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variables obtained from the proposed methodology not only serve as building blocks 
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Chapter 1: Introduction 

Although the overall air traffic demand is expected to grow slower than 

previously forecast for the near future, the FAA continues to forecast a long-term 

overall aviation growth in the United States despite challenges caused by the recent 

economic downturn over the world. Demand at some airports is increasing at an 

alarming rate. One example is the 20 percent flight operations increase from 2006 to 

2007 at New York's John F. Kennedy International Airport (JFK). Other examples are 

the recent New York airspace redesign project and the order to temporarily limit the 

number of scheduled operations at JFK by the FAA. All the examples show that 

traffic congestion in the New York area is still a burning issue. The long-term overall 

aviation growth and the continued growth in demand at some already-congested 

domestic airports indicate that there is still a need to improve the exiting air traffic 

management system in order to accept the on-going and future demands. In fact, the 

airport congestion problem is not only a domestic issue but also a worldwide issue. In 

Europe, most of the major hub airports are also experiencing heavy congestion 

concentrating at the peak time of the day. Both U.S. and Europe are actively looking 

for solutions to improve air traffic performance and on-going research efforts have 

been seen through the NextGen project in U.S. and SESAR in Europe. 

Due to the similarities in the air traffic management (ATM) infrastructure in 

U.S and Europe, comparing the two ATM systems not only allows us to better 

understand the similarities and differences of the systems but most importantly it will 

help us to identify better ATM practices. The results will be greatly beneficial to both 

systems. Over the years, there are many high level statistics showing the differences 
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in the performance of the ATM systems in the U.S. and Europe individually. 

However, very limited analyses have been done to compare the performance of the 

two systems. In those analyses, only one or a few performance areas have been 

looked at. Except for the on-time performance measure, there is presently a lack of 

commonly agreed upon and comparable performance indicators worldwide [1]. 

Simple statistics and inconsistent performance measurements could lead to biased and 

incorrect conclusions. Therefore, to effectively and fairly compare the two ATM 

systems, the analysis has to be done in a coherent and consistent way.  Before 

performing the comparison, we should have a fundamental understanding of how the 

air traffic systems work in both the U.S and Europe. Without sufficient knowledge of 

how the air traffic system behaves, the comparison will be invalid and results will not 

be accurate. This thesis intends to provide methodologies to help us to get the 

fundamental knowledge that we need to perform the U.S./Europe comparison in the 

future.  The results of the methodologies also can help in answering a variety of air 

traffic questions with further analysis. 

1.1 Motivation for determining the relationships among airport performance areas 

and airport characteristics  

In 2009, the FAA collaborated with EUROCONTROL to carry out a very 

detailed high-level comparison of airport operational performance between the U.S. 

and Europe Air Navigation systems [2].  Different airport operational performance 

areas were compared between the two systems by phase of flight. The paper pointed 

out many important operational performance similarities and differences between the 

two systems. This global comparison serves as a very good starting point for both 
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Europe and the U.S to understand the two systems in a more consistent way. In 

addition to high-level comparisons, the FAA also sees a need to perform a more 

advanced mathematical and statistical comparison between the ATM systems.  As a 

result, the FAA funded the NEXTOR group to perform more detailed global 

comparisons, which could eventually help policy makers to make sound decisions to 

improve the current ATM systems.  

The NEXTOR group has access to various types of U.S airport performance 

data. Unfortunately, only a very small amount of test sample data from Europe has 

been received at this point. We cannot perform meaningful comparisons without 

sufficient data from both systems, because it is a data-driven process. While efforts 

are underway to improve the data gathering efforts from the European side, a good 

way to move forward is to investigate thoroughly the methodologies that can be 

employed (see Figure 3), and that is the subject of this thesis.  At this point, the 

methodologies can only be demonstrated with a large set of U.S. data, but they have 

been designed with this more comprehensive comparison in mind for the future.  The 

small amount of sample European data obtained so far from EUROCONTROL is 

used to illustrate the importance of the methodologies developed in this study.   

To accurately compare two ATM systems, we should consider what to 

compare before considering how to compare. Airport operational performance is 

often measured by airport delay. However, is delay alone a good indicator to measure 

airport operational performance? A common metric for evaluating airport operational 

performance using flight delay information is airport “on-time performance.” Airport 

on-time performance is defined as the proportion of flights that arrive early or that are 
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delayed by less than 15 minutes compared to their scheduled times. When we use on-

time performance to compare airport performance between the ATM systems in 

Europe and the U.S.1, we observe the following phenomena: Europe has a slightly 

higher percentage of on-time flights (see Figure 1). However, when we analyze the 

number of actual daily operations per runway for each airport (see Figure 2), which 

represents airport utilization when capacity data are not available, European airports 

tend to handle fewer flights in general. Lower airport utilization could be one of the 

main reasons why European airports have better on-time performance. Therefore, 

when we evaluate airport operational performance, we must systematically analyze 

the delay and its interdependent (complementary) factors together, rather than just 

airport delays alone. This study provides methodologies to determine the “links” 

between airport performance variables such as airport delays, utilization, cancellation 

ratio, etc. Once the key variables are identified, more advanced evaluations can be 

performed. The results of this study have various important applications, especially in 

model development and model validation, and some of these applications will be 

explained in detail in the concluding section of this thesis.  

 

                                                
1 Currently, the European data is limited to five days. 
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Figure 1: Delay statistics for U.S. and Europe 

 

 
Figure 2: Cumulative Distribution Function for departure operations per runway per day 

between U.S. and Europe 
 

Only major airports in the U.S. will be evaluated based on a group of 

operational performance areas identified by the FAA and SESAR such as throughput, 
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capacity, utilization, efficiency, etc. However, factors that contribute to the 

differences in airport operational performance will also be evaluated. All the areas 

and factors being evaluated are called airport operational performance variables in 

this study. The results of this study can be used to improve an airport operational 

performance variable by adjusting the other airport operational performance 

variable(s) with strong relationships. For example, we can use the results to find out 

the main factors causing flight delays at airports. By carefully and skillfully adjusting 

the main factors for flight delays, flight delay at the airports can be improved. The 

results of this study also provide significant information used in statistical modeling 

for airport delay prediction.  Most importantly, we can use the results to select the 

main performance variables in the modeling process to compare the airport 

operational performance between the U.S and Europe once performance variables and 

similarity metrics for clustering analysis are defined.    
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Figure 3: Flowchart of the data process 

 

1.2 Organization 

 This document contains seven chapters. The first chapter introduces the 

motivation of this study and why it is important to understand the pair-wise 

relationships between different airport operational performance variables. It also 

provides a flow diagram as a basic overview of the method to reveal the pair-wise 

relationships, which is the main theme of this study. The second chapter identifies some 

of the commonly used airport performance variables and their definitions. The third 

chapter lists all the data sources and how new fields are derived for this study. Chapter 

four provides the procedures and techniques of the proposed methodologies. This 

chapter addresses the advantages and disadvantages of different relative techniques and 

provides explanations of why a certain technique is chosen over another. We also 

provide remedies for the disadvantages of the chosen techniques in an effort to produce 
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reliable results.  Chapter five shows some quantitative analysis of the outputs from the 

proposed method and then final results are presented. The conclusions of this study and 

possible applications of the proposed method are discussed in chapter six. The final 

chapter also proposes some ideas on how this study can be extended in the future.   
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Chapter 2: Airport operational performance variables 
 

This chapter contains information on the formal definitions and rationale 

behind our choices of different airport operational performance variables.  These 

airport operational performance variables could be defined differently depending on 

the purpose of the study and the availability of the data. In this thesis, we are 

providing several ways as examples to look at each variable to see how each one 

relates to the others. The definitions of each variable can be changed easily if 

necessary. The list of variables below should be expanded to include some other 

variable such as aircraft mix to cover all the airport performance factors when we 

analyze the ATM system performance between Europe and the U.S. The proposed 

method is designed to investigate pair-wise relationships between variables, therefore, 

excluding or including extra variables will not affect the reliability of the results. 

