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Our ability to communicate using speech depends on complex, rapid processing 

mechanisms in the human brain. These cortical processes make it possible for us to 

easily understand one another even in noisy environments. Measurements of neural 

activity have found that cortical responses time-lock to the acoustic and linguistic 

features of speech. Investigating the neural mechanisms that underlie this ability could 

lead to a better understanding of human cognition, language comprehension, and 

hearing and speech impairments.  

We use Magnetoencephalography (MEG), which non-invasively measures the 

magnetic fields that arise from neural activity, to further explore these time-locked 

cortical processes. One method for detecting this activity is the Temporal Response 

Function (TRF), which models the impulse response of the neural system to continuous 

stimuli. Prior work has found that TRFs reflect several stages of speech processing in 



  

the cortex. Accordingly, we use TRFs to investigate cortical processing of both low-

level acoustic and high-level linguistic features of continuous speech.  

First, we find that cortical responses time-lock at high gamma frequencies (~100 

Hz) to the acoustic envelope modulations of the low pitch segments of speech. Older 

and younger listeners show similar high gamma responses, even though slow envelope 

TRFs show age-related differences. Next, we utilize frequency domain analysis, TRFs 

and linear decoders to investigate cortical processing of high-level structures such as 

sentences and equations. We find that the cortical networks involved in arithmetic 

processing dissociate from those underlying language processing, although both 

involve several overlapping areas. These processes are more separable when subjects 

selectively attend to one speaker over another distracting speaker. Finally, we compare 

both conventional and novel TRF algorithms in terms of their ability to estimate TRF 

components, which may provide robust measures for analyzing group and task 

differences in auditory and speech processing. Overall, this work provides insights into 

several stages of time-locked cortical processing of speech and highlights the use of 

TRFs for investigating neural responses to continuous speech in complex 

environments. 
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Chapter 1 

Introduction 

 

Our ability to comprehend speech depends on an intricate chain of neural 

mechanisms that transform the sound waves that enter the ear into meaningful 

representations in the brain.  In addition, speech signals are often mixed with other 

sounds since we interact with each other in noisy environments. And yet, we are able 

attend to the relevant speaker with an ease that is not matched by even the most 

advanced artificial algorithms. Understanding how the brain achieves these tasks, such 

as the segregation of one speaker among many, or the representation and processing of 

relevant acoustic and linguistic features, is a vibrant area of research. Investigating 

these neural mechanisms could further our knowledge on human cognition and lead to 

improvements in a wide range of applications including the diagnosis and treatment of 

hearing and speech disabilities, smart hearing aids and automated speech recognition 

systems.  

Extracting information from speech is challenging partly due to the inherent 

characteristics of the acoustic signals. These signals have rich temporal and spectral 

properties, and require rapid processing mechanisms (Chi et al., 2005; Rosen, 1992). 

Remarkably, the human brain is capable of tracking relevant features of acoustic signals 

in a time-locked manner, faithfully encoding speech with high temporal fidelity (Aiken 

and Picton, 2008a; Nourski et al., 2009). Magnetoencephalography (MEG), which non-
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invasively measures the magnetic fields that arise from the electrical currents within 

the brain, is well suited to measure such rapid neural processes, due to its fine temporal 

resolution (Ahissar et al., 2001; Hämäläinen et al., 1993; Luo and Poeppel, 2007). 

However, the magnetic signals arising from these processes are barely detectable from 

outside the scalp, and are often contaminated with irrelevant neural activity or 

environmental noise.  

To overcome this challenge, traditional methods rely on averaging the neural 

responses to hundreds of trials of repeated acoustic stimuli, in order to enhance 

consistent activity across trials (Picton, 2013; Picton et al., 1974). However, these 

methods are not suitable for exploring cortical responses to non-repetitive, long 

duration, continuous speech. Therefore, linear models of neural activity called 

Temporal Response Functions (TRFs) have been utilized to investigate time-locked 

neural responses to continuous stimuli without the need for averaging over trials (Ding 

and Simon, 2014; Lalor and Foxe, 2010). Both TRF and frequency domain analyses 

have also found neural tracking of linguistic features such as phonemes, words and 

sentences (Brodbeck et al., 2018a; Ding et al., 2016). TRF analysis has also been used 

to investigate age related hearing loss (Brodbeck et al., 2018b) and speech segregation 

during selective attention (Ding and Simon, 2012a). These techniques provide versatile 

tools to explore several stages of time-locked cortical processing of speech; from the 

processing of the acoustics, to the processing of semantics and meaning, ultimately 

leading to speech comprehension. 
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This dissertation further investigates time-locked neural responses to continuous 

speech as measured by MEG. We explore time-locked cortical processing of both low-

level acoustic features (Chapter 3) and high-level structures like spoken sentences and 

equations (Chapter 4). TRF analysis often involves estimating and detecting changes 

in TRF components across groups or tasks to investigate the underlying cortical 

activity. Hence, we compare several algorithms in terms of their ability to estimate 

these TRF components (Chapter 5). A more detailed description of this dissertation is 

given below.  

Chapter 2 provides background information on the neural basis, instrumentation 

and analysis of MEG signals, and reviews neural responses to sound and speech as 

measured by MEG.  

Chapter 3 explores high gamma (70-200 Hz) responses to continuous speech in 

younger and older adults. MEG responses to continuous speech are typically analyzed 

in low frequency ranges (~1-10 Hz), for two reasons. 1) The MEG signal to noise ratio 

reduces with increasing frequency (Hansen et al., 2010) 2) The cortical activity that 

predominates the MEG signal rarely time-locks to speech at these high rates (Miller et 

al., 2002). However, recent work has found cortical Frequency Following Responses 

(FFRs) to repetitive speech syllables in the ~100 Hz range using MEG (Coffey et al., 

2017b, 2016). Prior work has shown that the FFR could be useful for diagnosing 

hearing deficiencies, including age-related hearing loss (Anderson et al., 2012; Kraus 

et al., 2017a). In this study, we show that MEG is also able to detect high gamma 

responses to continuous speech, possibly coming from thalamic inputs to auditory 
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cortex. Using TRF analysis, we find these responses are predominantly driven by the 

envelope modulation (more than the carrier) of the low pitch segments of the speech 

stimuli. Interestingly, older and younger listeners have similar high gamma responses, 

even though FFRs and low frequency cortical TRFs show age-related differences. This 

work has been published in NeuroImage (Kulasingham et al., 2020). 

 Chapter 4 investigates high-level cortical processing of spoken arithmetic 

equations and non-math sentences in a complex two-speaker environment, using 

frequency domain analysis, TRFs and linear decoders. Cortical responses track 

hierarchical structures such as phrases and sentences and are enhanced by attention 

(Ding et al., 2018). Prior studies have found evidence for a dedicated cortical network 

that underlies numerical processing that is distinct from networks involved in linguistic 

processing (Amalric and Dehaene, 2019, 2018). In this study, we use selective 

attention, frequency analysis and TRFs to separate cortical processing of language, 

arithmetic and acoustics. We find that the spatiotemporal patterns underlying time-

locked cortical processing of arithmetic show both similarities and differences from 

those underlying linguistic processing. The responses to equations and non-math 

sentences are more clearly separable when selectively attending to one speaker in the 

two-speaker paradigm. The neural tracking of sentence and equation structures is 

correlated with behavioral performance on an outlier detection task, suggesting that 

these responses are linked to comprehension. This work has been published in the  

Journal of Neuroscience (Kulasingham et al., 2021). 
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Algorithms for estimating TRFs to continuous speech are investigated in Chapter 

5. The neural response to the acoustics of continuous speech typically comprises of 

well-studied components like the M50 (P1) at ~50 ms and the M100 (N1) at ~100 ms 

(Ding and Simon, 2012b; Picton, 2013). Investigating differences in auditory 

processing among individuals, groups, or tasks typically relies on the amplitudes and 

latencies of these peaks. For example, older subjects have exaggerated M50 and M100 

amplitudes (Brodbeck et al., 2018b), and the M100 amplitude is modulated by selective 

attention (Brodbeck and Simon, 2020; Ding and Simon, 2012a). However, current 

methods for estimating TRFs often result in ambiguous component waveforms, making 

it difficult to determine subject-specific component latencies and amplitudes. We 

investigate both current methods and novel algorithms that utilize prior knowledge of 

the morphology of these responses, and compare their accuracy in estimating 

component latencies and amplitudes. Estimating reliable subject-specific TRF 

components may provide robust measures of differences in neural responses across 

groups or tasks, leading to improved diagnostic measures and understanding of the 

cortical processing of continuous speech.   
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Chapter 2 

Background 

The brain is composed of billions of neurons, each one rapidly receiving and 

transmitting signals, resulting in the most complex system of information processing 

known to man. Measuring this neural activity can be done either by inserting electrodes 

into neural tissue (invasive methods) or from outside the scalp (non-invasive methods). 

Neural signals are harder to detect from far away, and non-invasive methods typically 

result in reduced resolution, accuracy, and precision. Although invasive methods are 

commonly used in animal research, exploring higher cognitive functions such as speech 

and language can only be done with human subjects. However, invasive methods 

involving contact with neural tissue are only feasible for human subject research in rare 

cases (e.g., during brain surgery on patients with neurological disorders). Therefore, 

the vast majority of research on speech processing in the human brain is conducted 

using non-invasive methods such as functional Magnetic Resonance Imaging (fMRI), 

Electroencephalography (EEG) and Magnetoencephalography (MEG). These methods 

measure aggregate activity of thousands of neurons, which together form rich patterns 

of activity across cortical areas. 

fMRI indirectly measures neural activity by detecting changes in blood 

oxygenation in the brain and is one of the most widely used non-invasive methods due 

to its high spatial resolution. However, changes in blood flow occur at much slower 

rates than the underlying neural activity, resulting in fMRI having poor temporal 

resolution (in the order of seconds). Therefore, fMRI is not suited for studying the rapid 
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mechanisms involved in time-locked speech processing. In contrast, EEG directly 

measures the electrical currents that arise from neural activity and has very high 

temporal resolution in the order of milliseconds, at the cost of having low spatial 

resolution (Lopes da Silva, 2013).  The complementary method of MEG measures the 

magnetic fields elicited by these electrical currents and provides similar temporal 

resolution and improved spatial resolution (Lopes da Silva, 2013). Therefore, MEG is 

well suited to investigate the neural mechanisms underlying speech tracking (Ahissar 

et al., 2001; Luo and Poeppel, 2007). An overview of the neural basis, instrumentation, 

data collection and typical data analysis techniques for MEG is provided in section 2.1, 

while section 2.2 provides an overview of time-locked MEG responses that reflect 

neural processing of sound and speech. 

 

2.1.  Magnetoencephalography: Extracting Meaning from Neural 

Signals 

2.1.1.  Neural basis and instrumentation of Magnetoencephalography 

The fundamental processing unit of the brain is the neuron, which transmits and 

receives information in the form of electrochemical signals. These signals give rise to 

magnetic fields, which vary in conjunction with neuronal activity. The magnetic field 

arising from the current flow between individual neurons is too weak to be measured 

from a distance. However, several neurons are active at any given moment, and if the 

electrical fields involved in this activity are synchronized and aligned, the resulting 
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magnetic fields can be detected even from outside the head. MEG measures these 

magnetic fields which arise from the aggregate activity of large populations (thousands 

or even millions) of neurons (Baillet, 2017; Hämäläinen et al., 1993).  

Two types of electrical activity in neurons give rise to magnetic fields: fast action 

potentials (AP) transmitted along the axon, and slower post synaptic potentials (PSP) 

that arise in the dendrites. Since action potentials are so fast (~1 ms), they are not often 

synchronized across many neurons. PSPs on the other hand are slow enough (~10 ms) 

to elicit synchronized magnetic fields across large populations of neurons. These PSPs 

give rise to Local Field Potentials (LFP) and the corresponding magnetic fields can be 

detected at a distance using MEG (Hämäläinen et al., 1993).  

Although MEG is able to detect currents originating deep in the brain, the 

sensitivity of MEG to deep sources is very poor, especially when cortical sources are 

active concurrently (Hansen et al., 2010; Hillebrand and Barnes, 2002). MEG signals 

also do not capture much information at high frequencies (above 100 Hz), unlike EEG, 

because the cortical sources that drive MEG rarely synchronize at these frequencies 

(Miller et al., 2002). However, the MEG signal is much cleaner than EEG, with a higher 

spatial resolution, since the intervening materials of the cerebrospinal fluid and skull 

interfere with and distort electrical signals, but are more transparent to magnetic fields 

(Lopes da Silva, 2013). In Chapter 3, we investigate high frequency time-locked 

responses to speech, that are traditionally thought to originate in subcortical areas, and 

find that they also arise from cortical areas. 
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The MEG system consists of superconducting quantum interference detectors 

(SQUIDs), that measure the magnetic field and are arranged in a spherical array around 

the head. Typical MEG systems comprise of around 100 – 300 such sensors placed 

around the scalp, allowing for good spatial resolution of magnetic fields. These sensors 

need to be placed inside the insulated ‘dewar’ and are cooled to superconducting 

temperatures of around 4 K with liquid Helium. These sensors are sensitive enough to 

detect the weak magnetic signals produced by neural activity. MEG measurements are 

performed inside a magnetically shielded room in order to reduce interference from 

strong magnetic fields and ensure high data quality. Some amount of interference from 

unwanted magnetic sources is unavoidable, and the next section reviews commonly 

used techniques to mitigate this problem.   

 

2.1.2.  Denoising of MEG signals 

The neural signals measured by MEG are typically buried under unwanted 

magnetic signals from a multitude of sources. The magnetic fields in the brain are 

orders of magnitude smaller than magnetic signals from other sources like laboratory 

noise, biological artifacts, or even the earth’s magnetic field (Hämäläinen et al., 1993). 

Sources of noise can be categorized into external noise (eg: magnetic fields arising 

from laboratory equipment), sensor noise (due to imperfections in the measurement 

sensors), biological artifacts (signals arising from the participant due to eyeblinks, 

heartbeat and movements) and background neural activity (neural activity that is not 

relevant to the current experiment).  
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Two methods that are commonly used for denoising are Time Shift Principle 

Component Analysis (TSPCA) (de Cheveigné and Simon, 2007), and Sensor Noise 

Suppression (SNS) (de Cheveigné and Simon, 2008). TSPCA uses reference sensors to 

regress out environmental magnetic signals from the MEG signals. The SNS algorithm 

seeks to eliminate sensor noise by smoothing the measurements of each sensor based 

on its neighbors. For the work reported in this dissertation, these two methods were 

used prior to data analysis. However, even small movements of a participant cause 

magnetic fluctuations far greater than neural signals. In addition, eyeblinks, eye 

movements and heartbeats are often unavoidable generators of large magnetic signals. 

Independent Component Analysis (ICA) is a commonly used algorithm for denoising 

of such artifacts (Barbati et al., 2004; Vigário et al., 1998) and was used in Chapter 4 

of this work. 

Although subjects are asked to perform a specific task during the MEG recording, 

a host of other neural processes are active concurrently. Denoising Source Separation 

(DSS) is an algorithm that seeks to find a spatial filter over sensor space that enhances 

auditory responses and minimizes contributions from these background neural 

processes (Cheveigné and Simon, 2008). When an auditory stimulus is repeatedly 

presented in multiple trials, it evokes an auditory response that is similar across all the 

presentations. Therefore, DSS finds the spatial filter that maximizes the consistent 

response across trials and can be used for both denoising as well as dimensionality 

reduction. In Chapter 5, a subset of DSS components that represent the auditory 

component of the neural activity were used for some parts of the analysis. 
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2.1.3.  Source localization of MEG responses 

The MEG measurement comprises of multiple sensors outside the scalp that 

measure magnetic fields that arise from neural currents. For simplicity, these magnetic 

fields are assumed to arise from a fixed number of current dipoles located in the brain. 

The relationship between the MEG sensor measurements and the current dipoles is 

given by Maxwell’s equations of electromagnetism, and estimating these current 

dipoles from MEG signals is called source localization (Hansen et al., 2010). This 

problem is highly underdetermined given that the number of sensors (100-300) is 

orders of magnitude smaller than the number of current dipoles (>1000). Since several 

source configurations can give rise to the same magnetic field patterns at the sensors, 

the source localization is not unique, and additional criteria must be used to select one 

solution. One of the most popular methods is minimum norm estimation (MNE) 

(Hämäläinen and Ilmoniemi, 1994). The source localization model can be stated as, 

𝐘	 = 	𝐋	𝐗	 + 	𝐕 (2.1) 

Where 𝐘 ∈ ℝ!×# is the measured sensor data over M sensors and T time points,  

𝐗 ∈ ℝ$×# is the unknown source activity matrix with S sources and T time points that 

needs to estimated,  𝐕 ∈ ℝ!×#is the unknown measurement noise, and 𝐋 ∈ ℝ!×$ is 

the lead field matrix that maps the sources onto the sensors. This forward mapping 𝐋 

can be derived by modelling the brain with the aid of anatomical fMRIs and applying 

Maxwell’s equations to determine the magnetic fields induced by each source. 
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Therefore, the MNE algorithm estimates the source activity matrix X by solving the 

following minimization problem.  

𝐗* 	= 	𝑎𝑟𝑔𝑚𝑖𝑛	‖𝐘 − 𝐋	𝐗‖𝐂!𝟏 + 𝜆𝟐‖𝐗‖𝐑!𝟏 (2.2) 

where ‖𝐗‖𝐀 = 𝐗𝐓𝐀𝐗, 𝐂 ∈ ℝ!×! is the sensor space measurement noise covariance, 

𝐑 ∈ ℝ$×$ is the source covariance, and 𝜆𝟐 is a regularization parameter. MNE source 

estimation tends to favor sources close to the surface, and hence modifications such as 

dynamical Statistical Parametric Mapping (dSPM) (Dale et al., 2000)  are used to 

reweight the source covariance matrix to reduce this bias against deep sources (and has 

been used in Chapter 3). Given the low spatial resolution of MEG, minimum norm 

estimation performs reasonably well at estimating distributed cortical activity, and is 

used for all the source localization analysis done in this dissertation.  

 

2.1.4.  The Temporal Response Function (TRF): A Linear Model of MEG 

Responses 

Traditional methods for analyzing MEG responses rely on averaging over multiple 

trials of repeated stimuli in order to cancel out the background noise (Picton, 2013). 

Although these methods are suitable for exploring time-locked responses to simple 

sounds such as tones or speech syllables, they cannot be used to investigate neural 

processing of continuous speech. Linear models have been proposed to either decode 

continuous speech stimuli from the neural responses (decoding model), or to find a 

mapping from features of the speech onto the neural response (encoding model). One 
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such encoding model is the Temporal Response Function (TRF) given in Eq. 2.3. and 

shown in Fig. 2.1. (Ding and Simon, 2012a; Lalor and Foxe, 2010). 

𝑦(𝑡) = 	;𝜏(𝑑)𝑥(𝑡 − 𝑑)
*

+ 𝑛(𝑡) (2.3) 

where 𝑦(𝑡) is the measured response at time 𝑡, 𝑥(𝑡 − 𝑑) is the time shifted predictor 

(e.g., acoustic envelope of speech), with a time lag of 𝑑, 𝜏(𝑑) is the TRF value at lag 

𝑑 and 𝑛(𝑡)	is the residual noise. TRFs model the neural response to speech as a linear 

filter, with neural processing reflected in the amplitudes and latencies of the lagged 

components of this filter. This filter is analogous to the evoked response to simple 

sounds, and can be thought of as the impulse response of the neural system.  

 

 

Figure 2.1. TRFs for continuous speech processing. (A) Traditional evoked response model. The 

evoked response is the average response over many trials. (B) TRF to discrete events. The measured 



 

14 
 

neural signal is formed by a convolution of the TRF and the stimulus predictor. In this case, the 

predictor is composed of impulses that represent discrete stimulus events. The size of the impulse 

determines the magnitude of the response.  (C) TRF to a continuous predictor. The measured neural 

signal is given by the convolution of the TRF and the continuous predictor. Adapted from Brodbeck 

et al., 2021b. 

 

This dissertation focuses only on the TRF encoding model. The TRF can be 

estimated either for each MEG sensor signal, for the auditory DSS components or for 

the source localized signals at each neural source. Several algorithms have been used 

to estimate TRFs including ridge regression (Broderick et al., 2018) and boosting 

(David et al., 2007). The boosting algorithm was used for estimating TRFs in Chapters 

3 and 4. Starting from an all-zero TRF, at each iteration, the boosting algorithm greedily 

assigns a small discrete increment or decrement to a particular lag in the TRF, that best 

minimizes the squared error between the predicted and the measured signals. The 

iteration terminates when the correlation between the predicted and measured signals 

stops improving. This leads to sparse TRFs that capture only the neural activity that 

best predicts the response.  However, the above algorithms are agnostic to the 

morphology and structure of neural responses. Chapter 5 investigates both these 

algorithms as well as novel algorithms that directly estimate TRF components based 

on prior knowledge of auditory responses. 
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2.2.  Time-Locked Neural Responses to Sound and Speech 

2.2.1.  The human auditory pathway 

From the moment a speech signal enters the ear, a complex chain of processes is 

set in motion that eventually results in comprehension. The pressure fluctuations of the 

acoustic waveform travels through the ear canal and vibrates the eardrum (tympanic 

membrane), which in turn vibrates the middle ear bones (ossicles) (see Fig 2.2A). These 

vibrations are transferred to the cochlea, where inner hair cells convert these vibrations 

to electrical signals to be transmitted along the auditory nerve. The electrical signals in 

the auditory nerve travel through several intermediary structures along the ascending 

auditory pathway before reaching the primary auditory cortex (see Fig 2.2B). Although 

the activity of several structures along the ascending auditory pathway can be detected 

with EEG, cortical responses dominate MEG measurements, since it is not as sensitive 

to deep structures (Hansen et al., 2010). 
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Figure 2.2. The human auditory system. A. Schematic of the human ear. Sound travels through 

the ear canal and vibrates the tympanic membrane and ossicles. These vibrations are transferred to 

the cochlea where inner hair cells convert them to electrical signals to be transmitted along the 

auditory nerve. Adapted from Chittka and Brockmann, 2005. B. Schematic of the ascending 

auditory pathway. Auditory information travels from the cochlea, through several intermediate 

subcortical processing structures, until finally arriving at the auditory cortex.  Adapted from Butler 

and Lomber, 2013 

 

2.2.2.  MEG for auditory responses 

There has been a long history of research on the auditory system using EEG and 

MEG. Traditionally, the measured signal is averaged over many trials with the same 

auditory stimulus in order to cancel out the background noise (Picton et al., 1974). This 

method can detect evoked responses that are time-locked to the onset of the stimulus. 
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The activity of each neural structure along the ascending pathway leads to measurable 

evoked responses which are broadly categorized into canonical early (under 10 ms), 

middle (10 – 50 ms) and late (above 50 ms) components (Picton, 2013). The late 

components are most relevant for MEG measurements of speech processing, since 

these arise from primary and secondary auditory cortex, as well as from cortical areas 

reflecting higher order processing. Canonical late auditory components comprise of a 

positive peak at 50 ms termed the P1 (or M50 for MEG measurements), a negative peak 

at 100 ms termed N1 (or M100) and a positive peak around 200 ms termed the P2 (or 

M200). These peaks are thought to reflect different stages of neural processing and 

have been widely studied to investigate age-related hearing loss (Tremblay et al., 2003), 

auditory disorders (Picton, 2013), and attentional modulation (Näätänen, 1990). 

The auditory system also time-locks to the fundamental frequency of an acoustic 

stimulus, resulting in the Frequency Following Response (FFR) which is typically 

studied using EEG (see Fig 2.3). The FFR could be helpful in understanding age related 

hearing loss and other hearing impairments (Kraus et al., 2017a). The FFR is a very 

fast response in the range of 100 – 1000 Hz and predominantly arises from subcortical 

sources. However, recent studies using MEG and EEG have shown that cortical areas 

contribute to the ~100 Hz FFR to repeated speech syllables (Coffey et al., 2016, 2017b). 

In Chapter 3, we investigate time-locked MEG responses to continuous speech that are 

in the FFR range and find that these responses originate from the cortex and are 

consistent across younger and older listeners. 
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Fig 2.3. Frequency following responses. a. The stimulus waveform (speech syllable /da/) is shown 

along with the EEG and MEG responses averaged over several hundreds of repetitions. The FFR is 

clearly visible in both EEG and MEG for the duration of the vowel. b. The frequency spectrum 

shows that the EEG and MEG responses time-lock predominantly to the fundamental frequency of 

the audio signal. Adapted from Coffey et al., 2016. 

2.2.3.  MEG responses to continuous speech using TRFs 

When the stimulus is continuous speech, averaging over multiple trials is no longer 

feasible, and instead TRFs have been used (Ding and Simon, 2012b; Lalor and Foxe, 

2010). The TRF waveform shows consistent M50, M100 and M200 peaks similar to 

the evoked response. These TRFs are typically estimated for the auditory envelopes of 

the speech stimuli. However, TRF analysis can also be used to investigate processing 

of higher order features of speech including words and semantics (Brodbeck et al., 

2018a; Broderick et al., 2018). In Chapter 4, we use TRFs to estimate neural responses 

to sentences and equations and find sustained responses that vary over several cortical 

areas. 
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2.2.4.  TRFs to speech in complex environments 

The cocktail party paradigm has been commonly used for investigating cortical 

speech processing in complex environments (Cherry, 1953; Middlebrooks et al., 2017). 

Subjects are asked to attend to one speaker in the presence of one or more background 

speakers, simulating the common experience of listening to one person in the midst of 

a crowd, such as in a cocktail party. Since the speech waveforms of both speakers are 

mixed into one acoustic signal, segregating the relevant speech stream is quite a 

challenging task. By using the foreground and background stimuli as predictors, TRFs 

to both the attended and unattended speech stream can be estimated. The early M50 

peak is present for both foreground and background TRFs, indicating that it reflects 

pre-attentive auditory processing. However, the M100 peak shows strong attentional 

modulation (Ding and Simon, 2012b; Zion Golumbic et al., 2013), suggesting that the 

speech streams are at least partially segregated around 100 ms after the stimulus enters 

the periphery. 

