introduces the most

significant delay, increasing the likelihood of a fork in high throughput periods.

2. read latest – Replicas read the latest version of the object in their log, even

if it has yet to be committed. Additionally, replicas will read writes originating

locally rather than waiting for the first round of leader communication. In this

case, reads are fast, but may return values that are never committed.

3. read remote – All reads become synchronous requests to the leader, which can

either guarantee linearizablity or use either of the above cache policies. This

introduces communication latency, but may be faster if the expected message

latency is less than commit latency.

Each of these options has critical implications for the likelihood of stale reads

and dropped writes. Replicas would choose read committed if the network was

highly partition prone and messages from the leader were unstable, causing leader-

ship changes that would rollback updates. The read remote policy serves quorums

well when the average message latency is below the commit latency, which is why

we chose it to implement the strongest possible consistency in our hierarchical con-

sensus cloud-tier. At the edge, intuition suggested and experimentation confirmed

that the read latest is the most appropriate approach for sequential consistency

when quorum leadership is expected to be stable.
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4.2.3 Timing Parameters

Both the anti-entropy and Raft protocols are parameterized by timing con-

straints that govern replication. We posit that consistency depends on the envi-

ronment and even though Raft safety doesn’t depend on timing parameters, they

do define its progress properties. We expect that in the fog environment, network

conditions will be highly variable, therefore we propose that all time-related pa-

rameters are based on a “tick” parameter, T . The tick parameter is a function

of the observed message latency in the system, specified as a normal distribution

of latency described by its mean, λµ and standard deviation, λσ. As the latency

distribution changes over windows of time, the tick parameter can be updated to

optimize the system. T therefore must be used to define all timing parameters, we

use a conservative formulation that is big enough to withstand most variability:

T = 6(λµ + 4λσ) (4.2)

Most implementations of Raft use a more conservative tick parameter of 10λµ,

causing replication to occur more slowly than access events and also causing large

conflicts and outage periods [59, 92]. Other formulations are more optimistic in

data centers with stable network connections, for example 2 (λµ + 2λσ) [146]. This

formulation is intended to maximize availability on leader failure, but is too small to

capture the variability of our target environment, leading to out-of-order messages,

which rapidly degrade performance.
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In a federated system, all timing parameters are defined in terms of T . For

example, to ensure that eventual and sequential replicas send approximately the

same number of messages, e.g. to fix the message budget in capacity constrained

environments, timing parameters may be selected as follows: The Raft election

timeout is set to U(T, 2T ), with a heartbeat interval of T
2

while the anti-entropy

delay is T
4
. In Chapter 5, we will also condition the timing parameters of hierarchical

consensus on the tick.

4.3 Federation

A federated model of consistency creates heterogeneous clouds of replicas that

participate in different replication protocols. Global consistency and availability

of the system is tuned by specifying different allocations of replicas of each type.

Allocating all of one replication protocol, e.g. a homogeneous eventual or consen-

sus topology, should behave equivalently to a homogeneous system that does not

implement federation. Therefore a key requirement of federated consistency is the

integration of protocols with no performance cost to replicas participating at differ-

ent, local consistency levels.

We expect that a federated model will allow an eventual fog layer to bene-

fit from lower fork frequency by being connected to a strongly consistent, central

consensus group. Similarly, strong consistency replicas should be able to use anti-

entropy mechanisms to replicate data and continue writing even if the leader is

unavailable and no consensus can be reached to elect a leader (this is one possible
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solution to the obligations timeout problem described in § 3.4.3). We integrate each

systems by relying on the eventual replicas to disseminate orderings and cope with

failures, but relying on the consensus replicas to choose the final operation order-

ing. To achieve this with no performance cost we must ensure that replicas can

inter-operate both in terms of communication (message traffic) and consistency.

4.3.1 Communication Integration

All replication protocols are defined by their RPC messages and expected re-

sponses. On one level it is a simple matter to integrate the communication across

protocols by ensuring that all replicas respond to all RPC message types, and that

those types are clearly defined. Integration occurs when a subset of replicas imple-

ments more than one replication protocol, or when rules are established for cross-

communication to take advantage of the unique characteristics of a protocol or

topology.

We integrate communication at consensus replicas by allowing them to partic-

ipate in anti-entropy with the eventual cloud (but not with other consensus repli-

cas). Because the consensus replicas are generally a small subset of the overall

system, this type of integration ensures that the number of messages in the system

does not scale according to the number of replication protocols being federated.

Eventually consistent replicas therefore “synchronize” with consensus replicas by

exchanging synchronization RPC messages initiated from either the consensus or

the EC replica. EC replicas must also reply with failure to consensus RPC messages
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(e.g. AppendEntries or VoteRequest). Failure may indicate that a quorum has

changed, requiring joint consensus decisions or a reconfiguration if the consensus

group implements hierarchical consensus.

Communication integration can also take advantage of the geographic topology

of the system to localize non-broadcast forms of communication. Specifically, EC

replicas can prioritize their communication with consensus replicas or local replicas

by modifying the random selection of pairwise anti-entropy. In this chapter we

propose a policy based approach to peer selection, though in Chapter 6 we propose

a learning approach. The policy based approach requires the configuration of two

probabilities, Psync and Plocal. During peer selection, the local replica first selects

the consistency class of the neighbor, selecting a consensus replica with probability

Psync, otherwise another EC replica (consensus replicas always select an EC replica).

If a consensus replica is selected, then synchronization occurs with the geographically

nearest available replica. If an EC replica is selected, then a second decision is made

between selecting a neighbor in the local area or in the wide area with probability

Plocal, at which point a uniform random selection of peers is made.

In the homogeneous eventual case, only Plocal is relevant. By slightly favoring

synchronization and local communication for anti-entropy, the system becomes more

reliant on the core consensus group and therefore has stronger global consistency

(fewer forks overall). Alternatively, lowering the likelihood of synchronization will

allow the system to become less reliant on consensus, particularly when wide area

outages are likely.

Varying communication between protocols in this way raises an important
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question: does a consensus group improve global consistency because it broadcasts

across the wide area, or because it implements a stronger consistency model? We

investigated this question by implementing a special eventually consistent replica

called the “stentor” replica. Stentor replicas conduct two anti-entropy sessions per

replication interval, one across the wide area and one locally. We compared a fed-

eration of Raft and eventual with a federation of eventual and stentor and found

that while stentor performs slightly better than homogeneous bilateral anti-entropy,

consensus has a strong effect on how inconsistencies are handled.

4.3.2 Consistency Integration

Consistency integration occurs on communication between replicas with dif-

ferent local consistency policies. When an EC replica receives a synchronization

message from a consensus replica it accepts the most recent version. However, the

reciprocal consensus operation applies consistency policies such as rejecting forks

by initiating a decision with the leader. Forks detected by Federated Raft follow-

ers can be dropped without leader interaction, which allows the consensus group

to be more available. Per-replica caches of forked and dropped writes are used to

detect and prevent duplicate remote updates being sent to the leader (e.g. when

the same update is propagated to two followers from the EC fog). Even though a

Raft follower notes a fork and does not propagate it, a fork may arrive at another

Raft follower that has yet to see it via anti-entropy propagation. Increasing Plocal

can help prevent the EC fog from propagating forks “around the consensus group”
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by performing anti-entropy with a consensus replica in another region.

This simple integration alone is not sufficient to improve global consistency,

in fact it performs worse than a homogenous system in isolation. The problem is

that EC and consensus replicas resolve fork conflicts in exactly opposite ways. EC

replicas choose the last of a set of conflicting writes because of the latest writer wins

policy, whereas consensus replicas effectively choose the first by dropping any write

that conflicts with previously seen updates.

Consider conflicting writes to object a1 by Ri and Rj, which create versions

ai,2 and aj,2 (aj,2 > ai,2 because the precedence id of Rj is greater than that of Ri).

EC replicas will converge to aj,2 because its version is later. However, the consensus

replicas will converge to whichever write first reaches the leader, and there is no

mechanism by which to override a write that has already been committed. If ai,2 is

committed by the leader, an impasse is reached and neither write will become fully

replicated. This disconnect arises from a fundamental mismatch in the protocols’

approaches to conflict resolution, but if we modify either approach, then the protocol

will perform less well in a non-federated environment. We resolve this issue by noting

that if the strong central quorum can make a write accepted by the consensus replicas

“more recent” than any conflicting write, all eventual replicas will converge to the

write chosen by consensus.

We therefore extend each version number with an additional monotonically

increasing counter called the forte (strong) number, which can only be incremented

by the leader of the consensus quorum. Because the consensus leader drops forks,

or any version not more recent than the latest committed version, incrementing the
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forte number on commit ensures that only consistent versions have their forte num-

bers incremented. Version comparison are performed by comparing forte numbers

first, and then the conflict free version number, allowing the leader to “bump” its

chosen version to a later timestamp than any conflicting writes.

The forte bump must be propagated to derived writes as well to ensure that

the branch selected by the consensus group is maintained during synchronization.

Otherwise, the increment of an object version forte number would result in child

versions derived from the update being erroneously identified as conflicting. On

receipt of a version with a higher forte than the local, EC replicas search for the

forte entry in their local log, find all children of the update, and set the child version’s

forte equal to that of the parent.

We believe that the strategy of “nominating the latest write” is sufficient for

integrating other consistency protocols as well. At this stage in our investigation,

however, there are quite a few parameters that must be tuned, such as timing

parameters, policies, and probabilities. We expect that further investigation into

smoothing integration points between consistency protocols and policies will lead

to fewer RPCs with less messages and processing requirements. The bottleneck in

a federated system is the leadership of the central quorum, through which every

single update must pass, no matter the size of the system. We address this with

hierarchical consensus, which we hope will also provide further opportunities for

consistency-centric evaluation.
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4.4 Performance Evaluation

To investigate the effect of variable latency and the network environment on

consistency, we created a discrete event network simulation. Simulating our network

environment allowed us to achieve two things. First, a simulation can accurately

measure visibility latencies – detecting visibility latency and replication in an actual

system is error prone at best and requires a significant amount of logging at worst.

Second, the simulated network allowed us to flexibly configure network behavior to

test a large range of environments.

4.4.1 Discrete Event Simulation

Our simulated network describes a fully connected topology of replicas dis-

tributed across several geographic regions as shown in Figure 4.2. Within each

region, replicas enjoy stable, low-latency connections with their neighbors. Across

regions, the latency is higher and the connections more variable, meaning that out

of order messages are more common across the wide area than in the local area. We

simulated both replica failures, where a single replica stops responding to messages,

and network partitions, where messages can only be exchanged within geographic

regions. In both cases, accesses may continue at unresponsive replicas and subnets,

though they are not immediately replicated across the system. Partitioned replicas

will fall behind the global state, and must be re-integrated into the network when

the outage ceases.