However, if we are uncertain of the relationship of a variable to the rest of the airport 

performance variables, we should always include it into the analysis and let the 

proposed method determine the relationships for us.  

We are focusing on performance variables related to individual airport 

comparisons in this thesis. However, we should extend this analysis with system level 

variables such as propagated delays in the future because some performance 

differences might be a result of the network structure of the system. 

2.1 Airport Delay 

Airport delay is calculated as the difference between scheduled gate time and 

actual gate time. One of the most common ways to capture delay is using the average 
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delay. This can be a misleading statistic, however, because airports with the same 

number of delayed flights or the same average delay do not necessarily have the same 

performance.  The time of day at which the delays occurred, for example, can have a 

significant impact to the system, especially since most of the 35 OEP airports act as 

hubs.  Thus, it would be better to analyze the hourly delay distribution rather than 

average delay.  

In this study, each hourly delay distribution is captured by a probability 

density function (see Figure 4) using 15 minute time bins. The details of how the 15 

minute time bins are created can be found in Chapter 3.   The matrix representation of 

the delay probability density function for a given day is: 

 
6 6

23 23
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( ) ( )

Dp
p p n

p n p n

= ! "
# $
# $
# $# $
% &

…

! " !

#

 (1)  

where [ (1), , ( )]
i i
p p n!  represents a vector of discrete probability density for hourly 

delay at the ith  hour of the day, and n is the bin number. This delay formulation will 

be applied to both arrival and departure delay using gate arrival and gate departure 

time respectively. 
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Figure 4: Sample delay profile 

 

2.2 Airport Utilization 

Airport utilization is calculated by the ratio of the number of scheduled flight 

operations to the airport capacity.  

  

 ( )
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+
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+
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In this equation, the notation ARR represents the total number of scheduled arrival 

flights and DEP represents the total number of scheduled departure flights, using gate 

arrival and gate departure time. The airport-supplied departure rate (ADR) and the 

airport-supplied arrival rate (AAR) are used as the source to capture airport capacity 

provided by the FAA.  Utilization should be calculated for each time interval (
i

U ), 

because delays are very sensitive to changes in demand and capacity [3] when an 
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airport operates close to its maximum capacity. Capacity values are recorded per hour 

in the data; therefore, it would be appropriate to also calculate utilization in one-hour 

intervals. This matches with the discretization of delay into hourly probability 

densities. Utilization is one of the major airport performance variables because it tells 

us how busy the airport is at a given time. In this study, we will evaluate arrival 

utilization, departure utilization and total airport utilization. What we want to find out 

is if there are any different correlations with utilization and other airport performance 

variables when we analyze the arrival and departure data separately. 

 When we perform the European and US comparison study in the future, we 

should modify the definitions for utilization to include unscheduled operations such 

as general aviation. The U.S handled 4.5 times [4] more general aviation than Europe 

in 2007 (Europe had a 4% share of general aviation and the U.S had an 18% share of 

general aviation). This significant difference in general aviation could be one of the 

reasons for the performance differences between two systems.  

2.3 Cancellation Ratio 

Cancellation Ratio is calculated by the ratio between the number of cancelled 

flights and the number of gate operations. Cancellation ratio is also captured on an 

hourly basis because more cancellations in peak hours could have a different impact 

on the airport performance than cancellation in off-peak hours. We include 

cancellation ratio as one of the variables here because we believe that high flight 

cancellation ratios, especially at the peak hours, could have significant impacts to the air 

traffic system.  
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2.4 Airport Throughput 

Airport throughput is the traffic volume at an airport over a period of time. It 

is one of the important determinants in evaluating airport performance because it 

directly ties to the changing of the delay distributions. One popular way to capture 

throughput at an airport is to look at the hourly throughput distribution throughout the 

day. If an airport operates at its maximum throughput for an extended period of time, 

delays will reach unacceptable levels. Rather than using day as the unit of time, 

hourly airport throughput is calculated by determining the total operations using 

wheels on and wheels off time.  

The other useful way to evaluate airport performance using throughput is to 

look at the hourly throughput variability vector over time. Hourly throughput 

variability ( )
COV i

TP over a period of time, such as a year or a quarter, is computed by 

the Coefficient of Variation (COV) of throughput for each hour i. By looking at the 

hourly throughput COV, we can determine how traffic fluctuates for a particular hour 

over time for each hour. We have chosen hourly throughput variability because this 

hourly throughput should capture the consistency of usage of airports. The more 

consistent the airport usage is, the more easily the airport can be managed. 

 

 ( ) i

COV i

i

TP
!

µ
=  (3) 

 6 23[( ) , , ( ) ]
COV COV COV

TP TP TP= …  (4) 

where 
i

!  is the standard deviation and 
i

µ  is the mean of the throughput. 

Other options to look at throughput variability are: 
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• Daily Coefficient of Variation that captures variability of the throughput 

within a day. 

• Frequency of throughput variation over the day captured by determining the 

number of local peaks in each day.  Queuing theory suggests that this pattern 

will influence delays. 

The above two options are not included in this study; however, it can be easily 

incorporated into the analysis in the future.  

2.5 Airport Capacity 

In this study, we are using the AAR and ADR values published by the FAA as 

input for capacity. AAR and ADR declare capacity based on airport infrastructure, 

weather conditions, runway configuration, and fleet mix [5]. The FAA updates the 

AAR and ADR values during the day when additional records are received. The AAR 

and ADR do not capture the maximum number of aircraft that can be handled by an 

airport. Instead, they capture the number of aircraft that the management thinks the 

airport can handle under specific conditions of that hour. Other than only capturing 

the hourly mean capacity over time, it is even more important to capture the 

variability of capacity throughout the day _( )
COV D d
C  over time as well as the hourly 

capacity variability over a period of time. These variability measures are calculated in 

a manner similar to that described by Equations (3) and (4): 

 
_( ) d

COV D d

d

C
!

µ
=  (5) 

d
! is the standard deviation and 

d
µ the mean for day d. 
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2.6 Airport Hub Structure and Multiple Airport System (MAS) 

The hub type is considered as one of the performance variables because hubs 

for major carriers are more efficient than those that are not [1]. Following the FAA’s 

hub definitions, hub type is classified by the percentage of national annual passenger 

boardings. A large hub has at least 1% of U.S. passenger boardings; medium hubs, 

more than 0.25% but less than 1%; small hubs, greater than 10,000 boarding 

passengers but less than 0.25%; and non-hub airports, at least 2500 boardings but no 

more than 10,000 boarding passengers[6]. We used the hub list from the FAA in this 

study because this list is widely used in other research projects. However, there may 

be a need to update the list with more recent data because the percentage of 

passengers boarding at airports changes over time. The grouping percentage used to 

classify the type of hub airports may also need to be changed to re-identify the hub 

structure better. One possible way to re-identify hub structure is to perform sensitivity 

analysis to hub definition in order to identify the most suitable percentage boarding 

passengers for hub classifications. 

Sarkis [1] pointed out that since MAS airports, typically, have more passenger 

emplanements due to their locations in density populated areas, this will very likely 

increase the airport efficiency. He believes that airports in Multiple Airport Systems 

are more efficient than those in Single Airport Systems. Therefore, we include the MAS 

classification as one of the airport performance variables to indirectly capture airport 

efficiency. The hub and MAS airport list can be found in Chapter 3, Table 2. 
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2.7 Number of runways 

Obviously, airport infrastructure may impact airport operational performance. 

However, airport infrastructure such as runway configurations cannot be easily 

quantified and, therefore, it will not be analyzed by the proposed methods in this 

study. One other way to differentiate infrastructure between airports is to quantify the 

number of runways at each airport. Recently, there have been some new runways 

opened at a few metropolitan airports and the new runway implementation year has 

been incorporated into this analysis.  