Studies utilizing such TRF models typically contrast the amplitudes and latencies 

of TRF components across groups or tasks. Hence robust estimates of both group 

effects as well as individual TRFs are essential. However, single subject TRFs are often 

very noisy and may not have clear component peaks. In Chapter 5, we investigate TRF 

algorithms and compare their ability to estimate the amplitudes and latencies of well-

known TRF components. Such algorithms could pave the way toward further 

understanding cortical processing of speech and improvements in the treatment and 

diagnosis of hearing and speech impairments. 
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Chapter 3 

High Gamma Cortical Processing of Continuous Speech in 

Younger and Older Listeners 

 
This work has been published as 

Kulasingham, J.P., Brodbeck, C., Presacco, A., Kuchinsky, S.E., Anderson, S., Simon, 

J.Z., 2020. High gamma cortical processing of continuous speech in younger and 

older listeners. NeuroImage 222, 117291. 

https://doi.org/10.1016/j.neuroimage.2020.117291 

 

3.1.  Abstract 

Neural processing along the ascending auditory pathway is often associated with 

a progressive reduction in characteristic processing rates. For instance, the well-known 

frequency-following response (FFR) of the auditory midbrain, as measured with 

electroencephalography (EEG), is dominated by frequencies from ~100 Hz to several 

hundred Hz, phase-locking to the acoustic stimulus at those frequencies. In contrast, 

cortical responses, whether measured by EEG or magnetoencephalography (MEG), are 

typically characterized by frequencies of a few Hz to a few tens of Hz, time-locking to 

acoustic envelope features. In this study we investigated a crossover case, cortically 

generated responses time-locked to continuous speech features at FFR-like rates. Using 

MEG, we analyzed responses in the high gamma range of 70–200 Hz to continuous 
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speech using neural source-localized reverse correlation and the corresponding 

temporal response functions (TRFs). Continuous speech stimuli were presented to 40 

subjects (17 younger, 23 older adults) with clinically normal hearing and their MEG 

responses were analyzed in the 70–200 Hz band. Consistent with the relative 

insensitivity of MEG to many subcortical structures, the spatiotemporal profile of these 

response components indicated a cortical origin with ~40 ms peak latency and a right 

hemisphere bias. TRF analysis was performed using two separate aspects of the speech 

stimuli: a) the 70–200 Hz carrier of the speech, and b) the 70–200 Hz temporal 

modulations in the spectral envelope of the speech stimulus. The response was 

dominantly driven by the envelope modulation, with a much weaker contribution from 

the carrier. Age-related differences were also analyzed to investigate a reversal 

previously seen along the ascending auditory pathway, whereby older listeners show 

weaker midbrain FFR responses than younger listeners, but, paradoxically, have 

stronger cortical low frequency responses. In contrast to both these earlier results, this 

study did not find clear age-related differences in high gamma cortical responses to 

continuous speech. Cortical responses at FFR-like frequencies shared some properties 

with midbrain responses at the same frequencies and with cortical responses at much 

lower frequencies. 
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3.2.  Introduction 

The human auditory system time-locks to acoustic features of complex sounds, 

such as speech, as it extracts and encodes relevant information. The characteristic 

frequency of such time-locked activity is generally thought to decrease along the 

ascending auditory pathway. For example, subcortical activity at ~100 Hz and above 

may directly encode the temporal pitch information of voiced speech (Forte et al., 2017; 

Krishnan et al., 2004), while cortical activity below ~10 Hz, which time-locks to the 

slowly varying envelope of speech, also time-locks to higher level features of language 

such as phoneme and word boundaries (Brodbeck et al., 2018a). Prior research has also 

found differences in both subcortical and cortical processing for older and younger 

listeners (Anderson et al., 2012; Presacco et al., 2016a, 2016b), which suggest age-

related auditory temporal processing deficits. These effects have been investigated in 

human subjects using the complementary non-invasive neural recording techniques of 

electroencephalography (EEG) and magnetoencephalography (MEG). 

The well-known frequency following response (FFR) is one such phase-locked 

response (Kraus et al., 2017b), most commonly measured using EEG, and is believed 

to originate predominantly from the auditory midbrain (Bidelman, 2015; Smith et al., 

1975). The FFR measures the phase-locked response to the fast (~100 Hz and above), 

steady state oscillation of a stimulus, such as a repeated speech syllable. The FFR 

provides insight into the peripheral representation of speech and is a useful tool for 

investigating temporal processing deficits (Basu et al., 2010; Hornickel et al., 2012; 

Kraus et al., 2017b). In addition, the FFR may be used to investigate the robustness of 
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speech representations in noise or a dual stream paradigm (Yellamsetty and Bidelman, 

2019). The FFR is believed to detect the integrated activity of several nonlinear 

processing stages along the auditory pathway, and hence various nonlinear features of 

the stimulus can contribute to the FFR (Lerud et al., 2014). Some studies compare and 

contrast FFRs obtained by averaging or by subtracting responses to stimuli of opposite 

polarity in order to tease apart these contributions to some extent (Aiken and Picton, 

2008; Hornickel et al., 2012). 

The neural origins of the FFR have historically been thought to be mainly 

subcortical areas such as the inferior colliculus (Smith et al., 1975). But recent studies 

with MEG and EEG have shown that the FFR at ~100 Hz is not purely generated by 

subcortical areas, but has contributions from the auditory cortex as well (Bidelman, 

2018; Coffey et al., 2017b, 2017a, 2016; Hartmann and Weisz, 2019; Puschmann et al., 

2019). Some studies have shown that this cortical contribution is stronger in the right 

hemisphere (Coffey et al., 2016; Hartmann and Weisz, 2019). The dominantly cortical 

role in the MEG FFR follows from the reduced sensitivity of gradiometer-based MEG 

to deep structures such as the auditory midbrain (Baillet, 2017). 

However, the repeated speech syllables commonly used to generate the FFR 

cannot capture the complexities of natural continuous speech. To understand how the 

brain represents speech in naturalistic environments, cortical low frequency (below ~10 

Hz) responses to continuous speech have been widely studied (Peelle et al., 2013). The 

MEG and EEG response to continuous speech can be represented using Temporal 

Response Functions (TRFs) (Ding and Simon, 2012b; Lalor et al., 2009) which are 
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linear estimates of time-locked responses to time varying features of the auditory 

stimulus. The conventional low-frequency TRF time-locks to the slow (below ~10 Hz) 

envelope of continuous speech, though the spectrotemporal fine structure of speech can 

also modulate these cortical low frequency responses (Ding et al., 2014; Ding and 

Simon, 2012b).  

Recently, short latency subcortical EEG responses to continuous speech have been 

found using TRF analysis (Maddox and Lee, 2018), demonstrating that it is possible to 

detect fast midbrain responses to continuous speech. Early latency responses that phase 

lock to the fundamental frequency of speech have also been found to be modulated by 

attention (Forte et al., 2017). One study has also found cortical high gamma MEG 

responses to speech stimuli, with latencies near 30 ms, that are time-locked to the ~100 

Hz temporal modulation in the envelope of the speech spectrum (up to 2 kHz) (Hertrich 

et al., 2012). Whether auditory cortex time-locks in the high gamma range to the carrier 

as well as to the envelope modulation of continuous speech remains unclear. 

Further complicating our understanding of the contributions of subcortical and 

cortical sources to the MEG response is the impact of age-related changes in the 

auditory pathway (Peelle and Wingfield, 2016). The temporal processing of speech can 

degrade with age, especially in noisy conditions (Gordon-Salant et al., 2006; He et al., 

2008; Hopkins and Moore, 2011). Age-related differences have been found in both the 

EEG FFR and the MEG low frequency TRF to speech. Older adults have weaker, 

delayed FFRs with lower phase coherence when compared with younger adults 

(Anderson et al., 2012; Presacco et al., 2015; Zan et al., 2019). Possible causes include 
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age-related inhibition-excitation imbalance (Caspary et al., 2008) resulting in a loss of 

temporal precision (Anderson et al., 2012). In a surprising reversal, older adults’ cortex 

exhibits exaggerated low frequency responses (Bidelman et al., 2014; Brodbeck et al., 

2018b), even to the point of allowing better stimulus reconstruction via these low 

frequency cortical responses than in younger adults (Presacco et al., 2016a, 2016b). 

Several possible explanations, not necessarily exclusive, have been advanced to 

account for this surprising result, including decrease in inhibition, recruitment of 

additional brain regions and central compensatory mechanisms (Chambers et al., 2016; 

Peelle et al., 2010). The fact that fast midbrain responses are reduced with age while 

slow cortical responses are enhanced might indeed be due to anatomical and 

physiological differences between midbrain and cortex, but a fair comparison is 

complicated by the fact that the responses occur at vastly different frequencies. Hence 

it is entirely unknown whether high gamma cortical responses would show age-related 

reduction or enhancement. 

In this study, we investigated high gamma cortical responses to continuous natural 

speech using MEG. Unfortunately, MEG responses are known to have relatively poor 

signal-to-noise ratio (SNR) and decreased power at high gamma frequencies because 

the cortical sources that dominate MEG responses rarely phase lock in this range at a 

population level (Lu et al., 2001). In addition, environmental noise and artifacts such 

as muscular movement can obscure the signal at these higher frequencies 

(Muthukumaraswamy, 2013). Hence detecting high gamma responses using MEG may 

require averaging over many trials (as for the FFR), or much longer speech stimuli, to 
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boost SNR. Similarly, detecting subcortical responses to speech may also require high 

SNR or longer speech stimuli (Maddox and Lee, 2018).  

This work investigates whether such high gamma responses can be detected using 

MEG with a simple experimental paradigm of short duration. MEG recordings of 

younger and older subjects listening to only six minutes of continuous speech (narration 

by a male speaker) were investigated using TRF analysis, and such high gamma time-

locked responses are indeed found to be present. Just as the low frequency TRF may 

be compared to a low frequency evoked response, the high gamma TRF may be 

compared to the FFR in that they both reflect time-locked activity at the stimulus 

frequency. 70–200 Hz was chosen as the high gamma range because 70 Hz is near the 

lower end of typical male voice pitch (and well above the 60 Hz of line noise) while 

200 Hz is far above most known auditory responses measured by MEG. In addition, 

source localization was performed to investigate the cortical and subcortical 

contributions to these high gamma MEG responses. Only six minutes, as opposed to, 

e.g., 30 minutes, were chosen for the stimulus duration as being typical for an auditory 

speech experiment that employs multiple stimulus conditions (e.g., several levels of 

speech in noise). TRF analysis can then be used to investigate time-locked neural 

processing of a wide variety of stimulus features, from acoustics to semantics 

(Brodbeck et al., 2018a) simultaneously in the same, short experimental paradigm. 

We focused on the following specific research questions. Firstly, are 70–200 Hz 

MEG responses to continuous speech time-locked to the carrier or to the envelope 

modulation of the speech spectrum? Unlike FFR analysis, TRF analysis is able to 
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explicitly and simultaneously capture distinct response contributions arising from 

different stimulus features, in this case from envelope modulation and the carrier, 

allowing direct comparison of the separate contributions of these features to the 

response. Secondly, are there any age-related differences in these responses, and if so, 

do they show age-related decrease, like the EEG FFR, or the opposite, like the cortical 

low frequency TRFs? Additionally, we investigated if these responses were right 

lateralized as found in the MEG FFR (Coffey et al., 2016). Such right lateralization 

would also agree with studies showing right hemispheric dominance for pitch 

processing in core auditory cortex (Hyde et al., 2008). Finally, we investigated if the 

responses were influenced by the instantaneous pitch of the speech stimulus.  

 

3.3.  Methods 

3.3.1.  Experiment dataset 

The experimental dataset used for this study has been previously described in detail 

by Presacco et al. (2016a, 2016b), but is here supplemented with eight additional older 

adults with clinically normal hearing (dataset available online (Kulasingham, 2019a)). 

The combined dataset consisted of MEG responses recorded from 17 younger adults 

(age 18–27, mean 22.3, 3 male) and 23 older adults (age 61–78, mean 67.2, 8 male), 

with clinically normal hearing, while they listened to 60 second portions of an 

audiobook recording of  “The Legend of Sleepy Hollow” by Washington Irving 

(https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving). All 
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participants gave informed consent and were paid for their time. Experimental 

procedures were reviewed and approved by the Institutional Review Board of the 

University of Maryland. The audio was delivered diotically through 50 W sound tubing 

(E-A-RTONE 3A) attached to E-A-RLINK foam earphones inserted into the ear canal 

at ~70 dB sound pressure level via a sound system with flat transfer function from 40 

to 3000 Hz. The conditions analyzed in this study consist of two passages of 60 seconds 

duration presented in quiet (i.e., solo speaker), each of which was repeated three times, 

for a total of six minutes of MEG data per subject. Subjects were asked beforehand to 

silently count the number of occurrences of a particular word and report it to the 

experimenter at the conclusion of each trial, in order to encourage attention to the 

auditory stimuli. Handedness of the participants was assessed with the Edinburgh 

handedness scale (Oldfield, 1971), which can range from –1 (complete left-dominance) 

to 1 (complete right-dominance). To exclude lateralization bias due to handedness, all 

analyses were performed again excluding the 9 subjects scoring below 0.5. The only 

qualitative change in the results was a loss of right hemispheric dominance in younger 

subjects (discussed below). 

 

3.3.2.  MEG data collection and preprocessing 

MEG data was recorded from a 157 axial gradiometer whole head KIT MEG 

system while subjects were resting in the supine position in a magnetically shielded 

room. The data was recorded at a sampling rate of 1 kHz with an online 200 Hz low 

pass filter with a wide transition band above 200 Hz, and a 60 Hz notch filter. Data was 
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preprocessed in MATLAB by first automatically excluding saturating channels and 

then applying time-shift principal component analysis (de Cheveigné and Simon, 2007) 

to remove external noise, and sensor noise suppression (de Cheveigné and Simon, 

2008) to suppress channel artifacts. On average, two MEG channels were excluded 

during these stages. All subsequent analyses were performed in mne-python 0.17.0 

(Gramfort, 2013; Alexandre Gramfort et al., 2014) and eelbrain 0.30 (Brodbeck et al., 

2019); code available online (Kulasingham, 2019b). The MEG data was filtered in the 

band 70–200 Hz (high gamma band) using an FIR filter described below, and six 60 

second epochs during which the stimulus was presented were extracted for analysis. 

The band 70–200 Hz was chosen since the pitch of the male speaker typically falls in 

this range, and 200 Hz is above most known auditory cortical responses. The data was 

resampled to 500 Hz for all further analysis. 

 

3.3.3.  Stimulus representation 

As discussed above, prior work on the FFR has shown that time-locked neural 

responses are sensitive to both the carrier and the envelope of an auditory stimulus. 

Similarly, time-locked responses to speech in the high gamma range may be driven 

either by the high gamma carrier, or by high gamma modulation in the envelope of 

even higher frequencies. Accordingly, two distinct representations of the speech 

stimulus were used as predictors for the TRF model (see Fig. 3.1). For the former case, 

the carrier predictor was constructed by resampling the speech waveform to 1 kHz 

(using the mne-python function ‘resample’) and bandpass filtering from 70–200 Hz 
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using the same filter as above. This carrier predictor captures the high gamma rate 

modulation in the speech waveform itself. For the latter case, the envelope modulation 

predictor was constructed from the high gamma modulation in the envelope of the 

highpassed stimulus waveform (envelopes are only well-defined when they modulate 

carriers of higher frequencies than those of the modulations themselves; Rosen, 1992). 

Specifically, first the speech was transformed into an auditory spectrogram 

representation by computing the acoustic energy in the speech waveform for each 

frequency bin in the range 300–4000 Hz at millisecond resolution using a model of the 

auditory periphery (Yang et al., 1992). The range 300–4000 Hz was chosen in order to 

have a clear separation between the upper end of the high gamma range (200 Hz) and 

because the auditory stimulus was presented through air tubes which attenuate 

frequencies above 4000 Hz. This auditory spectrogram is a 2-dimensional matrix 

representation of the acoustic envelope over time for different frequency bins. Each 

frequency bin component of this spectrogram was then filtered using the same 70–200 

Hz bandpass filter as above, producing a 70–200 Hz band limited envelope for each 

bin. Finally, the resulting 2-dimensional matrix was averaged across frequency bins to 

provide a single signal, resulting in the envelope modulation predictor. Thus, this 

predictor captures the 70–200 Hz temporal modulation in the 300–4000 Hz envelope 

of the speech waveform. These two predictors were resampled to 500 Hz and used for 

all further TRF analysis. Even though the two predictors are correlated at r = -0.42, the 

TRF analysis is able to separate the neural response to each of them (negative 
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correlations are common for a carrier and the corresponding non-linearly related 

envelope of another frequency band with different cochlear delays). 

The 70–200 Hz bandpass filter was formed using the default FIR filter in mne-

python with an upper and lower transition bandwidth of 5 Hz, at 1 kHz sampling 

frequency, but applied twice in a forward fashion to the data. This resulted in a 

combined filter of length 1322 with a phase delay of 660 ms. Other bandpass filters 

were also employed as alternatives, including IIR minimum-phase-delay Bessel filters 

(results not shown); no results depended critically on the filters used.  

 

 

Figure 3.1. Stimulus representations. The stimulus waveform for a representative 500 ms speech 

segment is shown along with its auditory spectrogram and the two predictors: carrier and envelope 

modulation. The predictors are correlated (Pearson’s r = –0.42) but have noticeably distinct 

waveforms.  
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3.3.4.  Neural source localization 

Before each MEG recording, the head shape of each subject was digitized using a 

Polhemus 3SPACE FASTRAK system, after which five marker coils were attached. 

The marker coil locations were measured while the subject’s head was positioned in 

the MEG scanner before and after the experiment, in order to determine the position of 

the head with respect to the MEG sensors. Source localization was performed using the 

mne-python software package. The marker coil locations and the digitized head shape 

were used to coregister the template Freesurfer ‘fsaverage’ brain (Fischl, 2012) using 

rotation, translation and uniform scaling. A volume source space was formed by 

dividing the brain volume into a grid of 7 mm sized voxels. This source space was used 

to compute an inverse operator using minimum norm estimation (MNE) (Alexandre 

Gramfort et al., 2014) and dynamical statistical parametric mapping (dSPM) (Dale et 

al., 2000) with a depth weighting parameter of 0.8, and a noise covariance matrix 

estimated from empty room data. This method results in a 3-dimensional current dipole 

vector with magnitude and direction at each voxel. The Freesurfer ‘aparc+aseg’ 

parcellation was used to define cortical and subcortical regions of interest (ROIs). The 

cortical ROI consisted of voxels in the gray and white matter of the brain that were 

closest to the temporal lobe Freesurfer ‘aparc’ parcellations (‘aparc’ labels: 

‘transversetemporal’, ‘superiortemporal’, ‘inferiortemporal’, ‘bankssts’). A few 

additional voxels surrounding auditory cortex (within 20 mm) were included in the ROI 

solely to ensure that the source localized responses not be misleadingly focal 

(distributed source localization with MNE has a large spatial spread). The subcortical 
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ROI was selected to consist of voxels that were in the Freesurfer ‘aseg’ ‘Brain-Stem’ 

segmentation. All brain plots show the maximum intensity projection of the voxels onto 

a 2-dimensional plane, with an overlaid ‘fsaverage’ brain schematic (implemented in 

eelbrain). Minimum norm estimation in volume source space may lead to spatial 

leakage from the true neural source to neighboring voxels. In order to characterize this 

artifactual spatial leakage, a single current dipole in Heschl’s gyrus was simulated, 

projected into sensor space, and then projected into volume source space (see 

Appendix). Additionally, a separate cortical surface source space model was also used; 

results obtained using this method were not qualitatively different than those of the 

volume space model (see Appendix). 

3.3.5.  Temporal response functions 

The simplest linear model used to estimate the TRF is given by 

 𝑦+ =	;(𝜏*𝑥+,*
*

) + 𝑛+ (1) 

where 𝑦+ is the response at a neural source for time 𝑡, 𝑥+,* is the time shifted predictor 

with a time lag of 𝑑, 𝜏* is the TRF value at lag 𝑑 and 𝑛+	is the residual noise. The TRF 

is the set of time-dependent weights, of a linear combination of current and past 

samples of the predictor, that best predicts the current neural response at that neural 

source (Lalor et al., 2009). Hence the TRF can also be interpreted as the average time-

locked response to a predictor impulse. In this investigation, a TRF model with two 

predictors, envelope modulation and carrier, was used.  
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𝑦+ =	;(𝜏-,*𝑒+,* + 𝜏/,*𝑐+,*)
*

+ 𝑛+ (2) 

Where 𝑒+,* is the delayed envelope modulation predictor and 𝜏-,* the corresponding 

envelope modulation TRF, 𝑐+,*is the delayed carrier predictor and 𝜏/,* the 

corresponding carrier TRF. In this model, the two predictors compete against each 

other to explain response variance, which results in larger TRFs for the predictor that 

contributes more to the neural response. The model parameters were estimated jointly, 

such that the model is not affected by the ordering of the predictors. TRF estimation, 

for lags from –40 to 200 ms, was performed with the boosting algorithm and early 

stopping based on cross validation (David et al., 2007) as implemented in eelbrain. The 

boosting algorithm may result in overly sparse TRFs, and hence an overlapping basis 

of 4 ms Hamming windows (with 1 ms spacing) was used in order to allow smoothly 

varying responses; altering the Hamming window duration did not substantively affect 

the results. For the volume source space, the neural response at each voxel is a 3-

dimensional current vector. Accordingly, for each voxel, a TRF vector was computed 

using the boosting algorithm and was used to predict the neural response vector. For 

each voxel, the prediction accuracy was assessed through the average dot product 

between the normalized predicted and true response, which varies between -1 and 1 in 

analogy to the Pearson correlation coefficient. 
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3.3.6.  Pitch analysis 

Prior studies have suggested that neural time-locking at high gamma rates may 

reflect processing of pitch related features of the speech (Smith et al., 1978). In order 

to investigate the extent to which the response oscillations were influenced by the pitch 

frequency of the speech stimulus, a simple pitch analysis was performed as follows. 

The pitch of the speech signal was extracted using Praat (Boersma, 1993; Boersma and 

Weenick, 2018) in sliding 40 ms windows and used to mark times when the pitch was 

above or below the median pitch value (98.11 Hz). This algorithm is a better 

approximation of the percept of pitch than simply dividing the stimulus based on its 

frequency content, thus allowing subsequent analysis to be done on a neurally relevant 

feature of the stimulus. Two new ‘high pitch’ predictors were formed based on the 

previous two predictors (envelope modulation and carrier) by zeroing out the times 

when the pitch was below the median. Similarly, ‘low pitch’ predictors were formed 

by zeroing out times when the pitch was above the median. Time windows without a 

stable pitch estimate were set to zero in all predictors. Hence four new predictors were 

created: high pitch envelope modulation, low pitch envelope modulation, high pitch 

carrier and low pitch carrier. All 4 predictors were used simultaneously in a competing 

TRF model analogous to that in Eq. 3.2. 
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3.2.7.  Statistical tests 

Statistical tests were performed across subjects by comparing the TRF model to a 

noise model. The predictor was circularly shifted in time and TRFs were estimated 

using this time-shifted predictors as noise models (Brodbeck et al., 2018a, 2018b). This 

preserves the local temporal structure of the predictor while removing the temporal 

relationship between the predictor and the response. Circular shifts of duration 15, 30 

and 45 seconds were used to form three noise models. For each voxel, the prediction 

accuracies of the true model were compared to the average prediction accuracies of the 

three noise models as a measure of model fit. Since all the predictors in the model are 

fit jointly, this results in one joint prediction accuracy for all the predictors for each 

voxel. 

To account for variability in neural source locations due to mapping the responses 

of individual subjects onto the ‘fsaverage’ brain, these coefficients were spatially 

smoothed using a Gaussian window with 5 mm standard deviation. Nonparametric 

permutation tests (Nichols and Holmes, 2002) and Threshold Free Cluster 

Enhancement (TFCE) (Smith and Nichols, 2009) were used to control for multiple 

comparisons. This method, as outlined in full in Brodbeck et al., 2018c, 2018a, is 

implemented in eelbrain, and is briefly recounted here. Firstly, a paired sample t-value 

was evaluated for each neural source, across subjects, from the difference of the 

prediction accuracies of the true model and the average of the three noise models after 

rescaling using Fisher’s z-transform. Then the TFCE algorithm was applied to those t-

values, which enhanced continuous clusters of large values, based on the assumption 
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that significant neural activity would have a larger spatial spread than spurious noise 

peaks. This procedure was repeated 10,000 times with random permutations of the data 

where the labels of the condition were flipped on a randomly selected subset of the 

subjects. A distribution of TFCE values was formed using the maximum TFCE value 

of each permutation to correct for multiple comparisons across the brain volume. Any 

value of the original TFCE map that exceeded the 95th percentile of the distribution 

was considered as significant at the 5% significance level. This corresponds to a one-

tailed test of whether the true model increases the prediction accuracy over the noise 

model. In cases where both sides of the comparison are important, corresponding two-

tailed tests were used (as explained below, for e.g., left vs. right, younger vs. older, 

envelope vs. carrier). In all subsequent results, the maximum or minimum t-value 

across voxels is reported as tmax or tmin respectively.  

The TRF itself was also tested for significance against the noise model in a similar 

manner. In the volume source space, a TRF that consists of a 3-dimensional vector 

which varies with time was estimated for each voxel, representing the estimated current 

dipole amplitude and direction at that voxel. The amplitudes of these TRF vectors for 

the true model and the average noise model were used for significance testing. The 

TRF amplitudes were spatially smoothed using the same Gaussian window before 

performing the tests. A one-tailed test was done with paired sample t-values and TFCE, 

and the procedure is identical to that outlined previously, with the added dimension of 

time (Brodbeck et al., 2018a).  
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Lateralization tests were performed to check for hemispheric asymmetry. The 

volume source space estimates in the cortical ROI were separated into left and right 

hemispheres and, as above, the prediction accuracies were spatially smoothed with the 

same Gaussian window. The prediction accuracies of the average noise model were 

subtracted from that of the true model and paired sample t-values with TFCE in a two-

tailed test were used to test for significant differences between each of the 

corresponding left and right voxels.  

Age-related differences were assessed between the younger and older groups. The 

difference of prediction accuracies between the true TRF model and the average of the 

noise TRF models were used to form independent sample t-values for each source 

across age groups after which a two-tailed test was performed with TFCE. Significant 

differences in lateralization across age groups were assessed by subtracting the 

prediction accuracies of the left hemisphere from the right hemisphere and then 

conducting independent samples tests across age groups as described above. The peak 

latency of the TRFs was also tested for significant differences across age groups. The 

latency of the maximum value of the ℓ0	norm of the TRF vectors in the time range of 

significant responses (20–70 ms) was used to test for peak latency differences across 

age groups using a two-tailed test with independent sample t-values and TFCE.  

To further investigate differences by age across both low frequency and high 

frequency (i.e., high gamma) responses, two additional models were analyzed; a low 

frequency (1–10 Hz) TRF and a high frequency TRF with the same parameters as the 

above models, but using cortical surface source space. An ANOVA was performed on 
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the prediction accuracies of these two models with factors TRF frequency (high or low) 

and age (young or old) (detailed methods and results in Appendix section 3.7). 

 

3.4.  Results 

3.4.1.  Cortical origins of high gamma responses to continuous speech 

Per-voxel TRFs in volume source space were estimated in the high gamma range 

for the two ROIs: the temporal lobes, and the brainstem (plus its surrounding volume). 

The prediction accuracies of the competing stimulus model described above for high-

gamma responses (mean = 0.021, std = 0.003) were much smaller (factor of 3) than 

those resulting from low frequency cortical TRFs (Brodbeck et al., 2018a), indicating 

that these responses are weaker than slow cortical responses. This is not surprising, as 

the spectral power of the MEG response decays with frequency. Noise floor models, 

used to test for significant responses, generated corresponding noise model prediction 

accuracies (mean = 0.018, std = 0.001). For each voxel, a one-tailed test with paired 

sample t-values and TFCE (to account for multiple comparisons) was used to test for 

significant increases in the prediction accuracies of the true model against the noise 

model across subjects. A large portion of the voxels showed a significant increase in 

prediction accuracy (younger subjects tmax = 6.19, p < 0.001; older subjects tmax = 5.66, 

p < 0.001; see Fig. 3.2A). The disproportionate extent of this result is not unexpected, 

however, due to the large spatial spread of MNE volume source space estimates. The 

prediction accuracy over the noise model for voxels in Heschl’s gyrus was significantly 
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larger than that within the subcortical ROI for both age groups (two-tailed paired 

sample t-test; younger subjects t = 3.67, p = 0.002; older subjects t = 2.65, p = 0.015; 

difference across age not significant). Although some voxels in the subcortical ROI are 

significant, this can be ascribed to artifactual leakage arising from the source 

localization algorithm (see simulation in Appendix). 

Lateralization differences were tested using the prediction accuracy at each voxel. 

