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Chapter 1

Introduction

It has been long recognized that the United States healthcare system is in a deep

crisis. According to a recent report by the Centers for Medicare and Medicaid Services

(CMS), the United States has the most expensive healthcare system worldwide. In 2009,

the U.S. spent over $2.5 trillion on health care, accounted for more than 17% of the nations

Gross Domestic Product (GDP). At the same time, this budget is still limited compared

to the high costs of medical treatments, and the medical supply fails to meet the ever

increasing demand.

The implications of this crisis are everywhere. Hospital emergency departments

are stretched beyond capacity (yet the number of hospital emergency departments has

dropped by 7% in 2009). Hospitals still rely on old-fashioned systems that fail to support

innovations in medical technologies. Medical errors cause the unnecessary death of 100,000

Americans annually (according to the Institute of Medicine), and much more.

This U.S. healthcare crisis, which is mainly manifested by gap between high bud-

get, high medical cost and system inefficiency, constitutes a fertile ground for research in

many disciplines. One of these disciplines is operations research (OR). The OR literature

shows that the field has addressed healthcare problems for more than two decays (e.g.,

Burton et al., 1978; Brandeau et al., 2004; Sainfort et al., 2005; Romeijn and Zenios, 2008;

Royston, 2009). Researchers in OR focus on discovering and implementing better mathe-
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matical tools for addressing relevant healthcare delivery issues, for highlighting trade-offs,

and for finding better solutions to management problems. Some of the commonly studied

applications of OR in healthcare are capacity planning and management of emergency de-

partments (e.g., Green, 2004; Price et al., 2008), location of medical facilities (e.g., Daskin

and Dean, 2004; Coskun and Erol, 2010), resource allocation (e.g., Thompson et al., 2009)

and patients’ choice of treatment models (e.g., Su and Zenios, 2004, 2006). The methodolo-

gies used include simulation, queueing theory, linear and non-linear optimization, supply

chain management, and others.

With the enormous amounts of health-related data available, healthcare applications

have also received a great momentum in the data mining (DM) and statistics disciplines

(e.g., Baylis, 1999; Payton, 2003; Liu and Chen, 2009; Porter and Green, 2009). Health-

care information systems collect and store various types of clinical data about patients,

hospitals, costs, claims, etc. The focus in data mining and statistics studies has been on

extracting patterns and information from such medical data to improve healthcare sys-

tems performance, for purposes such as designing and evaluating biosurveillance systems

(Shmueli and Burkom, 2010), clinic scheduling (Glowacka et al., 2009), organ allocation

(Bardossy and Yahav, 2010), and others or to improve patients’ access to data (e.g., Rosow

et al., 2003).

Whereas each discipline has its own strengths, integrating methods from different

disciplines can offer another step in improving healthcare performance. Statistics and DM

can be used to preprocess, visualize and analyze clinical data. which can then be used as

input to an OR optimization problem. For example, using DM and statistics to preprocess

and analyze data on inpatient arrival and length of stay at emergency department, as
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an input to an optimal capacity planning problem. Alternatively, OR simulation-based

methods can be used to evaluate the practical performance of a statistical model or data

mining algorithm. For example, simulating patients arrivals at emergency departments to

examine the performance of a statistical surveillance monitoring system.

In this dissertation we combine techniques from the fields of data mining, statistics

and OR for achieving improved performance in two important healthcare domains: bio-

surveillance and kidney allocation. The main goal of this work is to create a framework for

designing real-time decision support systems for informing health providers and decision

makers, which is based on advanced data analytics and key optimization concepts. We

emphasize the robustness of our approach and its practical aspects in each of the two

healthcare domains.

The novelty of our approach is by incorporating optimizations techniques, which

traditionally assume a prior knowledge of the problem input data, and deploying them

on noisy data with missing information, after massively preprocessing and completing the

data. The optimization methods that we use also shed light on the properties of the

desired (yet unachievable under practical, real-time assumptions) outcome. We use these

properties to develop and tune decision support algorithms to account for practical data

characteristics and to allow deployment in a real-time fashion. We also emphasize time

sensitive nature of the solution that is required in health-related decision support systems.
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1.1. Decision Support Systems in Healthcare

Healthcare delivery systems have been constantly under pressure to improve perfor-

mance, in terms of increasing medical productivity, enhancing service levels and guaran-

teing better access to care. Improving healthcare system performance is important, as it

leads to higher quality of life, lower illness levels, and lower death rates.

Recent development in decision support healthcare systems have increased the amount

of available medical data, such as data on patients, patients’ visits, diseases and disease

symptoms. In reaction to these developments, many academic research groups have pro-

posed methods and tools to utilize such data for supporting informed decisions. Yet, in

practice, there is still a great gap between the amount of available data and their use in

the decision making process. There are two main reasons for this gap. One reason is the

complexity of theoretical models in terms of interpretability and deployment. The second

reason is that theoretical models commonly rely heavily on impractical assumptions about

the data that are violated in practice. In fact, many available models, as we later discuss,

are not robust when their underlying assumptions are violated.

In this dissertation we aim at filling the gap between theory and practice, and

combining optimization tools and statistical methods with data driven analysis in a unique

fashion. We show how our models are tuned to the nature of the available data and how

they can be deployed in practice. We apply our techniques to two notable healthcare

contexts, namely biosurveillance and kidney allocation.
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1.1.1 Detecting Disease Outbreaks: Univariate and Multivariate Monitoring

Biosurveillance is concerned with monitoring information sources to detect, inves-

tigate, and respond to an emerging epidemic. One avenue of biosurveillance is the early

detection of disease outbreaks (see e.g., Shmueli and Fienberg, 2006; Shmueli and Burkom,

2010). Traditional biosurveillance has focused on the collection and monitoring of medical

and public health data that verify the existence of a disease outbreak. Examples are labo-

ratory reports and mortality rates. Although such data are the most direct indicators of a

disease, they tend to be collected, delivered, and analyzed days, weeks, and even months

after the outbreak. By the time this information reaches decision makers it is often too

late to treat the infected population or to react in some other way. Modern biosurveil-

lance has therefore adopted the notion of pre-diagnostic (“syndromic”) data in order to

achieve early detection. Syndromic data include information such as over-the-counter and

pharmacy medication sales, calls to nurse hotlines, school absence records, web-searches

on medical websites, and chief complaints by individuals who visit hospital emergency

rooms. All these do not directly measure an infection, but it is assumed that they contain

an earlier, though weaker, signature of a disease outbreak. These data are also collected

and reported on a much more frequent basis (typically daily).

In this work we focus on early detection of disease outbreaks, which is currently

implemented in several national-level systems, and that is used to track many health

related series over a large number of geographical areas. We concentrate on temporal

monitoring, with a goal of improving the performance of existing monitoring algorithms

for automated biosurveillance, in terms of alerting properties. In particular, we focus on

monitoring univariate and multivariate pre-diagnostic series.
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The work is composed of two main parts. In the first part (Section 3) we describe a

unique mixed integer programming-based method for combining multiple temporal mon-

itoring techniques that outperforms any of the known single temporal monitoring algo-

rithms. We take a data-mining approach where the choice of combination is set according

to the properties of the data. This combined OR and DM approach expands the use

of traditional statistical control charts that are widely used in industry and are familiar

to healthcare practitioners. We evaluate our method on authentic biosurveillance data

and illustrate its robustness to different data properties as well as to different epidemic

outbreak magnitudes and shapes.

In the second part (Section 4) we address the practical aspects of multivariate mon-

itoring. Here, multiple series are monitored simultaneously for the purpose of detecting

epidemic outbreak signatures in one or more of the series. The main challenge addressed

in this context is directionally-sensitive multivariate monitoring, where data are moni-

tored for detecting increases in the underlying mean (rather a traditional monitoring that

detects shifts in the mean in any direction). We describe several multivariate monitoring

approaches and evaluate them based on practical performance aspects such as robustness

to often impractical assumptions, the amount of data required for proper performance, and

computational aspects. We perform a large simulation study and examine performance

on authentic biosurveillance data.

Motivated by the need for synthetic low count multivariate data in this context, we

developed a computationally fast method for generating multivariate Poisson data with a

flexible correlation structure (Section 5).

6



1.1.2 A Model For Kidney Allocation: Data-Driven Optimization

According to the Scientific Registry of Transplant Recipients (SRTR) annual statis-

tics, there are more than 79,000 candidates annually with kidney failure End Stage Renal

Disease (ESRD), who are waiting for transplantation in the U.S (OPTN/UNOS, 2008;

Zenios et al., 2000). However, because only about 10,000 deceased donor kidneys are

available for transplantation each year, more than 20,000 new candidates are added to the

waiting list annually.

Under the current kidney Organ Procurement and Transplantation Network (OPTN)

allocation system, kidneys are allocated to patients primarily through a combination of

tissue matching (also called HLA matching), sensitization level, and waiting time. How-

ever, due to recent trends in medicine as well as the shortfall of supply compared to the

ever increasing demand, the current system fails to match donors and recipients well.

As a result, kidneys with long expected post-transplant survival (often beyond the ex-

pected survival of the patient) are commonly allocated to candidates with short expected

post-transplant survival.

In 2004 the Kidney Allocation Review Subcommittee (KARS) was formed with

the purpose of analyzing ways to improve kidney allocation in the United States. The

committee proposed four major considerations in allocating donor diseased kidneys to

patients: Life Years From Transplant (LYFT), which determines the estimated additional

survival a recipient of a specific kidney may expect to receive, time spent on dialysis,

sensitization level, and Donor Profile Index (DPI) that provides a measure of organ quality.

Using these four concepts, we propose a unique two-phase allocation policy that
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provides real-time near-optimal allocation under the critical constraint of making an al-

location decision in a timely manner. The policy is composed of a learning phase, in

which we compute the optimal semi-offline allocation of organs to candidates, based on

the entire historical information available at hand, and a knowledge-based deployment

phase, in which we derive a knowledge-based allocation policy based on the properties of

the optimal allocation and deploy these rules in real-time.

The novelty of our method is that it incorporates the future uncertainty of alloca-

tions into the decision process, yet maintains computational feasibility regardless of the

challenges that the large dimensionality of the problem presents. We show that our pol-

icy outperforms the current allocation system in many respects, such as waiting time to

transplantation, match between organs and recipients, lower organ rejection rate, etc.

1.2. Research Methods and Goals

We develop a novel approach to improve healthcare performance by analyzing and

modeling healthcare data for deployment in real-time applications. Our approach com-

bines analytic methods from the fields of statistics (ST), data mining (DM), and operations

research (OR). The approach consists of three main steps: data preprocessing, modeling,

and deployment. The urgent nature of healthcare applications requires that the models

be computationally efficient, in order to provide a response within few seconds. We next

describe our approach and the main methods that we use in this work.
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Figure 1.1: Framework building blocks.

1.2.1 Framework

In this section we describe the building blocks in our framework. The float chart in

Figure 1.1 depicts the complete process. Each of the building blocks is discussed in detail

in the following sections.

1.2.1.1 Preprocessing Healthcare Data

Healthcare data are typically characterized by a mixture of complex data structures

and patterns, which makes the analysis of such data nontrivial. Reasons for such observed

patterns in the data vary from seasonality, to individual habits, to noise. It is customary

to divide the data properties into explainable patterns and unexplainable patterns (or

noise). For example, consider data on daily patient arrivals at emergency rooms with

complaints of fever, as plotted in Figure 1.2. It is expected that the arrival rate would be
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higher in winter compared to summer due to the common cold and seasonal flu. Hence,

season is one explained pattern. We can also explain observed day-of-week differences:

patients avoid arriving at hospitals on weekends (unless their condition is urgent) and

typically postpone their visits to the beginning of the week (Monday-Tuesday). However,

there remains a low dispersion of daily patients arrivals counts, after adjusting for the

weekly and seasonal explainable effects, which remains unexplained. An example of an

arrival distribution is given in Figure 1.3, where it is compared to a Normal distribution

(solid line) with the same mean and standard deviation.
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Figure 1.2: Arrivals as an emergency room with complaints of fever. Left: entire dataset.
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Figure 1.3: Distribution of daily patient arrival counts, after adjusting for explainable
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Cleaning the data of anomalies requires a good understanding of the domain of

interest and its context. Theoretical approaches commonly assume a known distribution

of the data, such as the Normal or Poisson distribution, and develop models to detect

data anomalies under distributional assumptions. However, actual health data usually do

not follow classic distributions even after common cleaning and transformation.

The first building block in our approach is gathering sufficient data and cleaning

them, so that they can then be used as input to statistical, DM and OR methods. This

step should produce data that follow a well behaved and/ or interpretable structure. We

therefore must develop robust algorithms that are able to handle such data.

Developing robust algorithms relies heavily on the availability and quality of data.

Hence, in the preprocessing step, we generate sufficient amounts of synthetic training data

with the same properties as the actual data. The need for data generation arises since the

amount of authentic data available for academic purposes is limited (due to privacy issues).

We compensate for the lack of available actual data with simulated semi-authentic data.

We take two different simulation approaches. The first simulates a ‘synthetic’ environment,

in which we generate all the sources of variation in the data. Whereas this does not mimic

a real environment, it enables us to better understand the methods’ performance and their

robustness to changes in the environment.

The second approach is data-driven simulation. Here, we generate statistical replicas

of the original data. The replicas have the same statistical properties as the original data

(e.g., mean and variance), but are only statistically equivalent. In other words, the actual

values differ across replicas. There are several ways to develop a data-driven simulation.

In this work we generate data using a Data Mimicking approach, where the statistical
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properties of the data are estimated and then used to generate new data with the same

features. More information on data mimicking is available in Lotze et al. (2007).

After gathering and cleaning the data we divide them into two sets: training and

holdout. The training set is used to build the model and determine its parameters, as is

classically done in data mining. The holdout set is later used for performance evaluation.

In some cases, we also use a third case, called validation set to tune the model. The valida-

tion set cannot be used for evaluating performance, as it is used for model determinatoin.

All three datasets are selected to be representative samples of the data that the model

will be applied to.

1.2.1.2 Modeling

After preprocessing the data, we move to the important building block of modeling.

The goal of this dissertation and its main contribution is to develop a method that is

optimal for achieving a given goal with the data at hand, using all the information gathered

from the preprocessing step. Ideally, the training data should be complete, and then

the modeling part becomes an offline optimization problem, where the objective is to

maximize some desired outcome, given a set of data (and data replicas), under a set

of constraints. Often, however, the training data are incomplete. That is, the recorded

outcome and/ or part of the baseline is missing. In this case, the problem becomes a semi-

offline optimization problem, where the goal is to maximize the desired outcome given a

set of probabilistic data, under a set of constraints.

Let us consider these optimization problems within the context of biosurveillance

and kidney allocation. In the biosurveillance application, where the goal is to produce
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early alerts of disease outbreaks, we optimize the expected anomaly detection rate while

constraining the false alert rate to be below a required threshold. The false alert constraint

corresponds to the available manpower for investigating alerts and the cost that is associ-

ated with false alerts. In this application, the daily outcome information, which denotes

whether there is an actual outbreak on any given day, is missing. We thus consider a set

of probabilistic outbreaks, which we randomly inject into the data.

In the kidney allocation application we face a multi-objective problem that involves

the outcome of death rate, matching, equity and more. Here, we optimize a combined

measure of the different objectives under individuals’ expected health condition and death

rate. Because the health condition and death rate of individuals that left the waiting

list (after being allocated a kidney) is unknown, a semi-offline optimization is required.

In other words, we model a probabilistic future scenario for individuals with missing

information and use these scenarios as an input to our optimization problem.

Another important feature of the algorithms that we propose is timeliness. In prac-

tice the algorithms will be deployed in real time. Since human life is involved, it is

important both to support the decision in a timely manner and to adjust to changes in

the data as close as possible to when they occur. For example, a kidney from a deceased

donor must be allocated within 48 hours. During this timeframe, an allocation decision

should be made, accounting for the possibility of patient rejection (which drives the need

for a new allocation decision), the kidney must be shipped, and the transplant done. This

short time frame implies that the timeliness of the analytical method makes an allocation

decision substantial for the success of a transplant. Another example, from the biosurveil-

lance domain, is an epidemic. When an epidemic outbreak erupts, it is only a matter
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of days until it diffuses into large parts of the population. Hence, detecting a disease

outbreak must take place very quickly. Every additional day of delay in detection can be

crucial in increasing the number of infected individuals and reducing the effectiveness of

public health intervention.

1.2.1.3 Performance Evaluation

The last building step in our approach is evaluation, in preparation for deploying

the models in real-time systems where future events are unknown. The evaluation block is

composed of three steps: (1) performance in terms of the objective, (2) evaluating compu-

tational performance and timeliness, and (3) sensitivity analysis. Performance evaluation

and timeliness evaluation are studied when the algorithms are applied to test real-time

datasets. The performance and timeliness are tested against other known and used meth-

ods. Sensitivity analysis is an integral part of the deployment step as it enables us to

evaluate the robustness of our methods in terms of their sensitivity to different sources

of data variation. In other words, we analyze the performance of the methods when the

environment changes, or when applied to new datasets. In reality, data properties change

over time and the methods must be able to adjust to such changes.

Another important aspect that influences model deployment is understanding the

end user’s needs and technical training. Healthcare practitioners tend to prefer deploying

methods that are parsimonious and easily interpretable. Hence, we derive the manage-

rial implications of our models and provide a set of guidelines and recommendations to

healthcare systems. We also derive, when possible, a set of business rules that can replace

the actual models and be used as ‘rules of thumb’ in the specific contexts.
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1.2.2 Contributions of This Dissertation

In this dissertation we develop a framework that combines techniques from the

disciplines of data mining, statistics and operations research methods for enhancing per-

formance in real-time decision support systems in healthcare. In particular, we apply

optimization algorithms on processed data to improve pattern and information extrac-

tion and to tune parameters of data mining algorithms. Our approach consists of three

main concepts: data gathering and preprocessing, modeling, and deployment, as shown

in Figure 1.1. We apply and illustrate the framework in the context of two important

healthcare domains: biosurveillance and kidney allocation. We emphasize the robustness

of our approach and its practical aspects in each of the two healthcare domains.

In the biosurveillance context, we focus on the problem of early detection of dis-

ease outbreaks. We concentrate on temporal monitoring, with the goal of improving the

performance of existing monitoring algorithms for automated biosurveillance in terms of

alerting properties. In particular, we focus on monitoring univariate and multivariate

pre-diagnostic series.

For monitoring univariate series, we take an approach that combines monitoring

methods rather than choosing a single one, as commonly done in most published studies

and as implemented in several national-level systems. We take a combined OR and DM

approach in which we formulate the problem of early detection of disease outbreaks as an

integer programming problem with the objective of finding a set of weights for each of the

methods considered, such that the weights optimize the combination in terms of true and

false alert rates. The weights of the combination are chosen according to the properties

of the data, in a DM fashion. This combined OR and DM approach expands the use
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of traditional statistical control charts that are widely used in industry and are familiar

to healthcare practitioners. We evaluate our method on authentic biosurveillance data

and illustrate its robustness to different data properties as well as to different epidemic

outbreak magnitudes and shapes.

When multivariate time series are considered, multiple series are monitored simul-

taneously for the purpose of detecting epidemic outbreaks in one or more of the series.

Here, we describe several OR- and statistical-based multivariate monitoring approaches,

and evaluate them based on practical performance aspects such as robustness to often

impractical assumptions, the amount of data required for proper performance, and com-

putational aspects. We perform a large simulation study and examine performance on

authentic biosurveillance data.

In the kidney allocation context, we consider the problem of allocating deceased

donor kidneys to candidates with kidney failure. Here we combine an optimization tech-

nique with ST modeling and DM methods and develop a two-phase allocation policy that

involves a learning phase and a real-time, decision-support phase. Our policy accounts for

dynamics in the queue, such as patients’ expected health condition deterioration, and that

of patients joining or leaving due to mortality. In addition, we provide complete model

estimation, including candidates’ changes in health condition, mortality rate, candidate-

organ matching probability, and organ quality. These estimates are then used to tailor our

proposed policy to the properties of the kidney waiting list data. In summary, the con-

tribution of this dissertation is in building an overall framework that integrates methods

from three prominent data analytic fields, to produce systems that can support decisions in

real-time. We also contribute to two important areas in healthcare, by designing practical,
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improved systems for early disease detection and for kidney allocation.
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Part I

Detecting Disease Outbreaks: Univariate and Multivariate Monitoring
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Chapter 2

Background

In 1918, one of the deadliest Influenza pandemics in history erupted, called The

Spanish Flu. Approximately 20 to 40 percent of the worldwide population fell ill and over

50 million people died worldwide. Outbreaks followed shipping routes from North America

through Europe, Asia, Africa, Brazil and the South Pacific. The pandemic reached its

peak after 5-6 months (see Figure 2.11). Nearly 40 years later, in February 1957, the

Asian Influenza pandemic erupted in the Far East. Unlike the Spanish Flu, the Asian

Influenza pandemic virus was quickly identified and vaccines were available 6 months later.

Approximately 2 million people died in this outbreak (compared to the 50 million in the

Spanish Flu). Other known outbreaks in history, such as the Hong Kong Flu (1968-69),

the Avian Flu (1997), SARS (2003) and the recent Avian Flu (2008-9) also resulted in

high death tolls over the years. Unfortunately the threat of new pandemic outbreaks is

still looming.

A major goal of public health is to figure out whether and how transmission of dis-

eases can be diminished. Researchers at the Center for Humanitarian Logistics at Georgia

Tech (www.tli.gatech.edu/research/humanitarian/projects.php) have shown that

a pandemic outbreak effect can be greatly reduced if quarantine is imposed at the early

stages of the disease. The US Centers for Disease Control & Prevention (CDC) layout

guidelines and strategies for reducing disease transmission, including the use of personal
1Figure source: Pandemic Influenza: The Inside Story. Nicholls H, PLoS Biology, available online:

http://dx.doi.org/10.1371/journal.pbio.0040050
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Figure 2.1: Spanish Flu 1918-1919 (A/H1N1).

protective equipment (e.g., masks and gloves), hand hygiene, and safe work practices. The

CDC recommendations also outline actions that might be taken during the earliest stage of

a pandemic, when the first potential cases or disease clusters are detected. These include

individual-level containment measures such as patient isolation and identification, moni-

toring, and quarantine of contacts (www.hhs.gov/pandemicflu/plan/appendixf.html).