Input to the simulation has two parts: a network topology and a workload of

102



Location A

Location B
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Location D

Location E

Location F

Local Area, Low-Latency Connections 

Wide Area, High-Latency Variable Connections 
Replica Nodes

Figure 4.2: We evaluated our federated consistency model in a fully
connected simulation. Each simulation specified a topology of replicas
that replicas in the same region enjoyed stable, low-latency connections,
while across the wide area connections were more variable. Each replica
in the system is assigned a different consistency protocol to execute dur-
ing runtime.
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access events. The simulation instantiates each replica as a process that executes

read and write accesses to objects, generates replication messages, and handles mes-

sages from other replicas. Topologies specify each device as an independent replica

by uniquely identifying it with device-specific configurations. By far the most impor-

tant configuration option is a replica’s consistency (or replication protocol), which

determines the replica’s behavior. Our simulation currently defines two types of

replicas:

• Eventual : Eventual replicas replicate objects with periodic anti-entropy syn-

chronizations. During each synchronization a peer is randomly selected with

two selection likelihoods, Psync, the probability of synchronizing with a Raft

replica and Plocal, the ratio of local vs. wide-area peer selection.

• Raft : Raft replicas implement the Raft consensus protocol, electing a leader

and forwarding writes to the leader to maintain a sequential ordering of op-

erations. Writes identified as forks of prior committed writes are dropped by

whichever replica makes the identification.

The topology further specifies the location of each device, the connections

between devices, and the distribution of message latency on a per-connection basis.

Each connection defines the latency of messages between replicas, described as a

normal distribution (λµ, λσ). There are two basic types of connections: within

the local area, or across the wide area. Connections in the local area specify a

lower mean latency and less variability than connections between devices in different

regions. The tick parameter, T , is computed by the average worst-case latency in
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the simulation. Each topology also has the capability to set runtime and device-

specific configurations, though we do not take advantage of this when presenting

these results.

Workloads are specified as access trace files – time-ordered access events (reads

and writes) between a specific device and a specific object name. Each trace is

constructed with a random workload generator that maps devices to accesses using

a distribution of the delay between accesses, the number of objects each replica

accesses, o, and a probability of conflict, Pc. Several distributions are available,

including Zipfian and uniform distributions, we are primarily interested in a high-

throughput workload, therefore we used a normal distribution of access (Aµ, Aσ).

Object names were assigned to replicas as follows: object names are selected and

assigned to replicas, round-robin, with probability Pc until each replica was assigned

o objects. If Pc = 1.0 then every single replica would access the namespace, whereas

if Pc = 0.0 then each replica would access a unique set of objects. The access delay

distribution was used to generate accesses to objects in sequence, by selecting an

object and reading and writing to it over time until some probability of switching

objects occurred. In effect, the final workload simulates multiple replicas reading

and writing at a moderate pace for approximately one hour.

4.4.2 Experiments and Metrics

We conducted two primary experiments to test the behavior of a federated

consistency system against homogeneous consensus and EC systems. The first sim-
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ulates consistency behavior in the face of increasing failure of wide-area links, in the

form of region partitions. The second explores effect of the network environment

on consistency as the wide-area λµ increases. Our simulated topology consists of

twenty replicas distributed across five geographic regions. Eventual replicas prefer

to choose replicas within the same geographic region for anti-entropy, e.g. Plocal is

high. Our topology is constructed with an inner core of Raft replicas such that there

is one consensus replica per region, colocated with several eventual replicas. Our

experiments were condected with synthetic access traces containing approximately

29,000 accesses (depending on the experiment), approximately two thirds of which

are reads.

Our primary metrics are stale reads and forked writes, which produce application-

visible effects. We define forked writes as the number of writes that had more than

one child (multiple writes to the same parent version), whereas reads are stale if

they return anything other than the globally latest version. We also measured write

visibility. Recall that a write is visible if and when it is propagated to all replicas.

Any writes that do not become fully visible (e.g. are stomped as they are propagated

through the EC dissemination network) are ignored. This metric is closely related

to the percent visible metric – the average number of replicas a write is propagated

to. These metrics are all made possible in a simulated environment, measuring these

effects in a real geo-replicated system would require a great deal of logging and data

post-processing which would be error-prone due to clock synchronization errors.
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Figure 4.3: Stale reads as the probability of wide-area outages increases.

4.4.3 Wide Area Outages

Our first simulation experiments considered the effect of outages that parti-

tioned each simulated region so that they could not communicate with each other.

Each simulation was parameterized by a probability of failure, Pf ∈ [0.0, 1.0] The

Pf was used at runtime to determine if an outage was going to occur at any given

timestep and the length of the outage. A Pf = 0.5 indicates that all wide-area

links are simultaneously down (messages cannot be sent across the wide-area) 50%

of the time, whereas a Pf = 1.0 indicates that all wide-area links are permanently

down after a short initial online duration. In the case of an outage, anti-entropy

synchronizations will proceed as usual within a region, however Raft will become

unavailable as every replica becomes a candidate for the duration of the outage.
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Figure 4.4: Forked writes as the probability of wide-area outages increases.

We show the effect of outages on consistency by measuring stale reads in Fig-

ure 4.3 and forked writes in Figure 4.4. The eventual replicas deal with increasingly

poor network conditions the best: randomized anti-entropy partner selection allows

writes to propagate through multiple paths. Anti-entropy and eventually consistent

systems are widely used precisely because of their ability to remain highly-available

during network outages. When federated, the system is able to leverage the eventual

subset of its replicas to route around failures almost as efficiently as the homogeneous

Eventual system.

The multiple-paths ability also allows the federated system to propagate writes

quickly, as shown in Figure 4.4. In fact, the federated system outperforms a ho-

mogenous eventual system, possibly because the Raft quorum is able to quickly

disseminate writes during those periods when wide-area links are available.
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These experiments considered complete network partitions as the failure mode,

however, if the failure mode was instead random replica failures, the system would

respond differently because of the way we configured the central quorum. In a

quorum size of 5, Raft can handle 2 failures before an extended outage. Leader

failure would cause temporary outages until the election timeout occurs, but would

be online with only a minimum of missed accesses. If a Raft replica fails inside of

a region, the eventually consistent replicas in that region can still make progress

without the quorum. The system also maintains the benefits of the core consensus

group as synchronizations across the wide area may find a Raft replica. Updates

would still propagate across the wide area without a central broadcast mechanism at

the cost of an increased number of forks as reads become increasingly stale without

a local quorum component.

4.4.4 Latency Variability

Our second experiment investigates the effect of variable network latency on

consistency protocols and how the selection of the tick parameter model affects

consistency for each system. Each simulation is parameterized by a T parameter

that is a function of the wide area λµ and λσ. We used the same workload trace

across all simulations, fixing the access mean, Aµ = 3000, e.g. approximately one

access per replica every 3 seconds. In effect, this meant that for approximately

half the simulations (with higher latencies), it was impossible for a write to become

visible on another replica before a fork. The probability of conflict for the workload
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Figure 4.5: The percentage of fully visible writes as the mean wide area
latency increases.

was set to Pc = 0.5, however, there was still enough conflict due to connection

latencies to force each protocol to handle many forks.

Figures 4.5 and 4.6 show that write propagation is much faster and more

effective in Raft than in eventual, especially as network conditions deteriorate. Raft

ensures that writes become fully replicated at the cost of increased write latencies,

moreover they require broadcast over the wide area. This is not an ideal scenario

in failure prone networks, but broadcast from a single leader ensures propagation

is fast. Federated essentially splits the difference between Raft and eventual in

terms of mean replication latency. However, Figure 4.5 shows that federated fully

replicates many more writes than eventual, closely tracking the number of writes

fully replicated by Raft.

The strong inner core of Raft replicas is the key to the federated protocol
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Figure 4.6: The average amount of time an update becomes fully visible
(if the update becomes fully visible).

tracking Raft’s performance. EC replicas are biased in favor of performing anti-

entropy with local replicas, allowing most anti-entropy sessions to perform quickly

and without delay. By contrast, the Raft replicas in the federated topology are in-

tentionally spread across geographic regions. A new write originating at an eventual

replica is quickly spread to the local Raft replica, and is then broadcast to the rest

of the regions via consensus decisions. Disseminating writes quickly minimizes the

possibility of another, later eventual write starting up concurrently. Additionally,

the forte number prevents new forked writes from stomping on a conflicting write

disseminated via Raft replicas.

The effect of Raft disseminating updates across the wide area can be seen in

access network extracted from our simulation shown in Figure 4.7. In this network,

vertices represent replicas and are colored by the consistency protocol it implements
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Figure 4.7: This graph shows the synchronization of a federated topology
for a simulation run that optimizes Raft connections in the wide area
and eventual connections in the local area. Vertex size indicates the
number of accesses at each replica and color represents the replica type
(blue for Raft, green for eventual). Edges are colored by RPC type and
sized by the number of messages sent.
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Figure 4.8: The total number of reads that are stale when they are executed.

(blue for Raft, green for eventual). The size of the vertex represents the number of

accesses that occur at each location. The edges are colored by RPC type and are

sized by the number of message of that type sent between replicas. This network

shows an extreme optimization of a federated network, using Raft as a broadcast

network across the wide area and local synchronization to anti-entropy nodes. Al-

though this type of network did not perform as well in the outage simulations, it

performed very well for our variable latency simulations. These observations served

as the basis for our planetary architecture as described in § 2.2.3.

Figures 4.8 and 4.9 show the average number of stale reads and forked writes

across different mean latencies. All three protocols perform similarly at smaller

latencies, but eventual and federated deal with high latencies much more effectively

than Raft, at least for this size of system.
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Figure 4.9: The total number of writes that are forked, potential
application-level conflicts.

Higher latencies affect Raft in at least two ways. First, higher latency variabil-

ity causes more out of order messages. Second, system timeouts are parameterized

by T which, in turn, is based on mean latencies. The result is that Raft’s append

entries delay is longer for simulations with higher mean latencies, resulting in more

conflicts. The same is true for anti-entropy delays, but the speed of Raft decisions is

determined by the slowest quorum member, which can be quite slow when message

variability is large. By contrast, a slow anti-entropy participant only affects direct

anti-entropy partners, not the replication of the update across the whole system.

Though not shown here, we also investigated the effect of changing the number

of replicas in the system (a system implementation shows that consensus does not

scale well in Figure 3.9). As system size increases, more time is required to fully

replicate writes, increasing the likelihood of both stale reads and forks. Equation 4.1

114



0 100 200 300 400 500
mean wide area latency (ms)

0

100

200

300

400

500

600

700

800

m
ea

n 
w

rit
e 

la
te

nc
y 

(m
s)

Write Latency for 13,789 Accesses

type
Eventual
Federated
Raft

Figure 4.10: Average cost of writes to local replicas. Eventual consis-
tency writes are completed immediately without coordination, therefore
have zero cost. The cost of Raft depends on the latency of the majority
vote. Federated with more eventual replicas will more than halve the
average write cost in the system.

shows that bilateral anti-entropy propagates writes to N nodes exponentially. Given

the relationship of the anti-entropy delay and heartbeat interval expressed

by T , Raft broadcasts overtake anti-entropy between 9 (2 anti-entropy sessions) and

27 replicas (3 anti-entropy sessions).

