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1 Introduction 

1.1 Motivation 

Despite efforts to provide safe, effective medical care, adverse events still occur with 

some regularity. While risk cannot be entirely eliminated from healthcare activities, our 

goal is to develop effective and durable mitigation strategies to render the system ‘safer’. 

In order to do this, though, we must develop models that comprehensively and 

realistically characterize the risk. In the healthcare domain, this can be challenging for a 

number of reasons. In contrast to traditional engineering domains, there can be wide 

variability in the way that healthcare processes and interventions are executed. This 

variability is due not only to organizational and human performance issues, but also to 

the high degrees of uncertainty associated with management of most clinical conditions, 

and variability in the quality/reliability of the information used to make decisions. 

Another modeling challenge is the dynamic nature of risk in this particular domain. 

Characteristics or conditions of the clinical care environment that might pose a hazard 

can change as a function of time, and/or the changing state of internal and external 

factors. Also, for individual patients, exposure to these internal and external factors varies 

as a function of time and underlying medical condition.  

The goal of this research is to develop a generic methodology for evaluating dynamic 

changes in adverse event risk in acute care hospitals as a function of organizational 

factors and non-organizational factors, using a combination of modeling formalisms. 

First, a system dynamics (SD) framework will be used to capture changes in the level of 



 2

risk as a function of: duration of hospital stay, complexity of the patient’s condition, 

Financial wellbeing of the organization, policies and decisions taken to respond to the 

financial standing of the organization and constraints imposed by external agencies (e.g., 

insurers and regulatory/certification authorities) on operational decisions. 

The SD framework enables us to capture feedback reinforcement of specific factors over 

time, and non-linearities in these effects. This would not be possible using conventional 

risk analytic techniques. Second, Bayesian methods will be applied to provide input to 

some of the variable nodes. The Bayesian Belief network is used to capture patient level 

factors and conditions and patient-provider level factors which correspond to provider’s 

decisions in treating a patient and patient’s responses to such interventions. Using nine 

years’ of clinical data and domain expertise from one of Harvard Medical Schools major 

teaching hospitals, we will also validate the performance of this methodology in studying 

this problem. 

1.2 Significance of the Problem 

In spite of increased attention to quality, and efforts to provide safe medical care, adverse 

outcomes are still frequent in clinical practice (Leape, 94). Reports from various sources 

indicate that a substantial number of hospitalized patients suffer treatment caused 

injuries, while in the hospital (Leape, 97). Harvard Medical Practice Study in 1991 

(Brennan, et.al., 1991), based on an study of injuries in patients in the state of New York 

in 1984, reported that nearly 4% of  all hospitalized patients suffered injuries that 

prolonged their length of stay in hospital, or resulted in some level of disability, and 14% 

of these injuries were fatal. Assuming a homogeneous population, with extrapolating, 1.3 

million people are harmed and 180,000 people die in United States only at least in part 
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because of an injury during their hospitalization. Moreover, it was found that 69% of 

those injuries were due to errors and therefore preventable (Leape, et.al., 1991). Other 

studies have reported different statistics. The Institute of Medicine (IOM) reported in 

1999 that 44,000 to 98,000 people die in hospitals each year as the result of medical 

errors (Kohn el al, 2000). This exceeds combined toll from motorcycle crashes, suicides, 

falls, poisoning and drowning.  The report also indicates that medical error costs the 

nation $37.6 billion each year where about $17 billion of those costs are associated with 

preventable errors. 

Before the IOM’s report in 1991, formal approaches to the analysis of adverse events 

were relatively uncommon.   Attention attracted to a number of highly publicized medical 

error cases that resulted in death or injury of patients (Bogner, 2001) combined with the 

realization of the fact that more could be done in hospitals to prevent injuries due to 

errors, led to a significant increase both in investigating the causes of error and finding 

effective error prevention methods. 

Despite the magnitude of the problem, current analysis of adverse events in healthcare 

settings continues emphasis on individual case studies. Efforts to understand the nature of 

aggregate risk through formal methods have been limited. The lack of a comprehensive 

modeling formalism that is able to demonstrate the causal relationship between the 

factors effecting risk of adverse event and how this risk might evolve in time under the 

influence of organizational, individual and policy level factors, has been the major 

rationale for the currently proposed research. 
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1.3 Research Objective 

The broad goal of this research is to develop and apply a methodology to evaluate 

dynamic changes in adverse event risk in acute care hospitals. Although some of the risk 

is related to the underlying complexity of care and severity of illness in the patient 

population, a significant portion may be related to the structure of the system – most 

notably, the operational policies, incentive structures, and constraints imposed by third-

parties who finance care. Any efforts to redesign the system, however, must be preceded 

by careful modeling and analysis to demonstrate exactly how the policies and features of 

the system influence risk. In this research, we attempt to build models that demonstrate 

these system-level influences and how they dynamically shape risk in the healthcare 

domain. 

1.4 Summary of Approach 

In order to make these models both realistic and useful (i.e., capable of providing new 

insight), we have adopted a hybrid modeling strategy that incorporates both system 

dynamics (SD) principles and Bayesian belief networks (BBN). The SD-BBN 

combination enables us to capture some of the more important features of the healthcare 

environment. 

Input to the quantitative component of the model will be derived from clinical data and 

information from domain experts. The model will use Bayesian data analysis techniques 

and SD-BBN framework to integrate different types of data.   
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The major phases in this research are: 

1- Qualitative modeling 

2- Data collection 

3- Quantification and calibration 

4- Validation 

The model building process started with developing a qualitative understanding of some 

of the major risk scenarios, with an adverse event as the end state and some 

organizational level decision or policy as the initiating event.  

In data collection phase, the goal is to identify the type and quality of data available and 

to select data relevant to the factors in the model. This mainly involves studying the cases 

of adverse events and relating them to nodes in the model. Eight years years’ of clinical 

data from one of Harvard Medical School’s major teaching hospitals is available at this 

phase. 

Having built the qualitative model in a System Dynamic framework, the model is tested 

calibrated and fine-tuned with data obtained in phase 2. For this stage of the process, six 

year worth of data is used (from the available 8 years). At the last phase, the results of the 

model are validated against data from the remaining years. 
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1.5 Dissertation Outline 

Chapter 2 of this dissertation, reviews current risk assessment and risk analysis literature 

in healthcare domain, and highlights the fact that there is need for more comprehensive 

and realistic modeling and representation of risk in this domain, in order to provide 

insight to the decisions to be made and policies to be set. The hybrid methodology and its 

components, Bayesian Belief Networks (BBN) and System Dynamics (SD) modeling 

formalisms, have been described in chapter 3. Chapter 3 also discussed the sources of 

information (i.e. clinical data and expert opinion) used in this research. 

In this research, we have developed two BBN models for the risk of two specific adverse 

events; pressure Ulcer and Vascular catheter-Associated Infection (i.e. line infection). We 

have also developed a system dynamics model to represent the organizational-level 

contributions to risk of adverse events. Chapter 4 through 6 describes these models, their 

development process, their quantification and their validation. Chapter 7 discusses the 

hybrid model that consists of the combination of the system dynamic module (for 

organizational level factors) and the BBNs for the 2 adverse events (pressure ulcer and 

line infection). In chapter 7 we also present a set of uncertainty analysis performed on the 

hybrid model. This chapter also contains a discussion on risk importance measures we 

have developed for the hybrid, dynamic model. 

Finally chapter 8, addresses the contributions of this research and also the potential future 

work needed to further improve the application of this approach as an decision making 

tool. 
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2 Related Work 

As noted above, prior to the publication of the IOM report in 1991, formal approaches to 

the analysis of adverse events were relatively uncommon. In response to this, some quasi-

regulatory authorities (notably the Joint Commission, an independent body that accredits 

hospital and other healthcare facilities), and some Federally-sponsored research 

organizations (e.g., the Department of Health and Human Services’ Agency for 

Healthcare Research and Quality) have encouraged use of some modeling formalisms 

originally developed for the engineering discipline and non-healthcare disciplines.    In 

most cases, their application to healthcare either has been experimental in nature, or 

informal.  We have categorized these approached, into two categories; Formal and 

Informal risk analysis methods. Generally informal risk analysis methods, such as failure 

mode and effect analysis; a)  lack a systemic view and perspective compared to the 

formal methods, such as probabilistic risk assessment methods, b) are mostly, essentially 

qualitative, and c) lack an explicit causal perspective. 

This section reviews these approaches and their application in healthcare and discusses 

the shortcomings of each of these methods in addressing risk of adverse event in medical 

domain. 
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2.1 Informal Risk Analysis Methods 

 

2.1.1 Failure Mode and Effect Analysis (FMEA) in Engineering 
 

Failure mode and effect analysis (FMEA) examines high risk processes to identify 

required improvements to reduce the probability of adverse events. It has been used in 

industry (e.g. manufacturing, aviation) for over 30 years to assess system safety.  

The FMEA procedure is well documented in the military handbook (MIL-HDBK-338 

and MIL-HDBK-338B) as a military standard. FMEA is done in two phases. The first 

phase is the identification of the potential failure modes and their effects. The second 

phase is performing criticality analyses to determine the severity of failure modes 

identified in phase one. 

2.1.2 FMEA in Healthcare 
 

 FMEA is perhaps the most popular engineering risk analysis methods used by healthcare 

organizations.  Its use was promoted by the Joint Commission, an independent 

organization that accredits hospitals and healthcare delivery organizations. As a condition 

of accreditation, healthcare organizations are required by the Joint Commission to 

conduct at least one FMEA annually on a healthcare process. The Veterans Health 

Administration has promoted the use of this technique, and has developed a modified 

version of the traditional industrial/military FMEA that emphasizes qualitative analysis of 

healthcare processes (DeRosier et.al. 2002). Published studies demonstrating the use of 

FMEA in healthcare include, an FMEA for reducing risk in blood transfusion 

(Burgmeier, 2002), FMEA in improving a drug distribution system ( McNally, et.al. 
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1997), drug prescribing process (Saizy-Callaert, et.al.,  2001) and intravenous drug 

infusion ( Apkon et.al. 2004) and application in safety improvement of the production of 

pediatric parenteral nutrition solutions (Bonnabry, et.al., 2005). Figure 2-1is a sample 

form of the completed FMEA analysis for blood transfusion process (Burgmeier, 2002). 

2.1.3 Shortcomings of FMEA in Medical Applications 
 

To date, most healthcare organizations have found that much of the utility of an FMEA 

lies in having healthcare professionals gather and map out the medical processes and 

procedures. The FMEA process brings together a multidisciplinary team, creating an 

opportunity for different types of providers to understand parts of a clinical process that 

without which they may not have been aware. This qualitative process modeling often 

results in a broader understanding (at the organizational level) of the dependencies and 

vulnerabilities of the healthcare process being modeled, and through this, probably 

contributes to some degree of risk management. FMEA activities in healthcare are rarely 

quantitative. Also, the FMEA process is highly subjective and dependent on the 

experience level of the analyst, and may not capture many potential failures. Shebl, 

Franklin and Barber (2009), conduct and study to test the reliability of FMEA analysis 

within a hospital setting, by recruiting two teams to conduct separate FMEAs in parallel 

on the same topic by following the basic FMEA steps including mapping the process of 

care, identifying potential failures of the process, determining the severity, probability 

and detectability scores for the failures and making recommendations to decrease the 

detected failures. The results indicated that even though each group identified 50 failures 

only 17% of them were common to both teams, and due to different severity, detectability 

and risk scores, the prioritization of failures were different. They conclude that these 
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discrepancies make it impossible to reliably identify failures that are to be prioritized, and 

optimally allocate resources, time, effort and money to improve patient safety. 

 FMEA might be a useful tool to investigate a particular risk, but is completely 

ineffective in identifying and describing how policies and decisions which are dominant 

contributors in healthcare, influence risk. 
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Figure 2-1.Sample form of the completed FMEA analysis; blood transfusion process (Burgmeier, 2002). 
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2.1.4 Miscellaneous Approaches to Risk Assessment 
 

Outside the realm of informal and formal risk assessment regimes, which have been the 

trend since the publishing of the IOM report, literature also contains a number of 

retrospective studies on some adverse events, titled under the umbrella of “risk 

assessment”. The core of these studies is usually a linear regression between the adverse 

event and a few clinical factors. For example, Fortinsky et al. (2004); assess the risk of 

falls finding balance disturbance, multiple medications, sensory deficits, environmental 

hazards etc., among dominant influencing factors. Mrdovic, et al. (2011), use regression 

analysis to determine predictors of 30-day major adverse cardiovascular events (MACE) 

after primary percutaneous coronary intervention (PCI), and based on these factors 

propose a scoring system to assess the risk. Calvillo-King, et al. (2010), proposes a 

scoring system to predict probability of death or stroke after carotid endarterectomy in 

asymptomatic patients. Ammann, et al (2010) develop a scoring system  to predict risk of 

adverse events (i.e. serious medical complications, infection, etc.) in pediatric patients 

with cancer who experience fever and neutropenia (FN). We couldn’t find any studies in 

which the investigators attempt to predict the risk of an adverse event. Instead, they tend 

to be retrospective/descriptive, deconstructing adverse events and trying to simply 

identify what factors might have contributed to their occurrence. The weakness in all of 

the published studies is, that there is not a systematic assessment of a control group. In 

other words, there is no effort to determine how frequently the so-called contributing 

factors were present in cases that did NOT result in an adverse event/outcome. 
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Also among these miscellaneous methods, are a few checklist types, and scoring system 

approaches that create simple numerical scoring systems that categorize patients by their 

susceptibility to certain adverse events. Many scoring systems to categorize patient’s risk 

of developing pressure ulcers (or bedsores; an area of skin that breaks down due to 

constant pressure against skin) have been developed, which are discussed in more detail 

in section 5.1.1.1.  

However, the reliability and validity of these scoring systems are not clear. For instance, 

in the case of risk scoring systems for pressure ulcer, some experts believe that often 

people who are identified as high risk for say pressure ulcer, do not experience pressure 

ulcer since resources would be dedicated to them to prevent the adverse event, but on the 

other hand patients with low scores in pressure ulcer risk end up developing pressure 

ulcers since some precautionary interventions might be ignored because they have been 

identified as a low risk patient.  

 

2.2 Formal Risk Analysis Methods 
 

Probabilistic Risk Analysis (PRA) is a systematic methodology to assess the risk of 

complex systems, and is currently being applied to many sectors from chemical 

processing to financial management. It has also had limited use and application in 

healthcare domain.   

In many cases human performance, cognition and decision making are also involved in 

the performance of complex systems. Since humans can both initiate and mitigate the 

severity or the likelihood of accidents, the influence of humans on system risk and 
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reliability must be considered for a comprehensive PRA (Bedford and Cooke, 2001). 

Human Reliability Analysis (HRA) consists of a set of tools and methods that generally 

assess the probability of human error in certain tasks. Due to complexity and difficulty of 

quantifying human reliability, as compared with determining the reliability of mechanical 

or electrical components, extra steps are involved in modeling and quantifying the human 

element, before it can be used as an input to standard PRA tools such as fault trees or 

event sequence diagrams. A number of studies in healthcare domain are only focused on 

assessing the reliability of human elements (the HRA element of PRA). In our literature 

review, we have separated these studies from more systemic PRA studies in healthcare. 

2.2.1 PRA in Engineering 
 

Probabilistic risk analysis originated with the Reactor Safety Study WASH-1400 in the 

1970’s. PRA is mostly used in high-risk industries such as nuclear power plants, aviation 

and chemical industry. PRA provides a formal systematic way to identify and represent 

the factors that contribute and the chain of events leading to adverse events in complex 

technological systems. These factors include hardware failure, software failure, and 

human actions, interactions between involved parties and organizational factors 

(Wreathall and Nemeth, 2004, Stamatelatos, 2002). Common tools used in a conventional 

PRA are Event Trees (ET), Event Sequence Diagrams (ESD) and Fault Trees (FT). 

The PRA ultimately presents a set of scenarios, frequencies and associated consequences. 

A scenario (represented by an ESD or ET) contains an initiating event (IE) and one or 

more pivotal events leading to an end state. Each pivotal event must be modeled in 
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sufficient detail to support valid quantification of scenarios. ESDs and ETs, use a forward 

reasoning logic that works forward through a causal path to model risk.  

 Complex pivotal events are frequently modeled using Fault Trees (FT). A FT is a picture 

of a set of logical relationships between more complex events such as system level 

failures, and more basic events such as component level failures.  FTA, in contrast with 

ETs and ESDs, uses a backward reasoning, deductive and top-down logic, that 

deconstructs the top event (a failure) to the elements that cause and contribute to the 

occurrence of the top event. FT modeling is applicable to modeling hardware failure as 

well as other complex event types such as software failure and crew action (NASA PRA 

guide). Figure 2-2 depicts the typical format of a classical PRA methodology 

(Stamatelatos, 2002).  

 

 

 

Figure 2-2.Classical PRA methodology (Figure originally composed by Futron corporation, NASA 
contractor for ISS PRA) 
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2.2.2  PRA in Healthcare 
 

Although PRA has proven to be very effective in high-risk industries, mainly, nuclear 

power plants, a small number of studies using formal risk assessment tools (i.e. event 

trees, event sequence diagrams, fault trees) have been published in healthcare. That may 

also be because of the differences that exist between healthcare and the domains that 

PRA has traditionally been applied to. The diversity of the medical procedures, the 

treatments specific to a patient, the wide range of medical personnel are among the most 

notable of these differences. Exploring the use of PRA in anesthesia (Pate-Cornell, et.al. 

1997), PRA in radiation brachytherapy (Ostrom, et.al., 1994), a fault tree analysis to 

understand why people deviate from prescribed protocols (Hyman, 2005), a fault tree to 

model risk in distributed healthcare information system ( Maglogiannis and Zafiropoulos, 

2006) and a model for medication system failures in long-term care facilities using PRA 

(Comden, et.al., 2005) are among the studies on PRA application in healthcare. 

2.2.3  Shortcomings of PRA in Medical Applications 
 

Formal PRA modeling tools typically represent top-level failures or faults (termed 

adverse events in the medical domain) as the outcome of a linear sequence of events or 

component failures. This is by no means the case about the risk scenarios in healthcare. 

Much of what happens in healthcare is subject to feedback. For instance, an initiating 

event might not lead to an adverse event at time “t”, but because of the reinforcing effect 

of feedback might end up leading to an adverse event at time “t+n”. Additionally, the 
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number of contributing factors in the healthcare domain, are much greater than in 

mechanical systems. Even though conventional PRA methods can be useful in modeling 

specific aspects of healthcare-related risks, such as medication error which is a much 

more linear process, they are not adequate for modeling risk in healthcare for 

aforementioned reasons. 

2.2.4 HRA in Engineering 
 

Human Reliability Analysis can be considered as an extension of human-factors 

engineering that is basically concerned with identification and classification of human 

error and causalities involved and the prediction of operator performance. The common 

methods used are mainly cognitive control based techniques such as Contextual Control 

Model (COCOM) (Hollangel, 1993), Cognitive Reliability and Error Analysis Method 

(CREAM) (Hollangel, 1998). While PRA has been used in high-risk industries including 

nuclear power plants and aviation for the past thirty years to develop an understanding of 

risks involved in complex systems and the underlying causalities, HRA as an important 

part of the PRA, has increased the understanding of human performance issues that affect 

risk and safety in such systems. 

2.2.5 HRA in Healthcare 
 

There have been few if any well-designed efforts to understand human reliability and 

performance in healthcare settings. Instead, as evidenced in the published literature, 

investigators or theorists have mostly reviewed what historically was done in engineering 

domains, ‘cherry picked’ parts of existing theory or ‘cherry picked’ tools that might be 
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applicable to a small part of the immensely diverse set of human tasks and activities in 

healthcare. It is important to emphasize that: 

• Healthcare is an enormously diverse domain 

• The tasks are extraordinarily diverse, involving both skill-based and cognitive 

functions 

• The humans performing these are diverse 

• The ‘plant’ response, or ‘system’ response to a human’s actions are often 

unpredictable and subject to random as well as yet-to-be defined factors. This 

makes it really difficult to measure how much of the outcome was due to the 

human’s performance 

• There is a wide range of tolerance to incomplete or imperfect task execution 

and it is really context sensitive – in other words, in some cases, the precision 

of a surgeon’s actions with a scalpel and suture may make the difference 

between life and death; other cases, it may not impact the overall outcome at 

all. 

These are some of the reasons why there is not a unified set of theories or tools to 

confidently assess the human contribution to system safety 

While human reliability analysis (HRA) has been well established and integrated into 

safety analysis in other industries (nuclear, aviation…), its application to healthcare is 

limited (Lyons, et.al. 2004).  HRA studies human operator performance in the context of 

a specific task environment. It is often focused on estimating the probability of human 
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error, and how this probability might increase or decrease when coupled with various 

performance shaping factors.  

Some work has been done trying to identify performance-shaping factors that are either 

unique or applicable to healthcare domain (Vincent 2000, Carthey et.al.2000). There have 

been a few foundational research activities directed at formally studying human 

reliability or performance shaping factors that might be unique to healthcare domain and 

healthcare transactions. For instance, Lyons, et al., 2004, conducted a literature review 

and lists 35 HRA primary techniques that might have a potential application in 

healthcare, based on common and general tasks in healthcare environment. They group 

these techniques into five categories of techniques for formally measuring performance in 

either controlled or naturalistic settings, as appears in Table 2-1. Note that these are not 

theories that might be useful in understanding performance shaping factors that 

contribute to human error. 

 

Table 2-1.Categories of HRA techniques (Lyons, 2004) 
 

Data collection techniques used in HRA have also been used in some healthcare 

applications. What is important to understand though, is that some healthcare tasks, with 

well-defined bounds for correct and incorrect performance, such as pharmacy dispensing. 

Applying a relevant and useful technique for many other tasks in healthcare that are 

Type of Technique Description

Data Collection Collection of information on incidents, goals, tasks, etc.

Task Description Taking the data collected and portraying this in a useful form

Task Simulation Simulating the task as described and changing aspects of it to identify problems

Human Error Identification and Analysis Uses task description, simul;ation and/or contextual factors to identify the potential errors

Human Error Quantification Estimates the probability of error identified
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messy, with poorly defined bounds for correct or incorrect performance, poorly defined 

end points, and are influenced by the feedback effects is extremely challenging. As an 

example, American Society of Health-System Pharmacists (ASHP) conducted a national 

survey of drug dispensing and administration practices (Pederson, et.al. 2002). An 

analysis of human error in anesthesia (Nyssen, 2001) and studies on incident reporting in 

anesthesiology (Staender et.al. 2001) and Case record review of adverse events 

(Woloshynowych, et.al.2003) are also among these studies.   

Another study sets out to document the nature and incidence of surgical errors enacted 

during laparoscopic surgery using Systematic Human Error Reduction and Prediction 

Approach (SHERPA), which is a technique involving task analysis (Joice, et.al.1997). 

The same approach also has been used (Malik, et.al, 2003,) to detect surgical error in 

endoscopic DCR surgery.  

Some of the more recent HRA studies in healthcare include; Inoue and Koizumi (2004), 

developed a model called EDIT (Error type, Direct threat, and Indirect threat) to 

characterize individual errors by evaluating error type, performance shaping factors 

(direct threats), and organizational factors (indirect threats) and applied this model to 

nursing practices in six hospitals. They find violation of rules, failure of labor 

management and defects in the standardization of nursing practices to be the three major 

organizational factors underlying medical error. Phipps et al. (2010), use a social 

psychological approach to investigate the anesthetists’ beliefs about clinical practice 

guidelines to study determinants of intention to deviate from clinical practice guidelines. 

Gauba et al. (2008) and Cox et al. (2008) conduct studies to identify and quantify human 

errors in cataract surgery. Chadwick and Fallon (2011), use a modified version of Human 
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Error Assessment and Reduction technique (HEART) to analyze Record Abnormal Blood 

Results, a critical nursing task in radiotherapy treatment. 

 Other HRA techniques such as Cognitive Reliability and Error Analysis Method 

(CREAM), and Technique for Human Error Rate Prediction (THERP) have not been 

applied in healthcare domain.  

2.2.6 Shortcomings of HRA in Healthcare 
 

The main reason that human reliability analysis has not caught on in healthcare domain as 

well at it has in industry, is that healthcare is very different in some respects, despite 

some similarities) and it cannot be treated the same way as a nuclear power plant or a 

chemical plant. In a broader sense, power plants, aviation, chemical plants and healthcare 

are high-risk complex activities performed in large complex organizations, some aspects 

of healthcare are closer to some industries in comparison. For instance a pilot’s work is 

similar to the high-tech monitoring of anesthetist, but very different from what a surgeon 

does (Lyons et.al. 2004).  There are also profound differences between healthcare and 

other high-risk industries.  Healthcare consists of extraordinarily diverse set of activities. 

Routine surgeries can sometimes be unpredictable and potentially harmful; treatment of 

acute psychosis may require quick decision making and response to the possible violent 

or bizarre behavior of the patient. Considering the wide range diversity of tasks in 

healthcare, some routine such as blood work, others as unpredictable as emergency 

medicine, and one can realize that the comparison with other high-risk industries with 

usually a limited set of activities is not a very meaningful comparison. Additionally, there 

is more uncertainty involved in healthcare practices than it is in industries such as nuclear 
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power plants where tasks are ideally, routine and deviation from usual practice is unusual 

and is to be avoided.  For instance a patient’s disease may be masked or difficult to 

diagnose or the result of the tests might not be clear. There is a higher level of uncertainty 

tolerance expected in this domain than other industries. Also most of interactions in 

healthcare are human-human as opposed to than human-machine interactions in other 

high risk industries. 

Moreover, HRA focuses on the individual operator’s performance in a controlled 

environment, and it is only as good as the level of expandability of this test environment 

to the real world setting. Conventional HRA methods also do not offer a causal picture of 

operator error. HRA approach provides a very limited insight when implemented in 

healthcare domain, since the results of analysis performed in controlled settings with 

individual operators and predefined tasks are only relevant to a very small portion of 

medical procedures. 
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3 Methodology 

3.1 Overview  

The approaches that have been adapted from engineering discipline and industry, 

reviewed in the background section, have had limited utility when used to model system-

based risk in the healthcare domain.  In particular classical PRA framework looks at risk 

scenarios as a linear chain of events that lead to an unsafe condition, which is by far not 

the case in healthcare. Most of the underlying causal chains in healthcare which result in 

an adverse event are subject to feedback and also the number of contributing factors is 

much greater than that of mechanical systems, and the magnitude of effect is non-linear. 

Hence, In order to realistically model system-based risk in healthcare settings, it is 

necessary to account for dynamic factors and reinforcing loops, display the complexity of 

contributing factors, capture feedback and incorporate temporal factors. 

The modeling approach adopted here consists of two components: a system dynamics 

framework and a Bayesian belief network (BBN) structure. This formalism has been 

introduced in Mohaghegh, et.al. (2008) and applied in aviation safety context. The system 

dynamics formalism enables us to represent change over time and change due to 

feedback.  The Bayesian belief network formalism enables us to represent networks of 

causality and capture stochastic characteristics of the system and the uncertainty related 

to that. BBNs also enable us to incorporate new knowledge and update the model as new 

evidence becomes available. The next sections briefly explain the components of the 

proposed model and the advantages that the combination of the two offers to more 

accurately and realistically capture risk dynamics in the healthcare domain. 



 

3.2 Bayesian Belief Networks (BBN)

3.2.1 Introduction 
 

Probabilistic networks in general, are graphical models that depict causal relations and 

interactions between a set of variables, where nodes in the graph represent variables and 

arcs or edges represent direct connections (direct dependenc

Figure 3-1. If a pair of nodes is not connected, independence between th

represented by these two nodes is assumed. Graphical models are intuitive and compact 

representations of (causal) dependencies and independencies between problem

variables. The advantage of graphs in probabilistic modeling is threefold; 

convenient means of expressing modeling assumptions, to facilitate representation of 

joint probability functions and to facilitate efficient inferences from evidence and 

observation (Pearl 2009). 

                                                 

Figure 3-1.A simple belief network; event X (parent node, cause node), causes/influences event Y (child 
node, effect node) 
 

More specifically, Bayesian Belief Networks or Bayesian Networks are a class of 

probabilistic graphical models for reasoning under uncertainty, where nodes represent 

discrete or continuous variables and arcs represent direct causal connections 

(relationship) between them. The graphical aspect of probabilistic networks can be used 

in a qualitative manner to represent relationships between a set of variables 
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and Madsen, 2008).  While the arrangement of the nodes and arcs of the graph/network

structure can represent the qualitative relationships between variables, the 

causal relationship between variables on the other hand, can also be quantified using 

probability calculus. Specifically, each variable (node) in the network is represen

finite set of mutually exclusive states, and a conditional probability table can be created 

for each variable (node) and its parent(s)

associated with each node. This probabilistic and numerical aspect

networks is referred to as quantitative

Figure 3.2, nodes X and Y are called parent nodes or input nodes and node Z is called the 

child node or the target node. If we assume binary stat

with probability distributions

 our objective is to calculate 

                                                        

Figure 3-2.Input and output nodes 
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and Madsen, 2008).  While the arrangement of the nodes and arcs of the graph/network

ure can represent the qualitative relationships between variables, the strength 

causal relationship between variables on the other hand, can also be quantified using 

probability calculus. Specifically, each variable (node) in the network is represen

finite set of mutually exclusive states, and a conditional probability table can be created 

for each variable (node) and its parent(s), by the conditional probability distributions 

associated with each node. This probabilistic and numerical aspect of probabilistic 

quantitative aspect.  To elaborate, in the simple Bayesian net in

nodes X and Y are called parent nodes or input nodes and node Z is called the 

child node or the target node. If we assume binary states for each of these nodes; 
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by the conditional probability distributions 
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aspect.  To elaborate, in the simple Bayesian net in 

nodes X and Y are called parent nodes or input nodes and node Z is called the 

es for each of these nodes;  
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The only constraint is that BBNs are directed acyclic graphs (DAG), meaning that 

starting from a node, you cannot return to that node simply by following the directed 

arcs. 

BBNs, which are compact networks of probabilities that capture probabilistic relations 

between variables and contain historical information about their relationship, have proven 

to be powerful tools for modeling causes and effect in many domains. They are also very 

effective in modeling situations where data are uncertain and vague or incomplete and 

only partially available. This uncertainty in information can arise in many situations; 

domain experts may be uncertain about their knowledge, there might be uncertainty about 

the accuracy and/or availability of the information or the situation being modeled might 

be inherently uncertain. (CRA, 2004) 

3.2.2 BBN Elements 
 

To explain the structure of BBNs and how they are built and used for inferences, we will 

use a previously published example of a Bayesian net intended to support a medical 

diagnostic task for lung cancer. 

The example, through which we will review the structure of BBNs in this section, is a 

simplified and modified version of a problem known as Asia problem (Lauritzen and 

Spieglelhalter, 1988, and Korb and Nicholson 2004).  

A patient, who is experiencing shortness of breath, visits his doctor in fear of lung 

cancer. The doctor knows that possible candidate diseases that may cause 

shortness of breath or dyspnoea, are lung cancer, tuberculosis or bronchitis. 
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Dyspnoea can also be due to presence of a number of these candidates or none of 

them. She also knows that smoking is a risk factor for both lung cancer and 

bronchitis, and that exposure to air pollution can be a contributing factor in lung 

cancer. The positive result of a chest X-ray would indicate either tuberculosis or 

lung cancer. The doctor would like to know the chance that lung cancer is present. 

3.2.2.1 Structure of BBNs 
 

The structure of the network represents the qualitative relationships between different 

variables. Two variables (nodes) are connected if one affects or causes the other and the 

connecting arc indicates the direction of the effect. For instance in our simplified 

example, we have assumed factors that affect a patient’s chance of having lung cancer, 

are pollution and smoking. Similarly having lung cancer will cause breathing problems 

and will increase chances of a positive X-ray result. Hence the list of variables, their 

types and a set of possible values or states (chosen arbitrarily for this example) and the 

structure of the network will be as appears in Table 3-1 and Figure 3-2, respectively. 

 

 

Table 3-1.List of variables and their states 
 

Node States

Pollution (P) Low, High

Smoker (S) True, False

Cancer (C ) True, False

Dysponea (D) True, False

X-Ray (X) Positive, Negative



 

Figure 3-2.Lung cancer BBN 
 

3.2.2.2 Conditional Probabilities
 

Bayesian networks have a qualitative aspect and a corresponding 

Once the qualitative model (graphical representation) is established, we will need to 

quantify the strength of the relationship between connected nodes, by assigning a 

conditional probability table, CPT, (in form of a distribution for 

point estimate for discrete ones) to each node. Conditional probabilities represent the 

likelihood based on historical data or our prior knowledge and belief.

 Mathematical representation of conditional probability is

probability of variable being in state

in the states , respectively. Therefore for each parent and each possible state 

of that parent, there exists a node in the conditional probability table that indicates the 

X

nppp ,...,, 21
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Conditional Probabilities 

Bayesian networks have a qualitative aspect and a corresponding quantitative aspect. 

Once the qualitative model (graphical representation) is established, we will need to 

quantify the strength of the relationship between connected nodes, by assigning a 

conditional probability table, CPT, (in form of a distribution for continuous variables or a 

point estimate for discrete ones) to each node. Conditional probabilities represent the 

likelihood based on historical data or our prior knowledge and belief. 

Mathematical representation of conditional probability is

being in state , given the states of its parent nodes

, respectively. Therefore for each parent and each possible state 

of that parent, there exists a node in the conditional probability table that indicates the 
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likelihood that the child will be in some state. In our lung cancer example, from Figure 

3-2, we can read . 

 

3.2.2.3 Inference with Bayesian Networks 
 

One of the most important features of Bayesian networks, is that can be used for updating 

our prior beliefs and calculating new beliefs as new information and observations or in 

other words “evidence” becomes available. In fact, up until this point, there is nothing 

Bayesian about the Bayesian networks. As Bayesian networks often represent causal 

relationships of the nature of , the task of inference is then to derive the 

posterior probability distribution of , , where is a set of observations 

(evidence), and Y is the variable that is important for prediction or diagnosis (Pearl, 

2009). This is a straightforward application of Bayes’s rule which yields: 

 

 

Where , is our prior belief about  and  

 

05.0)ker,( ==== TSmoHPollutionTCancerP

YX →

Y )( XYP X

)(

)()(
)(

yYP

XPXyYP
XYP

=

=
=

)(XP X

∑ ====
x

XPxXyYPyYP )()()(



 30 

For instance if the doctor receives a piece of information indicating that the patient has 

been exposed to high level of pollution, then this evidence is set in the Bayesian network 

as:  

,and consequently . Using Bayes’s rule from equation above, 

probability of the patient having lung cancer  will increase from 0.02 

to 0.03. 