The early detection of disease outbreaks therefore plays a major role in preventing

disease transmission and reducing the size of the affected population. In modern bio-

surveillance a wide range of pre-diagnostic and diagnostic daily counts are monitored for

the purpose of alerting public health officials when there is early evidence of a disease

outbreak. This is in contrast to traditional biosurveillance, where only diagnostic mea-

sures (such as mortality and lab reports) are examined, usually locally, and at aggregation

levels such as weekly, monthly, or annually. Moreover, in modern biosurveillance the goal

is prospective while traditional biosurveillance is more retrospective in nature. Although

the tasks and data types and structures differ widely between traditional and modern
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biosurveillance, most monitoring algorithms have been migrated from traditional to mod-

ern systems. The result is that current modern biosurveillance detection methods suffer

from multiple statistical and practical limitations that greatly deteriorate their ability to

achieve their intended purpose. For a general overview of the statistical challenges that

arise in biosurveillance see Shmueli and Burkom (2010).

A common practice for detecting outbreaks in biosurveillance data is monitoring

the data with control charts. Control charts (also referred to as monitoring charts) are

used to monitor a process for some quality parameter in order to detect anomalies from

desired behavior. In the context of modern biosurveillance, control charts are used to

monitor aggregated daily counts of individual health care seeking behavior (such as daily

arrivals to emergency departments or medication sales), for the purpose of early detection

of shifts from expected baseline behavior. Three control charts are commonly used to

monitor such pre-diagnostic daily data, and are implemented (with some variations) in

the three main national biosurveillance systems in the Unites States: BioSense (by CDC),

ESSENCE (by the Department of Defense), and RODS. The three charts are Shewhart,

Cumulative Sum (CuSum) and Exponential Weighted Moving Average (EWMA) charts.

These control charts are described in detail in Section 10.1.

One of the main challenges of using control charts to monitor biosurveillance data

is that control charts assume that the monitored statistics follow an independent and

identically-distributed (iid) normal (or other known) distribution with constant mean and

variance. Daily pre-diagnostic counts usually fail to meet this assumption. In reality,

time series of such daily counts often contain seasonal patterns, day-of-week effects, and

holiday effects. Monitoring such data therefore requires an initial processing step where
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Figure 2.2: Traditional Biosurveillance. (a) Raw series of number of daily military clinic
visits with respiratory complaints; (b) Daily military clinic visits series after removing
explainable patterns (referred to as residuals); (c) Monitoring the residuals with a control
chart.

such explainable patterns are removed. Such methods are described in Section 10.1. For

illustration, compare Figures 2.2a and 2.2b that show a series of daily military clinic

visits before and after pre-processing. One explainable pattern that is removed is the

day-of-week effect, which is clearly visible in Figure 2.2a, but absent from Figure 2.2b. It

is customary to refer to the preprocessed series as residuals. In modern biosurveillance,

control charts are used to monitor the residuals for the purpose of detecting unexplainable

patterns, or simply outbreaks. Figure 2.2c exemplifies monitoring of residual series.

Another challenge of applying control charts in the modern biosurveillance context

is that each type of chart is most efficient at capturing a specific outbreak signature (Box

et al., 2009). Yet, in the context of biosurveillance the outbreak signature is unknown, and
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in fact the goal is to detect a wide range of signatures for a variety of disease outbreaks,

contagious and non-contagious, both natural and bio-terror related. It is therefore unclear

which method should be used to detect such a wide range of unspecified anomalies. We

address this problem in Chapter 3 in which we describe a novel, data-driven method for

combining multiple preprocessing techniques and/or a set of monitoring algorithms that

outperform any of the single methods in terms of true and false alarms.

Current temporal monitoring in biosurveillance systems is done univariately, by

applying univariate control charts to each series separately. However, a major feature

of biosurveillance data is multiplicity in several dimensions: multiplicity of data sources

(e.g., over-the-counter medication sales, nurse hotlines, and emergency department visits);

multiple locations (e.g., multiple hospitals is a certain region), a variety of diseases of

interest, multiple time series from a single source (e.g., medications for treating different

symptoms), etc. In Chapter 4 we address the question of feasibility and usefulness of

multivariate monitoring techniques for application in biosurveillance.

2.1. Datasets

We describe two authentic biosurveillance datasets. We later use these datasets to

illustrate the performance of our monitoring methods.

2.1.1 Dataset1: BioALIRT

This dataset is a subset of the dataset used in the BioALIRT program conducted

by the U.S. Defense Advanced Research Projects Agency (DARPA) (Siegrist and Pavlin,
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2004). The data include six series from a single city, where three of the series are indicators

of respiratory symptoms and the other three are indicators of gastrointestinal symptoms.

The series come from three different data sources: military clinic visits, filled military

prescriptions, and civilian physician office visits. Figures 2.3 and 2.4 display the six series

of daily counts over a period of nearly two years.

Figure 2.3: Daily counts of military clinic visits (top), military filled prescriptions (middle)
and civilian clinic visits (bottom), all respiratory- related

Figure 2.4: Daily counts of military clinic visits (top), military filled prescriptions (middle)
and civilian clinic visits (bottom), all gastrointestinal- related

2.1.2 Dataset2: Emergency Department Visits

The data include series of daily counts of patients arriving at emergency departments

in a certain US city, between Feb-28-1994 and Dec-30-1997, broken down by the type of

“chief complaint”. The counts are grouped into 13 categories using the CDC’s syndrome
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groupings. The data are shown in Figure 2.5. 2

Figure 2.5: Daily counts of chief complaints by patients arriving at emergency departments
in a US city

2.1.3 Outbreak Signatures

One of the main challenges with authentic pre-diagnostic data is that they are

unlabeled, such that outbreak periods are usually unknown. For purposes of evaluation

we therefore assume that the authentic data do not contain any signatures of unusual

diseases, and the only signatures are those that we inject artificially. This assumption is

reasonable when the goal is to detect disease outbreaks that we know are not present in

the data (such as an outbreak following a bioterrorist attack or a pandemic such as avian
2We thank Dr. Howard Burkom of the Johns Hopkins University’s Applied Physics Laboratory, for

making this aggregated dataset, previously authorized by ESSENCE data providers for public use at the
2005 Syndromic Surveillance Conference Workshop, available to us.
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flu or SARS). The assumption is not reasonable if the goal is to detect an event such as the

onset of Influenza which recurs annually. In our case we are indeed interested in detecting

an unknown disease outbreak and hence the assumption is reasonable.

When coming to study the performance of our monitoring algorithms, we would like

to evaluate the behavior in both the absence and presence of outbreaks. To examine per-

formance in the presence of outbreaks, we inject into the raw data (before preprocessing)

outbreak signatures. The insertion into the raw data means that we assume that effects

such as day-of-week and holidays will also impact the additional counts due to an out-

break. We simulate two different outbreak signature shapes (For details see Lotze et al.,

2007):

Single day spike: We consider small to medium spike sizes, because biosurveillance sys-

tems are designed to detect early, more subtle indications of a disease outbreak. We

generate a single-day spike outbreak with n number of cases, where n is stochastic

and proportional to the standard deviation of the original data:

n = a× sd + ε

ε ∼ N(0, σ)

Lognormal progression: We consider a (trimmed) lognormal progression signature, be-

cause incubation periods have been shown to be well approximated by a lognormal

distribution with parameters dependent on the disease agent and route of infection

(Burkom, 2003). We generate log-normal shaped outbreaks with shape parameters

µ and σ. The peak of the outbreak is approximately on day exp(µ − σ2). Similar
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to the spike outbreak, the number of cases (i.e., the area of the log-normal shape)

is proportional to the standard deviation. We then trim the last t% of the cases to

avoid long tails.

Figure 2.6 illustrates the process of injecting a lognormal outbreak into the raw

data.

Figure 2.6: Injecting a lognormal outbreak signature into raw data
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Chapter 3

Algorithm combination for improved performance in biosurveillance

systems

This chapter proposes an enhancement to currently used algorithms for monitoring

daily counts of pre-diagnostic data. Rather than use a single algorithm or apply multiple

algorithms simultaneously, our approach is based on ensembles of algorithms. The ensem-

bles lead to better performance in terms of higher true alert rates for a given false alert

rate threshold.

Most research studies have focused on using a combination of a particular prepro-

cessing procedure with a particular monitoring algorithm. For example, Brillman et al.

(2005) present a combination of square regression with a Shewhart monitoring chart. Reis

and Mandl (2003) used an autoregressive method integrated with moving average (MA)

charts. A literature survey of existing outbreak detection algorithms is outlined by Buck-

eridge et al. (2005) and Shmueli and Fienberg (2006). In practice, several of the leading

national and regional biosurveillance systems use either no preprocessing or a single sim-

ple preprocessing method together with a few different monitoring algorithms (typically

Shewhart, MA, CuSum, and EWMA charts). The multiplicity in monitoring algorithms

creates multiple testing which results in excessive false alarm rates.

Unlike ‘well-behaved’ series, where an adequate preprocessing technique can be se-

lected based on the data characteristics, pre-diagnostic data are usually non-stationary,

28



Preprocessing Biosurveillance Data

Modeling

Evaluation

Remove explainable 

patterns

Gathering 

biosurveillance data
Simulate outbreaks

Data

Designing a method for optimal combining a set of  

monitoring algorithms, in terms of  true and false

alarms

Trained 

Model

Performance 

evaluation

Designing a  computationally 

efficient combination method based 

on the  optimal combination

Figure 3.1: Biosurveillance schematic: univariate monitoring.

noisy, and extremely heterogeneous across geographies, data sources, and time. In this

context it is hard to determine which preprocessing technique is most adequate for each

data stream. Furthermore, when the outbreak pattern is known priori (a signature recog-

nition task), we can design the most efficient monitoring algorithm. However, in the

biosurveillance context the nature of a disease outbreak in pre-diagnostic data is typically

unknown, and therefore the choice of monitoring algorithm is not straightforward.

Here, we describe a method for combining a set of monitoring algorithms and/or

a set of multiple preprocessing techniques that outperform any of the single methods in

terms of true and false alarms. We focus on combining monitoring algorithms, and show

that by combining results from multiple algorithms in a way that controls the overall false

alert rate, we can actually improve overall performance. The float chart in Figure 3.1

depicts the outline of our framework applied to univariate monitoring.

The remainder of the chapter is organized as follows: Section 3.1 introduces the
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notion of model combinations in terms of combining residuals and combining control chart

output. Section 3.2 applies a control chart combination method to our data, and we display

results showing the improvement in detection performance due to method combination.

Section 3.3 summarizes the main points and results and describes potential enhancements.

3.1. Combination Models

We consider the problem of linearly combining control charts and/or preprocessing

techniques for improving the performance of automated biosurveillance algorithms. We

focus on control chart combinations, with the use of a single preprocessing technique

(see Figure 3.2). Our combination approach can be similarly applied on residuals from

different preprocessing techniques, with the use a single control chart (see Figure 3.3). A

comprehensive study of residual combination and optimization of the complete process

(combining both residuals and control charts) is available in Yahav et al. (2010).

We assume that the data are associated with a label vector Ot, which denotes

whether there is an actual outbreak at day t. We further assume a sufficient amount of

training data. The labeled vector and sufficient training data are essential when seeking

an optimal combination that increases the true alert rate while maintaining a manageable

false alert rate.

3.1.1 Control chart combination

In this section, we assume that the raw data have undergone a preprocessing step

for removing explainable patterns. Thus, the input into the control charts is a series
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of residuals. We consider the following three monitoring charts: Shewhart, EWMA and

CuSum. We construct a linear combination of the monitoring binary output for the

purpose of maximizing the true alert rate, while constraining the false alert rate to be below

a specific threshold. The monitoring charts are combined in a semi-offline fashion, that is,

the series of residuals is priori known, and the outbreak information (and consecutively,

the true and false alert vectors) is completed in the preprocessing step. This formulation

yields the following mixed integer programming optimization problem:
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max
n∑

t=1

TAt

s.t.

(Bin :) FAt, TAt ∈ {0, 1}

(FA :) (wS × St + wE ×Et + wC × Ct)× (1−Ot)− T < FAt

(TA1 :) [(wS × St + wE × Et + wC × Ct)− T ]×Ot ≤ TAt ×Ot

(TA2 :) (TAt ×Ot ≤ (wS × St + wE ×Et + wC × Ct)×Ot

(FA sum :)
∑n

t=1 FAt ≤ α× n, (3.1)

where FAt (TAt) is an indicator for a false (true) alert on day t and the variables wi are

the weight of the control charts (wi for control chart i). The constraints can be interpreted

as follows:

Bin: restricts the false alert (FA) and true alert (TA) indicators on day t to be binary.

FA: is a set of n (training horizon) constraints that determine whether the combined

output (wS × St + wE ×Et + wC × Ct) yields a false alert on day t:

• If there is an outbreak on day t, then 1−Ot = 0 and the constraint is satisfied.

• Otherwise (1 − Ot = 1), we compare the combined output with the threshold

T = 1. If the combined output is greater than the threshold, we set FAt to 1.

TA1, TA2: is a set of 2n constraints that determine whether the combined output (wS×

St + wE ×Et + wC × Ct) yields a true alert on day t.

FA sum: sets the false alert rate to be less than α.
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3.2. Empirical Study and Results

In this Section we describe the results obtained from applying the combination meth-

ods to authentic pre-diagnostic data with simulated outbreaks. We start by describing

the experimental design and then evaluate the methods’ performance.

3.2.1 Experiment Design

We consider the data described in Chapter 2, Section 2.1.1. We inject into the raw

series 20 outbreak signatures, in random locations (every 10 weeks on average). Each

outbreak signature can be either a spike of size 0.5× σ (≈ 60 cases), with probability 0.6,

or a trimmed lognormal curve of height 5×σ (≈ 450 cases) with probability 0.4. The peak

of the lognormal curve is typically on the 5th or 6th day. We inject a mixture of the two

outbreak signatures to illustrate the robustness of the algorithm combination. We repeat

this test setting 100 times.

When combining control charts, the desired false alert rate (α) is varied in the range

α = 0.01, 0.05, 0.1, 0.2. We set the threshold of the monitoring charts to meet the desired

overall false alert rate α, using one year of training data (referred to as the experimental

threshold).

3.2.2 Results

We start by preprocessing the raw series using Holt Winters exponential smoothing.

Control charts (Shewhart, EWMA, CuSum, and the combined output) are then used to

monitor the series of residuals. Finally, we calculate the false and true alert rates produced
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by each method. For the lognormal outbreak signature, we consider a true alert only if

the alert took place before the peak, because timely alerting plays an important role in

diminishing the spread of a disease.

In the first experiment we optimize the control chart combination separately for

each of the 100 tests. Note that the weights are computed based on a training dataset of

150 days only and not based on the entire dataset. Figure 3.4 depicts the results of this

experiment. The different panels correspond to different levels of experimental threshold

α. Each panel shows the true alert rate distribution for each of the 4 thresholds. Medians

are marked as solid white lines, boxes correspond to the inter-quartile range, and the lines

extend between the 5th and 95th percentiles. The results clearly show the advantage of

the combined method in terms of both increasing true alert rate, subject to a given false

alert rate, and in reducing the variance of the true alert rate.

Figure 3.4: True alert rate distribution for three control charts and their combination, by
false alert rate (α = 0.01, 0.05, 0.10, 0.20). Means are marked by solid white lines.
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The main drawback of the first experiment is that the computation is very time

consuming. Since achieving the optimal weights for the control charts is an NP complete

problem, computation time increases exponentially in the length of the training data.

Moreover, examining the actual weights shows that EWMA and Shewhart charts dominate

the combination such that alerts are mostly determined by one of them (e.g., Shewhart)

combined with an alert by one other method (e.g., either EWMA or CuSum). Figure 3.5

depicts the distribution of the methods’ weights for threshold level α = 0.05. In an effort

to reduce computation time, yet seek for good combinations, we take a hybrid approach:

We choose among a small set of pre-determined combinations that appear to work well.

This approach greatly reduces computation time and allows for real-time computation in

actual settings.

Figure 3.5: Distribution of methods weights for threshold level α = 0.05.

Based on the general results found in the first experiment for the optimal weights,

in the next experiment we chose two settings of pre-set weights:

Shewhart+: The algorithm signals an alert at time t if the Shewhart statistic signals an

alert, and at least one other chart signals an alert.

EWMA+: The algorithm signals an alert at time t if the EWMA statistic signals an
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alert, and at least one other chart signals an alert.

The resulting true alert rates are shown in Figure 3.6. We observe that for a very

low experimental false alert rate threshold (α = 0.01) the two new combination charts

(Shewhart+ and EWMA+) do not perform as well as the individual Shewhart and EWMA

charts. However, when the experimental false alert rate threshold is higher (α = 0.05)

the new charts perform at least as well as the ordinary charts, and even outperform the

optimal combination (based on training data) when α > 0.05. None of the methods

violated the experimental false alert rate threshold by more than 10% when α = 0.01, and

3% when α > 0.05.

�

Figure 3.6: True alert rate distribution for select combinations, Panels depict the false
alert rate (α = 0.01, 0.05, 0.10, 0.20).
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3.3. Discussion and conclusions

In this work we proposed a method for improving the performance of univariate

monitoring of non-stationary pre-diagnostic data by combining operations at each of the

two stage of the outbreak detection task: data preprocessing and residual monitoring.

In this work we focus on combining monitoring charts. By setting an objective cost

function that takes into account true and false alarm rates, we are able to formulate this

as an integer programming problem and to find the weights that optimize the combination

method. Initial empirical experiments confirm the advantage of this portfolio approach.

But further experimentation is needed.

In the future, in addition to expanding the adaptive combination, we plan to study

a machine-learning method that automatically adjusts the combination weights based

on current and recent performance, and on the most recent weight vector. The idea is

to penalize individual methods whenever the combined method misses a true alarm or

detects a false alarm.

Another step is to explore the relationship between linear combinations of control

charts and the use of wavelets. It is known that several control charts are related to differ-

ent resolutions of the Haar wavelet Aradhye et al. (2003). The extent of this relationship

to the combination method is therefore an interesting open question.
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Chapter 4

Directionally-sensitive multivariate control charts

An important limitation of current detection algorithms is that they monitor each

data stream univariately, when in practice the number of data streams is usually large.

Among the different sources of biosurveillance data are over-the-counter medication sales,

nurse hotlines, and emergency department visits from a single of multiple locations, etc.

In this section we focus on multiple time series arriving from a single data source, or from

multiple data sources. A central question that arises is whether to monitor each series

separately and then to combine the results in some fashion, or instead to monitor the series

in a multivariate fashion. Current temporal monitoring in biosurveillance systems is done

univariately, by applying univariate control charts to each series separately. This multiple

testing results in a very high false alert rate, leading many users to ignore alerts altogether.

An alternative is to use multivariate control charts, which have traditionally been used

in industry for monitoring multiple series simultaneously. This alternative to employing

multiple univariate charts simultaneously helps avoid the multiple testing phenomenon.

Furthermore, multivariate control charts take advantage of the correlation structure

between individual series, thereby having a higher potential of detecting small signals

that are dispersed across series. However, several theoretical and practical issues arise

regarding the usefulness of multivariate control charts in biosurveillance. In particular,

the characteristics of biosurveillance data and the conditions under which monitoring is

performed usually mean that standard assumptions are not met, thereby rendering theo-
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retical derivations questionable. This chapter tackles the challenge of directional-sensitive

monitoring in practice, in terms of the sensitivity and robustness of several multivariate

monitoring methods for detecting outbreak signatures in multivariate biosurveillance-type

data.

Fricker (2007) and Fricker et al. (2008) offer comparisons between Hotelling and

Multivariate CUSUM charts, and between Multivariate CUSUM and Multivariate EWMA

charts. They evaluate performance on simulated multivariate normal data with a seasonal

sinusoidal cycle and a random fluctuation, as well as on authentic data. Our work differs

from the two papers above in that we examine the robustness of such methods to various

assumption violations as well as to practical data conditions.

The novelty of this work is by isolating the properties of authentic data streams

that violate the basic assumptions of multivariate monitoring methods, and evaluating

the sensitivity and robustness of the methods to these violations. Our work focuses on the

evaluation of computationally-feasible, model-based methods for monitoring multivariate

data in a directionally-sensitive way. The main contribution is the evaluation of these

methods in light of actual data characteristics and application conditions in disease out-

break detection, which often violate the assumptions of these methods. In addition, we

assess the effects of practical factors such as the number of series, the amount of training

data, and the level of cross-correlation on performance.

The outline of our framework applied to multivariate monitoring is shown in the

float chart in Figure 4.1 depicts the outline of this project.
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Figure 4.1: Biosurveillance schematic: multivariate monitoring.

4.1. Directional monitoring

Three popular univariate control charts are the Shewhart chart, the Cumulative

Sum (CuSum) chart, and the Exponentially-Weighted Moving Average (EWMA) chart.

Multivariate extensions exist for each of these: The Hotelling T 2 chart, the MCuSum

and the MEWMA, respectively (see e.g. Crosier (1988); Pignatiello and Runger (1990);

Hotelling (1947); Lowry et al. (1992); Lowry and Montgomery (1995)). These multivariate

charts are aimed at detecting a change in one or more of the process means in any direc-

tion. However, in the context of biosurveillance the interest is in detecting only an increase

in one or more of the means (indicative of disease outbreak). The hypothesis is that an

epidemic will manifest in the series as an increase in daily counts. In the univariate case

there are simple corrections of the bi-directional charts to accommodate a one-directional
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change. In the multivariate case correcting for directional sensitivity is more complicated.