Finally, Figure 4.10 shows the mean synchronous cost of write operations to

ongoing computations. All Raft writes must be forwarded to the leader to be se-

rialized and are completed after a round trip communication. Eventual writes are

local and are completed immediately, even before being replicated, and therefore

have zero write cost. Most federated replicas are eventual and therefore federated’s

average write cost tracks eventual’s relatively closely.
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4.5 Conclusion

In this chapter we have presented a model for federated consistency to hy-

bridize consistency protocols in a single system. Federated consistency allows in-

dividual replicas to expose local consistency policies to users, while still allowing

for global guarantees. We explored the federation of eventual consistency imple-

mented with anti-entropy synchronization and sequential consistency implemented

with Raft consensus.

Federation requires both communication and consistency integration at the

consistency boundary, that is when replicas of different policies interact. We solved

communication integration by identifying how each consensus protocol should re-

spond to RPCs of the other, and by introducing parameters that modified how

peers were selected to communicate with each other. Consistency integration in-

volved ensuring that decisions made by either protocol were respected by the other.

By default this is not the case, since each protocol selected writes in opposite ways.

We therefore had to have a way for each protocol to determine the most relevant

write to propagate, which we solved by extending conflict-free version numbers with

a forte number that could only be incremented by the Raft leader. Though we only

investigated eventual and sequential consistency, we propose that other consistency

models, e.g. causal consistency, could be similarly federated.

We evaluated federated consistency in the context of a geographically dispersed

wide-area object store using a simulation to track metrics not generally available

in a real implementation. Our results show that a key to the global guarantees is

116



using a core consensus group to serialize and broadcast system writes. By designing

a federated system where only interactions between replicas of varying consistency

types are defined, systems can scale beyond the handful of devices usually described

to dozens or hundreds of replicas in variable-latency, partition-prone geographic

networks. Replicas can monitor their local environment and adapt as necessary to

meet timeliness and correctness constraints required by the local user.

We were only able to investigate a limited number of system configurations and

the space of possible system configurations is vast. We do not claim that the con-

figurations described in this chapter are in any way optimal. Rather, we claim that

our simulation results described in § 4.4 show that the general approach is promis-

ing. Our simulation environment is extremely flexible, and we intend to continue

evaluating possible system configurations in parallel with our system development.

Federated consistency has the potential to scale system sizes to extremely large

networks of millions of nodes. For this to happen our ideal configuration using a

central Raft quorum must also scale, which is possible when using hierarchical con-

sensus. Planetary scale systems comprised of a fog of highly available, eventually

consistent replicas federated with a central core of strong consistency hierarchical

consensus will allow high throughput, rapid replication, high availability, and resis-

tance to outages and variable network conditions.
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Chapter 5: System Implementation

Given its grandiose title, it may seem that the engineering behind the develop-

ment of a planetary scale data storage system would require thousands of man-hours

of professional software engineers and a highly structured development process. In

fact, this is not necessarily the case for two reasons. First, data systems benefit

from an existing global network topology and commercial frameworks for deploying

applications. This means that both the foundation and motivation for creating large

geo-replicated systems exists, as described in Chapter 2. Second, like the Internet,

complex global systems emerge through the composition of many simpler compo-

nents following straight forward rules [147]. Instead of architecting a monolithic

system, the design process is decomposed to reasoning about the behavior of single

processes.

Fundamentally, each process in our system is an independent actor [148–150]

with storage, memory, and compute resources. The primary purpose of an actor

is to receive and respond to messages (events) from other actors by modifying the

actor’s internal state, creating new actors, or sending messages to other actors [151].

The behavior of an actor depends solely on the order of messages received, making

them an ideal model for programming consistency protocols. A system is therefore
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composed of actors, and reasoning about the global behavior of the system requires

only a description of the interactions that different actors in the system have.

The actor model allows us to decouple consistency behavior from application

behavior. Consistency behavior is defined in the messaging between actors, for

example actors participating in hierarchical consensus provide consistency by voting

for a leader and correctly committing commands from the leader based on majority

votes. Application behavior is defined by the internal state of the actor, for example

the maintenance of a versioned key-value store. We use this decoupling to construct

two principle applications from our consistency-centric model: a key-value database

and a file system, all distributed geographically.

In this chapter we will describe the details of our implementation. First, we

will describe the base requirements for all replicas, along with our assumptions con-

cerning communication, security, processing and data storage. We will also outline

the details of our implementation of the consistency protocols described in previ-

ous chapters. Both HC and federated consistency are based on object stores that

can be sharded and managed independently, therefore we will principally describe

operations in terms of a key/value store. Finally we will describe the details of the

applications we built on top of our consistency protocols and the base object store.

5.1 Replicas

The primary actor in our system is the replica. Replicas are independent

processes that maintains a portion of the objects stored as well as a view of the state
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of the entire system. Each replica implements a shared-nothing architecture [152]

such that each replica has its own memory and disk space. For practical purposes of

fault tolerance, we generally assume that there is a one-to-one relationship between

a replica and a disk so that a disk failure means only a single replica failure. Replicas

must be able to communicate with one another and may also serve requests from

clients. By default we assume that all replicas in the system are addressable and

that both clients and peers can send messages to all replicas in the network, barring

failures.

A system is composed of multiple communicating replicas and is defined by

the behavior the replicas. For example, a totally replicated system is one where each

replica stores a complete copy of all objects as in the primary-backup approach [153],

whereas a partially replicated system ensures durability such that multiple replicas

store the same object but not all replicas store all objects as in the Google File Sys-

tem (GFS) [65]. At the scale of a multi-region, globally deployed system, we assume

that total replication is impractical and primarily consider the partial replication

case. However, we also assume that replicas maintain a view of the entire system,

that is meta-data about the location and provenance of all objects, so as to direct

client requests to the appropriate replica to serve requests.

Replicas primarily cache their object stores in memory to improve perfor-

mance. If a replica fails it can be brought up to date by a peer replica through

either consistency protocol. Durable storage is written to asynchronously, to mini-

mize the amount of recovery time required for a replica. Our implementation can use

multiple backend stores, writing pages and logs to disk, or using embedded key/value
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stores such as LevelDB [154], BadgerDB [155], or PebblesDB [156]. These databases

use the ext4 file system, though in the future we hope to investigate the use of a

tree-based file system to more directly optimize disk usage [157].

We assume that replicas reside on trusted hosts with reliable communication

and that failures are non-byzantine [116, 158]. However, we do expect security to

be a default component of a real-world implementation, particularly as many com-

munication links travel across the Internet. Communication should be secured and

authenticated with transport layer security (TLS) [159, 160]. TLS requires that

each replica maintains a certificate and public key encryption to secure communica-

tions [161] and if each replica has its own certificate, then TLS can also be used to

authenticate valid peers based on a central authority’s shared certificate [162]. We

also assume that data stored on disk should be encrypted. We prefer per-replica

encryption to ensure that data is loaded and stored from an in-memory cache as

quickly as possible though we recognize that some applications require per-user en-

cryption; it is beyond the scope of our system to provide it.

All replicas are implemented in Go [163], a systems programming language

that provides concurrency through communication channels [164]. Each replica im-

plements a primary event loop as a single channel to ensure that all events and

messages are serialized in a single order as shown in Figure 5.1. This prevents

the need to use multiple expensive mutexes to synchronize the behavior of multi-

ple threads and allows us to more easily reason about the operation of the system.

Communications are implemented using gRPC [165], an HTTP communication pro-

tocol that serializes messages in protocol buffers format [166] which allows clients
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Figure 5.1: Each replica is an actor that maintains an internal state
that is modified by processing messages from other actors. Implemented
in the Go programming language, each event is serialized by a single
message channel ensuring that the state is modified correctly.
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to be implemented in multiple programming languages. The gRPC server accepts

new requests each in an independent thread. Clients are handled using unary RPC

requests, but to improve communication performance between replicas we use bi-

lateral streaming. Bilateral streaming also guarantees that if online, replicas will

receive messages in the order they are sent. Each message is pushed through the

primary event channel, then responded to using a callback channel. Other threads

include timers and monitoring routines that are also synchronized through the main

event channel.

We’ve principally implemented two types of replicas with two different consis-

tency protocols. Alia [167] replicas implement hierarchical consensus based on our

implementation of the Raft protocol [168]. Honu [169] replicas implement eventual

consistency using bilateral anti-entropy synchronization. Both Alia and Honu im-

plement an object store such that objects are described by unique keys, and each

update to the object creates a new version. The key/value nature of our implemen-

tation allows the namespace and object data to be sharded and partially replicated

across all replicas, therefore the key/value database described in § 5.2.1 is the base

application for all of our applications. The details of each replica type follows.

5.1.1 Alia

Alia replicas implement hierarchical consensus. Each replica process runs mul-

tiple instantiations of a modified Raft protocol in independent threads as shown in

Figure 5.2. Every replica must run one instantiation of the root consensus protocol.
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Replicas may also run one or more instantiations of the commit consensus protocol

if they are assigned to a subquorum. It is imperative that our implementation runs

a single process with multiple threads, if the replica crashes it must not participate

in either root consensus or subquorum consensus. This is further ensured by a main

thread, the “Alia Actor” which acts as the gRPC server dispatching messages to the

appropriate quorum. The Alia Actor also handles process-level events like metrics

gathering, operating system signals, and maintaining connections to remote peers.

Although this does incur some overhead as shown in Figure 5.3, it is far outweighed

by the benefits of scaling consensus across multiple subquorums.

All actors, but especially the quorum actors implement an event loop that

responds to timing events, client requests, and messages from peers. Events may

cause the replica to change state, modify a command log, broadcast messages to

peers, modify the key-value store, or respond to a client. Event handlers need

to aggressively lock shared state for correctness because Golang and gRPC make

extensive use of multi-threading. The balance between correctness and concurrency-

driven performance leads to increasing complexity and tighter coupling between

components, one that foreshadows extra-process consistency concerns that have been

noted in other work [86, 92, 170]. Our implementation handles this in two ways.

First, gRPC bidirectional streaming ensures that if a remote peer is online, replies to

messages between two peers are delivered in order in which they were sent. Second,

each actor uses a single event channel to serialize the sequence of events being

handled. This significantly reduces the number of mutexes in our system to basically

zero.
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Figure 5.2: The Alia actor model model is composed of at least three
primary actors: the root quorum actor, a subquorum actor, and the
main actor that dispatches messages to each subquorum. Other minor
actors such as client requests threads and timing events dispatch their
messages directly to their associated actors.
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Figure 5.3: Running multiple consensus instances in the same process
does incur some overhead over a single consensus algorithm, but this
overhead is minimal when global throughput is considered.

Both the root quorum and subquorums in our implementation use timing pa-

rameters to detect when changes need to be made to their state. Timing parameters

depend on the network environment since timers are often reset when messages ar-

rive. For example, both the obligations timeout and the election timeout are reset

when a heartbeat message is received from the root leader and quorum leader re-

spectively. This means timeouts must be much greater than the average time to

broadcast and receive responses, and much less than the mean time between fail-

ures [59, 92, 171]. If this requirement is not met, the system may simply become

unavailable as it cannot recover from leadership failures.