The prediction accuracy of the average noise model was subtracted from that of the 

true model and a two-tailed test with paired sample t-values and TFCE was performed 

for significant differences in the left and right hemispheres. The tests revealed 

significantly higher prediction accuracies for younger subjects in the right hemisphere 

than in the left (tmax = 3.81, p = 0.035), but only for a few voxels (1.6%) in the temporal 

lobe close to auditory areas (see Fig. 3.2B). No significant differences in lateralization 

were seen for older subjects (tmax = 3.41, tmin = –1.52, p > 0.09), nor was lateralization 

significantly different across age groups (independent samples test; tmax = 1.93, tmin = –

2.28, p > 0.88). When the analysis was constrained to only right-handed subjects (13 

younger, 18 older; see Methods for details), the only resulting change was that no 

voxels were significantly right lateralized in either age group. 
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Figure 3.2. Prediction accuracy of volume source localized TRFs. A. Prediction accuracy using 

the TRF model for each voxel in the volume source space ROIs (non-gray regions) averaged across 

subjects. Only ROI voxels for which model prediction accuracy significantly increased over the 

noise model are plotted (p < 0.05, corrected). The prediction accuracy is larger in cortical areas than 

in subcortical areas. Plots are of the maximum intensity projection, with an overlay of the brain. 

When taking into account expected MEG volume source localization leakage, these results are 

consistent with the response originating solely from cortical areas and with a right hemispheric bias. 

B. An area in the right hemisphere near the auditory cortex is significantly more predictive than the 

left hemisphere, but only in the younger subjects.  
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The TRFs at each source voxel are represented by a 3-dimensional current vector 

that varies over the time lags. Hence for each voxel and time lag, the amplitude of the 

TRF vector for the true model was tested for significance against the average of the 

noise models across subjects using a one-tailed test with paired sample t-values and 

TFCE. The TRFs for the envelope modulation predictor in the cortical ROI were 

significant (younger tmax = 5.38, p < 0.001; older tmax = 4.69, p < 0.001) starting at a 

time lag of 23 ms, and ending at 63 ms, with an average peak latency of 40 ms (see Fig. 

3.3A). The TRF current dipoles oscillate with alternating direction between successive 

amplitude peaks. However, in all subsequent TRF plots, the TRF amplitude is shown, 

and not signed current values, and hence signal troughs and peaks both appear as peaks. 

The subcortical ROI was also analyzed in a similar manner and the TRF showed 

significance in a much smaller time range of 31–35 ms only for older subjects (younger 

tmax = 2.96, p > 0.13; older tmax = 3.69, p < 0.01) (see Fig. 3.3B). There was no 

significant difference in amplitudes between younger and older subjects (cortical ROI 

tmax = 3.7, tmin = –3.38, p > 0.18; subcortical ROI tmax = 3.05, tmin = –3.39, p > 0.45). 

The TRF responses oscillate at a frequency of ~80 Hz (see below for a more detailed 

spectral analysis). The amplitude of these TRFs was significantly larger in voxels in 

Heschl’s gyrus than in the subcortical ROI (two-tailed test with paired sample t-values 

on the l2 norm of the TRFs across subjects: younger t = 3.51, p = 0.003; older t = 4.52, 

p < 0.001). Since the subcortical TRFs also have a similar latency and shape to the 

cortical TRFs, and because a latency of 23 to 63 ms is late for a subcortical response, 

these subcortical TRFs are consistent with artifactual leakage from the cortical TRFs 
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due to the spatial spread of MNE source localization. Simulated volume source 

estimates for current dipoles originating only in Heschl’s gyrus generated a spatial 

distribution of TRF directions consistent with the experimental data (see Appendix), 

i.e. the spatial spread of MNE localized cortical responses resulted in apparent TRF 

vectors even in the subcortical ROI. These results indicate that the response originates 

predominantly from cortical regions.  

 

 

Figure 3.3. Volume source localized envelope modulation TRFs. The amplitude of the TRF 

vectors for the envelope modulation predictor averaged across voxels in the ROI, and, the mean ± 

(standard error) across subjects is plotted in the cortical (A) and subcortical (B) ROIs. Red curves 

are time points when the TRF showed a significant increase in amplitude over noise. The TRF was 

resampled to 2000 Hz for visualization purposes. The TRF shows a clear response with a peak 

latency of ~40 ms. The distribution of TRF vectors in the brain at each voxel at the time with the 

maximum response are plotted as an inset for each TRF, with color representing response strength 

and the arrows representing the TRF directions. The color bar represents the response strength for 
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all 4 brain insets. The response oscillates around a frequency of ~80 Hz and is much stronger in the 

cortical ROI compared to the subcortical ROI. Note that since only the TRF amplitude is shown, 

and not signed current values, signal troughs and peaks both appear as peaks. In the original, signed 

TRFs, the current direction alternates between successive amplitude peaks. The latency and 

amplitude of the response suggests a predominantly cortical origin. 

 

3.4.2.  Responses to the envelope modulation and the carrier 

Next, the neural response to the carrier was compared with that to the envelope 

modulation. The carrier TRF was also tested for significance using a corresponding 

noise model (as employed above). The carrier TRF showed weak responses that were 

only significant in the cortical ROI between 33–51 ms (younger tmax = 3.70, p = 0.042; 

older tmax = 4.7, p < 0.001) (see Fig. 3.4A, B). Although the carrier and envelope 

modulation predictors are correlated (r = –0.42), the TRF analysis is able to separate 

the contributions of these two predictors remarkably well. Two-tailed paired sample t-

values and TFCE were used to test for a significant increase of the l2 norm of the 

envelope modulation TRF when compared to the carrier TRF in a time window of 20–

70 ms in the cortical ROI (see Fig. 3.5A). This test was significant for both younger 

(tmax = 4.38, p = 0.002) and older (tmax = 3.63, p = 0.017) subjects. However, this test 

did not find a significant increase in the envelope modulation TRF over the carrier TRF 

in the subcortical ROI for either younger (tmax =0.045, p > 0.32) or older subjects (tmax 

= 0.89, p > 0.36). Since the TRF analysis allows both stimulus predictors to directly 
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compete for explaining response variance, the results strongly indicate that the response 

is primarily due to the envelope modulation over the carrier. 

 

Figure 3.4. Volume source localized carrier TRFs. The amplitude of the TRF vectors for the 

carrier predictor averaged across sources. Mean ± (standard error) across subjects is shown, 

analogous to Fig. 3.3. For comparison, the axis and color scale are identical to that in Fig. 3.3. The 

TRF shows a weaker response compared to the case of envelope modulation, with a peak latency 

of ~40 ms, that is significant in the cortical ROI for both groups, and over a longer time interval for 

older subjects. Comparison with Fig. 3.3 suggests that the high gamma response is dominated by 

the envelope modulation over the carrier. 

 

3.4.3.  Age-related differences 

Statistical tests were performed for age-related differences between older and 

younger subjects on both the prediction accuracy and the TRFs. Two-tailed tests of 

prediction accuracy with independent sample t-values and TFCE indicated no 

significant difference (cortical ROI tmax = 1.17, tmin = –2.72, p > 0.44; subcortical ROI 

tmax = –0.78, tmin = –1.37, p > 0.38). Similarly, no voxels or time points were 
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significantly different in either the envelope modulation TRF (cortical ROI tmax = 3.7, 

tmin = –3.38, p > 0.18; subcortical ROI tmax = 3.05, tmin = –3.39, p > 0.45) or the carrier 

TRF (cortical ROI tmax = 3.34, tmin = –3.89, p > 0.25; subcortical ROI tmax = 2.69, tmin = 

–3.10, p > 0.18). In addition, the cortical ROI TRFs showed no significant differences 

across age groups in peak latency (envelope modulation TRF tmax = 1.82, tmin = –2.62, 

p > 0.5; carrier TRF tmax = 2.79, tmin = –2.32, p > 0.53). An additional analysis was 

performed using surface source space TRFs as described in detail in the Appendix. 

Both high (70–200 Hz) and low (1–10 Hz) frequency TRFs were computed in surface 

source space, and model prediction accuracy was assessed with an ANOVA with 

factors TRF frequency and age. The ANOVA showed a significant frequency ´ age 

interaction (F1,38 = 6.46, p = 0.015), suggesting that age related differences are indeed 

not consistent across high and low frequency responses (detailed results in Appendix), 

i.e. present at low but not at high frequencies. 

 

3.4.4.  Pitch analysis 

To further understand the contributions of these predictors to the TRF oscillations, 

the frequency spectrum of the TRFs and the predictors were compared (see Fig. 3.5B). 

The frequency spectrum of the average TRFs showed a broad peak centered near 80 

Hz for both predictors and both age groups (envelope TRF spectral peak mean = 81 

Hz, std = 5 Hz; carrier TRF spectral peak mean = 82 Hz, std = 8 Hz). In contrast, the 

spectral peak of the predictor variables was near 110–120 Hz for the carrier, and near 

70–75 Hz for the envelope modulation. Since the TRF peak frequency did not match 
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the peak power in either of the predictors, a further analysis was performed after 

separating the stimulus into high- and low-pitch time segments (see Methods). This 

resulted in a model with 4 predictors and their corresponding TRFs: high/low-pitch 

envelope modulation and high/low-pitch carrier. The low-pitch envelope modulation 

TRFs and low-pitch carrier TRFs are broadly similar to those of the earlier analysis 

(see Fig. 3.6). These TRFs show more significant regions than the previous analysis, 

although the two models (one with 2 predictors, the other with 4 predictors) cannot be 

directly compared since an increased number of predictors has more degrees of 

freedom and allows for the model to predict more of the signal. The TRF amplitudes 

were significantly larger in the low pitch TRFs when compared to the high pitch TRFs 

(see Fig. 3.5C; envelope modulation tmax = 7.6, p < 0.001; carrier tmax = 3.78, p = 0.013). 

In addition, the spectra of the low pitch TRFs peak near 80 Hz similar to the low pitch 

predictors (envelope TRF spectral peak mean = 81 Hz, std = 6 Hz; carrier TRF spectral 

peak mean = 82 Hz, std = 4 Hz), while the high pitch TRFs do not have a clear peak 

(see Fig. 3.5D). This suggests that the TRF oscillation is driven mainly by the segments 

of the stimulus with pitch below 100 Hz, and that responses to stimulus pitches above 

100 Hz are not easily detected by this analysis.  
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Figure 3.5. Comparison of responses to the envelope modulation and to the carrier. A. The 

ℓ!	norm of the TRF between 20 ms and 70 ms was larger in the envelope modulation TRF than the 

carrier TRF (*** p < 0.001). Boxplots after combining both age groups are shown. B. The 

frequency spectrum of the TRF reveals that the oscillation has a broad peak around 80 Hz (vertical 

gray bars denote a narrow frequency band excluded from analysis because of 120 Hz line noise). In 

contrast, the predictors’ peaks are displaced in frequency from the TRF peak, either well below (for 

the envelope modulation) or well above (for the carrier). Note that the sharp cutoff in the envelope 
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modulation spectrum at 70 Hz arises from the bandpass filter used in analysis: without the bandpass 

filter the spectrum would continue rising toward lower frequencies. C. The ℓ!	norm of the TRF for 

the pitch-separated model between 20 ms and 70 ms was larger in the low pitch TRFs than the high 

pitch TRFs for both envelope modulation and carrier (*** p < 0.001). D. The frequency spectrum 

of the low-pitch TRF has a peak around 80 Hz, while the high pitch TRF does not show any peaks. 

This suggests that the TRF is dominantly driven by the low-pitch segments of the speech waveform. 

The spectra of the corresponding high and low pitch predictors are also shown, highlighting the 

clear separation of the spectra at the median pitch frequency of 98 Hz. 

 

Figure 3.6. Pitch-separated TRFs. The amplitude of the low pitch TRF (A) and high pitch TRF 

(B) vectors for both the envelope modulation and carrier predictors averaged across sources. Mean 

± (standard error) across subjects is shown, analogous to Fig. 3.3, 3.4. The axis and color scale are 

smaller than those in Fig. 3.3, 3.4, since the pitch separated TRFs are each based on a subset of the 

stimulus predictors, and hence have weaker amplitudes. All four TRFs show significant regions 

around 40 ms, but the low pitch envelope modulation TRF is the strongest, followed by the low 

pitch carrier TRF. This indicates that the high gamma response is time-locked to the low pitch 

segments of the speech stimulus. 
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3.5.  Discussion 

In this study, we investigated high gamma time-locked responses to continuous 

speech measured using MEG. Such responses were found, and their volume source 

localized TRFs provided evidence that these responses originated from cortical areas 

with a peak response latency of approximately 40 ms. The responses showed a 

significant right hemispheric asymmetry. These responses oscillate with a frequency of 

approximately 80 Hz and track the low pitch segments of the speech stimulus. We also 

showed that the response is significantly stronger to the envelope modulation than the 

carrier. Surprisingly, there were no significant age-related differences in response 

amplitude, latency, localization or predictive power. This is in contrast to age-related 

differences seen in both the subcortical EEG FFR (younger > older) and the cortical 

low frequency TRF (older > younger).  

 

3.5.1.  MEG sensitivity to high gamma responses  

MEG signals are known to have poor SNR at high frequencies (≳100 Hz) (Hansen 

et al., 2010). The MEG signal is an average over a large population of neurons, and 

hence detection of population level high gamma responses requires precise (within a 

few ms) phase synchrony across these populations (Hämäläinen et al., 1993). However, 

the cortical sources which MEG would otherwise be sensitive to rarely phase 

synchronize across a large population at these high gamma ranges, leading to poor 
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neural SNR for these high gamma ranges (reflected in our results by the small 

correlation values between actual responses and model predictions). The implications 

of this for our study are twofold. Firstly, conclusions regarding the intrinsic properties 

of high gamma responses to speech are limited by these methodological constraints on 

the MEG signal. Our results only show that there are significant cortical responses at 

~80 Hz, but do not rule out higher frequency cortical responses, or subcortical 

responses, that may be buried in poor SNR. Conversely, however, it is somewhat 

surprising that using such a simple experimental paradigm, with short duration 

continuous natural speech, it is possible to reliably detect such MEG responses using a 

TRF model. 

 

3.5.2.  MEG sensitivity to deep sources 

Gradiometer-based MEG is physically constrained to be less sensitive to deep 

structures, typically resulting in such subcortical MEG responses being up to 100 times 

weaker than cortical responses at equivalent current strengths (Attal et al., 2007; 

Hillebrand and Barnes, 2002). Several source localization techniques have been 

proposed to correct for this inherent bias towards cortical sources (Dale et al., 2000; 

Krishnaswamy et al., 2017; Pascual-Marqui, 2002). Some studies were able to resolve 

MEG responses to the hippocampus (Cornwell et al., 2012), amygdala (Balderston et 

al., 2014; Cornwell et al., 2008; Dumas et al., 2013) and thalamus (Roux et al., 2013). 

Prior work has also been done using MEG for measuring brainstem responses (Coffey 

et al., 2016; Parkkonen et al., 2009). These studies show that MEG can be used to 
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localize sources in subcortical areas given a large number of repetitions or specialized 

experimental paradigms. However, some of these studies used magnetometer-based 

MEG, which is more sensitive to deep sources than gradiometer based MEG (Lopes da 

Silva and van Rotterdam, 2005). In addition, resolving several sources with MEG is 

more complicated than localizing an isolated source due to the non-unique nature of 

distributed inverse solutions (Lütkenhöner, 2003). In our study, we used such a 

distributed source localization and a short experimental paradigm (without many 

stimulus repetitions) and found responses dominated by cortical sources. Simulation 

results suggested that the small amount of activation associated with the brainstem is 

more easily explained as an artifact of source localization leakage from cortical sources. 

On the other hand, although these results do not identify responses from subcortical 

regions, this does not imply at all that such responses are absent in the auditory system. 

Brainstem responses to continuous speech have been detected using EEG (Maddox and 

Lee, 2018), and it is entirely possible that high gamma subcortical responses to speech 

may also be detected in MEG by other experiments with higher SNR, different analysis 

methods or MEG systems that are more sensitive to deep sources. 

 

3.5.3.  Cortical FFRs and high gamma TRFs 

The high gamma TRF is not directly analogous to the FFR because, among other 

reasons, it is not an average over several repetitions of simple stimuli, but is instead a 

weighted average over longer time. However, the TRFs measured here indeed show a 

measure of high gamma time-locking that can be compared to the FFR. Cortical FFRs 
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to repeated single speech syllables have been measured in MEG (Coffey et al., 2016) 

and EEG (Bidelman, 2018; Coffey et al., 2017b). Our work shows that cortical TRFs 

contain significant responses up to 62 ms, comparable to the long-lasting explanatory 

power of the auditory cortex ROI in Coffey et al., 2016. These TRFs are also 

predominantly from auditory cortex, centered around Heschl’s gyrus, and right 

lateralized similar to the MEG FFR (Coffey et al., 2016). However, some studies have 

demonstrated that the contribution of cortical sources to the FFR as measured with EEG 

is weaker than when measured with MEG (Ross et al., 2020), and rapidly decreases for 

harmonics above 100 Hz (Bidelman, 2018). In fact, while subcortical FFR is 

measurable with EEG for harmonics up to 1000 Hz, there were no cortical contributions 

to the FFR above 150 Hz (Bidelman, 2018). Unsurprisingly our results confirm that the 

cortical sources dominate the MEG response at frequencies near 100 Hz. 

 

3.5.4.  Comparison of responses to the envelope modulation vs. the carrier 

The subcortical FFR is typically analyzed by averaging across stimulus 

presentations of opposite polarity, which results in responses driven mainly by the 

stimulus envelope and other even-order nonlinearities (Lerud et al., 2014). However, 

studies have also analyzed the FFR by subtracting the responses to stimulus 

presentations of opposite polarity (Aiken and Picton, 2008), which is driven mainly by 

the carrier and odd-order nonlinearities. Hence both the envelope and the carrier 

modulate responses across the auditory pathway. Unlike FFR analysis, the TRF 

analysis used in this study is well suited to disentangle the contributions of different 
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features of the stimulus to the neural response, since it allows each stimulus 

representation to directly compete to explain the response variance. Our results found 

significant time-locked high gamma cortical responses to continuous speech for both 

envelope modulation and carrier, but these responses were predominantly driven by the 

envelope modulation over the carrier. This could be related to the perceptual 

phenomenon that modulation of the speech spectrum above 300 Hz is more 

behaviorally relevant for speech understanding, and more resistant to background 

noise, than the carrier below 200 Hz (Assmann and Summerfield, 2004). Slow evoked 

responses in auditory cortex are also sensitive to fine-structure acoustic features such 

as pitch and timbre (Roberts et al., 2000), and the auditory cortical response to the 

slowly varying envelope of speech is likewise modulated by the spectrotemporal fine 

structure of the stimulus (Ding et al., 2014).  

 

3.5.5.  High gamma TRF is driven by low pitch segments of the speech 

The TRF response oscillates with a peak frequency of approximately 80 Hz, and 

is well time-locked to the segments of speech where the pitch is below 100 Hz. Cortical 

auditory phase locked responses to simple sounds have been measured using MEG 

(Coffey et al., 2016; Hertrich et al., 2004; Schoonhoven et al., 2003) at frequencies of 

up to 111 Hz. For continuous speech stimuli, such phase locked responses could reflect 

a cortical mechanism that represents complex speech features such as modulations in 

vowel formants, using fluctuations in the fundamental frequency domain of natural 

speech. Our pitch analysis showed that the response strongly locks to pitch frequencies 
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below 100 Hz, but not above 100 Hz. This agrees with other studies that show a bias in 

cortical phase-locking towards lower frequencies (Bidelman, 2018; Ross et al., 2000; 

Schoonhoven et al., 2003). 

 

3.5.6.  Right lateralization of responses 

The TRF model prediction accuracy was significantly right lateralized in younger 

subjects. The lack of significant right lateralization among older subjects may not 

indicate an age-related lateralization difference, but rather a lack of statistical power, 

since the lateralization was not significantly different across age groups. However, 

similar lateralization differences across age groups have been found for 80 Hz ASSR 

(Goossens et al., 2016). Stronger responses in the right auditory cortex have been 

observed for ASSR using EEG (Ross et al., 2005) and MEG (Hertrich et al., 2004) as 

well as in cortical FFRs using MEG (Coffey et al., 2016). This agrees with prior studies 

showing that right auditory cortex is specialized for early tonal processing and pitch 

resolution (Cha et al., 2016; Hyde et al., 2008; Zatorre, 1988). Both this right 

hemispheric bias, and the relatively short peak latency of 40 ms of our TRFs suggest 

that these cortical high gamma responses are due to early auditory processing of 

acoustic periodicity. However, some studies have also suggested that increased cortical 

folding in left auditory cortex could lead to a cancellation of MEG signals in the left 

hemisphere, which could lead to a similar right-ward bias in the absence of functional 

lateralization (Shaw et al., 2013). 
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3.5.7.  Absence of age-related differences 

Temporal precision and synchronized activity decreases in the auditory system 

with age and is characterized by age related differences in both subcortical and cortical 

responses. Older adults have subcortical FFR responses with smaller amplitudes, 

longer latencies and reduced phase coherence, which could be due to an excitation-

inhibition imbalance or a lack of neural synchrony (Hornickel et al., 2012). In a 

surprising reversal, MEG and EEG studies have revealed that older adults have larger 

slow (below ~10 Hz) cortical responses than younger adults (Alain et al., 2014; 

Bidelman et al., 2014; Herrmann et al., 2016), that result in better prediction accuracy 

for reverse correlation methods (Decruy et al., 2019; Presacco et al., 2016a, 2016b). 

Animal studies suggest that this opposite effect could be due to cortical compensatory 

central mechanisms (Chambers et al., 2016; Salvi et al., 2017) or lack of inhibition 

(Caspary et al., 2008; Villers-Sidani et al., 2010). Another possibility is the recruitment 

of additional neural areas for redundant processing (Brodbeck et al., 2018b; Peelle et 

al., 2010). Contrary to both these cases, we found no significant age-related differences 

in high gamma cortical responses, although this might be due to a lack of statistical 

power (see Ross et al., 2020). An ANOVA with factors TRF frequency and age 

suggested that the difference in low frequency responses among older and younger 

adults is not preserved for high gamma responses (see Appendix). These results suggest 

that high gamma cortical responses do not show a clear difference with age. The high 

gamma MEG TRF reflects fine-grained time-locked neural activity, like a subcortical 

FFR, but arising from cortical areas. It is possible that older adults’ exaggerated 
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responses in cortical areas and the lack of neural synchrony at high frequencies (as seen 

in subcortical FFRs) affect their high gamma MEG responses in opposite directions 

and obscure what would otherwise be detectable age-related differences.  

 

3.5.8.  Neural mechanisms for the MEG high gamma response 

Given that MEG records the aggregate response over a large population of 

neurons, the specific origins of high gamma time-locked responses are not readily 

apparent. It is possible that the high gamma TRF reflects the effects of several 

processing stages along the auditory pathway, similar to the FFR. Electrocorticography 

(ECoG) studies have seen cortical phase-locked activity at these high rates (Nourski et 

al., 2014; Steinschneider et al., 2013). However, cortical phase-locking at the individual 

neuron level drastically reduces with increasing frequency (Lu et al., 2001), and hence 

cortical neurons may not be the sole contributor to these high gamma responses.  

Such phase locked auditory activity is compatible with the spiking output of the 

Medial Geniculate Body (MGB) (Miller et al., 2002), which provides input to early 

auditory cortical areas. The MEG signal is dominantly driven by dendritic currents (that 

give rise to the Local Field Potential) (Hämäläinen et al., 1993), and hence these high 

gamma responses may be due to the inputs from the MGB into auditory cortex. Prior 

work has shown that auditory cortex is able to transiently time-lock to continuous 

acoustic features with surprisingly high temporal precision of the order of milliseconds 

(Elhilali et al., 2004). Time-locked inputs from MGB may provide a neural substrate 

for such precise transient temporal locking to stimulus features. Direct correspondences 
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with age-related changes in thalamus from animal work are limited (Caspary and Llano, 

2019), and hence it is unclear if time-locked high gamma spiking activity in MGB 

animal models would be similar across age. However, invasive neural recordings could 

help to disentangle the opposite effects of aging in the brainstem and the cortex seen 

with MEG and EEG, leading to a better understanding of time-locked responses in the 

aging auditory pathway. 

 

3.6.  Conclusion 

In this study, we found high gamma time-locked responses to continuous speech, 

using MEG, that localized to auditory cortex, occurred with a peak latency of 

approximately 40 ms, and were stronger in the right hemisphere. We showed that TRF 

analysis could be used to reliably separate the contributions of several stimulus features 

to this response. The response function showed oscillations at approximately 80 Hz, 

predominantly driven by the envelope modulations during the segments of the speech 

where the pitch is below 100 Hz. Such high gamma time-locked responses may 

originate from the thalamic inputs to cortical neurons. These responses can be reliably 

detected in MEG using natural speech stimuli even of short duration, allowing TRF 

analysis to be employed to investigate auditory processing of speech from acoustics to 

semantics under several stimulus conditions in the same experiment. Furthermore, 

there were no significant age-related differences in these high gamma responses, unlike 

in both the low frequency cortical TRFs or the subcortical FFRs. Hence both the neural 
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origin and the frequency domain must be considered when investigating age-related 

changes in the auditory system. 

 

3.7.  Appendix 

3.7.1.  Simulation of spatial spread of distributed source localization 

Distributed neural source localization methods for MEG, such as MNE, result in a 

substantial amount of spatial spread. In order to characterize this spread, a dipole was 

simulated on Heschl’s gyrus perpendicular to the pial surface of the ‘fsaverage’ brain 

using the ‘ico-4’ surface source space. The dipole was then projected to sensor space, 

and MNE source localization with dSPM was performed to project it back onto the 

volume source space (see Fig. 3.A1). The peak of the activity shows a broad spread 

around Heschl’s gyrus but also some small activity in other parts of temporal lobe and 

even in the brainstem. This supports the claim that high gamma responses seen at the 

brainstem in our study are attributable to leakage from cortical areas. 
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Figure 3.A1. Simulation of spatial spread of volume source localization. A. One dipole in 

Heschl’s gyrus was simulated. B. Volume source localization of the dipole after it was projected to 

sensor space. The cortical and subcortical ROIs are shown and artifactual leakage is seen in the 

brainstem voxels. 

3.7.2.  Surface source space TRF methods and results 
Cortical surface source space estimation was performed using the ‘ico-4’ source 

space, which consists of a fourfold icosahedral subdivision of the white matter surface 

of cortex with dipoles oriented normal to the surface. The ‘aparc’ parcellation was used 

to select dipoles in the temporal lobe for further analysis. In this surface source space 

analysis, current dipoles have a fixed orientation normal to the surface, and hence the 

TRF consists only of signed scalar amplitude variations with time. The Pearson 

correlation between the actual and predicted neural response was used as a measure of 

prediction accuracy for each neural source. For statistical tests, the TRFs and the 

correlation values were first rectified and then spatially smoothed using a Gaussian 
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window with a standard deviation of 5 mm. The rectified, smoothed TRF of the true 

model was compared to the average of that of the three noise models using the same 

one tailed test with paired sample t-values and the TFCE procedure outlined in 

Methods. 

Lateralization tests were performed to check for hemispheric asymmetry. The 

correlation values at each neural source in both left and right hemisphere were morphed 

onto the right hemisphere of the ‘fsaverage_sym’ brain as described in Brodbeck et al. 

(2018a). This brain model is symmetric in left and right hemispheres, allowing for 

comparisons between corresponding neural sources in both hemispheres. As before, 

these correlation coefficients were spatially smoothed using the same Gaussian 

window. After morphing, the correlation values of the average noise model were 

subtracted from that of the true model and a two-tailed test with paired sample t-values 

and TFCE was used to assess for significant differences in each of the corresponding 

left and right current dipoles.  

TRFs were estimated using the cortical surface source space for neural sources in 

the temporal lobe, using both the envelope modulation and the carrier predictors in a 

competing model. Both predictors were time-shifted to generate noise models. All 

surface space results were similar to volume source space results. The prediction 

accuracies and TRFs are shown in Fig. 3.A2, Fig. 3.A3. The prediction accuracies were 

right lateralized but only in younger subjects (tmax = 4.6, p = 0.008). The TRFs showed 

a significant response in the range of 19–67 ms for the envelope modulation and 23–

57 ms for the carrier. The envelope modulation TRF was stronger than the carrier TRF 
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using the same tests as in the volume source space (younger tmax = 5.27, p < 0.001; 

older tmax = 3.46, p = 0.03). There were no age-related differences in surface source 

space analyses (prediction accuracy tmax = 2.41, tmin = –2.99, p > 0.29; maximum 

amplitude of envelope modulation TRF tmax = 2.40, tmin = –2.47, p > 0.68; maximum 

amplitude of carrier TRF tmax = 1.79, tmin = –3.07, p > 0.54). 