One approach has been to empirically adjust the threshold of ordinary multivariate charts

to achieve a given false alarm rate and then to evaluate its true alerting properties (Fricker,

2007). In this chapter, we focus on two approaches that are useful for practical implemen-

tation: Follmann (1996) provides a correction for the ordinary Hotelling chart (Hotelling,

1947) and Testik and Runger (2006) present a quadratic-programming approach to esti-

mate the in-control mean vector. These two methods take two different approaches to

yield directionally-sensitive Hotelling charts: The former is a statistical approach, while

the latter is an operations-research approach. We describe each of these methods in detail

in Section 4.3, where we also generalize them to obtain directionally-sensitive MEWMA

charts. Section 4.4 compares the performance of the different charts. Using a large array of

simulated data, we compare the performance of the directionally-sensitive Hotelling and

MEWMA charts as a function of the number of monitored series, the cross-correlation

structure, and the amount of training data required for estimating the covariance matrix.

We then evaluate the robustness of the charts to underlying assumptions of normality and

independence. In Section 4.5 the four charts are applied to a set of authentic biosurveil-

lance data. Conclusions are given in Section 4.6.

4.2. Multivariate control charts

We use the following notation throughout the chapter. Let Xt = {X1
t , . . . , Xp

t } be

a p-dimensional multivariate normal vector with mean µ = {µ1, . . . , µp} and covariance

matrix Σ. We assume that at every time point t, a single observation is drawn from each

of p series.
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In the next sections, we describe the Hotelling control chart, followed by modifica-

tions by Follmann (Follmann, 1996) and by Testik and Runger (Testik and Runger, 2006)

for directional-sensitivity. We then expand their methods to obtain directionally-sensitive

MEWMA charts.

4.2.1 Hotelling’s T 2 Control Chart

The multivariate extension of the ordinary Shewhart chart is the χ2 chart, where

the monitoring statistic is (Hotelling, 1947):

χ2
t = (Xt − µ)

′
Σ−1(Xt − µ). (4.1)

This is the squared statistical distance (also known as Mahalanobis distance) of the obser-

vation on day t from the in-control mean vector. Under the null no-shift hypothesis the

statistic follows a χ2(p) distribution. The alarm threshold is therefore χ2
α(p), where χ2

α(p)

is the α quantile of the χ2(p) distribution.

When Σ is unknown, it is estimated from data of length tr (referred to as training

data). The estimated covariance matrix is denoted by S. The statistic, known as the

Hotelling T 2 statistic, is given by (Montgomery and Klatt, 1972)

T 2
t = (Xt − µ)

′
S−1(Xt − µ). (4.2)

Under the null hypothesis of no shift, T 2 ∼ p(tr+1)(tr−1)
tr(tr−p) F (p, tr−p). The alerting threshold
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for the Hotelling T 2 statistic is therefore

p(tr + 1)(tr − 1)
tr(tr − p)

Fα(p, tr − p), (4.3)

where Fα(p, tr − p) is the α quantile from the F (p, tr − p) distribution.

4.2.2 Multivariate EWMA

The standard univariate EWMA chart is based on the statistic:

Zt = λXt + (1− λ)Zt−1, (4.4)

where 0 < λ ≤ 1 is the smoothing parameter (typically chosen in the range [0.1,0.3]).

Under the null hypothesis of no shift, this statistic follows a normal distribution with mean

µ and asymptotic variance s2
EWMA = (λ/(2− λ))s2, where s is the standard deviation of

Xt estimated from historical data. The alerting thresholds are therefore µ± k × s2
EWMA,

where the constant k is commonly set to 3.

A multivariate extension of EWMA (MEWMA) is first to create an EWMA vector

from each of the univariate p series (Lowry et al., 1992):

Zt = ΛXt + (1− Λ)Zt−1, (4.5)

where Zt is the EWMA p-dimensional vector at time t, Xt is the p-dimensional observation

vector, and Λ is a diagonal matrix with smoothing parameters λ1, . . . , λp on the diagonal.

43



The monitoring statistic is then:

Yt = Z
′
tΣ
−1
Z Zt (4.6)

Lowry et al. (1992) showed that for a sufficiently large t (i.e., after a start up period) and

for λ1 = · · · = λp = λ the covariance matrix, ΣZ , is given by

ΣZ =
λ

2− λ
Σ. (4.7)

The alerting threshold is still χ2
α(p).

Note that for small t, the (k, l)th element in the covariance matrix ΣZ is given by

Cov(Zk, Zl)t = λkλl
1− (1− λk)t(1− λl)t

λk + λl − λkλl
σk,l, (4.8)

where σk,l = Cov(Xk, Xl). If λ1 = · · · = λp, then (4.8) reduces to

λ

2− λ

(
1− (1− λ)2t

)
Σ.

4.3. Directionally-Sensitive Multivariate Control Charts

In order to use multivariate control charts for detecting a parameter shift in one

direction (an increase or decrease), there have been several approaches. One approach is

to modify the non-directional multivariate monitoring statistic, as suggested by Follmann

(1996). We describe this method in Section 4.3.1. Another approach is to construct

likelihood-ratio statistics for the alternative hypothesis. Most of the derivations along

these lines are theoretical in nature and are hard to implement for more than 2 series.
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However, Testik and Runger (2006), taking an operations research approach, proposed

an alternative formulation which can be implemented in practice for many series. We

describe their method in Section 4.3.2. We then generalize these two approaches to obtain

directionally-sensitive MEWMA charts.

4.3.1 Follmann’s Approach

Follmann (1996) introduced a correction to the standard Hotelling statistic that

adjusts it for directional sensitivity. The corrected statistic is given by

χ2
t + = (Xt − µ)′Σ−1(Xt − µ), (4.9)

Note that χ2
t + in Follmann’s notation is equivalent to the ordinary χ2

t statistics. The ‘+’

sign indicates that we are interested in mean increase only. Xt in the equation is the sample

mean vector at time t. An alert is triggered when {χ2
t + > χ2

2α(p) and
∑p

j=1(X
j
t −µj) > 0}.

This means that we require the sum of the elements of the mean vector at time t to exceed

the series mean in order to alert.

Follmann proves that the procedure has type I error rate equal to 2α whether or

not the covariance is known, and uses simulations to illustrate its power and to compare

it to more complicated likelihood ratio tests.

Albers et al. (2001) show that the test statistic in (4.9) is not invariant to scale

transformations. They propose a simple fix where instead of Σ the correlation matrix is

used.

45



4.3.1.1 Extending Follmann’s method to MEWMA charts

We extend the method proposed by Follmann in order to convert the ordinary

MEWMA chart to a directionally-sensitive MEWMA chart. This is done by replacing Σ

with ΣZ in equation (4.9) (or equivalently, the original correlation matrix R with RZ),

and Xt by Zt. In other words, the alerting statistic is given by:

χ2
t + = Z′tΣ

−1
Z Zt, (4.10)

and an alert is triggered when {χ2
t + > χ2

2α(p) and
∑p

j=1

(
Zj

t − µj
)

> 0}.

Additionally, if an outbreak occurs on day τ , we allow an option of restarting the

control chart by setting Xτ = µ. The action of restarting reduces the “ringing effect” of

the algorithm, by removing the sequence of alerts that follow an initial alert when there

is a gradual increase in the vector mean.

A method similar to that of Follmann’s was proposed by Joner Jr et al. (2008) and

Fricker et al. (2008). The authors propose the following statistic, which is the maximum

between the Lowry et al. (1992) MEWMA statistic and 0:

Zt = max{λ(Xt − µ0) + (1− λ)Zt−1, 0}

The method is evaluated using simulated multivariate normal data, with simulated Poisson

outbreaks. Although we do not include this method in our sensitivity analysis, we believe

that its performance is equivalent to that of Follmann’s MEWMA.
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4.3.2 Testik and Runger’s Quadratic Programming Approach

A different approach for obtaining directional sensitivity is based on deriving the

monitoring statistic from the likelihood ratio, which is equal to the maximum likelihood

under the alternative hypothesis of a directional shift (either positive or negative) divided

by the null likelihood. Nüesch (1966) showed that (twice the) log-likelihood ratio is

2l(µ) = µ̂Σ−1µ̂, (4.11)

where µ̂ is the maximum likelihood estimator. The monitoring statistic χ2
t = X

′
tΣ
−1Xt

is therefore proportional to the likelihood ratio under the alternative hypothesis. Nüesch

proposed l(µ̂) as an alternative monitoring statistic, where µ̂ maximizes the log likeli-

hood. Testik and Runger (2006) showed that this can be formulated as an easily solvable

quadratic programming problem if the data are first standardized:

X̃t = Σ−1/2Xt, (4.12)

µ̃ = Σ−1/2µ, (4.13)

Nüesch also proved that the corresponding threshold is given by:

P (χ2 > c2) =
p∑

i=1

w(i)P (χ2
i > c2), (4.14)

where w(i) is the probability that hatµ has exactly i nonzero elements. χ2
i is a chi-squared

random variable with i degrees of freedom, and c2 is a constant threshold value.
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The problem has been to compute the weights ω(1), . . . , ω(p). While theoretical

derivations exist, they are typically hard to implement beyond p ≥ 3. Testik and Runger

(2006) obtained the weights empirically, by simulating p-dimensional multivariate normal

data with µ = µ̂ and Σ and estimating the weights from the simulated data. It is

important to note, however, that this approach assumes a known covariance matrix. The

problem, in terms of µ̃, is then:

µ̂t = arg min
µ̃≥0

(X̃t − µ̃)
′
(X̃t − µ̃) (4.15)

4.3.2.1 Extending TR’s Method to MEWMA Charts

We extend Testik and Runger’s method to obtain a directionally-sensitive MEWMA

chart. This is achieved by replacing Σ with ΣZ and Xt by Zt in equations (4.12) and (4.13).

In other words, our standardized data and means are:

Z̃t = Σ−1/2
Z Zt, (4.16)

µ̃ = Σ−1/2
Z µ, (4.17)

and the problem in terms of µz is therefore:

µ̂t = arg min
µ̃≥0

Z̃t − µ̃)
′
(Z̃t − µ̃) (4.18)

In this formulation we do not implement a restart condition for computational rea-

sons. According to TR’s approach the entire series is transformed prior to the monitoring
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action. A restart action would therefore require a re-transformation of the data after each

alert, thereby increasing the run time by a factor equal to the number of alerts. An alter-

native on-the-fly implementation would apply the transformation on a daily basis (rather

than in retrospect). This would not allow using the simple matrix operations for obtaining

µ̂t, but it would easily incorporate the restart condition.

4.4. Performance and Robustness Comparison

We set out to evaluate and compare the four different directionally-sensitive multi-

variate control charts: Hotelling and MEWMA using Follmann’s method, and Hotelling

and MEWMA using Testik and Runger’s method. We compare their actual in-control

performance as a function of the number of monitored series (p), the covariance structure

(Σ) and their robustness to assumption violations that are likely to occur in practice. We

first describe the simulation setup, and then examine the different factors and their effect

on performance. Finally, we examine performance in the presence of a mean increase. We

consider shifts of different magnitude, shape, and their presence in subsets of the series.

We also discuss outbreak detection in the presence of mean decreases.

4.4.1 Simulation Setup

We generate multivariate normal data and vary the level of correlation between

series (ρ = 0.1, 0.3, . . . , 0.9) and the number of dimensions (p = 2, 3, . . . , 20). The length

of each series is set to T = 1000 time points. To compute a false alert rate, the number of

false alerts is divided by T . The desired false alert rate is set to α = 0.05. The threshold is

computed according to equations (4.10) (Follmann) and (4.14) (TR). For each combination

49



of ρ and p, 20 replications are generated. This creates a distribution of false alert rates

for each combination. We then examine the sensitivity and the robustness of the control

charts as we change the simulation setting.

We use R2.4.0 (http://cran.r-project.org/) to implement our simulation.

4.4.2 Impact of Cross-Correlation and Number of Series

We start by evaluating the actual false alert rates of the different charts by assuming

that Σ is known and given by:




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ ... ρ

ρ ρ ρ 1




,

where ρ ∈ {0.1, 0.2...0.5}. For the MEWMA charts we set λ1 = . . . = λp = λ ∈ {0.3, 0.5}.

Figures 4.4-4.5 compare the distribution of false alerts (FA) as a function of the number

of series p (on the y-axes) and correlation ρ (across panels) for the four methods. In all

cases the charts were set to an FA of α = 0.05. The results are provided as side-by-side

boxplots, with the mean FA represented as a solid dot; the whiskers extending to the 5th

and 95th percentiles; and ‘outliers’ represented as hollow dots.

Overall we see that all charts produce false alerts that are centered around FA =

0.05. The inter-quartile range is approximately (0.04,0.06) for all methods, although the

MEWMA charts have a slightly larger variance when λ is small (λ = 0.3). Note that the

number of series does not appear to affect the false alert rate. This is not surprising as
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the thresholds in all four methods are a function of p. Another interesting observation

is that the distribution is very stable across the different correlation levels for all charts.

Based on these results, in our next experiments we set ρ = 0.5 and for MEWMA charts

we set λ = 0.3 (a popular choice in practice.)

4.4.3 Robustness to Assumptions

Next, we study the robustness of the four charts to assumption violations. We

examine the length of training data required to estimate an unknown covariance matrix.

We then relax the assumption of normality of the underlying observations and examine

the behavior of the charts when the series are autocorrelated and when the data come

from a multivariate Poisson distribution (a common scenario with count data).

4.4.3.1 Unknown Covariance Matrix

In this setting we set the cross-correlation to ρ = 0.5. We assume that the covariance

structure is unknown and is approximated from a training data (tr) of varying length

(using the Pearson method (Rodgers and Nicewander, 1988)). We examine the false alert

rate of the charts as a function of the length of the training data.

Unlike bidirectional monitoring methods, in which the F distribution is used when

Σ is unknown (Montgomery and Klatt, 1972), the use of the F distribution in Follmann’s

and TR’s methods is inadequate: In Follmann’s method, recall that the χ2 statistic has

a threshold of 2α rather than α (see equation (4.9)). Therefore, replacing the χ2 statistic

with an F statistic requires an additional modification to the alerting threshold, which
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is not straightforward (see equation (4.3)). In TR’s method, the threshold is computed

empirically. Theoretically, we could simply replace the χ2 distribution in equation 4.14

with an F distribution. However, we find that the χ2 formulation results in a much lower

false alert rate compared to the F distribution. We therefore use a χ2 test in our simulation

study.

Figure 4.6 compares the false alert rate of the four methods. The training data

length varies from tr = 100 time points (left panel) to tr = 500 time points (right panel).

We see that Follmann’s Hotelling chart has a slightly lower average false alert rate than

TR’s Hotelling. This improved performance is more significant when the training period

is short (e.g., tr < 300) and the number of series is high, yet the variance is higher.

Follmann’s MEWMA, on the other hand, has both a lower average false alarm rate and

lower variance.

Overall, we observe that for p ≤ 5 the average false alert rate is centered around

the desired threshold of FA = 0.05, independent of the training data length. This implies

that 100 data points are sufficient to estimate the covariance matrix accurately. However,

for p > 5 the performance depends on the length of the training data. When tr = 100 the

false alert rate increases exponentially in the number of series. When tr = 200 the rate

increases linearly in the number of series. The average false alert rate converges to 0.05

only when the training data include at least 300 time points (almost one year of data, for

daily series!).

Our results coincide with previous literature findings. Jensen et al. (2006) reviewed

the effect of parameter estimation on control charts performance. They found that when

using univariate EMWA charts, the smaller the value of λ, the larger the required sample
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size for ensuring performance similar to that of a chart based on known parameters. Jones

et al. (2001) recommended using 100 samples of size n = 5 for λ = 0.5 and 400 samples

of size n = 5 for λ = 0.1. For Hotelling charts, Nedumaran and Pignatiello (1999)

recommended using sample sizes of at least 200 when the number of observations is n = 5

and the dimension is p = 3.

4.4.3.2 Autocorrelated Series

In this setting we examine the impact of autocorrelation on the false alert rate of

the different charts. It has been shown that biosurveillance daily time series tend to be

autocorrelated (see, e.g., Burkom et al. (2007)). We set the cross-correlation to ρ = 0.5

and vary the autocorrelation coefficient in the range θ ∈ {0.05, 0.15...0.35}.

To understand the impact of autocorrelated series on chart performance, we first

assume a known Σ. Figure 4.7 compares the four charts. The false alert rate of the

Hotelling variants appears similar for both methods and centered around the desired

threshold of FA = 0.05. In contrast, in the MEWMA charts the false alert rate increases

significantly as θ increases, and more so for TR’s method. We observe, for example, that

even when the number of series is p = 2 and the cross-correlation is θ = 0.35, Follmann’s

false alert rate is approximately 0.18 and TR’s is 0.2. For p = 10 series the corresponding

rates are 0.4 and 0.65.

To reduce false alerts, we next examine a version of Follmann’s MEWMA where the

univariate EWMA statistics are restarted after alerts (i.e., if an alert is set on day t, we

set Zt = µ). As mentioned earlier, for computational reasons, we did not implement TR’s

method with restarting. Figure 4.8 shows that the false alert decreases by a factor of 4,
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compared to the MEWMA without restart (Figure 4.7, 3rd panel).

4.4.3.3 Multivariate Poisson data

We now relax the normal distribution assumption, as it is often violated in authentic

data. Instead, we generate multivariate Poisson data (using the method in Chapter 5) with

varying arrival rate λ ∈ {1, 5, 10, 20}. Biosurveillance data are typically daily count data.

In some instances the counts are sufficiently high to justify normal-based control charts,

while in other cases the counts might be too low. In low count situations a reasonable

approximation that has been used in practice is a Poisson distribution (see e.g., Kleinman

et al., 2004; Joner Jr et al., 2008). Examples are daily counts of cough complaints in a small

hospital, or daily counts of school absences in a local high school. Using a multivariate

Poisson structure enables us to evaluate the performance of the control charts in low-count

data.

We evaluate and compare the methods when Σ is known (Figure 4.9) and observe

that MEWMA outperforms Hotelling in terms of FA rate. The difference in performance

is more pronounced as λ decreases, and when the number of series is large (roughly p ≥ 5).

Both Follmann and TR methods have equivalent performance. Similar to the findings in

Stoumbos and Sullivan (2002), we find that MEWMA charts are more robust to non-

normality than Hotelling charts. As the authors suggest, the robustness property might

later cause a decreased rate of true alerts for detecting spike outbreaks.
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4.4.4 Out of control performance

In this section we evaluate the performance of the four control charts in the presence

of unexpected anomalies. Since the exact shape and magnitude of a disease outbreak

manifestation in pre-diagnostic data is unknown, we consider two shapes that represent

abrupt and incremental signatures of varying magnitudes. In particular, we consider one-

day spikes and multi-day lognormal increases. For each control chart we examine the rate

of which it identifies true outbreaks (the ratio of detections, denoted TA), the time to

detection (the number of time points until the first true alert), and the false alert rate.

4.4.4.1 Injecting Outbreaks

We consider iid normal data with correlation ρ = 0.5 and estimate the correlation

matrix from a history of tr = 500 time points that do not contain outbreak signatures.

We vary the number of series in the set p ∈ {4, 8, 12, 16} and inject outbreak signatures

into subsets of the p series of size s ∈ {25%, 50%, 75%, 100%}p.

Spikes. In the first experiment we inject single day spikes into the data. The

magnitude of the spike varies in the range o ∈ {0.5, 1, 1.5, ..., 4} × ~σ, where ~σ is the series

standard deviation (in our experiments we set ~σ = 1). In each experiment 20 spikes are

injected into a subset of series at different time points, and the resulting true and false

alert rates are computed.

Figures 4.10-4.11 show the true alert rate (TA) of the control charts when spikes

of different magnitudes are injected into all p series. Figures 4.12-4.13 present the same

for spikes injected into 25% of the series. For the MEWMA chart we evaluate the TA
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with and without restarting after an alert. As expected, the TA rate is higher for the

Hotelling charts. Also, it appears that TR’s method outperforms Follmann’s in terms of

true detections in both Hotelling and MEWMA charts. The difference in performance is

more noticeable when the subset is small.

To further analyze the true alert rate and its determinants, we examine the rela-

tionship between true and false alerts while controlling for other factors (outbreak size o,

subset size s and number of series p). We use a linear regression model to explore the

magnitude of the cross effect between false and true alert, as shown by equation (4.19).

While the relationship between the alert factors is not necessarily linear, the simplicity of

this analysis enables us to clearly illustrate the increase of false alerts in the presence of

true alerts.

TA = β0 + β1 × FA + β2 × s + β3 × p + β4 × o + ε (4.19)

Table 4.1 shows the output of the estimated model (p-values of the estimates are given in

parentheses, coefficients significance at 5% are in bold). We find that controlling for all

factors, TR’s Hotelling chart performs on average 30% better than Follamnn’s in terms

of percentage of true alert for every additional 1% in false alert rate. The performance is

equal only when the subset size is close to 100%. Similar results are observed for MWEMA

without restart. Another observation is the strong correlation between TA and FA in the

MEWMA control charts. Controlling for all other factors, a 1% increase in FA rate results

in an average 5.35% (Follmann) and 4.24% (TR) increase in TA. MEWMA with restart,

on the other hand, has the exact opposite relationship, presumably since the restarting

action erases the history and allows the control chart to re-accumulate small deviations
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Table 4.1: The relationship between TA and FA rates

Coef Follmann’s TR’s Follmann’s Follmann’s MEWMA TR’s
Hotelling Hotelling MEWMA with Restart MEWMA

β̂0 0.22 0.33 -0.31 -0.05 -0.21
(0) (0) (0) (0.27) (0)

β̂1 -0.62 -0.44 5.35 -3.78 4.24
(0.26) (0.39) (0) (0) (0)

β̂2 0.01 -0.14 0.01 -0.02 -0.11
(0.64) (0) (0.21) (0.19) (0)

β̂3 0.2 0.2 0.2 0.25 0.22
(0) (0) (0) (0) (0)

β̂4 0.01 0.01 0 0.01 0.01
(0) (0) (0) (0) (0)

Adj-R2 0.58 0.58 0.71 0.7 0.75

from the means.