As described in § 4.2.3, we use a tick parameter, T that is a function of the

mean network latency (λµ) to describe timing events. In a stable network environ-
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Table 5.1: Timing intervals play a significant role in determining replica action in our
implementation of Raft. This table shows the relationship between timing intervals
using a tick parameter, T (T = 45ms for our experiments on Amazon EC2).

Timeout Interval Action

Heartbeat 1T subquorum leader broadcasts heartbeat
Election U(2T, 4T ) become subquorum candidate
AntiEntropy 4T synchronize with non-quorum peer

RootHeartbeat 10T root leader broadcasts heartbeat
RootElection U(20T, 40T ) become root candidate

Obligations 10T root leader may reconfigure
Beacon U(100T, 200T ) send summary stats to leader

ment, Howard et al [146] proposes T = λµ + 2λσ to maximize leader availability.

Other more conservative implementations such as etcd [59] use T = 10λµ or allow

the user to specifically configure the tick. In both cases, standard Raft generally de-

fines the heartbeat interval as T
2
, and the election timeout as the interval U(T, 2T ).

Our implementation allows multiple functions for defining T , but parameterizes the

timing intervals as shown in Table 5.1.

Changes to base Raft: In addition to major changes, such allowing replicas

to be part of multiple quorums simultaneously, we also made many smaller changes

that had pervasive effects. One change was including the epoch number alongside

the term in all log entries. The epoch is evaluated for invariants such as whether or

not a replica can append an entry or if a log is as up to date as a remote log.

Vote delegation requires changes to vote counting. Since our root quorum

membership actually consists of the entire system, all replicas are messaged during

root events. All replicas reply, though most with a “zero votes” acknowledgment.
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The root uses observed vote distributions to inform the ordering of future consensus

messages (sending requests first to replicas with votes to cast), and uses timeouts

to move non-responsive replicas into “hot spares” status.

One major change we made to dramatically improve performance is to ag-

gregate AppendEntries requests to serve multiple client requests in a single round.

Such requests are collected while an outstanding commit round is ongoing, then

sent together when that round completes. Because all requests are sent through a

single channel, we simply read off the channel until it is empty or another event

type has occurred before creating a multi-entry append and sending it. The root

quorum also aggregates all requests within a minimum interval into a single new

epoch-change/reconfiguration operation to minimize disruption.

Commits are observed by the leader once a majority of replicas respond posi-

tively. Other replicas learn about the commit only on the next message or heartbeat.

Root epoch changes and heartbeats are designed to be rare, meaning that epoch

change commits are not seen promptly. We modified the root protocol to inform

subquorums of the change by sending an additional heartbeat immediately after it

observes a commit. Root heartbeat messages also serve to notify the network about

events that do not require an epoch change, such as the election of a new subquorum

leader or bringing a failed node back online.

Replicas may be part of both a subquorum and the root quorum, and across

epoch boundaries may be part of multiple subquorums. In principle, a high perfor-

mance replica may participate in any number of subquorums. We therefore allow

replicas to accommodate multiple distinct logs with different access characteristics.
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Peers that are either slow or with unsteady connectivity are occasionally left behind

at subquorum leader or epoch changes. Root heartbeats containing the current

system configuration are broadcast to all replicas and serve to bring them up to

date.

Finally, consensus protocols often synchronously write state to disk before

responding to remote requests. This allows replicas that merely crash to reboot and

rejoin the ongoing computation after recovering state from disk. Otherwise, these

replicas need to go through heavyweight leave-and-rejoin handshakes. Our system

avoids these synchronous writes by allowing epochs to re-join a subquorum at the

next epoch change without any saved state, avoiding these handshakes altogether.

5.1.2 Honu

Honu replicas implement our eventual consistency fog with anti-entropy syn-

chronization and are considerably simpler than their Alia counterparts. Each Honu

replica maintains an in-memory cache of key-value pairs. To reduce contention and

respond to requests as quickly as possible, the in-memory cache is itself sharded

and uses a simple hash of the key to determine object placement. Each shard is

then protected by a read/write mutex. Reads are immediately returned from the

in-memory cache.

Writes are applied to the in-memory store asynchronously. When a write is

requested by the client, the update is first appended to a log on disk before respond-

ing successfully to the client. A background thread consumes the log, applying each
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write first to an embedded key/value store on disk, then to the in-memory cache.

This ensures that all reads return writes that have been saved to durable storage

but increases the likelihood of stale reads: our model optimizes for high-throughput

writes and rarer reads.

As the background process applies writes, it updates the version of the object

and links the version to its parent version. Object versions are defined by conflict-

free version numbers [139, 140] comprised of three components: a precedence ID,

a monotonically increasing scalar, and the “forte” number. The precedence ID

must be unique per replica and can either be configured or based on the network

address of the replica such as a GUID. Both the scalar and forte component can

optionally be across all objects (so as to compare if a write to object A is later

than a write to object B) or on a per-object basis depending on the requirements of

the system. Versions are compared by first comparing the forte numbers, then the

scalar component, then in the case of ties, the precedence ids.

On a periodic interval, Honu replicas perform background anti-entropy syn-

chronization. On each interval, the replica selects a remote peer using a scheme

such as those described in Chapters 4 and 6 or by simply using uniform random

selection. The latest local versions of each object in the in-memory cache are col-

lected as quickly as possible by a parallel read of each in-memory shard that returns

a per-shard mapping of key to version (each shard is read locked for the duration of

the read). Once the versions are collected, they are assembled into a binary Merkle

tree [144] by lexicographically sorting the keys whose data is their version number.

This tree is cached in case the local replica is chosen for synchronization by another
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replica. The version tree (or array in simpler implementations) is then sent to the

selected peer.

When the remote peer receives the pull request, it compares the arriving ver-

sion tree with its local tree to quickly determine which objects if any have been

updated. The remote peer returns objects for all versions that the remote peer has

that are later than the version of the object described by the initiating peer. Ad-

ditionally it sends the initiating peer a push request for all versions that are earlier

on the remote peer, updating both the scalar and forte components as needed. The

initiating peer concludes the synchronization by applying the later versions to its

store, updating its scalar and forte components, then sending back the requested

objects to the remote replica.

5.2 Applications

We target two primary applications: a globally distributed key/value database

and file system. Both Alia and Honu manage a key/value object store by applying

operations asynchronously from a log of command operations. Both of these object

stores are native for different reasons. Alia replicas require a key/value object store

so that the namespace can be appropriately sharded to individual subquorums.

Subquorums then commit entries to a log, which are then applied to an in-memory

cache for quick read accesses and to an embedded key/value database for durable

storage and to snapshot and archive the log files. Honu replicas manage a key/value

object store to minimize contention when writing to an in memory cache and to
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Figure 5.4: This architecture provides a general component model for
consistency-centric applications. Object blobs and version metadata are
replicated separately to allow partial replication of data but a full view
of the current state of the system. Only version replication requires
consistency semantics, therefore our federated and hierarchical consensus
models only deal with metadata commands.

provide a framework for anti-entropy synchronization. Updates to the cache are

also implemented asynchronously from a log, but consistency is relaxed so that no

coordination is required and to return to the client as fast as possible.

We decompose the storage requirements for each application into three aspects

as shown in our general component model in Figure 5.4. Object aspects describe the

local storage policies of blobs of data representing the objects. These aspects inform

the system of the durability of the object, e.g. to how many disks/zones the data
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is replicated as well as other policies such as erasure, compression, or encryption.

Temporal aspects describe how different versions of data in the system are managed,

e.g. how many versions to keep or how a user goes back in time to find earlier or

later versions of a file. Versions also define the external view of the system, therefore

only version information need be consistently replicated. Finally, Synchronization

aspects define how both blobs and meta data are replicated across the system, and

have been the primary subject of this chapter.

We point out these aspects primarily to identify them as belonging to the

application layer rather than to our data model. Multiple policies across one or

more of these aspects can be easily implemented in an application without requiring

a change to hierarchical consensus, federated consistency, or adaptive consistency.

In this section we will describe some of the choices we have made in our target

applications.

5.2.1 Key/Value Database

A key/value database is a natural extension to our proposed data model. Both

Alia and Honu replicas operation on a key based object model such that keys are

structs that contain a unique name, version, and parent version and values are blobs

of binary data. To generalize this to a key/value database, the application must

map arbitrary keys (which can be arrays of bytes or strings) to arbitrary objects

(which might also contain type information). We accomplish this by maintaining an

additional data structure that maps application keys to their object/version key as
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well as type information. Values are then serialized into blobs either by marshaling

them as JSON data or in Protocol Buffers format.

Clients can make Get, Put, and Del requests by default. Get requests return

the latest version of the object for a user specified key according to the read policy

of the replica. Alia replicas forward the request to the leader of the subquorum

managing the tag that contains the key by inspecting the configuration defined by

a prefix trie that maps keys to subquorums (responding to a request requires at

most two redirects). The leader then returns the latest committed value of the key.

Honu replicas simply return the latest value of the object as found in their local

cache. Put requests are similarly forwarded to the leader of the subquorum, which

then initiates a consensus round and returns the version of the update to the client

when the update is committed. Honu replicas similarly update their local version

then return to the client when the update has been written to stable storage. If the

client requires the new version, Honu may block until the update is applied.

Del requests are considered updates, but do not actually erase data. Instead,

a tombstone version is written to the object store with no associated data. On Get,

if a tombstone version is encountered, a not found error is returned to the client; on

Put the version history is continued such that the parent version is the tombstone

version – applications can then decide whether or not to allow users to go back

in time to deleted versions, or to use tombstone versions as checkpoints to clean

up data and reduce storage overhead. Other types of accesses are also possible for

other data types, for example an array datatype might allow Append accesses or

a set datatype, Union or Intersect operations. In these cases, the operation is

134



treated as a Get then Put using the semantics described above.

5.2.2 File System

Our file system, called FlowFS, like many modern file systems, decouples meta-

data recipes [65,172–175] from file data storage. Meta-data includes an ordered list

of blobs, which are opaque binary chunks. When a file is closed after editing, the

data associated with the file is chunked into a series of variable-length blobs [176],

identified by a hashing function applied to the data [177, 178]. Since blobs are

effectively immutable [179], or tamper-evident, (blobs are named by hashes of their

contents), we assert that consistent meta-data replication can be decoupled from

blob replication. Accesses to file system meta-data becomes the primary consistency

operations. For simplicity we describe our file system using HC.

FlowFS aggregates individual accesses into Close-To-Open (CTO) [175, 180–

183] consistency such that read and write accesses are “whole file” [176]. A file read

(“open”) is guaranteed to see data written by the latest write (“close”). This ap-

proach satisfies two of the major tenets of session consistency: read-your-writes

and monotonic-writes, but not writes-follow-reads [74, 75, 78]. These guaran-

tees are necessary to provide file system semantics and are enabled by local cacheing.