Chapter 3: Data sources and preparation 
 

The data used in the study are mainly coming from three databases, the 

Aviation System Performance Metrics (ASPM) database, the Bureau of 

Transportation Statistics (BTS) database and the Operations Network (OPSNET) 

database. All three databases provide detailed flight information as well as basic 

statistics for the air transportation community to perform air transportation research 

and analysis; however, flight data in each of the databases are collected and processed 

differently to fit different needs.  In this study, different fields in the three databases 

for the 35 Operation Evolution Plan (OEP) airports from 2002 to 2008 are extracted 

to capture different factors impacting airport operational performance. Some other 

quantifiable airport characteristics such as airport hub structure and number of 

runways are also included in this study, even though they are not one of the airport 

operational performances areas identified by the FAA or EUROCONTROL.  
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3.1 Aviation System Performance Metrics (ASPM) Individual flight data 

The ASPM database includes records for the vast majority of commercial 

flights for the ASPM airports (see Table 9 in the Appendix), and for ASPM carriers 

(see Table 8 in the Appendix) regardless of airport [7]. Records in the database are 

compiled from the Enhanced Traffic Management System (ETMS), the Out, Off, On, 

In (OOOI) data from the airlines and the BTS Aviation System Quality and 

Performance (ASQP) system. The detailed flight delay information for individual 

flights in the database is the main reason for making the ASPM database the main 

data source for this study.  

Data extracted from the ASPM individual flight records are: 

• Arrival and Departure Airport  

• Date (Year, Month, Day) 

• Local Hours (6 to 23 hours only) 

• Scheduled Gate Departure Time 

• Actual Gate Out Time 

• Scheduled Gate In Time 

• Actual Gate In Time 

• Scheduled Wheels Off Time 

• Actual Wheels Off Time 

• Scheduled Wheels On Time 

• Actual Wheels On Time 

Data Extracted from the ASPM hourly records are: 

• Arrival and Departure Airport  
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• Date (Year, Month, Day) 

• Local Hours (6 to 23 hours only) 

• Airport supplied Departure Rate 

• Airport Supplied Arrival Rate 

Flight scheduled time and actual time are used to calculate flight delay. To obtain the 

delay distribution for airports, delay information per flight is assigned to different 

time bins based on the delay duration. Early arrival or departure flights are assigned 

to an early bin and delayed flights will be assigned to different 15 minute delay bins 

appropriately.  Flights with delays above 179 minutes (3 hours) are assigned to the 

last delay bin. All the flights in the ASPM individual flight database are considered as 

scheduled flights in this study. The airport supplied departure rate (ADR) and the 

airport supplied arrival rate (AAR) are the sources for airport capacity at different 

airports. Since ADR and AAR information are only reported on an hourly basis, 

changes in airport capacity over the course of an hour will not be considered in this 

study.  

Rather than using gate information, airport throughput is captured by using 

wheels on and off time for flights. Airport throughput is one of the important metrics 

for measuring airport performance. It captures the hourly usage at airports. Using 

wheels on and wheels off time reflects the runway occupancy time more accurately 

because flights with similar gate in/out time could arrive to or depart from the runway 

at different times.      
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3.2 Bureau of Transportation statistics (BTS) data 

Among all the different types of data in the BTS system, only the Airline On-

Time Performance Data is used in this study. The Airline On-Time Performance data 

contains scheduled and actual departure and arrival times reported by certified U.S. 

air carriers that account for at least one percent of domestic scheduled passenger 

revenues [8]. The main reason for using BTS data is to obtain flight cancellation data 

at the 35 OEP airports.  

3.3 Enhanced Traffic Management System (ETMS) data 

Enhanced Traffic Management system (ETMS) data is only used to compare 

the traffic counts with the sample European dataset in this study. ETMS is developed 

by the FAA, who provides both software and data to mainly allow the Air Traffic 

Control System Command Center (ATCSCC), the Air Route Traffic Control Centers 

(ARTCCs), and major Terminal Radar Approach Control (TRACON) facilities to 

manage the flow of air traffic within the National Airspace System (NAS)[9]. The 

ETMS data downloaded from the FAA ASPM website contains traffic counts broken 

down by either user groups or equipment types. It is considered a good set for traffic 

counts because “ETMSC contains every flight record constructed”[10].  

3.4 Other Airport characteristics data 

Data regarding the number of runways, new runway implementation date, 

airport hub structure and multiple airport system are obtained from either government 

websites directly or websites using government published data. The information is 

summarized and listed below: 
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3.4.1 Runway information 

Table 1: Number of Runways[11] 

Airport Name 
FAA  
Airport code 

Number Of 
Runway  
(As of 2009) 

New Runway 
Opening Date 

Atlanta Hartsfield International ATL 5 27-May-06 
Boston Logan International BOS 6 23-Nov-06 
Baltimore-Washington International BWI 4  
Cleveland Hopkins International CLE 4  
Charlotte Douglas International CLT 3  
Cincinnati-Northern Kentucky International CVG 4 19-Dec-05 
Washington Reagan National DCA 3  
Denver International DEN 6  
Dallas-Ft Worth International DFW 7  
Detroit Metropolitan Wayne County DTW 6  
Newark International EWR 3  
Ft Lauderdale-Hollywood International FLL 3  
Honolulu International HNL 4  
Washington Dulles International IAD 4 21-Nov-08 
George Bush Intercontinental IAH 5  
John F Kennedy International JFK 4  
Las Vegas McCarran International LAS 4  
Los Angeles International LAX 4  
La Guardia LGA 2  
Orlando International MCO 4  
Chicago Midway MDW 5  
Memphis International MEM 4  
Miami International MIA 4  
Minneapolis-St Paul International MSP 4  
Chicago O'Hare International ORD 7 21-Nov-08 
Portland International PDX 3  
Philadelphia International PHL 4  
Phoenix Sky Harbor International PHX 3  
Pittsburgh International PIT 4  
San Diego International SAN 1  
Seattle-Tacoma International SEA 3 21-Nov-08 
San Francisco International SFO 4  
Salt Lake City International SLC 4  
Lambert-St Louis International STL 4  
Tampa International TPA 3   
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3.4.2 Hub and Multiple Airport System information 

Table 2: Lists of Hub and MAS Information[1] 
 

Airport Name State 
ICAO airport 

Code 
Hub 
Type MAS 

Atlanta Hartsfield International GA ATL L No 
Boston Logan International MA BOS L Yes 
Baltimore-Washington International MD BWI L Yes 
Cleveland Hopkins International OH CLE M Yes 
Charlotte Douglas International NC CLT L No 
Cincinnati-Northern Kentucky International KY CVG L No 
Ronald Reagan Washington National DC DCA L Yes 
Denver International CO DEN L No 
Dallas-Ft Worth International TX DFW L Yes 
Detroit Metropolitan Wayne County MI DTW L Yes 
Newark International NJ EWR L Yes 
Ft Lauderdale-Hollywood International FL FLL L Yes 
Honolulu International HI HNL L No 
Washington Dulles International VA IAD L Yes 
George Bush Intercontinental TX IAH L Yes 
John F Kennedy International NY JFK L Yes 
Las Vegas McCarran International NV LAS L No 
Los Angeles International CA LAX L Yes 
La Guardia NY LGA L Yes 
Orlando International FL MCO L No 
Chicago Midway IL MDW L Yes 
Memphis International TN MEM M No 
Miami International FL MIA L Yes 
Minneapolis-St Paul International MN MSP L No 
Chicago O'Hare International IL ORD L Yes 
Portland International OR PDX M No 
Philadelphia International PA PHL L No 
Phoenix Sky Harbor International AZ PHX L No 
Pittsburgh International PA PIT L No 
San Diego International CA SAN L No 
Seattle-Tacoma International WA SEA L No 
San Francisco International CA SFO L Yes 
Salt Lake City International UT SLC L No 
Lambert-St Louis International MO STL L No 
Tampa International FL TPA L No 

3.5 European Data 

3.5.1 European Flight Data 

 The central office and delay analysis (CODA) data and the Air Traffic Flow 

and Capacity Management (CFMU) data are provided by EUROCONTROL to 
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support the U.S./European study. Both datasets contain individual flight data covering 

40 major European airports. The CODA data, which is used to compute delay 

information in this study, is supplied by the airlines. Airport demand is based on 

CFMU data. The current voluntary supply of CODA data represents approximately 

70% among the 40 airports. The data sample that we obtained from 

EUROCONTROL is extracted in the CODA and CFMU systems to suit our needs 

and limit the volume of data that needs to be transferred; therefore, it only contains 

the fields in Table 3. Data shown in blue are based on CODA and data shown in black 

are based on CFMU. 