Log-normal signatures. Next, we inject into the data multi-day lognormal pro-

gression outbreaks. As with the spikes, we vary the magnitude of the signature and the

fraction of ‘infected’ series. We inject a single signature in each experiment and examine

the number of time points until the first successful detection as well as the true alert

rate. Results are shown for subset size s = 25%p in Figures 4.14-4.15. Panels correspond

to different magnitudes (we plot partial magnitudes for brevity). Boxplots show the dis-

tribution of time to detection (black dots are average time to detection), condtional on

outbreak being detected.

We observe that MEWMA chart perform better than Hotelling charts. This result

is expected, as MEWMA charts are designed to detect gradually increasing signals. We

again see that TR’s method outperforms Follmann’s both in terms of TA and time to

detection.

57



4.4.4.2 Detection of Mean Increases in the Presence of Mean Decreases

Although we are interested in detecting only increases in the process mean, it is

possible that due to data quality anomalies, one or more of the means will decrease (e.g.,

due to reduced reporting or problems with data recording on a certain day). We therefore

evaluate the performance of the control charts when we inject both positive and negative

spikes, where negative spikes represent such anomalies. Recall, however, that for detecting

disease outbreaks rather than data quality anomalies, we are only interested in detecting

mean increases (i.e., positive spikes).

We consider a bivariate dataset (p = 2). In each experiment we inject 20 positive

spikes into the first series and 20 negative spikes into the second series. Positive and

negative spikes are injected on the same days. The magnitude of the spikes varies in the

range o ∈ {1, 2, 3} × ~σ, where ~σ is the series standard deviation.

Figure 4.16 (top panels) depicts the resulting true alert detection rate of the four

methods. For comparison, we repeat the same experiments with positive spikes only

(middle panels) and with negative spikes only (injected into a single series, bottom panels).

Note that ‘True Alert’ (TA) in the bottom panels refers to the detection rate of decreases

in the mean. We see that, surprisingly, TR’s Hotelling and MEWMA charts detect mean

decreases and alert as if they were also outbreaks (i.e., mean increases). The result is

an ‘improved’ performance when both positive and negative spikes are present, yet poor

performance (increased false detection) when only negative spikes are injected into the

data.

As for Follmann’s charts, a simultaneous decrease and increase in the mean vector
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leads to poor performance of Follmann’s Hotelling chart. This result is expected, as

Follmann’s method alerts when the summation of the series is greater than zero (see

Equation (4.10)). In contrast, although Follamnn’s MEWMA chart performs similar to

the Hotelling chart, it performs equally well in the presence and the absence of decreasing

spikes.

4.5. Results for Authentic Data

We now examine the behavior of the four control charts when applied to the authen-

tic biosurveillance data described in Chapter 2, Section 2.1.2. The authentic data contain

several explainable patterns such as seasonality and day of week effects. We preprocess

the series to remove these patterns using Holt-Winter’s exponential smoothing to remove

day-of-week effects, seasonality, and autocorrelation.

We compute the FA rate by applying the four control charts to the preprocessed

data. To evaluate TA rate and time to detection, we inject 32 spikes of magnitude o,

where o ∼ u[1, 4] × ~σ into a random subset of the 13 series. The covariance structure is

estimated from the first year of data (365 time points). Applying each control chart to

the data with injected signatures we compute their FA and TA rates. The results are

shown in Table 4.2. There are two main observations: (1) Follmann’s MEWMA chart

with restart alerts the least, whether or not there are outbreak signatures, and (2) TR’s

Hotelling chart is most sensitive: it has the highest TA rate, but also the second highest

FA rate. The highest FA rate is obtained with TR’s MEWMA, but this is likely due to

the lack of restart after an alert. Note also that the FA rate computed before and after

the signature injections are similar.
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Table 4.2: Performance of the control charts on authentic data

Method FA rate in the FA rate in the TA rate
absence of presence of
outbreaks outbreaks

Hotelling, Follmann 0.16 0.15 0.80
Hotelling, Testik 0.16 0.20 0.88
MEWMA, Follmann 0.16 0.17 0.84
MEWMA with restart, Follmann 0.08 0.07 0.78
MEWMA, Testik 0.21 0.23 0.81
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0.0 0.1 0.2 0.3

Hotelling, TR
MEWMA with restart, Follmann

Figure 4.2: True vs. false alert rates for TR’s Hotelling chart vs. Follmann’s MEWMA
chart with restarts

To further explore these two results and the relationship between TR’s Hotelling

and Follmann’s MEWMA (with restart), we examine their performance across a range

of FA rates ([0, 0.2]). For a higher sensitivity comparison, we examine only outbreaks of

smaller magnitude (o ∼ u[0.5, 2.5]× ~σ). Results are shown in Figure 4.2. We see that the

low FA rate is controlled by Follmann’s MEWMA chart and the high TA rate is controlled

by TR’s Hotelling chart. These results are inline with those obtained from the simulated

data. The conclusion is therefore that the choice of chart should be driven by the tradeoff

between true and false alerts required by the user.

Finally, to evaluate the advantages of each of the four multivariate control charts we

compare them against univariate monitoring where univariate Shewhart charts are applied
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Figure 4.3: True vs. false alert rates; comparing multivariate control charts with multiple-
univariate Shewhart charts

simultaneously to each of the p = 13 series. The rule for alerting is when at least one of

the charts alerts. We vary the actual FA rate of the multiple-univariate charts between

[0, 0.6] and observe the TA rate. Results are shown in Figure 4.3. We can see that all of

the multivariate charts are Pareto efficient compared to the multiple-univariate Shewhart.

4.6. Conclusions and Future Directions

We present and evaluate four tools for monitoring multivariate time series for the

purpose of detecting anomalies that manifest in a certain direction. The directionally-

sensitive multivariate control charts are Follmann’s Hotelling, TR’s Hotelling, Follmann’s

MEWMA (with and without restart) and TR’s MEWMA. All charts have underlying

assumptions such as normality, independence, and knowledge of the covariance structure,

which rarely hold in practice. We therefore evaluate and compare their performance when

each of the assumptions is violated. We also examine practical issues such as length of the

training set, the number of monitored series, and the size of the subset of series in which

the outbreak signature appears. All these are manipulated using simulation, where we can
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assess the impact of each factor separately. Finally, we apply the charts to authentic data

(with and without injected outbreak signatures) and compare their TA and FA rates.

Note that control charts are often applied to raw data rather than pre-processed

data in practice. Yet raw data usually violate the normality assumption and also exhibit

high levels of autocorrelation. In that case the more robust method (Follmann’s) would

be preferable. However, clearly the correct approach is to first pre-process the data.

The analysis in this paper is aimed at providing guidelines to biosurveillance systems

where multiple time series are monitored. For a given dataset, and based on its charac-

teristics (cross correlation, autocorrelation, etc.) and features (number of series, length of

training data, etc.), we can evaluate the performance of each of the multivariate charts in

terms of expected false and true alert rates and time to detection. These, in turn, can be

used to choose one chart according to costs associated with missed and false alerts. To

allow wide implementation of the tools and their incorporation in existing systems, and to

be able to compare existing tools to the proposed multivariate charts, we make our code

available in the Appendix.

There are several directions for extending this work. First, our simulated data

are generated from a mean and covariance structure that do not change over time. In

practice, however, data characteristics are subject to changes. To overcome this problem,

one can consider estimating the mean and covariance structure repeatedly over time, using

a moving window. Our framework is helpful in determining the length of this window.

Secondly, in terms of performance evaluation, once we move from the synthetic

environment to authentic data, we no longer have replications of the series. This means
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Table 4.3: Summary of performance of multivariate control charts: FA rate as a function
of multiple factors

Factor Performance

Follmann vs. TR Under iid multivariate Normal assumption (known co-
variance) - no difference in performance

Hotelling vs. MEWMA Under iid multivariate Normal assumption (known co-
variance) - higher variance of FA rate for MEWMA

Magnitude of cross correlation No effect on performance
Number of series With no other assumption violations, the number of

series does not affect performance
Length of training data (un-
known covariance structure) • When training data length tr < 100, FA rate

increases exponentially

• When training data length tr = 200, FA rate
increases linearly

• When number of series p ≤ 5, FA rate is as de-
sired (α = 0.05), even for tr = 100

• tr = 300 is sufficient for accurate estimation of
covariance

• Follmann’s approach results in lower average FA
rate but higher variance compared to TR

• No significant difference between Hotelling and
MEWMA

Autocorrelation

• Hotelling charts not affected by autocorrelation

• MEWMA FA rate increases with autocorrelation
magnitude and number of series

• TR’s MEWMA is significantly less robust than
Follmann’s (almost double FA when high auto-
correlation)

• Restart condition on Follmann’s MEWMA dra-
matically improves performance (up to 4 times
better)

Violation of normal distri-
bution: multivariate Poisson
data

• For low count data (λ ≤ 5) FA rate increases by
a factor of 3 for Hotelling and 2 for MEWMA

• No significant difference between TR and Foll-
mann’s approaches63



Table 4.4: Summary of performance of multivariate control charts: TA rate as a function
of pre-set true alert rate and timeliness

Factor Performance

True alert rate and
timeliness • Overall, TR has a higher detection rate. Especially

when signature appears in small subset of the series

• Hotelling is better at detecting spikes and high mag-
nitude signatures

• MEWMA has higher TA for small magnitudes of a
gradual increases

that we cannot assess the statistical significance of the difference between the performance

of the different charts (e.g., is TR’s Hotelling’s TA=0.88 significantly higher than Foll-

mann’s MEWMA TA=0.84?). Lotze et al. (2007) propose an elegant approach for creating

multiple realizations of authentic data by ‘mimicking’ the statistical characteristics of an

authentic multivariate set of data. Comparing performance over a sample of mimics would

then enable assessing statistical significance of differences in false and true alerts as well

as time to detection.

Finally, our focus was on comparing four multivariate monitoring tools, and we only

briefly touched upon the comparison with multiple-univariate monitoring. Yahav and

Shmueli (2006) explore methods for combining univariate algorithms. A more thorough

comparison is needed in order to assess under what conditions multivariate monitoring

should be preferred over multiple univariate monitoring in practice.
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Figure 4.4: Distribution of false alert rate (FA) in directionally-sensitive Hotelling charts
as a function of the number of series p and correlation ρ. The charts are all set to FA=0.05
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MEWMA, Follmann, lambda=0.3
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MEWMA, Testik and Runger, lambda=0.3
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Figure 4.5: Distribution of false alert rate (FA) in directionally-sensitive MEWMA as a
function of the number of series p and correlation ρ. The charts are all set to FA=0.05
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Figure 4.6: Distribution of false alert rate (FA) in directionally-sensitive charts as a func-
tion of training data length (tr)
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Figure 4.7: Distribution of false alert rates (FA) in directionally-sensitive charts as a
function of the autocorrelation (θ), when the covariance matrix is known
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Figure 4.8: Distribution of false alert rates (FA) in Follmann’s directionally-sensitive
MEWMA chart with restarts, as a function of the autocorrelation (θ), when the covariance
matrix is known
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Figure 4.9: Distribution of false alert rates (FA) in directionally-sensitive charts for Poisson
counts, as a function of the Poisson parameter (λ), when the covariance matrix is known
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Figure 4.10: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts
as a function of spike magnitude
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Figure 4.11: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts
as a function of spike magnitude
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Figure 4.12: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts
as a function of spike magnitude when spike is injected into 25% of the series
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Figure 4.13: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts
as a function of spike magnitude when spike is injected into 25% of the series
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Figure 4.14: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts
as a function of outbreak magnitude when the outbreak is injected into 25% of the series
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Figure 4.15: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts
as a function of outbreak magnitude when the outbreak is injected into 25% of the series
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Figure 4.16: Distribution of true alert (TA) rate in directionally-sensitive charts, as a
function of spike magnitude in the presence of increasing and decreasing spikes (top),
increasing spikes only (middle) and decreasing spikes only (bottom)
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Chapter 5

Generating Multivariate Poisson Random Variables

In this Chapter we introduce a conceptually appealing method for generating mul-

tivariate Poisson random variable. The multivariate Poisson distribution is essential in

simulating biosurveillance multivariate data, in which the daily aggregates are fairly low.

Examples are daily counts of cough complaints in a small hospital, or daily counts of

school absences in a local high school.

Current simulation methods suffer from limitations ranging from computational

complexity to restrictions on the structure of the correlation matrix. We propose a cor-

rection for NORTA (NORmal To Anything) for generating multivariate Poisson data with

flexible correlation structure and rates. NORTA is based on simulating a multivariate Nor-

mal distribution and converting it to an arbitrary continuous distribution with a specific

correlation matrix. We show that our method is both highly accurate and computationally

efficient.

5.1. Existing Methods

The p-dimensional Poisson distribution is characterized by a mean (or rate) vector Λ

and covariance matrix ΣPois that has diagonal elements equal to Λ. It is customary to use

the term “multivariate Poisson” for any extension of the univariate Poisson distribution

where the resulting marginals are of univariate Poisson form. In other words, the same

78



term is used to describe different multivariate distributions, which have in common the

property that their marginals are univariate Poisson.

One of the best known methods for generating bivariate Poisson data is the Trivari-

ate Reduction, which was proposed by Mardia (1970). In this method three independent

Poisson random variables Z1, Z2, Z12 are first generated with rates λ1, λ2 and λ12 respec-

tively. Then, the variables are combined to generate two dependent random variables in

the following way:

X1 = Z1 + Z12

X2 = Z2 + Z12.

It is shown that:

X1 ∼ Poisson(λ1 + λ12),

X2 ∼ Poisson(λ2 + λ12),

ρX1,X2 =
λ12√

(λ1 + λ12)(λ2 + λ12)
.

The main drawbacks of the Trivariate Reduction method are that it does not support

negative correlation values and it does not cover the entire range of feasible correlations.

In a recent paper, Shin and Pasupathy (2007) presented a computationally fast modifi-

cation to the Trivariate Reduction method that enables generating a bivariate Poisson

with a specified negative correlation. Their method first generates two dependent Poisson

variables with rates λX1 , λX2 and some correlation ρ̃X1X2 and then iteratively adjusts the

rates to achieve the desired correlation ρX1X2 .
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Krummenauer (1998a,b) proposed a convolution based method to generate bivari-

ate Poisson data in polynomial time. The algorithm first generates and then convolves

independent univariate Poisson variates with appropriate rates. The author presented a

recursive formula to carry out the convolution in polynomial time. This method enables

the simulation of multivariate Poisson data with arbitrary covariance structure. The main

limitation of this method is its high complexity (the recursions become very inefficient

when the number of series p increases). Also, the method does not support negative

correlation.

Minhajuddin et al. (2004) presented a method for simulating multivariate Poisson

data based on the Negative Binomial - Gamma mixture distribution. First, a value k

is generated from a Negative Binomial distribution with rate r and success probability

Π = λ
λ+θ . Then, conditional on k, a set of p independent Gamma variates are generated

(X1, . . . , Xp). The sum over k of the joint distribution of k and X1, . . . , Xk has a Gamma

marginal distribution with rates r and λ. The correlation between a pair Xi and Xj (i 6= j)

is θ
λ+θ . There are two main drawbacks to this approach: First, it requires the correlation

between each pair of variates to be identical (ρij = ρ for all i 6= j). Second, it does not

support negative correlations.

Karlis (2003) points out that the main obstacle limiting the use of multivariate simu-

lation methods for Poisson data, including the above-mentioned methods, is the complexity

of calculating the joint probability function. He mentions that the required summations

might be computationally exhausting in some cases, especially when the number of series

p is high.
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5.1.1 NORTA: NORmal To Anything

A different approach for generating data from a multivariate distribution with given

univariate marginals and a pre-specified correlation structure is known as NORTA. The

idea here is to first generate a p-vector from the multivariate Normal distribution with

correlation structure RN and then to transform it to any desired distribution (say F ) using

the inverse cumulative distribution functions (Chen, 2001; Nelsen, 2006). The resulting

distribution is referred to as normal-copula.

When the desired distribution F is continuous, the normal-copula has a well defined

correlation structure. However, when F is discrete (as in the Poisson case), the matching

between the initial correlation structure RN and the normal-copula correlation structure

RF is a non trivial problem (Avramidis et al., 2009). For example, consider the following

steps for generating a p-dimensional Poisson vector with arbitrary correlation matrix RPois

and rates Λ:

1. Generate a p-dimensional Normal vector XN with mean µ = 0, variance σ = 1 and

a correlation matrix RN .

2. For each value XNi , i ∈ 1, 2, ...p, calculate the Normal CDF:

Φ(XNi).

3. For each Φ(XNi), calculate the Poisson inverse CDF (quantile) with rate λi:

XPoisi = Ξ−1(Φ(XNi)),
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where,

Φ(x) =
∫ x

−∞

1√
2σ2

e
−u2

2 du (5.1)

Ξ(x) =
x∑

i=0

e−λλi

i!
. (5.2)

The vector XPois is then a p-dimensional Poisson vector with correlation matrix

RPois and rates Λ. When Λ is sufficiently high (Λ¿5), the Poisson distribution is well

known to be asymptotically Normal and RPois ≈ RN . However, when one or more of

the rates (λ) is low, the normal-copula correlation deviates from the Normal correlation

(RPois 6= RN ). The reason is that the feasible correlation between two random Poisson

variables is no longer in the range [−1, 1], but rather (Whitt, 1976)

[
ρ = corr(Ξ−1

λ1
(U), Ξ−1

λ2
(1− U)), ρ̄ = corr(Ξ−1

λ1
(U), Ξ−1

λ2
(U))

]
. (5.3)

In fact, Shin and Pasupathy (2007) show that when λ1, λ2 → 0 the minimum feasible

correlation ρ → 0. Therefore, the NORTA transformation maps a correlation range of

[−1, 1] (multivariate normal) to a much smaller range [ρ ≥ −1, ρ̄ ≤ 1].

To illustrate this reduction in the correlation range, consider Figure 5.1. The figure

depicts a bivariate NORTA transformation process with correlation ρ = 0.9, and the

resulting Poisson bivariates with high (20) and low (0.2) rates. The ‘bubble’ size in each

panel corresponds to the number of bivariates with the same value. Naturally, the bivariate

Poisson with high rates has a fairly similar distribution to that of the Normal distribution.

The bivariate Poisson with low rates, however, not only takes very few possible values

({(X1, X2)|X1, X2 ∈ (0, 1, 2, 3)}) but is also a much more skewed distribution (the majority
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of the bivariate values are the pair (0, 0)).
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Figure 5.1: Scatter plots for bivariate simulated variables using NORTA, for Normal,
Uniform, Poisson(λ = 20) and Poisson (λ = 0.2)

Figure 5.2 illustrates the relationship between the desired correlation and the re-

sulting actual correlation when generating bivariate Poisson data with low rates (λ < 1).

Figure 5.2: Comparing the desired correlation to the resulting actual correlation for Pois-
son bivariate data with low rates

In a recent paper, Avramidis et al. (2009) studied the NORTA correlation match-

ing problem when the marginal distributions are discrete. The authors provide several

approximations for mapping the desired correlation to the actual correlation. Their ap-

proximation involves a bivariate normal integral and the approximation of the derivative

of the matching function with respect to the actual correlation. They illustrate the per-
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formance of their method on multivariate Binomial and Negative Binomial distribution.

In contrast to the approximation by Avramidis et al. (2009), we provide a conceptu-

ally simple, empirically based approximation method for mapping RN to RPois. We show

that our method is highly accurate (with absolute error of less than 6 × 10−2) and can

be computed within milliseconds. We hope that the simplicity of this method, along with

the availability of the code will lead to a wider use of simulated multivariate Poisson data,

which can be used for studying and evaluating algorithms in the management science field.

5.2. Generating Multivariate Poisson Random Variables

For simplification, we explain our approximation for the bivariate case (p = 2). One

can easily extend to higher dimension data by simply applying the correlation mapping

to each pair.

We define Λ = {λ1, λ2} and,

ρ = corr(Ξ−1
λ1

(U), Ξ−1
λ2

(1− U))

ρ̄ = corr(Ξ−1
λ1

(U), Ξ−1
λ2

(U))

Using a large simulation approach, we find that the relationship between the desired

correlation (ρpois) and the actual correlation (ρN ) can be approximated by an exponential

form:

ρPois = a× ebρN + c,
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where the coefficient a, b and c can be estimated from the points (ρ, -1), (ρ̄, 1) and (0, 0):

a = − ρ̄× ρ

ρ̄ + ρ
; b = log

(
ρ̄ + a

a

)
; c = −a

To evaluate the performance and computation time of our approximation, we imple-

ment the algorithm in R on a 2.6 GHz Intel dual-core 32 bit-processor running windows.

Code is available in the Appendix.

Figure 5.3 illustrates the simulation performance when using the above ap-

proximation to correct for the distortion in the resulting correlation. This is

illustrated for the bivariate Poisson case with rates that range in (λ1, λ2) ∈

(0.1, 0.1), (0.1, 0.5), (0.5, 0.5), (0.5, 0.9), (0.9, 0.9). Figure 5.4 shows that the mean absolute

difference between the actual and desired correlation, for any choice of Λ and ρ is less then

0.06. The method performs better as the rates increase.

Figure 5.3: Comparing the desired correlation to the corrected actual correlation
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Figure 5.4 depict the absolute mean error of our method for rates in the range

[0.1, 10] and any correlation value. The left panel presents the error distribution as a

function of rate. As stated earlier, correlations between low rates have a slightly higher

error. In the left panel, we illustrate the distribution of error when λ1 = 0.4 as a function of

λ2 and the desired correlation coefficient ρ. We use white to represent infeasible correlation

values. It appears that the absolute error is independent of the desired correlation value.
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Figure 5.4: Absolute mean error. Left: Error as a function of the Poisson rates (λ1,
λ2). Right: Error as a function of the Poisson rate (λ2) and the desired correlation (ρ).
(λ1 = 0.4)

Apart from simplicity, a very important feature of our generator is the low compu-

tation time. Figure 5.5 depicts the computation time (in millisecond) as a function of

data dimension p and series length. The running time is shown to be minor even when

generating large datasets.
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Part II

Modeling Kidney Allocation: A Data-Driven Optimization Approach
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Chapter 6

Background

According to the Scientific Registry of Transplant Recipients’ (SRTR) annual statis-

tics, there are more than 90,000 candidates annually with kidney failure, End Stage Renal

Disease (ESRD1), who are waiting for transplantation in the United States. However,

because only about 10,000 deceased donor kidneys are available for transplantation each

year, more than 20,000 new candidates are added to the waiting list annually (see Figure

6.1).