Intermediate sync and flush operations are written to disk and replication only oc-

curs when a file is closed. Stronger consistency is possible if clients are allowed to

request leases on files, though this has implications for epoch transition that must

be more fully considered.
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The file system is defined as a hierarchical namespace, which is itself defined as

an object store with complex keys, similar to Amazon S3 [11]. In principle there are

two types of objects: directories and files, however, to implement sharding across

multiple subquorums, in reality there are files and containers, directories that con-

tain files and are specifically managed by a subquorum. This is necessary otherwise

adding a file to a directory would require updating the versions of all containers

up to the root, which would require coordination between all subquorums. Instead,

the namespace is partitioned by a prefix, which defines a container. For example,

alia://us-east-1/edu.umd.cs/ bengfort/* would indicate that a subquorum is

responsible for all objects under the described prefix. Read operations on non-

container prefixes are still possible, but rather than returning data, would instead

return the subquorums that manage that space.

When a file is closed after editing the version and data are prepared for repli-

cation. Version information is updated as in the key/value database and replicated

using the consistency policy of the replica. The data associated with the file is

chunked into a series of unique, variable-length blobs that are stored in a directory

structure based on the blobs hash (thereby allowing easy computation of a modified

Merkle tree structure for anti-entropy replication). On read, the replica demand-

fetches the blobs to return data to the client. Techniques like hoarding [184] and

TCP layer replication [185] can improve blob replication, optimistically colocating

blobs with likely read accesses. However, if a blob is not available locally a remote

access to a storage device with the blob is all that is required.

The FluidFS replica architecture is specified in Figure 5.5. We have imple-
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Figure 5.5: FluidFS implements the application component model specif-
ically for a file system. Users interact with a local replica that imple-
ments the FUSE API or more directly through a gRPC API. The Flu-
idFS daemon process stores data in a blob store and meta data in an
embedded key/value store. The process also provides configuration and
logging as well as a web interface for command and control.
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mented two file system APIs, the first uses FUSE to implement a traditional POSIX-

like interface by mounting a replicated volume to a local replica. The second im-

plements a client-server API to allow our file system to be accessible from mobile

devices or sensors. We also use the client-server API to perform benchmark and

workload testing, avoiding the overhead of FUSE. Each FluidFS replica maintains

two primary data stores: a blob store on disk and an embedded key value store.

The embedded key value store must maintain three buckets: a mapping of names to

version, a mapping of version to meta-data recipe, and mapping of object prefixes to

location on disks or to other subquorums. All FluidFS replicas also provide a web

interface for command and control, allowing a user to directly view the configuration

and behavior of a local replica and tune local optimization behavior.

5.3 Conclusion

In this chapter we have briefly described our systems implementations of the

two primary consistency protocols described in this dissertation and outlined our

target applications. Our systems are developed with the actor model in order to

simplify reasoning about distributed architectures and to avoid common synchro-

nization traps that cause edge conditions that violate consistency expectations. A

planetary scale system is composed of individual replicas with independent disk,

memory, and processing capability and which can communicate with all other repli-

cas in the network. We outlined two replica types: the Alia replica which partici-

pates in hierarchical consensus, and the Honu replica which enables high throughput
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writes with relaxed consistency.

We implemented these replicas and our applications using the Go program-

ming language with gRPC and protocol buffers for communication. All of our code

is open source and available on GitHub. We intend to continue to develop the appli-

cations described in this chapter and deploy a planetary scale system. Furthermore

we welcome collaboration and would invite anyone interested to contribute to our

codebase.
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Chapter 6: Adaptive Consistency

Throughout this dissertation we have outlined a planetary-scale data storage

system composed of a two-tier structure that provides a hybrid consistency model.

Both tiers are designed to scale to thousands of replicas, and together could repre-

sent millions of replicas operating in concert around the world. Management and

systems administration of such a large scale system using external monitoring pro-

cesses is impractical at best and prohibitively complex at worst. Even with a trusted

infrastructure of cloud services, building a single synchronization point for monitor-

ing and optimization would require the online collection of live information from

across the globe. This synchronization point would itself be susceptible to delays

and partitions and would have to manage a huge number of events streaming in

from many sources, which has challenges in and of itself [186].

Instead, we propose that an emergent model of network behavior is required to

tune and optimize planetary scale systems at runtime such that local, simple rules

lead to globally emergent behavior [187]. Specifically we hypothesize that when in-

dividual replicas follow simple optimization procedures based on monitoring of their

local network performance, access patterns, queries to their neighbors, and other

environmental factors the performance of the system will collectively increase. Be-
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cause we focus primarily on the consistency aspects of geo-replicated data storage,

we have termed this behavior adaptive consistency, because with a hybrid or con-

tinuous consistency model, such optimizations will minimize inconsistent behaviors

due to latency or configuration.

In this chapter we will show we can improve consistency of the system as a

whole with localized machine learning implemented on a per-replica basis. Although

this work is largely left for future research on a fully deployed platform, we have

built our system with this kind of adaptation in mind. Our preliminary experiments

suggest that adapting anti-entropy selection with reinforcement learning techniques

will meaningfully enhance consistency in the federated fog layer of the system [188].

We will then finish with a discussion of how we can generalize this process to other

techniques in the system as a whole.

6.1 Anti-Entropy Bandits

A distributed system is made highly available when individual servers are

allowed to operate independently without failure-prone, high latency coordination.

The independent nature of the server’s behavior means that it can immediately

respond to client requests, but that it does so from a limited, local perspective

which may be inconsistent with another server’s response. If individual servers in a

system were allowed to remain wholly independent, individual requests from clients

to different servers would create a lack of order or predictability, a gradual decline

into inconsistency, i.e. the system would experience entropy. To combat the effect of
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entropy while still remaining highly available, servers engage in periodic background

anti-entropy sessions [117].

Anti-entropy sessions synchronize the state between servers ensuring that, at

least briefly, the local state is consistent with a portion of the global state of the

system. If all servers engage in anti-entropy sessions, the system is able to make

some reasonable guarantees about consistent replication; the most well known of

which is that without requests the system will become globally consistent, eventu-

ally [78]. More specifically, inconsistencies in the form of stale reads can be bound

by likelihoods that are informed by the latency of anti-entropy sessions and the size

of the system [93,94]. Said another way, overall consistency is improved in an even-

tually consistent system by decreasing the likelihood of a stale read, which is tuned

by improving the visibility latency of a write, the speed at which a write is propa-

gated to a significant portion of servers. This idea has led many system designers

to decide that eventual consistency is “consistent enough” [11,12], particularly in a

data center context where visibility latency is far below the rate of client requests,

leading to practically strong consistency.

However, propagation rates need to be re-evaluated when replicas move out-

side of data center contexts and when anti-entropy is replicating across the wide

area. Our system envisions a fog layer that provides data services to localized re-

gions with a hybrid consistency model. The fog is specifically designed to handle

mobile users, sensor systems, and high throughput applications at the edge of the

data center backbone [123, 189]. However, scaling an eventually consistent system

to dozens or even hundreds of nodes increases the radius of the network, which leads
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to increased noise during anti-entropy e.g. the possibility that an anti-entropy ses-

sion will be between two already synchronized nodes. Geographic distribution and

extra-datacenter networks also increase the latency of anti-entropy sessions so that

inconsistencies become more apparent to external observers.

To address this challenge, we propose the use of reinforcement learning tech-

niques to optimize network behavior by minimizing latency. Anti-entropy uses gossip

and rumor spreading to propagate updates deterministically without saturating the

network even in the face of network outages [141,190,191]. These protocols use uni-

form random selection to choose synchronization peers, which means that a write

occurring at one replica is not efficiently propagated across the network. In this

section we explore the use of multi-armed bandit algorithms [192, 193] to optimize

for fast, successful synchronizations by modifying peer selection probabilities. The

result is a synchronization topology that emerges according to access patterns and

network latencies. As we will show in the next sections, such topologies produce

efficient synchronization, localize most data exchanges, lower visibility latency, and

increase consistency.

6.1.1 Visibility Latency

In this section we review the access and consistency model in the context of

bandits as well as how anti-entropy is conducted. A more complete discussion of

these topics can be found in Chapter 4.

Clients can Put (write) and Get (read) key-value pairs to and from one or
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more replicas in a single operation, creating read and write quorums that improve

consistency by enforcing coordination between replicas on the access. In large, geo-

replicated systems, we assume that clients prefer to choose fewer, local replicas to

connect with, assuming that writes are primarily local and reads are global. On

Put, a new conflict-free version of the write is created. This results in the possibility

of two types of inconsistencies that occur during concurrent accesses: stale reads

and forked writes. As a write is propagated through the system, the latest-writer

wins policy means that at least one of the forks will be “stomped,” e.g. not fully

replicated.

Both forms of inconsistency can be primarily attributed to visibility latency,

that is the time it takes for an update to propagate to all replicas in the system.

Visibility latency is directly related to the likelihood of stale reads with respect to

the frequency of accesses [94]; said another way, decreasing the visibility latency

improves the overall consistency of a system. However, in a system that uses anti-

entropy for replication, the propagation speed of an update is not governed solely by

network connections, it is also bound to the number and frequency of anti-entropy

sessions conducted as well as the radius of the network.

Visibility latency is minimized when all replicas choose a remote synchroniza-

tion partner that does not yet have the update. This means that minimal visibility

latency is equal to t log3 n, where t is the anti-entropy interval and n is the number

of replicas in the network. In practice, however, because of inefficient exchanges due

to uniform random selection of synchronization partners, this latency is never prac-

tically achieved, and is instead modulated by a noise variable that is proportional
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to the size of the network.

6.1.2 Multi-Armed Bandits

To combat the effect of noise on visibility latency our initial approach em-

ploys a technique commonly used in active and reinforcement learning: multi-armed

bandits. Multi-armed bandits refer to a statistical optimization procedure that is

designed to find the optimal payout of several choices that each have different proba-

bilities of reward. In this case, we use bandits to improve uniform random selection

of peers so that replicas choose synchronization partners that are most likely to

exchange information, and thus more quickly propagate updates, while still main-

taining the properties of full replication and fault tolerance.

A bandit problem is designed by identifying several (usually more than two)

competing choices called “arms” 1 , as well as a reward function that determines

how successful the selection of an arm is. During operation, the bandit selects an

arm, observes the rewards, then updates the payout likelihood of the selected arm,

normalized by the number of selections. As the bandit selects arms, it learns which

arm or arms have the highest likelihood of reward, and can modify it’s arm selection

strategy to maximize the total reward over time.

Bandits must balance exploration of new arms with possibly better reward

values and exploitation of an arm that has higher rewards than others. In an epsilon

greedy strategy, the bandit will select the arm with the best reward with some

1Arms refer to the pulling mechanism of a slot machine, the metaphor generally used to motivate
the multi-armed bandit problem.
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probability 1− ε, otherwise it will select any of the arms with uniform probability.