3.2.2.4 Types of Evidence 
 

Evidence is any type of information about the current situation of a variable /node. For 

instance, in our example, if we find out that the patient is a smoker; our belief about the 

probability of him having a lung cancer will change. In general there are two types of 

evidence available for BBNs: 

• Hard evidence: Assigns a zero probability to all but one state of the variable 

• Soft Evidence: Bayesian networks also support evidence that is vague or 

incomplete or uncertain. This type of evidence is called soft evidence, which is 

any evidence that is not hard evidence. In our example, if the doctor knows that 

there is 90% chance that the patient has been exposed to pollution (but he is not 

100% sure), in  lung cancer BBN model he will assign a probability of 0.9 for the 

node “pollution” as evidence. If he knew for sure that the patient was definitely 

exposed to pollution (i.e. had hard evidence) he could assign a probability of 1 to 

this node. 
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3.2.3 Construction and Quantification of BBNs 
 

A Bayesian belief network could be constructed manually (i.e. Based on expert 

knowledge, literature, etc.), automatically from data (i.e. Data driven BBN construction) 

or through a combination of manual and data driven approaches.  To induce the structure 

of the network i.e., the graph, from a source of data there exist different classes of 

algorithms such as search and score algorithms, constraint based algorithms and 

combinations of the two (Kjaerulff and Madsen 2008), which require considerable 

amount of data.  The BBNs constructed in this thesis are built using manual approaches. 

When faced with a problem, the first step would naturally be figuring out whether 

Bayesian networks are the right tool and approach for the problem based on the nature of 

the problem.  Generally, when dealing with problems where there is uncertainty 

associated with the cause and effect relations and mechanisms; Bayesian belief networks 

seem to be the ideal framework. 

A Bayesian belief network has two major components; the structure and the parameters 

(i.e. conditional probabilities).  The structure of a BBN is usually referred to as the 

qualitative part whereas the parameters and the conditional probabilities are the 

quantitative part. Consequently the model elicitation process consists of two phases; first 

the variables and the causal relations between them are identified and second, once the 

structure of the model (i.e. the graph) has been established and verified the values of the 

parameters and conditional probabilities are elicited. The manual construction of the 

Bayesian net could be a labor-intensive task requiring some level of creativity and also 

close interaction with domain experts.  
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3.2.3.1 Construction of the BBNs 
 

The qualitative part of building a Bayesian network involves identifying the variables 

(i.e. nodes in the graph) and identifying the causal relations between the variables (i.e. the 

edges or the arrows). Kjaerulff and Madsen (2008) categorize variables types into four 

different classes.  

• Background variables: usually the root variables of a Bayesian network 

• Problem variables: the variables of interest, for which we want to compute the 

posterior probability distribution given the observations 

• Mediating variables: directly unobservable variables for which posterior 

probability is not of interest but they play an important role in establishing 

accurate conditional independence and dependence relations in the model and are 

most often influenced by the background and problem variables 

• Symptom variable: observable as the consequence of the presence of problem 

variable and influenced by it 

 

Given the above classification, typically the overall causal structure of a Bayesian 

network will be as depicted in Figure 3-3. 

 



 

Figure 3-3.Overall causal structure of BBN (Kjaerulff and Madsen, 2008)
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refined approach that constructs models using five commonly occurring substructures 

called idioms. A vast majority of Bayesian nets are claimed to be constructible using 

these idioms or substructures. Our approach in this thesis to b

is the basic approach, hence the readers interested in the second, more refined approach 

referred to Kjaerulff and Madsen (2008) and Neil et al. (2000).

One should note that building a network often requires a careful and delicat

between desire to build a large, rich and super comprehensive model that covers every 

little detail to obtain the highest level of accuracy possible on one hand, and the 

feasibility and the cost of construction, and the complexity of probabilis

the other hand (Druzdel and van der Gaag, 1995).
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3.2.3.2 Quantification of the BBNs; Eliciting the Numbers 
 

After establishing the structure of the network (the qualitative part) through the iterative 

process of model verification revision, identification of new variables, deletion or 

modification of the existing variables, and the addition or deletion of the causal links 

(edges), the next and probably the most challenging phase is the elicitation of the 

conditional probability distributions or populating the conditional probability tables 

(CPTs). The amount of effort that goes into building the structure of the model and even 

more so into obtaining the numerical parameters, is probably the biggest obstacle in the 

way of applying Bayesian nets in many practical problems (Onisko, Druzdzel and 

Wasyluk, 2001). 

Since the process of eliciting the quantitative information required for this stage of 

constructing BBNs is often very demanding, it is important to carefully verify the 

structure of the Bayesian net before proceeding to the quantification phase. Nevertheless 

making minor adjustments to the structure of the network, in order to reduce the number 

of parameters, is sometimes inevitable. The parameters of the network can be obtained 

from databases in literature or elicited from subject matter experts (Druzdel and van der 

Gaag, 2000).  

For the variables that field data exists, the task of computing the marginal and conditional 

probabilities is quite straightforward. Very often there is incomplete or no data available 

and the analyst has to rely on the subjective assessment of probability obtained from 

domain experts (Diez, 93). 
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In this section we will focus on the most intimidating task in building Bayesian networks, 

obtaining the required probabilities. 

3.2.3.2.1 Sources of Information 
 

In most applications, probabilistic information is available through one or more of three 

sources; Statistical data (field data), Literature and Subject matter experts. In data rich 

applications it is usually not too difficult to collect data, on the variables of interest. If 

comprehensive data is available, both the qualitative part (the graph) and quantitative part 

(the probabilities) can be automatically constructed. There are two approaches to learning 

the structure (graph) of the Bayesian network from data. First the constraint-based search 

and second Bayesian search for graphs with highest posterior probability given data. 

Since we have not constructed our BBNs learning from data, we will not cover these 

approaches but for more information on the former please see Pearl and Verma, 1991, 

Spirtes et al., 1993 and for the latter please see Cooper and Herskovits, 1992. Once the 

structure of the network is established, the task of acquiring probabilities will consist of 

studying the subsets of data that correspond to the various conditions (combinations of 

various states of the variables). 

However, in most cases where reliable statistical data is scarce other forms of data should 

be considered. Literature often provides a good source of probabilistic information. For 

instance, more specifically in the field of medicine, many studies report on the disorders 

and symptoms and the causal relations between them, but one has to be careful since this 

probabilistic information are not always directly useable in Bayesian nets. For example, 

one could find the conditional probabilities of symptoms given the disorder or the disease 
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is present, but conditional probabilities of symptoms given the disorder is absent are 

rarely reported. Also most often the probabilities required for the intermediate disorder 

states that have been modeled in the network are not studied or reported (Druzdel and van 

der Gaag, 2000 and 1995). 

Finally, if there are few or no reliable data available experts’ knowledge and experience 

is used as a source of probabilistic information. Although the role of experts in providing 

the parameters of Bayesian nets and the probabilities should not be underestimated, the 

problems and challenges in eliciting probabilities from experts which have been 

discussed in many books and articles should be acknowledged. Nevertheless, many 

techniques have been developed for eliciting well-calibrated, unbiased and reliable 

probabilities from domain experts (Druzdel and van der Gaag, 2000, O’Hagan, et al., 

2006).   

Bayesian networks typically consist of tens and sometimes hundreds of variables (nodes) 

and hence require hundreds of probabilities, and a good part of these probabilities –if not 

the majority- has to be assessed by domain experts. Given that expert’s time is an 

expensive commodity supplementary techniques have to be utilized to reduce the burden 

on the experts.   

The amount of information and the number of probabilities to be elicited is dependent on 

the structure of the graph and the number of variables in the graph. The number of 

required probabilities grows exponentially with the size of variable’s parental set. To 

reduce the number of probabilities to be elicited, two approaches are commonly used. 

The first approach is based on the modifications made in the structure of the Bayesian 
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net, i.e. the graph, and the second approach is based on using parametric probability 

distributions. The first approach uses techniques such as parent divorcing and introducing 

an intermediate variable, temporal transformation, etc. to adjust the structure of the model 

with the goal of easing the process of eliciting the probabilities and making network 

quantifications manageable. These techniques have been discussed individually or 

collectively in Kjaerulff and Madsen (2008), Olsean et al. (1989), van Engelen (1997) 

among others. 

Noisy-OR gates, Noisy-AND gates and their generalizations (Drudzel and van der Gaag, 

2000, Heckerman and Breese, 1996, Pearl, 1988, Lemmer and Gossink, 2004) on the 

other hand, are examples of using parametric probability distributions to reduce the 

number of probabilities to be elicited. Methods based on this second approach, are based 

on the assumption that the parents of a variable in the network are causally independent. 

With these methods, the number of probabilities to be assessed for a variable grows 

linearly rather than exponentially as the number of its parents increase. For instance, in 

Noisy-OR gate, for a node that has “n” parents with binary states, the number of 

probabilities to be elicited is “n” rather than “ ”.  That is for a node with 10 parents, we 

only need to ask experts for 10 probabilities rather than 1024 probabilities, using the 

Noisy-OR model. 

Using these two approaches, modifications to the structure and/or parametric probability 

distributions, however, will probably compromise the accuracy of the model but then 

again as mentioned before we are dealing with a trade-off between accuracy and 

feasibility (by carefully reducing the model using the above approaches) in building 

Bayesian networks.  

2n
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Although the process of eliciting the probabilities is done after the analyst reaches a 

steady, reliable and robust structure for the Bayesian net, to think that this elicitation is a 

one-shot process is rather unrealistic. That being said, literature could be found on the 

ways and tools to support the elicitation process. For instance, after collecting the first 

round of probabilities, which is probably raw and less accurate and less calibrated, using 

the sensitivity analysis the analyst would be able to discover the most important 

probabilities and refine them (Coupe et al., 2000, Philips, 1982). Also this process 

highlights the less influential probabilities in the network that could probably be 

eliminated or further simplified without seriously compromising the accuracy of the 

model.  This process is done iteratively until the cost of further refining elicitation 

outweighs the benefits of more accuracy achieved, or the till the accuracy could not be 

improved any further simply because we don’t have further knowledge available. 

Given the scarcity and the high value of expert time, this will help focus the efforts and 

resources on the parts of the model that simply put, matter most. 

3.2.3.3 Construction and Quantification of the BBNs in This Research 
 

To develop the BBNs in this research we first started with a set of factors in the literature 

and one of the experts added, deleted and modified these factors and identified the causal 

relations between the factors, which resulted in the first draft of the BBN. This first draft 

was then discussed with domain experts using the interview guides in Appendix A and 

Appendix B in multiple sessions and each expert provided their opinion about: 
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• The variables of the model; whether they thought there should be other factors 

considered. If they had other factors they added to the model and made any 

modifications to the existing factors they thought were necessary. 

•  The causal relations between the variables 

After incorporating all the changes made to the model by the experts the latest version of 

the model was discussed with the experts in another interview and the experts were asked 

to score the model in the scale of 1 to 100 in the terms of model completeness, model 

accuracy, ease of understanding and perceived predictive validity, to ensure sufficient 

confidence in the structure of the model before proceeding to model quantification. We 

have discussed this further, in BBN validation and verification part of this dissertation, 

sections 5.1.4.2, and 5.2.4.2.  

In quantification of the Bayesian Belief Networks in this thesis we have used both 

structural techniques and parametric probability distribution techniques, which have been 

explained in detail in section 4.1.3.1. 
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3.3  System Dynamics (SD) 

3.3.1 Introduction 

 

A rather popular approach to understanding the behavior of complex social and economic 

systems is the application of non-linear differential equations (DEs). System dynamics 

(SD) is a simulation based, differential equation modeling tool that is widely used in 

situations where the formal model is complex and an analytical solution is impossible or 

very difficult to obtain (Sterman, 2000). It is a method to enhance learning in complex 

systems. Just as airlines use flight simulators to train their pilots, SD develops 

“management flight simulators”, to help us learn about dynamic complexity, predicting 

the impact of policies and decisions, understand the sources of policy resistance and 

design more effective policies. System dynamics is fundamentally interdisciplinary. 

Since our concern is the behavior of complex systems, SD has its roots in the theory of 

non-linear dynamics and feedback control developed in mathematics and engineering. 

Because we apply these tools to human behavior as well as technical systems, SD also 

draws on cognitive and social psychology, economics and social sciences as well, that 

helps us better understand the sometimes counterintuitive behavior of social systems 

(Sterman 2000, Forrester1975). The purpose of building system dynamics models is to 

explain and understand the behavior of complex systems and how they evolve overtime, 

since they can take into account (multiple) feedback mechanisms and non-linear 

relationships between system variables. 

Over the years, SD has been applied to a wide variety of situations, ranging from 

corporate strategy to the dynamics of diabetes and from cold war arms race to HIV 
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combat with human immune system. It can be applied to any dynamic system, with any 

time and special scale. In the case of our research problem, for capturing the effects of 

organizational decisions and policies on risk of adverse events, the feedback effects and 

nonlinearities, system dynamics formalism is a well suited and efficient tool. 

 

3.3.2 Building Blocks 
 

 There are two major building blocks of system dynamics models: stock and flow 

diagrams and feedback or causal loops. Below, we will provide a brief overview on these 

building blocks which will hopefully facilitate the interpretation of the system dynamics 

model proposed in this research. 

3.3.2.1 Feedback loops 
 

Feedback is one of the core concepts of system dynamics and our mental models often 

fail to include critical feedbacks that determine the dynamics of our systems. These 

feedbacks are modeled using causal loop diagramming in system dynamics. 

Feedback processes take place, if a system component (variable) initiates changes in 

other components (variables) of the system that in return; affect the very component that 

had originally initiated the change (Ruth, 2001). This process usually occurs through non-

linear relations between system components and can involve time delays. 

An essential part to system dynamics modeling is to understand and present the feedback 

mechanisms, that along with the stock and flow structures, nonlinearities and time delays 
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form the dynamics of a system. Most complex system behaviors are usually due to the 

feedback relations between the components of the system rather than the complexity of 

the components themselves.  (Sterman, 2000)  

There are only two types of feedback that form all dynamics; Positive (self-reinforcing) 

feedback and negative (self-correcting) feedback. More complex interactions may be 

captured through a combination of these two types. Positive loops, cause reinforcement 

or amplification of the events in the system. For example, the more money you invest in a 

savings account, the higher interest you will receive. 

 Negative loops, on the other hand, oppose the change. Negative feedback processes 

usually lead systems towards equilibrium states (Ruth, 2001). The less the strength of a 

pain killer, the more pills you have to take to soothe your headache. 

Figure 3-4, is a very simple illustration of these loops. More eggs result in more chickens 

(figure 3 A, reinforcing loop). The more the chickens cross a road, the higher the chances 

of them getting hit by cars, hence, the higher rate of mortality and fewer chickens (figure 

3-5 B, balancing loop). Figure 3-5 C, shows a combination of reinforcing and balancing 

loops.  
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Figure 3-4.Balancing and reinforcing loops 
 

Even though feedback loops are principally limited to two types, positive and negative 

loops, models can contain thousands of these loops interacting with one another with time 

delays and through nonlinear relations. The dynamic of the systems are the product of 

these interactions.  

 

3.3.2.2 Stock and Flow Structure 

 

Besides feedback loops, stock and flow structure is the other building block of any 

system dynamics model. Stock (population Figure 3-5) represents accumulation of some 

measurable entity (e.g. people, money, inventories of products or even intangibles such as 

happiness) (Ford, 1999). Stocks characterize the state of the system and generate 
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information upon which decisions are made (Sterman, 2000). Stocks change with the 

inflows and outflows. 

 Flows (Birth and death in Figure 3-5) are the physical or conceptual entities that enter or 

leave the system and move over time. Auxiliary variables (death and birth rate in Figure 

3-5) help describe the flow. 

Figure 3-5, represents a very stock and flow structure. 

                   

Figure 3-5. Stock and flow diagram 
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3.4 SD/BBN Combination 
 

As mentioned briefly above, the system dynamics part of the model demonstrates how 

organizational level and policy level contributions to risk evolve over time, and how 

policies and decisions may affect the general system-level contribution to adverse event 

risk. Also, it captures the feedback of organizational factors and decisions over time and 

the non-linearities in theses feedback effects. BBN part of the model, represents patient-

level factors and also physician level decisions and factors in the management of an 

individual patient, which contribute to the risk of an adverse event.  

Each patient, considering his or her individual medical condition and physician’s 

decisions in treating this patient is exposed to a certain level of risk of specific adverse 

events (e.g. infection, pressure ulcer). This is captured with a BBN. On the other hand, 

the system dynamics section in the model, based on the financial situation of the hospital, 

level of dedication to safety and organizational and policy level factors and decisions 

with regards to staffing, pressure to reduce length of stay and investment in safety, which 

evolve dynamically over time, provides a background that determines where hospital is 

standing in terms of risk when the next patient walks in. 

In our methodology, the system dynamics module (representing system level factors and 

decisions) and the Bayesian network module (representing patient level and patient-

provider level factors), are integrated in a way that each module can provide input to a 

node(s) and/or receive input for its node from the other module allowing the entire hybrid 

environment to capture feedback and delay effects. The interface of SD and BBN can be 

captured by importing and exporting data from and to the system dynamics model. For 



 

instance, the variable “Staff Adequacy”, that is an outcome of managerial decisions to 

reduce operational costs (captured in the system dynamics module), is also an important 

factor that may determine whe

staff which ultimately impacts patient’s “Risk of Pressure Ulcer” (captured in pressure 

ulcer BBN). So the input from system dynamics model to the Bayesian network for 

pressure ulcer is “Staff Adequac

updated value for “Risk of Pressure Ulcer” as an input to the system dynamics module.

Figure 3-6, depicts this interaction.

Figure 3-6.SD and BBN hybrid modeling environment
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instance, the variable “Staff Adequacy”, that is an outcome of managerial decisions to 

reduce operational costs (captured in the system dynamics module), is also an important 

factor that may determine whether or not a patient is moved frequently enough by the 

staff which ultimately impacts patient’s “Risk of Pressure Ulcer” (captured in pressure 

ulcer BBN). So the input from system dynamics model to the Bayesian network for 

pressure ulcer is “Staff Adequacy”, and in return pressure ulcer BBN provides the 

updated value for “Risk of Pressure Ulcer” as an input to the system dynamics module.

picts this interaction. 
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3.5 Information Sources for Quantification of Models 

3.5.1 Data form Actual Operating Experience  

 

Eight years of clinical data from one of Harvard Medical School’s major teaching 

hospitals was made available for this study. Also will use data obtained from domain 

experts in all the steps of model development, quantification and validation. 

Quantitative modeling will be informed by data stored in the administrative and clinical 

databases from a major teaching affiliate of Harvard Medical School. The clinical 

information system in the medical center has SQL servers that support 62 linked 

relational databases storing contemporary and historical clinical data (FY’99-FY’09) and 

disease registries for all major clinical areas (e.g., ED, Inpatient floors, outpatient areas, 

procedural suites, laboratory, pharmacy, radiology, etc.) as well as the more recently 

implemented computerized order entry data. The SQL Servers are accessible using the 

Microsoft Management Console tool kit and SQL Server Enterprise Manager Software. A 

series of SQL queries and stored procedures have been developed to extract the following 

data from these administrative data sources: 

patient and provider scheduling data for procedural and inpatient units; acuity levels and 

patients volume in both the target population as well as concurrent levels in other units of 

the hospital; total resource utilization at the unit and case level; nursing scheduling 

cycles; drug utilization (both standard and emergency pharmaceutical agents); laboratory 

results matched to the pre-, intra-, and post-procedural phases of care in procedural areas 

and; sub-process time stamps for procedural areas. The process data in these sources is 

remarkably detailed and will enable us to model durations of key phases of care such as 
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pre-procedure preparation, sedation phase, prep/drape phase, post-procedure recovery 

phase, admission and discharge times and room turnover times. Raw data for process 

durations, emergency case interruptions to the elective scheduled, delays in scheduled 

cases due to emergency issues, transition times between pre-procedure, procedure and 

recovery phases for each of the procedural units in the medical center, delay times and 

reasons for delays in initiating emergency interventions in these units as a function of day 

of the week and hour of the day. length of stay in recovery units as a function of time of 

day or proximity to shift change that are acquired using the stored procedures will be 

fitted to standard distributions using a Kolmogorov-Smirnov algorithm. The 

administrative data sources have been used extensively by risk analysts at the medical 

center to identify unreported adverse events or near misses using clusters of data as 

triggers. Examples of triggers include the identification of computerized order entries for 

blood product use in ‘low-bleeding-risk’ procedures, sedative reversal agents (e.g., 

flumazenil or naloxone used during the recovery phase) or physical restraints (suggesting 

agitation) in combination with specific procedures. We will use these cluster-based 

triggers to identify unreported adverse events, and update frequency estimates established 

from the self-reported events.   

3.5.2 Adverse Event Data 
 

 Additional data is derived from an adverse event reporting system that currently contains 

approximately 10,000 cases, and 400 root-cause analysis reports that contain 

reconstructed causal sequences that will help inform the qualitative 

modeling phase of this work. All clinical data used in this study, has been de-identified 

and provided to us by one of the members of the advisory committee, and no direct 
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access to databases was possible for the author of this thesis due to confidentiality 

concerns. 

The root cause analyses used at this medical center provide a rich classification of system 

and human factors thought to have contributed to the initiating or propagation of the 

event. It is unclear whether the frequency data are reliable to use for the quantitative 

analysis, since reported events do not accurately reflect prevalence or frequency. 

However, they serve as a fairly comprehensive source of data for the qualitative modeling 

of event initiation and propagation.  

The adverse events that are of interest in this study are a set of twelve hospital acquired 

conditions (HAC) that patients could experience while in the hospital, which are thought 

to be preventable and Medicare is considering not to reimburse. Table 3-2 shows the list 

of these adverse events. 
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Table 3-2.Hospital acquired adverse events  
 

3.5.3 Expert Elicitation 

 

Graphical tools could be used to support the network quantification process and eliciting 

the probabilities (Wang and Druzdzel, 2000). Graphical tools provide an interactive way 

to elicitation of probabilities. Allowing the expert to manipulate a chart, or choose from a 

set of functions that have been graphically presented will offer more support to the expert 

and is most likely help the expert to provide his estimate more confidently and more 

accurately. Probabilities could also be expressed through verbal expressions such as more 

very likely, certainly, or improbable (Renooij and Wittman, 1999), though verbal 

expressions could cover a wide range of numbers. Perhaps a combination of verbal 

Selected HAC 

Foreign Object Retained After Surgery 

Air Embolism 

Blood Incompatibility 

Pressure Ulcer Stages III and IV 

Falls and Trauma: (Fracture, Dislocation, Intracranial 
Injury, Crushing Injury, Burn, Electric Shock) 

Catheter-Associated Urinary Tract Infection (UTI) 

Vascular Catheter-Associated Infection 

Manifestations of Poor Glycemic Control 

Surgical Site Infection, Mediastinitis, Following Coronary 
Artery Bypass Graft (CABG) 

Surgical Site Infection Following Certain Orthopedic 
Procedures 

Surgical Site Infection Following Bariatric Surgery for 
Obesity 

Deep Vein Thrombosis and Pulmonary Embolism 
Following Certain Orthopedic Procedures 
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expression approach and the number approach could produce better results (Van der 

Gaag, et al., 1995).  

Decision makers have always been interested in subjective knowledge using experts for 

their opinion. In fact, in many cases subjective knowledge may be the only source of 

information that exists for a particular problem of interest. The task of expert elicitation is 

ultimately threefold; selection of experts, elicitation of their opinions and judgments, and 

the aggregation of their opinions in the case of multiple experts. These tasks have been 

extensively discussed in the literature (Ayyub, 2001, O’Hagan, et al., 2006), but here we 

will briefly overview the process, with an emphasis on the needs of this research. 

3.5.4 Who is an Expert? 
 

When major decisions are to be made in presence of uncertainty and expert judgment is 

essential to minimize and characterize uncertainty, the choice of experts becomes one of 

the most phases of the elicitation process, and the success and usefulness of such process 

is directly dependent on the experience, knowledge and technical background of 

individual expert (O’Hagan, et al., 2006). Generally an expert could be defined as a 

skillful person with great knowledge of and extensive training in a specific field. 

However, to be precise, in the realm of expertise, there are many other psychological 

factors that may be determinant parameters in how a person uses and organizes his or her 

own knowledge. Interested readers are encouraged to see O’Hagan et al. (2006) and 

Wood and Ford (1993), among others, for detailed discussions. 

Expert’s opinion is then defined as expert’s formal judgment on the specific subject 

within his realm of expertise. On the other hand, an opinion is a judgment, belief or 
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subjective assessment of the quality or quantity of the unknown of interest, based on 

uncertain information (Ayyub, 2001).  

In selecting the experts it is important to understand that dependencies may exist between 

the experts. The analyst may try to recruit multiple experts from different organizations 

and backgrounds to reduce these dependencies, and eliminate the sources of strong 

dependencies. Weak dependencies however, do not seem to effect the value of expert 

judgment. 

As a general guideline, Cooke (1991) formulates principals that should be considered in 

order for results to be considered scientific; 

• Scrutability/accountability: All data, including experts’ information and 

assessments, should be open to peer review and results must be reproducible 

• Empirical control: Quantitative expert judgments should be subjected to empirical 

quality control 

• Neutrality: The method for evaluating and aggregating expert assessments should 

encourage experts to provide their true opinion  

• Fairness: Experts are not prejudged 

In evaluating and processing experts’ inputs in this project, we have been committed to 

these guidelines. 
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3.5.5 Elicitation Methods 

 

When planning an elicitation, to issues need to be considered first. First, when we are 

seeking the subjective knowledge of an expert about an uncertain parameter, we would 

often like to gather opinions from several experts and consolidate their input into one 

probability distribution. If we collect experts’ judgments separately we would need to use 

some type of algorithm to combine their opinions, and the process is known as 

mathematical aggregation. If we bring the group of experts together in the group and 

elicit one judgment from the group, the process is known as behavioral aggregation. The 

second issue is to decide whether the elicitation will be done through a face-to-face 

interview with the experts, or through using questionnaire. Face to face interview, should 

the means exist for the analyst, is without the doubt the best approach, since the analyst is 

present and could clarify any ambiguities and would be otherwise much more time 

consuming using a questionnaire. Also the analyst could much more effectively explain 

the model and the parameters to be elicited, and the type of expert input that would be 

most useful to the analyst. However, arranging interviews, especially individually with 

each expert, could be very challenging given that experts are usually busy professionals. 

Ayyub (2001) attributes the first structured methods for expert opinion elicitation to the 

RAND Corporation in early 1950s. These two methods are Delphi method and Scenario 

analysis method.   

Delphi method is probably the most known method of expert elicitation, which was 

developed for U.S. Air Force and used throughout the 1960s and 1970s in variety of 
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applications from technology forecasting and policy making to space progress and 

weapons systems. The basic Delphi method has 8 steps, which basically includes: 

1- Developing questionnaires 

2- Selection of experts 

3- Familiarization of the experts with the issue of interest 

4- Elicitation of experts opinion on the issue 

5- Aggregation of experts’ opinion 

6- Review of the aggregation results by experts and revision of their initial opinion 

7- Revision and review to achieve a complete consensus 

8- Reporting results with justifications on the out of range opinions 

Many elements and factors have been suggested in the literature as being critical to a 

good elicitation process (Clemen and Reilly, 2001, Walls and Quigley, 2001, Grathwaite, 

et al., 2005, NUREG 1150, 1989, O,Hagan, et al., 2006), but the heart and soul of all of 

these methods/processes are really the same. The steps that all have they common are; 

Preparation, Expert selection, training of the experts, Elicitation using appropriate format, 

Aggregation of experts’ input.  In the expert elicitation process we have carefully 

considered and used the processes suggested in the literature. 

3.5.5.1 Aggregation of Experts’ Opinions 

 

A large number of methods exist for combining experts’ opinion, from older methods like the 

Delphi method, to more involved Bayesian models.  Among many Bayesian methods proposed in 
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the literature a few have had actual applications and even fewer have been applied more than 

once with the exception of proposed model by Mosleh and Apostolakis (1986) (Bedford and 

Cooke, 2001). The objective is to aggregate experts’ point assessments for the unknown of 

interest, X. If are estimates of X obtained from experts , and our prior belief about 

X is expressed with , the updated belief about X, given the estimates from the 

experts using Bayes’ theorem is: 

 

And assuming that experts are independent we could write the likelihood term as: 

 

The objective then reduces to determining .Mosleh and Apostolakis (1986) suggest to 

error models; 

• Additive error model ,  

• Multiplicative error model ,  

Where is expert input, is the true value of the unknown of interest X, and is the error 

term. The model also assumes that the error term has a normal distribution with mean , and 

standard deviation  the decision maker has to choose these parameters based on each expert’s 

bias and accuracy. Of course where past performance data is available, choosing these parameters 

is a much more straightforward task. Given these assumptions, the likelihood of getting 
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estimate from expert I, given that the true value of X is x, is obtained from a normal 

distribution with mean and standard deviation . 

3.5.6 The Panel of the Experts 

 

The experts were selected on the basis of their recognized expertise and experience in the 

field of medical risk assessment, patient safety, quality of medical care and also the 

specific adverse events that are of interest in this project. The experts were selected from 

a number of extremely reputable medical institutions including but not limited to, 

Harvard Medical School, Beth Isreal Deaconess Medical Center, Johns Hopkins 

University School of Medicine, George Washington University School of Medicine, 

Federal Food and Drug Administration and Sibley Memorial Hospital.  Table 3-3 

summarizes the expertise and the background of the expert panel, whose opinions were 

elicited in different stages of model building and model validation in this research. The 

panel includes experts from academia as well as private practice. 

• years of clinical data from one of Harvard Medical School’s major teaching hospitals  

 

ix

ix µ+ iσ

Expert Education Expertise

Expert 1 MD, Surgeon Faculty,Directo,Clinical System Analysis (15+ years), Physician (23 years)

Expert 2 MD, Surgeon VP Patient Safety and Quality (2 years), Physician (36 years)

Expert 3 MHA, RN Director, Quality Improvement and Risk Management (6 years), Nurse (30 years)

Expert 4 MD, PhD Faculty, Critical Care Medicine (14 years)

Expert 5 MD Risk management, CMO (1 year), Physician (20 years)

Expert 6 MD Pathologist, Neuclear Medicine, Rsik Mmanagement (4 years)

Expert 7 MD, Surgeon Patient Safety,Physician (20+ years)

Expert 8 MD Faculty, Internal Medicine and Residency Program Director, Physician (25 years)

Expert 9 MD Attending physician, Oncologist (8 years)

Expert 10 MD, PhD Faculty, Director, Quality and Safety Research Group

Expert 11 MD Deputy Director, National Clinical Public Health Program, Physician (4 years)

Expert 12 MBBS Patient Safety

Expert 13 MM Anesthesiologist with Expertise in Formal Risk Analysis

Expert 14 MD Pediatric Anesthesiologist

Expert 15 LSW Hospital Director of patient Safety and Risk management, Former Clinical Social Worker

Expert 16 MD Hematologist

Expert 17 MD Primary care
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Table 3-3.Panel of experts 
 

Some experts from this panel contributed only to parts of the modeling and quantification 

process, and some of the experts were involved in all stages of the modeling and 

quantification. 

3.5.7 Eliciting the Structure of the Models; Qualitative Part 

 

To construct the structure network (i.e.) for each of the Bayesian networks for specific 

hospital acquired adverse events that are studied for this research, namely Pressure Ulcer 

and Vascular catheter-Associated Infection (Line Infection) , and also the system 

dynamics part of the model, we started off by the factors existed in the literature and with 

the help of one the experts we drafted the sketch of the model. This first draft was then 

taken to each of the experts and was discussed with them in face-to-face interviews. The 

interview process was carried out in 3 different phases: 

Phase One: 

First the big picture of the research was presented. This included: 

1. The methodology that was used and the combination of system dynamics 

and Bayesian belief network formalism. 

2. Our hypothesis that healthcare organization’s decisions in response to 

unfavorable revenue gap to reduce costs and close the gap may in the long 

run affect the risk of adverse events in the hospital and ultimately increase 

the costs in many ways. Each of the formalisms (SD and BBN) was 

explained through several examples. 
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Each of the individual sub modules; a system dynamic model to address 

organizational level decisions and two Bayesian networks to depict a 

causal model for two specific adverse events (PU and Line infection), 

were then discussed in several interviews. 

Phase Two: 

In the second phase the first draft of each individual model was discussed, that is 3 

interviews for 3 sub modules (the system dynamics model, the pressure ulcer BBN and 

the line infection BBN) were conducted at this phase. This phase of interview included 

the following steps: 

1. Giving a brief introduction/mind refresher of the problem under study and 

the tool. For instance, if pressure ulcer BBN was the subject of the 

interview , a brief introduction to Bayesian belief networks (e.g. how they 

are constructed, what type of problems they could solve, what the 

variables and probabilistic relations meant, the conditional probability 

tables etc. ),was presented through several examples using the forms that 

can be found in appendix A&B. 

2. Expert was asked to look the first draft model (built based on literature 

and one of the expert’s opinion) and include, exclude, modify or edit in 

way, any variable or any causal relation between the variables. The analyst 

would record the expert’s justifications on his/her modification to the first 

draft model. 
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This phase of the interviews is purely qualitative. The goal of this phase is to reach a 

model that experts agree on and believe is sufficiently representative of the problem 

under study. 

Phase Three: 

After collecting expert’s opinions, their addition, deletion and modification to the first 

draft model, the analyst included all these modifications into the model, which resulted in 

an updated version of the model. This phase was done under the supervision of the expert 

who provided the original draft of the models. 

Next, this updated version of the model was taken back to each individual expert and 

each expert was asked to review the structure of this version (with all experts’ 

modifications and corrections included). In the case that experts still felt the need to make 

modifications, these modifications were discussed with other experts as well and after 

reaching a consensus was finalized into the model. This phase of expert interviews may 

have been done in more than one interview session. Then the experts were asked to rate 

the model on the scale of 0 to 100, in each of the following categories:  

1. Completeness. From your perspective, to what extent does this model 

capture all important and relevant phenomena for the particular problem 

that we are studying? On a scale from 0 to 100, 0 would correspond to a 

model that does not include some important and relevant details, whereas 

100 would correspond to a model that includes all details that you 

consider important. What number would you assign? 
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2. Accuracy: From your perspective, how accurately or realistically does the 

model depict important factors that influence risk of experiencing 

pressure ulcer? On a scale from 0 to 100, 0 would correspond to a model 

that is unrealistic, over-idealized or inaccurate, whereas 100 would 

correspond to a model that is realistic and accurate. What number would 

you assign? 