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Patients
Donors

0
20

00
0

60
00

0

Figure 6.1: Increase in waiting list vs. number of donors.

The current kidney allocation system was developed in the 1980s and 1990s. The

system revolves around a set of priority points given to candidates for tissue matching and

sensitization level (the level of sensitization to donor antigens, measured by Panel Reactive

Antibody (PRA)), combined with waiting time and age. However, during the last 30 years

the waiting list has grown and the population of candidates has aged. Consequently, the
1For more information see OPTN/UNOS (2008).
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allocation process has become dominated by the length of time a candidate has been on

the waiting list, effectively becoming a “first come first transplant” policy. Moreover,

the current system does not match donors and recipients well. As a result, kidneys with

long expected post-transplant survival are commonly allocated to candidates with short

expected post-transplant survival (OPTN/UNOS, 2008).

In 2004 the Kidney Allocation Review Subcommittee (KARS) was formed with the

goal of analyzing ways to improve kidney allocation in the United States. In 2008 the

committee proposed three concepts that, along with matching criteria, would combine to

determine a candidate’s Kidney Allocation Score (KAS). The concepts are as follows: Life

Years From Transplant (LYFT), which determines the estimated additional years a kidney

recipient will gain from the transplant; Time spent on dialysis (Dialysis Time); and Donor

Profile Index (DPI) that provides a measure of organ quality. According to the proposed

method, kidneys would be allocated to patients based on candidates’ KAS, rather than

priority points.

Compared to the current system, the new allocation policy is expected to increase

the overall number of life years gained from the kidney allocation system by over 3,000

years in its first year of operation. Additionally, transplantation rates for minority candi-

dates (such as African-Americans), as well as candidates with high PRA levels, is expected

to improve.
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6.1. Current Allocation: Priority Points (PP)

The current allocation policy is based on a set of priority points. When an organ

becomes available, each candidate registered on the Organ Procurement and Transplan-

tation Network (OPTN) waiting list receives priority points according to a compatibility

test between the patient and the donor, his/her waiting time and rank, and age (higher

priority for younger and older populations). The compatibility test is a combined measure

of tissue matching (also known as Human Leukocyte Antigen (HLA) matching) and the

Panel Reactive Antibodies (PRA) test. PRA is a blood test that examines whether a can-

didate exhibits antibodies to the proteins of the donor. Priority points for compatibility

are given with the objective of minimizing the rejection rate after transplant. Priority

points for waiting time and age are given to compensate candidates with rare tissue types.

The details of the policy are shown in Table 6.1.

Geographic factors are also taken into consideration. There are 11 geographic re-

gions, divided into a total of 69 regional Organ Procurement Organizations (OPO). Pa-

tients within the same OPO of a donated organ are referred to as ‘local candidates’ and

have first priority. If an appropriate candidate is not found within the OPO, then the

search becomes regional. Lastly, if the search fails at the regional level, it becomes na-

tional (Zenios, 2004).

While giving priority points for waiting time is supposed to provide a sense of equity

in access to transplantation, over the years those priority points have started to dominate

the allocation system and have decreased the efficiency of allocations. The dominance

of waiting time on priority points has transformed the system to a first come first trans-
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Table 6.1: The UNOS point system. Source: Zenios (2004)

Category Points

Waiting time 1 point for each full year on the waiting list
Rank in the waiting list 1 point for the longest waiting candidate;

fraction of points are assigned proportionately
to all other candidates

Tissue mismatches ∞ for no mismatches
7 points for 0 B or DR mismatches
0 points for 0 A or B mismatches
5 points for 1 B or DR mismatches
2 points for 2 B or DR mismatches
0 points for 3 A or B mismatches

Panel reactive antibodies 4 points for PRA > 80%
Pediatric candidates 4 points when age < 11 years

3 points when age > 11 years and < 18 years

plant assignment that disregards the potential afterlife of the transplanted kidney itself

(OPTN/UNOS, 2008). As a result, the current system poorly matches the candidate and

transplanted kidney expected life after transplant, resulting in death with a functioning

kidney in many patients, and an increase in the need for retransplantation for many other

patients. Moreover, the system also fails to achieve equity for several demographic groups

with rare tissue types and high sensitization levels (Eggers, 1995).

According to OPTN/UNOS (2008), even with additional priority given to sensitized

candidates (patients with PRA>80%), highly matched kidneys, and children, the current

system does not adequately balance equity and efficiency factors, as it utilizes only a few

of the medical criteria that are now available to rank candidates. Furthermore, the PRA

measure itself is known to be highly variable and inconsistent, as it is measured by different

commercially available kits or locally procured cell panels, which often do not represent

the entire donor population.
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6.2. KARS’ Proposed Allocation: Kidney Allocation Score (KAS)

The drawbacks of the current allocation policy have initiated an intensive debate

and the need to consider alternative allocation policies (OPTN/UNOS, 2008). In 2004,

the Kidney Allocation Review Subcommittee (KARS) was established with the goal of

designing an allocation policy that maximizes the tradeoff between equity in access to

transplantation and efficiency; that is, maximizing the aggregate health of the transplant

candidate pool (Votruba, 2001).

Early in the review process, KARS recognized that kidney allocation is unique as a

treatment option, compared to other organ allocations such as liver and lung, due to the

availability of dialysis for candidates suffering from renal failure. The Kidney Allocation

Review Subcommittee (KARS) defines the main objective of its kidney allocation policy

as follows:

“rankings shall be ordered from most to least medically urgent [...] The kid-

ney allocation policy should have the goal of providing equitable access for

kidney transplant candidates to deceased donor kidneys for transplantation

while improving the outcomes of recipients of such kidneys.”

The allocation policy should also focus on minimizing mortality, maximizing kidney ex-

pected life, maximizing the post transplant expected life, minimizing the sensitization

level, maximizing equity in access to transplantation, etc. This multiplicity in objectives

raises a non-trivial, multi-objective allocation problem.

In 2008, KARS has proposed a multi-criteria objective that ranks patients on the
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waiting list according to a kidney allocation score (KAS). The KAS is a multi-criteria

objective that seeks to balance the trade-off between allocation outcome and equity in

access to transplantation. The formula for determining KAS provided by OPTN/UNOS

(2008) is the following:

KAS = LY FT × 0.8× (1−DPI) + DT × (0.8×DPI + 0.2) + (CPRA× 0.04), (6.1)

where,

LY FT (Life Years From Transplant) is the estimated survival duration in years that a

recipient of a specific organ may expect to have, versus his remaining years on

dialysis (at time of offer). LYFT is a function of the patient’s profile (age, tissue

type, etc.) as well as the donor’s profile (age, cause of death, etc.)

DPI (Donor Profile Index): a continuous measure of organ quality based on clinical infor-

mation. DPI increases individual matching by providing a better metric for deciding

which organs are appropriate for which candidates.

DT (Dialysis Time): the length of time that the patient has been receiving dialysis at the

time of the offer.

CPRA (Calculated Panel Reactive Antibody): measures the likelihood that the recipient

and donor would be incompatible, based on HLA frequencies in donors. CPRA

replaces the PRA measure in the current renal allocation system.

The dialysis survival component of LYFT and DT is adjusted by a factor of 0.8 to
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account for the diminished quality of life (QoL) reported by candidates on dialysis. CPRA

is adjusted by a factor of 4 to give extra consideration to highly sensitized patients, to

ensure that these patients get more opportunities to receive transplants than they would

without extra points.

Because research on survival following dialysis and kidney transplantation indicates

that nearly all candidates with ESRD are predicted to live longer with kidney transplant

than on dialysis, the introduced metric of LYFT is considered an important factor for

estimating the final kidney allocation score for every donor-candidate pair. However,

mainly utilizing the LYFT might lead to unfair allocations for some patients with short

estimated LYFT who have been on dialysis for longer periods. Therefore, in order to

make the new allocation policy more equitable, dialysis (DT) is also considered in the

calculation of the KAS. Sensitization level (or calculated panel reactive antibody, CPRA)

and donor’s organ types (DPI) together provide a metric for deciding which organs are

appropriate for which candidates.

Similar to the current allocation scheme, upon a kidney arrival, each candidate is

assigned with a KAS value and the organ is offered to the candidate with the higher score

(herein referred to as Highest-KAS-first (HKF) policy).

One of the main disadvantages of this allocation is that it does not account for

future prospective donors and candidates’ health condition degradation. In other words,

the allocation decision is done in a static fashion, in which the decision is based only on

the match between the current arriving organ and the candidates for the kidney.
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6.3. Literature Survey

The organ allocation problem, and specifically cadaveric kidney (or grafts as they are

called by the medical community) allocation, raises a very interesting operations research

policy modeling problem that combines supply shortage with ever increasing demand.

Unlike liver and lung allocation policies, in which the objective is to minimize the number

of deaths on the list, kidney allocation is unique in that there exists the alternative of

dialysis for candidates suffering from renal failure (OPTN/UNOS, 2008). This treatment

option requires the allocation policy to be based upon many additional factors, such as

post transplant expected life, equity in access to transplantation, etc.

For the past two decades, operations research applications of organ transplanta-

tion have received great attention. Generally, the organ transplantation is modeled as a

matching problem between donors and recipients with the goal of maximizing some reward

function. Specifically, two perspective of the problem have been addressed: the patient’s

perspective of deciding to accept or reject an organ offer, and the policy planner’s perspec-

tive of designing allocation decision model. Alagoz et al. (2008) provide a comprehensive

survey of operations research applications related to organ allocation in general. A specific

survey of models for kidney allocation is provided by Zenios (2004). We next survey the

key literature on kidney allocation models. We focus on the policy planner’s problem and

discuss the patient choice problem and the game between the planner and the candidates.

The question of patient choice models in the context of kidney allocation has been

repeatedly addressed in the literature of the last two decades. According to Zenios (2004),

about 45% of the offered organs are rejected by the first patient who receives it (or by
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his/her physician). The rationale for a rejection is that, under the current allocation

policy, once a candidate reaches the top of the list, s/he remains there until s/he accepts

a graft. Models of patient choice are offered by David and Yechiali (1985, 1995) and Ahn

and Hornberger (1996). Patient choice in these papers is modeled as a stopping problem,

in which each patient receives an organ offer at random and must decide whether or not to

accept the offer. Similar stopping models for the patient choice problem has been studied

in the liver and lung transplantation context (see e.g. Howard (2002) and Alagoz et al.

(2007)).

One of the most studied models for organ allocation is the sequential stochastic

assignment problem introduced by Derman et al. (1972). In the Derman et al. model,

as random jobs arrive, they must be assigned to workers. Rewards depend on the match

between jobs and workers. Kidney allocation can be viewed as an application of Derman

et al.’s model, where jobs are organs and workers are candidates for kidney allocation.

Righter (1989) and David and Yechiali (1995) propose Markov Decision Process

(MDP) models for the sequential allocation of kidneys to patients, extending the results

from Derman et al. (1972) to random environments. Randomness is reflected in graft

arrival and candidate departure (death) rates. The authors raise the question of admission

control and allocation of arriving organs and discuss the threshold-based property of the

optimal policy.

Su and Zenios (2004, 2005, 2006) incorporate the patient choice question into the

allocation problem. They consider a stylized model, in which the patients are homogenous

in their preferences. They model the allocation system as an M/M/1 queue where the

queue is composed of patients, and the donors are “service providers”. Here, the objective
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of the patients is to maximize their individual discounted quality of life (QoL) before and

after transplant. The planner’s objective is to maximize the total QoL. Similar to previous

literature, the authors find that the optimal welfare (i.e., aggregated candidates health)

is achieved under a threshold-based policy, implying that it is optimal for the planner

to reject organs under a certain quality. Su and Zenios (2005, 2006) extend the work to

account for patient heterogeneity.

Su and Zenios (2005) present a stylized model that considers the sequential alloca-

tion of n kidneys to n patients. Each patient-kidney pair has its own type and rewards

depending on the match between them. The planner’s objective is to maximize the to-

tal expected reward. As noted earlier, the optimal policy is a threshold policy. Su and

Zenios compare the optimal policy with and without patient choice, and demonstrate that

patient choice may introduce significant inefficiencies. However, the authors also observe

that minimizing the variability in the type of offers expected by each patient type reduces

those losses. We will use this observation in our model to claim that policies that do not

consider patient choice, yet yield minimum variability concerning the assigned kidney type

to each group of patients, are consequently robust to patient choice.

For the more general and realistic representation, Zenios et al. (2000) develop a

fluid-based model that imitates the actual clinic environment. In this model the patient

pool is divided into K classes and the donors into J classes. The division into classes is

based on demographic, immunological, and physiological characteristics. The state of the

system is defined as a vector of the number of patients in each class. Patients depart from

the system through either death or transplant. Zenios et al. consider a control problem

that combines three objective functions. The first objective is to maximize the quality of
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adjusted life which satisfies the efficiency criteria. Then, two equity criteria are considered:

minimize inequity in (absolute) waiting time (first-come-first-serve), and minimize inequity

in (relative) likelihood of transplantation. The authors develop a simulation-based study

in which the distributions of the patients’ and donors’ characteristics, mortality rates, and

arrival rates are estimated using data from UNOS 1995, the United States Renal Data

System and the New England Organ Bank.

In the same paper, Zenios et al. raise a discussion about the number of patient

clusters. The authors claim that the appropriate number of clusters is 107, which is less

than the number of patients in the waiting list. This implies that the cluster analysis in

their model is not used to reduce the dimensionality of the problem.

A recent stream of papers considers the problem of maximizing the efficiency of

liver transplants through a redesign of UNOS geographic regions (Kong, 2006; Kong et al.,

2008). Demirci et al. (2010) extends this problem to account for the trade-off between

allocation efficiency (measured by the matching between donors and recipients) and a

measure of geographical equity in the allocation process.

Another branch of research focuses on developing simulation tools to examine how

different allocation policies affect system outcomes. Such tools are available for kidney

allocation (Taranto et al., 2000), liver transplantation (Shechter et al., 2005; Thompson

et al., 2004), and heart transplantation (van den Hout et al., 2003).
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6.4. Our Approach

The literature survey clearly demonstrates that the problem of kidney allocation is

not a trivial problem. Any allocation policy has to take many factors into consideration.

We can group these factor into three sub-problems:

The planner’s problem: to design a policy that balances the efficiency of the allocation

with equity in access to transplantation. Despite the large dimensionality of the

problem, the policy has to be computationally efficient. That is, making an allocation

decision in a timely manner, and leaving sufficient time for tissue matching tests,

organ shipping, and the actual transplant.

The model estimation problem: to develop a framework for estimating candidates’

expected quality of life (with and without transplant), mortality rate, organ rejection

probability, etc. The accuracy of these estimates is crucial for the efficiency of

the allocation policy (that is, maximizing the aggregate health of the transplant

candidate pool).

The patient’s choice problem: to resolve the inefficiency arising from patient’s choise,

who can either accept on offered organ or refuse to accept it (seeking a better match).

The patient’s choice problem adds another dimension to the problem. Apart from

the time loss caused by a refusal, the patients choice may cause an allocation policy

to be inefficient (from the societal perspective).

Due to the complexity of the problem, we focus on the first two elements.
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The remainder of this part of the dissertation is organized as follows. We address the

planner’s problem in Chapter 7, where we propose a 2-phase policy that is composed of a

learning phase and a knowledge-based deployment phase. In the learning phase we develop

a semi-offline algorithm that optimally allocates organs to candidates (given a specific

allocation objective). As an input to the semi-offline allocation problem we use the entire

information of candidate and organ arrivals and a set probabilistic health condition and

lifetime scenarios of candidates on the waiting list. We later use the knowledge gained from

the learning phase to derive a knowledge-based, real-time allocation policy. The novelty

of the 2-phase method is that it incorporates the future uncertainty of allocations into the

decision process, yet maintains computational feasibility regardless of the challenges that

the large dimensionality of the problem presents.

In Chapter 8 we present a detailed model estimation procedure. We estimate can-

didates’ year-gain from a transplanted organ (LYFT), sensitization level (CPRA), and

lifetime. We also estimate organs’ quality, measured by donor’s profile index (DPI). We

use these estimates to deploy the 2-phase policy that we proposed in Chapter 7 on the

actual OPTN waiting list, as of August 2008.

Comparing the semi-offline allocation with real-time policies (in specific, with the

current priority point (PP) system and the proposed highest-KAS-first (HKF) policy), we

find that in terms of equity, both policies provide equal access to transplants to candidates

of different races, ages, and tissue types. However, in terms of efficiency, there is a clear

gap between the performance of semi-offline and real-time allocations (HKF and PP), in

particular

• Waiting time to transplantation is more than 1 year shorter (on average), according
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to the semi-offline allocation.

• The match between organ and recipients improves, resulting in a lower organ re-

jection rate and a higher correlation between organs’ survival years and recipient

lifetime. A poor correlation between organ and recipient survival times increases

the need for retransplantation on the one hand, and deaths with functioning organs,

on the other hand.

• Recipients’ year-gain from transplanted kidneys increases by almost 7 months per

recipient in the semi-offline allocation, compared to HKF, and more than 3 years

compared to the current PP system.

Encouraged by this gap, we examine the actual allocation resulting from each policy

and design a heuristic knowledge-based method that combines the knowledge gained from

the semi-offline allocation along with the real-time HKF policy. We denote the new policy

KB (stands for Knowledge-Based). The performance of the KB policy lies between the

performance of the semi-offline and HKF policies: it improves upon HKF, yet, as expected,

it is does not perform as well as the semi-offline allocation.

Another important feature of the semi-offline allocation and KB policy, compared to

HKF, is that the variability of organ types offered to patients with similar health profiles

is relatively small. That implies that the problem of patients’ choice becomes less relevant.

The reason is that patients have very low incentive to refuse organs: a patient who chooses

to refuse an offer is most likely to be offered the same kidney quality all over again. We

discuss patient choice in Chapter 9.

A schematic representation of our approach is given by the flow chart in Figure 6.2.
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Figure 6.2: Kidney allocation schematic.
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Chapter 7

Proposed Model for Kidney Allocation

In this chapter we examine improvements to the current and the proposed policy

by KARS. In particular, we propose a novel semi-offline allocation model and derive a

real-time knowledge-based allocation policy that outperforms the current and proposed

policies.

7.1. Problem Description and Model Formulation

We consider the general problem of allocating kidneys to patients on the kidney

waiting list. Organs are allocated upon arrival to patient pi according to some allocation

policy Φ. The patient then can either accept the kidney or refuse the kidney (seeking a

better match). If the patient refuses the offered organ, the organ is re-allocated to another

patient, according to the same policy Φ. When a patient accepts the kidney, a transplant

is done. If a transplant is successful, the planner receives some reward rij . Otherwise, the

organ is reallocated with some probability p, reflecting the probability that the organ is

still qualified for retransplantation. Figure 7.1 illustrates the allocation scheme.

According to OPTN, most transplants are successful (approximately 95% of living-

donor transplants are successful and more than 90% of deceased-donor transplants are

successful, with increased success rate in recent years). We therefore assume that trans-

plants are always successful. Additionally, we assume that patients always choose to
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Figure 7.1: Schematic representation of kidney allocation.

accept offered kidneys. Our analyzed model based on these assumptions is marked with

solid lines in Figure 7.1.

It is important to note that a kidney from a cadaver donor (approximately 2/3 of

the transplants) can be preserved for up to 48 hours only (Hines and Marschall, 2008).

Hence it is crucial to make an allocation decision in a timely manner, leaving sufficient

time for tissue matching tests, organ shipping, and the actual transplant.

7.1.1 Notation

Let P t = {p1, p2, ...} be the pool of patients in the kidney waiting list at time t. Note

that the patient pool changes over time, as patients may join the waiting list or depart

from it (due to different reasons such as transplant, death, transplant in another country,

etc.). We identify each patient by the tuple (ti, ht
i, sp

t
i), representing respectively the date

s/he was placed on the waiting list, his/her conditional health state information at time
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t (e.g., age, dialysis time, weight to height ratio (BMI), sensitization level, etc.), given

that s/he has not received a transplant until time t, and the probability that the patient

has survived up to time t. The survival probability replaces the patient’s departure time

information, because the latter remains unknown until the actual departure event.

We use O to denote the set of available organs for transplant, with oj = (tj , dj)

being the jth organ, where tj is its arrival date, and dj is the profile of the donor who

donated the organ. The donor profile includes information on his/ her age, cause of death,

whether or not s/he was diabetic, blood pressure at death time, etc. The reward from

allocating organ oj to patient pi at time t, given the patient’s health state and expected

mortality rate at time t is given by rt
ij(h

t
i). Without loss of generalization, we assume that

the allocation decision time is negligible, and t = tj . We therefore use an abbreviated

notation: rt
ij .

We define xΦ to be the allocation decision under policy Φ, with xij = 1 if organ oj

is allocated to patient pi and xij = 0 otherwise. The objective is to find a policy that

maximizes the total expected time-dependent reward, given by

TRΦ =
∫

t
rt′xΦdt (7.1)

Note that rt1
ij and rt2

ij (t1 6= t2) may take different values. We do not, however,

restrict the order of these two values (i.e., rt1
ij can be either greater than, equal to, or less

than rt2
ij ).
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7.1.2 Choosing Objectives

We are interested in obtaining the best attainable allocation of deceased donor

kidneys to candidates1. Unlike liver and lung allocation policies, in which the objective

is to reduce waiting list mortality and improve recipient survival during the first year

following transplant, kidney failure is not an immediate cause of death and thus the

allocation policy must be based upon different considerations as quality of life (with and

without a transplant), waiting time, sensitization level, etc. (OPTN/UNOS, 2008).