The smaller ε is, the more the bandit favors exploitation of known good arms, the

larger ε is, the more it favors exploration. If ε = 1 then the algorithm is simply

uniform random selection. A simple extension of this is a strategy called annealing

epsilon greedy, which starts with a large ε, then as the number of trials increases,

steadily decreases ε on a logarithmic scale. There are many other bandit strategies

but we have chosen these two simple strategies for our initial research to demonstrate

a bolt-on effective improvement to existing systems.

Peer selection for anti-entropy is usually conducted with uniform random se-

lection to guarantee complete replication. To extend anti-entropy with bandits, we

design a selection method whose arms are remote peers and whose rewards are deter-

mined by the success of synchronization. The goal of adding bandits to anti-entropy

is to optimize selection of peers such that the visibility latency becomes closer to the

optimal propagation time as a synchronization topology emerges from the bandits.

A secondary goal is to minimize anti-entropy latency by preferring local (in the same

data center) and regional (e.g. on the same continent) connections.

Our initial reward function favors synchronizations to replicas where the most

writes are occurring by giving higher rewards to anti-entropy sessions that exchange

later versions in either a push or a pull, as well as additional rewards if more than

one object is exchanged. Additionally, the latency of the synchronization RPCs is

computed to reward replicas that are near each other. The complete reward function

is given in Table 6.1: for each phase of synchronization (push and pull), compute

the reward as the sum of the propositions given. For example if a synchronization
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Table 6.1: The rewards function for our initial anti-entropy bandits. Rewards are
computed by introspecting the results of the pull and push phases of bilateral anti-
entropy.

Pull Push Total

Synchronize at least 1 object 0.25 0.25 0.50
Additional for multiple objects 0.05 0.05 0.10
Latency ≤ 5 ms (local) 0.10 0.10 0.20
Latency ≤ 100 ms (regional) 0.10 0.10 0.20

Total 0.50 0.50 1.00

results in three objects being pulled in 250 ms, and one object being pushed in 250

ms, the reward is 0.75.

The design of reward functions can be implemented to the needs of a specific

system. For example, in a system that has workloads with variable sized writes,

object size could be considered or systems with imbalanced deployments might con-

sider a reward function that prioritizes inter-region communication.

6.1.3 Experiments

We conducted experiments using a distributed key-value store totally repli-

cated across 45 replicas in 15 geographic regions on 5 continents around the world.

Replicas were hosted using AWS EC2 t2.micro instances and were connected to

each other via internal VPCs when in the same region, using external connections

between regions. The store, called Honu, is implemented in Go 1.9 using gRPC and

protocol buffers for RPC requests; all code is open source and available on GitHub.

The workload on the system was generated by 15 clients, one in each region
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and colocated with one of the replicas. Clients continuously created Put requests

for random keys with a unique prefix per-region such that consistency conflicts

only occur within a single region. The average throughput generated per-client

was 5620.4 puts/second. The mean synchronization latency between each region

ranged from 35 ms to 630 ms as shown in Figures 6.1 and 6.2. To ensure at least

one synchronization per anti-entropy session, we set the anti-entropy interval to 1

second to train the system, then reduced the interval to 125 ms while measuring

visibility latency. To account for lag between commands sent to replicas in different

regions, each experiment was run for 11 minutes, the bandit learning period was 4

minutes then visibility latency was observed for 6 minutes, buffered by 30 seconds

before and after the workload to allow replicas to initialize and gracefully shutdown.

Our first experiments compared uniform random peer selection with epsilon

greedy bandits using ε ∈ {0.1, 0.2, 0.5} as well as an annealing epsilon greedy bandit.

The total system rewards as a rolling mean over a time window of 20 synchroniza-

tions are shown in Figure 6.3. The rewards ramp up from zero as the clients come

online and start creating work to be synchronized. All of the bandit algorithms

eventually improve over the baseline of uniform selection, not only generating more

total reward across the system, but also introducing less variability in rewards over

time. None of the bandit curves immediately produces high rewards as they ex-

plore the reward space; lower ε values may cause exploitation of incorrect arms,

while higher ε values take longer to find optimal topologies. However, in the static

workload case, the more aggressive bandit strategies converge more quickly to the

optimal reward.
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Figure 6.2: View of anti-entropy synchronization latency from Europe
and corresponding network distances.

Visibility latencies were computed by reducing the workload rate to once every

4 seconds to ensure the write becomes fully visible across the entire network. During

the visibility measurement period, replicas locally logged the timestamp the write

was pushed or pulled; visibility latency is computed as the difference between the

minimum and maximum timestamp. The average visibility latency per region is

shown in Figure 6.4 measured by the left y-axis. Because the anti-entropy delay is a

fixed interval, the estimated number of required anti-entropy sessions associated with

the visibility delay is shown on the right y-axis of the same figure. Employing bandit

strategies reduces the visibility latency from 2360 ms on average in the uniform case

to 1870 ms, reducing the number of required anti-entropy intervals by approximately

4.
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To show the emergent behavior of bandits, we have visualized the resulting

topologies as network diagrams in Figure 6.5 (uniform selection), Figure 6.7 (an-

nealing epsilon) and Figure 6.6 (epsilon greedy ε = 0.2). Each network diagram

shows each replica as a vertex, colored by region e.g. purple is California, teal is

Sao Paulo, Brazil, etc. Each vertex is also labeled with the 2-character UN country

or US state abbreviation as well as the replica’s precedence id. The size of the ver-

tex represents the number of Put requests that replica received over the course of

the experiment; larger vertices represent replicas that were colocated with workload

generators. Each edge between vertices represents the total number of successful

synchronizations, the darker and thicker the edge is, the more synchronizations oc-

curred between the two replicas. Edges are directed; the source of the edge is the

replica that initiated anti-entropy with the target of the edge.

Comparing the resulting networks, it is easy to see that more defined topolo-

gies result from the bandit-based approaches. The uniform selection network is

simply a hairball of connections with a limited number of synchronizations. By con-

trast, clear optimal connections have emerged with the bandit strategies; dark lines

represent extremely successful synchronization connections between replicas, while

light lines represent synchronization pairs that are selected less frequently. Based

on our observations, we posit that fewer edges in the graph represents a more stable

network; the fewer synchronization pairs that are selected, the less noise that occurs

from selecting a peer that is in a similar state.
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Figure 6.5: Synchronization network using uniform random selection of
synchronization peers.
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Figure 6.7: Synchronization network using annealing epsilon bandit
based selection of synchronization peers.
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6.2 Bandits Discussion

To achieve stronger eventual consistency, the visibility latency of a system

replicated with anti-entropy must be reduced. We believe that this can be achieved

with two primary goals: increasing the number of successful synchronizations and

maximizing the number of local and regional synchronizations such that the aver-

age latency of anti-entropy sessions is as low as possible. These goals must also

be tempered against other requirements, such as fault and partition tolerance, a

deterministic anti-entropy solution that ensures the system will become consistent

eventually, and load balancing the synchronization workload evenly across all repli-

cas.

Bandit based approaches to peer selection clearly reduce noise inherent in

uniform random selection as shown in Figure 6.3. The bandit strategies achieve

better rewards over time because peers are selected that are more likely to have

an update to synchronize. Moreover, based on the network diagrams shown in

Figures 6.5-6.6, this is not the result of one or two replicas becoming primary syncs:

most replicas have only one or two dark in-edges meaning that most replicas are

only the most valuable peers for one or two other replicas.

Unfortunately, the rewards using a bandit approach, while clearly better than

the uniform case, are not significantly better – this is an interesting demonstration of

the possibility of adaptive systems to improve consistency but further investigation

is required. The primary place we see for adjustment is future work to explore the

reward function in detail. For example, the inclusion of penalties (negative rewards)
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might make the system faster to adjust to a high quality topology. Comparing

reward functions against variable workloads may also reveal a continuum that can

be tuned to the specific needs of the system.

As for localization, there does appear to be a natural inclination for replicas

that are geographically proximate to be a more likely selection. In Figure 6.6, repli-

cas in Canada (light blue), Virginia (dark blue), Sydney (grey), California (purple),

and Frankfurt (light green) all prioritize local connections. Regionally, this same

figure shows strong links such as those between Ohio and California (CA42→ OH38)

or Japan and Singapore (JP17 → SG25). Replicas such as BR19 and IN3 appear

to be hubs that specialize in cross-region collaboration. Unfortunately there does

also seem to be an isolating effect, for example Sydney (grey) appears to have no

significant out of region synchronization partners. Isolated regions could probably

be eliminated by scaling rewards with the number of transmitted updates, or by

using larger epsilons. Multi-stage bandits might be used to create a tiered reward

system to specifically adjust the selection of local, regional, and global peers. Other

strategies such as upper confidence bounds, softmax, or Bayesian selection may also

create more robust localization.

Finally, and perhaps most significantly, the experiments conducted in this pa-

per were on a static workload; future work must explore dynamic workloads with

changing access patterns to more closely simulate real world scenarios. While bandit

algorithms are considered online algorithms that do respond to changing conditions,

the epsilon greedy strategy can be slow to change since it prefers to exploit high-

value arms. Contextual bandits use side information in addition to rewards to make
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selection decisions, and there is current research in exploring contextual bandits in

dynamic worlds that may be applicable [193]. Other strategies such as periodic re-

seting of the values may incur a small cost to explore the best anti-entropy topology,

but could respond to changing access patterns or conditions in a meaningful way.

Future efforts will consider different reward functions, different selection strate-

gies, dynamic environments, and how the priorities of system designers can be em-

bedded into rewards. Reward functions that capture more information about the

expected workload of the system such as object size, number of conflicts, or lo-

calizing objects may allow specific tuning of the adaptive approach. We will also

specifically explore in detail the effect of dynamic workloads on the system and how

the reinforcement learning can adapt in real time to changing conditions. We plan to

investigate periodic resets, anomaly detection, and auction mechanisms to produce

efficient topologies that are not brittle as access patterns change. We also plan to

evaluate other reinforcement learning strategies such as neural or Bayesian networks

to determine if they handle dynamic environments more effectively.

6.3 Generalizing Adaptation

Using bandits for anti-entropy peer selection is a demonstration of an intro-

spective model of adaptability [1]. Introspection is an architectural paradigm that

augments a systems normal operation with two components: monitoring and opti-

mization. Monitoring components must keep track of a historical record of system

behavior, often summarizing or aggregating information at local nodes to minimize
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the amount of data that must be propagated to neighbors. Optimization compo-

nents use the observed and summarized data to extract patterns of behavior which

can then be used to adapt the behavior of a system either by adjusting the configu-

ration of a local replica [194] or by providing predictive models that are propagated

to all replicas with active learning [195,196].

Adaptation improves the manageability, performance, and consistency of the

system in a number of ways. Monitoring of data movement can establish contin-

uous confidence intervals of the durability of the system and the requirements for

archiving blocks in deep storage. Adaptation can also be used to identify unreliable

groups of machines or to detect anomalies that may destabilize the system. Accesses

might be classified to tune portions of the system to handle high throughput small

updates vs fewer, high volume writes, or to support more reads than writes. We

believe that most systems administration tasks at a planetary scale will require some

form of stochastic online adaptation behavior because a centralized monitoring and

manual management is simply unrealistic. Currently there are two primary goals

for learning based adaptation that will guide the architecture for other adaptive

services: object placement and replica management.