In addition, low frequency TRFs were also estimated to compare age-related 

differences in both frequency domains. The stimulus representation for this model was 

the Hilbert envelope of the speech waveform filtered at 1–10 Hz with a logarithmic 

nonlinearity applied. The MEG data was also filtered at 1–10 Hz and TRFs were 

estimated using the surface source space. The resulting TRFs were as expected from 

prior work (Brodbeck et al., 2018b), with older subjects showing significantly higher 

reconstruction accuracies (tmax = 0.93, tmin = –3.45, p = 0.022). The increase in model 

prediction accuracies above the noise, for the high frequency TRF and the low 

frequency TRF were averaged across neural sources per subject, and a TRF frequency 

by age ANOVA was performed. Results indicated a significant interaction of TRF 

frequency × age (F1,38 = 6.46, p = 0.015) and significant main effects of TRF frequency 

(F1,38 = 216.58, p < 0.001) and age (F1,38 = 4.83, p = 0.034). This suggests that age-

related changes are not consistent across low and high frequency responses, in further 

agreement with all the above results. 
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Figure 3.A2. Prediction accuracy of surface source space TRFs. Pearson correlation coefficients 

between the actual and predicted response using the TRF model for each source in the surface 

source space ROI averaged across subjects are shown on an inflated brain. Only the voxels showing 

a significant increase in prediction accuracy over the noise model are plotted. Although most neural 

sources are significantly predictive, the prediction accuracy is larger in areas near core auditory 

cortex. A region in auditory cortex is significantly more predictive in the right hemisphere than the 

left, but only in younger subjects.  
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Figure 3.A3. Surface source space TRFs. The amplitude of the TRFs for the competing model 

for both predictors averaged across neural sources and masked by significance against the noise 

model. Mean ± (standard error) across subjects is shown. The distribution of current dipoles in the 

temporal lobe ROI at the peak of the response is shown as an inset. Unlike the volume source space, 

the surface source space comprises of current dipoles with fixed orientation normal to the cortical 

surface. The signed magnitudes of these fixed direction dipoles are plotted on the surface, allowing 

for positive (orange) and negative (purple) values for outward and inward directions.  
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Chapter 4 

Cortical Processing of Arithmetic and Simple Sentences in an 

Auditory Attention Task 

This work has been published as 

Kulasingham, J.P., Joshi, N.H.*, Rezaeizadeh, M.*, Simon, J.Z., 2021. Cortical 

Processing of Arithmetic and Simple Sentences in an Auditory Attention Task.  

J. Neurosci. 41, 8023–8039.  

https://doi.org/10.1523/JNEUROSCI.0269-21.2021 

*contributed equally to this work 

 

4.1.  Abstract 

Cortical processing of arithmetic and of language rely on both shared and task-

specific neural mechanisms, which should also be dissociable from the particular 

sensory modality used to probe them. Here, spoken arithmetical and non-mathematical 

statements were employed to investigate neural processing of arithmetic, compared to 

general language processing, in an attention-modulated cocktail party paradigm. 

Magnetoencephalography (MEG) data were recorded from 22 human subjects listening 

to audio mixtures of spoken sentences and arithmetic equations while selectively 

attending to one of the two speech streams. Short sentences and simple equations were 

presented diotically at fixed and distinct word/symbol and sentence/equation rates. 

Critically, this allowed neural responses to acoustics, words, and symbols to be 
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dissociated from responses to sentences and equations. Indeed, the simultaneous neural 

processing of the acoustics of words and symbols was observed in auditory cortex for 

both streams. Neural responses to sentences and equations, however, were 

predominantly to the attended stream, originating primarily from left temporal, and 

parietal areas, respectively. Additionally, these neural responses were correlated with 

behavioral performance in a deviant detection task. Source-localized Temporal 

Response Functions revealed distinct cortical dynamics of responses to sentences in 

left temporal areas and equations in bilateral temporal, parietal, and motor areas. 

Finally, the target of attention could be decoded from MEG responses, especially in 

left superior parietal areas. In short, the neural responses to arithmetic and language are 

especially well segregated during the cocktail party paradigm, and the correlation with 

behavior suggests that they may be linked to successful comprehension or calculation. 

 

Significance Statement  

Neural processing of arithmetic relies on dedicated, modality independent cortical 

networks that are distinct from those underlying language processing. Using a 

simultaneous cocktail party listening paradigm, we found that these separate networks 

segregate naturally when listeners selectively attend to one type over the other. Neural 

responses in the left temporal lobe were observed for both spoken sentences and 

equations, but the latter additionally showed bilateral parietal activity consistent with 

arithmetic processing. Critically, these responses were modulated by selective attention 

and correlated with task behavior, consistent with reflecting high-level processing for 
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speech comprehension or correct calculations. The response dynamics show task-

related differences that were used to reliably decode the attentional target of sentences 

or equations.  

 

4.2.  Introduction  

Comprehension and manipulation of numbers and words are key aspects of human 

cognition and share many common features.  Numerical operations may rely on 

language for precise calculations (Pica et al., 2004; Spelke and Tsivkin, 2001) or share 

logical and syntactic rules with language (Houdé and Tzourio-Mazoyer, 2003). During 

numerical tasks, frontal, parietal, occipital and temporal areas are activated (Arsalidou 

and Taylor, 2011; Dastjerdi et al., 2013; Dehaene et al., 2004, 2003; Harvey et al., 

2013; Harvey and Dumoulin, 2017; Maruyama et al., 2012; Menon et al., 2000). 

Bilateral intraparietal sulcus (IPS) is activated by presenting numbers using Arabic or 

alphabetical notation (Pinel et al., 2001) or speech (Eger et al., 2003). Posterior parietal 

and prefrontal areas are activated for both arithmetic and language (Bemis and 

Pylkkänen, 2013; Göbel et al., 2001; Price, 2000; Venkatraman et al., 2006; Zarnhofer 

et al., 2012). However, some cortical networks activated by numerical stimuli (e.g., 

IPS), differ from those underlying language processing, even when the stimuli are 

presented using words (Amalric and Dehaene, 2016, 2019; Monti et al., 2012; Park et 

al., 2011). Lesion studies (Baldo and Dronkers, 2007; Dehaene and Cohen, 1997; 

Varley et al., 2005) further provide evidence that the neural basis of numerical 
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processing is distinct from that of language processing (Amalric and Dehaene, 2018; 

Gelman and Butterworth, 2005). 

The dynamics of these neural processes have also been investigated. Evoked 

responses to arithmetic have been found in parietal, occipital, temporal and frontal 

regions (Iguchi and Hashimoto, 2000; Iijima and Nishitani, 2017; Jasinski and Coch, 

2012; Kou and Iwaki, 2007; Ku et al., 2010; Maruyama et al., 2012). Arithmetic 

operations can even be decoded from such responses (Pinheiro-Chagas et al., 2019). 

Speech studies differentiate early auditory evoked components from later components 

reflecting linguistic and semantic processing in temporal, parietal and frontal regions 

(Baggio and Hagoort, 2011; Koelsch et al., 2004; Lau et al., 2008; Obleser et al., 2003, 

2004). Linear models of time-locked responses to continuous speech called Temporal 

Response Functions (TRFs) have also revealed dynamical processing of linguistic 

features. 

To investigate cortical processing of spoken language and arithmetic, we utilize a 

technique pioneered by Ding et al. (2016) of presenting isochronous (fixed rate) words 

and sentences. There, the single syllable word rate, also the dominant acoustic rate, is 

tracked strongly by auditory neural responses, as expected. However, cortical 

responses also strongly track the sentence rate, completely absent in the acoustics, 

possibly reflecting hierarchical language processing (Jin et al., 2020; Luo and Ding, 

2020; Sheng et al., 2018). When subjects selectively attend to one speech stream among 

several, in a ‘cocktail party paradigm’, the sentence rate is tracked only for the attended 

speaker (Ding et al., 2018). Similarly, cocktail party studies using TRFs show early 
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auditory responses irrespective of attention, and later attention-modulated responses to 

higher order speech features (Brodbeck et al., 2018c; Ding and Simon, 2012b). 

Attention modulates activation related to numerical processing as well (Castaldi et al., 

2019).  

Here, magnetoencephalography (MEG) is used to study the cortical processing of 

short spoken sentences and simple arithmetic equations, presented simultaneously at 

fixed sentence, equation, word and symbol rates, in an isochronous cocktail party 

paradigm. This study is motivated by several questions, of increasing complexity. The 

most basic is whether isochronously presented equations allow segregation of equation-

level from symbol-level neural processing in the frequency domain. We demonstrate 

strong evidence for this segregation. The next level is whether equation- and sentence-

level processing show shared or distinct cortical activity areas. We demonstrate 

evidence for both: shared activity in the left temporal lobe, and distinct equation 

processing in bilateral IPS and occipital lobe. Finally, we address whether the cocktail 

party listening paradigm can further differentiate between them, and we find that it 

does: selective attention allows greater differentiation between the higher-level 

processing, and, critically, also surfaces neural correlations with behavioral measures. 
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4.3.  Methods 

4.3.1.  Participants 

MEG data was collected from 22 adults (average age 22.6 yrs, 10 female, 21 right 

handed) who were native English speakers. The participants gave informed consent and 

received monetary compensation. All experimental procedures were approved by the 

Internal Review Board of the University of Maryland, College Park. To ensure that the 

subjects could satisfactorily perform the arithmetic task, only subjects who self-

reported that they had taken at least one college level math course were recruited.  

 

4.3.2.  Speech stimuli 

Monosyllabic words were synthesized with both male and female speakers using 

the ReadSpeaker synthesizer (https://www.readspeaker.com, ‘James’ and ‘Kate’ 

voices). The language stimuli consisted of 4-word sentences, and the arithmetic stimuli 

consisted of 5-word equations. Hereafter, arithmetic words are referred to as ‘symbols’, 

arithmetic sentences as ‘equations’, non-arithmetic words as ‘words’, and non-

arithmetic sentences as ‘sentences’. The words and symbols were modified to be of 

constant durations to allow for separate word, symbol, sentence, and equation rates, so 

that the neural response to each of these could be separated in the frequency domain. 

The words and symbols were constructed with fixed durations of 375 ms and 360 ms, 

respectively, giving a word rate of 2.67 Hz, a symbol rate of 2.78 Hz, a sentence rate 

of 0.67 Hz, and an equation rate of 0.55 Hz. All the words and symbols were 
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monosyllabic, and hence the syllabic rate is identical to the word/symbol rate. These 

rates are quite fast for spoken English, and, though intelligible, can be difficult to follow 

in the cocktail party conditions. Because neural signals below 0.5 Hz are very noisy, 

however, it was not deemed appropriate to reduce the rates further; preliminary testing 

showed that these rates were a suitable compromise between ease of understanding and 

reasonable neural signal to noise ratio. In addition, the rates were selected such that 

each trial, made of either 10 equations or 12 sentences, would have the same duration 

(18 s), allowing for precise frequency resolution at both rates. 

The individual words and symbols were shortened by removing silent portions 

before their beginning and after their end, and then manipulated to have fixed durations, 

using the overlap-add resynthesis method in Praat (Boersma and Weenick, 2018). The 

words and symbols were respectively formed into sentences and equations (described 

below) and were lowpass filtered below 4 kHz using a 3rd order elliptic filter (the air-

tube system used to deliver the stimulus has a lowpass transfer function with cutoff 

approximately 4 kHz). Finally, each stimulus was normalized to have approximately 

equal perceptual loudness using the MATLAB ‘integratedLoudness’ function.  

The equations were constructed using a limited set of symbols consisting of the 

word ‘is’ (denoting ‘=’), three operators (‘plus’ (+), ‘less’ (-) and ‘times’ (´)), and the 

eleven English monosyllabic numbers (‘nil’, ‘one’ through ‘six’, ‘eight’ through ‘ten’, 

and ‘twelve’). The equations themselves consisted of a pair of monosyllabic operands 

(numbers) joined by an operator, an ‘is’ statement of equivalence, and a monosyllabic 

result; the result could be either the first or last symbol in the equation (e.g., ‘three plus 
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two is five’ or ‘five is three plus two’). The equations were randomly generated with 

repetitions allowed, in order to roughly balance the occurrences of each number 

(although smaller numbers are still more frequent since there are more mathematically 

correct equations using only the smallest numbers). The fact that there were a limited 

set of symbols and that the same symbol ‘is’ occurs in every sentence, in either the 2nd 

or 4th position, are additional regularities, which contribute to additional peaks in the 

acoustic stimulus spectrum at the first and second harmonic of the equation rate (1.11 

Hz and 1.66 Hz) as seen in Fig. 4.1 (and borne out by simulations). Although less than 

ideal, it is difficult to avoid in a paradigm when restricting to mathematically well-

formed equations. Hence, we do not analyze the neural responses at those harmonic 

frequencies, since their relative contributions from auditory vs. arithmetic processing 

are not simple to estimate. The sentences were also constructed with two related 

syntactic structures to be similar to the two equation formats: verb in second position 

(e.g., ‘cats drink warm milk’) and verb in third position (e.g., ‘head chef bakes pie’), 

but unlike the ‘is’ of the arithmetic case, the verb changed with every sentence and 

there were no analogous harmonic peaks in the sentence case. Deviants were also 

constructed: deviant equations were properly structured but mathematically incorrect 

(e.g., ‘one plus one is ten’); analogously, deviant sentences were syntactically correct 

but semantically nonsensical (e.g., ‘big boats eat cake’). Cocktail party stimuli were 

constructed by adding the acoustic waveforms of the sentences and equations in a single 

audio channel (see Fig. 4.1) and presented diotically (identical for both ears). The 

speakers were different (male and female), in order to simplify the task of segregating 
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diotically presented speech. The mixed speech was then normalized to have the same 

loudness as all the single speaker stimuli using the abovementioned algorithm. 

 

Figure 4.1. Stimulus structure. A. The foreground, background, and mix waveforms for the initial 

section of the stimulus for a two-speaker attend-language trial. The sentence, equation, word, and 

symbol structures are shown. The word and symbol rhythms are clearly visible in the waveforms. 

The mix was presented diotically and is the linear sum of both streams. B. The frequency spectrum 

of the Hilbert envelope of the entire concatenated stimulus for the attend-sentences condition (432 

s duration). The sentence (0.67 Hz), equation (0.55 Hz), word (2.67 Hz) and symbol (2.78 Hz) rates 

are indicated by colored arrows under the x-axis. Clear word and symbol rate peaks are seen in the 

foreground and background respectively, while the mix spectrum has both peaks. Note that there 
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are no sentence rate or equation rate peaks in the stimulus spectrum. The appearance of harmonics 

of the equation rate are consistent with the limited set of math symbols used. 

4.3.3.  Experimental design 

The experiment was conducted in blocks: 4 single speaker blocks (2 ⨉ 2: male and 

female, sentences and equations) were followed by 8 cocktail party blocks (see Table 

1). The order of the gender of the speaker was counterbalanced across subjects. Each 

block consisted of multiple trials: 10 for single speaker and 6 for cocktail party as 

shown in Table 1. 50% of the blocks had one deviant trial. Each trial consisted of 10 

equations or 12 sentences (or both, for cocktail party conditions) and was 18 s in 

duration for all cases (0.360 s/symbol ´ 5 symbols/equations ´ 10 equations = 18 s; 

0.375 s/word ´ 4 words/sentence ´ 12 sentences = 18 s). In total, the single speaker 

conditions had 240 sentences and 200 equations, and the cocktail party conditions had 

288 sentences and 240 equations in the foreground. Deviant trials had 4 equations or 5 

sentences being deviants. At the start of each block, the subject was instructed which 

stimulus to attend to, and was asked to press a button at the end of each trial to indicate 

whether a deviant was detected (right button: yes; left button: no). The subjects kept 

their eyes open, and a screen indicated which voice they should attend to (‘Attend 

Male’ or ‘Attend Female’) while the stimulus was presented diotically. After each trial, 

the stimulus was paused, and the screen displayed the text ‘Outlier?’ until the subjects 

pressed one of the two buttons. There was a 2-second break after the button press, after 

which the next trial stimulus was presented. 
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Since the deviant detection task was challenging, especially in the cocktail party 

case, subjects were asked to practice detecting deviants just before they were placed 

inside the MEG scanner (2 trials of language, 2 trials of arithmetic, with stimuli not 

used during the experiment). Most subjects reported that it was easier to follow and 

detect deviants in the equations compared to the sentences. This might arise for several 

reasons, e.g., because the equations had a restricted set of simple numbers, or because 

the repetitive ‘is’ symbol helped keep track of equation structure.  

This experiment was not preregistered. The data is available at 

https://doi.org/10.13016/xd2i-vyke and the code is available at  

https://github.com/jpkulasingham/cortical-sentence-equation. 

Table 4.1. Experiment Block Structure 

Foreground Background Speaker 
Foreground 

(Background) 

Number of trials 
per block 

Equations -  Male  10 
Sentences -  Male  10 
Equations -  Female 10 
Sentences -  Female  10 
Sentences Equations Female (Male) 6 
Equations Sentences Female (Male) 6 
Sentences Equations Male (Female) 6 
Equations Sentences Male (Female) 6 
Sentences Equations Female (Male) 6 
Equations Sentences Female (Male) 6 
Sentences Equations Male (Female) 6 
Equations Sentences Male (Female) 6 

The experiment consisted of 4 single speaker blocks followed by 8 cocktail party blocks. Each trial 

was 18 s in duration and consisted of 10 equations (1.8 s ´ 10 = 18 s) or 12 sentences (1.5 s ´ 12 = 

18 s). The speaker gender was counterbalanced across subjects (i.e., the order of column 3 was 

changed). 
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4.3.4.  MEG data acquisition and preprocessing 

A 157 axial gradiometer whole head MEG system (Kanazawa Institute of 

Technology, Nonoichi, Ishikawa, Japan) was used to record MEG data while subjects 

rested in the supine position in a magnetically shielded room (VAC, Hanau, Germany). 

The data was recorded at a sampling rate of 2 kHz with an online 500 Hz low pass 

filter, and a 60 Hz notch filter. Saturating channels were excluded (approximately two 

channels on average) and the data was denoised using time-shift principal component 

analysis (de Cheveigné and Simon, 2007) to remove external noise, and sensor noise 

suppression (de Cheveigné and Simon, 2008) to suppress channel artifacts. All 

subsequent analyses were performed in mne-python 0.19.2 (Gramfort, 2013; Alexandre 

Gramfort et al., 2014) and eelbrain 0.33 (Brodbeck et al., 2020). The MEG data was 

filtered from 0.3–40 Hz using an FIR filter (mne-python 0.19.2 default settings), 

downsampled to 200 Hz, and independent component analysis was used to remove 

artifacts such as eye blinks, heartbeats, and muscle movements.  

 

4.3.5.  Frequency domain analysis 

The complex-valued spectrum of the MEG response for each sensor was computed 

using the Discrete Fourier Transform (DFT). The preprocessed MEG responses were 

separated into 4 conditions: attending math or language, in single speaker or cocktail 

party conditions. The male and female speaker blocks were combined for all analysis. 

Within each condition, the MEG responses for each trial were concatenated to form 
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signals of duration 6 minutes for each of the single speaker conditions and 7.2 minutes 

for each of the cocktail party conditions. The DFT was computed for each sensor in 

this concatenated response, leading to a frequency resolution of 2.7´10-3 Hz for the 

single speaker conditions and 2.3´10-3 Hz for the cocktail party conditions. The 

amplitudes of the frequency spectra were averaged over all sensors and tested for 

significant frequency peaks (described in section 4.3.9). 

Frequencies of interest were selected corresponding to the equation rate (0.555 

Hz), the sentence rate (0.667 Hz), the symbol rate (2.778 Hz), and the word rate (2.667 

Hz). Note that the duration of the signals is an exact multiple of both the symbol and 

the word durations, ensuring that the frequency spectrum contained an exact DFT value 

at each of these four rates. In addition, the neighboring 5 frequency values (width of 

~0.01 Hz) on either side of these key frequencies were also selected to be used in a 

noise model for statistical tests.  

 

4.3.6.  Neural source localization 

The head shape of each subject was digitized using a Polhemus 3SPACE 

FASTRAK system, and head position was measured before and after the experiment 

using five marker coils. The marker coil locations and the digitized head shape were 

used to co-register the template FreeSurfer ‘fsaverage’ brain (Fischl, 2012) using 

rotation, translation and uniform scaling. A volume source space was formed by 

dividing the brain volume into a grid of 12 mm sized voxels. This source space was 
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used to compute an inverse operator using minimum norm estimation (MNE) 

(Hämäläinen and Ilmoniemi, 1994), with a noise covariance estimated from empty 

room data. Each sensor’s response was concatenated over all trials in each condition, 

and the Fourier transform was used to compute the complex-valued frequency 

spectrum—with both amplitude and phase—at that sensor. The values of these spectra 

at each of the 44 selected frequencies (4 frequencies of interest with ten sidebands each) 

are complex-valued sensor distributions, which were source-localized independently 

using MNE onto the volume source space, giving complex-valued source activations 

(Simon and Wang, 2005). The amplitudes of these complex-valued source activations 

were used for subsequent analysis. Finally, the sideband source distributions were 

averaged together to form the noise model.  

  

4.3.7.  Temporal Response Functions (TRFs) 

The preprocessed single-trial MEG responses in each of the four conditions 

(excluding deviant trials) were source-localized in the time domain using MNE, similar 

to the method described above in the frequency domain. The MEG signals were further 

lowpassed below 10 Hz using an FIR filter (default settings in mne python) and 

downsampled to 100 Hz for the TRF analysis. These responses were then used along 

with representations of the stimulus to estimate TRFs. The linear TRF model for 𝑃 

predictors (stimulus representations) is given by 
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𝑦(𝑡) = ;;𝜏(2)(𝑑)	𝑥(2)(𝑡 − 𝑑)
*

4

256

	+ 𝑛(𝑡) (4.1) 

where 𝑦(𝑡) is the response at a neural source at time 𝑡, 𝑥(2)(𝑡 − 𝑑) is the time shifted 

pth predictor (e.g., speech envelope, word onsets, etc., as explained below) with time 

lag of 𝑑,  𝜏(2)(𝑑) is the value of the TRF corresponding to the pth predictor at lag 𝑑, 

and 𝑛(𝑡) is the residual noise. The TRF estimates the impulse response of the neural 

system for that predictor, and can be interpreted as the average time-locked response 

to continuous stimuli (Lalor and Foxe, 2010). For this analysis, several predictors were 

used to estimate TRFs at each neural source using the boosting algorithm (David et al., 

2007), as implemented in eelbrain, thereby separating the neural response to different 

features. The boosting algorithm may result in overly sparse TRFs, and hence an 

overlapping basis of 30 ms Hamming windows (with 10 ms spacing) was used in order 

to allow smoothly varying responses. For the volume source space, the TRF at each 

voxel for a particular predictor is a vector that varies over the time lags, representing 

the amplitude and direction of the current dipole activity.  

The stimulus was transformed into two types of representations that were used for 

TRF analysis: acoustic envelopes and rhythmic word/symbol or sentence/equation 

onsets. Although we were primarily interested in responses to sentences and equations, 

a linear model with only sentence/equation onsets would be disadvantaged by the fact 

that these representations are highly correlated with the acoustics. Hence by jointly 

estimating the acoustic envelope and word onset TRFs in the model, the lower-level 

acoustic responses are automatically separated, allowing the dominantly higher-level 
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processing to emerge in the sentence/equation TRFs. The acoustic envelope was 

constructed using the 1-40 Hz bandpassed Hilbert envelope of the audio signal (FIR 

filter used above). The onset representations were formed by placing impulses at the 

regular intervals corresponding to the onset of the corresponding linguistic unit. The 

four onset responses were: impulses at 375 ms spacing for word onsets, 360 ms for 

symbol onsets, 1500 ms for sentence onsets, and 1800 ms for equation onsets. Values 

at all other time points in these onset representations were set to zero. In order to 

separate out responses to stimulus onset and offset, the first and last sentences were 

assigned separate onset predictors, which were not analyzed further except to note that 

their TRFs showed strong and sustained onset and offset responses, respectively. The 

remaining (middle) sentences’ onsets were combined into one predictor that was used 

for further TRF analysis. The same procedure was followed for the equation onset 

predictors. 

 For each of the two single-speaker conditions, five predictors were used in the 

TRF model: the corresponding three sentence/equation onsets (just described), 

word/symbol onsets and the acoustic envelope. For each of the two cocktail conditions, 

ten predictors were used in the TRF model: the abovementioned five predictors, for 

each of the foreground and the background stimuli.  The predictors were fit in the TRF 

model jointly, without any preference given to one of them over another. 

The TRF for the speech envelope and the word/symbol onsets were estimated for 

time lags of 0-350 ms in order to limit the TRF duration to before the onset of the next 

word (at 375 ms) or symbol (at 360 ms). The sentence and equation TRFs were 
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estimated starting from 350 ms to avoid onset responses, as well as lagged responses 

to the previous sentence. The sentence TRF was estimated until 1850 ms (350 ms past 

the end of the sentence) and the equation TRF was estimated until 2150 ms (350 ms 

past the end of the equation), in order to detect lagged responses. These sentence and 

equation TRFs were used to further analyze high level arithmetic and language 

processing. 

 

4.3.8.  Decoder analysis 

All decoding analyses were performed using scikit-learn (Pedregosa et al., 2011) 

and mne-python software. To investigate the temporal dynamics of responses, linear 

classifiers were trained on the MEG sensor space signals bandpassed 0.3-10 Hz at 200 

Hz sampling frequency. Decoders were trained directly on the sensor space signals, 

since the linear transformation to source space cannot increase the information already 

present in the MEG sensor signals. The matrix of observations 𝐗 ∈ ℝ7×!, for N 

samples and M sensors in each sample, was used to predict the vector of labels 𝐲 ∈

{0, 1}7 at each time point of sentences or equations. The labels correspond to the two 

attention conditions: attend-equations or attend-sentences. The decoders were trained 

in the single speaker conditions on time points from 0 to 1500 ms for both 1500 ms 

long sentences and 1800 ms long equations. Therefore, the decoder at each time point 

learns to predict the attended stimulus type (equations or sentences) using the MEG 

sensor topography at that time point. 
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In a similar manner, the operator type in the arithmetic condition was also decoded 

from the MEG sensor topographies at each time point, in the 720 ms time window of 

each equation that contained the operator and its subsequent operand. 3 decoders were 

trained for the 3 comparisons (‘plus’ vs. ‘less’, ‘less’ vs. ‘times’ and ‘plus’ vs. ‘times’). 

To further investigate the patterns of cortical activity, linear classifiers were trained 

on the source localized MEG responses at each voxel, with 𝐗 ∈ ℝ7×# for N samples 

and T time points in each sample. The response dynamics of the entire 

sentence/equation may not be suitable for decoding: since the equations are comprised 

of five symbols, while the sentences of four words, this might lead to decoding the 

equations vs. sentences based on whether there were five vs. four auditory responses to 

acoustic onsets. To minimize this confound, two types of classifiers were used based 

on responses to only one word/symbol (and hence with only one acoustic onset). 1) 

Decoding based on first words: The first symbol of each equation and first word of 

each sentence was used as the sample, with a label denoting attend equations or attend 

sentences conditions. 2) Decoding based on last words: The last symbol or word was 

used. Words of duration 375 ms were downsampled to match the duration of the 

symbols (360 ms), in order to have equal length training samples. This method was 

used separately for both the single speaker and the cocktail party conditions. The 

decoder at each voxel learns to predict the attended stimulus type (equations or 

sentences) using the temporal dynamics of the response at that voxel. 
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Finally, the effect of attention was investigated using two sets of classifiers for 

equations and sentences at each voxel. For the attend-equations classifier, the cocktail 

party trials were separated into samples at the twelve equation boundaries, and the 

labels were marked as ‘1’ when math was attended to and ‘0’ when not. The time 

duration T was 0-1800 ms (entire equation). For the attend-sentences classifier, the 

cocktail party trials were separated into samples at the ten sentence boundaries and the 

labels were ‘1’ when attending to sentences and ‘0’ otherwise. The time duration T was 

0-1500 ms (entire sentence). Therefore, the attend-equations decoder at each voxel 

learns to predict whether the equation stimulus was attended to using the temporal 

dynamics of the response to the equation at that voxel (and similarly for the attend-

sentences decoder). 