Following the KARS recommendation, we use the expected KAS (see equation (6.1))

as the allocation reward. The KAS metric is important in that it balances equity in

access to transplantation and allocation efficiency factors (i.e., the aggregate health of

the transplant candidate pool). However, we propose a dynamic allocation that utilizes

the donors and candidates arrival distribution and candidates’ expected health condition

degradation and mortality rate. Given that, the reward function is given by:

rij =





KASij if pi ∈ P tj (i.e. ti ≤ tj and patient pi has not departed by time tj)

0 otherwise

(7.2)

As future departure events are unknown, we use the expected reward, denoted by the

KAS value multiplied by the probability that the patients have not departed the waiting

list by the time of the offer:

erij = KASijsp
tj
i . (7.3)

1We disregard living-donor transplants, as those are allocated to family-related patients.
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7.2. Proposed Real-time Dynamic Allocation Policy

We propose a two-phase allocation policy that provides real-time semi-optimal allo-

cation under the critical constraint of making an allocation decision in a timely manner.

The policy works as follows: (1) compute the semi-offline allocation of organs to can-

didates, based on the entire historical information available at hand, and (2) derive a

knowledge-based allocation policy that utilizes the properties of the optimal allocation

and deploy this knowledge in real-time.

We next explain each of of the two components in further detail.

7.2.1 Semi-Offline Optimization

We formulate the problem of allocating deceased kidneys to candidates in the OPTN

waiting list as a semi-offline optimization problem. Here, the entire input of kidneys and

candidates (i.e., past and future arrivals) is available from the start. Whereas the informa-

tion on kidney arrival times and donors profiles are complete, the available information on

candidates’ health conditions and lifetimes are only partial. The reason is that candidates

who received a kidney under the current policy might not receive a kidney under the op-

timal policy. The health condition and lifetime of such candidates, had they not received

a kidney, is unknown. We thus replace the missing information by a set of probabilistic

scenarios.

The semi-offline representation of the allocation problem has two roles. First, it

provides an upper bound on the best attainable expected performance by any real-time

allocation scheme, given a specific allocation objective (e.g., KAS). Hence, an upper bound
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will enable us to assess the performance of any real-time allocation policy. Second, we

utilize the knowledge we gain from semi-offline allocation on the properties of that optimal

allocation, and derive a real-time knowledge-based allocation that generates a near-optimal

allocation that is computationally fast.

Since allocation is a one-to-one mapping between kidneys and candidates we can

restate the allocation problem as a max-weighted matching problem on a bipartite graph2.

Specifically, consider a bipartite graph in which the organs constitute one set of nodes and

the candidates constitute another. An edge between organ j arriving at time tj , and

candidate i is drawn if and only if j arrives later than i (ti ≤ tj). The weight on this edge

equals the expected reward of a successful transplant erij . Note that the reward erij is

a function of the estimated health condition of candidate i at time tj (htj
i ). A schematic

representation of the allocation problem is given in Figure 7.2.

j

i

tim
e

Organs Candidates

tj ij
er

Figure 7.2: Semi offline representation.

The objective is to maximize the overall allocation reward, denoted by the sum of

edge weights:
2For a definition of max-weighted matching consider Edmonds (1965).
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max
∑

j∈O,i∈P

ert
ijxij (7.4)

s.t.
∑

j∈O

xij ≤ 1, ∀i ∈ P

∑

i∈P

xij ≤ 1,∀j ∈ O

xij ∈ {0, 1}

The problem of finding the max-weighted matching is known to be NP-complete.

7.2.2 Knowledge-Based Real-time Allocation Policy

The semi-optimal allocation proposed in Section 7.2.1 cannot be obtained in real-

time, as future kidney and candidate arrivals are unknown. One way of utilizing the

optimal formulation is by evaluating a reward of an assignment based on a probabilistic

set of future scenarios (see Bardossy and Yahav (2010)). However, since the size of the

problem is extremely large (more than 90,000 candidates are currently waiting for kidney

transplantation, with an annual increase of about 20,000 candidates) and the semi-offline

problem is NP-complete, such an approach would suffer from heavy computational re-

quirements and thus may perform poorly in terms of solution time. Therefore, rather

than designing an optimal allocation, there is need for a computationally efficient policy

that can handle the dynamic and stochastic nature of the real-time problem.

We design a knowledge-based, robust allocation algorithm that meets the compu-

tational requirement and provides a near-optimal allocation. The algorithm operates in

four steps:
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1. Divide the dataset into training and holdout sets.

2. Compute the optimal semi-offline allocation, as given by problem (7.4), on the train-

ing set

3. Let A = a1, ..., an be the set of paired allocations resulting from Step 2 (a1 =

(p1, o1)), and S = s1, ..., sn be the profile of the donors and recipients in each allo-

cation. Derive a knowledge-based (herein referred to as KB) policy based on the

common properties of S. The details of this step are given in Section 8.3.2

4. Deploy policy KB in real-time.

In the next chapter we deploy this policy on the OPTN waiting list.
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Chapter 8

Analytical Framework

In this section we describe the analytical framework that integrates the methods

from Chapter 7 for deriving an optimal policy and generating knowledge-based rules.

We apply this framework to the kidney waitlist data provided by UNOS, and show the

performance of the resulting policy compared to the current priority-points (PP) policy

and KARS proposed (HKF) policy.

8.1. Overview

The main goal of this section is to develop a real-time policy for allocating deceased

kidneys to candidates in the UNOS waiting list. The policy is evaluated based on the

equity in access to transplantation it provides and its efficiency in terms of the allocation

outcome.

We describe a framework for deriving a knowledge-based allocation policy that is

based of a model estimation and a data driven semi-offline optimization analysis that

serves as a learning phase for the real-time policy. The framework is composed of several

elementary steps. First, we estimate candidates health profile (current and prospect)

and organ quality (Section 8.2). In particular, we estimate candidates’ sensitization level

(CPRA), year gain from a given organ (LYFT) and survival probability, and an organ

survival index (measured by DPI value). We use these estimates to compute the KAS
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value for each candidate-organ pair.

The KAS score, along with the survival probability, is then used to compute the

expected KAS (also referred to as expected reward) and serves as an input to the semi-

offline allocation in equation (7.4). We use the outcome of the semi-offline allocation to

derive our knowledge-based, real-time policy (KB).

To simulate a real-time environment, we first estimate candidates’ expected life-

time. Patients in our simulated environment arrive according to their actual arrival time

(as recorded by UNOS) and depart according to their estimated lifetime. We use this sim-

ulation to compute the outcome of real-time policies (PP, HKF and KB), for the purpose

of comparison and evaluation.

A schematic representation of this process is provided in Figure 8.1. We next discuss

each step in detail using the UNOS data.

8.1.1 Data

We consider a dataset of waiting list registrations and transplants of kidney and

simultaneous kidney-pancreas1 that have been listed or performed in the U.S. and reported

to the OPTN since October 1, 1987. The dataset includes records on both deceased and

living-donor transplants. The data were exclusively provided by UNOS.

Preliminary analysis of the data exhibits a rapid increase in kidney donations over

the last two decades. Hence, our analysis is based on the last five years only (Jan 1,

2004- Aug 15, 2008), for which the data seem to have a stationary nature (e.g., the
1Simultaneous transplantation of the kidney and pancreas is performed for those who have kidney

failure as a complication of insulin-dependent diabetes mellitus (also called Type I diabetes).
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Figure 8.1: Schematic representation of the analytic study.

distributions of candidate and organ arrivals do not change significantly over time)2. For

the purposes of our study, we consider only deceased-donor transplants of kidneys and

simultaneous kidney(s) and pancreas. For computational reasons, we apply the policies

and evaluate them for a single geographic region. We randomly chose region #2 that

contains the following states: Pennsylvania (PA), New Jersey (NJ), West Virginia (WV),

Maryland (MD), Delaware (DE), and Washington DC (DC). The data contain a total of

approximately 26,000 candidates, 3,000 donors, and 5,800 kidney donations. A breakdown

of candidate and donor arrival by year and state is given in Figure 8.2 (the data available

for year 2008 is only up to Aug/15/2008).

We compile the data to extract the key profile components of candidates and donors.

We summarize the average profiles in Tables 8.1-8.2. Table 8.3 depicts the kidney trans-
2Candidates that were placed in the OPTN waiting list before 01/01/2004 and are still on the waiting

list as of that date are included in the study.
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plant failure rate.
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Figure 8.2: Left: Number of candidates (solid line) and donated kidneys (dashed line)
added to the waiting list per year. Right: Number of candidates (dark grey) and donated
kidneys (light grey) per state.

8.2. Model estimation

8.2.1 Estimating Life Years From Transplant (LYFT)

The concept of LYFT, which is the estimated number of additional years of life

that a specific kidney would give to a candidate, was introduced by KARS in 2004. The

calculation is based on estimating the remaining lifetimes of candidates with and without

transplant, given the medical profile of the candidates and the donors at the time of

offer. Evaluation of these two potential lifetimes is complicated for two reasons. First,

the characteristics of candidates that have received transplants are different from those

who have not. Some of these characteristics have not even been recorded in the past.

Second, treatment methods of patients without a transplant have changed over the last

two decades, making predictions of future lifetimes less certain3.
3See “Predicting the Life Years From Transplant (LYFT): Choosing a Metric”, Scientific Registry for

Transplant Recipients working paper, May 16, 2007 at www.unos.org.
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Table 8.1: Patient profile statistics

Number of patients 25860
Mortality rate 12% (constant over the studied period)
Average waiting time 3 years (until either departure time or

data end date (Aug/15/2008))
Average time to transplant 2 years
Average patient age 49.6 years
Patients with diabetes 11618 patients
Patients on dialysis 18477 patients
Patients waiting for simultaneous kidney-
pancreas

1266 patients

Patients who had a previous transplant 4419 patients
Average dialysis years, for patients on
dialysis

1.9 years

Average body mass index (BMI) 27.7
Average albumin level 3.9
Average PRA level 19.1

Several methods were proposed for estimating the LYFT (Wolfe, 2007; Wolfe et al.,

2008). The idea central to all of the methods is to estimate the remaining lifetimes with

and without transplant, given the characteristics of a candidate and donor organ. This

is typically done using the Cox proportional hazards regression model (Cox, 1972; Cox

and Oakes, 1984). The main metrics considered are the expected lifetime (area under the

survival curve), truncated lifetime (area limited to a specified interval, such as up to 30

years), and the median lifetime. The latter was shown to provide the most stable and

interpretable estimates. We therefore use the Cox model estimated by Wolfe (2007) to

estimate the candidates’ median survival times (in years) with and without transplant.

The formula Wolfe used to calculate LYFT is given by:
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Table 8.2: Donor profile statistics

Number of donors 3144
Number of kidney donations 5828
Average donor age 39.5 years
Average creatinine blood levels 1.14
Donors with history of hypertension 1626 donors
Donors with history of diabetes 134 donors
Donor cause of death Anoxia: 1155 donors

Cerebrovascular/stroke: 2338 donors
Head trauma: 2148 donors
Center Nervous System tumor: 52 donors
Other: 159 donors

Table 8.3: Transplant failure rate

Number of transplants 5828
Number of immediate failures 90 (1.5%)
Number of failed transplants in the first week 153 (2.6%)
Number of failed transplants in the first year 612 (11.6%)
Number of failed transplants in the first 5 years 938 (16.1%)

LYFT = 1.0 × lifespan with functioning graft +

0.8 × lifespan after graft failure –

0.8 × remaining lifespan without transplant

(8.1)

8.2.2 Computing Calculated Panel Reactive Antibody (CPRA)

Panel Reactive Antibodies (PRA) is a metric that determines the degree of sensitiza-

tion of patients. The value of PRA is obtained via a lab test that examines the antibodies

of a patient against a panel of about 100 blood donors. Hence, this metric heavily depends

on both the panel composition and the technique used for antibody detection, resulting

in a very inconsistent and unreliable metric (Cherikh, 2006).
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In 2004, the OPTN Histocompatibility Committee that examines the PRA listing

practices proposed an alternative metric, called ‘calculated PRA’ (CPRA). CPRA mea-

sures the likelihood that the recipient and donor would be incompatible, based on HLA

frequencies in donors (based on more than 12,000 recent donors (Leffell et al., 2007)).

CPRA is one of the key components of the KAS value.

To compute the CPRA values of candidates on the waiting list, a computer program

was written (in PHP language) that accesses the UNOS CPRA calculator (available on-

line http://www.unos.org/resources/frm CPRA Calculator.asp?index=78). For each can-

didate on the waiting list, the computer program automatically obtains the CPRA value.

Interestingly, we find that there is no correlation between the PRA and the CPRA met-

rics. Furthermore, approximately 60% of the candidates in the waiting list have a recorded

PRA of 0, which implies that they are likely to be compatible with any donor, whereas

only 0.2% have a CPRA value of 0. Highly sensitized patients form 12.9% of the waiting

list according the PRA matric, and 9% according to the CPRA metric. These differences

further support that the PRA metric is unreliable. We plot the distributions of the two

metrics for patients in our sample in Figure 8.3.
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Figure 8.3: From left to right: distribution of CPRA, PRA, and non-zero PRA values.

118



8.2.3 Modeling Patient Lifetime

The waiting list of kidney transplants changes over time, as patients join the waiting

list or depart from it. One of the main reasons for waiting list departure is mortality (over

10% of the patients die yearly). We utilize the OPTN waiting list data to estimate the

mortality rate in the patient population given their health profile. Due to changes in recent

medicine, we consider a subset of the patients who joined the waiting list after January

2000. This left and right truncated subset (that is, the studied period is in the range

[2000, 2008]) ensures that the patients’ arrivals are approximately uniformly distributed

over the studied interval. Our subset includes over 265,000 patients, out of which about

27,500 have died.

Our first deviation from common practice is to estimate survival times parametri-

cally. Although the Cox proportional hazards models is widely used in medical research

(e.g., Wolfe et al. (2008)), we use a parametric Accelerated Failure Time (AFT) model

with Weibull distribution to estimate patient survival rates (Bradburn et al., 2003). AFT

models are shown to be more robust towards neglected covariates, compared to propor-

tional hazards models (Lambert et al., 2004). Another main advantage of the AFT model

over the Cox model in our case is that it enables us to extrapolate survival rates beyond

the studied interval (8 years). The Cox model, on the other hand, fits a survival model to

the data-at-hand only, and hence does not provide extrapolation capabilities.

The choice of a Weibull distribution (rather than other common survival distribu-

tions such as lognormal and exponential) stems from two main reasons. First, Weibull is

a very flexible lifetime distribution with shape and scale parameters that enable modeling

of a wide range of failure rates.

119



Second, comparing the fit of the different distributions to our data, the Weibull

exhibits by far the least skewed residuals, as shown in Figure 8.4. We see that the AFT

with a lognormal distribution and the Cox model both tend to underestimate candidate

lifetimes (in fact, the maximum predicted lifetime in both models is 8 years). The reason

for the underestimation is that candidates in the training data arrived in the interval

[2000, 2008], whereas candidates in the holdout set may have arrived before the year 2000,

thereby surviving longer than 8 years. In addition, because candidates’ observed lifetimes

are measured only up to the data end date (that is, Aug/15/2008), whereas the estimated

lifetime (from the survival model) is computed until expected departure time, a right

skewed residual distribution is conceptually more appropriate.
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Figure 8.4: Residuals (estimated lifetime - observed lifetime) distribution for different
survival models. The Weibull distribution (left panel) presents right skewed residuals,
which are most appropriate for estimated lifetime.

The predictors (and their description) that are included in the survival model are

given in Table 8.4. The choice of predictors stems from the factors used in approximating

the patients survival factors in Wolfe et al. (2008).
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The estimated parameters in our model are provided in Table 8.5. All estimates

are significant at the 5% significance level due to the large sample size. We therefore

focus on the effect size (e.g., the model coefficient values). We observe that CPRA have

a minuscule effect (although it is statistically significant) on estimated lifetime, which is

reasonable, as CPRA measures the sensitization level and the probability of a successful

transplant.

We illustrate the effects of diabetes (DIAB) and need for a simultaneous pancreas-

kidney transplant (KP) in Figure 8.5, using the profile of a 30 year old patient with no

previous transplants and no dialysis. The solid black curve corresponds to a patient with

no diabetes that waits for a kidney only. The grey line is a patient with diabetes that

waits for a kidney only. The dashes line represents a patient with diabetes that waits for

a simultaneous pancreas-kidney transplant. As expected, the first patient has the highest

estimated survival rate, and the third patient has the lowest (although only slightly lower

than the second patient, in this case).

The effect of age and the interaction between age and diabetes is plotted in Figure

8.6. We compare three types of patients: a 20-year old patient without diabetes (solid

black line), a 60-year old patient without diabetes (dashed line), and a 20-year old patient

with diabetes (grey line). All three patients have no other special characteristics (such

as previous transplants, antigens, dialysis, etc.). On average, a 20-year old is expected to

live approximately 20 years longer than a 60-year old, and 17 years longer than a same

age patient with diabetes.

Finally, we illustrate the effect of antigens on survival rate in Figure 8.7. We compare

a 30-year old patient with no antigens (and no other special characteristics, solid line),

121



to a similar patient with a single A antigen, B antigen, and DR antigen. The no-antigen

patient in our example is expected to live 10 years longer than the antigen patient.
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Figure 8.5: Effect of diabetes and simultaneous pancreas-kidney transplant on patient life-
time. Solid (black): no diabetes, kidney only. Dashed: diabetes, simultaneous pancreas-
kidney transplant. Grey: diabetes, kidney only.
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Figure 8.6: Effect of age on patient lifetime. Solid (black): 20 year old patient with no
diabetes. Dashed: 60 year old patient with no diabetes. Grey: 20 year old with diabetes.

8.2.4 Computing Donor Profile Index (DPI)

DPI is a proposed metric that provides a continuous measure of organ quality,

which predicts the expected lifetime of a kidney transplanted to an average candidate

(OPTN/UNOS, 2008). Currently, deceased donors are designated as either standard cri-
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Figure 8.7: Effect of antigens on patient lifetime. Solid: no antigent (ABDR=0). Dashed:
a patient with a single antigen A, B and DR.

teria donors (SCD), or expanded criteria donors (ECD), based on the medical characteris-

tics of the donor. ECD kidneys are defined as having a relative risk of graft failure (due to

a history of of high blood pressure, high creatinine level, age, etc.). However, the current

categories of SCD and ECD kidneys are shown to no longer be adequate, as they do not

reflect the recipient outcomes from receiving these organs.

The DPI score is based on the following donor criteria: age, creatinine level, history

of hypertension and diabetes, and cause of death. Organs with the longest expected

survival time are assigned a DPI score of zero, and those with the shortest expected survival

time are assigned a DPI score of one. A method for computing the DPI score was proposed

by Freeman (2008). The formula is given by equation (8.2). As this formula results in

non-normalized DPI value, we normalize the DPI to the range [0, 1] by subtracting the

minimum and dividing by the maximum DPI score in our sample.
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DPI = exp(0.01111* Donor Age-35.8322)

+ (0.01672* Donor Creatinine -1.0415)

+ (0.12012 IDonor Creatinine Missing)

+ (0.13863 IDonor History of Hypertension)

+ (0.17805 IDonor History of Diabetes)

+ (0.05423 ICOD Anoxia)

+ (0.08832 ICOD Stroke)

– (0.04476 ICOD CNS Tumor)

+ (0.04222 ICOD Other)

(8.2)

The notation Ic is an indicator variable that obtains the value 1 if the condition c is

satisfied and otherwise 0.

8.3. Model Deployment

We generate training and holdout sets by randomly assigning 10% of the patients

and donors into the training set and another 10% into the holdout set. The reason for

using only 10% in each data set is due to the computational constraints of the software

used (GAMS 23.2). The training set is used to build the model, and the holdout set

is used for evaluating model performance. Each sample contains a random sample of

patients (approximately 2500 patients) in the waiting list and a random sample of donors

(approximately 300 donors). We repeat the analysis on the 10 different training and

holdout samples, to estimate the performance error. For each set we estimate the model

parameters, as discussed in Section 8.2.
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In the next sections, we perform an offline analysis and study the properties of the

best attainable allocation, under the objective of maximizing the expected KAS score. We

then derive a knowledge-based policy, based on these properties, and apply it in real-time

settings.

We perform an evaluation study in which we compare our policy with the currect

priority point (PP) system and KARS’ proposed (HKF) policy. The performance of the

policies is evaluated based on the following metrics:

1. Mean time to transplantation

2. Mean time on waiting list (of candidates who have not received a transplant)

3. Mean transplantation utility (measured as mean LYFT)

4. Correlation between graft expected lifetime (measured by donor’s DPI) and patient’s

expected lifetime

5. Mortality rate

8.3.1 Semi-Offline Analysis

We compute the semi-offline allocation (see equation (7.4)) of each training set,

using GAMS 23.2 (http://www.gams.com/). The mean performance of the semi-offline

allocation is summarized in Table 8.6. In parentheses we report the standard error across

different runs.

For a fair comparison between the semi-offline allocation and the current (PP) and

proposed (by KARS (HKF)) allocation policies, we generated a computer program (in R
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2.8.1, http//cran.r-project.org) that simulates a real-time environment, in which donors

and patients arrive according to their actual arrival order in each replica, and depart (due

to mortality) according to their lifetime distribution. The simulation’s pseudo-code is

given in Algorithm 1 below. We compute the performances of the allocation policies (PP

and HKF) on these simulated datasets. We report their performances in Table 8.10.