Replica management adjusts the network topology to serve requests as ef-

ficiently as possible, repairing outages to ensure the system is maximally avail-

able. Replicas monitor message latencies when communicating between replicas,

constructing a network proximity map that influences timing parameter behavior

and the system tick rate. Message latencies can also be used to adapt other con-

figurations in real time, such as synchronization probabilities as described by the
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bandit approach in this chapter or to modify the integration of federated consis-

tency protocols. Network proximity between replicas and clients can also be used

to ensure that clients experience a high quality of service, by ensuring that quorums

are constructed as close as possible to the objects the quorums serve.

Replica management can also elastically scale and provision extra capacity

when needed reducing capacity when it is not. In a planetary system, there is an

expected pattern of accesses, e.g. many objects will be accessed more during daylight

hours and less frequently at night. Other objects will experience geographically

shifting access patterns, for example, as passengers travel between locations on

flights. If access patterns can be extracted for specific objects or groups of objects,

then optimistic root quorum decisions to allocate new quorums with hot spares or

shift the locale of the quorums managing an object will increase the overall quality

of service of the system.

Object placement groups related or similar objects together to ensure inter-

object consistency is maintained and to minimize access latency from a variety

of geographic locations. Hierarchical consensus is most efficient when subquorums

manage accesses to a group of objects from a specific geographic locale. If accesses to

related objects cross subquorum boundaries, then remote reads between subquorums

is required to maintain linearizable consistency. Automatic discovery of relationships

between objects ensures that a single subquorum manages the objects most likely to

be accessed together thereby minimizing the access latency. Alternatively if reads

and writes of an object are from different regions, the frequency of the type of access

in each region can determine how to configure a subquorum for maximum benefit.
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Clustering algorithms can also be used to group objects and to prefetch them to

locales of expected access.

The challenge for generalized adaptation is to carefully balance local behaviors

and coordinated learning. In principle, local reinforcement learning is preferred so

that neighborhoods of common behavior emerge, creating efficient global behaviors.

However, other learning techniques such as anomaly detection, event classification,

or confidence reporting require a global view of access patterns and the network

environment. Balancing these two opposing requirements is an area of essential

future research, though one that requires real data to demonstrate the influence of

learning systems on consistency.

6.4 Conclusion

In this chapter we have presented a demonstration of adaptive consistency in

the geo-replicated eventually consistent systems by employing a novel approach to

peer selection during anti-entropy – replacing uniform random selection with multi-

armed bandits. Multi-armed bandits consider the historical reward obtained from

synchronization with a peer, defined by the number of objects synchronized and

the latency of RPCs, when making a selection. Bandits balance the exploitation

of a known high-value synchronization peer with the exploration of possibly better

peers or the impact of failures or partitions. The end result is a replication network

that is less perturbed by noise due to randomness and capable of more efficiently

propagating updates.
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In an eventually consistent system, efficient propagation of updates is directly

tied to higher consistency. By reducing visibility latency, the likelihood of a stale

read decreases, which is the primary source of inconsistency in a highly available

system. We have demonstrated that bandit approaches do in fact lower visibility

latency in a large network.

We believe that the results presented show a promising start to a renewed

investigation of highly available distributed storage systems in novel network en-

vironments, particularly those that span the globe. Specifically, this work is part

of a larger exploration of adaptive, globally distributed data systems that feder-

ate consistency levels to provide stronger guarantees [197]. Federated consistency

combines adaptive eventually consistent systems such as the one presented in this

paper with scaling geo-replicated consensus such as Hierarchical Consensus [103] in

order to create robust data systems that are automatically tuned to provide the best

availability and consistency. Distributed systems that adapt to and learn from their

environments and access patterns, such as the emerging synchronization topolo-

gies we observed in this paper, may form the foundation for the extremely large,

extremely efficient networks of the future.
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Chapter 7: Related Work

Our work is heavily inspired by the Oceanstore project [1] and its proto-

type, Pond [198]. Before Amazon Web Services, Google Cloud, or Microsoft Azure,

Oceanstore changed the way researchers thought about wide area distributed sys-

tems, transforming the literature to consider truly global services and directly lead-

ing to research platforms like PlanetLab [199]. Our goal is to provide a consistency-

centric model for global scale systems that enables the same type of research plat-

form. We target a globally distributed file system as a primary application because

it serves a wide cross-section of systems research from databases to networking and

operating systems.

The Oceanstore model was based on an untrusted infrastructure and there-

fore relied on byzantine fault tolerance [107, 116, 158, 200–202]. Around the same

time, other distributed systems like the Farsite file system [203,204] and PBFT [205]

also principally considered byzantine agreement instead of performance. The rise

of cloud services shifted the focus to trusted infrastructure and high throughput

file systems such as Ceph [70] and GFS/HDFS [65, 67, 173]. We do not foresee an

abatement of the trusted infrastructure assumption either, as more recent work in

large distributed file systems such as CalvinFS [44], Giga+ [206,207], IndexFS [208]
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and GlobalFS [175] all make the same assumptions. Even if a cloud provider is

not trusted, a trust layer can be created on the cloud using models similar to

SUNDR [183] or securely across multiple providers using SPORC [209].

The shift to cloud providers also shifted research away from file systems to-

ward application-specific databases. In Chapter 2 we described the evolution of

cloud database design, from relaxed consistency models [35–39] to much stronger

consistency [40,41,50]. Figure 2.1 generalized these models by describing how they

provide global consistency by sharding the namespace to specific geographic regions.

Systems that implement many small quorums of coordination [41, 42, 57] avoid the

centralization bottleneck and reliability concerns of master-service systems [65,210]

but create silos of independent operation that are not coordinated with respect to

each other. In order to externalize a single consistent view, these systems rely on a

complex multi-process architecture that makes it difficult to reason about the many

layers of replication and consistency.

Our work unifies these ideas into a consistency-centric model for globally dis-

tributed systems. We propose a single system based on a key/value object store that

is federated in both a cloud environment and in a heterogeneous fog. This unifica-

tion makes it simpler to reason about consistency and to build complex distributed

applications. In the next sections we will conclude our related work by describing

work related to hierarchical consensus and federated consistency.
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7.1 Hierarchical Consensus

Our principle contribution is Hierarchical Consensus, a general technique to

compose consensus groups, maintain consistency invariants over large systems, and

adapt to changing conditions and application loads. HC is related to the large body

of work improving throughput in distributed consensus over the Paxos protocol [60,

87, 91, 211], and on Raft [92, 146]. These approaches focus on fast vs. slow path

consensus, eliding phases with dependency resolution, and load balancing.

Our work is also orthogonal in that subquorums and the root quorums can be

implemented with different underlying protocols, though the two levels must be in-

tegrated quite tightly. Further, HC abstracts reconfiguration away from subquorum

consensus, allowing multiple subquorums to move into new configurations and re-

ducing the need for joint consensus [92] and other heavyweight procedures. Finally,

its hierarchical nature allows the system to multiplex multiple consensus instances

on disjoint partitions of the object space while still maintaining global consistency

guarantees.

The global consistency guarantees of HC are in direct contrast to other sys-

tems that scale by exploiting multiple consensus instances [36,40,42] on a per-object

basis. These systems retain the advantage of small quorum sizes but cannot pro-

vide system-wide consistency invariants. Another set of systems uses quorum-based

decision-making but relaxes consistency guarantees [35, 37, 137]; others provide no

way to pivot the entire system to a new configuration [57]. Chain replication [212]

and Vertical Paxos [108] are among approaches that control Paxos instances through
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other consensus decisions. However, HC differs in the deep integration of the two

different levels. Whereas these approaches are top down, HC consensus decisions at

the root level replace system configuration at the subquorum level, and vice versa.

Possibly the closest system to HC is Scatter [57], which uses an overlay to orga-

nize consistent groups into a ring. Neighbors can join, split, and talk amongst them-

selves. The bottom-up approach potentially allows scaling to many subquorums, but

the lack of central control makes it hard to implement global re-maps beyond the

reach of local neighbors. HC ties the root quorum and subquorums tightly together,

allowing root quorum decisions to completely reconfigure the running system on the

fly either on demand or by detecting changes in network conditions.

We claim very strong consistency across a large distributed system, similar

to Spanner [41] and CalvinFS [43, 44]. Spanner provides linearizable transactions

through use of special hardware and environments, which are used to tightly syn-

chronize clocks in the distributed setting. Spanner therefore relies on a very specific,

curated environment. HC targets a wider range of systems that require cost effective

scaling in the data center to rich dynamic environments with heterogeneity on all

levels. CalvinFS [43,44] batches transaction operations across the wide area to min-

imize communication, but still requires a geographically replicated Paxos instance

to coordinate transactions.

Finally, shared logs have proven useful in a number of settings from fault

tolerance to correctness guarantees. However, keeping such logs consistent in even

a single consensus instance has proven difficult [58,65,73]. More recent systems are

leveraging hardware support to provide fast access to shared logs [111,113,114,213].
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To our knowledge, HC is the first work to propose synchronizing shared logs across

multiple discrete consensus instances in the wide area.

7.2 Federated Consistency

One of the earliest attempts to hybridize weak and strong consistency was a

model for parallel programming on shared memory systems by Agrawal et al [133].

This model allowed programmers to relax strong consistency in certain contexts with

causal memory or pipelined random access in order to improve parallel performance

of applications. Per-operation consistency was extended to distributed storage by

the RedBlue consistency model of Li et al [95]. Here, replication operations are

broken down into small, commutative sub-operations that are classified as red (must

be executed in the same order on all replicas) or blue (execution order can vary from

site to site), so long as the dependencies of each sub-operation are maintained. The

consistency model is therefore global, specified by the red/blue ordering and can be

adapted by redefining the ratio of red to blue operations, e.g. all blue operations is

an eventually consistent system and all red is sequential.

The next level above per-operation consistency hybridization is called con-

sistency rationing wherein individual objects or groups of objects have different

consistency levels applied to them to create a global quality of service guarantee.

Kraska et al. [130] initially proposed consistency rationing be on a per-transaction

basis by classifying objects in three tiers: eventual, adaptable, and linearizable. Ob-

jects in the first and last groups were automatically assigned transaction semantics
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that maintained that level of consistency; however objects assigned the adaptable

categorization had their consistency policies switched at runtime based on a cost

function that either minimized time or write costs depending on user preference.

This allowed consistency in the adaptable tier to be flexible and responsive to us-

age.

Chihoub et al. extended the idea of consistency rationing and proposed lim-

iting the number of stale reads or the automatic minimization of some consistency

cost metric by using reporting and consistency levels already established in existing

databases [128,129]. Here multiple consistency levels are being utilized, but only one

consistency model is employed at any given time for all objects, relaxing or strength-

ening depending on observed costs. By utilizing all possible consistency semantics

in the database, this model allows a greater spectrum of consistency guarantees that

adapt at runtime.