Table 3: Field name and description in CODA and CFMU data 

File name Description 
ADEP Airport of Departure (ICAO) 

IOBT 
Planned off-block time as indicated in the last ATC-plan sent to Initial 
Flight Plan Processing System (IFPS) to CFMU 

AOBT_3 Actual Off-Block time as calculated by CFMU 

STD 
Scheduled Time of Departure (Off-block) as communicated to the 
passengers 

ACTUAL_OUT  Actual Out Actual off-block time 
ACTUAL_OFF  Actual Off Actual Take-Off Time 
ADES Airport of Destination (ICAO) 

ARVT_1 
Planned landing time at destination as communicated to IFPS in the ATC-
plan 

ARVT_3 Actual landing time as calculated by CFMU 

STA Scheduled Time of Arrival (In-Block) as communicated to the passengers 
ACTUAL_ON Actual landing time 
ACTUAL_IN Actual In-Block time  
 

 Departure delay is computed by the difference between actual off-block time 

(ACTUAL_OFF) and scheduled time of departure (STD). Arrival delay is computed 

by the difference between actual in-block time (ACTUAL_IN) and scheduled time of 

arrival (STA). For total number of operations at airports, we sum up all the CMFU 

data per airport. 
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 The sample European data is used to illustrate the difference in delays and 

traffic counts between the two systems in the introduction section.  To develop the 

proposed methodology, only U.S data is used due to the availability of the data.   

3.5.2 European Runway Information 

  Similarly to how we obtained runway information for airports in the 

U.S, runway information for the 40 European airports are obtained using an online 

database. The number of runways for each of the European airports in our study is 

listed in Table 4: 

 
Table 4: European Runway Information[12] 
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3.6 Data discrepancies 

 The FAA has developed various databases and metrics to provide the aviation 

community to access to historical traffic counts, forecasts of aviation activity, and 

delay statistics. Data in the FAA databases are collected and computed differently. 

Data in some databases, such as the Enhanced Traffic Management System (ETMS), 

are collected electronically and some are reported by the airports, such as the 

Operations Network (OPSNET). Due to the differences in the amount of data 

collected and the methods used to process the data in different databases, airport 

traffic statistics would be different (see Figure 5, 6 and Table 5). Hence, we need to 

carefully choose the type of data to use when evaluating airport performance. In this 

study, we use the individual flight ASPM database as the primary database to 

compute all the airport operational performance variables except cancellation ratio, 

even though there may be some other databases that can capture a certain 

performance variables better. The reasoning is that the ASPM individual flight 

database provides the most complete source among all other accessible data sources 

for our study. It contains “raw” data that allows us to derive different metrics for 

different airport performance variables. Most importantly, by using one central 

database, we can ensure that the errors are consistent among all the variables when 

finding the associations between them. We obtain cancellation ratios from the BTS 

database, as this is the only publicly accessible database that contains flight 

cancellation information. 
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Figure 5: Traffic count discrepancies in different FAA database 

 
 

 
Figure 6: Total of departure operations using all 35 OEP airports combined in different 

databases/data fields 
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Table 5: Table illustrates the discrepancy in traffic counts between FAA databases 
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Chapter 4: Methodologies 

To accurately determine the relationships among different airport operational 

performance variables, a significant amount of data must be used to ensure that results 

are not biased and are legitimate for all airports in the system.  Because each of the 

airports used in the study has some similarities, grouping airports based on their 

characteristics (which are the airport operational performance variables defined in 

Chapter 2), allows us to not only condense the data into manageable size but also 

reveal more concise and understandable descriptions of the data.    

Furthermore, when we define the airport operational performance variables, 

there may be a need to look not only at a vector of an airport performance variable, 

but also at an array of probability distributions for an airport operational performance 

variable such as the delay profile (which is stored in a matrix). Matrix norms are 

numerous and varied, and none is used as popularly as correlation or covariance are 

used to describe vector differences.  Instead, we will apply clustering analysis 

followed by statistical significance tests to identify associations between two airport 

operational performance variables. 

In this study, we applied clustering analysis to group airports with similar 

properties. There are many different clustering techniques and each of them has its 

advantages and disadvantages. We have explored different techniques carefully and 

recognize the flaws of each of them. We provide remedies to tackle the shortcomings 

of the final chosen techniques to ensure that the proposed methodology produces the 

most reliable results among the methods we have examined. 



 

 28 
 

 Data clustering algorithms can be hierarchical or nonhierarchical. Since there 

are pros and cons of using either variety, we are using a mixed technique by 

combining both of them in this study to gain the benefits of each. For the hierarchical 

cluster procedures, a complete linkage agglomerative method is used. We decided to 

choose a complete linkage method because it produces better clustering results in this 

study than the other widely used hierarchical clustering method, called the single 

linkage method. As for the nonhierarchical procedures, a popular clustering technique 

called k-means clustering is applied. Other common clustering techniques are 

heuristic techniques such as tree-structure recursive partitioning and adaptive neural 

networks. However, these heuristic techniques are supervised learning techniques that 

require a priori knowledge of classification for the samples. Thus, these heuristics 

techniques are not applicable for this particular study.  

One of the weaknesses of the k-means clustering as well as some other 

popular clustering techniques is that a metric to measure similarities and 

dissimilarities between objects (usually the Euclidean norm) must be determined 

ahead of time and the resulting solutions are highly sensitive to the defined metric. 

Conversely, some heuristic approaches will adjust the metric automatically. However, 

if the metric for similarity is defined properly, the results from the k-means algorithm 

can be explained more easily, compared to the heuristic approach. The detailed 

explanation of each of the similarity metric definitions used in k-means clustering can 

be found later in this chapter.  

The other well-known disadvantage of using the k-means algorithm for 

clustering is that results could be very sensitive to the maximum number of clusters 
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specified. One remedy for this problem is to employ a balancing method proposed by 

Jung [13] to locate the best number of groups during the airport clustering process.   

Just like all other nonhierarchical clustering procedures, finding an 

appropriate way to initialize cluster seeds is one of the most complicated steps. 

Experiments show that the final cluster solution is very sensitive to the way we 

initialize the cluster seeds. Originally, the initial cluster seeds were selected randomly 

and different final cluster results were generated when re-runs showed that random 

starting seeds did not guarantee a consistent final solution. Therefore, rather than 

assigning the initial cluster seeds randomly, hierarchical cluster procedures with 

specific numbers of clusters are used to initialize the cluster seeds for the k-means 

algorithm. 

4.1 Metrics for similarity to cluster airports 

As previously mentioned, the cluster solution is highly dependent upon the 

metrics used as the basis for similarity measures. To illustrate how sensitive the 

cluster solution changes by using different similarity measures, we can look at the 

changes in relative norm from one of the 35 OEP airports to Philadelphia 

International Airport (PHL) using two different metrics (see Figure 7). If the relative 

norm from an airport to PHL changes noticeably by using different metrics, the 

clustering results for that airport could be very different. There is no impact to 

Pittsburgh International Airport (PIT) when changing the metric to cluster airports 

based on airport utilization in 2002.  On the contrary, the norm from LaGuardia 

Airport (LGA) to PHL changes notably when using different metrics. Therefore, 

selecting an appropriate metric to measure similarity becomes critical in clustering 
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analysis.  In additional to some commonly used mathematical similarity metrics in 

clustering analysis (such as the Euclidean norm and the Manhattan norm), this study 

also provides other clustering metrics such as “weighted metric” and “average 

metric” which would be more appropriate for measuring similarities of certain airport 

operational performance areas or characteristics.  