Algorithm 1 Simulation’s pseudo-code
Input:{P, O,policyΦ}
Output:{A}
for all pi ∈ P do

li =
∫
t spt

idt //Estimate patient’s life time
end for
for all oj ∈ O (in their arrival order) do

P t ← {pi ∈ P | ti ≤ tj and ti + li ≥ tj}
a = {(oj , pi) | Φ} //allocate organ oj to patient pi ∈ P t according to policy Φ
A ← A ∪ a
P ← P − {pi}

end for

Comparing the semi-offline allocation with the other two policies, we can see im-

provement in several respects. First, the mean time to transplantation of the semi-offline

allocation is shorter compared to either of the other policies (1.34 years compared to 3.96

years and 2.58 years of the PP and HKF policies, respectively). Second, the mean HLA

mismatch of the semi-offline allocation is improved compared to HKF, implying that the

probability of successful transplantation is improved. Moreover, we find that approxi-

mately 65% of the patients that receive an organ under both HKF and the semi-offline

policy in our experiments had a better match with the organ they receive under the semi-

offline policy, compared to what they receive under HKF. The current (PP) policy has the

lowest HLA mismatch, since priority points of an allocation are given based on the match

between the donor and the patient. Comparing the utility from an allocation (or in other

words, the year-gain from allocating kidneys to candidates), we find that the semi-offline
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policy achieves the highest utility. On average, candidates that receive a transplant under

the semi-offline allocation in our experiments are expected to live almost 7 months longer

than those who receive a kidney under the KAS policy, and almost 3 years longer than

those who receive a kidney under the current PP policy. Finally, the semi-offline allocation

better matches survival times of a transplanted kidney (measured by DPI, where low DPI

corresponds tolong expected organ survival) with expected lifespans of the their recipient.

This is a very important feature for two reasons. First, it decreases the probability that

a patient would return to the waiting list after a transplanted graft failure. Second, it

decreases the probability that a patient would die with a functioning graft, resulting in

an increase in the graft utility. We illustrate this property in Figures 8.8 and 8.9. Figure

8.8 illustrates the relationship between organ survival and recipients’ LYFT and dialysis

time. High (low) LYFT value, as well as short (long) dialysis time, are likely to result in

long (short) after-transplant lifetime. Figure 8.9 depict the ages of the matched donors

and recipients. It is shown that young donors (less than 20 year old) are more likely to be

matched with young candidates (less than 40 year old), whereas older donors are matched

with older candidates.

The actual waiting time of candidates in the waiting list increases under the semi-

offline policy by an average of approximately 1 year (compared to both PP and HKF

policies). Although the increased waiting time may be considered a downside of the semi-

offline allocation, it also implies that the semi-offline allocation does not operate as a

“first-come-first-transplant” policy. Instead, it gives higher weight to allocation and graft

utility than to waiting time.
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Figure 8.8: Relationship between organ survival and recipient lifespan (left) and dialysis
time (right).
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Figure 8.9: Relationship between donors’ and recipients’ age.

8.3.2 Knowledge-Based Real-Time Policy

We use the knowledge gained from the semi-offline allocation and propose a knowledge-

based policy that mimics the improvements that the semi-offline allocation suggests on

the HKF policy. We address the questions of equity and efficiency :

Equity: Does the semi-offline allocation provide a sense of equity in access to transplanta-

tion, or are candidates prioritized based on their health profile? Does the semi-offline
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allocation provide better or worse equity compared to HKF?

Efficiency: Given that a candidate receive an organ allocation, what type of kidney would

a recipient receive under the semi-offline policy compared to HKF, and when?

8.3.2.1 Equity

For the question of equity, we use the Kruskal-Wallis χ2-test (Kruskal and Wallis,

1952) to compare the median health profile of candidates (e.g., dialysis time, antigens,

age, etc.) to those of organ recipients, according to the semi-offline allocation. Table

8.8 summarizes the test results. We illustrate the insightful comparisons in Figure 8.10,

where we show the distributions of CPRA and dialysis time on the top panels (with the

median values represented as a hollow strip and the whiskers extending to the 5th and 95th

percentiles), simultaneous kidney-pancreas and diabetes status at the middle panel, and

ethnicity at the bottom panel. We find that the semi-offline allocation gives high priority

to candidates with high sensitization level (high CPRA value), diabetes, long dialysis

time, and to those who are waiting for simultaneous kidney-pancreas transplant. This

result is not surprising, considering the structure of the KAS score (equation (6.1)) that

gives priority based on CPRA value (up to 4 ‘points’), dialysis time (between 0.2 and 1

point per year), and LYFT (between 0.2 and 1 point per additional years gained from the

transplant), which increases with diabetes and the need for simultaneous kidney-pancreas

transplant (Wolfe, 2007). We also find that unlike the current PP system, the semi-offline

allocation does not prioritize based on candidates’ antigens, and consequently, does not

prioritize based on ethnicity (for the equity problem caused by candidates’ antigens and

tissue types, consider (Eggers, 1995)). To compare the equity of semi-offline allocation to
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that of the HKF policy, we perform a χ2-test on the two groups of organ recipients in our

experiments. We find that the median is statistically equal at the 1% significance level

on all the different metrics, implying that the equity provided by both policies is

statistically equal. In fact, we find that the two recipient groups overlap by more than

70%. Therefore, the semi-offline allocation cannot be used to improve the equity of the

HKF policy.

8.3.2.2 Efficiency

To study the efficiency of the semi-offline allocation, we construct a regression tree

on the allocation outcome that maps organ types, that is DPI values (y variable in the tree

notation), to recipients’ health profile: LYFT, CPRA, DT and Survival curves (x variable

in the tree notation). The choice of variables stems from the concepts used to define the

KAS value (see Section 6.2). In essence, the regression tree satisfies one main objective:

it provides knowledge on what type of kidney is allocated to what type of candidates,

in terms of their health-related properties. We later use this knowledge to develop our

knowledge-based real-time policy. The resulting regression tree is given in Figure 8.11.

On the regression tree, the patient pool is divided into 7 groups (7 leaf nodes), based on

their LYFT and DT. The number in the leaf nodes represents the mean DPI assigned to

each group.

Next, we study the actual distribution of organ quality, measured by the DPI value

assigned to each patient type. We summarize the DPI distribution per group in Table

8.9. We also compare the distribution of organ types per patient group of the semi-offline

allocation to that resulting from the HKF policy in Figure 8.12. The results are provided
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as side-by-side boxplots. In comparison, we find that the ranges of DPI values assigned to

each group are smaller, implying that the match between donors and candidates is more

accurate under the semi-offline policy. In other words, the semi-offline allocation is

more efficient than the real-time HKF allocation.

We can backtrack to the efficiency insights of the semi-offline allocation to derive

a knowledge-based real-time policy (KB): upon arrival of new organ oj , with DPI value

equals dpij we consider patient groups (gk, k ∈ (1, 2, ...7)) such as dpij to be within the

[5%, 95%] percentile DPI range of these groups, according to Table 8.9. The organ is then

allocated to the candidate with the highest KAS value within these groups. The policy is

given in Algorithm 2.

Algorithm 2 KB policy
On new organ oj arrival, with DPI value= dpij:
Gj = {gk | dpij ∈ [5%, 95%] percentile DPI of group k}
Pj = {pi ∈ Gj}
a =

{
(oj , pi) | pi ∈ Gj and KASij = maxpk∈Gj {KASkj}

}

Lastly, we compare the performance of the KB policy to that of PP and HKF on

10 different holdout sets. The results are summarized in Table 8.10. We find that KB

significantly improves the performance of HKF and PP on four planes: (1) decreased

time to transplant, (2) higher utility, (3) better match between graft expected lifetime

and patient expected lifetime, and (4) shorter time on waiting list (compared to HKF

only). The mortality rate, however, significantly increases by 1.2% yearly (approximately

25 candidates in our sample). A possible reason for that increase is the expected increase

in after-transplant lifespan and decrease in reduction rate.
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Table 8.4: Predictors used in estimating candidates survival curves

Predictor Description

DIAB Indicates whether a patient is diabetes (DIAB=1 if dia-
betes).

KP Indicates whether a patient is waiting for simultaneous
pancreas-kidney transplant (KP=1 if simultaneous trans-
plant).

DIAL Indicates whether a patient needs dialysis (DIAL=1 if dial-
ysis).

PrevTRANS Indicates whether s patient had previous transplants (Pre-
vTRANS=1 if previous transplants).

DT Dialysis time in years upon arrival.
AGE Patient’s age upon arrival.
POLYCYSTIC Indicates weather a patient was diagnosed with polycystic

kidney syndrome (POLYCYSTIC=1 if yes). Polycystic kid-
ney syndrome is a genetic disorder that results in massive
enlargement of the kidneys. The disease can also damage
the liver, pancreas, and in some rare cases, the heart and
brain.

HYPERTENSION Indicates whether a patient was diagnosed with malignant
hypertension (HYPERTENSION=1 if yes). Malignant hy-
pertension is a complication of hypertension characterized
by very elevated blood pressure. Malignant hypertension
can damage the kidneys as well as the eyes, brain and heart.

NotSPECIFIED Indicates whether a patient has no diagnosis (NotSPECI-
FIED=1 if no diagnosis).

BMI Patient’s Body Mass Index (ratio of weight to square root
of the hight). BMI provided a measure of a patient’s over-
weight (BMI¿25) or underweight (BMI¡18.5).

ALBUMIN Patient albumin level. Low albumin levels reflect possibility
of diseases in which the kidneys cannot prevent albumin
from leaking from the blood into the urine and being lost.

A Number of a patient’s A antigens.
B Number of a patient’s B antigens.
DR Number of a patient’s DR antigens.
ABDR Indicates weather the patients has no antigens (ABDR=1 if

A+B+DR=0)
CPRA Patient’s CPRA level.

132



Table 8.5: Estimated coefficients of the AFT models (sample size≈ 270k)

coef exp(coef)

(Intercept) 2.65 14.21
DIAB -0.96 0.38
KP -5 0.01
DIAL -0.38 0.68
PrevTRANS -0.32 0.73
DT -0.02 0.98
AGE -0.03 0.97
POLYCYSTIC -0.18 0.84
HYPERTENSION 0.33 1.39
NotSPECIFIED -0.03 0.97
BMI 0.02 1.02
ALBUMIN 0.43 1.54
A -0.25 0.78
B -0.22 0.8
DR -0.25 0.78
ABDR -0.3 0.74
CPRA 0.002 1
DIAB:KP 5.06 158.3
DIAB:AGE 0.02 1.02
DIAB:ALBUMIN -0.11 0.89
KP:ALBUMIN 0.59 1.81
KP:AGE 0.04 1.04
DIAB:KP:ALBUMIN -0.63 0.53
DIAB:KP:AGE -0.04 0.96

Shape 1.20

Table 8.6: Semi-offline performance on training dataset (standard error in parentheses)

metric Semi-offline performance

Age at time of offer 47.40 (0.43))
Time to transplantation (years) 1.34 (0.05)
HLA mismatch 3.94 (0.02)
Utility (LYFT) 10.37 (0.07)
Correlation between graft expected life-
time and patient’s expected lifetime

0.69 (0.01)

Mean waiting time on waiting list 3.59 (0.03)
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Table 8.7: Performance of Real-time policies (on training dataset)

metric HKF PP

Age at time of offer 47.47 (0.39) 46.79 (0.73)
Time to transplant (years) 2.58 (0.07) 3.96 (0.06)
HLA mismatch 4.21 (0.02) 2.66 (0.03)
Utility (LYFT) 9.79 (0.08) 7.49 (0.08)
Correlation between graft expected life-
time and patient’s expected lifetime

0.66 (0.01) -0.28

Mean waiting time on waiting list 2.74 (0.03) 2.45 (0.07)
waiting list mortality 15.2% (0.04) 14.7% (0.05)

Table 8.8: Comparison between profile distribution of candidates and recipients (Kruskal-
Wallis χ2-test)

metric χ2 p-value statistically equal?

CPRA 77.46 0 no
DIAB 205.55 0 no
KP 16.05 0 no
PrevTrans 1.73 0.19 yes
DT 171.51 0 no
AGE 31.25 0.07 yes
A antigens 0.09 0.77 yes
B antigens 3.23 0.07 yes
DR antigens 2.12 0.15 yes
BMI 0.53 0.47 yes
ALBUMIN 8.58 0 no
Ethnicity 0.85 0.36 yes

Table 8.9: Patient type and organ allocation

Group Group properties [5th, 50th, 95th] per-
centile DPI

mean DPI

1 DT ∈ [0, 0.52) [0.05, 0.12, 0.29] 0.14
2 DT ∈ [0.52, 2.53) [0.10, 0.22, 0.40] 0.24
3 DT ∈ [2.53, 5.41) [0.13, 0.35, 0.51] 0.33
4 DT ∈ [5.41, 8.68), LY FT ∈ (−∞, 8.25) [0.51, 0.56, 0.62] 0.56
5 DT ∈ [5.41, 8.68) , LY FT ∈ [8.25,∞) [0.27, 0.47, 0.58] 0.46
6 DT ∈ [8.68, 12.28) [0.50, 0.60, 0.71] 0.61
7 DT ∈ [12.28,∞) [0.63, 0.74, 0.85] 0.74
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Figure 8.10: Comparison of profile distribution of candidates and recipients.
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DT < 5.40521

DT < 2.52603

DT < 0.521575

DT < 8.67877

LYFT < 8.25 DT < 12.284

0.1419 0.2345 0.3310 0.5582 0.4575 0.6079 0.7415

Figure 8.11: Regression tree on the allocation outcome that maps organ types to recipients’
health profiles. Leaf nodes give average DPI.

Table 8.10: Real-time policies performance (on holdout dataset)

metric KB HKF PP

Age at time of offer 46.88 (0.41) 46.06 (0.42) 46.73 (0.71)
Time to transplant (years) 2.25 (0.05) 2.50 (0.03) 4.22 (0.06)
HLA mismatch 4.19 (0.02) 4.15 (0.02) 2.67 (0.03)
Utility (LYFT) 9.9 (0.06) 9.88 (0.07) 7.46 (0.08)
Correlation between graft expected life-
time and patient’s expected lifetime

0.69 (0.01) 0.64 (0.01) -0.26 (0.03)

Mean waiting time in waiting list 3.11 (0.05) 3.23 (0.04) 2.79 (0.06)
waiting list mortality 16% (0.04) 14.8% (0.05) 13.7% (0.03)
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Figure 8.12: Comparing the semi-offline allocation and HKF allocation in terms of DPI
(smaller variance is better). The solid line represents the median DPI value, and the
whiskers extend to the 5th and 95th percentiles.
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Chapter 9

Discussion and Future Work

In this work we discuss policies that allocate deceased donor kidneys to candidates

with kidney failure. Following the OPTN report, we addressed the efficiency and equity

in access to transplantation of the current allocation policy (Priority Points (PP)) and a

new allocation policy, proposed by KARS in 2008 (Higher KAS First (HKF)). We then

develop an alternative policy that is tailored to the properties of the kidney waiting list.

Using a novel approach that combines data analytics and operations research methods,

our allocation policy incorporates future prospect allocations into the decision making

process, while accounting for dynamics in the queue, such as that of patients joining or

leaving due to mortality.

Our work contributes to the kidney allocation field in both theoretical and applied

aspects. On the theoretical side, we define a semi-offline optimization problem that pro-

vides the best attainable allocation of organs to candidates in the OPTN waiting list, given

a specific objective. The solution to the optimization problem serves as an upper bound to

any real-time allocation policy that considers the same allocation objective. In addition,

we use data mining tools to study this solution and mimic it in real-time. In other words,

we utilize the properties of the semi-offline allocation and derive a knowledge-based policy,

which combined with the HKF policy, yields a better allocation at both individual and

social levels (compared to PP and HKF). As a by product, we also numerically show the

significant advantage of the proposed HKF policy over the existing PP system.
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On the applied side, we provide a complete model estimation section in which we

estimate candidates’ changes in health condition, mortality rate, candidate-organ match-

ing probability, and organ quality. These estimates are then used to tailor our proposed

policy to the properties of the kidney waiting list data.

There are several directions for extending this work. First, in this work we focus on

the planner problem, disregarding the patients’ choice problem. However, literature shows

that in practice about 45% of the offered kidneys are rejected by the first patient that

receives it (or his/her physician). The rationale for such a decision is that once in the top

of the list, it pays to wait for a better offer (Zenios, 2004; Su and Zenios, 2005). Patients’

decisions might introduce inefficiencies into the system since transplants are delayed when

patients reject offers. Understanding and modeling the patients’ choice is hence a natural

extension to our work.

Although we do not explicitly model patient choice, our analytical results show that

under the proposed policy, the types of kidneys offered to patients with the same health

condition has a relatively small variation. Therefore, as suggested in Su and Zenios (2005),

our proposed policy is expected to be robust to patient choice. The reason is that if a

patient rejects an offer, s/he is most likely to receive a kidney of the same quality in the

next offer.

Another possible extension of this work, is evaluating recipients’ lifespan and rejec-

tion rate after transplant. In this work, we show that our proposed method results in a

better correlation between the lifetime of kidneys and patients, implying that the need for

retransplantation decreases, as well as the rate of death cases with a functioning graft. On

the other hand, we find that the actual tissue match (HLA match) degrades, compared to
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the other allocation policies, which may result in higher rejection rates.

On the methodological side, our semi-offline formulation can be extended to opti-

mize the worst-case allocation rather than the expected performance (also referred to as

minimax analysis or robust optimization). In the context of kidney allocation, the idea

is to account for the uncertainty associated with the model estimation (such as mortality

rate and organ quality) and to maximize the allocation outcome while minimizing the pos-

sible loss due to mortality. It is expected that worst-case optimization will yield a lower

expected mortality rate compared to the current KB performance. To that end, the effi-

ciency of the allocation is expected to increase. On the equity side, however, such a policy

might give unproportionately high priority to the older population and to patients with

more severe health condition, leaving the less sick patients with low chance of receiving a

transplant.
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Appendix A

R codes

A.1. Multivariate monitoring

# Based on Lowry’s algorithm

# dF = dataframe with s columns of data series

# L = lambda value (e.g., 0.3)

# t = alpha level / threshhold (e,g. 0.05)

# z0 = initialization vector

# train = fraction of train data

# sigma = covariance matrix (otherwise estimated from train data)

MultivariateEWMA<-function(dF, L, t, z0=NULL, train, sigma=NULL){

s = length(dF) # number of series

r = length(dF[,1]) # number of days

n = r*train # train data

L.matrix = matrix(rep(rep(0, s),s), ncol=s)

diag(L.matrix) = L # lambda

I = matrix(0,s,s)

diag(I) = rep(1,s)

if (is.null(z0)) { # initialized z0

z0 = L.matrix %*% t(dF[1,])
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}

z = dF # EWMA values

T2 = dF[,1] # statistic

outbreak = dF[,1] # binary outbreak vector

# calc sigma

if (is.null(sigma)) {

sigma = matrix(rep(rep(0, s),s), ncol=s)

for (k in 1:s) {

for (l in 1:s) {

sigma[k,l] = cov(dF[1:n,k],dF[1:n,l])

}

}

}

sigma = sigma * L/(2-L)

for (i in 1:r){ # z(i) = Lx(i) + (1-L)*z(i-1)

ifelse (i==1,

(z[i,] = z0),

(z[i,] = L.matrix %*% t(dF[i,]) + (I-L.matrix) %*% t(z[i-1,])))

T2[i] = as.matrix(z[i,]) %*% solve(sigma) %*% t(as.matrix(z[i,]))
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ifelse (qchisq(2*t, s, lower.tail=F) < X[i],

(outbreak[i]=1),

(outbreak[i]=0))

}

remove(dF)

remove(L.matrix)

remove(z)

remove(T2)

remove(sigma)

return(outbreak)

}

# Variation of:

# A Simple Multivariate Test For One-Sided Alternatives

# Dean Follmann

# dF = dataframe with s columns of data series

# L = lambda vector (size = s). Example: c(1/3, 1/4, 1/5)

# t = alpha level / threshhold

# z0 = initialization # train = fraction of train data

# sigma = covariance matrix (otherwise estimated from train data)

OneSideMEWMA_Follmann<-function(dF, L, t, z0=NULL, train,

sigma=NULL, with.restart=F){

s = length(dF) # number of series

r = length(dF[,1]) # number of days
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n = r*train # train data

L.matrix = matrix(rep(rep(0, s),s), ncol=s)

diag(L.matrix) = L # lambda

I = matrix(0,s,s)

diag(I) = rep(1,s)

if (is.null(z0)) { # initialized z0

z0 = L.matrix %*% t(dF[1,])

}

z = dF # EWMA values

T2 = dF[,1] # statistic

outbreak = dF[,1] # binary outbreak vector

# normalize: mu = 0

mu = mean(dF)

for (i in 1:s){

dF[,i] = dF[,i] - mu[i]

}

# calc sigma

if (is.null(sigma)) {

sigma = matrix(rep(rep(0, s),s), ncol=s)

for (k in 1:s) {

for (l in 1:s) {
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sigma[k,l] = cov(dF[1:n,k],dF[1:n,l])

}

}

}

sigma = sigma * L/(2-L)

for (i in 1:r){ # z(i) = Lx(i) + (1-L)*z(i-1)

ifelse (i==1,

(z[i,] = z0),

(z[i,] = L.matrix %*% t(dF[i,]) + (I-L.matrix) %*% t(z[i-1,])))

T2[i] = as.matrix(z[i,]) %*% solve(sigma) %*% t(as.matrix(z[i,]))

ifelse (qchisq(2*t, s, lower.tail=F) < T2[i] && (sum(z[i,])>0),

(outbreak[i]=1),

(outbreak[i]=0))

if (outbreak[i]==1 && with.restart==T){ # Restart

z[i,]=rep(0,s)

}

}

return(outbreak)

}

# Based on:
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# A Simple Multivariate Test For One-Sided Alternatives

# Dean Follmann

# Added correcrion: cov-->correl, based on:

# Data-Driven Rank Tests for Classes of Tail Alternatives, by Willem Albers et al

# dF = dataframe with s columns of data series

# t = alpha level / threshhold

# train = fraction of train data

# sigma = covariance matrix (otherwise estimated from train data)

OneSideHotelling_Follmann<-function(dF, t, train, sigma=NULL){

s = length(dF) # number of series

r = length(dF[,1]) # number of days

n = r*train # train data

# normalize: mu = 0

mu = mean(dF)

for (i in 1:s){

dF[,i] = dF[,i] - mu[i]