Al-Ekram and Holt [214] propose a middleware based scheme to allow multiple

consistency models in a single distributed storage system. They identify a similar

range of consistency models, but use a middleware layer to forward client requests

to an available replica that maintains consistency at the lowest required criteria

by the client. However, although their work can be extended to deploying several

consistency models in one system, they still expect a homogeneous consistency model

that can be swapped out on demand as client requirements change. Additionally

their view of the ordering of updates of a system is from one versioned state to

another and they apply their consistency reasoning to the divergence of a local

replica’s state version and the global version. Similar to SUNDR, proposed by Li
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et al. [183], an inconsistency is a fork in the global ordering of reads and writes

(a “history fork”). Our consistency model instead considers object forks, a more

granular level that allows concurrent access to different objects without conflict

while still ensuring that no history forks can happen.

Hybridization and adaptation build upon previous work that strictly catego-

rizes different consistency schemes. An alternative approach is to view consistency

along a continuous scale with several axes that can be tuned precisely. Yu and

Vahdat [215] propose the conit, a consistency unit described as a three dimensional

vector that describes tolerable deviations from linearizability along staleness, order

error, and numeric ordering. Similarly, Afek et al. [216] present quasi-linearizable

histories which specify a bound on the relative movement of ordered items in a log

which make it legally sequential.
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Chapter 8: Conclusion

Inspired by the work of Oceanstore and recent trends in cloud computing, we

present a consistency-centric architecture for a planetary scale data storage system.

This architecture provides support for extremely large systems with thousands or

even millions of replicas geo-replicated across continents and oceans. We envision

that such a system will reside in heterogenous network environments. We therefore

we propose a two-tier consistency model – a hierarchical consensus core residing

in cloud data centers, federated with a highly available fog of devices that rapidly

disseminate updates. We also recognize that management of such a large system

cannot easily be centralized and therefore also propose an adaptive scheme such

that local optimizations lead to emergent global consistency.

Our work is motivated by recent trends in global scale software. The success

of cloud computing and app stores allows software developers to easily deploy their

applications to an international audience. Software development practices have

shifted to meet these trends, from container based development to Web application

localization, and most software is now deployed expecting international scaling.

The problem is that the data storage that backs these applications has not kept up.

International deployment therefore requires developers to isolate data in specific
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regions, or to use provisioned data services for geo-replicated databases developed

by the cloud providers themselves. There is a growing need for region-agnostic,

generalized geo-replicated data services that provide ACID-like strong consistency

guarantees.

Hierarchical consensus provides high-throughput, geo-replicated consensus to

export the strongest possible consistency to databases and file systems. An im-

plementation and extension of Vertical Paxos, HC shards accesses to independent

subquorums, which themselves are configured by a root quorum. The root quorum

is composed of all replicas in the system, which ensures the best possible fault tol-

erance and that there is an intersection between configuration and access decisions.

To support such large quorums, followers in subquorums delegate their votes to

their leaders, who are the only active participants in the root quorum. The root

quorum makes configuration decisions to partition the object space to subquorums

localized in the region where accesses occur. Subquorums fuzzily transition between

configuration changes to ensure the system makes global progress, then replicate

accesses from clients. These techniques ensure that HC provides unified globally

distributed consensus and that strong consistency semantics can be guaranteed and

easily reasoned upon without region-specific considerations.

Next-generation distributed systems will also have to support the increasing

importance of machine-to-machine applications. Sensors systems, from traffic coor-

dination devices to the smart grid and an Internet of Things, will push time-sensitive

data from multiple distributed publishers, to fewer centralized subscribers. These

devices will exist in highly variable mobile network environments in a much wider
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area, creating a fog of extra datacenter devices that require higher availability rather

than the strongest possible consistency.

We believe a single architecture should support both the cloud and the fog.

We therefore propose the consistency-centric federation of multiple synchronization

protocols. Federation of strong consistency provided by consensus, and eventual

consistency provided by anti-entropy synchronization, involves both communication

and consistency integration at the boundary of each system type. Communication

integration requires that all replicas respond to distinct requests from either type

of system in a correct manner. Consistency integration requires the ability to com-

municate the strongest possible consistency back to the relaxed consistency model,

and to resolve policy differences. By defining a “forte” component of comparable

version numbers, consensus leaders can arbitrate which version should be accepted

across the entire system. Federation provides a hybrid consistency model that is

more continuous than discrete, depending on topology, e.g. more eventual replicas

lead to higher system availability, more consensus replicas lead to higher system

consistency.

Both federation and hierarchical consensus allow systems to scale to thousands

of replicas and millions of clients. At this scale, centralized system management

and configuration tuning becomes intractable. Our final proposition is for adaptive

consistency – the use of real-time machine learning to adjust the configuration of

the system to maximize the consistency guarantees of the system. Adaptive con-

sistency monitors network behavior, access patterns, and object attributes locally,

modifying the behavior of individual replicas. This information is then forwarded
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to optimization computations that create global models which are disseminated to

target replicas for decision making, or to reconfigure replica or object placement.

We demonstrated the potential for adaptive consistency with a reinforcement

learning approach to peer selection for anti-entropy. Using multi-armed bandits,

replicas modified the likelihood of selecting a peer for synchronization based on ob-

serving how successful the synchronization was. By rewarding low latency connec-

tions as well as multiple objects sync’d, the network as a whole learned a topology

based on accesses that efficiently propagated updates across the system. This in

turn reduced the visibility latency of writes, leading to a lower probability of stale

reads, the root cause of inconsistency. Therefore anti-entropy bandits increase the

overall consistency of the system. We propose that replicas learning locally to create

emergent global properties is the best strategy for decentralized adaptation of the

system.

Together, our observations about strong geo-distributed consensus, federated

consistency, and adaptive consistency form a complete model for planetary scale sys-

tems. Our architecture is composed of an HC core that propagates updates through

broadcast mechanisms across the wide area, while federating an eventual system in

the fog, all of which is managed by adaptive consistency. We evaluated HC with a

system implementation spanning the globe, focused on maximizing throughput and

minimizing access latency. We evaluated our federated consistency model with a

simulation to collect metrics that are difficult to measure in a distributed system.

Finally, we experimented with adaptive consistency using our eventual system, also

distributed around the globe, optimizing the network based on global accesses. We

173



believe these systems create a rich platform for a variety of future lines of inquiry

and research.

To date we have implemented the HC (Alia) and fog (Honu) components

individually. Our next step is to federate them into a single system, moving our

simulation experiments into the real world. Both HC and Fog currently implement

a distributed key/value store. Our target application is a globally distributed file

system, which will serve as a replication substrate for other applications. Our file

system, FluidFS, is currently implemented using a key/value store replicated using

standard consensus algorithms. By replacing consensus with our planetary scale

consistency system, we believe that FluidFS will be able to support truly massive

applications.

Once we have our fully integrated system, we plan to deploy it as two primary

applications. The first application is a direct deployment of FluidFS as a shared

cloud storage drive. The second application we envision is a global trading-card

game. In this game, users will use matchmaking to find other players to play 2–4

person short games and will be able to trade cards. In particular we envision a

system such that each region has its own faction with its own abilities to foster

trading across the wide area. Although the details are beyond the scope of this

dissertation, these applications are designed to exercise the planetary scale system

in meaningful ways.

We believe that the open source nature of our project will foster adoption and

interest in these applications. Even if the applications are short lived, real world

workloads and access traces will allow us to create planetary-scale benchmarks that
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simply do not exist right now. Additionally, real world deployments will allow us to

construct realistic models of outages and downtime that will more easily allow us

to test future research. Finally, most of the questions around adaptive consistency

require non-synthetic data to construct and evaluate models. Acquiring real world

users will allow us to address many future questions.

The most pressing question concerns when to make HC root decisions. Cur-

rently, reconfiguration is manually triggered or triggered by simple heuristics ap-

propriate to the experiments we were running. However, new epochs should be

proposed by monitoring demand and access patterns, ensuring that subquorums

are localized with respect to their accesses. The root quorum must monitor replica

health and object placement to create a measurement of the “system quality,” then

if a threshold in the quality metric is reached, it should adapt the system to improve

or optimize quality. Adaptive consistency and learning methods might also be used

to pre-allocate subquorums to ensure there is as little down time as possible.

Our next question concerns the implementation of transactions in HC. Our

current implementation does not directly implement transactions, but does allow

client-side transactions by allowing remote reads and writes to coordinate multi-

object accesses. Native support for transactions would significantly increase geo-

replicated consistency, however, particularly if the native support fit into the hier-

archical model. We propose to investigate a transaction tier and other structural

patterns, such as batching transactions across the wide area in a hierarchical context.

We would like to explore adaptations of other consensus protocols. We de-

scribed HC with leader-oriented consensus, primarily because it allowed us to more
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easily reason about delegation. We see no reason that leaderless consensus such as

ePaxos or leader balanced mechanisms like Mencius could not fit into hierarchical

consensus. For example, if accesses are evenly balanced around a region of interest;

for example between Ireland, London, and Frankfurt – then an ePaxos subquorum

would perform far better than a Raft subquorum. The second generation of hier-

archical consensus will support multiple consensus protocols that are designed to

optimize subquorum behavior, configured by the root leader.

A weak point of HC is the obligations timeout that occurs when a single

subquorum is partitioned from the rest of the system. We briefly mentioned that

federated consistency might provide flexibility to solve this issue by allowing the

subquorum to relax consistency for the duration of the partition. We would like to

explore this in detail, particularly as the focus of our federated work was on how to

make an eventual consistency system stronger with a core consensus background.

Federation creates a data fabric, where updates can be propagated across multiple

channels, which we believe leads to important research questions about how such a

mesh would influence failure behavior.

Another line of inquiry is the ability to federate other consistency protocols

and automatically handle conflicts. Causal consistency is the strongest form of weak

consistency and we see no reason why it cannot be federated using similar strategies

to the ones we proposed. Any time consistency is relaxed, the possibility of conflicts

increases. However, users do not necessarily have to resolve conflicts just because a

collision occurs. Causal relations and dynamic blocking such as the ones used in Git

may allow the system to automatically resolve conflicts. We believe that enhancing
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conflict resolution as a native part of federated consistency will create much more

robust policies than latest-writer-wins, which will lead to more robust generalized

federation.

Using machine learning to automatically adapt and tune system behavior is

also a large and important area of interest. These techniques will play a large role

in automatically scaling the system to meet demand at peak periods and to rollback

resources to conserve energy. Clustering objects and other smart access techniques

will allow not only for faster cache access but also improve consistency overall. We

expect that systems research will natively move to including learning systems in the

same way that security is taken seriously in systems now.

The object of this work was to consider a consistency-centric planetary scale

data model. This model will serve as a platform for future research into geo-

replicated consensus and consistency. As geographically distributed systems become

more essential to software development, we hope that the open source nature of our

software and the investigation proposed in the dissertation serve as a basis and in-

spiration to bring the benefits of technology to every part of the earth, and perhaps

farther.
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