 
Figure 7: Illustration the sensitivity of using different similarity metrics 

 

4.1.1 Proposed metrics to cluster airports using hourly delay profiles 

 Considering that different similarity measures may lead to different cluster 

solutions andresulting in different conclusion, several options of similarity metric are 

provided to measure the norm between delay profiles (both arrival and departure 

delay) of airports in this study.  

The four metrics are: 

• Euclidean Norm 

• Absolute Average delay  
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• Weighted Euclidean Norm 

• Weighted Absolute Average delay 

The metric for clustering to characterize airports based on the airport operational 

performance variables should depend on the data and what the air traffic community 

thinks the main feature(s) of the similarity metric should be. Unfortunately, there is 

no common agreement on what is the best metric to characterize airports. Therefore, 

other than using Euclidean Norm, which is one of the most traditional metrics for 

similarity measurement, we propose to use absolute difference between hourly 

average delay minutes. The Euclidean metric (Eqn. 5) and the absolute average delay 

metric (Eqn. 6) used in this study are as follows: 
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where ( , )
A
D X Y  represents the sum of absolute differences in average delay between 

two airports per hour and 
j
T  represents the minimum delay associated with 

the thj delay bin. Note that 
,

1

K

j i j

j

T X
=

! represents average delay for the ith hour.  

Equations 6 and 7 assume that delay has the same impact to the system 

regardless of the time at which it occurs. However, this may not be a good 
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assumption because the queue formed due to delay during peak hours usually takes 

longer to dissipate. Therefore, a more realistic way to distinguish airports based on 

their delay profiles in the clustering process would be to assign different weights to 

the hours based on the time of the day when delay occurs.  Thus, two additional delay 

metrics to measure the similarity of airport delay profiles are developed (Equations 8 

and 9). 
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Equation 7 is the same as Equation 5 except weights (
i
w ) are assigned to different 

hours. 
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Similarly, Equation 8 is the same as Equation 6 except weights (
i
w ) are assigned to 

different hours. 
 

The weights for each hour are calculated by the percentage of total operations 

between 6:00a.m to midnight local time at the 35 OEP airports from 2002 to 2008 and 

they are listed in Table 6. 
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Table 6: Hourly weights for delays 

Hour (local time) Weight (
i
w ) 

6:00-7:00 0.0331 
7:00-8:00 0.0535 
8:00-9:00 0.0642 

9:00-10:00 0.0648 
10:00-11:00 0.0643 
11:00-12:00 0.0621 
12:00-13:00 0.062 
13:00-14:00 0.0639 
14:00-15:00 0.0633 
15:00-16:00 0.0638 
16:00-17:00 0.0646 
17:00-18:00 0.0645 
18:00-19:00 0.0647 
19:00-20:00 0.0636 
20:00-21:00 0.0566 
21:00-22:00 0.0456 
22:00-23:00 0.0277 

23:00-24:00 0.0178 
 

4.1.2 Proposed metric to cluster airports using other airport operational performance 

variables. 

Two popular metrics, the Manhattan norm (Eqn. 9) and the Euclidean norm 

(Eqn. 10), are used to measure the similarity for the rest of the airport operational 

performance variables suggested in Chapter 2.  
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where . x
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. and y
!"

 are vectors of airport operational performance for airport X and 

airport Y respectively and i  represents the hour of the day. 

 



 

 34 
 

The fundamental difference between the two metrics is that the Euclidean 

norm penalizes large differences between the two airport vectors more severely than 

the Manhattan norm. Therefore, we are providing two typical ways to measure 

similarity for all of the airport operational performance variables listed in Chapter 2 

except delays. 

4.2 Hierarchical clustering procedures 

 The main function of hierarchical clustering in our study is to initialize the 

cluster seeds for the nonhierarchical clustering procedures. We do not use hierarchical 

clustering alone to do the clustering analysis here because hierarchical clustering 

methods do not guarantee optimal solutions, but the k-means algorithm guarantees 

local optima when it converges. Another advantage of using a hierarchical clustering 

method to choose the starting clusters is that the results from hierarchical clustering 

produces are deterministic and it is a clustered output coming out from a clustering 

method. The hierarchical clustering method used here is called the complete linkage 

method. Before using the complete linkage method, we have also evaluated another 

similar method called the single linkage method.  The complete linkage method is 

similar to the single linkage method except that the cluster criterion is based on 

maximum distance rather than minimum distance (see Figure 8) [14]. 
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Figure 8: Comparisons of distance measures for single linkage and complete linkage [14] 

 

 One common phenomenon of the single linkage method is that clusters are 

forced to combine due only to two airports in different clusters being close to each 

other.  This phenomenon is called “chaining phenomenon.” Due to the chaining 

phenomenon in the single linkage clustering method, the algorithm has a tendency to 

assign most of the clustering objects to the same cluster while leaving the distant 

objects to form new individual clusters by themselves (see example in Figure 9). 

Figure 9 shows that when we cluster the 35 OEP airports based on airport utilization 

in 2002 using the single linkage method,  the majority of the airports are assigned to 

cluster 2 and distant airports formed new clusters by themselves. To avoid this 

chaining phenomenon in initial cluster seeds, the complete linkage method is used 

instead.  
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Figure 9: Graph illustrates the chaining phenomenon in Single Linkage procedures 

4.3 Optimal number of clusters for nonhierarchical clustering procedures 

 One of the drawbacks of using k-means clustering, as mentioned before, is 

that a maximum number of clusters would need to be chosen ahead of time and an 

inappropriate choice of the number of clusters could possibly yield suboptimal 

clustering results. To resolve this issue, we applied a method (see Eqn. 12) that is 

similar to the balancing technique suggested by Jung [13] to find the optimal number 

of clusters (OC) for k-means clustering.  Jung’s balancing method uses clustering 

gain as a measure for clustering optimality. Although Jung applied his technique to a 

hierarchical clustering algorithm, his technique can be utilized to find optimal clusters 

for non-hierarchical clustering algorithms as well. 

 
, 0 0 0( ( , )) ( , )i j j jj i j

OC Min d x x d x x! "= +
# $% % %  (12) 

where 
,i j
x  is the th

i element (airport) in cluster j , 
0j
x is the center of cluster j , and 

0
x is the “overall” center of all samples.  
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The balancing method optimizes the number of clusters by compromising between 

the intra-cluster distance ( , 0( , )i j jd x x ) and the inter-cluster distance ( 0 0( , )jd x x ).To 

produce reliable results, the data need to be representative of the airports. Thus, 

enough data must be used to avoid clustering on the outliers of the data instead of the 

“real” trend of the data. As you can see in Figures 10 and 11, the optimal cluster 

number is dependent on the size of the data we use. Therefore, if we want to analyze 

quarterly trends, we should obtain the optimal cluster number for each year and then 

apply it to the quarters of that year to minimize the errors from the outlines. To look 

at the “overall” results without dividing the data into any subgroups, the optimal 

number of clusters is obtained using all seven years’ worth of data from 2002 to 2008. 

In this thesis, we will be looking at the yearly and overall results only. 

 
Figure 10: Cluster balance metric vs. using 3 months worth of data in 2006 

(Optimal number of cluster = 8) 
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Figure 11: Cluster balance metric using one-year worth of data in 2006 

(Optimal number of cluster = 5) 
 

4.4 Nonhierarchical clustering procedures 

Once the optimal number of clusters and good initial cluster seeds are 

determined, k-means clustering is used to “fine-tune” the results even further. 