}

X2 = dF[,1] # statistic

outbreak = dF[,1] # binary outbreak vector

# calc sigma

if (is.null(sigma)) {
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sigma = matrix(rep(rep(0, s),s), ncol=s)

for (k in 1:s) {

for (l in 1:s) {

sigma[k,l] = cov(dF[1:n,k],dF[1:n,l])

}

}

}

for (i in 1:r){

X2[i] = as.matrix(dF[i,]) %*% solve(sigma) %*% t(as.matrix(dF[i,]))

#ifelse ((qchisq(2*t, s, lower.tail=F) < X2[i]) && (sum(dF[i,])>0),

ifelse (qchisq(2*t, s, lower.tail=F) < X2[i] && (sum(dF[i,])>0),

(outbreak[i]=1),

(outbreak[i]=0))

}

return(outbreak)

}

# Based on:

# Multivariate One-Sided Control Charts

# Murat Caner Testik and George Runger

# dF = dataframe with s columns of data series

# t = alpha level / threshhold

# train = fraction of train data
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# sigma = covariance matrix (otherwise estimated from train data)

OneSideHotelling_Testik<-function(dF, t, train=, sigma=NULL){

s = length(dF) # number of series

r = length(dF[,1]) # number of days

n = r*train # train data

# normalize: mu = 0

mu = mean(dF)

for (i in 1:s){

dF[,i] = dF[,i] - mu[i]

}

X2 = dF[,1] # statistic

outbreak = dF[,1] # binary outbreak vector

# calc sigma

if (is.null(sigma)) {

sigma = matrix(rep(rep(0, s),s), ncol=s)

for (k in 1:s) {

for (l in 1:s) {

sigma[k,l] = cov(dF[1:n,k],dF[1:n,l])

}

}

}
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mu = mean(dF)

# calc sigma^(-1/2)

e = eigen(sigma)

V = e$vectors

# CHECK: V %*% diag(e$values) %*% t(V) = inv_sigma

sigma_square = V %*% diag(sqrt(e$values)) %*% t(V)

inv_sigma_square = solve(sigma_square)

# transform standardized variables

Zt = inv_sigma_square %*% as.matrix(t(dF))

mu_z = inv_sigma_square %*% as.matrix(mu)

mu_z_t = Zt

for (i in 1:r){

Dmat = matrix(0, s, s)

diag(Dmat) = 1

dvec = Zt[,i]

Amat = sigma_square

bvec = rep(0, s)

mu_z_t[,i] = solve.QP(Dmat,dvec,Amat,bvec=bvec)$solution

}
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mu_t = sigma_square %*% mu_z_t

# Statistic

X2 = dF[,1]

outbreak = dF[,1]

c = Threshold(t, s, sigma, n)

for (i in 1:r){

X2[i] = t(as.matrix(mu_t [,i])) %*% solve(sigma) %*% as.matrix(mu_t [,i])

ifelse ((X2[i] > c), (outbreak[i]=1), (outbreak[i]=0))

}

return(outbreak)

}

# Based on:

# Multivariate One-Sided Control Charts

# Murat Caner Testik and George Runger

# dF = dataframe with s columns of data series

# L = lambda value (e.g., 0.3)

# t = alpha level / threshhold

# z0 = initialization

# train = fraction of train data

# sigma = covariance matrix (otherwise estimated from train data)

OneSideMEWMA_Testik<-function(dF, L, t, z0=NULL, train, sigma=NULL,

with.restart=F){
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s = length(dF) # number of series

r = length(dF[,1]) # number of days

n = r*train # train data

L.matrix = matrix(rep(rep(0, s),s), ncol=s)

diag(L.matrix) = L # lambda

I = matrix(0,s,s)

diag(I) = rep(1,s)

if (is.null(z0)) { # initialized z0

z0 = L.matrix %*% t(dF[1,])

}

z = dF # EWMA values

# calc sigma

if (is.null(sigma)) {

sigma = matrix(rep(rep(0, s),s), ncol=s)

for (k in 1:s) {

for (l in 1:s) {

sigma[k,l] = cov(dF[1:n,k],dF[1:n,l])

}

}

}

sigma = sigma * L/(2-L)

for (i in 1:r){ # z(i) = Lx(i) + (1-L)*z(i-1)

151



ifelse (i==1,

(z[i,] = z0),

(z[i,] = L.matrix %*% t(dF[i,]) + (I-L.matrix) %*% t(z[i-1,])))

}

return(OneSideHotelling_Testik(z, t, sigma=sigma))

}

# Calculating the threshold for Testik’s method

# t = tail (0.05)

# s = number of series

# sigma = covariance matrix

# tr = length of train data

Threshold<-function(t=0.05, s, sigma, tr){

# Create weights vector - by simulation

w_values = mvrnorm(10000, rep(0,s), sigma)

# calc sigma^(-1/2)

e = eigen(sigma)

V = e$vectors

sigma_square = V %*% diag(sqrt(e$values)) %*% t(V)

inv_sigma_square = solve(sigma_square)

# transform standardized variables

Wt = inv_sigma_square %*% as.matrix(t(w_values))
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mu_z_t = Wt

for (i in 1:10000){

Dmat = matrix(0, s, s)

diag(Dmat) = 1

dvec = Wt[,i]

Amat = sigma_square

bvec = rep(0, s)

mu_z_t[,i] = solve.QP(Dmat,dvec,Amat,bvec=bvec)$solution

}

mu_t = sigma_square %*% mu_z_t

mu_t = (abs(mu_t) > 0.0001)

w = rep(0,s)

for (j in 1:10000) {

count = sum(mu_t[,j])

if (count>0) {

w[count] = w[count]+1

}

}

w = w/10000

# p(X2 > c^2)
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c = 0

is.threshold = F

change.step = F

step = 5

while (is.threshold == F){

p = 0

for (j in 1:s) {p = p + w[j]*pchisq(c, j, lower.tail=F)}

if (abs(p - t) < 0.0001) {is.threshold = T}

if (p < t) {change.step = T}

if (change.step == T) {step = step/2}

if (p < t) {c = c - step}

if (p > t) {c = c + step}

}

return(c)

}

A.2. Multivariate Poisson

# Generate a p-dimensional Poisson

# p = the dimension of the distribution

# samples = the number of observations

# R = correlation matrix p X p

154



# lambda = rate vector p X 1

GenerateMultivariatePoisson<-function(p, samples, R, lambda){

normal_mu=rep(0, p)

normal = mvrnorm(samples, normal_mu, R)

unif=pnorm(normal)

pois=t(qpois(t(unif), lambda))

return(pois)

}

# Correct initial correlation between a

# certain pair of series

# lambda1 = rate of first series

# lambda2 = rate of second series

# r = desired correlation

CorrectInitialCorrel<-function(lambda1, lambda2, r){

samples=500

u = runif(samples, 0, 1)

lambda=c(lambda1,lambda2)

maxcor=cor(qpois(u, lambda1), qpois(u, lambda2))

mincor=cor(qpois(u, lambda1), qpois(1-u, lambda2))

a=-maxcor*mincor/(maxcor+mincor)

b=log((maxcor+a)/a, exp(1))

c=-a

corrected=log((r+a)/a, exp(1))/b
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corrected=ifelse ((corrected>1 | corrected<(-1)),

NA, corrected)

return(corrected)

}
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Appendix 10

Glossary of Terms

In this work we use a variety of methods to achieve an optimal, data-driven perfor-

mance in the context of the two healthcare domains. We enlist the methods used broken

down by building blocks and by discipline in Figures 10.1 - 10.3.

This chapter is organized as follows. In Section 10.1, we introduce the data mining

and statistical techniques used, presented for operations research readers. In particular,

we describe the methods for data generation, time series preprocessing and statistical

monitoring that were used in Part I of this dissertation, and survival models, a statistical

test of median equality, and regression trees, which were used in Part II of the dissertation.

In Section Section 10.2 we give a brief introduction to OR optimization, for the non-OR

(statisticians and data mining) readers.

10.1. Data Mining and Statistical Tools

10.1.1 Data Mimicking

Data mimicking is a method for generating stochastic replicas of a particular dataset.

The approach is based on identifying the most important parameters of a given (authentic)

dataset, estimating those parameters from the data, and using them to stochastically

generate new data (Lotze et al., 2007).
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Figure 10.1: Biosurveillance schematic: univariate monitoring.

In this work, we use data mimicking to generate replicates of authentic syndromic

datasets. In particular, we simulate multivariate time-series data that includes prominent

patterns of syndromic data, such as seasonal and day-of-week (DOW) patterns.

The model operates in two steps. First, an initial multivariate dataset is gener-

ated from a multivariate normal distribution that includes autocorrelation and cross-

correlation. Specifically, the vector of values on k series at day t is represented as

Xt =




X1,t

...

Xk,t




, with mean µ =




µ1,t

...

µk,t




and covariance matrix Σ. The bivariate dis-
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Figure 10.2: Biosurveillance schematic: multivariate monitoring.

tribution of Xt+1 and Xt is




Xt

Xt+1


 =




X1,t

...

Xk,t

X1,t+1

...

Xk,t+1




∼ N







µ

µ


 ·




Σ C

C Σ





 ,

where C is a diagonal matrix with elements ci (i = (1, ...k)) on the diagonal, where

ci = cov(Xi,t, Xi,t+1) is the lag-1 autocovariance of series i.

In the second step, estimated seasonal and DOW patterns are added to the data.

The series are then rounded to integers and bounded to be nonnegative, in order to yield
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Figure 10.3: Kidney allocation schematic.

valid data.

10.1.2 Linear Regression, Exponential Smoothing, and Differencing

There are a variety of methods for removing explainable patterns from a time series.

Methods generally are either model-based or data-driven. Model-based methods remove

a pattern by directly modeling the pattern via some specification. An example is a linear

regression model with day-of-week indicators. Data-driven methods either suppress cer-

tain patterns (e.g., differencing at a certain lag) or ‘learn’ patterns from the data (e.g.,

exponential smoothing). In the following we describe three methods that have been shown

to be effective in removing the types of explainable effects that are often exhibited in pre-

diagnostic daily count series (day-of-week, holidays, seasonality, and autocorrelation). For

a more detailed discussion of preprocessing methods see Lotze et al. (2008) and Shmueli

and Burkom (2010). The methods we describe produce next-day forecasts. The forecasts

160



are then subtracted from the actual counts to produce residuals. In particular, we de-

note the observed data at time t by yt and the forecasts by ŷt. The residuals Rt are the

differences between the observed and forecasted values: Rt = yt − ŷt.

Linear Regression models are a popular method for capturing recurring patterns such

as day-of-week, seasonality, and trends (Rice, 1995; Brillman et al., 2005). The

classic assumption is that these patterns do not change over time, and therefore

the entire data are used for model estimation. In this work we use log-linear re-

gression of log(daily counts) with the following covariates: daily dummy variables

(DOW=Monday, Tuesday, ... Sunday) to account for the DOW effect, a holiday

indicator (Holiday), an index variable (index) to capture a linear trend, and daily

average temperatures (Tavg) and monthly dummy variables (MON=Jan, Feb, ...

Dec) to capture seasonality. The estimated model is given by:

log (ŷt) = α̂ + β̂′ × [DOW,Holiday, index, Tavg,MON]

Differencing is the operation of subtracting a previous count from a current one. The or-

der of differencing gives the vicinity between the two counts (Brockwell and Davis,

1991). We consider 7-day differencing, as suggested by Muscatello (2004), where

forecasts are obtained by using the values from the previous week: ŷt = yt−7.

The main advantage of differencing is that it is computationally efficient and very ef-

fective at removing both weekly and monthly patterns. The main drawback of 7-day

differencing is that it generates autocorrelated residuals with 7-day autocorrelation.

Exponential Smoothing is a popular scheme for producing a smoothed time series and/
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or generate forecasts. Holt-Winter’s exponential smoothing is a form of smoothing

in which a time series is assumed to consist of few components: a level Lt, a trend

Tt, seasonality St, and noise (Chatfield, 1978). The k-step ahead forecast is given

by

ŷt+k = (Lt + kTt)St + k −M,

where M is the number of seasons in a cycle (e.g., for a yearly periodicity M = 365).

The three components are updated as follows:

Lt = αYt/St−m + (1− α)(Lt− 1 + Tt−1)

Tt = β(Lt− Lt− 1) + (1− β)Tt−1

St = γYt/Lt + (1− γ)(St−M ),

where α, β, and γ are smoothing parameters that take values in (0, 1). Burkom et al.

(2007) show that exponential smoothing is useful for preprocessing pre-diagnostic

data, and suggest using M = 7 seasons, and smoothing parameter values α ∈

[0.1, 0.4] (depending on the properties of the series), β = 0, and γ = 0.15.

10.1.3 Control Charts

A control chart is a popular statistical tool for monitoring a process with the goal

of distinguishing the process common variation from special-caused variation (referred to

as ‘anomalies’). Control charts were originated by Walter A. Shewhart while working

at Bell Labs in 1924, for the manufacturing environment. Taking a statistical approach,
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Shewhart showed that measurements in manufacturing data can be approximated by a

Normal distribution. Consequently, the underlying assumption of Shewhart’s chart and

other related charts, is that measurements follow a Normal (or other known) distribution

and that the observations are independent.

We use control charts in the first part of the dissertation to monitor biosurveillance

processes. In particular, we monitor aggregated daily counts of individual health care

seeking behavior (such as daily arrivals to emergency departments or medication sales),

for the purpose of early detection of epidemic outbreaks, manifested in the data as shifts

from expected baseline behavior.

Three types of control charts, which are widely-used in modern biosurveillance sys-

tems, are discussed and used thoroughly in our work: The Shewhart chart, Exponential

Weighted Moving Average (EWMA) chart, and Cumulative Sum (CuSum) chart. Each is

best at detecting a certain shape of outbreak. We briefly describe each next.

The Shewhart chart is the most basic control chart. A sample statistic at each time

point (such as a mean, proportion, or count) is plotted and compared against upper

and/or lower control limits (UCL and LCL), and if the limit(s) are exceeded, an

alarm is raised. The control limits are typically set as a multiple of standard devia-

tions of the statistic from the target value (Montgomery, 2007). It is most efficient

at detecting medium to large spike-type outbreak signatures.

The Exponentially Weighted Moving Average (EWMA) chart plots and monitors

a weighted average of the sample statistics with exponentially decaying weights

(NIST/SEMATECH, 2006). It is most efficient at detecting exponential changes
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in the target value and is widely used for detecting small sustainable changes in the

target value.

Cumulative-Sum (CuSum) control charts plot and monitor the cumulative sum of

the deviations from the target values. The CuSum chart is known to be efficient

in detecting small shifts in the target value (Montgomery, 2007) and step-function

type changes (Box et al., 2009).

Table 10.1 summarizes for each of the three charts its monitoring statistic (denoted

Shewhartt, EWMAt and CuSumt), the upper control limit (UCL) for alerting, the pa-

rameter value that yields a theoretical 5% false alert rate, and a binary output indicator

that indicates whether an alert was triggered on day t (1) or not (0). Yt denotes the raw

daily count on day t. We consider one-sided control charts where an alert is triggered only

when there is indication of an increase in mean (i.e., when the monitoring statistic exceeds

the UCL). This is because increases in health care seeking behavior are of interest.

We also consider multivariate control charts in Chapter 4, where multiple series are

monitored simultaneously. Multivariate control charts take advantage of the correlation

structure between individual series, thereby having a higher potential of detecting small

signals that are dispersed across series.

10.1.4 Survival Analysis

Survival analysis is a field in statistics that examines and models the time it takes

for events to occur. In most of the applications of survival analysis the event is death,

from which the term ‘survival’ derives. A broadly applicable and the most widely used
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Table 10.1: Features of three main control charts

Shewhart EWMA CuSum

Monitored
Statistic

St = Yt Et = λYt + (1− λ)Et−1 Ct = max(0, Ct−1 + Yt − σ/2)

UCL UCL = µ + kσ UCL = E0 + ks, UCL = µ + hσ

s2 = λ/(2− λ)σ2

Theoretical 5%
threshold

k = 1.5 k = 1.5 h = 2.5

Output 1St>UCL 1Et>UCL 1Ct>UCL

method of survival analysis is the Cox proportional hazards model (Cox, 1972; Cox and

Oakes, 1984). The model estimates the distribution of survival times conditional on a set

of one or more predictors. This is done by modeling the survival function S(t), which is the

probability of survival as a function of time. In the Cox model, the survival function S(t)

(the probability of survival as a function of time) for an individual with set of predictors

zi is given by

S(t|zi) = S0(t)exp{β′zi}, (10.1)

with S0(t) being the baseline survival probability, which can be estimated by the Kaplan-

Meier estimate (Kaplan and Meier, 1958), and β is a vector of predictor coefficients to be

estimated from the Cox model.

The model specifics are as follows. Let T represent the survival time, which is a

random variable with cumulative distribution function P (t) = p(T ≤ t) and probability

density function p(t) = dP (t)/dt. Let S(t) be the complement of the distribution function,

that is S(t) = p(T > t) . Finally, h(t) is the hazard function, which assesses the death

probability at time t, conditional on survival to that time:
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h(t) = lim
∆t→0

p [(t ≤ T < t + ∆t)|T ≥ t]
∆t

. (10.2)

The proportional hazards model fits survival data with covariates z to a hazard

function of the form:

h(t|z) = h0(t)exp{β′
z}, (10.3)

where h0(t) is the non-parametric baseline hazard, and β is estimated by a partial likeli-

hood function (a maximum likelihood function, conditional on the death event, see Cox

and Oakes (1984)).

An alternative to the Cox proportional hazard model is the Accelerated Failure

Time model (AFT). AFT is a fully parametric model with covariates that take the form:

S(t|z) = S0(t exp{γ ′z}), (10.4)

where γ is a vector of parameters and z is the vector of covariates. This model essentially

puts individuals with different covariates on different time scales. The model assumes a

linear relationship between the log of failure time (log(T )) and the covariates and param-

eters (γ
′
z), with an error term (ε) that takes a particular distribution:

log(T ) = α + γ
′
z + ε. (10.5)
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10.1.5 The Kruskal-Wallis χ2 Test

The Kruskal-Wallis (KW) χ2 test is a non-parametric method for testing the equal-

ity of population medians with unknown distributions (Kruskal and Wallis, 1952). Since

it is a non-parametric method, the KruskalWallis test does not assume a normal popula-

tion (unlike the analogous one-way analysis of variance). However, the test assumes an

identically-shaped and -scaled distribution for each population examined.

The test operates as follows. First, in the computation of the KW statistic, each

observation is replaced by its rank in an ordered combination of all the populations. Then,

the sum of the ranks for each of the populations is computed, and compared using a one-

way ANOVA test on the ranks.

In this dissertation, we use the Kruskal-Wallis χ2 test in the kidney allocation project

to compare the health condition of candidates in the OPTN waiting list to that of the

organ recipients, according to our allocation policy.

10.1.6 Regression Trees

A regression tree is a recursive partitioning method that splits a p-dimensional space

(denoted: X variables) using a continuous response variable y (Breiman et al., 1984). The

X variables are assumed to be either continuous or categorical. In each of the recursion

steps, one variable xi ∈ X is chosen to split the tree into two subtrees: numeric variables

are divided into xi < α and xi > α; the levels of categorical factors are divided into two

non-empty groups. The split is chosen in a way that maximizes the reduction in impurity

of the subtrees. Splitting continues until the terminal nodes are too small or too few to
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be split.

There are several methods to measure impurity of a subtree tr. One of the most

popular methods (which we also use in this work) is the entropy measure:

entropy(tr) = −
m∑

k=1

pk log2(pk) (10.6)

where pk is the proportion of samples in subtree k and m is the total number of subtrees.

In the kidney allocation project, we use exploratory regression trees on the semi-

offline allocation, with the allocated organ being the response variable (y), and the recip-

ient’s health record being the independent variables (X). The regression trees enables us

to explore the nature of the optimal allocation, in terms of classifying organ types into

classes of candidates, based on candidates’ health conditions.

10.2. Operations Research Methods

10.2.1 Offline and Semi-Offline Optimization

An offline optimizer is an algorithm that seeks the optimal solution based on the

entire input (i.e., past and future events) available from the start. Similarly, a semi-offline

optimizer is an algorithm that seeks the optimal solution based on a probabilistic input,

in which missing information is replaced by a set of probabilistic scenarios. A solution

obtained by an offline/ semi-offline algorithm is hard to attain in real-time, where future

events are unknown.
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In the biosurveillance project, we use an offline optimizer to study the optimal offline

linear combination of multiple preprocessing techniques and monitoring algorithms, and

its properties. We then apply the optimal offline combination in real-time and show that

the combined method outperforms any of the single methods in terms of true and false

alarms.

In the kidney allocation project, we use a semi-offline optimizer to find the opti-

mal kidney allocation, based on the entire information of patients and donors arrivals,

their properties upon arrival, and their probabilistic future health condition and death

probability. We then study the properties of the allocation in terms of which kidney is

allocated to what patient, expected waiting time, death rate, and other determinants in

this complex multi-objective problem. We use these properties to derive allocation rules

to be used in real-time deployment.

One of the main drawbacks of this approach is that the offline algorithm is over-

fitted to a given input, thereby potentially producing inaccurate predictors, and might

not be robust to other inputs. To overcome this problem, we train the algorithm on a

large set of training inputs, generated in the preprocessing step, and learn the common

properties of the different allocations.

10.2.2 Mixed Integer Programming

Linear programming (LP) is a mathematical method for obtaining an optimal out-

come represented as a linear function, subject to linear constraints. When some of the

variables are restricted to take only integer values, the problem becomes a Mixed integer

programming (MIP) problem.
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An MIP problem can be expressed as:

max c
′
xL + c

′
xI

s.t.

A(xL + xI) ≤ b,

xI Integer.

where xL and xI represents the vector of linear and integer (respectively) variables to be

determined, c, b and A are known coefficients. The expression to be maximized is called

the objective function. The equations are the linear and integral constraints.

We use MIP to formulate and solve the offline and semi-offline optimization problems

described above. The MIP formulation allows us to obtain an optimal solution to these

problems and can be solved by any standard optimization software, such as CPLEX.
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