3.  Ease of understanding: From your perspective, how easy is it to 

understand the overall logic of the model. On a scale from 0 to 100, 0 

would correspond to a model that is difficult to follow, even with 

extensive explanation, and a 100 would correspond to a model that is 

readily understandable. What number would you assign? 

4. Perceived predictive validity: From your perspective, if you were to use 

this model, how well could you predict the risk of pressure ulcer?  On a 

scale from 0 to 100, 0 would correspond to a model that does not help at 

all with predicting effects, and a 100 would correspond to a model that 

predicts the effects very well. What number would you assign? 

 

The final product of these three phases, were models that were qualitatively verified and 

validated by experts and were ready for quantification. Phase four of the interviews was 

concerned with eliciting the parameters of the model, which will be discussed in the next 

section. 



 

Figure 3-7, summarizes the phases of model construction and the validation of the 

qualitative part of the models.

 

  

Figure 3-7.Model construction and q
 

It is worth mentioning that for elicitation of the structure of the models, for each sub 

model, each expert took part in four 30 minutes interview sessions. That is each expert on 

average spent about 6 hours in the course of 

validation of the qualitative (structure) part of the models (Pressure Ulcer BBN, Line 

Infection BBN and the SD model).  This is excluding the expert providing the first draft 
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, summarizes the phases of model construction and the validation of the 

qualitative part of the models. 

 

.Model construction and qualitative validation process 

It is worth mentioning that for elicitation of the structure of the models, for each sub 

model, each expert took part in four 30 minutes interview sessions. That is each expert on 

average spent about 6 hours in the course of 12 months, on the construction and 

validation of the qualitative (structure) part of the models (Pressure Ulcer BBN, Line 

Infection BBN and the SD model).  This is excluding the expert providing the first draft 

, summarizes the phases of model construction and the validation of the 

It is worth mentioning that for elicitation of the structure of the models, for each sub 

model, each expert took part in four 30 minutes interview sessions. That is each expert on 

12 months, on the construction and 

validation of the qualitative (structure) part of the models (Pressure Ulcer BBN, Line 

Infection BBN and the SD model).  This is excluding the expert providing the first draft 
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of the models, who dedicated on average half an hour of her time per week during this 

period. 

 

3.5.8 Eliciting the Parameters of the Model (Model Quantification) 

 

Expert judgment techniques are useful for model quantification where for various reasons 

including cost, uniqueness of the situation under study, difficulties and other reasons, 

none or not enough observations have been made in order to quantify data with real 

observed data. 

3.5.9 Formats of Elicitation 

 

Expert’s opinion on the quantity of interest can be elicited in different ways and forms.  

A. Direct Elicitation 

In this form of elicitation, we elicit a direct estimate of expert’s degree of belief on the 

issue under the study, which simply involves asking the expert to state his or her response 

and degree of belief on the subject. Different approaches and formats of elicitation may 

fall in this category. For instance, Response Scale; where experts choose between ranges 

of feasible responses presented to them, also is another method in this category 

(O’Hagan, 2006). 

Although direct elicitation is the most straightforward method of elicitation, some 

concerns in the literature have been raised about the reliability of the results of this 

method. Especially when probabilities are being elicited and from experts who are not 
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quite familiar with the notion of probabilities (Ayyub, 2001). Educating the experts with 

the basic concepts of probability, and finding an efficient way for asking the questions 

from experts, in a way that is closer to expert’s day to day experience may help alleviate 

this problem. For example if probability of the disease X is being elicited, instead of 

asking the experts “what is the probability that a patient will develop disease X?” it may 

be more efficient to ask “if you have 100 patients, how many of them would develop X, 

to your opinion”. In other words, asking the questions in terms of relative frequency 

rather than probability. 

B. Indirect Elicitation 

The indirect method is based on betting rates, in order for the experts to reach to a point 

that they are indifferent between the options that are presented to them. For instance, if 

you are presented with an opportunity to win 100$, and have an option to bet on event A 

or bet on throwing a “1” on a dice, which would you pick? If you pick betting on event 

A, it shows that your subjective probability of event A is greater than . A sequence of 

bets may be used to refine and specify the subjective probabilities of experts more 

precisely (O’Hagan 2006, Ayyub, 2001). 

 

3.5.10 Challenges and Generic Issues in Eliciting Expert Opinion 

 

Besides the task of selecting a group of experts that are able and willing to contribute to 

the elicitation process, which could turn out to be quite a demanding task, other issues in 

elicitation may also be of concern. One such challenge is the issue of “biases”. 

1

6
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Expert opinion is subject to biases; that is the possibility of overestimation, 

underestimation and overconfidence. Experts may provide their opinion with more 

certainty than is justified with their knowledge on quantities being assessed.  

Overconfidence is especially more common in assessing confidence intervals on an 

estimated quantity (Ayyub, 2001). Biases appear at many levels. Discussions in the 

literature (Bedford and Cooke, 2001, Otway and von Winterfeldt, 1992) could be found 

on mindset (unstated assumptions used by experts), structural biases (occurring through 

the level of detail in one parts of a study), motivational biases (when expert has a stake in 

the outcome of the study), cognitive biases (overconfidence for example), anchoring 

(when expert bases his or her opinion on an estimate given to him or her) and availability 

(when overestimates about events that can be recalled and underestimates about the 

events that are difficult to recall). 

Even though these problems could not be entirely avoided, it is possible to guard against 

and control them, at least to some extent, by taking effective measures such as providing 

needed training to the experts and the use of calibration techniques (Ayyub, 2001). 

Another challenge relating to quantitative expert elicitation, which could be seen in the 

literature is eliciting probabilities and the presentation format for communicating 

probabilities. For instance van der Gaag, et al. (2002), express that their experts had 

considerable difficulty understanding conditional probabilities using probability scales. 

For quantitative elicitation (including probabilities and conditional probabilities) we 

asked the experts for their opinion both in terms of probabilities and frequencies and 

fortunately no such difficulties were experience in communicating with the experts. 
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3.6 Validation and Verification 

 

Model verification and validation (V&V) are essential phases of model development 

process. Verification is the process that ensures that the conceptual model has been 

translated into a computer model with no mistakes and with sufficient accuracy. 

Validation on the other hand, ensures that the model addresses the problem at hand with 

sufficient accuracy, and meets the intended requirements from the methodology and 

results perspective. In other words, with validating a model we want to ensure that the 

model addresses the problem of interest and provides sufficiently accurate information 

about the system being modeled. We are emphasizing the term “sufficiently accurate”, 

since no model of the real world is 100% accurate, but validation ensures sufficient 

accuracy with reference to the purpose the model is being used (e.g. demonstration 

models vs. others) (Robinson, 1997). 

In Figure 3-8, Sargent (2004), shows how a verification and validation process needs to 

be involved in each step of the model building process, and also shows various forms of 

validations. There are many methods of verification and validation available to modelers, 

and unfortunately no study shows which are more effective and efficient, but below is a 

summary of some of the more common techniques (Robinson, 1997). 
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Figure 3-8.Simulation model verification and validation in the modeling process (Sargent, 2001) 
 

• Conceptual Model Validation (i.e. is the level of detail in this model sufficient to 

answer the question at hand? are the assumptions correct and are all important 

variables included in the model),  

• Data Validation (i.e. are data needed for model building and quantification 

accurate and reliable?),  

• White-Box Validation (i.e. does each part of the model represent the real world 

with desired level of accuracy?),  

• Black-Box Validation (i.e. does the overall model represent the real world 

accurately?) 

Carson (2002) also proposes a simple rather intuitive framework for verification and 

validation; 
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• Testing the model for face validity , i.e. examining the model’s output measures 

of performance for a given scenario and determining how reasonable they are 

• Testing the model over a range of input parameters, i.e. run sensitivity analysis 

and look for anomalies in the output 

• Compare model predictions to past performance of the actual system 

Much of what we have discussed in this section, is a reflection of simulation models’ 

validation literature, but in general could be applied to any type of model building 

activity.  In validating and verifying the models in this work, we have applied this general 

framework. The methodology presented in this work includes a system dynamics 

formalism (a simulation model) and Bayesian belief network formalism (a probabilistic 

network). The V&V process used to validate the models in research is twofold; 

qualitative validation and quantitative validation. Since the models in both cases have 

been developed using subject matter experts’ input, much of the qualitative validation 

(both in system dynamics and Bayesian belief network models) are rather built in the 

model development process. The models have been developed and matured to the current 

version through much iteration in many rounds of interviews with as many as 11 experts. 

The quantitative validation process in a nutshell, consists of using a few years of 

available data to build and calibrate the model and using data available for years other 

than the ones used for model building and calibration, to evaluate the performance of the 

models. More details are discussed on V&V for each of the models in chapter 4, where 

each model is discussed and the development and quantification steps are explained.  
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4 Model Development for Adverse Events; Pressure Ulcer 

In this chapter we will discuss the BBN model developed for risk of hospital acquired 

pressure ulcer. The chapter provides a background on pressure ulcer, risk assessment 

tools used to assess the risk of pressure ulcer, and finally development, quantification and 

validation of the pressure ulcer BBN. 

4.1 Introduction 

 

A Pressure Ulcer (PU) is a skin break that does not heal and often causes irritation. Heels, 

elbows and buttocks areas of the body are most at risk. As the National Pressure Ulcer 

Advisory Panel (NPUAP) defines it “Pressure Ulcer (PU) is a localized injury to the skin 

and/or underlying tissue usually over a bony area, as a result of pressure in combination 

with shear and/or friction”. The NPUAP further categorizes the severity of PUs in the 

following stages in Table 4-1: 

Stage 

1 

Intact skin with non-blanchable redness of a localized area usually over a bony 

prominence. Darkly pigmented skin may not have visible blanching; its color 

may differ from the surrounding area 

Stage 

2 

Partial thickness loss of dermis presenting as a shallow open ulcer with a red 

pink wound bed, without slough. May also present as an intact or open/ruptured 

serum-filled blister 

Stage 

3 

Full thickness tissue loss. Subcutaneous fat may be visible but bone, tendon or 

muscles are not exposed. Slough may be present but does not obscure the depth 
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of tissue loss. May include undermining and tunneling 

Stage 

4 

Full thickness tissue loss with exposed bone, tendon or muscle. Slough or eschar 

may be present on some parts of the wound bed. Often include undermining and 

tunneling 

 

Table 4-1.Different stages of pressure ulcer 
  

Though pressure ulcers are potentially preventable, unfortunately they present a common 

condition especially among high-risk population such as elderly and patients with 

impaired physical mobility (Reddy, Gill and Rechon, 2006).  

In the United States, studies suggest that in acute care the prevalence of pressure ulcer 

ranges from 3.5 to 29% (estimated at 15% by NPUAP ) (Ayello and Barden, 2002) , 2.2 

to 26% among those in long-term care and 10 to 17% in homecare (Reddy, et al., 2006). 

Some studies suggest that the prevalence figures in spinal units are as high as 50% 

[Keller, et al. 2002].  Literature also suggests similar prevalence statistics in European 

hospitals (Papanikolaou, et al., 2007). 

Pressure ulcers are painful for patients and costly to care for. An estimated 1.3 to 3 

million pressure ulcers are treated in U.S. hospitals every year with an estimated cost of 

$500 to $40,000 to heal each ulcer [Lyder, 2003,] and may even cost up to $ 75,000 per 

patient [Keller, et al. 2002, Reddy et al., 2006].  U.S. expenditures on treating pressure 

ulcers have been estimated to be $11 billion each year. This number in the UK has been 

estimated in a 1993 study to be in the range £180-£231 million, which accounts for 0.4 -
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0.8% of their health spending (Bennett, Dealey and Posnett, 2004). The development of 

pressure ulcers may also indicate neglect and mismanagement and have legal 

implications; 87% of litigation settlements regarding pressure ulcers in long-term care 

(LTC) settings have been in favor of LTC residents [Reddy, et al., 2006]. If pressure 

ulcers are to be prevented and the risk of PUs is to be controlled and reduced it is 

essential to identify patients who are at risk of experiencing this adverse event. Moreover, 

a range of preventive measures including use of pressure reducing mattresses and patient 

repositioning are available -even though limited information on their effectiveness exists-

(Baldi, et al., 2010) but before any prevention plans are put in place, some form of risk 

assessment of individual patient’s chances of PU should be carried out (Papanikolaou, et 

al., 2007, Borlawsky, 2004). Though some clinicians may believe that performing an 

informal PU risk assessment would suffice, research has shown that when a formal risk 

assessment is not undertaken, clinicians have consistently tended to intervene only at the 

highest levels of risk of PU, leaving many patients susceptible to the risk of hospital 

acquired pressure ulcer. It has also been shown that in studies where formal risk 

assessment was performed and preventive measures were taken accordingly, the 

incidence of PUs had dropped by 60%, with decreased severity of PUs and cost of care 

[Ayell and Braden, 2002]. In the next session, some of the more popular PU risk 

assessment tools are reviewed.  

4.1.1 Risk Assessment Tools 

 

Since a comprehensive and detailed risk assessment of every individual patient’s 

vulnerability to pressure ulcer, based on the principals of wound healing, requires 

gathering a vast amount of knowledge and may become practically impossible. Several 
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risk assessment tools or risk assessment scales (RAS) have been designed since the 

1960’s, as a shortcut to produce a quick assessment and help practitioners identify 

patients who are at risk of developing pressure ulcer. Current guidelines underline that 

RASs should be used as an addition to provider’s clinical judgment and not as a 

replacement. To date over 20 of such scales are described in the literature (Papanikolaou, 

et al., 2007]). These tools include, among others, the Norton scale [Norton, McLaren, 

Exton-Smith, 1962], the Gosnell scale (Gosnell DJ., 1973). , the Braden scale 

(Bergstrom, Braden, Laguzza, Holman 1987), the Waterlow scale (Waterlow, 1985). 

Some of these scales such as Norton’s and Waterlow’s have been developed in Europe 

and others were created in the United States.  

Typically, these scales produce assessments of a set of internal and external factors (e.g. 

mobility, nutrition, etc.) that are generally believed to be contributing factors in 

development of pressure ulcers. A numerical value is assigned to each of these factors 

based on patient’s conditions, and these values are then summed to create a total score. 

The total score is usually compared to a critical value or a cutoff point, and hence it is 

used as an indication of patient’s susceptibility to experiencing pressure ulcers.  

  Keller [2002] has summarized the risk factors considered by some of the well-known 

risk assessment scales. 
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Figure 4-1.Pressure ulcer risk factors (Keller, 2002) 
 

Between the above mentioned risk assessment tools, the Braden scale is perhaps the most 

widely used in the United States.   As a representative of this set of RASs , the Braden 

scale is discussed in the next session. 

4.1.1.1 The Braden Scale 

 

Following an observation that despite nursing staff’s attention to repositioning and care 

of the skin of nursing home’s patients in the US, poor nutritional condition was a major 

contributor to the formation of pressure ulcer, the Braden scale was developed in the 

1980’s to assess the susceptibility to the risk of pressure ulcer [Papanikolaou, et al., 2007, 

, and Braden et al., 1987]. The Braden risk assessment tool is a linear combination of six 

risk indicators, formally shown as: 

SB
 = Z1+ Z2+ Z3+ Z4+ Z5+ Z6 
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Where the parameters are: 

SB : The Braden score which represents the risk of developing  pressure ulcer; 

Z1 : Sensory perception 

Z2 : Activity score 

Z3 : Mobility score 

Z4 : Nutrition score 

Z5:  Moisture score 

Z6:  Friction and shear score 

 

Factors Z1 to Z3, sensory perception, activity and mobility cover the clinical situations that 

expose patients to intense and prolonged pressure. Factors Z4 to Z6, Nutrition, moisture 

and friction and shear cover the conditions that have an adverse effect on skin’s tolerance 

for pressure. Given that the nurses have received proper training, they can provide 

necessary preventive interventions based on an individual patient’s needs determined by 

the Braden score [Papanikolaou, et al., 2007, Ayello and Braden, 2001]. Figure 4-2, 

shows a formal worksheet for assessing a patient’s risk for developing pressure ulcer 

using the Braden scale. 

Each of these subscales is scored from 1-3 or 4, for total scores that range from 6-23. A 

lower Braden scale score indicates a lower level of functioning and, therefore, a higher 

level of risk for pressure ulcer development. A score of 19 or higher, for instance, would 



 

indicate that the patient is at low risk, with no need for treatment at this time. This is 

based on the initial suggested critical score for the B

breakdown, was thought to be commenced. This cut off point has since been disputed, for 

instance Bergquist and Frantz (2001) [Bergquist and Frantz, 2001, Papanikolaou, et al., 

2007] have suggested 19 as the cut off score. It has also been suggested that it may be 

more efficient for healthcare units to determine their own critical point, consi

needs of their patient population and local clinical settings.

 

 

Figure 4-2.Braden scale risk assessment worksheet
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the patient is at low risk, with no need for treatment at this time. This is 

based on the initial suggested critical score for the Braden scale, SB <16, at which skin 

breakdown, was thought to be commenced. This cut off point has since been disputed, for 

instance Bergquist and Frantz (2001) [Bergquist and Frantz, 2001, Papanikolaou, et al., 

2007] have suggested 19 as the cut off score. It has also been suggested that it may be 

more efficient for healthcare units to determine their own critical point, consi

needs of their patient population and local clinical settings. 

en scale risk assessment worksheet 

the patient is at low risk, with no need for treatment at this time. This is 

<16, at which skin 

breakdown, was thought to be commenced. This cut off point has since been disputed, for 

instance Bergquist and Frantz (2001) [Bergquist and Frantz, 2001, Papanikolaou, et al., 

2007] have suggested 19 as the cut off score. It has also been suggested that it may be 

more efficient for healthcare units to determine their own critical point, considering the 
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4.1.1.2 Validity and Reliability 

 

Given the number of available RASs, the question may be raised, whether and why one 

scale may be preferred over another. Literature suggests the clinician should decide to use 

a scale by examining its reliability and validity [Ayello and Barden 2001]. What is meant 

by reliability here is consistency, i.e. the degree of agreement among raters (inter-rater-

reliability). A common measure of reliability for a RAS is percentage agreement or the 

percentage of cases in which different clinicians/raters assign the same score to the same 

patients. Validity or accuracy on the other hand is the RAS’s ability in correctly 

predicting whether a patient will develop pressure ulcer. Predictive validity is twofold; 

sensitivity and specificity. Sensitivity is the percentage of patients who do develop a 

pressure ulcer and were indeed identified as patients ‘at risk’ by the RAS. Therefore good 

sensitivity for a risk assessment tool means correctly identifying “true positives” with 

minimum “false negatives”. Specificity is the percentage of patients who do not develop 

a pressure ulcer and were in fact identified as patients ‘not at risk’ by the RAS. Hence 

good specificity for a risk assessment tool means correctly identifying “true negatives” 

with minimum “false positives”. 

Even though the Agency for Healthcare Research and Quality (AHRQ) guidelines has 

mentioned two of these RASs (the Braden Scale and the Norton Scale) to be appropriate 

tools in assessing the risk of pressure ulcer due to the larger number of clinical research 

in support of their reliability and validity and having received the most clinical attention 

(Smith , 95) –although some studies have argued otherwise about their effectiveness ( 

Defloor and Grypdonck, 2004)-, unfortunately the validity and reliability of many of the 

pressure ulcer risk assessment scales are questionable and no general agreement exists 
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with respect to the usefulness of these scales (Keller, 2006, Pandorbo-Hidalgo, et al., 

2005). Many studies have reviewed these scales and a good number of them have 

examined the predictive validity of these risk assessment scales and have reported 

substantial variations in the predictive validity both within the same scale and across 

different scales when used in different health care settings and/or different patient 

populations (Papanikolaou, et al., 2007). For studies on the validation of some of these 

scales please see (among many): Spera et al, 2010, Seongsook, etal. 2003, Defloor and 

Grypdonck, 2004… 

 

4.1.1.3 Pitfalls of Scoring Approach to Risk Assessment 

 

Despite the fact that using risk assessment tools, in addition to clinician’s judgment, 

provides some useful information in identifying the patients at risk in developing pressure 

ulcer and helps practitioners make an informed decision in implementing appropriate 

preventive interventions, there are methodical shortcomings that are common between 

these RASs. 

In the scoring system that is used in these risk assessment scales to identify patients at 

risk and patients not at risk, every risk factor contributes equally to the overall risk score. 

In other words the scoring approach to risk assessment assumes that all the factors have 

equal effect on the overall risk of developing pressure ulcer. The equal-weighting 

approach while being the simplest way to scale scoring, fails to recognize that some 

factors may play a more significant role and therefore should have a larger contribution to 



 77 

the overall risk score (Papanikolaou, et al., 2007). For a more accurate predictive 

measure, the magnitude of the effect of each of the risk factors on the overall risk of 

developing pressure ulcer has to be considered, based on the importance that these factors 

empirically demonstrate. Failing to do so may project unrealistic risk scores that could 

possibly influence the effectiveness of the interventions and affect the allocation of 

resources. 

Another rather important deficiency of most of risk assessment scales is that the effect of 

all risk factors contributes linearly to the overall risk score. This completely overlooks the 

fact that a certain factor in presence of other factors may, for instance, exponentially 

increase the risk of pressure ulcer. For example, consider the Braden scale. Given that 

Sensory and Nutrition are influencing factors in risk of pressure ulcer but the magnitudes 

of this influence is in a) presence of impaired mobility and b) un-impaired mobility could 

be very different. 

4.2 Pressure Ulcer BBN Development 

 

To assess the risk of developing pressure ulcer as a function of individual patient’s risk 

factors and patient-provider (i.e. intervention related), a Bayesian Belief Network 

framework has been chosen. Use of BBNs in modeling the risk of experiencing pressure 

ulcers, not only alleviates the major criticism to the scaling risk assessment approach, 

namely the equal weighting of the risk factors, but also offers capabilities that could 

possibly provide more realistic, relevant and meaningful assessments; 

• Since we construct the Bayesian Network based on the conditional 

probabilities, no equal weighting of the factors is assumed. Based on the 
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importance of each factor and the strength with which these factors 

influence the risk of pressure ulcer (obtained from field data and also 

expert judgment) we can determine the conditional probability that a 

patient will experience pressure ulcer given the states of all the risk 

factors. 

• Using BBNs enables the analyst, to take into the account the fact that the 

degree of influence of one factor in risk of pressure ulcer may be different 

given the presence or absence of other risk factors. 

• Bayesian Belief Networks are probabilistic in nature and the uncertainty 

of our assessment of pressure ulcer risk, given the state of all relevant risk 

factors can be expressed explicitly. 

 

A Bayesian Belief Network, that includes or reflects the factors introduced in literature as 

factors influencing risk of pressure ulcer, has been developed. Additionally factors that 

the panel of experts thought to be of importance, and missing from the current risk 

assessment scales, have also been included. Figure 4-3 depicts this BBN. The validation 

process of the model has been detailed in section 4.4.  
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Figure 4-3.Pressure ulcer BBN
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a. Circulation Impairment:  

Poor blood circulation makes patients more susceptible to pressure ulcer. Although 

impaired circulation can be resulted from various conditions, in this model we have 

considered two major factors that may result in impaired circulation; diabetes and 

peripheral vascular disease (PVD). 

This is a binary factor in the BBN and the possible states are Impaired and Unimpaired. 

 

b. Peripheral Vascular Disease (PVD):  

Peripheral vascular disease refers to diseases of blood vessels located outside the heart 

and brain. It is a circulatory problem in which narrowed vessels reduce blood flow to the 

legs, arms and kidneys [American heart association, www.americanheart.org]. 

This is a binary factor in the BBN and the possible states are PVD present and PVD 

absent. 

 

c. Sensory Impairment:  

Sensory impairment refers to a defect in sensing or passing on the impulse, which affects 

patients’ ability to respond to pressure related pain and discomfort. Factors that may 

affect sensory impairment include diabetes, peripheral vascular diseases and focal 

neurological deficit. 

This is a binary factor in the BBN and the possible states are Impaired and Unimpaired. 
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d. Skin Integrity: 

Skin integrity is a description of whether or not patient’s skin is intact. A number of 

conditions/factors may affect the integrity of skin, which include: Nutrition (food intake), 

Moisture level (the degree to which skin is exposed to moisture), Steroid use, Mobility, 

and Circulation impairment. 

This is a binary factor in the BBN and the possible states are Normal and Abnormal. 

e. Mobility: 

Mobility refers to patient’s ability to change and control his/her body position. In the 

BBN this is a binary node with states Impaired and Unimpaired mobility. Mobility is 

generally considered the most important risk factor in developing pressure ulcer and a 

necessary condition [Allman, et al., 1995, Lindgren, et al. 2004]. Factors affecting an 

individual’s mobility impairment include: focal neurological deficit, central nervous 

system impairment, weakness and debilitation and morbid obesity. 

f. Frequency of Move: 

Another important factor in risk of developing pressure ulcer is whether the patient is 

being moved to different body positions frequently enough, especially when patient’s 

own ability to move and mobility is impaired. This node reflects whether the staff can/do 

move the patient as often as the patient should be repositioned -it is important to note that 

detecting and preventing pressure ulcers systematically is labor intensive (Perneger, et al., 

1998)- in order to reduce the risk of developing ulcer. This is also a binary node with 
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states: Adequate frequency of move and inadequate frequency of move. Adequacy of 

frequency of move on the other hand is influenced by staff adequacy (whether or not we 

have enough staff at the time to be able to frequently reposition the patient),  C-I Move 

(Counter indication to move ) (are there any limitations that may prevent the staff from 

moving the patient, for instance a patient recovering from open heart surgery) and morbid 

obesity (the heavy weight of the patient may make it extremely difficult for the staff to 

move the patient). 

Currently, there is no empirical evidence to show the optimal frequency of repositioning 

the patient and it should be done based on patient’s need, also taking into the account the 

surface upon which the patient is lying or sitting (Gunningberg, 2005). 

g. Assistive Devices: 

To relieve pressure, several strategies may be used including manual repositioning of the 

patients, which is discussed in “Frequency of Move” node of the BBN, and also use of 

assistive devices. These assistive devices include support surfaces such as cushions, 

mattress overlays, replacement mattresses or pressure relieving beds (Nixon et al., 2006),  

which reduce the risk of pressure ulcer (Reddy, et al., 2006, McInnes, et al., 2010). 

EUAP suggests that a patient receives appropriate preventive measures while in a chair or 

a bed if he or she is allocated one of the following (Gunningberg, 2005): 

1. A powered device (i.e. with an electrical supply) 

2. A non-powered device (i.e. low pressure foam mattress) and being repositioned 

every 2, 3 or 4 hours 

3. No special device but being repositioned every 2 hours 
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 The use of these assistive devices depends on their availability and also staff adequacy 

(whether or not the high level of workload prevents staff from providing patients with 

these devices). 

 

4.3 Pressure Ulcer BBN Quantification 

 

As discussed previously, building a Bayesian network for a certain application has three 

steps and involves three tasks. First, important variables and their possible states have to 

be identified. Second, the relationships between these variables are identified and are 

represented graphically with edges between the variables. The third phase is to obtain the 

numerical parameters, i.e. probabilities required for the quantification of the network 

from data or through domain expert elicitation (Druzdel and van der Gaag, 2000). The 

first two tasks that are concerned with establishing the structure of the network typically 

involve iterative and interactive sessions with domain experts. Multiple iterative cycles 

are required to revise the model(s), identify new variables and links or perhaps delete 

other variables and links and converge on a valid representation of the phenomenon that 

is being studied. For the first and the second task we have followed the process proposed 

by Marcot et al. (2006), for the peer review of the BBNs, were we started with a basic 

influence diagram as base model and followed the peer review process using the panel of 

domain experts to develop, refine and validate the BBNs (both pressure ulcer and line 

infection BBNs). The process of peer review of BBNs has been discussed in detail in 

section 3.5.7. While the first and second tasks require moderate effort and time, 
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experience indicates that the third task, which is the elicitation of the quantitative 

information including the conditional probability table or CPT, requires the most effort 

(Kjaerulff and Madsen, 2008). Certain Modeling techniques are available to make the 

third task more manageable, without (or with minimum) compromising the accuracy of 

the results. We have used some of these techniques in quantifying the BBNs in this study 

such as parent divorcing and Noisy-OR gates which are explained in the next section. 

4.3.1 Modeling Techniques  

 

There are a number of modeling techniques and methods that could be used to simplify 

the specification of a Bayesian network. One of the reasons that these methods may be 

applied is to simplify the knowledge elicitation process. Kjaerulff and Anderson (2008), 

cover these methods and techniques in two categories:  

1- Structure related techniques, that are used to adjust the structure of a 

probabilistic network 

2- Probability distribution related techniques for the specification of conditional 

probability distributions, including techniques for capturing uncertain 

information and for reducing the number of parameters to be specified 

Parent divorcing is technique from the first category, that reduces the number of 

probabilities to be assessed with making changes to the graphical structure of the BBN 

and Noisy-OR gates (and its generalizations) are an approach that falls into the second 

category which uses parametric probability distributions. Both of these techniques have 

been used in quantifying the BBNs in this research. Sections 4.3.1.1 and 4.3.1.2 explain 

these methods. 
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4.3.1.1 Parent Divorcing 

 

Parent divorcing is a modeling technique that is commonly used to reduce the complexity 

of specifying and representing the effect of a large number of cause variables (parent 

nodes) on a single effect variable (child node) in a Bayesian network, with adjusting the 

structure of the network. The idea is to introduce an intermediate variable or a dummy 

node between the cause node (i.e. parent node) and the effect node (i.e. child node), such 

that the dummy node captures the impact of its parents on the child variable, in order to 

limit the size of the parent sets. 

Figure 4-4, below depicts this idea through a simple Bayesian net. Child node “Y” has 

three direct parents . Applying the parent divorcing technique to Y and its 

direct causes results in creating a dummy variable “I” between Y and a subset of its 

parents , hence variable I will have as parents and variable Y will have  

and I as its parents. 

If we assume binary states for all of the variables in this example, and also assume the 

conditional probability distribution for the original network as depicted in Figure 4-4 

With the creation of dummy variable I, the BBN will change from figure 4-4.a to 4-4.c 

our conditional probability table will change to from figure 4-4.b to 4-4.d In other words 

instead of dealing with one distribution table of size 16 we create two tables of size 8 

(Kjaerulff and Madsen, 2008). Figure 4-4.d top, shows the probability distribution for

, and figure 4-4.d, bottom for . 

1 2 3, ,X X X

1 2,X X 1 2,X X 3X

1 2( , )P I X X 3( , )P Y X I



 

Figure 4-4.Parent divorcing 

4.3.1.2 Noisy-OR Gates 

 

In quantifying BBNs, some types of conditional probability distribution can be 

approximated with methods that require fewer parameters, and very often they 

approximate the true distribution sufficiently well while reducing the model building 

effort significantly (Onisko, et al., 2001). Noisy

generalizations is one of such approaches. Noisy

interaction between causes 

assumptions are: 

• s are each suffic

•  are independent of each other in causing Y

iX

iX
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In quantifying BBNs, some types of conditional probability distribution can be 

approximated with methods that require fewer parameters, and very often they 

approximate the true distribution sufficiently well while reducing the model building 

cantly (Onisko, et al., 2001). Noisy-OR gates by Pearl (1988) and their 

generalizations is one of such approaches. Noisy-OR gates are used to describe the 

interaction between causes and their common cause Y. Two crucial 

s are each sufficient to cause Y in absence of other causes

are independent of each other in causing Y 

1 2, ,..., nX X X

 

In quantifying BBNs, some types of conditional probability distribution can be 

approximated with methods that require fewer parameters, and very often they 

approximate the true distribution sufficiently well while reducing the model building 

earl (1988) and their 

OR gates are used to describe the 

and their common cause Y. Two crucial 

ient to cause Y in absence of other causes 
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If each of the causes , has a probability of being sufficient to cause Y, then the 

Noisy-OR gate methods enables us to populate the entire conditional probability table 

(CPT), with only n parameters, , where is the probability that effect Y will 

be true if cause is present and all other causes are absent. In mathematical 

representation; 

 

And the probability of Y given any subset of causess, that are present will be: 

 

This formula is sufficient to derive the whole conditional probability of Y, conditioned on 

causes  (Pearl, 1988, Onisko, et al., 2001). 

Extensions have been developed for the basic Noisy-OR gate such as Lemmer and 

Gossink (2004) propose a recursive Noisy-OR gate where the independence assumption 

of causes could be relaxed, and Henrion (1989) proposes a Leaky Noisy-OR gate for 

situations where the effect Y is true and all the causes are absent. This 

extension could be used where a model is not capturing all the possible causes. In Leaky 

Noisy-OR gate, a parameter called the leak probability is introduced and its value is 

the combined effect of all causes of Y that are not modeled; 
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Which represents the probability that all causes, , are absent but the effect Y 

is true. Henrion (1989) then derives the probability distribution of Y given a subset  

of the s which are present and the leak probability of as; 

 

Diez (1993), also proposes an extension to Noisy-OR gates that includes multiple states 

for variables rather than binary states in the original Noisy-OR.   

 

4.3.2 The Quantification Process 

 

To proceed with the quantification of the Bayesian net for pressure ulcer the following 

steps in modification of the net, without compromising the causal structure of the 

Bayesian net and the accuracy of the output, have been taken. 
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Figure 4-3, shows the pressure ulcer risk BBN, as it was qualitatively validated (factors 

and casual effects) by our panel of domain experts.  

Data to establish the conditional probabilities was obtained by querying a clinical data 

archive at a large urban US medical center. This data repository contains diagnostic codes 

and clinical outcomes for 70,090 inpatients hospitalized over a 2-year period. After 

obtaining IRB approval, structured queries were constructed to identify conditions that 

were present in two distinct cohorts of patients: 1) patients who did not acquire a pressure 

ulcer during hospitalization and 2) patients who did acquire a pressure ulcer during 

hospitalization. At the time of discharge, expert codification of up to 15 physiological or 

disease condition codes are assigned to characterize the patient and the episode of care. 