In summary, the decoders at each time point reveal the dynamics of decoding 

attention to equations vs. sentences from MEG sensor topographies, and the decoders 

at each voxel reveal the ability to decode arithmetic and language processing in specific 

cortical areas. The trained classifiers were tested on a separate set and the score of the 

decoder was computed. Logistic regression classifiers were used, with 5-fold cross-

validation, within-subject for all the trials. The area under the receiver operating 

characteristic curve (AUC) was used to quantify the performance of the classifiers. 

 

4.3.9.  Statistical analysis 

Two types of nonparametric permutation tests were performed across subjects to 

control for multiple comparisons: single threshold max-t tests for the amplitude spectra, 
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and cluster based permutation tests for the source localized responses. For the former 

case, the amplitude spectra for each condition were averaged across sensors, and 

permutation tests were used to detect significant peaks across subjects (n=22). Each 

frequency value in the spectrum from 0.3 to 3 Hz was tested for a significant increase 

over the average of the neighboring 5 values on either side using 10000 permutations 

and the single threshold max-t method (Nichols and Holmes, 2002) to adjust for 

multiple comparisons. In brief, a null distribution of max-t values was calculated using 

the maximum t-values obtained across all frequencies, for each permutation. Any t-

value in the observed frequency spectra (denoted by 𝑡89:) that exceeds the 95th 

percentile of the max-t null distribution was deemed significant. For these tests, we 

report the p-values and the 𝑡89: values, and deliberately omit the degrees of freedom to 

avoid direct comparison between the two, since the p-values are derived entirely from 

the permutation distribution of max-t values and not from the t-distribution. Correlation 

tests were also performed to investigate associations between different responses (e.g., 

sentence rate vs. equation rate) within each subject. Pearson correlation tests with 

Holm-Bonferroni correction were used on the responses at the frequencies of interest, 

after subtracting the average of the five neighboring bins on either side. 

Cluster based permutation tests were performed for the source-localized responses. 

The source distributions for each individual were mapped onto the FreeSurfer 

‘fsaverage’ brain, in order to facilitate group statistics. To account for individual 

variability and mislocalization during this mapping, the distributions were spatially 

smoothed using a Gaussian window with a standard deviation of 12 mm for all 
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statistical tests. The source localized frequency responses were tested for a significant 

increase over the corresponding noise model formed by averaging the source localized 

responses of the five neighboring frequencies on either side. Nonparametric 

permutation tests (Nichols and Holmes, 2002) and Threshold Free Cluster 

Enhancement (TFCE) (Smith and Nichols, 2009) were performed to compare the 

response against the noise and to control for multiple comparisons. A detailed 

explanation of this method can be found in Brodbeck et al. (2018). Briefly, a test 

statistic (in this case, paired samples t-statistics between true responses and noise 

models) is computed for the true data and 10000 random permutations of the data 

labels. The TFCE algorithm is applied to these statistics, in order to enhance continuous 

clusters of large values, and a distribution consisting of the maximum TFCE value for 

each permutation is formed. Any value in the original TFCE map that exceeds the 95th 

percentile is considered significant at the 5% significance level. In all subsequent 

results, the minimum p-value and the maximum or minimum t-value across voxels is 

reported as pmin, tmax or tmin respectively. Note that the pmin is derived from the 

permutation distribution and cannot be derived directly from tmax or tmin using the t-

distribution (degrees of freedom are also omitted due to this reason). Lateralization 

tests were performed by testing each voxel in the left hemisphere with the 

corresponding voxel in the right, using permutation tests and TFCE with paired samples 

t-statistics. For the attend math conditions, equations were separated by operator type 

(‘plus’ (+), ‘less’ (-) or ‘times’ (´)) to test for specific responses to each operator. No 
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significant differences were found between the source localized responses to each 

operator. 

To test for significant effects and interactions, repeated measures ANOVAs were 

performed on the source localized responses at each frequency of interest after 

subtracting the corresponding noise model. Nonparametric permutation tests with 

TFCE were used to correct for multiple comparisons, similar to the method described 

above. In brief, a repeated-measures ANOVA is performed at each voxel, and then, for 

each effect or interaction, the voxel-wise F-values from this ANOVA are passed into 

the TFCE algorithm, followed by permutation tests as described earlier. This method 

detects significant clusters in source space for each significant effect. Note that the 

maximum F-value in the original map within a cluster (Fmax) and the p-value of the 

cluster are reported (and degrees of freedom omitted), for the same reasons as those 

explained in the previous paragraph (i.e., p-values are derived from the permutation 

distribution and not the F-distribution). 

Several types of repeated measures ANOVAs were performed using the 

abovementioned method. In the single speaker case, a 2 ´ 2 ANOVA with factors 

stimulus (‘language’ for words/sentences or ‘math’ for symbols/equations) and 

frequency (‘low’ for sentence/equation and ‘high’ for word/symbol) was performed. 

For the cocktail party case, a 2 ´ 2 ´ 2 ANOVA with the added factor of attention 

(attended or unattended) was performed. In addition, two further ANOVAs were 

performed to investigate hemispheric effects, using an additional factor of hemisphere 
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for both the single speaker (2 ´ 2 ´ 2 ANOVA) and the cocktail party (2 ´ 2 ´ 2 ´ 2 

ANOVA) conditions. 

To investigate significant ANOVA effects further, post-hoc t-tests across subjects 

were performed on the responses averaged across voxels within the relevant significant 

cluster. For this scalar t-test, a Holm-Bonferroni correction was applied to correct for 

multiple comparisons. For these tests, the t-values with degrees of freedom, corrected 

p-values and Cohen’s d effect sizes are reported. 

Behavioral responses for the deviant detection task were classified as either correct 

or incorrect, and the number of correct responses for each subject was correlated with 

the source localized response power of that subject. The noise model for each frequency 

of interest was subtracted from the response power before correlating with behavior. 

Nonparametric permutation tests with TFCE were used in a manner similar to that 

given above. The only difference was that the statistic used for comparison was the 

Pearson correlation coefficient between the two variables (behavior and response 

power), and the maximum correlation coefficient across voxels is reported as rmax.  

The TRFs were tested for significance using vector tests based on Hotelling’s T2 

statistic (Mardia, 1975). Since the TRFs consist of time-varying vectors, this method 

tests consistent vector directions across all subjects at each time point and each voxel. 

The Hotelling’s T2 statistic was used with non-parametric permutation tests and TFCE 

as described above, with the added dimension of time, and the maximum T2 statistic 

across voxels is reported as 𝑇;<=0 . This statistic is more suitable than a t-statistic based 

on the amplitude of the TRF vectors, since activation from distinct neural processes 
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may have overlapping localizations (due to the limited resolution of MEG), but 

different current directions.  

Finally, the decoders were tested across subjects for a significant increase in 

decoding ability above chance (AUC = 0.5) at each time point or at each voxel. Multiple 

comparisons were controlled for using permutation tests and TFCE, similar to the 

above cases, with AUC as the test statistic. 

 

4.4.  Results 

4.4.1.  Behavioral results 

After each trial, subjects indicated whether that trial contained a deviant by 

pressing a button. The single speaker conditions had higher deviant detection 

accuracies (equations: mean = 89.5%, SD = 10.7%; sentences: mean = 73.4%, SD = 

13.8%) than the cocktail party conditions (equations: mean = 79.9%, SD = 13.3%; 

sentences: mean = 61%, SD = 19.4%). Subjects reported that the equations were 

perceptually easier to follow than the sentences, consistent with the fact that the 

equations were formed using a smaller set of monosyllabic numbers to preserve the 

symbol rates. The presence of ‘is’ in each equation may have also contributed to 

subjects tracking equation boundaries.  
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4.4.2.  Frequency domain analysis 

The response power spectrum was averaged over all sensors and a permutation test 

with the max-t method was performed to check whether the power at each frequency 

of interest was significantly larger than the average of the neighboring five frequency 

bins on either side (see Fig. 4.2 A, B) across subjects (n = 22). For the language single 

speaker condition, the sentence rate (0.67 Hz, tobs = 7.25, p < 0.001, Note: degrees of 

freedom not shown since p-values are derived from the permutation test, see Methods 

4.3.9), its first harmonic (1.33 Hz, tobs = 6.11, p = 0.0023), and the word rate (2.67 Hz, 

tobs = 12.98, p < 0.001) were significant (one tailed permutation test of difference of 

amplitudes with max-t method). Similarly, for the math single speaker condition, the 

symbol rate (2.78 Hz, tobs = 12.39, p < 0.001) and the equation rate (0.55 Hz, tobs = 6.29, 

p = 0.0017) were significant. In this condition, the 1st and 2nd harmonics of the equation 

rate were also significant (tobs = 7.28, p < 0.001 at 1.11Hz; tobs = 7.77, p < 0.001 at 1.67 

Hz). Thus, in both conditions, the responses track the corresponding sentence or 

equation rhythms that are not explicitly present in the acoustic signal. The harmonic 

peak (1.33 Hz) in the language condition is consistent with phrase tracking (Ding et al., 

2016), and the harmonics in the arithmetic condition (1.11 Hz, 1.66 Hz) are consistent 

with auditory processing of acoustic properties of the stimulus associated with the 

limited number of mathematical symbols employed (see Methods 4.3.2), or higher-

order processing, or both. Correlation tests within subjects, with Holm-Bonferroni 

correction, were performed on relevant pairs of responses (after subtracting the 

neighboring bins). Sentence rate responses were significantly correlated with equation 
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rate responses (Pearson’s r = 0.576, p = 0.015). Word rate responses were significantly 

correlated with symbol rate responses (r = 0.681, p = 0.001). Since such correlations 

may arise from fluctuating degree of task engagement, or variable neural signal to noise 

ratio across subjects, they were not analyzed further. There were no significant sentence 

vs. word (r = 0.067, p > 0.99) or equation vs. symbol (r = 0.001, p > 0.99) response 

correlations. 

 

Figure 4.2. Neural response spectrum. The MEG response spectrum as a function of frequency 

for the four conditions. The amplitude spectrum, averaged over sensors and subjects, is shown with 

light shaded regions denoting the 1st-3rd quartile range across subjects. Clear peaks are seen at the 
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sentence, equation, word, and symbol rates (indicated by the arrows under the x-axis). These 

responses were compared against neighboring bins (of width ~0.01 Hz, not visible here) for 

statistical tests. Insets show the average responses at the four frequencies of interest for each subject, 

after subtracting the neighboring bins. The scale for the insets is standardized within each condition, 

but with 0 indicating the baseline average activity of the neighboring bins. For the single speaker 

conditions, peaks appear only at the rates corresponding to the presented stimulus. For the cocktail 

party conditions, peaks appear at the symbol and word rates regardless of attention, while sentence 

and equation peaks only appear during the attended condition. There are no analogous sentence or 

equation peaks during the opposite attention condition. 

 

For the attend-sentences cocktail party condition, only the (attended) word, 

(unattended) symbol and (attended) sentence rate responses were significant (one tailed 

permutation test of difference of amplitudes with max-t method; tobs = 9.29, p < 0.001; 

tobs = 10.59, p < 0.001; tobs = 5.46, p = 0.0176 respectively) as shown in Fig 4.2 C, D. 

The (unattended) equation rate response was not significant (t = 2.99, p > 0.99). On the 

other hand, for the attend-equations cocktail party condition, the (unattended) word, 

(attended) symbol and (attended) equation rate responses were significant (tobs = 10.86, 

p < 0.001; tobs = 11.64, p < 0.001; tobs = 6.07, p = 0.005 respectively), while the 

(unattended) sentence rate response was not significant (tobs = 2.73 p > 0.99). Responses 

at the 1st and 2nd harmonics of the equation rate were also significant in the attend-

equations condition (1.11 Hz, tobs = 5.31, p = 0.027; 1.67 Hz, tobs = 5.09, p = 0.04). 

Correlation tests within subjects were performed, similar to the single speaker case, on 

all responses except the non-significant unattended sentence and equation rates. Once 
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again, attended sentence rate responses were significantly correlated with attended 

equation rate responses (r = 0.68, p = 0.0023). Word rate responses were significantly 

correlated with symbol rate responses for both attended (r = 0.69, p = 0.0021) and 

unattended cases (r = 0.83, p < 0.001). Other correlations were not significant (attended 

sentence vs. attended word: r = 0.12, p > 0.99; attended sentence vs. unattended word: 

r = 0.07, p = 0.74; attended equation vs. attended symbol: r = 0.49, p = 0.083; attended 

equation vs. unattended symbol: r = 0.33, p = 0.4). 

Since the word and symbol rates are present in the acoustics for both conditions, 

the neural responses at these rates could merely reflect acoustic processing. However, 

the fact that the sentence and equation rates are significant only in the corresponding 

attention condition suggests that these responses may dominantly reflect attention-

selective high-level processes. This agrees with prior studies showing a similar effect 

for language (Ding et al., 2018). Here we show that this effect occurs even for 

arithmetic equations. However, arithmetic equations are also sentences, so it is unclear 

from this result alone if the equation peak reflects merely tracking of sentential 

structure and not arithmetic processing. To investigate this, we used volume source 

localization on the responses at the relevant frequencies to determine the cortical 

distribution of these responses.  

The responses at the 4 frequencies of interest (word, symbol, sentence and equation 

rates) were source-localized using the Fourier transform sensor topographies at these 

frequencies (see Methods 4.3.6). The amplitudes of the resulting complex-valued 

volume source distributions were used for all subsequent analysis. For each frequency 
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of interest, the source amplitudes in the neighboring five bins on either side were 

calculated using the same source model, and averaged together as an estimate of the 

background noise. The response distributions for each of these frequencies were tested 

for a significant increase over the noise estimate using nonparametric permutation tests 

with paired sample t-statistics and TFCE. For both single speaker conditions, the 

corresponding word or symbol responses were significant (tmax = 12.85, pmin < 0.001, 

and tmax = 12.77, pmin < 0.001, respectively) in the regions shown in Fig. 4.3 A, B, with 

the average response being strongest in bilateral auditory cortex. The word and symbol 

rate responses were not significantly different (tmin = -2.11, tmax = 3.63, p > 0.08), 

consistent with low level auditory processing. The corresponding sentence or equation 

responses were also significant (tmax = 9.92, pmin < 0.001, and tmax = 7.68, pmin < 0.001, 

respectively). The source distribution for sentence responses was predominantly in left 

auditory cortex and temporal lobe, whereas for equations the response was distributed 

over areas of bilateral temporal, parietal, and occipital lobes. Despite these visually 

distinct patterns, the two responses were not significantly different (tmin = -3.00, tmax = 

3.36, p > 0.12), perhaps because large portions of the brain show activity synchronized 

to the rhythm. Both sentence and equation responses were significantly left lateralized 

in temporal (tmax = 6.69, pmin < 0.001) and parietal (tmax = 3.9, pmin = 0.009) areas 

respectively. No significant differences were seen in the responses at the equation rate 

when separated according to operator type ('+’ vs. ‘-’: tmin = -2.98, tmax = 1.64, p > 0.34; 

‘-’ vs. '´’: tmin = -2.08, tmax = 3.21, p > 0.39; '´’ vs. ‘+’: tmin = -2.26, tmax = 3.01, p > 

0.31). 
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Figure 4.3. Source localized responses at each frequency of interest. The source localized 

responses at critical frequencies, averaged over subjects and masked by significant increase over 

the noise model, are shown. Color scales are normalized within each condition in order to more 

clearly show the spatial patterns. The word and symbol rate responses are maximal in bilateral 

auditory cortical areas, while the sentence rate response is maximal in the left temporal lobe. The 

equation rate responses localize to bilateral parietal, temporal, and occipital areas, albeit with 

increased left hemispheric activity. Although the background sentence and equation rates also show 

significant activity, the amplitude of these responses are much smaller than the responses at the 

corresponding attended rates. 

 

For the cocktail party conditions, similar results were obtained for both word and 

symbol rate responses (attend sentences: word rate: tmax = 11.9, pmin < 0.001, symbol 

rate: tmax = 12.8, pmin < 0.001; attend equations: word rate: tmax = 11.1, pmin < 0.001, 

symbol rate: tmax = 11.01, pmin < 0.001). The response was predominantly in bilateral 
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auditory cortices as shown in Fig. 4.3 C, D, and the symbol and word rates were not 

significantly different (tmin = -4.31, tmax = 2.33, p > 0.16). The attended sentence or 

equation rate responses were significant (tmax = 6.78, pmin < 0.001, and tmax = 7.87, pmin 

< 0.001, respectively) and the localization was similar to the single speaker case, albeit 

more bilateral for the equation rate response. Indeed, the sentence rate response was 

significantly left lateralized ( tmax = 5.36, pmin < 0.001), similar to the single speaker 

case, but the equation rate response was not (tmax = 2.97, p > 0.067). However, the 

spatial distribution of the equation rate response was larger in the left hemisphere (see 

Fig. 4.3); indeed, the source localization of attended sentence responses and attended 

equation responses were significantly different (tmin = -4.77, tmax = 2.39, pmin = 0.013), 

with more equation rate responses in the right hemisphere. This indicates that the 

equation rate response does not originate from the same cortical regions that give rise 

to the sentence rate response and that the selective attention task is better able to 

separate these responses. Perhaps surprisingly, the unattended sentence and equation 

rates were also significant (tmax = 4.02, pmin = 0.005, and tmax = 5.31, pmin < 0.001, 

respectively) in small clusters, even though such peaks do not appear in the frequency 

spectrum averaged across all sensors (Fig. 4.2). Note however, that some individuals 

did show small peaks at these rates even in the average spectrum (see points above zero 

for unattended rates in the insets of Fig. 4.2 C, D).  

A repeated measures ANOVA was performed for the single speaker case on the 

abovementioned source space distributions (as shown in Fig. 4.3) for each frequency 

of interest. The 2 ⨉ 2 ANOVA consisted of factors stimulus (‘language’ for 
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word/sentence or ‘math’ for symbol/equation) and specific frequency (‘high’ for 

word/symbol or ‘low’ for sentence/equation). The ANOVA was performed on the 

response at each voxel and cluster-based permutation tests with TFCE were used to 

correct for multiple comparisons (See Methods 4.3.9 for choice of reported statistics). 

The interaction of stimulus ⨉ frequency was not significant (Fmax = 10.38, p = 0.149, 

but see below for an interaction effect in an ANOVA with a factor of hemisphere). A 

significant main effect of frequency (Fmax = 18.63, p = 0.006) was found in a right 

auditory cluster and a significant main effect of stimulus type (Fmax = 21.67, p = 0.003) 

was found in the left auditory/temporal area. Post-hoc t-tests across subjects were 

performed on the responses averaged across voxels within the significant clusters for 

each effect; p-values were obtained from the t-distribution and then corrected for 

multiple comparisons using the Holm-Bonferroni method. These tests revealed that the 

main effect of stimulus was due to a significant increase in both the sentence over the 

equation responses (t(21) = 2.96, p = 0.037, Cohen’s d = 0.54) and the word over the 

symbol responses (t(21) = 2.85, p = 0.038, Cohen’s d = 0.52) in the left 

auditory/temporal cluster, consistent with increased left temporal activity for language 

over arithmetic. The main effect of frequency was due to a significant increase in both 

the word over the sentence responses (t(21)=3.67, p = 0.01, Cohen’s d=1.16), and the 

symbol over the equation responses (t(21)=3.15, p = 0.028, Cohen’s d=0.97) in the 

right auditory cluster.  
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For the cocktail party case, a similar repeated measures ANOVA was performed, 

but with an additional factor of attention (attended or unattended) leading to a 2 ⨉ 2 ⨉ 

2 design. A significant 3-way interaction of stimulus ⨉ attention ⨉ frequency was found 

in a right parietal cluster (Fmax = 15.18, p = 0.024). Post-hoc t-tests across subjects with 

Holm-Bonferroni correction were performed on the responses averaged across voxels 

within this cluster. These revealed a significant increase in the equation responses 

compared to the sentence responses when attended (t(21)  = 3.71, p = 0.0103, Cohen’s 

d = 0.82), but no significant difference when unattended (t(21)  = 2.27, p = 0.09, 

Cohen’s d = 0.65). There was also no significant difference between word and symbol 

responses both when attended (t(21)=-0.32, p = 0.75, Cohen’s d = -0.06) and 

unattended (t(21)=-0.69, p = 0.99, Cohen’s d = -0.09). This is consistent with increased 

responses to equations in right parietal areas only when attended. In addition to this 3-

way interaction, several 2-way interactions and main effects were also detected but 

were not analyzed further. 

Finally, two further ANOVAs were performed with an additional factor of 

hemisphere for both the single speaker (2 ⨉ 2 ⨉ 2 ANOVA) and cocktail party (2 ⨉ 2 

⨉ 2 ⨉ 2 ANOVA). For the single speaker case, the 3-way interaction was significant 

(stimulus ⨉ frequency ⨉ hemisphere: Fmax = 18.55, p = 0.016) in superior parietal 

voxels. For the cocktail party case, the 4-way interaction was not significant (attention 

⨉ frequency ⨉ stimulus type ⨉ hemisphere: Fmax = 8.31, p=0.115). However, two 3-

way interactions involving hemisphere were significant (attention ⨉ frequency ⨉ 

hemisphere: Fmax = 13.71, p = 0.031, frequency ⨉ stimulus ⨉ hemisphere: Fmax = 18.12, 
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p =0.017) in temporal voxels. Other effects involving hemisphere were also found to 

be significant (frequency ⨉ hemisphere: Fmax = 41.75, p < 0.001, main effect of 

hemisphere: Fmax = 17.1, p = 0.021), as well as several other effects not involving 

hemisphere. These effects were not analyzed further, but they indicate that the effects 

of attention, stimulus and frequency depend significantly on the hemisphere, as already 

suggested by the lateralized clusters found in the simpler ANOVAs described earlier. 

In summary, the ANOVA analysis indicates that, in the single speaker case, low-

level responses (word/symbol) are significantly stronger than the higher-level 

responses (sentence/equation) in right auditory areas and that the language responses 

(sentence/word) are significantly stronger than the arithmetic responses 

(equation/symbol) in left auditory/temporal areas. Critically, the ANOVA results for 

cocktail party indicate that the equation responses are significantly larger than the 

sentence responses in right parietal areas but only when attended to. ANOVAs also 

indicate that these effects depend on hemisphere as already suggested by the previous 

pairwise comparisons. 

 

4.4.3.  Behavioral correlations 

Behavioral performance was correlated with source localized neural responses 

using non-parametric permutation tests with TFCE, with Pearson correlation as the test 

statistic. Deviant detection performance for sentences in the single speaker condition 

was significantly correlated with the sentence rate neural response (pmin = 0.02, 

maximum correlation in significant regions rmax = 0.62) as shown in Fig. 4.4. However, 
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detection of equation deviants in the single speaker condition was not significantly 

correlated with the equation rate neural response; this may be related to the fact that 

performance in the single speaker arithmetic condition was at ceiling for several 

participants. The performance when detecting sentence deviants in the cocktail party 

conditions was correlated with the attended sentence rate response (rmax = 0.62, pmin = 

0.015), attended word rate response (rmax = 0.64, pmin = 0.03) as well as the unattended 

symbol rate response (rmax = 0.79, pmin = 0.001). The performance when detecting 

equation deviants in the cocktail party condition was correlated with the attended 

equation rate response (rmax = 0.6, pmin = 0.02) and the unattended word rate response 

(rmax = 0.74, pmin = 0.04). It was unexpected that the unattended word and symbol rate 

responses were significantly correlated with behavior, and possible explanations are 

discussed in section 4.5.3. Critically, however, sentence and equation rate responses 

were correlated with behavior only when attended.  
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Figure 4.4. Neural response correlations with behavior. The source localized responses at the 

frequencies of interest were correlated with the corresponding deviant detection performance, 

across subjects. The areas of significant correlation are plotted here (same color scale for all plots). 

Sentence and equation rate responses are significantly correlated with behavior only if attended, 

while both attended and unattended word rate responses are significantly correlated with behavior. 

The sentence rate response is significantly correlated over regions in left temporal, parietal, and 

frontal areas, while significant correlation for the equation rate response is seen in left parietal and 

occipital regions. 
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4.4.4.  TRF analysis 

TRF analysis was performed using source localized MEG time signals for each 

condition after excluding the deviant trials (details in Methods 4.3.7). TRFs were 

simultaneously obtained for responses to the acoustic envelopes, word/symbol onsets 

and sentence/equation onsets. Although stimuli with fixed and rhythmic word, symbol, 

sentence, and equation onsets might lend itself to an evoked response analysis, the fact 

that the words (or symbols) are only separated by 375 ms (or 360 ms) may lead to high-

level late responses overlapping with early auditory responses to the next word (or 

symbol). In contrast, computing simultaneous TRFs to envelopes and word/symbol 

onsets in the same model as TRFs to equation/sentence onsets regresses out auditory 

responses from higher-level responses, providing cleaner TRFs for sentences and 

equations. The obtained envelope and word/symbol TRFs were not used for further 

analysis, since they were dominated by acoustic responses that have been well-studied 

in other investigations (Brodbeck et al., 2018a, 2018b). The volume source localized 

TRFs are time-varying vectors at each voxel. Activity of nearby neural populations 

may overlap, even if the activity is driven by different processes, due to the limited 

spatial resolution of MEG. However, these effects may have different current directions 

due to the anatomy of the cortical surface. Therefore, a test for consistent vector 

directions, using Hotelling’s T2 statistic and permutation tests with TFCE, was used to 

detect group differences in the direction of current flow (see Methods 4.3.9).  
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The sentence and equation TRFs showed significance over several time intervals 

and many voxels over the duration of the TRF (𝑇;<=0  = 7.66, pmin < 0.001, and 𝑇;<=0  = 

5.12, pmin < 0.001, respectively, see Fig 4.5). The TRFs were computed starting from 

350 ms after the sentence onset to 350 ms after the end of the sentence, but because of 

the fixed-period presentation rate without any breaks between sentences in a trial, the 

TRFs from 0-350 ms are identical to the last 350 ms. The large peak at the end (and 

beginning) of each TRF may either arise from processing of the completion of the 

sentence/equation, or from preparation (or auditory) processing of the new sentence 

sentence/equation, or both. This peak occurs around 60-180 ms after the start of the 

new sentence/equation, in the typical latency range of early auditory processing. 

However, spatial distributions of the peak in the equation TRFs seem to indicate 

patterns that are not consistent with purely auditory processing, especially for the 

cocktail party condition (described below). Additionally, significant activity is seen 

throughout the duration of the sentence/equation that is not tied to word/symbol onsets, 

indicating that lower-level auditory responses have been successfully regressed out. 

Therefore, the large peaks at the end plausibly reflect processing of the completion of 

the sentence/equation (with a latency of 420-530 ms after the last word/symbol). The 

sentence TRF peaks were significant predominantly in the left temporal lobe, while the 

equation TRF peaks were significant in bilateral temporal, parietal, and motor areas.  