Typically, the Euclidean norm is used as a metric for k-means clustering. However, 

depending on the meaning of “similarity” to the users, other metrics suggested in 

Section 4.1 could provide better descriptions of similarity. No matter what similarity 

metric we use, the k-mean algorithm procedure is the same. The procedures are listed 

in Figure 12. 
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Figure 12: K-means clustering algorithm Decision Diagram 

  

After the K-means clustering analysis is performed, the 35 OEP airports will 

be clustered into different groups based on different performance variables. For 

example, when we cluster the 35 OEP airports based on total airport utilization, all 

the New York airports (LGA, JFK and EWR), PHL, ATL and ORD are clustered in 

the same group, as shown in Figure 13. It is because they are highly utilized 

throughout the day as seen in Figure 14. On the other hand, low utilization airports 

(airports colored in red) are clustered into the same group.   
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Figure 13: Clustering results based on total airport utilization in 2008 

 
 
 

 
Figure 14: Airport utilization profiles colored by clusters 
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4.5 Statistical significance test 

Grouping airports is the first step of the process of finding pair-wise 

relationships between airport operational performance variables. After classifying the 

35 OEP airports into different groups, we need to transform the information in 

meaningful ways. The main purpose of clustering is to analyze and determine which 

performance variables are inter-related. With the given cluster results, one way to 

determine a degree of relationship is by calculating associations between two 

variables. 

4.5.1 Contingency Table 

Before we can determine the association between two clusters, information 

must be preprocessed into proper formats. Clustering of the performance variables 

converts data into categorical variables where each cluster represents a category. The 

Contingency Table is a common representation used to investigate relationships 

between two or more categorical variables. By putting the data into this format, 

relationships between two categorical variables can be visually understood.  

Table 7 is an example of a contingency table for airport operational variable 1 

and airport operational variable 2 for six airports. In this simple example, the optimal 

cluster number for both variables is two. Therefore, it is a 2x2 contingency table (the 

red box in Table 7). The total value in each row and column represents the number of 

airports for each cluster. The numbers in the cells of a contingency table represent the 

number of airports in common between the clusters of two airport operational 

performance variables. Thus, the 3 in row 1 and column 1 of the 2x2 contingency 
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table means 3 airports are in common between the first cluster of airport operational 

variable 1 and the first cluster of airport operational variable 2.  

Table 7: Contingency Table - Sample 
 

 

4.5.2 Fisher’s Exact Test 

Although visual representation of associations is helpful, it is more critical to 

further quantify the level of associations between two different clusters for this study. 

There are many statistical tests such as the Chi-Square Test, the G-Test, and Fisher’s 

Exact Test that determine level of association for categorical variables described by a 

Contingency Table. However, given that the number of entries in the Contingency 

Table is limited to 35 (only 35 OEP airports are studied), an assumption of a 

sufficiently large sample size for Chi-Square or G-Test does not hold.  The Bernard 

Test is more accurate than Fisher’s Exact Test, but it is only applicable for 2x2 

Contingency Tables. Thus, Fisher’s Exact Test is deemed as the most appropriate test 

to apply for our study [15-18]. However, the computation becomes burdensome when 

the size of the contingency table gets bigger for Fisher’s Exact Test. Thus, instead of 

calculating the exact p-values using Fisher’s exact test, we use Monte Carlo 

approximation to Fisher’s Exact Test with 50,000 samples (a sample of p-values 
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obtained from contingency tables can be found in Figure. 15). Note that the 

approximation error decreases proportionally to the square root of sample size. Thus, 

with a sufficiently large sample size, the error will be much smaller than the error 

introduced by using the Chi-Square Test. The p-values from the Monte Carlo 

approximation are used to indicate if one airport operational performance variable is 

related to the other airport operational performance variable. The null hypothesis of 

Fisher’s exact test is that the two airport operational performance variables in the 

contingency table are independent[19]. So, if the p-value of the test is small, we can 

conclude either that the two variables are related, or that some extremely rare event 

occurred.  Following standard statistical convention, we choose the former 

interpretation. Conversely, if the p-value is large, we can conclude that the two 

variables are not related.  
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Hourly Utilization M1 0.00 0.49 0.02 0.01 0.01 0.00 0.01 

Hourly Cap COV M1 0.49 0.00 0.99 0.50 0.92 0.29 0.54 

Hourly Throughput M1 0.02 0.99 0.00 0.03 0.04 0.16 0.39 

Hourly Throughput COV M1 0.01 0.50 0.03 0.00 0.32 0.80 0.68 

Hourly CNX Ratio M1 0.01 0.92 0.04 0.32 0.00 0.00 0.01 

Hourly ARR Delay M1 0.00 0.29 0.16 0.80 0.00 0.00 0.00 

Hourly DEP Delay M1 0.01 0.54 0.39 0.68 0.01 0.00 0.00 
 

Figure 15: Sample P values table should the pair-wise relationships between airport operational 
performance variables (Red=P value less or equal to 0.01, indicate strong relationship) 2. 

                                                
2 M1 = Similarity Metric 1, M2 = Similarity Metric 2 
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Chapter 5:  Quantitative Analysis 
 

 As mentioned in the last chapter, the pair-wise relationship between two 

airport performance variables is quantified by computing the p-value with respect to 

their contingency table. However, when the number of airport performance variables 

increases, the complexity of the p-values table in Figure 15 increases.  After all the p-

values are computed, it would be rather difficult to visualize the dependencies among 

the variables. The main purpose of the p-value is to determine if there is a statistical 

significance relationship between two variables. For this study, we chose 0.01 as the 

critical p-value to indicate the acceptable probability for a false positive. This critical 

p-value chosen is smaller than what might be considered a more traditional value of 

0.05 to reduce the number of false positives of rejecting a null hypothesis when there 

is actually no relationship between two variables. Note that the table shown in Figure 

15 contains approximately 400 pair-wise associations. Thus, if we chose the 

traditional p-value of 0.05, the expected number of false positives would be around 

20 entries.  However, if we reduce the critical p-value to 0.01, then the expected 

number of false positive is 4 entries.  Thus, we have much more confidence in the 

trend in observed associations. 

5.1 Design Structure Matrix (DSM) 

Finally, when the table of Figure 15 is converted into binary variables using 

the critical p-value, it then resembles a Design Structure Matrix (DSM) [20, 21]. 

DSM is a classical project management tool that help engineering designers to 

manage complex systems. It is a square matrix representing relationships among 
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“components” in a system. Instead of using DSM to analyze a project/system, we 

employ the DSM concept to manage the p-value table so that the p-value results can 

be presented in a compact and concise way.  Traditionally, engineering designers 

analyze DSM data by partitioning, tearing, and clustering result to extract more 

insights [22, 23]. In our case, DSM clustering is most appropriate because all we need 

from DSM is to highlight the important patterns in our results. In other words, by 

analyzing DSM with clustering algorithms, airport performance variables that are 

strongly interconnected are grouped together [24]. Related airport performance 

variables to the “target” variable can be quickly recognized from the clustered DSM 

graph as presented in section 5.2 below.  

The DSM clustering algorithm used in this thesis was developed by Ronnie E. 

Thebeau [25].  The objective used to group the variable is to minimize the 

Coordination Cost. The basic idea is that the DSM clustering algorithm is trying to 

put as many variables in the “blue box” (see Figure 16) while preventing the size of 

the “blue box” from being too big (see Equation 12). The variables in the cluster (the 

“blue box”) are considered as having strong enough interconnection among them. 

Clustering algorithms for DSM is an active research area for the engineering design 

community. There are different ways to cluster the elements in the DSM. In this 

study, we employ one of the popular DSM clustering algorithms to cluster our results. 

Note that DSM clustering results in our study is intended to help us to visualize data. 

It does not change the results or conclusion of our analysis.  