Pharmacy and laboratory data for some of the patients analyzed in some cases either to 

confirm one or more diagnostic codes, disambiguate clinical conditions or identify 

additional patients in the cohort. As an example, in the case of the node “Skin Integrity”, 
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which may be affected by Nutrition, Moisture Level, Steroid Use, Circulation Impairment 

and other factors not specified in the model, we extracted all cases of compromised skin 

integrity due to any reason (specified or unspecified in the BBN model), to ensure that 

any patient with skin integrity issues is accounted for in this model. Similarly, for the 

nodes “Circulation Impairment” and “Sensory Impairment” the two most prevalent 

causing factors for these conditions as experts have identified are “Diabetes” and 

“Peripheral Vascular Diseases or PVDs”, among others (which data may or may not exist 

for). In the quantification of this model, we have identified all the cases of circulation 

impairment and sensory impairment among the hospital population regardless of the 

cause, to make sure that all patients with these conditions are included in the model. One 

important step was to distinguish those patients who acquired a pressure ulcer during 

their hospitalization from those who were treated for the condition, but had the condition 

at the time of admission to the hospital. To do this, we constrained the queries using a 

special ‘Present on Admission’ code that is used to classify patient conditions at this 

medical center.  

Additionally, as it was explained in section 4.2, Mobility is a binary factor with states; 

Impaired Mobility =1, Un-impaired Mobility=0. The factors/conditions affecting a 

patient’s mobility are “Focal Neurological Deficit”, “CNS Impairment”, “Weakness 

/Debilitation” and “Morbid Obesity”. With the approval of experts, in quantifying this 

BBN we have assumed that if one of these causes is present then the patient will be 

considered to have mobility impairment. Since the factor “Mobility” is not readily 

available in datasets, to calculate the relative frequency of each state of the node 

“Mobility”, one can instead count the number of cases where at least one of the causes of 
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impaired mobility is present. This frequency divided by the total number of cases under 

study produces the relative frequency of states: “Impaired Mobility” and “Unimpaired 

Mobility”. 

 

 

Figure 4-5.Pressure ulcer BBN, transformation 1 
 

Hence, from data and quantification point of view the BBN will be transformed to Figure 
4-5. 
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Figure 4-6.Pressure ulcer BBN, transformation 2 
 

Frequency of Move is one of the most important and determining factors in a patient’s 

risk of experiencing pressure ulcer. Unfortunately due to the difficulty in collecting 

information for this node and determining whether the patient’s movement was adequate 

or not, this data does not exist in data bases [NOTE: some data exists, but it is unreliable, 

and there are a lot of false negative or β errors]. But we do have crisp data on the factors 

that experts think affect the frequency of move in a patient (e.g. mobility, CNS 

impairment, C-I move and Obesity (figure 4.6)). To deal with this situation and obtain the 

conditional probabilities of adequate and inadequate frequencies of movement and to 

capture the effect of four parent variables (Mobility, CNS impairment, Morbid Obesity 

and C-I Move) on the frequency of move, we are using the "parent divorcing technique" 

introduced in section 4.3.1.1, and creating a dummy node called "Aggregate Effect on 

Frequency of Move”, a binary variable with the following states: 
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1) High: when at least one of the four factors (Mobility, CNS Impairment, 

Morbid Obesity or CI move) is present 

2) Low: otherwise 

The probability of Frequency of move being adequate or inadequate is then conditioned 

on this “Aggregate Effect on Frequency of Move” node and "Staff Adequacy". Figure 4-7 

depicts this modification to the structure of BBN. 

 

 

Figure 4-7.Pressure ulcer BBN, final transformation  
 

4.3.3 The Conditional Probability Table (CPT) 

 

Between years 2008 and 2010, we have used 70,090 patient records to construct the 

conditional probability table. Out of these patients a total of 149 patients had developed 

pressure ulcers while in the hospital. Since only hospital acquired pressure ulcers were of 
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interest in this study, we have started with the year 2008 patient data because only after 

this year whether the pressure ulcer was acquired while in hospital or not, was actually 

specified in data bases. 

4.3.3.1 Marginal and Conditional Probabilities 

 

After importing the data to Microsoft Access, the number of patients with condition(s) 

specified as risk factors in pressure ulcer BBN were counted, and relative frequencies of 

these factors and the conditional probabilities required to populate the conditional 

probability table and quantify the BBN were calculated as follows. 

4.3.3.2 Marginal Probabilities   

 

1. Skin Integrity 

 States: 

i. Skin Integrity Compromised =1 

ii. Skin Integrity Uncompromised=0 

Total number of patients with Compromised skin integrity = 22905 

Total hospital admissions = 70090 

22905
(   ) 0.327

70090
(   U ) 0.673

p Skin Integrity Compromised

p Skin Integrity ncompromised

= =

=
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2. Circulation Impairment 

 States: 

i. Circulation Impaired = 1 

ii. Circulation Normal = 0 

Total number of patients with impaired circulation = 29202 

Total hospital admissions = 70090 

29202
(  ) 0.417

70090
(  ) 0.583

p impaired Circulation

p Normal Circulation

= =

=
 

3. Sensory Impairment 

 States: 

i. Sensory Impaired = 1 

ii. Sensory Unimpaired = 0 

Total number of patients with impaired sensory = 17743 

Total hospital admissions = 70090 

17743
(  ) 0.253

70090
(  ) 0.747

p Sensory impaired

p Sensory Normal

= =

=
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4. Mobility 

 States: 

i. Mobility Impaired = 1 

ii. Mobility Unimpaired = 0 

Any patient with Focal Neurological Deficit, Central Nervous System Impairment, 

Weakness/Debilitation or Morbid Obesity has been counted as a case of impaired 

mobility. 

Total number of patients with impaired mobility = 26289 

Total hospital admissions = 70090 

26289
(  ) 0.375

70090
(  ) 0.625

p impaired Mobility

p Unimpaired Mobility

= =

=
 

 

5. Aggregate Effect on Frequency of Move 

 States: 

i. High = 1 

ii. Low = 0 

Any patient with Central Nervous System Impairment, Morbid Obesity, Impaired 

Mobility or Counter Indication to Move (C-I Move) has been counted as patient with 

high aggregate effect on Frequency of Move. 
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Total number of patients with high aggregate effect on frequency of move= 26608 

Total hospital admissions = 70090 

26608
(   ) 0.389

70090
(   ) 0.621

p High Aggregate Effect

p Low Aggregate Effect

= =

=
 

 

6. Staff Adequacy 

 States: 

i. Adequate = 1 

ii. Inadequate=0 

Data on staff adequacy is not properly reported and recorded. The available data for 

627,595 patient cases used to quantify pressure ulcer BBN, indicates that in less than 6% 

of the cases staff adequacy was reported as being adequate and in over 94% of these 

cases data on staff adequacy was not recorded at all. Hence a more reliable estimate on 

the probability of “Staff Adequacy” would be obtained from subject matter experts. Some 

experts believed that this estimate would be different from one hospital to the other and 

the difference could be significant and pointed out that their estimates reflect their 

experience in their own institution. Table 4-2, shows experts estimates on the probability 

of staff adequacy. We will use these estimates as a prior, and update the probability of 

staff adequacy, with the staff adequacy probability obtained from the system dynamics 

part of the model, which calculates this probability as a function of patient complexity 

scores and the pressure to reduce operational costs, discussed in section 6.2.3. 
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Table 4-2.Expert opinion; staff adequacy 
 

4.3.3.2.1 Aggregating Experts Input 

 

To aggregate experts’ inputs which are given in the form of a point estimate, we will use 

a Bayesian framework, for treating non-homogenous data (Droguett and Mosleh, 2008, 

Droguett, 1999). The objective is to find the population variability distribution of x 

(e.g. Probability of Staff In-Adequacy). To simplify matters we assume a parametric 

distribution for . Let be the set of m parameters of , so that

. For instance, in the case of Lognormal distribution and: 

 

Uncertainty distribution over the space of ’s, is the same as the uncertainty 

distribution over the values of . Also, for each value of , there exists a unique  

and vice versa. Now our goal of estimating  reduces to estimating . Given the 

information/evidence available to us (denoted as E), in our case the estimates provided by 

our experts, and a prior distribution for , we can obtain an updated state of knowledge 

probability distribution over . That is, 

                            Staff Adequacy

Expert Adequate In-adequate

Expert 1 0.95 0.05

Expert 2 > 90% < 10%

Expert 3 80% 20%

Expert 4 85-90% 10-15%

Expert 5 95-98 % 2-5%

Expert 6 90% 10%
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Where; 

=Prior distribution of  

=Posterior distribution of , given the information/evidence E (m-dimensional 

joint probability distribution over values of ) 

=Likelihood of information/evidence E given  

The average distribution, of the distributions of x, is given by: 

 

The expected value of is given by: 

 

Using the expected (average) value of as the set of parameters of , we will obtain 

another point estimate of . In other words, , is the distribution with the 

mean value parameters.  

The likelihood function , is the probability of observing/eliciting the information 

E, given that the set of the parameters of the population variability distribution is . 
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Assuming that data from individual sub population (i.e. estimates from each expert) are 

independent, the likelihood function can be written as the product of each sub population 

likelihood function: 

 

Where is the i’th expert’s estimate. 

To aggregate experts’ opinion, using the Bayesian framework for non-homogenous data, 

discussed above, we are using version 1.5 of the R-DAT software (Prediction-

Technologies.com).  

The specification of the likelihood function depends on the type of information that is 

available. Expert-based likelihood that corresponds to the estimates of possible values of 

a quantity of interest (e.g. Probability of Inadequate Staffing) could be expressed with a 

lognormal likelihood model, and is specified in terms of median values and the analyst’s 

confidence in terms of standard deviation or error factor values. In this case we are 

assuming an error factor of 2 for all of our experts. 

Figure 4-8, shows the joint distribution of the parameters, of the distribution of 

“Probability of Inadequate Staffing”, and Figure 4-9 shows the average distribution of the 

population variability distribution set, with mean 0.105 and variance 3.24 E-3. 
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Figure 4-8.Joint distribution of the parameters, of the distribution of “Probability of inadequate staffing” 

 

Figure 4-9.Average distribution of the population variability distribution set 
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4.3.3.2.2 Conditional Probabilities 

 

7. Assistive devices 

 States: 

i. Used = 1 

ii. Unused = 0 

The probability of using assistive devices such as pillows, cotton blankets etc., which 

expand weight-bearing surface (e.g. using pillows under the calf to elevate patient’s heels 

off the bed surface) or reduce friction and/or shear is influenced by and conditioned on 

adequacy of staff. In other words do we have enough staff and does the workload allow 

them to utilize these devices that may reduce the risk of pressure ulcer. It should be 

mentioned that in the quantification of pressure ulcer BBN, we have assumed (with the 

approval of experts) that  items such as pressure reducing mattresses and pressure 

reducing mattress overlays would be used automatically if they are available since they 

will ultimately be charged to the patient and hence would not be a variable in this BBN. 

Unfortunately, data on usage of assistive devices is also not recorded as rigorously either 

and similar to the case of the node “Staff Adequacy” here in approximately 95% of cases 

no data at all was recorded and in 5% of cases data indicated that assistive devices were 

in use, and not a single record was found were no usage of assistive devices was reported. 

Once again experts’ opinion would be a more reliable source in obtaining the 

probabilities (conditional) of usage of assistive devices given different states of the 
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variable “Staff adequacy”. The information experts were to provide answers to the 

following: 

1- What is the probability of assistive devices being used, given we DO have 

adequate staff? i.e. :  

2- What is the probability of assistive devices being used, given we do NOT 

have adequate staff? i.e.:  

3-  What is the probability of assistive devices NOT being used, given we DO 

have adequate staff? i.e.:  

4- What is the probability of assistive devices NOT being used, given we do 

NOT have adequate staff? i.e.:  

To ask experts these questions a frequency approach was taken. For instance experts were 

asked :” If you have 10 patients, and you know that your staffing level is adequate , on 

how many of your patients assistive devices to reduce the risk of pressure ulcer will be 

used?”. 

From what experts provided, the following probabilities (Table 4-3) for usage of assistive 

devices given all possible states of staff adequacy were determined. 

 

Table 4-3.Expert opinion; probability of using assistive devices, given staff adequacy 

(  1  1)p Assistive Devices Staff Adequacy= =

(  1  0)p Assistive Devices Staff Adequacy= =

(  0  1)p Assistive Devices Staff Adequacy= =

(  0  0)p Assistive Devices Staff Adequacy= =

       Prob. Assistive Devices Used  Given Staff Adequacy Situation

Expert Adequate Staffing In-adequate Staffing

Expert 1 100% 20%

Expert 2 100% 25%

Expert 3 90% 40%

Expert 4 90% 30%

Expert 5 > 95% 20%

Expert 6 90% 25%
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To aggregate the experts’ estimates, we will use the Bayesian methods for treating non-

homogenous data, detailed in section 4.3.3.2.1. 

Figure 4-10, shows the average distribution of the population variability distribution set 

for “Probability of Assistive Devices NOT Used, Given Adequate Staffing”, with mean 

0.0477 and variance 0.0148. 

 

 

Figure 4-10.Average distribution of the population variability distribution set for “probability of assistive 
devices NOT used, given adequate staffing” 
 

Also the same procedure estimates the “Probability of Assistive Devices NOT Used, 

Given Inadequate Staffing”. Figure 4-11, shows the average distribution of the population 

variability distribution set, with mean 0.7 and standard deviation 0.06. 
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Figure 4-11.Average distribution of the population variability distribution set for “probability of assistive 
devices NOT used, given inadequate staffing” 

 

8. Frequency of Move 

 States: 

i. Adequate = 1 

ii. Inadequate= 0 

Inadequate frequency of move can increase the risk of developing pressure ulcers. As 

discussed before the frequency of move is influenced by many factors including 

Mobility, CNS impairment, Morbid Obesity, C-I Move and Staff Adequacy. As it was the 
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case for the nodes “Staff Adequacy” and “Assistive Devices”, no actual field data is 

recorded or available from data. To determine the conditional probabilities of adequate 

frequency of move and inadequate frequency of move given the different states of the 

abovementioned five parent nodes (cause factors), experts’ opinion in sought.  

To facilitate the process of ease the process of expert elicitation we discussed and 

employed “parent divorcing technique” in 4.1.3.1.1. To implement this technique we 

created a dummy node that would capture the aggregate effects of four of five influencing 

factors of Frequency of Move and creatively called it “Aggregate Effect on Frequency of 

Move” with two possible states High and Low. The primary purpose of using this 

technique was to reduce the amount of information and estimates of probabilities we 

needed to elicit from experts, to ensure the estimates that are provided by experts are 

more robust and reliable. Using this dummy node, instead of original 5, Frequency of 

Move had now 2 parent nodes which reduces the number of question to be asked from 

experts from 32 ( ) to 4 ( ) questions. After explaining to the experts what the 

aggregate effect on frequency of move being high or low meant, following type questions 

were asked to obtain their judgment on the probability of frequency of move being 

adequate or inadequate given the states of its parent nodes (cause factors). For instance; 

What is the probability of frequency of move being adequate, given that the 

aggregate effect on frequency of move is high and we DO have adequate staffing? 

i.e.:  

The following estimates in Table 4-4 were provided by the experts: 

52 22

(   1  1,  1)p Frequency of Move Aggregate Effect Staff Adequacy= = =



 

Table 4-4.Expert opinion; conditional probability of adequacy of frequency of move
 

We aggregate these probabilities that have been provided by experts using the Bayesian 

method discussed in 4.3.3.2.1

follows. 

Pr(    ,  )

( 0.126, var 0.012) 

Frequency of Move Inadequate Aggregate Effect

Log Normal mean iance

= = = =

− = =
 

Figure 4-12, shows the average distribution of the population variability 

Figure 4-12.Average distribution of the population variability distribution set for probability of inadequate 
frequency of move (a) 

Prob. Frequency of Move 

Aggregate Effect                                    High

Staff Adequacy Adequate                               In-Adequate

Expert 1 95%                                                   85%

Expert 2 > 80%                                                50%

Expert 3 70-80%                                             50-60%

Expert 4 >80%                                                 40-50%

Expert 5 98%                                                   80%

Expert 6 90%                                                    75%
E

x
p

e
rt

s
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.Expert opinion; conditional probability of adequacy of frequency of move 

We aggregate these probabilities that have been provided by experts using the Bayesian 

4.3.3.2.1. The results of experts’ estimates aggregation are as 

Pr(    ,  )

( 0.126, var 0.012) 

Frequency of Move Inadequate Aggregate EffectHigh Staff Adequacy Adequate

Log Normal mean iance

= = = =

− = =

, shows the average distribution of the population variability distribution set.

.Average distribution of the population variability distribution set for probability of inadequate 

Prob. Frequency of Move Adequate Given the States of Aggregate Effect and Staff Adequacy

                                   High                                          Low

Adequate                               In-Adequate Adequate                                               In-Adequate

95%                                                   85% 99%                                                                    99%

> 80%                                                50% >95%                                                                 >90%

70-80%                                             50-60% >90%                                                                  85%

>80%                                                 40-50% 1                                                                         >90%

98%                                                   80% > 99%                                                                >90%

90%                                                    75% 1                                                                         >95%  

We aggregate these probabilities that have been provided by experts using the Bayesian 

f experts’ estimates aggregation are as 

Pr(    ,  )High Staff Adequacy Adequate= = = =

distribution set. 

 

.Average distribution of the population variability distribution set for probability of inadequate 

Given the States of Aggregate Effect and Staff Adequacy

Adequate                                               In-Adequate

99%                                                                    99%

>95%                                                                 >90%

>90%                                                                  85%

1                                                                         >90%

> 99%                                                                >90%

1                                                                         >95%
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Pr(    ,  )

( 0.336, var 0.0174) 

Frequency of Move Inadequate Aggregate EffectHigh Staff Adequacy inadequate

Log Normal mean iance

= = = =

− = =
 

Figure 4-13, shows the average distribution of the population variability distribution set. 

 

Figure 4-13.Average distribution of the population variability distribution set for probability of inadequate 
frequency of move (b) 
 

 

Figure 4-14, shows the average distribution of the population variability distribution set. 

Pr(    ,  )

( 0.025,var 0.006)

Frequency of Move In Adequate Aggregate EffectLow Staff Adequacy Adequate

Log Normal mean iance

= − = = =

− = =
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Figure 4-14.Average distribution of the population variability distribution set for probability of inadequate 
frequency of move (c) 

 

Pr(    ,  )

( 0.06, var 0.0032) 

Frequency of Move Inadequate Aggregate EffectLow Staff Adequacy Inadequate

Log Normal mean iance

= = = =

− = =
 

Figure 4-15, shows the average distribution of the population variability distribution set. 
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Figure 4-15.Average distribution of the population variability distribution set for probability of inadequate 
frequency of move (d) 

 

The last step in quantifying pressure ulcer BBN, is to construct the conditional 

probability table for the node “Risk of pressure ulcer”, given all the risk factors. Given no 

hard data is available for “Assistive devices” and “Frequency of move”, we won’t be able 

to populate the CPT for “Risk of pressure ulcer” from data. On the other hand, if we want 

to elicit expert opinion for the CPT, it will be probability estimates, given that it 

has 5 parent nodes. Further, we have data for 3 of the parent nodes for 70,090 patients, 

that if we will leave rather unused if we only rely on subjective data. To make the best 

use of the existing hard data and to minimize the amount of information elicited from 

experts to ensure the reliability of the outcome of the elicitation, we will use the Noisy-

OR gate algorithm, explained in section 5.1.3.3.1.2. 

We have the probability of experiencing “Pressure Ulcer”, due to “Circulation 

impairment”, “Skin integrity”, and “Sensory impairment”, independently, from data. We 

52 32=
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elicited experts’ assessment on the probability that “Frequency of move”, and “Assistive 

devices” will independently cause pressure ulcer. Using these 5 probabilities (3 from data 

and 2 from experts), and using Noisy-OR gate algorithm, we can construct the whole 

CPT for “Risk of pressure ulcer”.  

To elicit the probability that inadequacy of “Frequency of move”, and “Assistive 

devices” not being used, independent of any other factor will cause pressure ulcer, the 

experts were asked the following questions.  

“To your opinion, out of 100 patients, how many are likely to experience pressure ulcer, 

because their frequency of move has been inadequate, regardless of any other risk 

factor?” 

“To your opinion, out of 100 patients, how many are likely to experience pressure 

ulcer, because their no assistive device was used during their hospitalization, regardless 

of any other risk factor?” 

Using Bayesian Framework that we discussed previously, we aggregate expert responses 

and assessments recorded in Table 4-5, and Table 4-6. 

     

Table 4-5.Expert opinion; probability of pressure ulcer due to inadequate frequency of move (left) 
Table 4-6.Expert opinion; probability of pressure ulcer due to lack of assistive devices (right) 

 

 

Expert Probability of PU Due to Inadequate Fqcy. of Move

Expert 1 <10%

Expert 2 <10% and >5%

Expert 3 5%

Expert 4 15%

Expert 5 5%

Expert 6 < 5%

Expert Probability of PU Due lack of Assistive Device Use

Expert 1 < 1%

Expert 2 2-3 %

Expert 3 1%

Expert 4 < 1%

Expert 5 5%

Expert 6 0
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As a result the probability that inadequate frequency of move will cause pressure ulcer 

independent of other factors has a lognormal distribution with

. 

Similarly, the probability that not using assistive devices will cause pressure ulcer 

independent of other factors, has a lognormal distribution with parameters

.   .    =0.018, 0.060assist devices on PU assist devices on PUµ σ = . 

Figure 4-16 and Figure 4-17 show the average distribution of the population variability 

distribution sets. 

 

 Figure 4-16.Average distribution of the population variability distribution for effect of frequency of 
movement on pressure ulcer 

.  .  0.0672, 0.038fqcy on PU fqcy on PUµ σ= =
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Figure 4-17.Average distribution of the population variability distribution for effect of using assistive 
devices on pressure ulcer 

 

 At this point, we have used GeNIe BBN software’s Noisy-Max option to quantify the BBN with 

Noisy-OR Gate procedure. As explained above, the probability of effect of each risk factor, on 

the risk of pressure ulcer (regardless of other factors), has been calculated from available data and 

experts’ opinion and is presented in Table 4-7. 

 

Table 4-7.Probabilities of the effect of risk factors, independently, on pressure ulcer 
 

Providing this input to GeNIe, we can calculate baseline probability of hospital acquired pressure 

ulcer (Figure 4-18). The model projects 3.3 E-3, for probability of pressure ulcer. 

Noisy-OR Gate
Total Records 70090

PU NPU Total Probability Complement
Sensory=1, Circul=0, Skin=0 2 1299 1301 0.001537279 0.998462721
Sensory=0, Circul=1, Skin=0 11 8234 8245 0.001334142 0.998665858
Sensory=0, Circul=0, Skin=1 39 10684 10723 0.003637042 0.996362958
Frqc on PU (adequate) 0.0672 0.9328
Assistive Devic. On PU 0.018 0.982
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Figure 4-18.Probability of hospital acquired pressure ulcer 

 

4.4 Pressure Ulcer BBN Validation 

 

As discussed in section 3.6, validation and verification is a vital step in any type of model 

development in general. In developing the Bayesian belief networks for this study, we started 

with a basic draft of a model that contained the important factors and relations between the 

factors discussed in the literature and the input of one of the experts. We then consulted the 

domain experts extensively through multiple sessions of face-to-face interviews and reached to 

the consensus model that is presented here as the final version. This consensus was reached after 

many iterations to the point that all experts agreed that model is now presenting all the known 

major factors affecting the risk of pressure ulcer (and the risk of line infection in the case of 

vascular catheter associated infection).  Naturally, peer review has been a crucial step in  

developing and qualitatively validating these models.  In such a peer review of the BBN models, 
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some steps and methods, suggested by Marcot, et al. (2006) have been generally followed. These 

steps include: 

• Introduction to BBN models 

o Introducing the concepts and general structure of the BBNs 

o Explaining how BBNs could be used to depict the causal and logical influences 

of key risk factors in pressure ulcer (and in line infection) 

o Explaining the general concepts of marginal (unconditional) probabilities for 

parent nodes and conditional probabilities of the child nodes 

• Introduction and display of the specific BBN for pressure ulcer (and line infection) to 

review (this step is repeated after each iteration of the model based on previous 

interviews with the experts) 

o Explaining the objectives of the pressure ulcer (line infection) BBN models: to 

assess the stochastic effects of the physiological, intervention related, and 

hospital level factors on the risk of pressure ulcer (line infection) 

o Explaining the nodes in the model, what has been other experts rational to 

include or exclude a node, and also the linkage between the nodes 

• Discussing the preliminary results 

o At the later stages of interview when the consensus on the factors and relations in 

the model is reached, with the available data the conditional probability table is 

constructed and a preliminary run of the model is presented. Also the concept of 

setting evidence and making inference is displayed. This specially helps  and 

familiarizes  the experts when they are asked for their opinion on some the 

probabilities that cannot be obtained from data  

A form was designed based on these steps to guide the BBN development/ validation interviews 

and is available in appendicies A&B. 
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4.4.1 Qualitative Validation of Pressure Ulcer BBN 

 

Qualitative validation and verification of the Bayesian models in this research, is really 

built in the model development process. The example given below is the case of Pressure 

Ulcer BBN.  The first draft of the model went through much iteration in expert 

interviews. Last, we asked our panel of experts to evaluate the last version of the model 

(the qualitative model) in following categories; model completeness, model accuracy, 

ease of understanding and perceived predictive validity, to ensure sufficient confidence in 

the structure of the model before proceeding to model quantification. This evaluation was 

performed through following question: 

1. Completeness. From your perspective, to what extent does this model 

capture all important and relevant phenomena for the risk of pressure 

ulcer? On a scale from 0 to 100, 0 would correspond to a model that does 

not include some important and relevant details, whereas 100 would 

correspond to a model that includes all details that you consider important. 

What number would you assign? 

2. Accuracy: From your perspective, how accurately or realistically does the 

model depict important factors that influence risk of experiencing pressure 

ulcer? On a scale from 0 to 100, 0 would correspond to a model that is 

unrealistic, over-idealized or inaccurate, whereas 100 would correspond to 

a model that is realistic and accurate. What number would you assign? 
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3.  Ease of understanding: From your perspective, how easy is it to 

understand the overall logic of the model. On a scale from 0 to 100, 0 

would correspond to a model that is difficult to follow, even with 

extensive explanation, and a 100 would correspond to a model that is 

readily understandable. What number would you assign? 

4. Perceived predictive validity: From your perspective, if you were to use 

this model, how well could you predict the risk of pressure ulcer?  On a 

scale from 0 to 100, 0 would correspond to a model that does not help at 

all with predicting effects, and a 100 would correspond to a model that 

predicts the effects very well. What number would you assign? 

The expert’s response to these questions, are summarized in Table 4-8. 

 

Table 4-8.Expert opinion; qualitative evaluation of pressure ulcer BBN 
 

All the experts unanimously agreed that to their opinion the pressure ulcer BBN and the 

line infection BBNs contained a comprehensive list of causing factors and the causing 

relations were accurately identified, but they felt more comfortable to score the models in 

the above four categories less than a prefect 100 because no model is ever perfect and 

there maybe factors (even though with marginal effects) that they have missed. This 

Completeness Accuracy Ease of Underestanding Predictive Validity

Expert 1 90 85-90 80 85-90

Expert 2 >90 >90 >90 >90

Expert 3 85-90 90 95 90

Expert 4 90-95 95 95 95

Expert 5 >90 >90 >95 70

Expert 6 >90 >90 >90 >90

Expert 7 95 95 95 85

Expert 8 90 90 90 90
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builds a lot of confidence, at least in the qualitative representation of the models.  The 

next section reviews the quantification challenges of Bayesian networks. 

4.4.2 Quantitative Validation of Pressure Ulcer BBN 

 

Relative frequency of hospital acquired pressure ulcer based on data for years 2003 to 

2011 are recorded in Table 4-9 . 

 

Table 4-9.Relative frequency of hospital acquired pressure ulcer; 2003-2011 
 

Compiling the Bayesian belief network, the model projected 0.0033, probability of 

pressure ulcer. 

Available hospital acquired pressure ulcer data, reflected in table above, fits a Normal 

distribution (Figure 4-19) with mean 0.0022. 

 

Figure 4-19.Distribution of the probability of hospital acquired pressure ulcer 

Fiscal Year Hospital Acquiered Pressure Ulcer Total Admissions Probability of Hospital Aquiered Pressure Ulcer
2003 59 32616 0.00181
2004 67 33202 0.00202
2005 78 33351 0.00234
2006 76 33507 0.00227
2007 86 35195 0.00244
2008 104 36912 0.00282
2009 95 35769 0.00266
2010 53 36848 0.00144
2011* 22 13373 0.00165

Probability Density Function

Histogram Normal

x
0.00280.00270.00260.00250.00240.00230.00220.00210.0020.00190.00180.00170.00160.0015

f(
x)

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0
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This indicates that there is approximately 30% error in the prediction of the model, for 

pressure ulcer probability. This error is expected, chiefly due to the following reasons: 

a) The modifications we made to the model, without which the quantification of the 

model would have been impossible due to the absence of data 

b) For some of the nodes (e.g. Frequency of Move) we had to elicit expert opinion, 

and since no recorded data is available for such a variable we had no way of 

calibrating experts’ inputs with the actual data. 

c) The quantification of model parameters is based on data for years 2008 and 2009, 

where we had reliable data available to us.  

d) Records only indicated whether the pressure ulcer was actually occurred while the 

patient was hospitalized (i.e. the patient was not admitted with pressure ulcer 

already present), since 2007. Prior to 2007 we only have the total number of 

patients with pressure ulcer (whether they acquired it in the hospital or not), and 

we had the hospital acquired pressure ulcer extrapolated. 

For the above reasons, the projection of the model has a larger error, compare to the 

line infection BBN, where we had data available for all the variables for 2002-2009 

(5% error). As more reliable data becomes available, one will be able to update the 

model with new information and obtain more precise results. This brings about the 

concept of model uncertainty, discussed in the next section. We have 2 ways of 

treating this model uncertainty; at the sub model level (BBN level), or at the hybrid 

model level (feeding a distribution as an input to the system dynamics model rather 
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than a point estimate). We have chosen the former, to avoid the propagation of the 

error at the BBN level to the hybrid model. 

4.4.2.1 Treating Pressure Ulcer BBN Model Uncertainty 

  

Predictive models are generally tools by which the modeler expresses his or her 

understanding of a particular unknown of interest. Since our knowledge about the true 

nature of this unknown is always incomplete, our expression of it inevitably involves 

uncertainty. In uncertainty analysis, we seek to address this lack of knowledge, with some 

confidence, in terms of the smallest range of possible values, which brackets the true 

value of the unknown of interest [Droguett, 1999]. These uncertainties are either 

associated with the values assumed by the model (“parameter uncertainty”) or with the 

structure of the model (“model uncertainty”). In this section our focus is on treating the 

model uncertainty in a Bayesian framework in order to improve the predictions made by 

pressure ulcer BBN model. 

Predictions made by models contain an error; the error being the difference between the 

values produced by the model and the actual realization of the unknown of interest. In our 

context, , where is the “true value” of pressure ulcer probability and is 

the model’s prediction. In this case, an estimate for the true value of probability of 

hospital acquired pressure ulcer is the actual relative frequency of pressure ulcer for a 

particular year. 

In order to improve the pressure ulcer probability prediction, we employ the Bayesian 

framework developed by Mosleh and Droguett (2008) to treat model uncertainty.  

mt pp −=ε
tp mp
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We are interested in assessing , the true probability of pressure ulcer. Let’s represent 

the BBN model’s prediction as our evidence, . Our objective is to develop an 

uncertainty distribution of pressure ulcer probability, , given the available evidence 

from our predictive BBN model. In its most general form, when we consider the pressure 

ulcer BBN model as a source of information, this uncertainty can be obtained as follows: 

 

 

where is the posterior distribution of pressure ulcer probability , is the 

prior distribution of , and , the likelihood function, or the probability of 

observing evidence  when the true value for probability of pressure ulcer . 

In this case, the form of information about the model is the performance of the BBN in 

predicting pressure ulcer probability. This information can be represented by the pair 

for year “i” for our model.  

The relationship between the prediction of the model and the unknown  is given 

through the additive error model, where the model estimate is the true value of the 

unknown plus a random error , and  represents the year of available 

performance data. Furthermore, we assume that performance data comes from a 

homogenous population. Since we are adopting an additive error model for pressure ulcer 

probability predictions, a flexible and practical form for the likelihood function is a 
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Normal distribution. Since we are dealing with the notion of probability that only 

assumes values between 0 and 1, we will use a truncated Normal distribution, bounded to 

0 and 1. The likelihood function is therefore a truncated Normal distribution with mean

, where  is a bias factor and  , is the standard 

deviation:  

where; 

 

 

The posterior function of parameters  is:   

 

where is the prior distribution of . 

For the case where the error terms depict a random behavior and display no trend, we can 

assume that are independent realizations of random variable  ,so we will have 
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Substituting this into the posterior function of parameters , we will have 

  

, is a normalizing factor.   

Finally, the likelihood of a new prediction of the model (for a future year) is 

 

The corresponding posterior of the new model prediction is: 

 

Where , is a normalizing factor. 

The model prediction for baseline probability of hospital acquired pressure ulcer is 

available from the pressure ulcer BBN; the actual probabilities of hospital acquired 

pressure ulcer are available in Table 4-9. Using this information, we can update and 

improve our BBN model predictions. 

Figure 4-20 shows the distribution of the posterior function of the prediction of the 

Bayesian method for hospital acquired pressure ulcer probability, taking into the account 
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the performance of the BBN model. This posterior has a me

compared to the average of actual data has 8% of error (compare to 33% error from the 

original prediction of the BBN).

All calculations have been done using “The Model Uncertainty Software,” a code 

developed by the Center for Risk and 

Park, in 2006 and it is available through this center.

Figure 4-20.Posterior Distribution of Probability of Pressure Ulcer; BBN 
Bayesian model uncertainty m
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the performance of the BBN model. This posterior has a mean of 2.4 E

compared to the average of actual data has 8% of error (compare to 33% error from the 

original prediction of the BBN). 

All calculations have been done using “The Model Uncertainty Software,” a code 

developed by the Center for Risk and Reliability at the University of Maryland, College 

Park, in 2006 and it is available through this center. 