 

103 
 

 

Figure 4.5. TRFs in the single speaker conditions. Overlay plots of the amplitude of the TRF 

vectors for each voxel, averaged over subjects. For each TRF subfigure, the top axis shows vector 

amplitudes of voxels in the left hemisphere and the bottom axis correspondingly in the right 

hemisphere. Each trace is from the TRF of a single voxel; non-significant time points are shown in 

gray, while significant time points are shown in red (sentence TRF) or blue (equation TRF). The 

duration plotted corresponds to that of a sentence or equation, plus 350 ms; because of the fixed 

presentation rate, the first 350 ms (shown in gray) are identical to the last 350 ms. The large peak 
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at the end (and beginning) of each TRF may either be ascribed to processing of the completion of 

the sentence/equation, or to the onset of the new sentence sentence/equation, or both. Word and 

symbol onset times are shown in red and blue dashed lines respectively; it can be seen that response 

contributions associated with them have been successfully regressed out. Volume source space 

distributions for several peaks in the TRF amplitudes are shown in the inlay plots, with black arrows 

denoting current directions (peaks automatically selected as local maxima of the TRFs). Although 

most of the TRF activity is dominated by neural currents in the left temporal lobe, the equation 

TRFs show more bilateral activation.  

 

Differences in sentence and equation processing were more readily visible in the 

TRFs for the cocktail party conditions. The test for consistent vector direction revealed 

similar results to the single speaker conditions (sentence TRF 𝑇;<=0  = 5.15, pmin < 0.001, 

equation TRF 𝑇;<=0  = 5.24, pmin < 0.001) as shown in Fig. 4.6, however, the differences 

between sentences and equations were more pronounced, especially for the later peaks 

410-600 ms after the onset of the last word or symbol. The peaks in the equation TRF 

were localized to left motor and parietal regions and right inferior frontal areas that are 

associated with arithmetic processing. This strengthens the hypothesis that these late 

peaks indicate lagged higher-level processing of the completed equation and not early 

auditory/preparatory processing of the subsequent equation. Although the cortical 

localization of sentence TRF peaks remain consistent in left temporal areas throughout 

most of the time course, the equation TRF peaks show several distinct cortical patterns, 

and may reflect distinct processes. The equation TRF showed strong activity in bilateral 

IPS, superior parietal and motor areas, while sentence TRFs consistently localized 
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predominantly to regions near left auditory cortex, even more so than in the single 

speaker case. Therefore, selective attention in the cocktail conditions seems to highlight 

differences between arithmetic and language processing, and possible explanations are 

discussed section 4.5.6. 

 

Figure 4.6. TRFs in the cocktail party conditions. Overlay plots of the TRF for each voxel 

averaged over subjects are shown as those in Fig. 4.5. Word and symbol onset times are shown in 
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red and blue dashed lines respectively and are marked in both sentence and equation TRFs since 

both stimuli were present in the cocktail party conditions; again, it can be seen that responses 

contributions associated with them have been successfully regressed out. Differences between 

sentence and equation TRFs arise at later time points, with sentence TRFs being predominantly 

near left temporal areas, while equation TRFs are in bilateral temporal, motor, and parietal regions.  

 

4.4.5.  Decoder analysis 

To further help differentiate between the cortical processing of equations and 

sentences, two types of linear decoders were trained on neural responses. 1) Classifiers 

at each time point that learned weights based on the MEG sensor topography at that 

time point. 2) Classifiers at each voxel that learned weights based on the temporal 

dynamics of the response at that voxel. The former was used to contrast the dynamics 

of equation and sentence processing (Fig. 4.7A). For the single speaker conditions, all 

time points showed significant decoding ability across subjects (tmax = 11.3, pmin < 

0.001), with higher prediction success (as measured by AUC) at longer latencies. For 

the cocktail party conditions, decoding ability was significantly above chance only at 

longer latencies (tmax = 6.45, pmin < 0.001). While subjects listened to the equations, the 

identity of the arithmetic operator (e.g., ‘plus’ vs. ‘times’ or ‘less’) was reliably 

decoded from the MEG sensor topography during the time points when the operator 

and the subsequent operand were presented (Fig. 4.7B). Note that decoding accuracy 

was significantly above chance for time points ~250-300 ms after the offset of the 
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operator. This is considerably late for decoding based on mere auditory responses to 

acoustic features of the operator. 

Decoders at each voxel were also trained to differentiate attention to equations vs. 

sentences, based on the dynamics of the response at that voxel during the first or last 

words (Fig. 4.7C). The prediction success (as measured by AUC) was significant for 

large areas in the single speaker conditions both for first words (tmax = 5.1, pmin < 0.001) 

and last words (tmax = 5.4, pmin < 0.001) decoders. The AUC for first words decoders 

was significant for all regions in the left hemisphere except for areas in the inferior and 

middle temporal gyrus and all regions on the right hemisphere except the occipital lobe. 

The AUC for last words was significant for all regions in the left hemisphere and parts 

of frontal temporal lobes in the right hemisphere. For the cocktail party conditions the 

source-localized regions of significant prediction success were much more focal: the 

AUC was significant only in the IPS and superior parietal areas for both first words 

(tmax = 5.3, pmin < 0.001) and last words (tmax = 4.3, pmin = 0.014) decoders. These results 

suggest that the activity of voxels in left IPS and superior parietal areas is most useful 

for discriminating between attending to equations vs. sentences. Finally, decoders at 

each voxel were also trained to decode the attention condition (foreground vs. 

background) from the response to the entire sentence or equation (Fig. 4.7D). The AUC 

was significant in bilateral parietal areas for decoding whether arithmetic was in 

foreground vs. background (tmax = 5.2, pmin < 0.001), consistent with areas involved in 

arithmetic processing. For decoding whether language was in foreground vs. 

background, the AUC was significant (tmax = 5.1, pmin = 0.002) in left middle temporal 
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areas, consistent with higher level language processing, and bilateral superior parietal 

areas, consistent with attention networks that are involved in discriminating auditory 

stimuli. Therefore, the decoding analysis is able to detect different cortical areas that 

may be involved in attention to language and arithmetic. 

 

Figure 4.7. Decoding arithmetic and language processing. A. Performance of decoding attention 

condition (math vs. language) at each time point using MEG sensors for single speaker (purple) and 

cocktail party (brown). Prediction success is measured by AUC, which is plotted (mean and s.e.m. 

across subjects); time points where predictions are significantly above chance are marked by the 

horizontal bars at the bottom (every time point is significantly above chance for the single speaker 

case). The word and symbol onsets are also shown, and the decoding performance increases towards 

the end of the time window. B. Decoding arithmetic operators from sensor topographies. The time 

window of the operator and the subsequent operand was used for the 3 types of decoders. Time 
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intervals where predictions are significantly above chance are marked by the colored horizontal 

bars at the bottom: all 3 operator comparisons could be significantly decoded. C. Decoding math 

vs. language based on the last word. During the single speaker conditions, most of the brain is 

significant. However, for the cocktail party conditions, more focal significant decoding is seen in 

IPS and superior parietal areas. Decoding based on the first word resulted in similar results (not 

shown). D. Decoding attention in the cocktail party conditions (AUC masked by significance across 

subjects). The sentence responses in foreground and background were decoded in left middle 

temporal and bilateral superior parietal areas. The equation responses in foreground and background 

were decoded in bilateral parietal areas.  

 

4.5.  Discussion  

We investigated the cortical locations and temporal dynamics of neural responses 

to spoken equations and sentences. Sentence responses consistently localized to left 

temporal areas. In contrast, equation responses consistently showed bilateral parietal 

activity, with other variations depending on analysis method (e.g., motor activity in 

TRFs). This may be due to different mechanisms involved in equation processing, 

although further investigation would be needed to support this claim. Cortical patterns 

consistent across different analysis methods (frequency domain, TRFs, decoders) are 

illustrated in schematic Fig. 4.8.  
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Figure 4.8. Schematic of cortical processing of sentences and equations. A schematic 

representation of sentence and equation processing is shown. Exemplars of both foreground 

and background of stimuli are shown at the bottom. The areas that were most consistent across 

all analysis methods (frequency domain, TRFs and decoders) are shown.   

 

4.5.1.  Sentence and equation rate responses 

As expected, MEG responses to acoustic features source-localized to the bilateral 

auditory cortex, and sentence rate responses source-localized to the left temporal 

cortex, consistent with speech and language areas (Binder et al., 2009; Friederici, 2011, 

2002; Hickok and Poeppel, 2007; Vandenberghe et al., 2002), similar to prior 

isochronous speech studies (Sheng et al., 2018). In contrast, equation rate responses 

localized to left parietal, temporal, and occipital areas. Arithmetic processing can 
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activate IPS and parietal (Dehaene et al., 2003), angular gyrus (Göbel et al., 2001), 

temporal (Tang et al., 2006), and even occipital areas (Harvey and Dumoulin, 2017; 

Maruyama et al., 2012), perhaps due to internal visualization (Zago et al., 2001). 

Equation responses also localized to the right temporal and parietal areas in cocktail 

party conditions, confirming that arithmetic processing is more bilateral than language 

processing (Amalric and Dehaene, 2019, 2018; Dehaene and Cohen, 1997). Critically, 

ANOVA analysis indicated that attended equation and sentence responses are 

significantly different. Unexpectedly, significant neural responses at the unattended 

sentence and equation rates were found in smaller temporal (consistent with language 

processing) and parietal (consistent with arithmetic processing) areas respectively. 

Some subjects may have been unable to sustain attention to the instructed stream for 

the entirety of this diotic stimulus and so briefly switched their attentional focus.  

 

4.5.2.  Left hemispheric dominance of equation responses 

Equation responses were left dominant in both single speaker and cocktail party 

conditions. This could reflect left-lateralized language processing since equations were 

presented using speech. However, arithmetic processing may also show left dominance 

(Pinel and Dehaene, 2009), perhaps due to precise calculations (Dehaene, 1999; Pica 

et al., 2004) or arithmetic fact retrieval (Dehaene et al., 2003; Grabner et al., 2009).  

These fast-paced stimuli required rapid calculations, and may have resulted in 

increased reliance on rote memory, which activates left hemispheric areas (Campbell 

and Austin, 2002). Specific strategies employed for calculation may also result in left 
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lateralization—multiplication of small numbers is often performed using rote memory 

(Delazer et al., 1999; Fehr et al., 2007; Ischebeck et al., 2006), while subtraction is less 

commonly performed using memory and shows more bilateral activation (Prado et al., 

2011; Schmithorst and Brown, 2004). Addition may recruit both these networks, 

depending on specific strategies utilized by individuals (Arsalidou and Taylor, 2011). 

We found no significant differences in equation responses when separated by operation 

type, perhaps because of individual variation in procedural calculation or retrieval 

strategies within the same operation (Tschentscher and Hauk, 2014). However, 

operation types were successfully decoded from the overall MEG signals (Fig. 4.8B), 

consistent with prior work (Pinheiro-Chagas et al., 2019), although not as robustly as 

decoding stimulus type or attention. Overall, left-hemispheric dominance of equation 

responses is supported by a combination of speech processing, precise calculations, and 

arithmetic fact retrieval. 

 

4.5.3.  Cortical correlates of behavioral performance 

Neural responses to sentence, equation, word, and symbol rates were correlated 

with performance in detecting deviants, consistent with language-only isochronous 

studies (Ding et al., 2017). Sentence responses correlated with behavior in language 

areas, such as left auditory cortex, superior and middle temporal lobe and angular gyrus 

(Binder et al., 2009; Karuza et al., 2013; Price, 2000) in both single speaker and cocktail 

party conditions. In contrast, equation responses correlated with behavior in cocktail 

party conditions in posterior parietal areas, which are known to predict competence and 
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performance in numerical tasks (Grabner et al., 2007; Lasne et al., 2019; Lin et al., 

2019, 2012). The lack of significant behavioral correlations for equation responses in 

single speaker conditions may be due to several subjects performing at ceiling; 

equations had a restricted set of only 14 unique symbols, and the presence of the ‘is’ 

symbol in every equation might be structurally useful in tracking equation boundaries. 

Unexpectedly, behavioral correlations were also found for background symbol rate 

responses in parietal and occipital areas (and for background word rate responses in a 

small parietal region). Some studies show that acoustic features of background speech 

may also be tracked (Brodbeck et al., 2020a; Fiedler et al., 2019). Since background 

word and symbol rates were present in the stimulus acoustics, increased effort or 

attention could enhance both behavioral performance and auditory responses at these 

rates. Representations of the background could enhance attentional selectivity in 

challenging cocktail party environments as suggested by Fiedler et al., 2019. However, 

note that sentence and equation responses were only correlated with behavior when 

attended. Overall, behavioral correlations in temporal and parietal regions suggest that 

these responses may reflect improved comprehension due to neural chunking of speech 

structures or successful calculations (Blanco-Elorrieta et al., 2019; Chen et al., 2020; 

Jin et al., 2020; Kaufeld et al., 2020; Teng et al., 2020).  

 

4.5.4.  Dynamics of arithmetic and language processing 

TRFs for equation and sentence onsets were jointly estimated along with speech 

envelopes and word/equation onsets in order to regress out auditory responses, 



 

114 
 

analogous to prior work with linguistic and auditory TRFs (Brodbeck et al., 2018a, 

2018b; Broderick et al., 2018). Isochronous speech studies have found slow rhythmic 

activity (Zhang and Ding, 2017), which did not appear in our TRFs, perhaps due to 

implicit high-pass filtering (boosting favors sparse TRFs). Instead, we found large TRF 

peaks at sentence/equation boundaries. Prior studies have found late evoked responses 

specific to numbers and equations (Avancini et al., 2015). Large peaks appeared in both 

sentence and equation TRFs 410–600 ms after the onset of the last word/symbol and 

may reflect processing of the completion of the sentence/equation. Sentence TRF peaks 

localized to left temporal areas, while equation TRF peaks showed activity in bilateral 

parietal and temporal areas involved in numerical processing (Abd Hamid et al., 2011; 

Amalric and Dehaene, 2018), and motor areas, perhaps reflecting procedural 

calculation strategies (Tschentscher and Hauk, 2014). The peak latencies were similar 

to prior arithmetic ERP studies (Iguchi and Hashimoto, 2000; Iijima and Nishitani, 

2017). These sentence and equation TRF peaks may reflect several mechanisms; both 

shared (language processing, decision making), and separate (semantic vs. arithmetic 

processing), and further work is needed to disentangle these mechanisms. Finally, the 

cortical patterns of TRF peaks showed more differences in the cocktail party than the 

single speaker conditions, suggesting that selective attention focuses the underlying 

cortical networks. 
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4.5.5.  Decoding equation and sentence processing 

Numbers and arithmetic operations have been previously decoded from cortical 

responses (Eger et al., 2009; Pinheiro-Chagas et al., 2019). In this study, the attended 

stimulus type (sentences or equations) was reliably decoded in single speaker 

conditions in several cortical regions, perhaps due to highly correlated responses across 

cortex for this task. In contrast, decoding accuracy during cocktail party conditions was 

significant in left IPS and superior parietal areas, suggesting that these regions are most 

important for discriminating between arithmetic and language processing. Both the 

attend-equations and the attend-sentences states could be decoded from bilateral 

superior parietal areas, perhaps due to general attentional networks in fronto-parietal 

areas, or attentional segregation of foreground and background speech based on pitch 

or gender (Hill and Miller, 2010; Kristensen et al., 2013). Additionally, decoding the 

attend-equations state was significant in bilateral parietal areas, consistent with 

arithmetic processing, while decoding the attend-sentences state was significant in the 

left middle temporal lobe, consistent with language processing  (Hickok and Poeppel, 

2007). Overall, MEG responses contain enough information to decode arithmetic vs. 

language processing, selective attention, and arithmetic operations. 

 

4.5.6.  The cocktail party paradigm highlights distinct cortical processes 

Differences in source-localized sentence and equation responses were more 

prominent in the cocktail party than in the single speaker conditions for all analyses 
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(frequency domain, TRFs and decoders). Responses to both stimuli presented 

simultaneously may have helped control for common auditory and pre-attentive 

responses. Abd Hamid et al., (2011) found fMRI activation in broader areas for spoken 

arithmetic with a noisy background than in quiet, perhaps due to increased effort. 

However, in our case, the background stimulus was not white noise, but rather 

meaningful non-mathematical speech. Our TRF analysis, which regresses out 

responses to background speech, as well as the selective attention task itself, may 

highlight specific cortical processes that best separate the arithmetic and language 

stimuli.  

In summary, neural processing of spoken equations and sentences involves both 

overlapping and non-overlapping cortical networks. Behavioral correlations suggest 

that these neural responses may reflect improved comprehension and/or correct 

arithmetic calculations. Selective attention for equations focuses activity in temporal, 

parietal occipital and motor areas, and for sentences in temporal and superior parietal 

areas. This cocktail party paradigm is well suited to highlight the cortical networks 

underlying the processing of spoken arithmetic and language. 
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Chapter 5 

A Comparison of Algorithms for Modelling Time-Locked 

Cortical Processing of Continuous Speech 

 

5.1.  Abstract 

The Temporal Response Function (TRF) is a linear model of time-locked M/EEG 

activity to continuous stimuli that has proved to be successful in investigating cortical 

processing of continuous speech. TRFs to speech envelopes often have distinct 

components that are comparable to components found in Evoked Response Potentials 

(ERPs). Task and group differences in the amplitudes and latencies of these TRF 

components have provided several insights into speech processing. However, these 

component characteristics may depend on the specific TRF algorithm employed, and 

current methods often result in unreliable subject-specific components. In this work we 

provide a systematic comparison of TRF algorithms, in terms of their ability to estimate 

TRF components. Using both simulations and real MEG data, we compare two 

conventional algorithms, ridge regression and boosting, and two novel algorithms 

based on Orthogonal Matching Pursuit (OMP) and Expectation Maximization (EM). 

The proposed novel algorithms utilize prior knowledge of typical component 

characteristics to directly estimate component amplitudes and latencies. Comparisons 

were performed for single channel, multi-sensor, and source localized TRFs. The novel 
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algorithms outperformed the others in simulations, but did not perform well on real 

data, possibly because of unsuitable assumptions on component characteristics. 

Although ridge regression often resulted in the best model fit, all algorithms were 

comparable in terms of component estimation errors, especially at higher SNRs. 

Additional concerns such as sparsity and spurious TRF peaks are also discussed. This 

work highlights the importance of the choice of algorithm for estimating and detecting 

robust TRF components.  

 

5.2.  Introduction 

The human brain time-locks to features of continuous speech, extracting 

meaningful information relevant to comprehension. Magnetoencephalography (MEG) 

and electroencephalography (EEG) are suitable methods to measure these time-locked 

responses, due to their high temporal resolution. Traditional methods for analyzing 

auditory responses involve averaging over several trials of repeated stimuli to estimate 

Evoked Response Potentials (ERPs)  (Picton, 2013; Picton et al., 1974). However, 

exploring the complex mechanisms involved in speech processing requires non-

repetitive, continuous speech stimuli of long duration, and averaging over many trials 

is no longer feasible. One method of analyzing responses to continuous stimuli uses 

linear models called Temporal Response Functions (TRFs), that seek to estimate the 

impulse response of the neural system to continuous stimuli (Ding and Simon, 2013, 

2012a; Lalor and Foxe, 2010). These TRFs have response components that are similar 

to well-known auditory ERP components, and have been utilized to investigate 



 

119 
 

selective attention (Akram et al., 2016; Ding and Simon, 2012b; Miran et al., 2018), 

linguistic processing (Brodbeck et al., 2018a; Broderick et al., 2018) and age-related 

differences (Brodbeck et al., 2018b). However, though estimated TRFs display these 

canonical components at the group-average level, individual TRFs are much noisier 

and do not always have well-defined components. It is essential to detect robust 

response components on a per-subject level, in order to identify task effects, and to 

detect pathological cases.  

In this work we compare TRF algorithms in terms of their ability to estimate TRF 

components, i.e., TRF peak latencies and amplitudes. Two of the most commonly used 

TRF estimation algorithms are ridge regression (Crosse et al., 2021, 2016) and boosting 

(David et al., 2007) , where the components of the TRF are greedily selected to decrease 

the mean square error (MSE) of the fit to the neural response. The former uses ℓ0 

regularization which leads to smooth TRFs with broad components, while the latter 

prioritizes sparsity in the TRF, leading to narrower, sharper components. However, it 

is not clear which of these methods is more accurate in estimating component latencies 

and amplitudes. Both ridge regression and boosting are agnostic to the morphology of 

neural responses. Given the fact that canonical auditory response components such as 

the M50 (~50 ms), M100 (~100-150 ms) and even M200 (~200-250 ms) are often 

present in TRFs to the speech envelope (Ding and Simon, 2012a), it is reasonable to 

incorporate this information during estimation.  

Several methods have been proposed for estimating individual trial latencies and 

amplitudes for M/EEG evoked responses. The earliest ERP latency estimation methods 
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involved cross correlation with average response templates (Woody, 1967). More 

recent algorithms have utilized techniques such as Independent Component Analysis 

(Jung et al., 1999; Makeig et al., 2002), wavelet decomposition (Quiroga and Garcia, 

2003), maximum likelihood estimation (de Munck et al., 2004; Jaskowski and 

Verleger, 1999), autoregressive models (Xu et al., 2009), Expectation Maximization 

(EM) (Limpiti et al., 2010) and Bayesian methods (Mohseni et al., 2010; Truccolo et 

al., 2003; Wu et al., 2014).  

In this work, we also propose a novel TRF estimation algorithm that utilizes prior 

knowledge of the characteristics of neural responses, that is well suited to directly 

estimate component latencies, amplitudes and topographies. Given bounds on the 

latency ranges for each component, the proposed algorithm directly estimates 

component latencies and amplitudes using Orthogonal Matching Pursuit (OMP; Cai 

and Wang, 2011; Sieluzycki et al., 2009), and can be combined with the Expectation 

Maximization method (EM; Dempster et al., 1977; Limpiti et al., 2010)  to directly 

estimate sensor topographies or source distributions for multidimensional TRFs. 

A simulation study, as well as application of these algorithms to a real dataset, are 

reported and their performance is compared using single channel, sensor space and 

source localized TRFs. In addition to the conventional measure of model fit, the 

correlation between the actual and the predicted signal, several other performance 

metrics including errors in detecting peak amplitudes and latencies were used. 

Additionally, other considerations such as spurious TRF activity and missing 

components must also be taken into account when comparing these algorithms. This 
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work highlights the importance of estimating robust TRF components, discusses the 

strengths and weaknesses of widely used algorithms and proposes novel algorithms for 

TRF estimation that may provide robust and interpretable measures of time-locked 

response characteristics. 

 

5.3.  Methods 

5.3.1.  Ridge Regression 

The TRF estimation problem is given by 

𝑦(𝑡) =(𝛽(𝑘)𝑥(𝑡 − 𝑘)
"

+ 𝑛(𝑡) (5.1) 

Where  𝑦(𝑡) is the measured signal at one sensor for the tth time point, 𝑥 is the predictor 

variable, 𝛽(𝑘) is the TRF value for the kth time lag and 𝑛 is the noise. The above 

convolution equation describes the TRF as an impulse response of the neural system. 

This convolution can be reformulated as a regression: 

𝐲 = 𝐗𝛃 + 𝐧 (5.2) 

Where 𝐲𝜖ℝ# is the vector of the measured signal for T time points, 𝛃𝜖ℝ> is the 

corresponding TRF over K time lags, 𝐧𝜖ℝ# is the noise and 𝐗𝜖ℝ#×> 	is the Toeplitz 

matrix formed by lagged predictor values. The well-known ridge regression algorithm 

seeks to minimize the following cost function,  

min 	
𝛃
‖𝐲 − 𝐗𝛃‖00 + 𝜆‖𝛃‖00 (5.3) 
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Therefore, ridge regression seeks to minimize both the error between the actual 

and predicted signals and a regularization term on the TRF coefficients. The solution 

is given by, 

𝛃 = (𝐗𝐓𝐗 + 𝜆𝐈),6𝐗#𝐲 (5.4) 

The regularization parameter 𝜆 must be selected carefully. Here we use a nested 

cross-validation scheme to tune this parameter. Ridge regression results in smooth 

TRFs and can be used independently at multiple sensors to estimate TRFs for multi-

channel data.  

 

5.3.2.  Boosting 

The Boosting algorithm solves the TRF problem using a greedy coordinate 

descent. In brief, the algorithm starts from an all-zero TRF and incrementally adds 

small, fixed values to the TRF that lead to the largest decrease in the error measure at 

each iteration. In this work, we use the same error measure as in the regression problem 

(ℓ0 norm, but without regularization), and stop the iterations when the Pearson 

correlation between the actual and predicted signals does not improve. TRFs at each 

sensor are computed independently and the complete algorithm is given below 
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Algorithm 5.1. Boosting 

Inputs: Single sensor data 𝐲𝜖ℝ#, and the predictor 𝐱𝜖ℝ# 

1:  Split 𝐲, 𝐱 into training (𝐲#$ , 𝐱#$), validation (𝐲$ , 𝐱$) and testing subsets (	𝐲𝑇𝑒, 𝐱#%)  

2:  Select the step-size 𝛿 and convergence tolerance 𝜀. 

3:  Initialize the all-zero TRF 𝛃 = 𝟎 with K time lags. i.e., each element 𝛽(𝑘) = 0 

4:  repeat for 𝑖 = 1, 2, … 

5:      For the lags 𝜏 ∈ {1. . , 𝐾} and signs 𝜁𝜖{−1,1} Define 

Δ𝛽&,((𝑘) = ?𝜁𝛿					𝑖𝑓	𝑘 = 𝜏
0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

6:     Find the incremental change to the TRF that best reduces the error in the training set 

𝜏∗,			𝜁∗ 	= argmin
&∈{,..,.},			(1{2,,,}		

NNO𝑦#$(𝑡) − 𝑥#$(𝑡 − 𝑘) R𝛽(𝑘) + Δ𝛽&,((𝑘)TU
3

.

45,

#

65,

 

7:     Add this change to the current TRF 

𝛽(𝑘) = 𝛽(𝑘) + Δ𝛽&∗,(∗(𝑘) 

8:     Compute the Pearson correlation between the predicted and actual signals on the validation set  

𝑐𝑜𝑟𝑟(8) = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐲: ,			𝐱: ∗ 𝛃) 

9:  until   𝑐𝑜𝑟𝑟(8) − 𝑐𝑜𝑟𝑟(82,) < 	𝜀  

Output: estimated TRF 𝛃 and the correlation on the test dataset 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐲#% ,			𝐱#% ∗ 𝛃) 

 

 

In practice, a dictionary of basis elements (e.g., Hamming windows) is used for 

the incremental additions to the TRF. Boosting estimates sparse TRFs and can be used 

independently at each sensor to estimate TRFs for multi-channel data. 
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5.3.3.  Orthogonal Matching Pursuit (OMP) 

The OMP algorithm searches for TRF components within predefined latency 

windows and directly estimates them. Assuming there are j=1 to J components (e.g., 

J=3 for M50, M100, M200 components), the TRF model is now given by a modified 

version of Eq. 5.1. 

𝐲 =;𝑎@𝐗𝐜@
@

+ 𝐧 (5.5) 

Where 𝑎@ ∈ ℝ and 𝐜@ ∈ ℝ>×6 are the amplitude and waveform for the jth 

component. The component waveforms 𝐜@ 	are selected according to the component 

latency 𝜏@ from a basis dictionary (e.g., hamming windows) that span the TRF lags (i.e., 

𝐜@ is column number 𝜏@ of the basis dictionary matrix). The OMP algorithm directly 

estimates the amplitudes and latencies {𝑎@} and {𝜏@}. The complete algorithm is given 

on the following page. 