 

 { }min TotalCost IntraClusterCost ExtraClusterCost= +! !  (13) 
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 ( ( , ) ( , ))* powccExtraClusterCost DSM j k DSM k j DSMSize= +  (14) 

 ( ( , ) ( , ))* ( ) powccIntraClusterCost DSM j k DSM k j ClusterSize y= +  (15) 

where: 
TotalCost  = Coordination Cost 
IntraClusterCost = Cost of interaction occurring within a cluster 
ExtraClusterCost = Cost of interaction occurring outside of any cluster 

( , ), ( , ) DSM j k DSM k j = DSM interaction between elements &j k  
( )ClusterSize y  = Number of elements in the cluster y 

DSMSize  = Number of elements in the DSM 
powcc = Penalizes the size of cluster 

5.2 Results and Data Interpretation 

There are a few different attainable results through the DSM in this 

analysis.  If we use results from Figure 16, which are obtained by using all the data 

from 2002-2008, we can see the baseline pair-wise associations and isolated groups 

of performance variables.  The other way to look at the results is to investigate the 

yearly results over time by plotting DSM per year.  Note that we should keep the 

ordering the same so that we can visualize the trend.  We want to look at the yearly 

results because certain patterns may reveal themselves by looking at the DSM graphs 

in chronological order, i.e. we may detect that an association between performance 

areas A and B did not exist until year 200x. Also, if we look at the quarterly DSM 

graphs, we may be able to detect seasonality; i.e. the association between 

performance area C and D only existed during winter terms. Finally, by combining 

yearly results into one DSM in Figure 24, the effect of uncertainty in our results can 

be reduced. As stated in Chapter 5, we should have approximately 4 false positives 

per DSM chart by using a p-value of 0.01.  However, by “compressing” all the yearly 

results into one DSM as shown in Figure 24, we should be able to reduce these 
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uncertainty effects to a certain extent. Furthermore, we can also identify the 

significance of the relationships by counting the occasions of existence of the 

relationship (the green dots in Figure 17-23) over the years. The number of 

associations occurring over the years is represented by different colors and sizes of 

dots. Brown, red, yellow, orange, green, blue and violet represent 7, 6, 5, 4, 3, 2 and 1 

time of occurrences respectively. The frequency of occurrences is also represented by 

the sizes of the dots. Associations represented by brown, red, and yellow are much 

less likely to be false positives.  However, one of the possible drawbacks of analyzing 

the results in Figure 24 is that we must be careful to not to divide data too much to 

capture more the noise in the data than an actual trend  (i.e. if we create DSM for each 

day, each DSM may not be as reliable as DSM created using yearly data).  By 

comparing and contrasting Figure 16 and Figure 24, we have more confidence in our 

conclusion. 

Here are some of the main findings from this analysis using yearly data: 

 Each variable associates with itself. 

 Variables with different similarity metrics are associated. 

 Variables in blue boxes are related to different degrees. 

 Arrival Delays has very strong relationship with departure delays. 

 Number of runways is weakly related to capacity.  

 Airport utilization is independent of airport hub structure. 

It is essential to make sure each variable is self-associated. It is a way to self-

validate the accuracy of the results because each variable must be strongly related to 

itself. Similarly, variables using different similarity metrics during the clustering 
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process should have relatively strong relationships to themselves because they are 

technically the same variables.  

 As shown in Figure 24, the number of runways has a very weak relationship 

(blue color) with capacity (both mean and COV). Therefore, it is very likely that 

number of runways cannot be used to capture airport capacity accurately. In the 

introduction section, we are using number of runways to estimate capacity in order to 

calculate airport utilization mainly because the capacity values for European airports 

are unavailable. Although number of runways is not the best way to capture capacity 

according to the results in this study, it is a way to look at airport capacity when 

capacity values are absent as they are still showing some level of association. Rather 

than using number of runways, using runway configurations may be a better 

representation for airport capacity when official capacity values are absent. 

Furthermore, delay has some association with all of the variables in the blue 

box. More importantly, arrival delays generally have a strong relationship with 

departure delays.  Also, we should consider using both arrival and departure 

utilization whenever we develop models to estimate or predict arrival delays.  Even 

though there is a relationship between arrival delays and arrival utilization, it is 

stronger between arrival delays and overall (both arrival and departure) utilization 

(see Figure 24). 

In this study, lack of association is as important as the existence of association 

because it points out some interesting phenomena. For example, hub information is 

not related to any other performance variables. Interestingly, even though hub airports 

have an image of being busy airports, utilization is seemingly independent of hub 
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structure. One possible explanation is that capacity at the hub airports is generally 

higher than at non-hub airports. Hence, even though hub airports have higher traffic 

compared to non-hub airports, utilizations of hub and non-hub airport are very 

similar.  Other possible explanation of this result is that 1) the FAA’s definition for 

hub may be insufficient to capture the nature of the airport hub structure, or 2) the 

hub list posted on the BTS website and used in some recent publications is out-of-

date; therefore, there seems to be a necessity to develop a mathematical definition of 

hub that better relates to airport performance. 

 

 

 
Figure 16: DSM representation of the results using data from 2002-2008 
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Figure 17: DSM representation of the results using 2002 data  

 

 
Figure 18: DSM representation of the results using 2003 data 
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Figure 19: DSM representation of the results using 2004 data 

 
Figure 20: DSM representation of the results using 2005 data 



 

 52 
 

 
Figure 21: DSM representation of the results using 2006 data 

 

 
Figure 22: DSM representation of the results using 2007 data 
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Figure 23: DSM representation of the results using 2008 data 
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Figure 24: DSM representation of results using yearly data from 2002-20083 

5.3 Results Validation using Correlation analysis 

 The other way to validate the results from the proposed method is to compare 

them with the results generated from correlation analysis. To perform correlation 

analysis, we first need to convert the hourly airport data into scalars by taking an 

average of each variable. Then, we calculate the p-values for each pair of variables. 

Similarly to the proposed method, two variables are considered to be strongly related 

when the p-value is equal or less than 0.01. Finally, the correlation analysis results are 

displayed using DSM similar to the way we display the results for our study in Figure 

24.  

                                                
3 The description of the variables in the figure can be found in the Appendix  
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The fundamental difference between correlation analysis and the proposed 

method is that we are investigating the pair-wise relationships between variables 

using the mean values rather the distributions of the variables. Therefore, the results 

from the two methods should not be identical. However, they should have some 

similarity because some of the performances can actually be captured by the mean of 

the variables.  

 The results from the proposed method in Figure 24 and the results from 

correlation analysis in Figure 25 are comparable except the strength of the 

relationships is rather different for some variables. For example, both analyzes show 

relationship between utilization and throughput but the strength of relationship is 

stronger based on the correlation results. Furthermore, number of runways shows a 

much stronger relationship with capacity when using correlations analysis. 

 There are a few differences between the two results. For example, correlation 

analysis shows a strong relationship between the number of runways and airport 

throughput but our proposed method shows no relationship between them. 

Correlation analysis also indicates that there is no relationship between delays and 

throughput; however, the proposed method shows a weak relationship between them. 

 Due to the similarities of Figures 24 and 25, correlation analysis does validate 

the results of our study. However, the results from the correlation analysis may not be 

as reliable as our proposed method because it is very likely that critical information 

are removed when we condense the data into scalar form for some of the airport 

performance variables while doing correlation analysis. Theoretically, averaging is a 

form of filtering to remove variations. However, it has to be done carefully to prevent 
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us from removing important patterns in data such as patterns in peak and off-peak 

hours.  Traffic during peak hours and off peak hours behave very differently and, 

therefore, we should not averaging peak traffic with off peak traffic. The other 

advantage of using our proposed method is that it can analyze pair-wise relationships 

for scalar variables as well as vector variables.  

 

 
Figure 25: DSM representation of correlation analysis results using yearly data from 2002-20084 

                                                
4 The description of the variables in the figure can be found in the Appendix. 
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Chapter 6:  Conclusions 
 

In this study, we point out that a better understanding of the inter-relationships 

between airport operational performance variables is important in the process of 

analyzing operational performance at airports. Therefore, we propose a method to 

investigate the pair-wise relationships between performance variables, to take 

advantages of the extensive amount of data stored in various FAA and European air 

traffic performance databases. The proposed method is illustrated by using some of 

the popular airport operational performance variables and the results suggested that 

arrival delays, weighted arrivals delays, departure delays, weighted departure delays, 

utilization, arrival utilization, departure utilization, MAS, number of runways and 

cancellation ratio are related to different degrees. 