.Posterior Distribution of Probability of Pressure Ulcer; BBN predication adjusted 
method 

an of 2.4 E-3, which 

compared to the average of actual data has 8% of error (compare to 33% error from the 

All calculations have been done using “The Model Uncertainty Software,” a code 

Reliability at the University of Maryland, College 

 

djusted using 
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5 Model Development for Adverse Events; Vascular Catheter-

Associated Infection 

 

In this chapter we will discuss the BBN model developed for risk of vascular catheter 

associated infection (i.e. line infection). The chapter provides a background on line 

infection, and development, quantification and validation of the line infection BBN. 

 

5.1 Introduction 

 

Central Venous Catheter (also called CVC, central line, or Vascular Access Device 

(VAD)), is a catheter that is placed into a large vein in the neck (internal jugular vein), 

chest (subclavian vein), or groin (femoral vein) to give medicines, fluids, nutrients or 

blood products to the patients. Intravascular catheters, as essential components of modern 

medical care, are one of the most commonly inserted medical devices in the United 

States, and also the most common cause of hospital acquired bloodstream infection, 

alongside urinary catheters. Unfortunately, most hospital acquired infections, in an 

already venerable patient population, are caused by the very same devices that are 

designed and used to provide lifesaving care. A study on medical intensive care units in 

the US has shown that 87% of bloodstream infections are attributed to central line 

(Trautner and Darouiche, 2004).  

Vascular catheters, disrupt the protective barrier of the skin, and can potentially provide 

microorganisms with direct access to the bloodstream, which can cause local or 

systematic complications and in most extreme cases may cause death. In this section, we 

have developed a risk model, using Bayesian Belief Network formalism, to assess the 
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risk of experiencing vascular catheter infection, as a function of patient, and patient-

provider factors.  

5.2 Vascular Catheter-Associated Infection BBN Development 

 

A comprehensive literature review has been conducted to extract what researchers 

believe to be risk factors in line infection. 

Richet et.al (1990), consider underlying disease, method of insertion, type of cannula 

(tube), type of dressing used,  duration and purpose of catheterization as important risk 

factor, indicating that the impact of factors such as site of insertion, receipt of 

antimicrobial agents before, during and after catheterization, and the frequency of 

intravenous therapy (IV) are unclear. Moro et al. (1994), conclude from their study, that 

duration of catheterization, jugular insertion, transparent dressing, TPN (total parenteral 

nutrition), second catheterization period and skin colonization and hub colonization show 

significant association with catheter infection. In another study, Mahieu et al. (2001), find 

that catheterization duration, exit site colonization, hub colonization, insertion at bedside, 

whether or not patient is on antibiotics at insertion and TPN duration among important 

factors that may affect the risk of line infection. 

A Bayesian Belief Network, that includes or reflects the factors introduced in literature as 

factors influencing risk of line infection, has been developed. Additionally factors that the 

panel of experts thought to be of importance have also been included. Figure 5-1 depicts 

this BBN. The validation process of the model has been detailed in section 5.4. 

Figure 5-1.Vascular catheter related infection BBN 
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The risk factors in this BBN, are divided in two broad categories, Insert Phase Risk 

Factors, and Access, Use and Maintenance Phase Risk Factors. 

A. Insert Phase Risk Factors: 

This category of risk factors is concerned with issues and situations that may lead to 

contamination of the insert, and cause the micro-organisms to gain entry during the 

insertion procedure, and subsequently cause blood-stream infection. These factors 

include: 

• Staff Adequacy: Availability of assistance to provider performing the 

procedure, during the insertion. Whether the unit has adequate staff 

available to perform the insertion helps reduce the chances of sterility 

break in the insert, and may also subconsciously reduce the chance of 

incompliance of an individual, in following the safety protocols. 

• Insert Provider Proficiency: provider’s proficiency, experience and 

judgment during insertion phase influences the likelihood of insert sterility 

break. Also provider’s proficiency decreases the likelihood of 

unsuccessful attempts to insertion and hence the probability of insert 

sterility breaks. 

• Insert Sterility Break: Concerns unrecognized break in sterile technique. 

• Insert IHI Bundle Compliance: The degree of compliance with the line 

insertion components of Institute for Healthcare Improvement’s (IHI) 

bundle protocol (www.ihi.org), such as hand hygiene, skin preparation and 

use of barrier precautions. 
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• Insert Environment: Optimum environment for procedure, for example 

procedure room controlled environment versus bedside. This factor also 

encodes whether the line has been inserted in an emergency situation 

which increases the likelihood of insert contamination. 

• Insert gross Contamination: Unrecognized gross contamination event. 

B. Access, Use and Maintenance Phase Risk Factors: 

This category of risk factors is concerned with issues and situations that may lead 

to contamination of the access area, while the line is in place and infection may be 

introduced to the blood stream during the maintenance phase of the line. These 

factors include: 

• Patient Anatomic Constraint: That influence; 

i. Site selection: for instance subclavian versus less desirable jugular 

or femoral vein 

ii. Choice of de novo insertion versus less desired change over guide 

wire 

iii.  Need to perform site maintenance procedures for example dressing 

change 

• Site Selection Optimum: Addresses the anatomic setting of catheter: 

i. Subclavian vein site: Inserting the line in the chest area  

ii. Jugular vein site: Inserting the line in the neck area 

iii.  Femoral vein site: Inserting the line  in the groin 

• Maintenance Site Optimum: Optimum maintenance of the insertion site; 

the integrity, manipulation and the state of dressing 
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• Access Frequency: Frequency of port access which influences the 

likelihood of access sterility break. In other words the more frequently the 

port is accessed, the higher the exposure of the access site to 

contamination would be. 

• Access Provider Proficiency: Provider’s proficiency, experience and 

judgment during the access or maintenance procedures affect the 

likelihood of access sterility break. 

• Access Sterility Break: Unrecognized break in sterility during the port 

access or use of the device. 

• Access Gross Contamination: Gross contamination of the site, i.e. access 

port or actual skin insertion site 

• Patient Resistance Factor: Physiological and pharmacological factors, 

influence resistance and susceptibility to infection. 

• Infection: Determines the probability of blood-stream infection given all 

possible states of the risk factors. 

5.3 Vascular Catheter-Associated Infection BBN Quantification 

 

To carry out the quantification of the line infection BBN, certain modifications had to be 

made to the structure of the BBN without compromising the integrity and accuracy of the 

model. In the consensus model shown in Figure 5-1, “Staff Adequacy” and “Insert 

Provider Proficiency” influence an intermediate node “Insert Sterility Break”, which in 

combination with “Insert IHI Bundle Compliance” and “Insert Environment” , affect the 

probability of “Insert Gross Contamination”. A similar node “Access Gross 
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Contamination” also exists in the maintenance phase of catheter lines. Gross 

contamination of insert and gross contamination of access port; influence the probability 

of bloodstream infection. 

Truth is, the contamination event is rarely witnessed but physicians know that it had to 

have occurred given the influencing factors. In the databases used to extract data for line 

infection BBN quantification, no record was found with documentation of a gross 

contamination. If that was ever obvious to the clinician, they removed the line 

immediately and started over. What we have recorded data on, are the precursors in the 

causal structure. Since data was available on whether these influencing factors (Staff 

Adequacy, Insert Provider Proficiency, Insert IHI Bundle Compliance, and Insert 

Environment) were present for each patient, and we also knew whether this patient had 

an infection or not, we could directly calculate the effect of these factors on the risk of 

infection, eliminating the intermediate nodes without compromising the accuracy or the 

integrity of the model. The same is true for the access and maintenance phase of the 

model, and we can safely remove the intermediate node of “Access Gross 

Contamination”, and directly measure the strength of the effect of the influencing factors 

(maintenance phase risk factors) on the risk of infection. Modifying the BBN, for the 

purpose of quantification, based on the justification provided above, results in the line 

infection BBN, depicted in Figure 5-2. 
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Figure 5-2.Line infection BNN; transformed 
 

Moreover, we have extracted line infection data from ICU patients, as the data were most 

reliable and the results could be extrapolated to the entire hospital. In any given 

institution most of the lines are in the ICU and very few lines on the floors, and in fact 

some institutions have rules were you cannot have a line on the floors. 

We have extracted and analyzed 12897, ICU patient records from October 2001 to 

September 2009. Figure 5-3 shows a few records of the data. 

 

Figure 5-3.Sample data records used for line infection BBN quantification  

EventID
Occurre
nceMont

h

Blood 
Stream 

Infection 
? 

(0=N;1=Y)

InsertEnvironment 
(0=Unknown;1=Optim

al;2=Suboptimal)

InsertProviderProficie
ncy 

(0=Unknown;1=Expert
;2=Novice)

StaffAdequate 
(0=Unknown;1=Y;2=N) 

BundleCompliance - 
(0=unknown;1=full 

compliance;2=partial 
compliance)

PtAnatomicConstraint 
(0=Unknown;1=Y;2=N) 

SiteSelection 
(0=Unknown;1=Opti
mal;2=Suboptimal)

AccessFrequency 
(0=Unknown;1=High
Frequency; 2=Low 

Frequency)

AccessProviderProf
iciency 

(0=Unknown;1=Exp
ert;2=Novice)

PatientResistanceF
actors 

(0=UnknownStatus;
1=High Resistance 

Capability;2=Dimish
ed Resistance)

AccessSterilityBrea
k 

(0=Unknown;1=Rar
e/Minor;2=Common

/Major)

1 Oct-01 1 2 1 0 0 0 2 1 1 1 2
2 Oct-01 1 2 2 2 0 2 2 1 1 1 2
3 Oct-01 1 1 2 1 0 2 1 1 2 2 1
4 Oct-01 1 2 2 1 0 2 1 1 2 2 0
5 Oct-01 0 1 2 1 2 2 2 1 1 1 1
6 Oct-01 0 2 2 1 1 2 1 1 1 1 2
7 Oct-01 0 1 1 1 2 2 2 2 1 1 1
8 Oct-01 0 1 1 1 2 1 1 1 1 2 1
9 Oct-01 0 1 2 1 0 2 2 1 1 2 1

10 Oct-01 0 1 2 1 0 2 1 2 1 1 1
11 Oct-01 0 1 2 1 0 2 2 1 1 2 1
12 Oct-01 0 1 2 1 0 2 2 2 1 1 1
13 Oct-01 0 2 1 1 1 0 2 1 1 1 1
14 Oct-01 0 1 1 1 1 2 2 2 1 2 1
15 Oct-01 0 1 2 1 1 2 2 1 1 2 1
16 Oct-01 0 1 2 1 1 2 1 2 1 1 1
17 Oct-01 0 2 1 1 1 2 1 1 1 1 1
18 Oct-01 0 1 1 1 1 1 1 2 1 2 1
19 Oct-01 0 1 2 1 2 2 2 2 2 1 1
20 Oct-01 0 2 2 1 1 2 2 1 2 1 2
21 Oct-01 0 1 2 1 1 2 1 1 1 1 1
22 Oct-01 0 1 2 1 1 2 2 2 1 1 1
23 Oct-01 0 1 1 1 1 2 2 1 2 1 1
24 Oct-01 0 1 2 1 1 2 2 2 2 1 1
25 Oct-01 0 2 2 1 1 2 1 1 1 2 1
26 Oct-01 0 1 1 1 1 2 2 1 2 1 1
27 Oct-01 0 2 1 2 1 1 2 1 1 1 1
28 Oct-01 0 2 2 1 1 2 1 2 1 2 1
29 Oct-01 0 1 1 1 1 2 1 2 2 2 1
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To calculate the marginal and conditional probabilities needed for quantification of the 

BBN, we have used parameter learning option of GeNIe BBN software developed by 

University of Pittsburg, PA. To learn parameters and populate the conditional probability 

table for an existing network with defined structure, after importing both the network and 

the data (in the form of a text file), we need to create a mapping between the variables 

defined in the network and variables defined in the data set. Data records that are 

unavailable could be identified as “N/A”, when importing data to the software. The 

results of the calculated marginal and conditional probabilities are discussed below. 

1. Staff Adequacy  

States: 

i. Adequate: 0.84 

ii. Inadequate: 0.16 

If we could confirm through documentation of a nursing note or the bundle 

checklist that a staff member was available (for assistance), it was declared N/A. 

If there was evidence of staffing, but also evidence of other distracting or 

competing activities, we also declared N/A. Note that the probability calculated 

here is used as a prior, and will be updated with the system dynamics model’s 

output on staff adequacy. 

2. Insert provider Proficiency 

States 

i. Expert : 0.59 

ii. Novice: 0.41 
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3. Insert IHI Bundle Compliance 

States 

i. Full Compliance : 0.84 

ii. Partial Compliance: 0.16 

Data is extracted straightforward based on the bundle elements. Notably, some of 

the factors for partial compliance are potentially weak influencers of infection, but 

we did not sub segment the compliance.  

4. Insert Environment 

States 

i. Optimal : 0.85 

ii. Suboptimal: 0.15 

When there was evidence in the electronic record documenting where the 

procedure took place, we were able to determine whether the insert environment 

was optimal. An optimal environment indicates that the environment was the ICU 

patient room (a semi-controlled environment) or the operating or procedure room. 

A common example of a score of suboptimal environment, would be the trauma 

room, ED or regular non-ICU clinical unit, or during an emergency resuscitation. 

5. Patient Anatomic Constraint 

States 

i. True: 0.11 
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ii. False: 0.89 

6. Site Selection Optimum 

States 

i. Optimal: 0.63 

ii. Suboptimal: 0.37 

7. Access Frequency 

States 

i. High frequency: 0.62 

ii. Low Frequency:0.38 

This is probably the most difficult to score. We based it on the concurrent use of drugs 

and invasive physiological measurements that were carried out. There is no widely 

accepted standard, but if the patient had 4 or more IV infusions, and concurrent central 

venous monitoring, we scored high frequency. All else were low frequency. If the patient 

died quickly, or there was poor documentation of route of administration of drugs or use 

of the line, it was declared N/A.  

8. Access Provider Proficiency 

States 

i. Expert: 0.78 

ii. Novice: 0.22 

This is also difficult to measure, but we assessed based on the primary nurse that was 

assigned. Patients actually have several nurses caring for them throughout a 

hospitalization, but we focused on their primary consistent nurse coverage. 
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9. Access Sterility Break 
 
States 

i. Rare : 0.9 
ii. Common/Major : 0.1 

If we found documentation of a break in the clinical annotation, we scored a major break. 

If there was documentation of access and documentation that the dressing was intact and 

that sterile procedures were followed for access and no documentation of a break, we 

gave them a rare break. If there was no documentation of access (i.e. absence of 

documentation that the site was inspected, dressing was intact, sterile procedures used, 

etc., then we were skeptical — i.e., suspected that there was a documentation problem, 

not necessarily the absence or presence of a break. So here, we declared N/A. 

10. Patient Resistance Factors 

States 

i. High Resistance Capability: 0.58 

ii. Diminished Resistance: 0.42 

If the patient was profoundly immunosuppressed, as evidenced in a diagnosis like 'Statis 

Post Bone Marrow Transplant', or 'Acute Lymphoma', then we readily scored them as 

diminished resistance. Some patients were receiving broad spectrum antibiotics, and if so, 

we scored them high resistance.  

11. Risk of Infection (Bloodstream Infection): 

States 

i. True 

ii. False 
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If a bloodstream infection was identified, and other sources were ruled out, we scored 

true. Note that if a patient developed a bloodstream infection, had a central line, but 

another source of infection was possible, the patient was scored as a false for line 

infection. 

Relative frequency of line infection based on data for years 2002 and 2009 are recorded 

in Table 5-1.Relative frequency of hospital acquired bloodstream infection; 2002-2009. 

 

Table 5-1.Relative frequency of hospital acquired bloodstream infection; 2002-2009 
 

Compiling the Bayesian belief network, using the above probabilities and the conditional 

probability table calculated, the probability of line infection produced by the model, using 

all data from 2002 to 2009, is 0.0322, which is very close to the relative frequency we 

can obtain from total number of line infections in these years, divided by total number of 

cases ( ). 

 

 

 

 

 

 

Year Probability of Line Infection
2002 0.050
2003 0.039
2004 0.037
2005 0.032
2006 0.023
2007 0.022
2008 0.024
2009 0.019

389
0.0302

12897
=
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5.4 Vascular Catheter-Associated Infection BBN Validation 

 

Both qualitative and quantitative validation of line infection BBN is discussed in this 

section. 

5.4.1 Vascular Catheter-Associated Infection BBN Qualitative Validation 

 

Similar process was employed to construct the Bayesian model for line infection, using 

the same panel of experts. After necessary changes and modifications were made to the 

first draft of the model, through multiple interviews with each expert, we asked experts to 

evaluate the qualitative model with respect to completeness, accuracy, ease of 

understanding to ensure sufficient confidence in the structure of the model. Table 5-2 

contains the results of this evaluation. 

 

 

Table 5-2.Expert Opinion; qualitative evaluation of line infection BBN  
 

5.4.2 Vascular Catheter-Associated Infection BBN Quantitative Validation 

 
Compiling the Bayesian belief network, using the above probabilities and the conditional 

probability table calculated, the probability of line infection produced by the model, using 

all data from 2002 to 2009 (Table 5-1 ), is 0.0306. 

Completeness Accuracy Ease of Underestanding Predictive Validity

Expert 1 90 90 80 90

Expert 2 >95 >95 >90 >95

Expert 3 90 90 90 90

Expert 4 90-95 90-95 95 90-95

Expert 5 >95 >90 >95 >80

Expert 6 >90 >90 >90 >90

Expert 7 95 95 95 90

Expert 8 85 85 85 85
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Line infection probabilities for years 2002 to 2009, could be represented by a Weibull 

distribution (as shown in Figure 5-4below), with mean 0.03125 

(and 10 percentile and 90 percentile values of 0.019 and 0.049 respectively).  The value 

produced by the BBN for the probability of line infection has 3% error compared to the 

mean of the distribution of line infection probability from data. 

 

Figure 5-4.Distribution of line infection probability; 2002-2009 
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6 Dynamic Model of Hospital-level Factors Affecting the Risk of 

Adverse Events 

 

Using system dynamics formalism, we are going to demonstrate how organizational level 

and policy level contributions to risk change over time, and how policies and decisions 

may affect the general system-level contribution to adverse event risk.  The dynamic 

model developed in this study, also captures the feedback of organizational factors and 

decisions over time and the non-linearities in theses feedback effects.  Given a baseline 

level of certain adverse events risk that every patient is exposed to, due to his or her 

physiological conditions and caregiver’s intervention, we are interested to see how this 

baseline risk may change because of the decisions/policies at the hospital level with 

regards to pressures to reduce operational costs, optimize length of stay and investments 

in proactive safety interventions. The baseline risk for specific adverse events that are of 

interest in this study (the lit is given in section 3.4.1), which accounts for patient level 

and provider-patient level factors are the out puts of the BBNs. Two such BBNs have 

been developed in this study for the risk of pressure ulcer and the risk of line infection. 

The organizational level factors that may affect these baseline risks however, are 

addressed in the system dynamics model discussed in this chapter. 
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6.1 Dynamic Model Development 

6.1.1 Introduction 

 

The focus of the dynamic model is a specific hypothesis. Combination of increasing costs 

and decreasing reimbursement has created tremendous financial constraints for healthcare 

organizations and additionally, insurers have increased pressure by imposing penalties for 

adverse events (at least certain adverse events listed in 3.5.2).This situation leaves 

hospitals in the following risk-relevant positions; they will have few resources to invest 

proactively in safety and they will have to make operational decisions (such as reduction 

in staffing) that focus on reducing costs, which nonetheless may increase the risk. 

The use of system dynamics formalism will help us model the evolution of 

internal/external financial and decision/policy factors on safety state of the organization. 

Our emphasis is on capturing the dynamic changes in safety state of the hospital as a 

function of reimbursement, financial penalties imposed by external agencies and 

productivity pressures. In other words we are modeling how, changes in the safety state 

of the organization, subsequently increase or decrease the risk of specific adverse events. 

6.1.2 Model Developing Process 

 

The process of developing the qualitative part of the model is very much similar to the 

development of the qualitative model for the Bayesian Networks. We started with a rough 

draft of the model, that represented how financial standing of the hospital leads to cost 

reduction strategies and constraints hospital ability to invest in safety, and how these 

decisions may increase risk of adverse events and the feedback effect of these adverse 
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events on hospital’s finances. Peer review has been a vital step in developing and 

qualitatively validating the dynamic model, as well as the Bayesian models. Our general 

framework for building (and qualitatively validating) the qualitative model using domain 

experts, follows the steps suggested by Marcot et al. (2006) in peer review of Bayesian 

Networks, which are quite applicable and useful in any influence diagram type, 

qualitative causal model building. The process of building the qualitative part of our 

system dynamic model, through interviews with subject matter experts, follows these 

guidelines; 

• First round of the interviews  

• Introduction to system dynamics formalism/models. 

• Explaining how system dynamics could be used to depict causal relationships, 

non-linearities in feedback effects and change over time. 

• Explaining the hypothesis of interest in the study, that how the financial wellbeing 

of the hospital effects the decisions to reduce costs and constraints investments in 

safety, and how these decisions may affect the risk of adverse events and finally 

the feedback effect of these adverse events on hospital’s finances. This step is 

conducted using the highest level of abstraction of the model. 

• Explaining the detailed version of the first draft of the model that was developed 

based on literature and with the help of one of the experts. 

• Asking the experts to review the first draft of the model and alter/modify it in any 

way they see fit, including adding, deleting, modifying any factor or causal 

relation/loop from this draft. 
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• Second round of the interviews 

• Discussing the second draft of the model, that contains all the 

modifications that experts had made to the first draft in the first round of 

interviews. Also explaining the justifications provided by other experts on 

the modifications they had possibly made to the first draft of the model. 

• Asking the experts to review the second draft and make any modifications 

necessary.  

• Third round of the interviews 

• Discussing the final, consensus model containing all modifications ( after 

a few iterations) 

• Asking experts to rate the qualitative model, from 0-100 , with respect to 

completeness, accuracy, ease of understanding and perceived 

predictability 

• Eliciting experts’  quantitative assessment on some of the nodes of the 

model (this step is discussed in more detail in section 4.3.2) 

 

6.1.3 The System Dynamics Model 

6.1.3.1 Introduction 

 

Decision making, policy and action relating to safety of the hospital is strongly 

influenced by its financial state. Complex relationship between operational expenses and 

reimbursement by external agencies influences overall revenue. Generally, increases in 

operational expenses and decreases in reimbursement rates lead to a revenue gap. U.S. 
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hospitals have consistent responses to such revenue gap. Usually one or a combination of 

the following strategies, are taken to deal with this revenue gap: 

• Limiting costs associated with managing patients, primarily by reducing length of 

stay (LOS) to a minimum 

• Reducing staffing 

• Limiting expenditures and investments in proactive safety interventions  

To demonstrate and the value and effectiveness of the hybrid technique used in this 

research (combination of system dynamics and Bayesian networks), we have developed a 

model that explores how risk of specific adverse events changes over time as a function 

of several system constraints. In particular, we are examining the impact of 

reimbursement, financial penalties and productivity pressures on the risk of hospital-

acquired adverse events such as infections, medication errors, falls and other patient 

injuries. In detail, the model includes: 

• The impact of increasingly (financially) unfavorable  reimbursement policies that 

have been established by private and public insurance companies  

• New financial penalties imposed by private and public insurance companies in 

response to specific adverse events (i.e.,  new policies under which 

reimbursement for care is not reimbursed when a hospital-acquired adverse event 

occurs)  

• Intense production pressures and pressures to reduce length of stay (LOS) in order 

to reduce costs assure reimbursement by insurance companies.  

The model captures the interactions of these factors on the probability of adverse events. 

By using system dynamics formalism, the model captures the effects of feedback 
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reinforcement on risk over time. The model captures the delayed effects of relaxing 

throughput pressure on the risk of adverse events, as reduced revenue eventually leaves a 

hospital with little or no resources to commit to proactive safety investments or maintain 

the current safety measures. In other words, the model not only considers organizational 

factors, but also takes into account the policy environment in which such decisions are 

made and how this changes over time.  

6.1.3.2 Model Structure; Key Variables and Important Feedback Loops 

  

The basic structure of the dynamic model to depict the organizational decisions and 

strategies to control the revenue gap and the effects of these strategies on the adverse 

event risk, has been built on a well-established and very common system dynamics 

concept, known as downward spiral or vicious circles. The concept has been widely used 

in modeling business processes, and social contexts. For instance, for a manufacturing or 

service providing company, unfavorable revenues may result in cost cutting strategies. 

Cost cutting strategies will cause service/quality loss which translates into revenue loss 

due to inferior service/quality which clearly worsens the unfavorable revenue situation 

that triggered this “vicious circle” or “downward spiral”. Figure 6-1 depicts this 

reinforcing loop. 
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Figure 6-1.Revenue deficit-loss of service downward spiral 
 

Figure 6-2, the highest level of abstraction of the model, depicts the key variables 

influencing the occurrence of adverse events, based on literature, interviews with clinical 

experts and field observations. The hypotheses that are to be validated with data, through 

this model are basically captured in the loop structures, explained in this section. These 

loops examine the effects of the strategies adopted by hospitals in response to their 

revenue gap on the risk of specific adverse events, and the feedback effect of these 

adverse events on the hospital’s financial wellbeing. 

Revenue

Cost Cutting
Strategies

Service/Quality
Loss

Revenue Loss due to
Service/Quality Loss R



 147 

 

Figure 6-2.System dynamics module; highest level of abstraction 
 

Hospital is providing a service and it costs a certain amount of money to deliver this 

service. Part or all of this cost will be reimbursed by patient’s insurance company, 

according to a predefined arrangement. Bases on the average number of days from 

previous year that each patient has stayed in the hospital for a certain diagnosis-related 

group (DRG), the insurance company informs hospitals of the amount of money that the 

hospital will be reimbursed for treating patients with that specific DRG. This 

reimbursement is subject to denial on the part of the insurance companies, for a number 

of reasons. One such a reason that is still being debated is the possibility that the hospitals 

will not be reimbursed for the cost they bear to care for certain hospital acquired 

conditions. The livelihood of a hospital, or any service providing organization for that 

matter, depends on the profitability of that organization. This imposes a pressure on 

managers and other levels of decision making in the hospital to maximize the differential 

Revenue Gap

Pressure to Close Revenue Gap
(Max. Profit)

Pressure to
Optimize LOS Pressure to Reduce

Operational Costs

Willingness/Ability to Invest in
Proactive Safety Interventions

Change in the Risk of
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Adverese Events
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cost/reimbursement, and in other words close the revenue gap. As a response to the 

pressure to close this gap, U.S. hospitals usually adopt one or a combination of the 

following strategies. 

6.1.3.2.1 Strategy 1: Reducing Length of Stay 

 

The unfavorable cost reimbursement differential in hospital creates pressure to maximize 

this differential (maximize profit). One of the ways this pressure manifests itself is 

through the pressure to reduce LOS to a minimum. 

In this model we have considered that the risk of specific adverse events that are of 

interest in this study could be affected in four different ways:  

• Change in the adverse event risk due to shortened LOS,  

• Change in the adverse event risk due to prolonged LOS  

• Change in the adverse event risk due to understaffing, and 

• Change in the adverse event risk due to lack of investment in proactive safety 

interventions 

The pressure to optimize LOS to the minimum required increases the chance that a 

patient will be discharged prior to readiness and before all needs are met. Hence the 

probability that the patient will experience an adverse event increases. Additionally, if an 

adverse event occurs to this patient, he or she will have to return to the hospital for 

treatment of the experienced AE, and therefore he or she is required to spend more time 

in the hospital, which makes the patient prone to the adverse events due to prolonged 



 149 

LOS. A decrease in safety investments also affects the probability of adverse events in all 

three categories of AE.  

6.1.3.2.2 Strategy 2: Reducing Staffing 

 

Another strategy to respond to the pressure to reduce operational costs is reduction in the 

level of staffing.  Staff reduction is based on a wishful thinking that it would be possible 

to care for the same number of patients with less staff, without degrading safety and 

quality of care.  This in short term reduces costs and sets cost/reimbursement differential 

on a favorable path, but in long run it may increase the probability of AEs, and may lead 

to increases in cost in many ways.  

6.1.3.2.3 Strategy 3: Reducing Proactive Safety Investments 

 

While it is in hospital’s best interest to invest proactively in safety, the unfavorable 

revenue may lead to policy decisions that avoid investment in proactive safety 

investments. This in the short time will save the hospital some money but in the long run 

increases the risk of experiencing adverse events. This strategy is analogous to the 

concept of reduced investment in maintenance in engineering systems. 

 

6.1.3.2.4 Feedback Influences 

 

On the other hand, increase in the number of adverse events increases the cost for 

hospital in many ways. It costs hospital more to provide care for the complications 

caused by adverse events. As a result of the AE, patients have to stay longer in the 



 150 

hospital and the hospital will bear the associated costs, and there will be no 

reimbursement for the cost of treating the experienced AE. Additionally hospital’s 

capacity will decrease and the hospital will be unable to admit new patients. Also more 

challenging reimbursement policies will be imposed on the hospital in future. On top of 

that, hospital will suffer the loss of trust and good will on patient’s end. 

Starting from the high level model in Figure 6-2 and after many revisions the model 

evolved to the more detailed version shown in Figure 6.3. Section 6.2 discusses the 

quantification of this model.  

 

 

 

 

 

 

 

 

 

 

Figure 6-3.System dynamics module; detailed version 
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6.2 Dynamic Model’s Quantification 

 

Based on available clinical data and experts’ assessment, the formulas for each of the 

nodes, the formulas representing the relationships between the nodes, and in case of the 

constants in the model the respective values of the nodes, have been derived and 

calculated. This section provides detailed discussion on these formulas and values. 

Operating Margin 

One of the measures hospitals use to evaluate how well they are doing financially, is 

“Operating Margin”. Operating margin (OM) is the ratio of operating income divided by 

revenue, and operating income is simply their revenue minus cost. 

 

Hospitals’ fiscal year starts on October first and ends on September thirty first. We have 

operating margin, operating dollars, and cost and revenue data available to us for years 

2003 through 2011, where 2011 data is partial, from October first 2010 to January first 

2011. Table 6-1 contains the available financial data.  

 

Table 6-1.Fiscal data 
 

Re
 arg

Re

venue Cost
Operating M in

venue

−
=

Year OM OM Dollars Revenue ( R) Cost ( C)

2003 -3.20% (14,600,000.00)$             $456,250,000.00 $470,850,000.00

2004 1.20% 13,600,000.00$              $1,133,333,333.33 $1,119,733,333.33

2005 3.40% 33,700,000.00$              $991,176,470.59 $957,476,470.59

2006 2.60% 27,500,000.00$              $1,057,692,307.69 $1,030,192,307.69

2007 4.70% 52,388,770.15$              $1,114,654,684.10 $1,062,265,913.94

2008 -0.90% (10,253,429.78)$             $1,139,269,975.04 $1,149,523,404.81

2009 1.30% 14,847,535.95$              $1,142,118,149.97 $1,127,270,614.02

2010 2.10% 24,044,442.35$              $1,144,973,445.35 $1,120,929,003.00

2011 3.50% 40,174,255.76$              $1,147,835,878.96 $1,107,661,623.20
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6.2.1 Soft Factors in the Model: ”Pressures” 

 

To understand how the financial stress, leads to managerial decisions at the hospital level 

to reduce loss and maximize profitability, we have introduced the concept of “Pressure to 

Close Revenue Gap”  into the model, which forces the decision makers to adopt cost 

cutting strategies that may influence the risk of specific adverse events. In other words, 

this pressure creates pressure to reduce length of stay, pressure to reduce operational 

costs (mainly staffing) and affects the organization’s willingness and ability to invest 

proactively in safety.  

Whilst these pressures are extremely real and visible to every health care professional in 

clinical settings (including all the experts interviewed for this study), they are soft, 

human-oriented factors that because they have not been reflected explicitly in any 

analysis or database for that matter, are very challenging to model mathematically. 

Naturally, expert judgment can play a significant role in, at least subjectively, 

formulating these concepts.  To be able to elicit expert’s opinion on the relationship 

between “Revenue Gap” and “Pressure to Close Revenue Gap”, the concept of pressure 

has to be communicated with the experts in such a way that the outcome of the elicitation 

process is sufficiently reliable. In other words, we had to make sure that the experts had a 

clear understanding of what our vision was about these pressures.   

In modeling soft factors of this kind, different approaches could be found in system 

dynamics literature. Some of these soft factors are easier to model than the others, mainly 

because some type of proxy (which we possibly have some data on) could be used in 

modeling them. For instance, Sterman (2000), in modeling generic structure for a labor 
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capacitated process uses “Desired Completion Rate / Standard Completion Rate” to 

formulate “Schedule Pressure”. On the other hand, there are also examples in the 

literature that in modeling some the soft factors, have relied solely on subjective 

assessment of the experts and experts’ belief about the certain entity being modeled and 

have not represented the soft factor using a measure  that corresponds to a physical entity. 

For instance, McCabe (1998) has used a scale of 0-1 to model airline employees’ moral, 

and Cooke (2004) has used a similar scale to represent management and personnel 

commitment to safety in modeling the operational risk in mining industry. 

 In modeling pressures in this model, even though interviews with experts revealed that 

the notion is rather clear to clinical professionals, to further ensure the reliability of the 

elicited information from experts on the soft factors of the model we decided to find a 

measure for these factors that was more tangible. This would allow us to be more 

confident that the questions from experts about the form, shape, effect and value of these 

pressures is being communicated correctly and us analysts, as well as our experts 

understand and mean the same thing about these soft factors. For this we relied on the 

notion of elasticity, used frequently in economics. 

Elasticity, in economics, is the ratio of the percent change in a variable to the percent 

change in another variable, and is used as a tool to measure the responsiveness of a 

function to changes in parameters in a dimensionless manner.  For example “price 

elasticity of demand”, ; 

 

dE

/    

   /
demanded demanded

d

Q Qpercent change in quantity demanded
E

percent change in price p p

∆
= =

∆
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Gives percentage of change in demand in response to one percent change in price, given 

all other factors such as income remain constant. 

We will utilize the concept of elasticity, in its general sense, to elicit experts’ opinion on 

the formulation of the four soft factors in the model (Pressure to Close Revenue Gap, 

Pressure to Optimize LOS, Pressure to Reduce Operational Costs, and 

Willingness/Ability to Invest in Proactive Safety Interventions). That is in interviewing 

experts for these soft factors, we anchored our questions on the elasticity concept so that 

the “Pressure to Close Revenue Gap”, etc. is connected to an actual physical measure, but 

the outcome of the elicitation is still subjective. 