The OMP algorithm estimates very sparse TRFs composed of only the required 

number of components with predefined waveforms chosen from a basis dictionary. The 

OMP algorithm can also be applied independently at each sensor to estimate TRFs for 

multi-channel data. 
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Algorithm 5.2. OMP 

Inputs: Single sensor data 𝐲𝜖ℝ#, the predictor 𝐱𝜖ℝ#, the number of components 𝐽	along with their 

corresponding latency windows W; = {𝑘;,, 𝑘;3} 

1:  Initialize the set of components to the empty set; 𝒞 = ∅. Initialize the set of available component 

windows to include all the latency windows; 𝒲 = ⋃ W;;  

2:  Set the residual to the actual signal 𝐫 = 𝐲		 

3:  repeat for 𝑗 from 1 to 𝐽 

4:     Find the best component latency, considering both positive and negative components. 

𝜏∗, 𝜁∗ = argmax
&∈𝒲,			(∈{2,,,}

r# (𝜁𝐗𝐜g=) 

        Where 𝐜g& corresponds to the basis component with latency 𝜏 

5:     Add the new component to the set of components  𝒞 = 𝒞 ∪ {𝜁∗𝐜g=∗}  

6:     Remove the corresponding window from the set of available windows 𝒲 =𝒲	\	𝑊k=∗		 

7:     Re-estimate the amplitudes of all the components using the least squares method 

𝒂 = argmin
𝒂∈ℝ"

	‖𝐲 − 𝐗@𝒂‖ 

where 𝐗@ = [𝐗𝐜,, … , 𝐗𝐜;] ∈ ℝA×; 

8:     Calculate the new residual 𝐫 = 𝐲 − 𝐗@𝒂 

Output: The TRF 𝛃 given by the amplitudes 𝒂 = [𝑎,, … , 𝑎C] and components in 𝒞.    

𝛃 =N 𝑎;𝐜;
C

;5,
 

 

5.3.4. EM-OMP 

The EM-OMP algorithm is an extension of the OMP algorithm for 

multidimensional TRFs. The goal is to directly estimate not only the amplitudes and 

latencies of TRF components, but also their sensor topographies using multi-channel 

data. This algorithm uses the Expectation Maximization (EM) method to iteratively 

estimate the component amplitudes and topographies in the E-step, and the latencies 

using OMP in the M-step. Given a predefined number of components and 
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corresponding latency windows, the EM-OMP multichannel TRF model is given by a 

modified version of Eq. 5.5.    

𝐘 =;𝐳@W𝐗𝐜@X
A

@

+ 𝐍 (5.6) 

Where 𝐘𝜖ℝ!×# is the measured data over M sensors and T time points, 𝐳@𝜖ℝ! is the 

spatial topography of the jth component, 𝐜@𝜖ℝ> is the temporal waveform of the jth 

component and 𝐍𝜖ℝ!×# is the measurement noise. 𝐗𝜖ℝ#×> is the predictor matrix 

with each column corresponding to lagged predictors. The component latency is given 

by 𝜏@ and is related to Eq. 5.6 by the fact that 𝒄@ corresponds to column number 𝜏@ in 

the TRF basis dictionary matrix. We assume the following priors, 

𝐳@~𝒩(𝛍, 𝐑) 

𝐍~𝒩(𝟎, 𝐈#×# ⊗𝚲) 
(5.7) 

Where the temporal noise covariance is assumed to be the identity matrix and the 

spatial noise covariance is given by 𝚲𝜖ℝ!×!.  

For the EM algorithm, we consider the spatial topographies 𝒵 = b𝐳@c as the 

‘hidden’ variables. The remaining parameters that need to be estimated are Θ =

b𝜏@ , 𝛍, 𝐑, 𝚲c. The data likelihood is given by 

𝑝(𝐘|𝒵; Θ)~𝒩+,𝐳!𝐱!"

!

, 𝐈"×" ⊗𝚲3 (5.8) 

Where for convenience we have denoted 𝐱@# = W𝐗𝐜@X
#.  
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Assuming b𝐳@c are i.i.d., the complete data log likelihood is then given by 

ℒ$(𝐘, 𝒵; Θ) = log 𝑝(𝐘|𝒵; Θ) +,log 𝑝(𝐳!)
!

 

∝
𝑇
2
log|𝚲%&| −

1
2
𝑡𝑟 A+𝐘 −,𝐳!𝐱!"

!

3

"

𝚲%& +𝐘 −,𝐳!𝐱!"

!

3B	

																												+
𝐽
2
log|𝐑%&| −

1
2
,F𝐳! − 𝛍H

"𝐑%&F𝐳! − 𝛍H
!

 

(5.9) 

Hence, the Q-function is given by 

𝑄FΘJΘ(()H = 𝐄	𝒵|𝐘;/[ℒ$(𝐘, 𝒵; Θ)] 

=
𝑇
2
log|𝚲%&| −

1
2
𝑡𝑟[𝐘"𝚲%&𝐘] + 𝑡𝑟 N𝐘"𝚲%&+,𝐄[𝐳!]𝐱!"

!

3O 

																										−
1
2
	𝑡𝑟 N+,,𝐱!"𝐱0𝐄[𝐳!𝐳0"]

0!

3𝚲%&O	

																												+
𝐽
2
log|𝐑%&|

−
1
2
,F𝑡𝑟(𝐄P𝐳!𝐳!"Q𝐑%&) − 2𝛍1𝐑%&𝐄P𝐳!Q + 𝛍"𝐑%&𝛍H
!

 

(5.10) 

The expectation is over the posterior distribution 𝑝(𝒵|	𝐘h; Θ) 	∝ 	ℒ/(𝐘, 𝒵; Θ).  

Since this is quadratic in 𝐳@, the posterior for each 𝐳@ is normal. 

𝑝(𝐳@|	𝐘h; Θ) = 	𝒩W𝐳l@ , 𝐒@X (5.11) 

Using the properties of a Gaussian pdf, the mean 𝐳l@ of the Gaussian is given by setting 

the derivative to zero. 
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𝚲,6 n𝐘 −;𝐳B𝐱B#

B

o𝐱@ − 𝐑,6(𝐳@ − 𝛍) = 	0 (5.12) 

The covariance 𝐒@ of the Gaussian is given by the inverse of the Hessian. 

𝐒@ = W𝐱@#𝐱@𝚲,6 + 𝐑,6X
,6 (5.13) 

Using Eq. 5.12 and Eq. 5.13 the mean is given by 

𝐳l@ = 𝐒@(𝚲,6𝐘h𝐱@ + 𝐑,6𝛍) (5.14) 

𝑤ℎ𝑒𝑟𝑒				𝐘X = 𝐘 −,𝐳0𝐱0"

02!

 (5.15) 

Note that the solution for each 𝐳l@ are coupled through 𝐘h and a system of linear equations 

must be solved. However, in practice, solving each 𝐳l@ while keeping the others fixed 

leads to an approximate solution and avoids instabilities and computations of large 

matrix inversions. Therefore, we use Eq. 5.14 for each 𝐳l@ to solve for the posterior 

mean. The relevant terms in the Q-function can now be substituted as follows  

𝐄[𝐳@] = 𝐳l@ 

𝐄s𝐳@𝐳@#t = 𝐒@ + 𝐳l@𝐳l@# 

𝐄s𝐳@𝐳B#t = 𝐳l@𝐳lB# 		𝑓𝑜𝑟		𝑖 ≠ 𝑗 

(5.16) 

For the M-step, we maximize the Q-function w.r.t to the other parameters  

Θ = b𝜏@ , 𝛍, 𝐑, 𝚲c. We use the Conditional Maximization method (Meng and Rubin, 

1993) whereby we sequentially maximize over each one of these parameters while 

holding the others fixed at their previous values. Maximization updates are found by 

setting the partial derivatives of the Q-function to zero 
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For 𝛍, the relevant terms of the Q-function are: 

−
1
2;W−2𝛍A𝐑,6𝐄s𝐳@t + 𝛍#𝐑,6𝛍X

@

 

= −
1
2;W−2𝛍A𝐑,6𝐳l@ + 𝛍#𝐑,6𝛍X

@

 

(5.17) 

Setting the derivative to zero, we find the update 

𝛍 =
1
𝐽;𝐳l@

@

 (5.18) 

For R, the relevant terms of the Q-function are: 

𝐽
2 log

|𝐑,6| −
1
2;W𝑡𝑟W(𝐒@ + 𝐳l@𝐳l@#)𝐑,6X − 𝛍A𝐑,6𝐳l@ − 𝐳l@#𝐑,6𝛍

@

+ 𝛍#𝐑,6𝛍X 

(5.19) 

Hence, setting the derivative w.r.t. 𝐑,6	to zero, 

𝐑 =
1
𝐽𝑀;W𝐒@ + 𝐳l@𝐳l@# − 𝛍𝐳l@# − 𝐳l@𝛍# + 𝛍𝛍#X

@

 (5.20) 

For 𝚲, the relevant terms of the Q-function are: 

𝑇
2
log|𝚲%&| −

1
2
𝑡𝑟[𝐘"𝚲%&𝐘] +

1
2
𝑡𝑟 N𝐘"𝚲%& +,𝐳Y!𝐱!"

!

3O

+
1
2
𝑡𝑟 A+,𝐳Y!𝐱!"

!

3

"

𝚲%&𝐘B 

−
1
2
	,+𝐱!"𝐱!𝑡𝑟PF𝐒! + 𝐳Y!𝐳Y!"H𝚲%&Q +,𝐱!"𝐱0𝑡𝑟P𝐳Y!𝐳Y0"𝚲%&Q

02!

3
!

 

(5.21) 
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Calculating the derivative w.r.t. 𝚲,6	using the same methods and equating to zero: 

𝚲 =
1
𝑇
A𝐘𝐘" − 𝐘+,𝐳Y!𝐱!"

!

3

"

− +,𝐳Y!𝐱!"

!

3𝐘"

+,+𝐱!"𝐱!F𝐒! + 𝐳Y!𝐳Y!"H
" +,𝐱!"𝐱0𝐳Y0𝐳Y!"

02!

3
!

B 

(5.22) 

For 𝜏@, the relevant terms involving 𝐱@ in the Q-function are 

𝑡𝑟s𝐘h#𝚲,6𝐳l@𝐱@#t −
1
2	�𝐱@

#𝐱@𝑡𝑟sW𝐒@ + 𝐳l@𝐳l@#X𝚲,6t +;𝐱@#𝐱B𝑡𝑟s𝐳l@𝐳lB#𝚲,6t
BC@

� (5.23) 

We assume that the second term doesn’t depend on 𝜏@ (i.e., 𝐱@#𝐱@ and 𝐱@#𝐱B are 

similar for all rows of the lagged stimulus matrix since they have similar vector norms). 

Therefore, the only term that depends on the latency is the first term 𝑡𝑟s𝐘h#𝚲,6𝐳l@𝐱@#t, 

which is the correlation between the whitened measurements and predictions. To 

maximize this term, we use the OMP algorithm, with appropriate modifications to 

include spatial topographies. The complete algorithm is provided below. 
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Algorithm 5.3. EM-OMP 
Inputs: Multichannel data 𝐘 ∈ ℝD×#, 𝐗 ∈ ℝ#×. the number of components 𝐽	along with their 

corresponding latency windows W; = {𝑘;,, 𝑘;3} 

1:  Initialize the parameters ΘE = r𝜏;E, 𝛍E, 𝐑E, 𝚲Ev.	 

2:  repeat for 𝑡 from 1 to convergence 

3:      E-step: Estimate the spatial topographies 𝐳x; using Eq. 5.14 

4:      CM-steps: Estimate parameters 𝛍F, 𝐑6 , 𝚲6 using Eq. 5.18 - 5.22  

5:      CM-step: Estimate the latencies 𝜏;6 using OMP as given below 

6:           Initialize the components to the empty set 𝒞 = 𝜙 

7:           Initialize the residual 𝐘h = 𝐘 

8:           repeat for 𝑗 = 1 until 𝐽 

9:                 Find the best component latency that maximizes the following  

                      (a search over integer latencies is used)     

𝜏! = argmax
3∈(3!",3!#)

𝑡𝑟F𝐘X"𝚲%&𝐳Y!(𝐗𝐠3)"H 

10:               Update 𝒞 = 𝒞 ∪ {𝐜;} with 𝐜; = 𝐠𝜏𝑗 

11:               Update the amplitudes of each component  

𝒂 = (𝐃"𝐃)%&𝐃"𝐲 

           where 𝐲 ∈ ℝAD×, is the vectorized whitened data 𝐲 = 𝑣𝑒𝑐 z𝚲−
1
2𝐘{  

                   and 𝐃 ∈ ℝAD×; has columns 𝒅8 = 𝑣𝑒𝑐(𝚲2
&
'𝐳x8𝑥8#).  

12:              Update the topographies with the entries 𝑎) of 𝒂 ∈ ℝ;×,  

𝐳l@ = 𝑎@𝐳l@ 

13:              Update the residual	𝐘h = 𝐘 − ∑ 	𝐳lB𝐱B#
@
B56  

Output: The estimated TRF 𝛃 given by the estimated component topographies 𝐳x; and latencies 𝜏). 

The component amplitudes are given by 𝑎) = max J𝑎𝑏𝑠M𝒛N𝑗OP. The TRF is given by 𝛃 = ∑ 𝐳𝑗𝐜𝑗𝑇𝐽
𝑗=1  
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5.3.5.  Algorithm Implementation 

The ridge regression, OMP and EM-OMP algorithms were implemented in python 

using scipy (Virtanen et al., 2020), and eelbrain (Brodbeck et al., 2021a) was used for 

boosting. A Hamming window basis of width 50 ms was used for the boosting, OMP 

and EM-OMP algorithms. The same nested 4-fold cross validation procedure was 

followed for all algorithms to allow for a fair comparison. The data was split into 4 

splits, with 1 split for testing, 1 for validation and 2 for training. The validation and 

training splits were permuted for each test split in a nested fashion. The boosting TRF 

was fit on the training data, and the validation data was used to check for convergence 

and terminate the algorithm. The training data was used to fit the ridge regression TRF 

over several regularization parameters and the parameter that gave the highest 

correlation on the validation data was selected. The OMP TRF was fit on the training 

data, and the EM-OMP TRF was fit on the training data with the validation data being 

used to check for convergence and terminate the iterations. The predicted test signal 

was computed by convolving the average TRF over all training splits with the 

appropriate test predictor and the model fit was calculated as the Pearson correlation 

between this predicted signal and the actual test signal.  

The latency windows for the OMP and EM-OMP algorithms were fixed to be 30-

80 ms, 90-190 ms and 200-300 ms, to roughly correspond to typical latencies of the 

M50, M100 and M200 components. The EM-OMP algorithm is sensitive to 

initializations and hence was initialized using the extracted components from the OMP 

algorithm applied at each sensor/source independently. To avoid instability and 
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convergence issues, the component covariance matrix R was assumed to be the identity 

matrix. The EM-OMP iterations were terminated if the correlation between the actual 

and the predicted signals of the validation dataset did not improve. 

All of these algorithms can also be used to simultaneously fit TRFs to multiple 

predictors (e.g., foreground and background envelopes, or, envelopes and phoneme 

onset predictors). This can be done by concatenating the 𝑃 predictor matrices  𝑋2 ∈

ℝ#×> along the columns resulting in a new predictor matrix 𝑋 ∈ ℝ#×>4. The resulting 

concatenated TRF can then be separated back into the TRFs specific to each predictor. 

In this work, we jointly fit TRFs to two predictors (speech envelopes) using a 

concatenated predictor matrix.  

 

5.3.6.  Simulation study 

MEG responses were simulated in order to compare the performance of each 

algorithm. 3 minutes of MEG responses were simulated at 100 Hz sampling frequency 

for 30 pseudo-subjects as representative of a typical MEG experimental condition for 

TRF analysis. 3 types of simulations were done: single channel, sensor space (157 

channels), and source space (245 sources in temporal lobe).  

The single channel simulation consisted of data generated using the linear TRF 

model given in Eq. 5.1. The 1-10 Hz band-passed envelopes of two speech stimuli were 

used as the predictors, in order to simulate a cocktail party paradigm with both 

foreground and background speakers. These predictors were convolved with simulated 
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TRFs to form a one dimensional simulated MEG time series, comparable to a single 

M/EEG channel or the auditory component after an appropriate spatial filter. For each 

subject, the true TRF used for simulation was formed by placing hamming windows of 

50 ms width at latencies in the range of 30-80 ms, 90-190 ms and 200-300 ms to roughly 

correspond to the M50, M100 and M200 components. The M100 component was given 

a negative sign, and the components were scaled and shifted according to randomized 

subject specific amplitudes and latencies. These randomized subject specific 

amplitudes and latencies were considered as the ground truth to evaluate the 

performance of each algorithm. Noise was added using the auditory component of real 

MEG data collected from 30 subjects listening to speech in quiet (previously published 

in Presacco et al., 2016a, 2016b). The first Denoising Source Separation (DSS) 

component was used for this auditory component (see Cheveigné and Simon, 2008 for 

details on DSS). The phase of this component was randomized, creating a noise signal 

that preserved the spectral properties of MEG neural responses, resulting in a realistic 

noise model. This noise signal was added to the simulated response at SNRs of -15,  

-20, -25 and -30 dB. 

The sensor space simulation followed the same method to simulate TRFs, but in 

addition also used ground truth sensor topographies for each component. These 

topographies were constructed to be similar to typical auditory component sensor 

topographies. Gaussian noise was added to the topographies of each subject to simulate 

individual variability. This multichannel TRF was convolved with the envelope 

predictors to produce the measured multichannel signal according to Eq. 5.6. Noise was 
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added on a per channel basis using the method described above at SNRs of -20, -25,  

-30 and -35 dB (lower SNRs were used because unprocessed multichannel data is 

typically noisier than the extracted auditory component).  

The envelope predictors used for these simulations were comprised of three 

repetitions of a one minute speech segment, similar to typical MEG recordings that use 

multiple trials in order to allow for extraction of auditory response components using 

DSS. Since these DSS components typically provide more meaningful TRFs than 

whole head sensor TRFs, the DSS algorithm was also applied to the simulated data and 

corresponding TRFs were calculated for the first 6 DSS components. These DSS TRFs 

were projected back into sensor space for subsequent analysis and for computing 

performance metrics. 

The source space simulation was constructed using dipoles for each TRF 

component, under the assumption that these components arise from different sources 

in the cortex. The Freesurfer ico-4 surface source space of the ‘fsaverage’ brain was 

used (Fischl, 2012). An ROI in temporal lobe that included auditory cortex was used 

for this simulation (‘aparc’ labels ‘transversetemporal’ and ‘superiortemporal’). The 

three TRF components were simulated using dipoles in Heschl’s gyrus, Planum 

Temporale and Superior Temporal Gyrus in both hemispheres. These dipoles were 

projected onto the sensors using forward models from real data and back projected back 

onto source space with Minimum Norm Estimation (Hämäläinen and Ilmoniemi, 1994) 

using the mne-python software (A. Gramfort et al., 2014) to simulate the source 

localization procedure. The same procedure as the multichannel simulation was 
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followed for the rest of the simulation, with these back-projected component source 

distributions being used instead of the sensor topographies. MEG phase scrambled 

noise was added at SNRs of -15, -20, -25 and -30 dB in the same manner as described 

above for the sensor space simulations. 

 

5.3.7.  Experimental dataset 

MEG data collected in a prior study (Presacco et al., 2016a, 2016b) was used for 

evaluating the performance of the algorithms on real data. The dataset consisted of 

MEG data collected from 40 subjects while they listened to speech from the narration 

of an audiobook. Subjects listened to two speakers simultaneously in a cocktail party 

experiment, but were asked to attend to only one speaker. The data was from the +3dB 

condition, where the foreground speaker was 3 dB louder than the background speaker. 

TRFs were estimated for two predictors: the foreground and background envelopes. 

Whole head sensor space TRFs (157 sensors) were computed for each algorithm on 

three minutes of data. Additionally, the DSS method was used on this data, which 

consisted of three repetitions of one minute speech segments. TRFs were computed for 

the first 6 DSS components. Finally, the MEG responses of this dataset were source 

localized using MNE onto the same surface source space ROI as that used for the 

simulations and source localized TRFs were also computed.  
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5.3.8.  Performance metrics  

For the simulation study, the performance of each algorithm was compared using 

several metrics; 1) Pearson correlation between the actual and predicted response 

(using the test data from cross-validation as discussed in section 5.3.5), 2) Pearson 

correlation between the estimated and ground truth TRF, 3) Absolute error of individual 

component latency estimates 4) Absolute error of individual component amplitude 

estimates, 5) Spurious TRF activity given by % power in the estimated TRF after 300 

ms (note that there is no activity in the ground truth TRF after 300 ms), 6) Number of 

missing components 7) Sensor topography error given by the angle between the 

estimated and ground truth component topographies 8) Source distribution error given 

by the fractional mean squared error between the estimated and ground truth 

component source distributions. To calculate the above metrics, the TRF components 

were found using automatic peak selection in the appropriate latency windows (M50: 

30-80 ms, M100: 90-190 ms, M200: 200-300 ms).  

 

5.4.  Results 

5.4.1.  Simulation: single channel TRFs 

Single channel TRFs were simulated and the ridge regression, boosting and OMP 

algorithms were compared in terms of several performance metrics (see Table 5.1, Fig. 

5.1). The OMP algorithm performed the best in most measures, while ridge regression 

and boosting performed comparably. The boosting algorithm failed to detect more 
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components compared to ridge regression, while the latter had more spurious activity 

after 300 ms (when there was no activity in the ground truth TRF). This pattern is 

highlighted in the individual TRFs for a representative subject shown in Fig. 5.1A. 

 

 

Table 5.1. Performance comparison for single channel simulations 

SNR Algorithm Correlation 
(Pearson r) 

TRF 
correlation 
(Pearson r) 

 Latency  
error 
(m.s.) 

Amplitude 
error (a.u.) 

Spurious 
activity 

(% power 
> 300ms) 

% Missing 
components 

-15 
Boosting 0.26 [0.05] 0.79 [0.05]  13.4 [3] 0.71 [0.33] 0.7 [1] 9.5 [4.9] 

Ridge 0.27 [0.05] 0.82 [0.04]  11.3 [3] 0.39 [0.18] 6.1 [1.7] 0.86 [1] 
OMP 0.28 [0.05] 0.77 [0.04]  10.6 [1.8] 0.34 [0.15] -- -- 

-20 
Boosting 0.14 [0.02] 0.69 [0.07]  17.6 [3] 0.93 [0.37] 3.2 [2] 17.5 [5.6] 

Ridge 0.15 [0.02] 0.72 [0.05]  15.3 [3] 0.65 [0.27] 12.3 [2.4] 3.2 [1.8] 
OMP 0.16 [0.02] 0.71 [0.05]  13 [1.9] 0.49 [0.2] -- -- 

-25 
Boosting 0.07 [0.02] 0.53 [0.09]  22.2 [1.8] 1.04 [0.35] 12.9 [5.9] 26.4 [3.9] 

Ridge 0.089 [0.02] 0.56 [0.08]  20 [1.8] 1.19 [0.45] 22.2 [4.4] 5.8 [2.4] 
OMP 0.09 [0.02] 0.62 ]0.05]  15.5 [1.4] 0.66 [0.26] -- -- 

-30 
Boosting 0.04 [0.01] 0.34 [0.08]  26 [1.6] 1.07 [0.3] 24.5 [5.7] 32.8 [3.2] 

Ridge 0.052 [0.01] 0.36 [0.09]  24.8 [2.3] 1.39 [0.52] 31.3 [3.7] 8.4 [2.7] 
OMP 0.05 [0.01] 0.5 [0.05]  18 [1.5] 0.83 [0.3] -- -- 

 
The mean [SD] over subjects is shown. The algorithm with the best performance for each metric at 

each SNR is highlighted in bold. OMP has neither spurious activity nor missing components by 

design since it estimates all the components using latency windows before 300 ms.  
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Figure 5.1. Performance comparison for single channel simulations. A. The fitted TRFs for a 

representative subject are shown. The ground truth TRF is shown as a dotted green line over the 

estimated TRFs. Boosting seems to miss some components, while ridge regression has more 

spurious activity. B. Algorithm comparison using the performance metrics. Violin plots over 

subjects are shown, with the symbols indicating the mean. Within each SNR condition, the 

algorithms are plotted in ascending order of their means from left to right. OMP does not have 

spurious activity or missing peaks by design and is not shown for the bottom two subplots. Ridge 

regression and boosting are comparable for most measures, while OMP seems to outperform the 

conventional algorithms in higher SNR cases. 

 



 

140 
 

5.4.2.  Simulation: sensor space TRFs 

Sensor space TRFs were simulated using realistic sensor topographies for TRF 

components, and the performance of each algorithm was compared (see Table 5.2, Fig. 

5.2). TRFs were estimated independently at each sensor for the boosting, ridge 

regression and OMP algorithms, while the EM-OMP algorithm directly estimated 

component topographies. The EM-OMP algorithm performed the best in most 

measures, while ridge regression and boosting performed comparably. The sensor 

topographies estimated by boosting and OMP are much worse than those estimated by 

ridge regression and EM-OMP, which is to be expected given that the former are sparse 

algorithms fit at each sensor independently. 

Table 5.2. Performance comparison for sensor space simulations 

SNR Algorithm Correlation 
(Pearson r) 

TRF 
correlation 
(Pearson r) 

 
Latency  

error (m.s.) 
Amplitude 
error (a.u.) 

Spurious 
activity 

(% power > 
300ms) 

Topography 
error (rad) 

-20 

Boosting 0.069 [0.008] 0.603 [0.03]  7.3 [3.7] 0.229 [0.11] 9.42 [1.9] 0.86 [0.04] 
Ridge 0.077 [0.008] 0.595 [0.02]  9.7 [5.8] 0.105 [0.05] 18.66 [2.0] 0.62 [0.09] 
OMP 0.072 [0.007] 0.45 [0.03]  16.1 [6.7] 0.177 [0.07] -- 1.02 [0.09] 

EM-OMP 0.085 [0.008] 0.82 [0.03]  2.8 [1.8] 0.05 [0.03] -- 0.54 [0.05] 

-25 

Boosting 0.028 [0.004] 0.42 [0.02]  13.9 [8.41] 0.164 [0.07] 19.39 [2.6] 1.10 [0.07] 
Ridge 0.035 [0.004] 0.45 [0.02]  14.9 [6.44] 0.220 [0.1] 27.47 [1.9] 0.87 [0.09] 
OMP 0.032 [0.004] 0.35 [0.03]  16.5 [4.7] 0.179 [0.06] -- 1.13 [0.08] 

EM-OMP 0.041 [0.004] 0.70 [0.04]  3.5 [1.9] 0.09 [0.03] -- 0.79 [0.08] 

-30 

Boosting 0.007 [0.003] 0.25 [0.03]  21.0 [6.92] 0.262 [0.12] 28.77 [2.7] 1.27 [0.06] 
Ridge 0.013 [0.004] 0.29 [0.03]  21.9 [7.1] 0.282 [0.13] 33.76 [1.8] 1.12 [0.09] 
OMP 0.011 [0.004] 0.24 [0.02]  16.2 [6.3] 0.181 [0.05] -- 1.28 [0.08] 

EM-OMP 0.015 [0.004] 0.50 [0.05]  7.1 [2.6] 0.16 [0.07] -- 1.02 [0.08] 

-35 

Boosting 0.0002 [0.003] 0.147 [0.02]  24.7 [9.05] 0.217 [0.08] 35.44 [2.7] 1.38 [0.04] 
Ridge 0.0044 [0.003] 0.161 [0.05]  21.7 [7.7] 0.373 [0.18] 38.42 [2.1] 1.33 [0.1] 
OMP 0.0019 [0.003] 0.154 [0.02]  18.9 [6.1] 0.186 [0.06] -- 1.40 [0.05] 

EM-OMP 0.0039 [0.003] 0.313 [0.04]  10.6 [2.8] 0.15 [0.05] -- 1.24 [0.05] 

The mean [SD] over subjects is shown. The algorithm with the best performance for each metric at 

each SNR is highlighted in bold. OMP and EM-OMP have no spurious activity by design since they 

estimate all the components using latency windows before 300 ms.  
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Figure 5.2. Performance comparison for sensor space simulations. A. The fitted TRFs for a 

representative subject are shown. The TRF at each sensor is plotted in gray, while the ℓ!-norm over 

sensors is plotted as a colored thick line. The ℓ!-norm of the ground truth TRF is shown as a dotted 

green line over the estimated TRFs. The sensor topography at the largest peak around 120 ms is 

shown as an inset. Although all methods find similar components, the sensor topographies for 

Boosting and OMP are much worse than those for ridge regression and EM-OMP, since the former 

are sparse algorithms. B. Algorithm comparison using the performance metrics, similar to those 

shown in the previous figure. Since there is no activity after 300 ms in EM-OMP and OMP TRFs 

by design, they are not plotted in the spurious activity subplot. EM-OMP outperforms the others in 

most measures.  
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5.4.3.  Simulation: DSS TRFs 

The DSS algorithm was applied to the simulated sensor space TRFs, in order to 

extract spatial filters corresponding to auditory response components. The algorithms 

were fit on the first 6 DSS components, and the resulting TRFs were projected back 

onto the sensor space and compared using the same performance metrics (see Table 

5.3, Fig. 5.3).  Performance increased greatly in all cases, with ridge regression, 

boosting and EM-OMP having comparable results. Interestingly, EM-OMP did not 

have a significant advantage over the other algorithms, indicating that the conventional 

algorithms are just as suitable for low dimensional, denoised data.  