 The proposed method consists of the following steps: 

1) Cluster airports using each airport performance variable separately. 

2) For each pair of performance variables, create contingency tables of the two 

airport performance variables. Then, compute the p-value associated with 

each contingency table. 

3) Use these p-values to construct the Design Structure Matrix.  

4) Cluster the DSM to arrange the most associated variables into the same 

groups. 

By representing the results in the DSM, relationships between airport 

performance variables can be visually understood.  Also, by using more complete and 

accurate data and definitions of airport performance variables, the results of the 

proposed method can be used to develop more accurate models to help policy makers 
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decide how resources should be allocated.  It is very important to have the basic 

understanding of what we model before constructing a model to answer certain air 

traffic related questions, as the modeling process is very time-consuming and costly. 

Furthermore, the results of the proposed method can also be useful during the model 

validation process. With the basic understanding of the relationships between 

variables in the model, 1) extra variables can be eliminated to prevent over-fitting 

when building models using historical data and 2) crucial variables will not be 

ignored to prevent under-fitting of the model.   

The method proposed in this thesis can help to answer a variety of air traffic 

questions accurately after further analysis. Questions such as the following can be 

answered precisely by developing models using the findings from the proposed 

method: 

• Should European airports increase the number of allocated landing 

slots? 

• Why do we see different delay patterns in Europe and U.S? 

• Should we limit the maximum capacity (i.e., impose operational caps) 

to alleviate the congestions at some of the U.S airports, and if so, 

which airport(s) should be selected? 

• What performance gains should be expected if we build a new runway 

at airport X? 

The proposed method can also be used to provide assistance for the FAA to 

select candidate models during the funding process, for example to determine which 
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model reflects reality the most, to evaluate the usability of the models and the 

reliability of the modeling results. 

In closing, the methodology suggested in this thesis intends to help 

researchers or aviation analysts to understand airport operations better, which will 

eventually help decision makers in allocating resources in the right ways.   

Chapter 7:  Future Work  
 

There are many possible extensions to this thesis work.  First, notice that data 

quality is crucial for this methodology. Therefore, a better and larger set of data 

should be obtained from both Europe and the U.S.  Furthermore, we have 

demonstrated that an airport performance definition is crucial for applying this 

technique. Thus, one could determine more appropriate airport performance variables 

by exploring the different definitions and derivations of airport performance 

variables. We should also include some other quantifiable data such as weather into 

the analysis. Finally, we should then build models to analyze some of the air traffic 

performance questions such as why there are different delay patterns in Europe and 

the U.S by using the key variables selected from the proposed methodologies in this 

thesis. 
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Appendices 
 

Airport Operational Performance 
Variable 1

Airport Operational 
Performance Variable 2 Description

AspmUtil_hourly_M1 AspmUtil H.M1

Hourly Airport Utilization using ASPM data and similarity 

metric 1 

AspmUtil_hourly_M2 AspmUtil H.M2

Hourly Airport Utilization using ASPM data and similarity 

metric 2 

Cap_COV_hourly_M1 Cap COV H.M1

Hourly Capacity coefficient of variation (COV) using 

similarity metric 1 

Cap_COV_hourly_M2 Cap COV H.M2

Hourly Capacity coefficient of variation (COV) using 

similarity metric 2

Throughput mean hourly_M1 TP mean H.M1 Hourly Throughput using similarity metric 1 

Throughput mean hourly_M2 TP mean H.M2 Hourly Throughput using similarity metric 2

Throughput COV hourly_M1 TP COV H.M1

Hourly Throughput coefficient of variation (COV) using 

similarity metric 1

Throughput COV hourly_M2 TP COV H.M2

Hourly Throughput coefficient of variation (COV) using 

similarity metric 2

CNX_mean_hourly_M1 CNX mean H.M1 Hourly Cancellation Ratio using similarity metric 1

CNX_mean_hourly_M2 CNX mean H.M2 Hourly Cancellation Ratio using similarity metric 2

ARR_Delay_hourly_M1 ARR Delay H.M1 Hourly Arrival Delay using similarity metric 1

ARR_Delay_hourly_M2 ARR Delay H.M2 Hourly Arrival Delay using similarity metric 2

Dep_Delay_hourly_M1 Dep Delay H.M1 Hourly Departure Delay using similarity metric 1

Dep_Delay_hourly_M2 Dep Delay H.M2 Hourly Departure Delay using similarity metric 2

AspmUtil_hourly_ARR_M1 AspmUtil H.ARR M1

Hourly Arrival Utilization using ASPM data and similarity 

metric 1 

AspmUtil_hourly_ARR_M2 AspmUtil H.ARR M2

Hourly Arrival Utilization using ASPM data and similarity 

metric 2

AspmUtil_hourly_DEP_M1 AspmUtil H.DEP M1

Hourly Departure Utilization using ASPM data and 

similarity metric 1

AspmUtil_hourly_DEP_M2 AspmUtil H.DEP M2

Hourly Departure Utilization using ASPM data and 

similarity metric 2

Cap_mean_hourly_M1 Cap_mean H.M1 Hourly Capacity using similarity metric 1

Cap_mean_hourly_M2 Cap_mean H.M2 Hourly Capacity using similarity metric 2

Cap_COV_Daily_M1 Cap COV Daily M1

Daily Capacity coefficient of variation (COV) using similarity 

metric 1 

Cap_COV_Daily_M2 Cap COV Daily M2

Daily Capacity coefficient of variation (COV) using similarity 

metric 2

ARR_Weighted_Delay_hourly_M1 ARR W.Delay H.M1 Weighted hourly Arrival Delay using similarity metric 1

ARR_Weighted_Delay_hourly_M2 ARR W.Delay H.M2 Weighted hourly Arrival Delay using similarity metric 2

Dep_Weighted_Delay_hourly_M1 Dep W.Delay H.M1 Weighted hourly Departure Delay using similarity metric 1

Dep_Weighted_Delay_hourly_M2 Dep W.Delay H.M2 Weighted hourly Departure Delay using similarity metric 2

Hub Hub size

MAS Multiple Airport System
Num Of RWY Number of Runways  

Figure 26: Description of variables 
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Table 8: ASPM carriers  
  Air Carriers 

1  Air Canada (ACA) 
2  Airtran Airways TRS* 
3  Alaska Airlines (ASA)* 
4  Aloha Airlines (AAH)* 
5  American Airlines (AAL)* 
6  American Eagle (EGF)* 
7  America West (AWE)* 
8  ATA Airlines (AMT)* 
9  Atlantic Coast (BLR)* 

10  Atlantic Southeast Airlines (ASQ)* 
11  Atlantic Southeast Airlines (CAA)* 
12  Comair (COM)* 
13  Continental Airlines (COA)* 
14  Delta Air Lines (DAL)* 
15  ExpressJet Airlines (BTA)* 
16  FedEx (FDX) 
17  Frontier Airlines FFT* 
18  Hawaiian Airlines HAL* 
19  Independence Air IDE* 
20  Jetblue Airways JBU* 
21  Mesa Airlines (ASH)* 
22  Northwest Airlines NWA* 
23  Pinnacle Airlines (FLG) 
24  Skywest Airlines SKW* 
25  Southwest Airlines SWA* 
26  TWA (TWA)* 
27  United Airlines (UAL)* 
28  United Parcel Service (UPS) 
29  US Airways (USA)* 

 
Note: Although some of these carriers may no longer be in operation, ASPM has tracked operations for 
them since January 2000. 
* Denotes an ASQP Carrier  
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Table 9: ASPM airports 

 
* Denotes an 35 OEP airport  
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