1. Pressure to Close Revenue Gap 

Financial stress forces decision makers to adopt cost cutting strategies. We have 

established in the qualitative model, that in U.S. hospitals these strategies mainly include 

optimizing LOS, reducing operational costs and limiting proactive expenditure on safety. 

To model “Pressure to Close Revenue Gap” we asked the experts: 

“Lower or negative operating margins will force management to take one or a 

combination of cost cutting strategies. The worse the operating margin gets the higher 

the chances of adopting these strategies. Given the graph below (Figure 6-4), please 

mark what ranges of operating margins corresponds to the likelihood of some kind of 

cost cutting decision being enforced, to your experience. Use the range 0-1 for pressure, 

where 1 corresponds to the maximum level of pressure” 

 



 

 

 

Figure 6-4.Operating margin-pressure to close revenue gap relationship
 

To facilitate the elicitation process, the experts were given a few forms and graphs and 

were asked to select the form they thought best represented the relationship between 

operating margin and pressure to close revenue gap. They were also asked to mark t

threshold values on the graphs. 

to the experts. The complete interview sheet could be found
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pressure to close revenue gap relationship 

To facilitate the elicitation process, the experts were given a few forms and graphs and 

were asked to select the form they thought best represented the relationship between 

operating margin and pressure to close revenue gap. They were also asked to mark t

threshold values on the graphs. Figure 6-5, shows the format options that were presented 

to the experts. The complete interview sheet could be found in appendix 
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To facilitate the elicitation process, the experts were given a few forms and graphs and 

were asked to select the form they thought best represented the relationship between 

operating margin and pressure to close revenue gap. They were also asked to mark the 

, shows the format options that were presented 

in appendix C. 

 

20%



 

Figure 6-5.Operating margin-pressure to close revenue gap relationship; format options
 

Most experts chose the form of a step function, and a few experts picked the inverse S

shaped function. None of the experts believed that this relationship could be represented 

with a linear format. We picked a step function form, and aggregating the turning points 

on the graphs provided by experts, we arrived at the graph depicted in 

Figure 6-6.Expert opinion; operating margin/pressure to reduce revenue gap relationship
 

Given the outcome of the elicitation for the relationship between “Operating Margin” and 

“Pressure to Close Revenue gap”, we have to be able to manipulate this relationship in 

the system dynamics model, that is, the node “Pressure to Close Revenue Gap” is 

intermediate node between “Operating margin” and ultimately “Risk of Specific Adverse 

Events” (actual field data is available for both of them) and we have to be able to 
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pressure to close revenue gap relationship; format options

Most experts chose the form of a step function, and a few experts picked the inverse S

shaped function. None of the experts believed that this relationship could be represented 

with a linear format. We picked a step function form, and aggregating the turning points 

on the graphs provided by experts, we arrived at the graph depicted in Figure 

 

.Expert opinion; operating margin/pressure to reduce revenue gap relationship

Given the outcome of the elicitation for the relationship between “Operating Margin” and 

“Pressure to Close Revenue gap”, we have to be able to manipulate this relationship in 

the system dynamics model, that is, the node “Pressure to Close Revenue Gap” is 

intermediate node between “Operating margin” and ultimately “Risk of Specific Adverse 

Events” (actual field data is available for both of them) and we have to be able to 

pressure to close revenue gap relationship; format options 

Most experts chose the form of a step function, and a few experts picked the inverse S 

shaped function. None of the experts believed that this relationship could be represented 

with a linear format. We picked a step function form, and aggregating the turning points 

Figure 6-6. 

 

.Expert opinion; operating margin/pressure to reduce revenue gap relationship 

Given the outcome of the elicitation for the relationship between “Operating Margin” and 

“Pressure to Close Revenue gap”, we have to be able to manipulate this relationship in 

the system dynamics model, that is, the node “Pressure to Close Revenue Gap” is an 

intermediate node between “Operating margin” and ultimately “Risk of Specific Adverse 

Events” (actual field data is available for both of them) and we have to be able to 
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calibrate the “Pressure to Close Revenue gap” to get the best fit to the actual data. In 

order to do this though, we have to convert this step function to the closest parametric, 

functional forms. 

The best parametric function that fitted the experts’ input is a negative Sigmoid function 

in the form of: 

  

Where: 

PCRG: Pressure to Close Revenue Gap 

RG: Revenue Gap 

And, are the parameters of the model. Fitting the negative Sigmoid function to 

experts’ assessments reveals the optimum values for the parameters as; 

 

Figure 6-7, shows the function for “Pressure to Close Revenue Gap” using the optimum 

values for the parameters. 
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Figure 6-7.Operating margin/pressure to 
 

As it is evident from the graph, experts believe that organizational tolerance for loss is 

rather very small, the pressure to make decisions in order to close the revenue gap spikes 

rapidly and dramatically

Additionally, there is always a pressure even though very small to maximize profit.

2. Pressure to Optimize LOS

Pressure to close revenue gap, leads decision makers towards cost cutting strategies. One 

of those strategies is optimizing LOS or reducing LOS to the minimum required, which 

we have argued that affects the probability of experiencing certain adverse events. In 

formulating the relationship between pressure to close revenue gap, and pressure to 

optimize LOS, again we have utilized the concept of elasticity in eliciting experts’ 

assessments of such relationship.

A tangible and real entity to clinical professionals, that we could relate to the pressure to 

optimize LOS, is the concept of “

systematically visit unit by unit and decide which patients could theoretically be 

discharged. These meetings are real actions that take place in part in response to the need 
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.Operating margin/pressure to reduce revenue gap relationship; functional form

As it is evident from the graph, experts believe that organizational tolerance for loss is 

rather very small, the pressure to make decisions in order to close the revenue gap spikes 

rapidly and dramatically, when the hospital is experiencing financial distress. 

Additionally, there is always a pressure even though very small to maximize profit.

Pressure to Optimize LOS 

Pressure to close revenue gap, leads decision makers towards cost cutting strategies. One 

of those strategies is optimizing LOS or reducing LOS to the minimum required, which 

we have argued that affects the probability of experiencing certain adverse events. In 

formulating the relationship between pressure to close revenue gap, and pressure to 

optimize LOS, again we have utilized the concept of elasticity in eliciting experts’ 

assessments of such relationship. 

A tangible and real entity to clinical professionals, that we could relate to the pressure to 

optimize LOS, is the concept of “utilization review meetings”, where physicians 

systematically visit unit by unit and decide which patients could theoretically be 

discharged. These meetings are real actions that take place in part in response to the need 

 

reduce revenue gap relationship; functional form 

As it is evident from the graph, experts believe that organizational tolerance for loss is 

rather very small, the pressure to make decisions in order to close the revenue gap spikes 

, when the hospital is experiencing financial distress. 

Additionally, there is always a pressure even though very small to maximize profit. 

Pressure to close revenue gap, leads decision makers towards cost cutting strategies. One 

of those strategies is optimizing LOS or reducing LOS to the minimum required, which 

we have argued that affects the probability of experiencing certain adverse events. In 

formulating the relationship between pressure to close revenue gap, and pressure to 

optimize LOS, again we have utilized the concept of elasticity in eliciting experts’ 

A tangible and real entity to clinical professionals, that we could relate to the pressure to 

”, where physicians 

systematically visit unit by unit and decide which patients could theoretically be 

discharged. These meetings are real actions that take place in part in response to the need 



 

to reduce LOS, and they actually increase in

need to reduce LOS increases. Nevertheless, depending on the physical conditions of the 

patients these patients may or may not achieve actual discharges of the patients. To be 

able to reliably elicit experts’ opin

utilization review meetings’ frequency as a proxy to evaluate the level of pressure to 

reduce LOS. 

 

To model “Pressure to Optimize LOS” we asked the experts:

“Given your assessment on “Pressure to Close Rev

“Operating Margin”, what is the likelihood of observing a change (increase or decrease) 

in frequency of the utilization review meetings given the level/ranges of organizational 

pressure to close revenue gap, maximize profitabili

these ranges in the graph that best represents this relationship 

6-8)” 
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to reduce LOS, and they actually increase in frequency (maybe even twice daily) as the 

need to reduce LOS increases. Nevertheless, depending on the physical conditions of the 

patients these patients may or may not achieve actual discharges of the patients. To be 

able to reliably elicit experts’ opinion on “Pressure to Optimize LOS” we will use the 

utilization review meetings’ frequency as a proxy to evaluate the level of pressure to 

To model “Pressure to Optimize LOS” we asked the experts: 

“Given your assessment on “Pressure to Close Revenue Gap”, as a function of 

“Operating Margin”, what is the likelihood of observing a change (increase or decrease) 

in frequency of the utilization review meetings given the level/ranges of organizational 

pressure to close revenue gap, maximize profitability and minimize costs?. Please mark 

these ranges in the graph that best represents this relationship to your opinion (

    

frequency (maybe even twice daily) as the 

need to reduce LOS increases. Nevertheless, depending on the physical conditions of the 

patients these patients may or may not achieve actual discharges of the patients. To be 

ion on “Pressure to Optimize LOS” we will use the 
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enue Gap”, as a function of 
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ty and minimize costs?. Please mark 

to your opinion (Figure 

 



 

Figure 6-8.Pressure to close revenue gap
 

Most experts chose the form of a step function, and a few experts picked the exponential 

function, with different slope

be represented with a linear format. We picked a step function form, and aggregating the 

turning points on the graphs provided by experts, we arrived at the graph depicted in 

Figure 6-9. 

Figure 6-9.Expert opinion; pressure to reduce revenue gap relationship/pressure to optimize LOS 
relationship 
 

Interestingly enough, most exp

regardless of the financial pressures, there is always some level of pressure to optimize 
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.Pressure to close revenue gap-pressure to optimize LOS relationship; format options

Most experts chose the form of a step function, and a few experts picked the exponential 

function, with different slopes. None of the experts believed that this relationship could 

be represented with a linear format. We picked a step function form, and aggregating the 

turning points on the graphs provided by experts, we arrived at the graph depicted in 

 

.Expert opinion; pressure to reduce revenue gap relationship/pressure to optimize LOS 

Interestingly enough, most experts marked the intercept greater than 0, meaning that 

regardless of the financial pressures, there is always some level of pressure to optimize 

pressure to optimize LOS relationship; format options 

Most experts chose the form of a step function, and a few experts picked the exponential 

s. None of the experts believed that this relationship could 

be represented with a linear format. We picked a step function form, and aggregating the 

turning points on the graphs provided by experts, we arrived at the graph depicted in 

.Expert opinion; pressure to reduce revenue gap relationship/pressure to optimize LOS 

erts marked the intercept greater than 0, meaning that 

regardless of the financial pressures, there is always some level of pressure to optimize 
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LOS. In this case also, similar to the case of “Pressure to Close Revenue Gap”, and with 

the same rationale, we have to convert this step function to the closest parametric, 

functional forms. The best parametric function that fitted the experts’ input is a negative 

exponential function in the form of: 

 

Where: 

PRLOS: Pressure to Reduce LOS 

PCRG: Pressure to Close Revenue Gap 

and ,  , are model parameters.  

Fitting the negative exponential function to experts’ assessments reveals the optimum 

values for the parameters as; 

 

Figure 6-10, shows the function for “Pressure to Optimize LOS” using the optimum 

values for the parameters. 
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Figure 6-10.Pressure to reduce revenue gap re
form 
 

3. Pressure to Reduce Operational Costs

Another strategy to close revenue gap and maximize profitability, is reducing the 

operational costs. The largest piece of operational costs in hospitals

impacted by such strategies is admittedly staffing. Reduction in staffing that could 

potentially have great impact on the risk of certain adverse events, concerns reduction in 

nursing staff. Physicians are usually not affected greatly by 

since they are able to generate revenue. Before we talk about formulating this node of the 

model, we will briefly discuss how staffing is structured in the hospitals.

When it comes to staffing, ideally the decision maker knows th

number of staff with certain level of expertise is needed to care for certain number of 

patients with a certain range of problems. So the decision maker looks at the pool of 

nurses and if enough nurses are not available they use what 

that are nurses who work on temporary assignments usually through specialized 
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.Pressure to reduce revenue gap relationship/pressure to optimize LOS relationship; functional 

Pressure to Reduce Operational Costs 

Another strategy to close revenue gap and maximize profitability, is reducing the 

operational costs. The largest piece of operational costs in hospitals

impacted by such strategies is admittedly staffing. Reduction in staffing that could 

potentially have great impact on the risk of certain adverse events, concerns reduction in 

nursing staff. Physicians are usually not affected greatly by decisions to reduce staff, 

since they are able to generate revenue. Before we talk about formulating this node of the 

model, we will briefly discuss how staffing is structured in the hospitals. 

When it comes to staffing, ideally the decision maker knows that optimally, certain 

number of staff with certain level of expertise is needed to care for certain number of 

patients with a certain range of problems. So the decision maker looks at the pool of 

nurses and if enough nurses are not available they use what is known as Per Diem

that are nurses who work on temporary assignments usually through specialized 

 

lationship/pressure to optimize LOS relationship; functional 

Another strategy to close revenue gap and maximize profitability, is reducing the 

operational costs. The largest piece of operational costs in hospitals that is directly 

impacted by such strategies is admittedly staffing. Reduction in staffing that could 

potentially have great impact on the risk of certain adverse events, concerns reduction in 

decisions to reduce staff, 

since they are able to generate revenue. Before we talk about formulating this node of the 

 

at optimally, certain 

number of staff with certain level of expertise is needed to care for certain number of 

patients with a certain range of problems. So the decision maker looks at the pool of 

Per Diem nurses, 

that are nurses who work on temporary assignments usually through specialized 
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placement agencies or through hospital staffing pools. So in an ideal situation, where 

there is no expenditure constraints you can always optimally staff using per diem nurses, 

but these services are very expensive and they cost much more than using staff nurses 

(i.e. the hourly rate).  

There are a number of ways, in which hospitals take action to control and reduce staffing 

costs;  

1. There are many different ways of staffing and each impacts the costs differently. 

Probably the most expensive way, is to staff with hospital’s employees and filling 

the gaps with agency nurses. The first response to pressure to reduce staffing is 

eliminating agency or per diem nurses. Although there are of course exceptions, 

for instance if there is an epidemic of Influenza and the hospital has none of its 

own staff available, agency nurses have to be used regardless. 

2. The second approach to reduce staffing costs is eliminating overtime within the 

hospital’s staff. Overtime is very costly for the hospitals (e.g. time and a half in 

OR), and to assign nurses, they have to make sure to use nurses that are not 

overtime and almost mandate them to cover the shift the hospital needs. Hence in 

tight financial constraints, elimination of overtime is another measure that is taken 

to reduce staffing costs. 

3. Depending on the type of unit you are staffing, there is some flexibility in terms 

of the composition of the staff. There are Registered Nurses (RNs, have 

completed college nursing program and have passed a national licensing exam), 

Licensed Practical Nurses (LPNs), Patient Care Technicians ( PCTs, usually a 

high school degree with some additional training). They have all been trained in 
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patient care, but with different levels of education and experience. In a perfect 

situation, the person who is staffing a floor or a unit would use RNs. But that is an 

expensive model, so the tasks that could be done by LPNs, hence the composition 

changes to say, 2/3 LPNs and 1/3 RNs. As the next step down, there might be 

some tasks assigned to LPNs that PCTs can do as well, so you change some of the 

LPNs in your staffing composition and replace them with patient care technicians. 

To summarize, eliminating per diem nurses, eliminating staff over time and changing the 

composition of nursing staff are tangible, physical actions that take place in response to 

financial constraints. These changes and cuts nevertheless are bounded by some 

regulation as well, and there are certain staffing ratios that have to be maintained (this 

ratio slightly varies from state to state), and although there may be instances where these 

regulatory ratios are not maintained, but most hospitals closely follow this regulation and 

avoid running the risk from licensing stand point. 

Now to model “Pressure to Reduce Operational Costs”, given the 3 staffing cost 

reduction strategies discussed above, we asked the experts: 

“Given your assessment on “Pressure to Close Revenue Gap”, as a function of 

“Operating Margin”, what is the likelihood of observing an action regarding the three 

strategies to reduce operational costs (staffing costs), given the level/ranges of 

organizational pressure to close revenue gap, maximize profitability and minimize costs?. 

Please mark these ranges in the graph that best represents this relationship to your 

opinion”. Figure 6-11 shows the graphical form suggested to the experts. 



 

Figure 6-11.Pressure to close revenue gap/pressure to reduce operation
 

From aggregating experts’ opinions, the following step function in 

derived to represent the rela

“Pressure to Reduce Operational Costs”.

Figure 6-12.Expert opinion; Pressure to close revenue gap/pressure to reduce operational costs relationship
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.Pressure to close revenue gap/pressure to reduce operational costs relationship; format options

From aggregating experts’ opinions, the following step function in Figure 

derived to represent the relationship between “Pressure to Reduce Revenue Gap” and 

“Pressure to Reduce Operational Costs”. 

 

.Expert opinion; Pressure to close revenue gap/pressure to reduce operational costs relationship

 

 

al costs relationship; format options 

Figure 6-12 was 

tionship between “Pressure to Reduce Revenue Gap” and 

.Expert opinion; Pressure to close revenue gap/pressure to reduce operational costs relationship 



 

The closest parametric function to this step function is a negative exponential function in 
the form of; 

Where, 

PROC: Pressure to Reduce Operational Costs

PCRG: Pressure to Reduce Revenue Gap

and are model parameters.

Fitting the negative exponential funct

values for the parameters as;

 

Figure 6-13 shows the function for “Pressure to Reduce Operational Cost

optimum values for the parameters.

Figure 6-13.Pressure to close revenue gap/pressure to reduce operational costs relationship; functional form
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closest parametric function to this step function is a negative exponential function in 

 

PROC: Pressure to Reduce Operational Costs 

PCRG: Pressure to Reduce Revenue Gap 

are model parameters. 

Fitting the negative exponential function to experts’ assessments reveals the optimum 

values for the parameters as; 

shows the function for “Pressure to Reduce Operational Cost

optimum values for the parameters. 

 

.Pressure to close revenue gap/pressure to reduce operational costs relationship; functional form
 

 

 

6 7(1 ( ))PROC Exp p PCRG p= − − × +

closest parametric function to this step function is a negative exponential function in 

ion to experts’ assessments reveals the optimum 

shows the function for “Pressure to Reduce Operational Costs” using the 

.Pressure to close revenue gap/pressure to reduce operational costs relationship; functional form 
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4. Willingness/Ability to Invest in Proactive Safety Interventions 

Given that willingness and ability to invest proactively in safety could technically be 

measured with the actual dollar value makes it a tangible concept in principal. For 

instance the records ideally show how much money is spent each year on safety 

interventions, and there is a direct relationship between willingness to invest proactively 

in safety and the actual dollar amount that get invested. So establishing the relationship 

between pressure to close revenue gap and willingness/ability to invest in safety should 

technically be straightforward. The challenge is though, that there are other reasons for 

investing in safety interventions; some are mandatory, and from data, it is very difficult to 

disentangle annually what investment is voluntary and what is being driven by some 

external regulatory body. Regulatory authorities (e.g. state’s department of health), 

sometimes requires hospitals to demonstrate action on a certain, non-negotiable safety 

activities, additionally the certification body (i.e. The Joint Commission on Accreditation 

of HealthCare Organizations) then they would like hospitals to have a couple of optional 

investments and that is up to the hospitals to decide on what safety aspect they want to 

invest. These investments maybe in response to a finding by a third body payer (e.g. 

CMS) as well. It is very difficult to find out what part of the investment has been elective. 

Due to these challenges and also difficulties to extract quality accounting data that 

differentiates the types of safety investments, and additionally given that only 9 years of 

financial data was available to us in this study, it is difficult to derive the relationship 

between  pressure to reduce revenue gap, and ability to proactively invest in safety 

empirically. Table 6-2 shows the estimated safety investments and the operating margin 

for years 2003-2011(projected). 
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Table 6-2.Operating margin and safety investment data, 2003-2011 
 

In fact the regression analysis shows a very weak correlation between the operating 

margin and the actual dollars invested in safety (Figure 6-14), which we argue that is due 

to the lack of quality data, as was discussed. 

 

Figure 6-14.Operating margin and safety investment; regression analysis 
 

To elicit this relationship from our experts, given that the relationship between financial 

situation of the hospital and investments made proactively in safety is a tangible 

relationship, we asked our experts: 

Year OM OM Dollars Estimated Safety Investment

2003 -0.032 -$14,600,000.00 $150,000.00

2004 0.012 $13,600,000.00 $100,000.00

2005 0.034 $33,700,000.00 $350,000.00

2006 0.026 $27,500,000.00 $200,000.00

2007 0.047 $52,388,770.15 $450,000.00

2008 -0.009 -$10,253,429.78 $400,000.00

2009 0.013 $14,847,535.95 $200,000.00

2010 0.021 $24,044,442.35 $200,000.00

2011 0.035 $40,174,255.76 $200,000.00

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.65565673

R Square 0.429885748

Adjusted R Square 0.334866706

Standard Error 99288.59757

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 44600646353 4.46E+10 4.524206 0.077528042

Residual 6 59149353647 9.86E+09

Total 7 1.0375E+11

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 217578.4857 40967.18893 5.311043 0.001811 117335.3856 317821.5858 117335.3856 317821.5858

X Variable 1 3208679.594 1508534.172 2.127018 0.077528 -482570.55 6899929.737 -482570.5496 6899929.737



 

“Given your assessment 

“Operating Margin”, what is the likelihood of observing change (increase or decrease)in 

the level hospital’s willingness and ability to invest proactively in safety, given the 

level/ranges of organizatio

minimize costs?. Please mark these ranges in the graph that best represents this 

relationship to your opinion”.

Figure 6-15 shows the graphical form suggested to the experts.

Figure 6-15.Pressure to close revenue gap/willingness ability to invest in safety; format options
 

Experts, almost unanimously picked the decreasing exponential format, but with a twist 

that for low pressures on closing revenue gap, the willingness to invest in safety is still 

very high because of the potential cost saving effects and partly the regulat

supervisions and then starts a dramatic decline, hence we have modeled this node as: 
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“Given your assessment on “Pressure to Close Revenue Gap”, as a function of 

“Operating Margin”, what is the likelihood of observing change (increase or decrease)in 

the level hospital’s willingness and ability to invest proactively in safety, given the 

level/ranges of organizational pressure to close revenue gap, maximize profitability and 

minimize costs?. Please mark these ranges in the graph that best represents this 

relationship to your opinion”.  

shows the graphical form suggested to the experts. 

        

 

.Pressure to close revenue gap/willingness ability to invest in safety; format options

Experts, almost unanimously picked the decreasing exponential format, but with a twist 

that for low pressures on closing revenue gap, the willingness to invest in safety is still 

very high because of the potential cost saving effects and partly the regulat

supervisions and then starts a dramatic decline, hence we have modeled this node as: 

on “Pressure to Close Revenue Gap”, as a function of 

“Operating Margin”, what is the likelihood of observing change (increase or decrease)in 

the level hospital’s willingness and ability to invest proactively in safety, given the 

nal pressure to close revenue gap, maximize profitability and 

minimize costs?. Please mark these ranges in the graph that best represents this 

 

.Pressure to close revenue gap/willingness ability to invest in safety; format options 

Experts, almost unanimously picked the decreasing exponential format, but with a twist 

that for low pressures on closing revenue gap, the willingness to invest in safety is still 

very high because of the potential cost saving effects and partly the regulatory 

supervisions and then starts a dramatic decline, hence we have modeled this node as:  



 

Where; 

WIPS: Willingness/Ability to Invest in Proactive Safety Interventions

PCRG: Pressure to Close Revenue Gap

and are model parameters. 

Fitting the point estimates provided by experts on the graph, reveals the values of 

parameters: 

 

Figure 6-16.Expert opinion; pressure to close revenue gap/willingness ability to invest in safety relationship
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WIPS: Willingness/Ability to Invest in Proactive Safety Interventions 

PCRG: Pressure to Close Revenue Gap 

are model parameters.  

estimates provided by experts on the graph, reveals the values of 

 

.Expert opinion; pressure to close revenue gap/willingness ability to invest in safety relationship

9 8( ( ))WIPS Exp p PCRG p= − × −

estimates provided by experts on the graph, reveals the values of 

.Expert opinion; pressure to close revenue gap/willingness ability to invest in safety relationship 
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6.2.2 Data Driven Factors 

 

In this section, we will discuss the formulation and quantification of other factors in the 

model, including model constants that have been derived from clinical data. 

5. Probability of LOS Too Short to Meet All Needs 

Under high pressure to reduce LOS, not all patients are discharged prior to complete 

readiness, but the likelihood of a patient being discharged before all his/her needs are met 

increases. To capture this probabilistic notion in the model, we can use “Readmissions” 

within 24, 48 or 72 hours of discharge as a proxy. Readmission within 72 hours is 

probably a safe assumption that the patient was discharged inappropriately. That being 

said, there is still much more to it due to patient’s conditions complexity. For instance 

patients with Congestive Heart Failure, CHF, (where heart can’t pump enough blood to 

the organs) and the difference between their hearts maintaining the steady state versus not 

functioning, is a very fine line. Those patients may be admitted and stay in the hospital 

for two days and receive care, and they will be back to the hospital in 4-5 days, and this 

downward spiral continues till they are deceased. These types of discharges could not be 

categorized as inappropriate, because their stay in hospital, after they receive care for the 

first admission, is no longer justifiable, but you know that they will be back within a few 

days.  

We extracted data for 70419 admissions, for years 2006 and 2008. There is a national 

average for LOS, for each diagnosis related group (DRG code). That means, every patient 

is assigned a DRG code (for his/her major diagnosis) upon admission. Each patient 

record we acquired indicates his/her diagnosis code, the national average LOS, the actual 
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LOS of that patient, and of course patient identifier. We also extracted data on all 

admission and discharge dates and times (sometimes multiple admissions and multiple 

discharges). 

Comparing the national average LOS for each patient case, and the actual LOS of that 

patient reveals whether or not a patient was discharged earlier than anticipated, and by 

how many days (hours). At this stage we also eliminated the patient records where the 

patient had been deceased. Next, for the patients that shoed an early discharged we 

checked whether they had been readmitted to the hospital in the next 24, 48 and 72 hours 

of the previous discharge. This enables us to calculate the likelihood of a patient being 

readmitted to the hospital, due to an earlier than anticipated discharge and could be used 

as an indicator that the patient’s LOS has been too short to meet all his or her needs. 

Table 6-3 shows the average probability of LOS being too short to meet all patient needs, 

based on readmissions within 24, 48 and 72 hours. 

 

Table 6-3.Probability of LOS too short to meet all patient’s needs 
 

Additionally, assuming readmission within 72 hours as the indicator of an early and 

inappropriate discharge we can obtain the distribution of the probability of readmission 

within 72 hours (3 days), as a function of how early the patient has been discharged 

compared to the national average of LOS for patient’s diagnosis code. Figure 6-17 

represents this distribution. The data represents a beta distribution with parameters,   

Number of Patients Readmitted Probability of LOS Too Short

Readmission within 72 Hrs 615 0.091300475

Readmission within 48 Hrs 415 0.061609264

Readmission within 24 Hrs 227 0.033699525

Total Early Discharge 6736
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 a=-6.767E=6 and b= -0.0026. 

 

Figure 6-17.Number of days in inappropriate early discharge; pdf 
 

Figure 6-18 depicts the CDF for this distribution. 
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Figure 6-18.Number of days in inappropriate early 
 

For instance, if a patient is discharged 5 days or less, earlier than the national average of 

LOS for the specific DRG code, there is over 90% chance (the area under the curve, 

shown with the dashed arrow in 

hospital within 72 hours. 

6. Probability of LOS Being Longer Than Needed

Some types of adverse events may increase in likelihood of occurrence, due to 

prolonged LOS, simply because the patient’s exposure to the risk increases. For 

instance prolonged LOS may increase patient’s chances of experiencing pressure 

ulcer because he/she will spend more time in bed. Another example where prolonged 
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.Number of days in inappropriate early discharge; cdf 

For instance, if a patient is discharged 5 days or less, earlier than the national average of 

LOS for the specific DRG code, there is over 90% chance (the area under the curve, 

shown with the dashed arrow in Figure 6-18, that he or she will be readmitted to the 

 

Probability of LOS Being Longer Than Needed 

Some types of adverse events may increase in likelihood of occurrence, due to 

prolonged LOS, simply because the patient’s exposure to the risk increases. For 

instance prolonged LOS may increase patient’s chances of experiencing pressure 

e will spend more time in bed. Another example where prolonged 

 

For instance, if a patient is discharged 5 days or less, earlier than the national average of 

LOS for the specific DRG code, there is over 90% chance (the area under the curve, 

, that he or she will be readmitted to the 

Some types of adverse events may increase in likelihood of occurrence, due to 

prolonged LOS, simply because the patient’s exposure to the risk increases. For 

instance prolonged LOS may increase patient’s chances of experiencing pressure 

e will spend more time in bed. Another example where prolonged 
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LOS increases the risk of adverse event, are falls. The more the patient stays in the 

hospital, the higher the chances of him/her falling. 

Although, the lack of pressure to optimize LOS, at least commonly, cause patients to 

stay in the hospital longer than they really need,  but experts picture situations where 

patients do over stay in the hospital. 

For instance, if the hospital admits a homeless patient and physicians start insulin 

treatment because the patient has been diagnosed with diabetes, they cannot be 

discharged to the street. Sometimes those patients have to stay till hospital figures out 

where they are going to send the patient.  

Let’s look at another scenario for prolonged LOS. After patient has received care for 

the major diagnosis he or she has been admitted for, if there is still need for more care 

that is not specialty care, the patient will be sent to an “Extended Care Facility” , such 

as a nursing home. If nursing homes are totally full and have no room the patient has 

to be waiting while kept in the hospital for an opening in the nursing home. More 

often than not, nursing homes refuse to accept a patient due to his/her certain 

condition (e.g. MRSA: methicillin Resistant Staphylococcus Aureus, a bacteria 

resistant to antibiotics) to avoid its spread to everyone else in the nursing home, and 

hospital has to find a nursing home that is willing to accept the patient, while the 

patient stays in the hospital. 

Other than these situations, if patients stay for a long periods of time in the hospital 

(and hence, increase their exposure to the risk of certain adverse events), it’s because 
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based on their condition, that is how long it takes for them to receive the care they 

need, and this long length of stay is not affected by low pressure to optimize LOS. 

This is very difficult to model and no data is available that directly indicates what are 

the chances that people will overstay because at the hospital level, there is no pressure 

to reduce LOS. To include this in the model though, we had to come up with a proxy. 

Records show that it usually takes longer to discharge patients on weekends than in 

week days (where hospital is working at 96-98% capacity, and there is a lot of 

pressure to discharge as many patients as possible, if it is appropriate). Our experts 

contributed this to the fact that access to “services” (e.g. oxygen) is a little more 

difficult in weekends than in weekdays, but not much and low pressure to optimize 

LOS will result in patients staying over the weekend due to these small challenges in 

arranging these services. The pressure to reduce LOS is greatest in weekdays, because 

people come in for elective surgeries and procedures the next day and the hospitals 

really needs the beds, and this pressure to reduce LOS relaxes a bit during the 

weekend.  

We extracted 77403 patient records from 2003 to 2005, and compared their LOS to 

the national average of LOS for the primary diagnosis code (DRG code). Table 6-4, 

Shows a few records of this data. 30665 patients out of this population had LOS 

greater than that of the national average. Hence we can estimate the probability of 

prolonged LOS (for any reason) to be,  . On the other hand we know 

that not of this prolonged LOS is due to lower organizational pressures to discharge 

patients, but rather due to patient’s medical conditions. 

30655
0.39

77403
=
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Table 6-4.Sample data records extracted to indicate whether the patient had prolonged LOS 
 

Dierks (unpublished data, 2011), has conducted an study of the patients with prolonged 

LOS ( 39% of hospital population), which indicates that all other patients’ conditions 

being equal (relatively), 11%-17 % of these patients with prolonged LOS, have been 

those with weekend/Monday AM discharges. This makes for 4.3 %to 6.6%, of total 

hospital population, having prolonged LOS because the time of discharge is a weekend 

where the pressure to optimize LOS is lowest. We will use the middle of this range for 

our model quantification (5.45% probability of prolonged LOS due to low level of 

pressure to optimize LOS). In performing uncertainty analysis, we will assume a normal 

distribution: Normal , for this value. 

 

 

 

DRG Code Actual LOS National Average LOS Difference in Actual and Average LOS Prolonged LOS (Yes=1, No=0) LongLOS_Condition: Pressure Ulcer LongLOS_Condition: Fall LongLOS_Condition: Infection LongLOS_Condition: Medication Error

35 48 60 -12 0 0 0 0 0

35 48 60 -12 0 0 0 0 0

35 48 60 -12 0 0 0 0 0

35 144 60 84 1 1 1 1 1

35 24 60 -36 0 0 0 0 0

35 48 60 -12 0 0 0 0 0

35 24 60 -36 0 0 0 0 0

37 72 62.4 9.6 1 0 0 0 0

37 48 62.4 -14.4 0 0 0 0 0

37 48 62.4 -14.4 0 0 0 0 0

37 360 62.4 297.6 1 1 1 1 1

37 48 62.4 -14.4 0 0 0 0 0

37 24 62.4 -38.4 0 0 0 0 0

37 24 62.4 -38.4 0 0 0 0 0

40 24 60 -36 0 0 0 0 0

40 24 60 -36 0 0 0 0 0

40 144 60 84 1 1 1 1 1

44 48 98.4 -50.4 0 0 0 0 0

44 48 98.4 -50.4 0 0 0 0 0

44 24 98.4 -74.4 0 0 0 0 0

44 96 98.4 -2.4 0 0 0 0 0

44 48 98.4 -50.4 0 0 0 0 0

44 72 98.4 -26.4 0 0 0 0 0

44 48 98.4 -50.4 0 0 0 0 0

44 72 98.4 -26.4 0 0 0 0 0

44 192 98.4 93.6 1 1 1 1 1

( 0.045, 0.38)µ σ= =
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6.2.3 Magnitude of the Effects of Cost Cutting Strategies on the Risk of Adverse 

Events 

 

As discussed in section 6.1, the strategies that decision makers take in response to an 

unfavorable revenue, will affect the risk of certain adverse events. In this section we 

discuss the magnitude of these effects. 