Table 5.3. Performance comparison for DSS simulations 

SNR Algorithm Correlation 
(Pearson r) 

TRF 
correlation 
(Pearson r) 

 
Latency  

error (m.s.) 
Amplitude 
error (a.u.) 

Spurious 
activity 

(% power > 
300ms) 

Topography 
error (rad) 

-20 

Boosting 0.616 [0.05] 0.726 [0.05]  4.8 [2.4] 0.13 [0.05] 0.07 [0.08] 0.75 [0.1] 
Ridge 0.619 [0.05] 0.69 [0.03]  4.9 [4.2] 0.09 [0.05] 4.35 [1.1] 0.71 [0.1] 
OMP 0.56 [0.05] 0.39 [0.14]  17.2 [11.4] 0.2 [0.07] -- 0.96 [0.2] 

EM-OMP 0.618 [0.05] 0.736 [0.06]  2.6 [2] 0.08 [0.04] -- 0.73 [0.1] 

-25 

Boosting 0.416 [0.06] 0.47 [0.08]  7.3 [6] 0.2 [0.08] 0.33 [0.35] 1.09 [0.1] 
Ridge 0.42 [0.06] 0.43 [0.06]  7.6 [5.8] 0.16 [0.08] 11.39 [3.1] 1.06 [0.1] 
OMP 0.37 [0.05] 0.25 [0.09]  16.8 [9.8] 0.22 [0.08] -- 1.23 [0.1] 

EM-OMP 0.418 [0.06] 0.48 [0.09]  4.7 [3] 0.17 [0.07] -- 1.05 [0.1] 

-30 

Boosting 0.2 [0.05] 0.166 [0.08]  12.9 [6.8] 0.3 [0.14] 2.45 [1.5] 1.436 [0.1] 
Ridge 0.21 [0.05] 0.15 [0.07]  12.7 [6.1] 0.23 [0.11] 19.96 [4.6] 1.41 [0.1] 
OMP 0.19 [0.05] 0.09 ]0.06]  17.4 [8.9] 0.21 [0.08] -- 1.47 [0.1] 

EM-OMP 0.2 [0.05] 0.168 [0.08]  11.3 [5.7] 0.23 [0.1] -- 1.432 [0.1] 

-35 

Boosting 0.07 [0.03] 0.036 [0.04]  18 [9.1] 0.37 [0.17] 14.09 [7.0] 1.54 [0.1] 
Ridge 0.08 [0.02] 0.028 [0.09]  22.7 [8.3] 0.27 [0.12] 33.60 [5.7] 1.526 [0.08] 
OMP 0.06 [0.02] 0.037 [0.04]  18.6 [6.2] 0.23 [0.3] -- 1.53 [0.1] 

EM-OMP 0.07 [0.03] 0.039 [0.04]  15.4 [5.4] 0.24 [0.12] -- 1.528 [0.07] 
The mean [SD] over subjects is shown. The algorithm with the best performance for each metric at 

each SNR is highlighted in bold. OMP and EM-OMP have no spurious activity by design since they 

estimate all the components using latency windows before 300 ms.  
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Figure 5.3. Performance comparison for DSS simulations. A. The fitted TRFs for a 

representative subject are shown, similar to the previous figure. The TRFs were fit on the first 6 

DSS components and then back-projected to sensor space. All the algorithms except OMP result in 

reasonable TRF components and sensor topographies. B. Algorithm comparison using the 

performance metrics, similar to those shown in the previous figure. All the algorithms except OMP 

perform comparably, while the latter performs the worst in most cases.   
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5.4.4.  Simulation: Source Space TRFs 

Source space simulations were constructed with dipoles in auditory areas for each 

TRF component. These dipoles were projected onto sensor space using the forward 

model and source localized back to source space in order to simulate source localized 

MEG data. The algorithms were fit on these source localized signals and performance 

was compared using the same metrics (see Table 5.4, Fig. 5.4). Results were similar to 

the sensor space simulation, with EM-OMP outperforming the others and ridge 

regression and boosting giving comparable results (with ridge regression typically 

marginally better than boosting for most measures except spurious activity). 

Table 5.4. Performance comparison for source space simulations 

SNR Algorithm Correlation 
(Pearson r) 

TRF 
correlation 
(Pearson r) 

 Latency  
error 
(m.s.) 

Amplitude 
error (a.u.) 

Spurious 
activity 

(% power > 
300ms) 

Source 
distribution 

error 
(MSE) 

-15 

Boosting 0.163 [0.02] 0.733 [0.03]  7.33 [3.1] 0.145 [0.07] 4.635 [1.6] 0.751 [0.2] 
Ridge 0.167 [0.02] 0.701 [0.02]  3.83 [2.3] 0.121 [0.04] 12.921 [2.1] 0.401 [0.1] 
OMP 0.153 [0.01] 0.540 [0.03]  10.44 [6.4] 0.126 [0.03] -- 0.991 [0.2] 

EM-OMP 0.173 [0.02] 0.86 [0.03]  2.74 [2.1] 0.029 [0.01] -- 0.261 [0.1] 

-20 

Boosting 0.079 [0.01] 0.574 [0.03]  9.94 [5.1] 0.165 [0.06] 12.728 [2.9] 0.935 [0.2] 
Ridge 0.086 [0.01] 0.576 [0.03]  9.05 [6.9] 0.128 [0.05] 20.722 [2.1] 0.552 [0.2] 
OMP 0.080 [0.01] 0.462 [0.04]  11.24 [5.0] 0.131 [0.04] -- 1.050 [0.2] 

EM-OMP 0.092 [0.01] 0.794 [0.03]  1.95 [1.8] 0.050 [0.01] -- 0.481 [0.2] 

-25 

Boosting 0.035 [0.007] 0.384 [0.04]  12.22 [6.1] 0.135 [0.08] 23.224 [3.0] 1.216 [0.2]  
Ridge 0.042 [0.008] 0.429 [0.04]  9.61 [3.9] 0.171 [0.08] 28.657 [2.1] 0.790 [0.2] 
OMP 0.039 [0.007] 0.354 [0.04]  11.51 [3.8] 0.145 [0.05] -- 1.197 [0.2] 

EM-OMP 0.046 [0.008] 0.642 [0.06]  2.33 [1.7] 0.090 [0.03] -- 0.808 [0.2] 

-30 

Boosting 0.016 [0.004] 0.238 [0.03]  21.7 [7.5] 0.132 [0.05] 31.658 [3.4] 1.456 [0.1] 
Ridge 0.023 [0.004] 0.297 [0.03]  20.02 [6.4] 0.201 [0.09] 34.589 [2.3] 1.219 [0.2] 
OMP 0.019 [0.004] 0.242 [0.03]  13.66 [4.9] 0.233 [0.09] -- 1.375 [0.1] 

EM-OMP 0.022 [0.005] 0.478 [0.06]  3.33 [2.0] 0.173 [0.04] -- 1.112 [0.2] 
The mean [SD] over subjects is shown. The algorithm with the best performance for each metric at 

each SNR is highlighted in bold. OMP and EM-OMP have no spurious activity by design since they 

estimate all the components using latency windows before 300 ms.  
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Figure 5.4. Performance comparison for source space simulations. A. The fitted TRFs for a 

representative subject are shown, similar to the previous figure. The source distributions in the 

temporal ROI at the largest peak near 100 ms are shown as insets. Boosting and OMP result in 

much sparser source distributions, and all the algorithms except OMP perform comparably in 

estimating the TRF components, although the ridge regression TRF has a lot more activity that may 

make it difficult to interpret in realistic situations where the ground truth is unknown. B. Algorithm 

comparison using the performance metrics, similar to those shown in the previous figure. EM-OMP 

outperforms the others in most cases.   
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5.4.5.  Performance on real MEG data 

The algorithms were compared on a real MEG dataset collected for a cocktail party 

experiment. Sensor space, DSS and source space TRFs are shown in Fig. 5.5. The only 

metric used was the correlation between the measured and predicted signals, since the 

other metrics cannot be calculated when the ground truth TRF components are 

unknown. The correlation mean and standard deviation are given in Table 5.5. 

Interestingly, ridge regression performs the best in terms of correlation, while the other 

three algorithms give marginally lower results. However, it is unclear if correlation is 

the most suitable metric for evaluating the accuracy of estimating TRF components. 

The individual ridge regression TRFs show a lot of activity and are harder to interpret 

than the boosting and EM-OMP TRFs, while the boosting TRFs seem overly sparse in 

some cases (see the sensor topographies in Fig. 5.5A).  

 

Table 5.5. Correlation between measured and predicted signals for real data 

Algorithm Sensor Space DSS Source Space 

Boosting 0.019 [0.014] 0.089 [0.027] 0.059 [0.031] 

Ridge 0.028 [0.014] 0.098 [0.027] 0.074 [0.032] 

OMP 0.021 [0.012] 0.080 [0.023] 0.063 [0.027] 

EM-OMP 0.023 [0.013] 0.081 [0.024] 0.060 [0.028] 

The correlation mean [SD] across subjects is shown, with the algorithm with the highest value for 

each case highlighted in bold. 
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Figure 5.5. Performance comparison on real MEG data. A. The estimated sensor, DSS and 

source localized TRFs are shown for a representative subject. The sensor topographies and source 

distributions at the largest peak around 120 ms are shown as insets. The DSS and source localized 

TRFs are much cleaner than the sensor TRFs for both boosting and ridge regression. All the 

algorithms except OMP estimate similar TRF components and topographies. Note that the sensor 

space EM-OMP TRF has clear components and topographies, unlike the boosting TRF with overly 

sparse topographies or the ridge regression TRF with a lot of hard to interpret activity. However, 

boosting, ridge regression and EM-OMP show clear components and spatial patterns for the DSS 

and source localized TRFs. B. Correlation between the measured and predicted signals is shown as 
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a measure of model fit. Violin plots across subjects are shown for each algorithm in ascending order 

of their mean from left to right. Ridge regression consistently gives the highest correlations in all 

cases. 

 

5.5.  Discussion 

The TRF framework has allowed auditory experiments to move away from trial 

averaged responses to repetitive stimuli, towards more naturalistic speech paradigms 

and has led to remarkable insights into the mechanisms underlying cortical processing 

of continuous speech. Despite significant advancements in experimental designs, it is 

unclear whether the specific algorithms employed for TRF estimation could bias model 

results. Prior work has compared variations of regularized regression and machine 

learning methods for linear models, in terms of their ability to decode subject attention 

in a multi-talker scenario based on prediction accuracy (Crosse et al., 2021; Geirnaert 

et al., 2021). However, several insights into neural processing of speech have arisen 

not only from the overall prediction accuracy of TRF models, but also from the specific 

characteristics of TRF components (Brodbeck et al., 2020b, 2018b, 2018a; Broderick 

et al., 2018).  

In this work, we compared two commonly used TRF estimation algorithms, 

boosting and ridge regression, in terms of their ability to estimate these TRF 

components. Additionally, we proposed two algorithms based on OMP and EM that 

directly estimate these components. The OMP algorithm has been used extensively for 

sparse signal recovery (Tropp and Gilbert, 2007) and is typically capable of recovering 
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components in an efficient manner. The EM algorithm is a maximum likelihood 

method that is able to incorporate ‘hidden’ variables and is widely used in signal 

estimation (Do and Batzoglou, 2008). Both matching pursuit and EM have been used 

for single trial evoked response estimation (Limpiti et al., 2010; Sieluzycki et al., 2009), 

and here, we employ natural extensions of these algorithms for TRF component 

estimation. We discuss the performance of each algorithm on both simulations and real 

data in the following sections. 

 

5.5.1.  Performance in estimating TRFs as measured by correlation 

The conventional measure for performance of TRF models is the correlation 

between the actual and the predicted signals. In order to avoid unreasonably high 

correlations due to overfitting, it is essential to calculate this correlation using test data 

that was not used for fitting the TRF models. In this work we used a nested cross-

validation procedure to reduce overfitting from the estimated correlations for all four 

algorithms. The simulation results indicated that both boosting and ridge regression are 

comparable in terms of correlation, with ridge regression typically performing slightly 

better. Interestingly, OMP has higher correlation than ridge regression and boosting in 

the high noise single channel simulations, while EM-OMP outperforms the others by a 

large margin in the sensor and source space simulations. OMP and EM-OMP do not 

show any improvement over ridge regression and boosting for the DSS simulation. 

These results indicate that OMP and EM-OMP are suitable for estimating TRFs in high 

noise conditions, assuming that the appropriate latency windows can be determined a-
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priori. Additionally, a suitable denoising technique such as DSS can result in ridge 

regression and boosting having correlation values comparable to EM-OMP.  

However, correlation between the actual and the predicted signals may not always 

be an appropriate measure of TRF component estimation, since it depends on a variety 

of factors including SNR and predictor characteristics. High correlations may also 

result from overfitting and this metric would not penalize time-shift errors or spurious 

activity in the TRF. In light of this, we used several other metrics that directly measure 

the ability of these algorithms to estimate TRF components.   

 

5.5.2.  Performance in estimating TRF components 

Many neurophysiological studies are primarily interested in specific TRF 

components (e.g., the M50, M100 and M200 which are analogous to the P1, N1, and 

P2 components of an auditory evoked response) and possible group or task differences 

in component amplitudes and latencies, rather than the entire TRF. Hence, we used 

simulated TRFs with known component latencies and amplitudes to evaluate these 

algorithms. The OMP algorithm performs the best when estimating TRF components 

for single channel data, and the EM-OMP algorithm outperforms the others for sensor 

and source space TRFs. However, it should be noted that the component windows used 

for the simulation were identical to the component windows provided a-priori to these 

algorithms, which may explain their better performance. Latency and amplitude 

estimation was comparable for boosting and ridge regression, with the latter having 

marginally lower errors. Ridge regression also had lower spatial error compared to 
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boosting (sensor topography and source distribution errors), which may be due to the 

fact that a sparse estimation technique like boosting cannot capture smooth spatial 

patterns as well as ridge regression. However, after applying the DSS algorithm, ridge 

regression, boosting and EM-OMP once again showed comparable performance, 

highlighting the importance of denoising methods such as DSS when estimating TRFs 

from noisy multidimensional data. Spurious peaks after 300 ms, present in both ridge 

regression and boosting TRFs, could lead to difficulties in interpretation and to false 

positives when detecting TRF components in real data. Ridge regression TRF estimates 

had much larger amounts of spurious activity than boosting. 

 

5.5.3.  Performance on real data 

The algorithms were also compared on real MEG data collected during a cocktail 

party experiment. Ridge regression performed better in terms of correlation, and the 

other three algorithms had comparable performance (see Fig 5.5B). Although ridge 

regression had the best correlation, as observed above, this does not immediately imply 

that the ridge regression TRFs provided the best component estimates.  The correlation 

values were distributed over a large range across subjects, possibly indicating a high 

degree of inter-subject variability in neural SNR for time-locked responses. Ridge 

regression resulted in smooth TRFs with several peaks and large amounts of non-zero 

activity which made them more difficult to interpret, especially for the sensor and 

source space TRFs. Boosting, though performing poorly in terms of correlation, 

allowed for sparser TRFs with fewer peaks that were easier to interpret. EM-OMP was 



 

152 
 

restricted to finding only three TRF components, using fixed a-priori component 

windows. The fact that the EM-OMP algorithm may have performed worse than ridge 

regression for real data, even though it outperformed the others in the simulations, 

indicates that these a-priori component windows may not be suitable for all subjects. 

Indeed, the assumptions underlying the EM-OMP algorithm may not be suitable for a 

variety of reasons including; large amounts of individual variability in TRF component 

latencies, missing TRF components due to anatomical or functional differences, and 

individual variability in component waveforms and peak widths. However, even with 

these constraints, EM-OMP was often able to recover TRF components and spatial 

patterns comparable to ridge regression. In any case, post-hoc analysis of TRF 

components estimated using conventional algorithms is also typically performed under 

similar assumptions (i.e., detecting TRF peaks using similar latency windows). 

Additionally, the ridge regression peaks were much broader than the EM-OMP peaks, 

suggesting that the latter may have suffered due to fixed and narrow waveforms in the 

basis dictionary. Therefore, without knowledge of the ground truth, it is difficult to 

judge which algorithm is most suitable for estimating TRF components.  

 

5.5.4.  Extensions and Applications 

Careful tuning of the regularization parameter may improve the performance of 

ridge regression, at the cost of additional computational time. Variations on regularized 

regression, such as Lasso and Elastic Net, may also provide improvements in TRF 

estimation (Wong et al., 2018). The a-priori component windows used for OMP and 
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EM-OMP may need to be tuned for each predictor type or experiment, and possibly on 

a per-subject basis. The EM-OMP algorithm is also sensitive to initialization, and in 

our case was initialized using the components extracted from the OMP TRF. 

Extensions to EM-OMP based on dictionary learning may be able to directly estimate 

the component waveform instead of assuming a fixed shape using a basis dictionary.  

Modern TRF studies use multiple types of predictors, each of which may impact 

the performance of these algorithms (e.g., continuous envelopes and impulse predictors 

to denote phoneme onsets; see Brodbeck et al., 2018a; Broderick et al., 2018; 

Di Liberto et al., 2015). For these experiments, banded ridge regression, which 

estimates different regularization parameters for each type of predictor, may improve 

performance over conventional ridge regression (Crosse et al., 2021). However, more 

basic science is needed before the OMP and EM-OMP algorithm can be applied for 

these cases, since the appropriate component latency windows of TRFs to higher level 

predictors must be determined.   

The TRF framework has also been used to decode attention from neural responses 

during a cocktail party paradigm. Prior work has compared algorithms for estimating 

both TRFs (forward models) and decoders (backward models), in terms of their 

performance in attention decoding (Geirnaert et al., 2021; Wong et al., 2018). These 

studies used variations of regularized regression or machine learning methods, and it is 

unclear how they compare to sparse estimation techniques such as boosting, OMP or 

EM-OMP. Furthermore, attention decoding using forward models is typically 

performed by comparing the correlation values of the foreground and background 
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TRFs. However, as previously discussed, a higher correlation value (and better 

attention decoding) may not necessarily be the best measure for studies interested in 

accurate estimation of TRF components. 

 

5.5.5.  Conclusion 

In this work, we compared the commonly used ridge regression and boosting 

algorithms and the novel OMP and EM-OMP algorithms in terms of their ability to 

estimate TRF component amplitudes and latencies. EM-OMP performed the best in the 

simulations, but perhaps underperformed on the real data, possibly because the a-priori 

assumptions on component latencies were not suitable. Boosting and ridge regression 

were comparable in terms of model fit and estimation errors in the simulations. 

Interestingly, for the real data, ridge regression resulted in higher correlation between 

the actual and predicted signals. However, in general, ridge regression TRFs displayed 

more spurious activity, while boosting resulted in more interpretable sparse TRFs. Our 

results indicate that EM-OMP may only perform well if its a-priori assumptions are 

realistic, while both ridge regression and boosting perform comparably in most cases. 
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Chapter 6 

Conclusion 

 

Speech is comprised of complex continuous signals that contain multiple levels of 

information, ranging from acoustics to words to sentences. This dissertation provides 

several insights into the neural mechanisms underlying our ability to perceive and 

comprehend speech. It showcases the use of MEG experiments along with TRFs for 

investigating cortical responses to continuous speech. In this chapter, the strengths and 

weaknesses of the TRF framework are discussed, followed by a summary of the main 

results of this dissertation and a discussion of possible avenues for future research. 

 

6.1.  The TRF model: Advantages and Disadvantages 

TRF models with multiple predictors allow for simultaneous investigation of 

several levels of speech processing. In this work, both low level speech processing and 

high-level word and sentence processing of continuous speech were investigated using 

TRFs.  Additionally, neural tracking of speech features, along with the distinct cortical 

networks involved in processing different aspects of speech (such as spoken equations 

vs. sentences) were explored. Finally, TRFs were used in conjunction with the cocktail 

party paradigm, to explore attentional mechanisms involved in speech comprehension.  

 



 

156 
 

However, it should be noted that TRFs are limited in several aspects. Firstly, 

M/EEG TRF models detect aggregate activity of large populations of neurons involved 

in speech processing, and may not be able to detect fine-grained details about the 

underlying neuronal mechanisms. Secondly, TRFs are only able to model time-locked 

activity, even though cortical processing of speech may not be strictly time-locked to 

speech features. This issue may be especially prevalent for TRFs to high-level speech 

features, for two reasons; high-level processing is likely less time-locked, and the exact 

timing of high-level features may be ambiguous (e.g., the timing of impulses denoting 

word onsets). Finally, TRFs are a linear model and cannot capture all the complexities 

of the nonlinear systems involved in speech processing. Although increasingly 

complex nonlinear representations of speech (e.g., envelopes, envelope onsets, 

phoneme surprisal, word onsets etc.) have been employed to mitigate this problem, 

nonlinear methods such as neural networks may prove to be more effective in 

modelling these nonlinearities. However, even if these nonlinear methods result in 

better model fits, they often involve difficult-to-interpret models and may not provide 

meaningful insights into the underlying cortical mechanisms. In contrast, TRFs are 

typically comprised of informative waveforms with distinct and localized components 

arising from specific cortical processes.  

Despite these concerns, the TRF framework is capable of providing robust and 

interpretable models of time-locked processing of continuous stimuli and has led to 

several insights into speech processing (Brodbeck and Simon, 2020). The many 

advantages of TRFs are showcased in several of the results reported in this dissertation.  
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6.2.  Summary of main results 

Chapter 3 of this dissertation investigated time-locked responses to continuous 

speech in the high gamma range and was inspired by studies into cortical frequency 

following responses. This work resulted in several key advancements in the field of 

high frequency responses to speech. Firstly, high gamma time-locked cortical 

responses were detected to continuous speech, which is a more naturalistic stimuli than 

the repeated speech syllables used in conventional FFR studies. Secondly, a TRF model 

with multiple predictors revealed that these responses were predominantly to the high 

frequency envelope modulation of the speech signal. Thirdly, these responses were 

found to time-lock to the low pitch segments of speech. Interestingly, no age-related 

differences were detected in these responses. This work provides insights into low-

level cortical processing of speech and bridges the gap between the well-known FFR 

and the low frequency envelope following TRF.  

Next, chapter 4 explored cortical responses to spoken equations and sentences, 

using TRFs as well as frequency domain techniques and decoding methods. Firstly, 

this work showed that cortical tracking of sentences and equations is present only when 

subjects attend to the relevant speaker in a cocktail party paradigm. Secondly, 

responses from distinct cortical networks involved in sentence and equation processing 

were detected and these responses were correlated with performance in detecting 

equation and sentence deviants, indicating that they may be linked to calculation and 

comprehension. Next, TRF analysis using high-level sentence and equation onset 

predictors revealed the spatiotemporal dynamics of these cortical networks. 
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Furthermore, these cortical responses could also be used to decode whether subjects 

attended to sentences or equations. This work showcases the suitability of cocktail party 

paradigms used in conjunction with techniques such as TRFs to probe high-level 

cortical processing of speech, and provides insights into the neural mechanisms 

involved in arithmetic and language processing. 

Finally, chapter 5 of this dissertation compared both conventional and novel TRF 

algorithms, in terms of their performance in estimating TRF components.  The novel 

algorithms were based on a-priori assumptions about typical TRF components and 

directly estimated component latencies and amplitudes. Although these algorithms 

performed well in the simulations, their weak performance on real data may indicate 

that such assumptions may not account for individual variability in TRF components. 

The conventional algorithms performed comparably in most cases, with ridge 

regression resulting in higher correlation values. The results indicated that additional 

concerns such as overly sparse or spurious TRF activity must also be considered when 

selecting an appropriate algorithm. This work provides an initial investigation into the 

performance and biases of these algorithms and highlights key concerns when 

estimating and interpreting TRF components. 

 

6.3.  Future directions 

The results of chapter 3 allow for several avenues of future exploration. Firstly, 

the lack of significant age-related differences in high gamma TRFs needs to be explored 

further. Some studies indicate that older adults may have weaker cortical FFR (Ross et 
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al., 2020), and experiments with larger subject populations listening to continuous 

speech are needed to obtain a conclusive result. Secondly, an intriguing question is 

whether the high gamma TRF would show attentional modulation, like the M100 

component of the low frequency envelope TRF. Cocktail party experiments may shed 

light on this question. Thirdly, the neural origin of these high gamma responses is 

unclear. Some recent invasive studies have indicated that cortical FFRs arise from 

thalamorecepient layers of cortex (Gnanateja et al., 2021), in line with the hypotheses 

discussed in section 3.5.8 of this dissertation. Combined M/EEG experiments with 

simultaneous detection of subcortical responses by EEG and cortical responses by 

MEG may provide further insight into the neural origin of high gamma responses to 

continuous speech. 

The work presented in chapter 4 demonstrates the suitability of the cocktail party 

paradigm and TRFs for investigating high-level processing of speech content, and 

could lead to several potential future directions. Firstly, more nuanced experimental 

designs may be able to tease apart the specific neural mechanisms involved in sentence 

and equation processing (e.g., distinguishing between responses arising from cortical 

processes involved in detecting equation boundaries, parsing equations, identifying the 

arithmetic operation, or computing the equation result). Secondly, these TRF methods 

could also be used for natural non-rhythmic cocktail party stimuli with sentences and 

equations, with careful construction of high-level predictors such as sentence and 

equation onsets. Such experiments may provide insights into whether the TRF peaks 

seen in this work arise from onset responses or processing of the completion of the 
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sentence. Finally, the isochronous cocktail party paradigm used in this work (which 

was pioneered by Ding and others to investigate aspects of language processing; see 

Ding et al., 2018) can also be employed for a wide variety of other stimuli and could 

be used to investigate cortical processing of high-level syntactic, semantic or logical 

structures in continuous speech.  

The results from Chapter 5 indicate that further work is needed to determine 

whether algorithms such as OMP and EM-OMP would be suitable for real data given 

more realistic assumptions on TRF components. It may also be possible to improve 

performance by extending these algorithms using dictionary learning methods or 

Bayesian frameworks. Conventional algorithms such as boosting and ridge regression 

must also be compared using more complex TRF models since their performance may 

vary based on the type of predictors (e.g., impulse predictors such as word onsets). 

Finally, the performance of sparse algorithms such as boosting, OMP and EM-OMP 

for decoding attention in cocktail party paradigms must also be evaluated. 

Improvements in TRF estimation methods may lead to advancements in hearing aid 

technology and in understanding, diagnosing, and treating hearing and speech deficits.  
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