7. Magnitude of Change in the Risk of Adverse Event Due to Shortened LOS 

To formulate this node in the model, we have used a combination of subjective and data 

driven approach. We argued that at certain high levels of pressure to reduce LOS, there is 

a chance that some patients will be discharged prior to readiness, and we used 

readmission within 72 hours data, to calculate the probability of early discharge. To find 

out what levels of pressure may cause an early discharge; we used our experts’ subjective 

opinion, using interview guides in appendix D. To elicit this information from the experts 

the following questions were asked: 

“As was discussed in other rounds of interview, the pressure to optimize LOS, 

may affect risk of adverse events in two ways, first, it may increase the probability 

of experiencing an adverse events, because some patient’s LOS may be too short 

to meet all his/her needs. Second, it may reduce the probability of some adverse 

events because it simply reduces the exposure and if the pressure to optimize LOS 

is too small, some patients may stay in the hospital longer than they really need 

and be exposed to certain adverse events. 
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• To your experience at what level (range) of pressure to optimize LOS, we 

might start to see the effect of this pressure on risk, because the pressure 

is too high that some patients may be discharged a bit prematurely?” 

 

 

Table 6-5 shows experts’ responses and assessments. 

 

Table 6-5.Expert opinion; level of pressure to optimize LOS triggering early discharge  
 

To aggregate experts’ inputs, we will use the Bayesian method discussed in 4.3.3.2.1, 

which results in a posterior distribution shown in Figure 6-19 with mean 0.6 and variance 

0.01. 

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1

Expert Pressure to Optimize LOS

Expert 1 0.8

Expert 2 0.4

Expert 3 0.3-0.5

Expert 4 0.8

Expert 5 0.3

Expert 6 0.4-0.5

Expert 7 0.8-0.9

Expert 8 0.8-0.9

Expert 9 0.7-0.8

Expert 10 0.8-0.9

Expert 11 0.6-0.7

Expert 12 0.4-0.5

Expert 13 0.4-0.5

Expert 14 0.6-0.7

Expert 15 0.6-0.7

Expert 16 0.8
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Figure 6-19.Experts’ opinion on level of pressure to optimize LOS triggering early discharge; aggregated 
 

We will use the mean value for the quantification of the model, and the variability for 

uncertainty analysis. Now given that the pressure to optimize LOS is at a level that may 

cause some patients to be discharged early, we will have to determine by what magnitude 

does their risk, of specific adverse event changes. Dierks et al. (manuscript in 

preparation, 2011), have conducted a study that measures the magnitude of change in the 

risk of certain adverse events, not reimbursed by third party insures, due to: Shortened 

LOS, Prolonged LOS, and Understaffing. 

The estimates provided by this study, shown in Table 6-6 have been used in our model 

quantification. According to this study, shortened LOS decreases the baseline risk of 

pressure ulcer and line infection by 3% and 5% respectively, due to reducing exposure. 

 

 



 

Table 6-6. Magnitude of change in the risk of hospital acquired adverse events due to staffing, prolonged 
and shortened LOS  

 

8. Magnitude of Change in the Risk of Adverse Event Due to Prolonged LOS
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Magnitude of change in the risk of hospital acquired adverse events due to staffing, prolonged 

Magnitude of Change in the Risk of Adverse Event Due to Prolonged LOS

Magnitude of change in the risk of hospital acquired adverse events due to staffing, prolonged 

Magnitude of Change in the Risk of Adverse Event Due to Prolonged LOS 
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Similar to part 7, we elicited experts’ opinion on the levels of pressure to optimize LOS 

that corresponds to changes in risk of adverse events due to prolonged LOS.  

“To your experience at what level (range) of pressure to optimize LOS, we might start to 

see the effect of this pressure on risk, because the pressure is too low that some patients 

may stay longer than they really need to which may increase their risk of being exposed 

to and experiencing certain adverse events?” 

 

Table 6-7, reflects experts’ responses and assessments. 

 

Table 6-7.Expert opinion; level of pressure to optimize LOS triggering prolonged LOS 
 

 

Aggregated experts’ assessments, shown in the distribution below (Figure 6-20), has a 

mean of 0.11 and variance 0.03. 

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1

Expert Pressure to Optimize LOS

Expert 1 0.2

Expert 2 0.3

Expert 3 0.1-0.2

Expert 4 0.2

Expert 5 0.1

Expert 6 0.2-0.3

Expert 7 0.1

Expert 8 0.1

Expert 9 0-0.1

Expert 10 0.1-0.2

Expert 11 0.1-0.2

Expert 12 0-0.1

Expert 13 0-0.1

Expert 14 0-0.1

Expert 15 0

Expert 16 0
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Figure 6-20.Experts’ opinion on level of pressure to optimize LOS triggering prolonged LOS; aggregated 
 

The estimates provided by Dierks et al. (manuscript in preparation, 2011), shown in 

Table 6.6, have been used in our model quantification. According to this study, prolonged 

LOS increases the baseline risk of pressure ulcer and line infection by 25% and 5% 

respectively, to reducing exposure. 

 

 

 

 

9. Magnitude of Change in Risk of Adverse Event Due to Understaffing 

Dierks et al. (manuscript in preparation, 2011), estimate the magnitude of change in 

the risk of certain adverse events due to understaffing, shown in Table 6.6. But the 
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characteristics of “being understaffed” or “staff adequacy” are not clearly defined in 

the literature, and have not been modeled and formulated before. The following is a 

discussion on our approach to characterize and model “understaffing” and “staff 

adequacy”, probabilistically using patient complexity scores. 

• Complexity Score Distribution and Probability of Understaffing 

Determining the probability of a unit being understaffed is not a trivial task. The 

notion of nurse to patient ratio, which is a mandatory ratio to be maintained by 

hospitals, is usually maintained by hospitals due to consequences imposed by 

regulatory authorities. Experts believe that the concept of understaffing and staff 

adequacy goes way beyond the nurse-patient ratio. The staffing ratio only tells you 

how many nurses with a RN degree you need to have given the census on the hospital 

floor, but no two patients are exactly equivalent and sometimes there is a sudden 

increase in intensity of the workload where although you might be having the 

required staffing ratio but the adequacy of staffing drops because of that. Since there 

is not clinical data or reliable data for that matter, exists of adequacy of staffing we 

had to find a measure that best represents the concept of staff adequacy. For this 

purpose, we have utilized “Case Mix Index (CMI)”, which is the average Diagnosis 

Related Group (DRG) weight for all of a hospitals Medicare patients, and can be used 

as an indicator of patient’s complexity of illness (Steinwald and Dummit, 1989).  

The basic idea is, that a combination of high pressure to reduce operational costs (i.e. 

staffing) and high level of patient complexity, will lead to inadequate staffing 

situation. 
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We have extracted patient complexity score data, for 970 days (from August 31st 

2008, to April 29th 2011), for 33 units in the hospital. From this data we have 

calculated the mean and the median of complexity scores for each floor, each day. 

What is challenging though using the mean is that, the average value of complexity 

can be calculated for each floor but the complexity score is not normally distributes 

for each floor. For instance if you have 10 patients on 1 floor, on any given day, we 

may have 9 patients with complexity of 1, and one patient with complexity of 18. The 

average of these complexities for this floor at this day is 2.7. On the other hand a 

floor with 10 patients that all have complexity of 2.7, also gives an average 

complexity of 2.7. What is unclear is whether complexity composed of 9 easy 

patients and one difficult patient is different from average complexity of 2.7, where 

everyone has a complexity index of 2.7. 

However, to characterize the workload based on the complexity of the patients more 

realistically, we will use the median complexity score for each floor, each day. 

Assuming homogeneity of data from all 34 units, the complexity score distribution 

for all units (34 units), and all days (970 days) best fits a Weibull distribution, with 

parameters , (mean= 1.745, and variance= 0.287) which is used as 

a representative of the distribution of complexity scores hospital wide. Figure 6-21, 

shows this distribution, and Table 6-8, contains the descriptive statistics of this 

distribution. 

4.87, 1.832α β= =
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Figure 6-21.Case-mix complexity distribution across hospital 
 

 

Statistic Value 

Sample Size 33 

Range 2.8224 

Mean 1.7448 

Variance 0.28686 

Std. Deviation 0.53559 

Coef. of Variation 0.30696 

Std. Error 0.09323 

Skewness 2.2682 

Excess Kurtosis 6.987 
 

  

Percentile Value 

Min 1.0089 

5% 1.0321 

10% 1.2711 

25% (Q1) 1.4834 

50% (Median) 1.5992 

75% (Q3) 1.9055 

90% 2.3679 

95% 3.2381 

Max 3.8313 
 

Table 6-8.Case-mix complexity distribution across hospital; descriptive statistics 
In presence high levels of pressure to reduce operational costs (due to unfavorable 

revenue gap), a unit with high patient complexity. Using experts’ opinion, we can 

formulate a combination of level of patient complexity and pressure to reduce operational 

costs that may lead to inadequacy in staffing, probabilistically. 

Probability Density Function

Histogram Weibull

x
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Figure 6-22.Calculating the probability of understaffing
 

For instance, when pressure to reduce operational costs is “P” (given by experts), and 

complexity score of the unit is at “C”, the probability of the unit being understaffed is the 

area under the curve in  

Figure 6-22,to the right of

To determine combinations of complexity scores and cost reducing pressures that may 

cause understaffing, experts were asked to provide their 

interview question; 

“- The pressure to reduce operational costs, may affect risk of adverse events due 

to understaffing. Assume that when there are pressures to cut operational costs, the 

organization may respond by reducing 

staff (at a lower cost).” 

• To your experience what level (range) of pressure to reduce operational 

costs are great enough such that some patients may experience an adverse 
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.Calculating the probability of understaffing 

For instance, when pressure to reduce operational costs is “P” (given by experts), and 

complexity score of the unit is at “C”, the probability of the unit being understaffed is the 

,to the right of the complexity level “C”.  

To determine combinations of complexity scores and cost reducing pressures that may 

cause understaffing, experts were asked to provide their opinion through the following 

The pressure to reduce operational costs, may affect risk of adverse events due 

to understaffing. Assume that when there are pressures to cut operational costs, the 

organization may respond by reducing numbers of staff or staffing with less experienced 

To your experience what level (range) of pressure to reduce operational 

costs are great enough such that some patients may experience an adverse 

For instance, when pressure to reduce operational costs is “P” (given by experts), and 

complexity score of the unit is at “C”, the probability of the unit being understaffed is the 

To determine combinations of complexity scores and cost reducing pressures that may 

opinion through the following 

The pressure to reduce operational costs, may affect risk of adverse events due 

to understaffing. Assume that when there are pressures to cut operational costs, the 

numbers of staff or staffing with less experienced 

To your experience what level (range) of pressure to reduce operational 

costs are great enough such that some patients may experience an adverse 



 

event because the unit is not suff

numbers of staff, or lower quality of staff?)

*You may use an arrow to indicate a precise point or circle one of the 

ranges above to indicate a broader range estimate.

The idea is that the impact of lower staffing nu

experienced staff may depend on the complexity of the case mix. With this 

assumption in mind, suppose we take the average of the complexity scores 

across all units in the hospital and all inpatient days. Please indicate in 

the table below

begins to influence the probability of an adverse event 

complexity of the patient population.
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event because the unit is not sufficiently staffed (either due to lower 

numbers of staff, or lower quality of staff?) 

*You may use an arrow to indicate a precise point or circle one of the 

ranges above to indicate a broader range estimate. 

The idea is that the impact of lower staffing numbers and/or less 

experienced staff may depend on the complexity of the case mix. With this 

assumption in mind, suppose we take the average of the complexity scores 

across all units in the hospital and all inpatient days. Please indicate in 

the table below, where the pressure to reduce operational costs/staffing 

begins to influence the probability of an adverse event as a function of the 

complexity of the patient population. 

 

 

 

 

 

iciently staffed (either due to lower 

*You may use an arrow to indicate a precise point or circle one of the 

 

mbers and/or less 

experienced staff may depend on the complexity of the case mix. With this 

assumption in mind, suppose we take the average of the complexity scores 

across all units in the hospital and all inpatient days. Please indicate in 

, where the pressure to reduce operational costs/staffing 

as a function of the 
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Table 6-9.Experts’ opinion; combination of level of pressure to reduce operational cost, and complexity score effecting the probability of adverse events due to 
understaffing

E5,E10 E2, E3,E4.E6 E11 E1

E7,E9, E14
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Each expert , marked in a table like Table 6-9, what combinations of organizational 

pressure to reduce operational costs and staff cuts, and complexity of patient population 

may start to influence the probability of a patient experiencing an adverse event, due to 

understaffing. Table above reflects the collective experts’ assessments. 

To use these assessments in the model, we have discretized the space shown in Table 6-9 

above, into three bounds, in a way that covers as many expert assessments as possible: 

A. Low Pressure- High Complexity: where pressure to reduce 

operational cost is between 0 and 0.3, and complexity is above 

2.2 (yellow area).  

B. Medium Pressure- Medium Complexity: where pressure to 

reduce operational cost is between 0.3 and 0.6, and complexity is 

between 1 and 2.2 (orange area).  

C. High Pressure- Low Complexity: where pressure to reduce 

operational cost is greater than 0.6 and complexity is less than 

1(red area).  

If the combination of the level of pressure to reduce operational costs and complexity of 

patient population falls in any of the above; A, B or C categories, we assume that there is 

a certain probability (determined in Table 6.6) that the patient will experience a certain 

adverse event (in the case of our study, pressure ulcer or line infection), due to 

understaffing (of various forms such as inadequate number of staff, inadequate 

experience of staff, etc.).   

iE



 

With the three critical limits for low, medium 

probability that complexity exceeds these limits from the CDF of case

distribution in Figure 6-21

Figure 6-23.Case-mix complexity distribution across hospital; 
 

Hence:  

Probability of complexity exceeding C1=2 is 0.1

Probability of complexity exceeding C2=1 is 0.95

Probability of complexity exceeding C3=0 is 1
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With the three critical limits for low, medium and high complexity, we can obtain the 

probability that complexity exceeds these limits from the CDF of case

21. This CDF can be seen in Figure 6-23. 

mix complexity distribution across hospital; CDF 

Probability of complexity exceeding C1=2 is 0.1 

Probability of complexity exceeding C2=1 is 0.95 

Probability of complexity exceeding C3=0 is 1 

and high complexity, we can obtain the 

probability that complexity exceeds these limits from the CDF of case-mix complexity 
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10. Magnitude of Change in Risk Due to the Lack of Investment in Safety 

Interventions 

It is almost possible to distinguish how much of safety related investments directly 

affect which adverse event, and what the exact magnitude of change in risk of adverse 

events is contributable to how much of these investments.  The data available in this 

study, on overall safety related investments and the relative frequency of the two 

adverse events we have studied in this research (pressure ulcer and line infection) 

does not reveal meaningful correlation between the two. Table 6-10 shows the 

prevalence of pressure ulcer and the expenditure on safety from 2003 to 2011, no 

meaningful information could be extracted regarding the effect of change in the 

investment and change in the prevalence of pressure ulcer. 

 

 

 

Table 6-10.Safety investment data and prevalence of pressure ulcer  
 

For example between years 2006 and 2007, there is 125% increase in safety investments, 

yet data shows 15% increase in the prevalence of pressure ulcer. 

Experts’ opinion on magnitude of effect of ability to invest in safety on the risk of 

hospital-acquired conditions has been solicited through the following question and the 

aggregated results are reflected in Table 6-11. 
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“Assume that the pressure to reduce the revenue gap, will affect the level of 

willingness/ability to invest in proactive safety investments. The worse the 

financial situation gets, the less investments are made in safety programs.  

Assume that the more we spend on safety the less the chances of experiencing 

adverse events will be. If this willingness to invest in safety is a scale between 0-1 

(0 meaning no ability/willingness to invest in safety, and 1 meaning highest level 

of ability/willingness to invest in proactive safety interventions); 

• (a )Based on your experience at what level (range) of this willingness do 

we start to see changes in the risk of adverse event?  

*You may use an arrow to indicate a precise point or circle one of the ranges above to 

indicate a broader range estimate. 

 

Expert’s responses to this question are reflected in Table 6-11 below. 

 

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1

Expert Ability/Willingness to Invest in Safety

Expert 1 0-0.1

Expert 2 0.2

Expert 3 0.2-0.3

Expert 4 0.1

Expert 5 0.2-0.3

Expert 6 0.3-0.4

Expert 7 0.7-0.8

Expert 8 0.2-0.3

Expert 9 0.5-0.6

Expert 10 0.3-0.4

Expert 11 0.1-0.2

Expert 12 0.2-0.3

Expert 13 0.1

Expert 14 0.1
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Table 6-11.Experts’ opinion; level of ability/willingness to invest in safety and the effect of risk of adverse 
events 
 

Aggregating these estimates, using the Bayesian methods for expert assessments 

aggregation yields to the distribution below (Figure 6-24), with mean 0.22and variance 

0.15. 

 

Figure 6-24.Experts’ opinion on level of ability/willingness to invest in safety and the effect of risk of 
adverse events; aggregated 
 

F. (b) Based on your experience, what is the magnitude of change in the risk 

of adverse events when there is an increase or decrease in investment in 

elective/proactive safety programs? Use the table below to indicate the 

relationship between changes in investments and magnitude of effect on 

risk of adverse events. 

Experts’ responses to this question, have been collected and summarized in Table 6-13 (

represents expert i). One of the experts did not provide an answer to this particular iE
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question. Also, interestingly enough, three of our experts did not feel like the maximum 

limits of decrease and increase to the probability of adverse events suggested by us at the 

interview forms (Maximum 5% increase and decrease in the probability of adverse 

event), did justice to the magnitude of effect of safety investments on probability of 

adverse events. Hence they set up their one limits. For instance Expert 2 believed that 

high investments in proactive safety interventions can reduce the risk of adverse events 

by 25%, medium size investments could decrease the risk by 15%, and low investments 

could double the risk and increase it 100%. To aggregate experts’ opinion, in assessing 

the magnitude of change in the risk of adverse events due to lack of investment in 

proactive safety interventions, we have discretized the space in Table 6.13, into 3 

categories: 

A. High Ability/Willingness to Invest Proactively in Safety (yellow area) 

B. Medium Ability/Willingness to Invest Proactively in Safety (orange area) 

C. Low Ability/Willingness to Invest Proactively in Safety (red area) 

In each of these areas, we aggregate experts’ opinion by taking the weighted average, due 

to the lower number of experts (3 out of 13) who believed in much larger impacts of 

safety investments on risk of adverse events. The results of aggregation could be seen in 

Table 6-12 . 

 

Table 6-12.Experts’ opinion on magnitude of change in the risk of adverse events due to lack of investment 
in safety; aggregated 
 
 

Willingness/Ability to Invest in Proactive Safety  Interventions Magnitude of Change in Risk of Adverse Event Due to lack of Safety Investments

High (>0.6) -13%

Medium (>0.3 but <0.6) -4%

Low (<0.3) 19%



 

Table 6-13.Experts’ opinion; magnitude of change in the risk of adverse events due to lack of investment in 
safety 
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.Experts’ opinion; magnitude of change in the risk of adverse events due to lack of investment in 

 

.Experts’ opinion; magnitude of change in the risk of adverse events due to lack of investment in 
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6.2.4 Other Constants of the Model 

 

In order to calculate the cost of caring adverse events, we need to find out how much 

impact a specific adverse event has on the LOS and how much longer patients will have 

to remain in the hospital to be treated for the adverse event they have experienced while 

in the hospital.  

11- Increase in the LOS Due to the Adverse Event 

1. Increase in the LOS Due to Pressure Ulcer 

 Using 627,595 patient records for years 2008-2010, we identified 86 admission diagnosis 

codes, common between pressure ulcer cohort (patients who did experience pressure 

ulcer while in the hospital) and non-pressure ulcer cohort (other patients who did not 

acquire pressure ulcer in hospital). Then, we averaged the LOS for all patients in the first 

(pressure ulcer cohort) and the second (non-pressure ulcer cohort) group, for each of the 

admission diagnosis codes. The difference between, average LOS of the two groups, 

naturally reveals how much longer do people who acquire pressure ulcer in hospital, will 

have to stay in the hospital compared to patients who did not experience pressure ulcer. 

Table 6-14, shows the average LOS for both cohorts, for each of the admission diagnosis 

group.   

It is worthwhile noting that, for a couple of the admission diagnosis codes (which 

sometimes only had one patient), we realized that people who had experienced pressure 

ulcer had actually stayed shorter than people with the same diagnosis code in non-
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pressure ulcer cohort. This is due to the fact that these patients are either discharged to 

other departments, or they are deceased. 

Extracting this outlier data, the increase in the LOS due to experiencing pressure ulcer, is 

best presented by a Gamma distribution, with parameters , and 

mean 15.88 days. 

Figure 6-25, shows this distribution. The mean of this distribution is days, which shows 

on average people who experience pressure ulcer stay 14 days longer in the hospital, 

which agrees with the studies we found in the literature. For instance Beckrich and 

Aronovitch (1999) found in a study that the increased in LOS due to pressure ulcer is 

between 14-17 days. 

 

0.789, 20.134α β= =
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Figure 6-25.Distribution of increased LOS due to pressure ulcer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-14.Average LOS for pressure ulcer and non-pressure ulcer cohort 
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According to Healthcare Financial Management (www.hfm.org), the average cost of 

hospital stay (years 2003-2008), is $2000 for Medicare patients and $2500 for Non-

Medicare patients. Also other costs of treating pressure ulcer such as dressings, ointments 

and specialty beds are estimated to be around $300, per-day. 

 

2. Increase in LOS Due to Line Infection 

A few studies could be found in the literature that have focused on estimating the 

increase in the LOS, and associated costs due to hospital acquired line infection. Some of 

these research studies have concentrated on specific hospital population such as low birth 

weight infants (Payne, et al.  2004) and intensive care unit patients (Digiovine, et al. 1999 

and Gracia-Garmendia et al. 1999), for instance. There are also studies that have focused 

on the general population of the hospital.  Battista Orsi, Di Stefano and Noah (2002), 

estimate the increase in the LOS due to hospital acquired line infection to have a mean of 

19.9 days and median of 15 days. Studies also suggest that estimated additional cost per 

patient due to treatment (replacement of the central venous line (CVL) (approximately 

$200), X –Ray and drug administration (approximately $500, antibiotic costs (between 

$100 and $250 per day) to be close to $3500, plus the cost of the hospital stay.  Kim et al. 

(2011), Battista Orsi, Di Stefano and Noah (2002) and Digiovine, et al. (1999), have 

estimation that are relatively consistent with $3500 cost of treatment. 
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6.3 Dynamic Model’s Validation 

 

Model validation is an essential aspect of any model building methodology in general, 

and system dynamics modeling in particular. It is a process that involves both formal 

(quantitative) and informal (qualitative) tools. A model is a simplification of real world to 

serve a useful purpose and helps us understand a problem/situation. Hence, it has to be 

determined whether it is good enough for its purpose. The process involves two aspects; 

first verification, which means ensuring that the equations are technically correct 

(debugging), and second, validation, which means ensuring that the structure of the 

model and the assumptions made meet the purpose that the model is intended to serve 

(Coyle and Exelby, 2000). It is worth mentioning that a valid model is naturally verified; 

however verification does not guarantee the validity of a model. As Coyle (1977) puts it, 

validation is “the process by which we establish sufficient confidence in a model to be 

prepared to use it for some particular purpose”. This confidence building process is a 

gradual process that is embedded throughout the methodology and starts in the stage of 

model conceptualization and development and continues even after the implementation of 

policy recommendations made as the result of the model output (Barlas, 1994, Forrester 

and Senge, 1980). Although model validation takes places in all the stages of modeling, 

most of formal (quantitative) validation activities are performed after the model has been 

constructed. 

There are to schools of thought in viewing model validity; first, the empiricist 

philosophy, which sees a valid model as an objective representation of a real system. In 

this view models are either correct or incorrect and empirical facts would reveal its truth 
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or falsehood. In this philosophy, validity is a matter of accuracy rather than usefulness. 

Second, the more recent relativist school of thought sees a valid model as one of the 

many possible ways to describe and represent a real situation and believes while no 

model representation is superior to another in an absolute sense, some could be proven to 

be more effective and generally models lie in a spectrum of usefulness. System dynamics 

model validation literature seems agree with the relativist approach to model validity. 

Hence, besides formal (quantitative) and objective validation of the model, subjective, 

qualitative and informal components must be involved in validation process to determine 

the usefulness of a model with respect to a particular purpose (Barlas, 1994). 

6.3.1 Informal / Qualitative Model Validation 

 

The informal/ qualitative model validation has been built in the process of model 

development. The first draft of the model, and the corresponding hypothesis that the 

financial wellbeing of a healthcare organization i.e. a hospital influences the managerial 

decisions to reduce costs (e.g. optimizing the length of stay, controlling the operational 

costs) and expenditure on proactive safety interventions, which in turn effect the risk of 

experiencing specific adverse events, and the change in the risk of experiencing such 

adverse events influences the financial standing of the hospital that had originated such 

dynamics in the system, was discussed and validated with the experts in multiple 

interview sessions. After gathering domain experts’ input on the hypothesis under study 

in general, and the key players and important factors and relations and feedbacks in 

particular, the next round of interview discussed the updated version of the model that 

incorporated all the inputs/suggestions/modifications that the experts made to the 

previous draft of the model. This procedure was followed in 3 rounds of face-to-face 
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interview with each expert until a consensus was reached on the current version of the 

model presented in this thesis. Each expert was then asked to rate the model in terms of 

completeness, accuracy, ease of understanding and perceived predictability. Experts 

provided their assessment of the qualitative representation of the model through the 

following questions: 

1. Completeness. From your perspective, to what extent does this model capture all 

important and relevant phenomena for the particular problem that we are 

studying? On a scale from 0 to 100, 0 would correspond to a model that does not 

include some important and relevant details, whereas 100 would correspond to a 

model that includes all details that you consider important. What number would 

you assign? 

 

2. Accuracy: From your perspective, how accurately or realistically does the model 

depict important feedback effects, and causal chains that influence risk of 

experiencing adverse events? On a scale from 0 to 100, 0 would correspond to a 

model that is unrealistic, over-idealized or inaccurate, whereas 100 would 

correspond to a model that is realistic and accurate. What number would you 

assign? 

 

3. Ease of understanding: From your perspective, how easy is it to understand the 

overall logic of the model. On a scale from 0 to 100, 0 would correspond to a 

model that is difficult to follow, even with extensive explanation, and a 100 



 205 

would correspond to a model that is readily understandable. What number would 

you assign? 

 

4. Perceived predictive validity: From your perspective, if you were to use this model, 

how well could you predict the change in the risk of specific adverse events as a 

function of the organizational factors/decisions that influence risk of AEs?  On a 

scale from 0 to 100, 0 would correspond to a model that does not help at all with 

predicting effects, and a 100 would correspond to a model that predicts the effects 

very well. What number would you assign? 

Table 6-15, reflects the summary of experts’ assessment of the system dynamics model. 

 

Table 6-15.Expert opinion; qualitative evaluation of system dynamics module (organizational level 
contributions to risk) 
 

The procedure that was followed for peer review of Bayesian network models, discussed 

in section 4.1.3 was also observed here in informal/qualitative validation of the system 

dynamics model as well. The interview guide that was used to develop/validate and 

evaluate the model could be found in appendix C.  

 

Completeness Accuracy Ease of Underestanding Predictive Validity

Expert 1 90 90 95 85-90

Expert 2 90 90 90 75

Expert 3 85 85 90 80

Expert 4 90-95 90-95 90-95 85-90

Expert 5 70-80 70-80 80-90 70-80

Expert 6 85 85 85 85

Expert 7 >90 >90 60 Need to see results

Expert 8 100 100 75-80 50

Expert 9 90 90 90 Estimates could be good

Expert 10 90 90 100 100



 

6.3.2 Formal/ Quantitative Model Validation

 

The ultimate objective in system dynamics model valid

structure of the model is valid. Although we will evaluate the accuracy of the model 

behavior through certain tests, but this is only meaningful if we are sufficiently confident 

in the structure of the model. Logically the va

validity of the structure and follows by evaluating the accuracy of the behavior of the 

model (Barlas, 1994). Barlas (1996) provides a framework for such a sequence of 

formal/quantitative validation, and we generall

presented model in this study. 

Figure 6-26.System dynamics model validation framework
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Formal/ Quantitative Model Validation 

The ultimate objective in system dynamics model validation is to establish that the 

structure of the model is valid. Although we will evaluate the accuracy of the model 

behavior through certain tests, but this is only meaningful if we are sufficiently confident 

in the structure of the model. Logically the validation process starts with testing the 

validity of the structure and follows by evaluating the accuracy of the behavior of the 

model (Barlas, 1994). Barlas (1996) provides a framework for such a sequence of 

formal/quantitative validation, and we generally follow this framework for validating the 

presented model in this study. Figure 6-26, depicts the essence of this framework.
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6.3.2.1 Direct Structure Tests 

 

Direct structure tests assess the validity of the model equations individually, and compare 

them directly to the available knowledge. These tests could be done in two forms; 

• Empirically  

• Theoretically 

 The empirical structure test compares model equations against data available from the 

real system being modeled. Theoretical structure test involves comparing the model 

equations to the general knowledge on the system found in the literature and/or from 

domain experts. Forrester and Senge (1980), list Structure and Parameter verification test 

(comparing the structure and constant parameters of the model against the knowledge of 

the system conceptually (literature/experts) and numerically (data)) and dimensional 

consistency test (dimensional analysis of model equations to ensure that the 

dimensions/units of the equations and parameters are consistent). 

1) Dimensional Consistency: After careful review of the units used for model 

parameters and equations, Vensim’s “Units Check” (from the menu select: 

Model>Units check) feature was used to ensure dimensional consistency, and no 

inconsistencies were found. 

2) Structure and Parameter Verification: The structure and parameter verification in 

the case of our mode, involves a combination of empirical and theoretical 

approach. Some of the equations of the model namely “pressure to Close Revenue 

Gap”, “Pressure to Optimize LOS”, “Pressure to Reduce Operational Costs” and 

“Willingness to Invest in Proactive Safety Interventions” have been validated with 
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experts, since no empirical information is available for these equations. On the 

other hand, the rest of the equations in the model, including Probability of 

Understaffing, Probability of LOS Too Short to Meet Needs”, etc., have been 

obtained from actual data and other empirical studies available. Section 4.3.2 has 

detailed discussion on how the equations of the model are obtained. 

 

6.3.2.2 Structure-Oriented Behavior Tests 

 

This general category of structure testing indirectly assesses the validity of the structure 

by applying certain behavior tests.  These tests are strong behavior tests that could help 

the analyst discover possible structural flows. One type of such tests is the Extreme 

Condition test, which assigns extreme values to selected parameters of the model and 

compares the behavior generated by the model to the behavior that is expected or 

observed of the real system being modeled under the same extreme conditions (Barlas, 

1994).  

A number of these tests have been performed on the model. As an example of extreme 

condition testing, we assign a value of 1 (maximum) pressure to close revenue gap, which 

should drive the pressure to optimize LOS and pressure to cut operational cost to the 

maximum limit (1), and willingness/ability to invest in proactive safety interventions to 

minimum (0). It also increases the risk of adverse event (in this case risk of pressure 

ulcer) by 80%. It’s worth mentioning that the risk doesn’t exponentially increase because 

at the end of each year, we set the value of pressure ulcer risk to its baseline value 
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coming from the Bayesian network. Figure 6-27 and Figure 6-28 show the results of 

these tests. 

 

Figure 6-27.Extreme case testing; pressure variables in the model when pressure to close revenue gap is at 
maximum 

 

Figure 6-28.Extreme case testing; risk of pressure ulcer when pressure to close revenue gap is at maximum 
increases 80% 
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6.3.2.3 Behavior Pattern Test 

 

The two categories of tests above, direct structure test and structure-oriented behavior test 

are designed to assess the validity of the structure of the model. After building adequate 

confidence in the structure, we can apply a number of tests that are designed to evaluate 

the accuracy of the model in reproducing the major behavior patterns of the real system 

being modeled. Many types of behavior pattern tests could be found in the literature. 

Forrester and Senge (1980) discuss a number of these tests, including Behavior 

Reproduction test, Behavior Predictions test, Behavior Anomaly test and Surprise 

Behavior test among others. The test we have used to evaluate the accuracy of model 

output is a Frequency Generation test, which falls into the category of Behavior 

Reproduction tests.  The goal here is to see how well the model reproduces the 

patterns/values that we have observed in the real system. The general idea is to: 

1. Calibrate the model based on data available for years 2003-2007 

2. Use the model to predict the risk of adverse event (pressure ulcer and line 

infection) for years 2008-2010 

3. Evaluate the accuracy of model prediction with point by point comparison 

4. Compare the pattern produced by the model for all the years (2003-2010) with the 

pattern observed from real data 

We should mention that, in the literature on modeling and simulation, a wide range of 

tests could be found that are based on point-by-point comparison of observed 

behavior and behavior produced by the model, but these tests are generally less 

appropriate for system dynamics models. This is because system dynamics models 
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are usually long term and policy oriented. (Forrester and Segne, 1980, Barlas, 1996). 

Never the less with limited financial data and reliable adverse event data available 

(only seven years), this test would build confidence in the accuracy of the model, as 

well as the structural validity. 

We have performed the steps 1 through 4 above, in section 7.1, and have evaluated 

the performance of the hybrid model, comparing model projections with actual data. 
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7 The Hybrid Model; Analysis and Results 

 

Section 3.3, explains how the hybrid model which consists of a system dynamics module 

(to represent the contributions of organizational and policy level factors to the risk of 

adverse events and the feedback effects of these policies) and a Bayesian Belief Network 

module (to represent individual patient level and patient provider level factors’ 

contribution to the risk of certain adverse events), functions.   

The basic idea is to understand what the base line risk is for any patient for a certain 

adverse event depending on his/her physiological conditions and provider’s decisions in 

treating this patient, through a Bayesian network. On the other hand, under the influence 

of financial wellbeing of the hospital and throughput pressures, certain decisions are 

taken at the hospital level that would affect this baseline risk level, either positively (risk 

reduction), or negatively. The combination of the two modeling formalisms will inform 

the decision maker of the overall risk of specific adverse events to be expected, given the 

individual patient conditions and the existing levels of financial pressures in the system.  

 

7.1 Evaluation and Validation of the Hybrid Model 

 

Our goal here is to see whether the combination of system dynamics model and the 

Bayesian belief networks (the hybrid model) can reproduce the patterns and the values or 

risk of specific adverse events from actual clinical data. 
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7.1.1 Hybrid Model Performance; Risk of Pressure Ulcer 

 

Step 1: Calibrate the model based on data available for years 2003-2007 

Nine parameters ( ), that determine the shape of the pressure functions (Pressure 

to close the revenue gap, Pressure to optimize LOS, Pressure to cut operational costs and 

Willingness/Ability to invest proactively in safety interventions) have been calculated the 

way that best fit experts’ input on these pressures (section 6.2.1). 

Based on data for 2003-2007, we calibrate/optimize these values, so that the error (i.e. 

error between model’s prediction on risk of pressure ulcer and the actual relative 

frequency of hospital acquired pressure ulcer obtained from clinical data, for each year) is 

minimized. 

Doing so, the following values are obtained for : 

 

The payoff function ( ) from this optimization is 3.55082E-8. 
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Step 2: Use the model to predict the risk of pressure ulcer for other years 

In the hybrid model, baseline risk of pressure ulcer is provided by  the pressure ulcer 

BBN model. However, the system dynamic model and the pressure ulcer BBN, share a 

same node; Understaffing probability (or as is called in the BBN, probability of staff 

adequacy). So the following steps are taken in the hybrid model, for calculating the risk 

of pressure ulcer for each year: 

1. Calculate the baseline probability of pressure ulcer from pressure ulcer BNN 

2. Input the baseline probability of pressure ulcer to the system dynamics model 

3. The system dynamics model, calculates the probability of understaffing (or staff 

adequacy) for year “i”  

4. The pressure ulcer BBN reads this value (probability of staff adequacy) from the 

system dynamics module, and calculates a new baseline probability of pressure 

ulcer for year ‘i+1” 

5. Go to step 1 

Figure 7-1 depicts risk of pressure ulcer for different years projected by the hybrid 

model, versus the actual clinical data for relative frequency of hospital acquired 

pressure ulcer. Table 7-1 shows the error of hybrid model’s predictions for risk of 

pressure ulcer, compared to the actual data.  
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Figure 7-1.Risk of hospital acquired pressure ulcer; hybrid model predictions for each year versus actual 
data 
 

 

Table 7-1.Hybrid models’ error in predicting the probability of pressure ulcer for each year 
 

Note that the baseline risk of pressure ulcer, remains the same from 2004-2011. This is 

due to the fact that the input from system dynamic model to pressure ulcer BBN, the 

probability of understaffing (i.e. probability of staff adequacy), remains the same at 0.1. 

This is expected, because the particular institution that we have gathered our clinical data 
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Year Baseline Risk of Pressure Ulcer Hybrid Model :Risk of Pressure Ulcer Data: Actual Risk of Pressure Ulcer Error

2003 0.0024 (from BBN) 0.0022 0.00181 18%

2004 0.0025 0.0021 0.00202 4%

2005 0.0025 0.0023 0.00234 2%

2006 0.0025 0.0022 0.00227 3%

2007 0.0025 0.0022 0.00244 11%

2008 0.0025 0.0022 0.00282 28%

2009 0.0025 0.0022 0.00266 21%

2010 0.0025 0.0022 0.00144 35%

2011 0.0025 0.0022 0.00165 25%

Average Error 15%
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from is financially well and the pressure to close financial gap is very low throughout 

these years. 

7.1.2 Hybrid Model Performance; Risk of Line Infection 

 

For the hybrid model, consisting of the system dynamics module and line infection BBN, 

we will follow the same steps as section 7.1.1. 

Step 1: Calibrate the model based on data available for years 2002-2006 

Nine parameters ( ), that determine the shape of the pressure functions have been 

calculated the way that best fit experts’ input on these pressures (section 6.2.1). 

Based on data for 2002-2006, we calibrate/optimize these values, so that the error (i.e. 

error between model’s prediction on risk of pressure ulcer and the actual relative 

frequency of hospital acquired pressure ulcer obtained from clinical data, for each year). 

Doing so, the following values are obtained for : 
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The payoff function ( ) from this optimization is 2.8E-5. 
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Step 2: Use the model to predict the risk of line infection for other years 

In the hybrid model, baseline risk of pressure ulcer is provided by line infection BBN 

model. However, the system dynamic model and the line infection BBN, share a same 

node; Understaffing probability (or as is called in the BBN, probability of staff 

adequacy). So the following steps are taken in the hybrid model, for calculating the risk 

of line infection for each year: 

1. Calculate the baseline probability of line infection from line infection BNN 

2. Input the baseline probability of line infection to the system dynamics model 

3. System dynamics model, calculates the probability of understaffing (or staff 

adequacy) for year “i”  

4. Line infection BBN reads this value (probability of staff adequacy) from system 

dynamics module, and calculates a new baseline probability of line infection for 

year ‘i+1” 

5. Go to step 1 

Figure 7-2, depicts risk of line infection for different years projected by the hybrid 

model, versus the actual clinical data for relative frequency of line infection. 

Table 7-2, shows the error of hybrid model’s predictions for risk of line infection, 

compared to the actual data.  
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Figure 7-2.Risk of line infection; hybrid model predictions for each year versus actual data 
 

 

 

Table 7-2.Hybrid models’ error in predicting the probability of line infection for each year 
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Year Baseline Risk of Line Infection Hybrid Model :Risk of Line Infection Data: Actual Risk of Line Infection Error

2002 0.0302 (from BBN) 0.038 0.0498 31%

2003 0.031 0.0382 0.0385 1%

2004 0.031 0.0382 0.03677 4%

2005 0.031 0.0382 0.03195 16%

2006 0.031 0.0288 0.02315 20%

2007 0.031 0.0361 0.02164 40%

2008 0.031 0.0323 0.0241 25%

2009 0.031 0.0271 0.02 26%

Average Error 20%
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7.1.3 Hybrid Model Performance; Risk of Line Infection and Pressure Ulcer 

 

One can argue that since the system dynamic model is capturing the organizational level 

contributions to risk, it affects the risk of pressure ulcer and line infection, both at the 

same time and if the model is performing correctly, it should capture these effects on risk 

of both of the adverse events simultaniously. In sections 7.1.1 and 7.1.2, we evaluated the 

effect of decision/policy level factors on each of the adverse events we have modeld 

(pressure ulcer and line infection) separately. Here we will evaluate the performance of 

the model where organizational factors/decisions affect risk of these adverse events 

simultanously. In other words we will quantify the hybrid model that consists of 3 

models: pressure ulcer BBN, line infection BBN and the system dynamics module for 

organizational effect. 

For the hybrid model, consisting of the system dynamics module and both pressure ulcer 

and  line infection BBNs, we will follow the same steps as described in section 7.1.1. 

Step 1: Calibrate the model based on data available for years 2003-2006 

Nine parameters ( ), that determine the shape of the pressure functions have been 

calculated the way that best fit experts’ input on these pressures (section 6.2.1). 

Based on data for 2003-2006, we calibrate/optimize these values, to minimize error 

(difference between model prediction and actual data). In this case though our error term 

consists of error in predication for line infection risk plus error of prediction for pressure 

ulcer risk, doing so, the following values are obtained for : 
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1 9,...,p p
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The payoff function ( ) from this optimization is 1.38E-5. 

Step 2: Use the model to predict the risk of line infection and pressure ulcer for other 

years 

In the hybrid model, baseline risks of both adverse events are provided by the BBN 

models. Since probability of staff adequacy (i.e. understaffing probability in system 

dynamics model) is shared between both BBNs and the dynamic model, the following 

steps are taken, for calculating the risk of both adverse events for each year: 

1. Calculate the baseline probability of both adverse events from their respective 

BBN 

2. Input the baseline probability of line infection to the system dynamics model 

3. System dynamics model, calculates the probability of understaffing (or staff 

adequacy) for year “i”  

4. The  BBNs read this value (probability of staff adequacy) from system dynamics 

module, and calculates a new baseline probability of adverse event for year ‘i+1” 

5. Go to step 1 
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Figure 7-3 and Figure 7-4, depict risks of pressure ulcer and line infection for 

different years projected by the hybrid model, versus the actual clinical data for 

relative frequency of these adverse events. Table 7-3, shows the error of hybrid 

model’s predictions for the risks of these adverse events, compared to the actual 

data.  

 

 

 

Figure 7-3.Risk of PU; hybrid model predictions for each year versus actual data calibrating the model 
using both BBNs 
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Figure 7-4.Risk of line infection; hybrid model predictions for each year versus actual data calibrating the 
model using both BBNs 
 

 

Table 7-3.Hybrid models’ error in predicting the probability of line infection for each year, calibrating with 
both BBNs 
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2003 0.0021 0.00181 13.81% 0.0271 0.0385 42%

2004 0.0026 0.00202 22.31% 0.0327 0.03677 12%

2005 0.0022 0.00234 6.36% 0.0278 0.03195 15%

2006 0.0021 0.00227 8.10% 0.027 0.02315 14%

2007 0.0021 0.00244 16.19% 0.0269 0.02164 20%

2008 0.0028 0.00282 0.71% 0.0293 0.0241 18%

2009 0.0022 0.00266 20.91% 0.0275 0.02 27%

Average Error 12.63% Average Error 21%
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7.2 Use of the Risk Model; Hypothetical Examples 

 

A. Patient A’s risk of line infection 

Suppose patient A, is scheduled for a surgery in June 2011, and will need a catheter line. 

Due to his procedure though, he will have to have the line inserted in femoral vein 

(versus more desirable subclavian vein). Also assume that the patient due to his clinical 

condition and age has diminished resistance. What will be his chances of acquiring line 

infection? 

To answer this question and assess patient A’s risk of line infection, the following 

procedure will be followed using the hybrid model: 

1) Estimate patient A’s baseline probability of line infection 

This is done by setting the information we have from patient A, as 

evidence to the model (Figure 7-5). In other words: Patient’s Constraint: T 

(with probability of 1), and Patient Resistance Factors: Diminished (with 

probability of 1). Note that we can also set soft evidence for any node, if 

we are uncertain about the presence of a certain condition. 

 



 224 

 

Figure 7-5.Setting evidence in line infection BBN 
 
 

2) Considering that line infection BBN and the system dynamics module 

have a common node (probability of understaffing or staff adequacy), load 

this probability from system dynamic model into line infection BBN. 

 

3) Update the line infection BBN with this information to get the baseline 

probability of line infection for patient A (Figure 7-6). 

 
4) The baseline probability of line infection for this patient, increases from 

0.0302 to 0.0386 (28% increase). 



 

Figure 7-6.Compiling BBN to update the probability of line infection
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Figure 7-7.Predicting patient A
 

0.05

0.04

0.03

0.02

0.01

0

d
m

n
l

Real Risk of Line Infection : Line infection Importance measure

225 

.Compiling BBN to update the probability of line infection 

Input this baseline probability of line infection, and predict patient A’a 

probability of line infection for 2011, using the hybrid model (

A’s probability of line infection, influenced by organizational factors

 Real Risk of Line Infection for patient A

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Time (Year)

Real Risk of Line Infection : Line infection Importance measure

 

y of line infection, and predict patient A’a 

probability of line infection for 2011, using the hybrid model (Figure 7-7). 

 

’s probability of line infection, influenced by organizational factors 

1
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The model projects risk of line infection for patient A to be 0.0339 in 

2011, which indicates a 12% decrease. Considering that hospitals 

operating margin for 2011 so far has been at 3.5%, this reduction is 

expected since the production pressures are low and ability to invest 

proactively in safety are high. 

 

B. As another hypothetical example, assume that the hospital at 2011 has operated 

on a 3.5%, and they set a goal of increasing their operating margin 0.2%, each 

year. The hybrid model can predict that in the next 10 years, the baseline risk of 

line infection could be reduced by 13%, from 3.05% to 2.66%.  This implies over 

2.7 million dollars in savings each year. 

 

Figure 7-8.Decline in the risk of line infection over the next 10 years, due to increase in operating margin 
by 0.2% per year 

 

 

Graph for Real Risk of Line Infection

0.05

0.04

0.03

0.02

0.01

0 1 2 3 4 5 6 7 8 9 10
Time (Year)

d
m

n
l

Real Risk of Line Infection : Line infection Importance measure



 227 

 

Similarly, if hospital at 2011 has operated on a -1%, and their operating margin 

declines 0.2% every year, over the next 10 years, the baseline risk of line 

infection will increase by 23%, from 3.05% to 3.76%, which implies an expected 

over 6 million dollars in expenses 

 

 

Figure 7-9.Increase in the risk of line infection over the next 10 years, due to decrease in operating margin 
by 0.2% per year 
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7.3 Uncertainty Analysis 

7.3.1 Uncertainty Analysis; Hybrid Model for Risk of Pressure Ulcer 
 

As a measure of goodness of an estimate, to examine how closely the estimated values 

relate to reality and as a basis for decision making we can perform a set of uncertainty 

analyses (Modarres, 2006). These uncertainty analyses, show the impacts of analyst’s 

assumptions, variability in the parameters, impact of data incompleteness, and the effect 

of expert opinion. These uncertainties are represented by probability distributions which 

are then propagated through the entire risk model (Smith, 2011). 

When estimating the parameters of the Bayesian networks and the system dynamics 

module, throughout chapter 4 of this dissertation, we have represented the uncertainties 

with the appropriate probability distributions. In discussing the hybrid model’s 

performance in previous section, 7.1, we have used the mean values of those 

distributions. In this section, we will study the effects of parameter uncertainties using 

their respective probability distributions, on the hybrid model as a whole. Many uni-

variate or multi-variate uncertainty analyses could be performed to propagate parameter 

uncertainty over the hybrid model.  Below are two examples of these uncertainty analyses 

runs. 
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a) Uni-variate: baseline risk of pressure ulcer uncertainty; Uniform (0.001,0.003) 

 

 Figure 7-10.Confidence bounds for model predictions on risk of pressure ulcer as a result of 
uncertainty over baseline risk of pressure ulcer 

 

Figure 7-11.Risk of pressure ulcer from clinical data 
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Figure 7-12.Confidence bounds for model predictions on risk of pressure ulcer as a result of uncertainty 
over baseline risk of pressure ulcer and uncertainty over the probability of prolonged LOS 
 

7.3.2 Uncertainty Analysis; hybrid Model for Risk of Line Infection 
 

Similar to the case of hybrid model for risk of pressure ulcer, many uni-variate or multi-

variate uncertainty analyses could be performed to propagate parameter uncertainty over 

the hybrid model.  Below are two examples of these uncertainty analyses runs. 

a) Uni-variate: baseline risk of line infection uncertainty; Weibull distribution  
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Figure 7-13.Confidence bounds for model predictions on risk of line infection as a result of uncertainty 
over baseline risk of line infection 
 

 

Figure 7-14.Risk of line infection from clinical data 
a) Multi-variate: probability of prolonged LOS and ; Normal (0.045,0.38) and 

baseline risk of pressure ulcer uncertainty; Weibull distribution 
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Figure 7-15.Confidence bounds for model predictions on risk of line infection as a result of uncertainty 
over baseline risk of pressure ulcer and uncertainty over the probability of prolonged LOS 
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7.3.3 Uncertainty Analysis; hybrid Model for Risk of Line Infection and Pressure Ulcer 
Combined 

 

Similar to what we discussed in sections 7.3.1 and 7.3.2, many uni-variate or multi-

variate uncertainty analyses could be performed to propagate parameter uncertainty over 

the hybrid model that consists of the dynamic model and two BBNs for pressure ulcer 

and line infection risks.  Below is an example of these uncertainty analyses runs. 

a) Uni-variate: baseline risk of line infection uncertainty; Weibull distribution 

 

 

 

 

Figure 7-16.Confidence bounds for model predictions on risk of line infection as a result of uncertainty 
over baseline risk of line infection; the case of the hybrid model with both line infection and pressure ulcer 
BBNs 
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7.4 Importance Measures 
 

An important step in any risk analysis activity is to identify the elements of the system 

that have the most contribution to system risk. The common metrics used in identifying 

such contributions is the importance ranking. Identification of major risk contributors 

using importance measures can give direction to risk management activities, and guide 

allocating resources into areas which will have the highest impact on the system’s risk 

reduction (Modarres, 2006). Birnbaum, Fussel-Vesely (FV), Risk Reduction Worth 

(RRW), and Risk Achievement Worth (RAW) are among commonly used risk 

importance measures.  

7.4.1 Risk Reduction Worth 
 

The Risk Reduction Worth (RRW) importance, measures change in risk of the system, 

when a risk element is perfect; i.e. a component’s failure probability is assumed to be 

zero. In other words it measures how much system’s risk could be improved if one event 

could be fixed, and shows, theoretically, what is the limit of the performance 

improvement of the system (Modarres, 2006).  

 

Where R is the total system risk, and , is system risk when risk element “i” is 

made perfect. For instance, some of the risk elements in the case of this study could be 

decisions made at the organizational level to address financial deficiencies in the form of 

( 0)RRW
i

R
IM

R P
=

=

( 0)iR P=
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“Pressure to Optimize LOS” ( ), “Pressure to Cut Operational Costs” ( ) and 

“Willingness/Ability to Invest in Proactive Safety Interventions” ( ).  

Since the hybrid model, has a dynamic element built into it (the system dynamics 

module), which captures how decisions and policies that contribute to the risk of specific 

adverse events evolve over time, using risk importance measures we can  also project 

how the importance of these decisions in system risk, may evolve and change over time. 

7.4.2  Dependencies in Risk Importance Measure’s Quantification 
 

Due to the fact that the modules in the hybrid methodology; the system dynamic module 

and the Bayesian network, may share one or more nodes (i.e. Staff Adequacy in the 

model we have developed here), can cause dependencies. To eliminate this dependency, 

the following procedure needs to be followed.   

1. Find the risk of specific adverse event (i.e. R) using the hybrid model for a 

specific year. 

2. If the event of the interest (risk element), is in the Bayesian belief network, 

assume perfect condition for ; propagate the Bayesian network one time and 

store the intermediate probability of adverse event to be used by the second layer 

of the hybrid model (i.e. the system dynamics module), while still assuming 

perfect condition for in the system dynamics module, and quantify the hybrid 

model, which will project how system risk will evolve over time assuming perfect 

condition for risk element . 

1P 2P

3P

iP

iP

iP

iP
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3. If the event of the interest (risk element), is not in the Bayesian belief network, 

find , by quantifying the hybrid model again  

4. The risk reduction worth measure of the event of interest is obtained from: 

 

5. Assuming decision is taken, which means : 

a.   relaxing pressure to optimize LOS 

b.   relaxing pressure to cut operational costs 

c.   relaxing safety investment constraints 

This procedure is inspired by the procedure Wang (2007) has proposed for calculating 

importance measures in static models, consisting of ESDs, FTs and BBNs. 

7.4.3 Example; Importance Measure for Pressure to Optimize LOS in the Risk of Line 
Infection 

 

To obtain importance measure for pressure to optimize LOS, for example, we need to 

calculate the risk of line infection for each year, when the pressure to optimize LOS is at 

minimum 0. We also need to calculate risk of line infection for each year without 

interfering with model variables, which we have done and the results are reflected in 

Table 7-2. We do this for pressure to cut operational cost and willingness/ability to invest 

proactively in safety. Table 7-4 shows the importance measure for these 

factors/pressures, for each year of analysis. 

iP

( 0)iR P=

( 0)i

R

R P =

0iP =

1 0P =

2 0P =

3 0P =
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Table 7-4.Importance measures of pressure functions in the model for years 2002-2009 
 

We can compare the importance of these pressures year by year, or we can alternatively 

compare their average importance over the course of 8 years. The results indicate that 

investment in proactive safety interventions is the most important decision factor in terms 

of influencing risk. Operational budget is the second most important influencing factor in 

risk, and optimizing LOS comes third. 

Year Hybrid Model :Risk of Line Infection Risk of Line Infection; pressure to optimize LOS=0 Importance Measure

2002 0.037 0.0382 0.968586387

2003 0.0372 0.0385 0.966233766

2004 0.0275 0.0384 0.716145833

2005 0.0275 0.0384 0.716145833

2006 0.0343 0.029 1.182758621

2007 0.0295 0.0364 0.81043956

2008 0.0265 0.0289 0.916955017

2009 0.0264 0.0272 0.970588235

Average importance over 9 year period 0.905981657

Year Hybrid Model :Risk of Line Infection Risk of Line Infection; pressure to cut operational costs=0 Importance Measure

2002 0.037 0.0367 1.008174387

2003 0.0372 0.0368 1.010869565

2004 0.0275 0.0369 0.745257453

2005 0.0275 0.0369 0.745257453

2006 0.0343 0.0267 1.284644195

2007 0.0295 0.0337 0.87537092

2008 0.0265 0.0291 0.910652921

2009 0.0264 0.0271 0.974169742

Average importance over 9 year period 0.944299579

Year Hybrid Model :Risk of Line Infection Risk of Line Infection;Willingness to invest in safety=1 Importance Measure

2002 0.037 0.0284 1.302816901

2003 0.0372 0.0283 1.314487633

2004 0.0275 0.0274 1.003649635

2005 0.0275 0.0271 1.014760148

2006 0.0343 0.0271 1.265682657

2007 0.0295 0.0281 1.049822064

2008 0.0265 0.0284 0.933098592

2009 0.0264 0.0271 0.974169742

Average importance over 9 year period 1.107310921



 

Figure 7-17 .Importance measures of model’s pressure functions over time
 

Figure 7-17 depicts the importance of each of these pressure functions over time.
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.Importance measures of model’s pressure functions over time 

depicts the importance of each of these pressure functions over time.depicts the importance of each of these pressure functions over time. 
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7.5 Model Requirements for Application 
 

The evaluation and the validation of the individual modules (BBNs and the system 

dynamic module) and the hybrid model, show that the models developed here have 

potential to be used as a predictive model for decision making purposes, and to capture 

the major dynamics of healthcare organizations that have an effect on the risk of adverse 

events. We have demonstrated this with limited data that was available to us. To further 

strengthen confidence in the accuracy and predictive power of the model, additional 

rigorous validation with additional data is required. This involves; 

• More expert opinion, from a diverse set of hospitals, on the soft factors in the 

model  

• More adverse event data from a variety of hospitals, although finding clean 

reliable clinical data, as we have tried to collect and use in the models in this 

study, could be challenging to say the least 

• Meticulous modeling of the cost and reimbursement structure. The data we had 

available on financial records, consisted of operating margins and total revenue 

and cost for a few years. Detailed modeling of cost and reimbursement structure 

will not only increase the accuracy but also make the model a dynamic model in 

its true sense. 

• Modeling more adverse events (in addition to the two BBNs we have developed 

so far for line infection and pressure ulcer) 

In the models we have developed in this study, some factors are hospital-specific factors. 

For instance hospitals may respond to revenue gap differently. In our interviews with the 
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experts, they revealed that while hospitals do take one or a combination of three decisions 

we have modeled here (optimizing LOS, reducing operational costs, and level of 

investment in safety) to address revenue problems, but the order and intensity in which 

they implement these decisions may differ from hospital to hospital.  

Perhaps, collecting expert opinion from different categories of hospitals and modeling the 

pressure functions for that specific hospital category, will customize the model for a 

specific hospital category, and hence make for a better decision making tool. 
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8 Summary and Conclusion 
 

In this study, we have proposed a hybrid modeling methodology, capable of modeling the 

risk of hospital acquired adverse events, more realistically. This hybrid modeling 

environment, consists of Bayesian belief networks and system dynamics modeling 

formalism. The Bayesian belief networks are used to capture patient level, and patient 

provider level factors that may affect the risk of a certain adverse event. On the other 

hand, using system dynamics formalism, we can capture risk contributors at the level of 

organization, including production pressures, pressure to reduce operational costs; 

pressures to optimize (minimize) length of stay and pressures that impose limitations on 

what healthcare organizations can spend on proactive safety interventions. These 

pressures are mainly imposed upon the system, by financial constraints. On the other 

hand external agencies and third party payers (e.g. insurance companies) increase this 

pressure by penalizing the hospital for the occurrence of adverse events. 

Employing this methodology, we have developed a dynamic model for system level risk 

factors, and two Bayesian network models for two specific adverse events; pressure ulcer, 

and line infection. 

These models have been developed using the factors we found in a thorough literature 

search (believed/proven to be influencing risk factors both at the hospital level model 

(SD), and specific adverse event models (BBNs)), and expert opinion. A Panel consisting 

of 17 experts from a number of healthcare organizations, with years of clinical and 

patient safety experience, was interviewed in person, in multiple sessions (resulting in 

over 120 hours of interview) in the process of developing and validating these models. 
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We also used 8 years clinical data from one of Harvard’s teaching hospitals, to validate 

the models, both the BBN level, and the hybrid model. 

This new approach provides a more realistic view and captures the dynamics of 

risk/safety as a function of policy and organizational decisions. The methodology could 

be used as a tool to predict the unintended consequences of internal and external 

decisions and policies on safety, and as a tool to investigate the impacts of policy 

modifications and to optimize decision making. It is also conceivable to use at the level 

of individual healthcare organization as well as external agencies (e.g. Federal and 

private insurers). 

8.1 Challenges 
 

Aside from the usual administrative challenges in arranging interviews with the domain 

experts, who typically have extremely busy schedules, perhaps the most important 

challenge is obtaining reliable and relevant data for developing and validating the 

models.  In validating the models, we have tried to use clinical data as much as possible 

and elicited experts’ opinion, where data was unavailable or unreliable. Not all the factors 

we have in the model are actually observed and recorded in hospitals (e.g. staff 

adequacy). As our clinical experts put it, healthcare data is quite “messy”. 

 Especially in the case of the dynamic module, that we have used soft factors to represent 

system level pressures (e.g. pressure to optimize LOS), we had to solely rely on experts’ 

assessment. We have made effort to calibrate these opinions with the data that was 

available to us.  
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8.2 Contributions 
 

The contributions of this research could be summarized as follows in two 

categories; A) Risk modeling methodology and B) Causal model development 

A. Risk modeling methodology 

o Selection and integration of suitable methods for modeling risk in 

healthcare 

o Hybrid SD/BBN  

o Development of uncertainty/sensitivity analysis procedure for the hybrid 

methodology 

o Development of RIM for the hybrid methodology 

B. Causal model development 

o Development of dynamic model for organizational level decisions/factors 

o Development of BBN causal models for 2 common adverse events 

o Collection and analysis of data and expert opinion for model construction 

and parameter estimation 

o Introduction of new parameters to address cause and effect relations 

among tangible and intangible phenomena 

o Use of Bayesian methods for inference with expert opinion 

o Use of Bayesian model uncertainty treatment method to improve model 

calibration and address data gaps 
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8.3 Future Work 
 

The next logical step for this study would be evaluating and validating the model with 

more data.  

• Data for more  number of years 

• Clinical data and expert opinion from more experts and variety of hospitals 

We have used a 9 years of clinical data to evaluate the performance of the model. We 

have calibrated 9 parameters (for pressure functions) of these models using these 

data. One can question the confidence level on this calibration, where 9 degrees of 

freedom are determined with only 9 years’ worth of data. Also, all of the experts that 

participated in this study and provided their opinion on various aspects of the models, 

are clinicians and healthcare professionals that are practicing in some the world’s best 

hospitals. We need to incorporate expert opinion and also clinical data from other 

hospitals that do not necessarily fall into this category. 

Another aspect of this model that could be improved is that some of nodes in the 

model need to be modeled in more detail. More specifically for operating margin, that 

is basically the driving engine of the hybrid model, we have only used the estimates 

available to us for operating margins and total cost and reimbursement for a few 

years. More comprehensive modeling of the cost and reimbursement structure is 

definitely needed for more accurate results. 
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Appendix A. Model Validation Interview Guide, Pressure Ulcer BBN 
 

 

Purpose:  

 

A. Introducing experts to the concept of Bayesian belief networks, the 

structure and the concept of conditional probabilities 

B. Introducing the preliminary BBN model for risk of pressure ulcer 

C. Eliciting expert’s opinion about the factors and relations in the model, 

addition or deletion of the factors if necessary based on experts judgment 

D. Eliciting expert’s quantitative assessment on some of the parameters of the 

model 

E. Qualitative validation of the model by experts 

 

 

 

 

� Appendices A through D contain the interview guides that we have used to elicit 
expert opinion in the process of developing and quantifying BBNs and the system 
dynamics model. Each interview guide was designed and used for different 
purposes that are explained accordingly at the beginning of the forms. These 
guides were used at different stages of model development and quantification. 

 

 

 



 

 

Modeling 

Bayesian Belief Networks (BBNs): A brief introduction

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 
represented as nodes of the graph and the interaction between the variables (causality
arcs (directed edges) between the nodes. Any pair of unconnected nodes of such a graph 
indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
properties associated with the variables represented by nodes in the network. To specify 
the strengths of these dependence relations, we use conditional probabilities. 

In short, BBN is a directed acyclic graph that represents causality relationships betwee
variables and consists of: 

 

A set of variables 

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 
influence on Y (we call X the parent node and Y the child node)

Each node has a conditional probability table tha
the child node 
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Modeling baseline risk of specific adverse events: 

Pressure Ulcer – Model Validation 

Interview Guide for First Round 

Bayesian Belief Networks (BBNs): A brief introduction

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 
represented as nodes of the graph and the interaction between the variables (causality
arcs (directed edges) between the nodes. Any pair of unconnected nodes of such a graph 
indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
roperties associated with the variables represented by nodes in the network. To specify 

the strengths of these dependence relations, we use conditional probabilities. 

In short, BBN is a directed acyclic graph that represents causality relationships betwee
variables and consists of:  

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 
influence on Y (we call X the parent node and Y the child node) 

Each node has a conditional probability table that quantifies the effects of the parents on 
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Bayesian Belief Networks (BBNs): A brief introduction 

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 
represented as nodes of the graph and the interaction between the variables (causality) as 
arcs (directed edges) between the nodes. Any pair of unconnected nodes of such a graph 
indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
roperties associated with the variables represented by nodes in the network. To specify 

the strengths of these dependence relations, we use conditional probabilities.  

In short, BBN is a directed acyclic graph that represents causality relationships between 

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 

t quantifies the effects of the parents on 
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Background 

What is your position or role in …………………………… (Your organization)?  Please 
describe your daily work and/or responsibilities in your current role. 

How long have you worked in the …………………………. (Your unit)? 

What is your professional/educational background? 

 

Model 1-Pressure Ulcer 

As you know, every hospitalized patient is venerable to a certain level of risk 
experiencing pressure ulcer. Factors that influence this risk can be categorized into: 

Patient level factors (relating to patient’s conditions) 

Physician-Patient level factors (relating to the treatment of the patient) 

From your perspective what are the most important factors that influence the risk of 
experiencing pressure ulcer, while a patient is in the hospital? Based on the brief 
introduction provided on influence diagrams could you please sketch a diagram that 
shows these important factors and how they impact the risk of experiencing pressure 
ulcer? 

 

Response to Base Model  

Take a look at this diagram. Based on the influence diagram you provided, let’s fill in 
parts that you mentioned, but that are missing from this model. Also, I see a few events in 
this diagram that you didn’t mention.  

[Interviewer will iteratively work with the interviewee/subject to incorporate or exclude 
specific variables from the base model] 

 

 

 

 

 



 

Attributes: 

Completeness: From your perspective, to what extent does this model capture all 
important and relevant phenomena for the particular problem that
scale from 0 to 100, 0 would correspond to a model that does not include some important 
and relevant details, whereas 100 would correspond to a model that includes all details 
that you consider important. What number would you assign

Accuracy: From your perspective, how accurately or realistically does the model depict 
important factors that influence risk of experiencing pressure ulcer? On a scale from 0 to 
100, 0 would correspond to a model that is unrealistic, over
whereas 100 would correspond to a model that is realistic and accurate. What number 
would you assign? 

Ease of understanding: From your perspective, how easy is it to understand the overall 
logic of the model. On a scale from 0 to 100, 0 would co
difficult to follow, even with extensive explanation, and a 100 would correspond to a 
model that is readily understandable. What number would you assign?

Perceived predictive validity:
well could you predict the risk of pressure ulcer?  On a scale from 0 to 100, 0 would 
correspond to a model that does not help at all with predicting effects, and a 100 would 
correspond to a model that predicts the effects very well. What nu
assign?  
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From your perspective, to what extent does this model capture all 
important and relevant phenomena for the particular problem that we are studying? On a 
scale from 0 to 100, 0 would correspond to a model that does not include some important 
and relevant details, whereas 100 would correspond to a model that includes all details 
that you consider important. What number would you assign?  

From your perspective, how accurately or realistically does the model depict 
important factors that influence risk of experiencing pressure ulcer? On a scale from 0 to 
100, 0 would correspond to a model that is unrealistic, over-idealized or i
whereas 100 would correspond to a model that is realistic and accurate. What number 

From your perspective, how easy is it to understand the overall 
logic of the model. On a scale from 0 to 100, 0 would correspond to a model that is 
difficult to follow, even with extensive explanation, and a 100 would correspond to a 
model that is readily understandable. What number would you assign? 

Perceived predictive validity: From your perspective, if you were to use t
well could you predict the risk of pressure ulcer?  On a scale from 0 to 100, 0 would 
correspond to a model that does not help at all with predicting effects, and a 100 would 
correspond to a model that predicts the effects very well. What number would you 

 

From your perspective, to what extent does this model capture all 
we are studying? On a 

scale from 0 to 100, 0 would correspond to a model that does not include some important 
and relevant details, whereas 100 would correspond to a model that includes all details 

From your perspective, how accurately or realistically does the model depict 
important factors that influence risk of experiencing pressure ulcer? On a scale from 0 to 

idealized or inaccurate, 
whereas 100 would correspond to a model that is realistic and accurate. What number 

From your perspective, how easy is it to understand the overall 
rrespond to a model that is 

difficult to follow, even with extensive explanation, and a 100 would correspond to a 

From your perspective, if you were to use this model, how 
well could you predict the risk of pressure ulcer?  On a scale from 0 to 100, 0 would 
correspond to a model that does not help at all with predicting effects, and a 100 would 

mber would you 
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Final Comments 

Do you have any other comments that you want to make? Feel free to elaborate on 
anything that we have already discussed. 
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Appendix B. Model Validation Interview Guide, line Infection BBN 
 

 

Purpose:  

 

A. Introducing experts to the concept of Bayesian belief networks, the structure and 

the concept of conditional probabilities 

B. Introducing the preliminary BBN model for risk of line infection 

C. Eliciting expert’s opinion about the factors and relations in the model, addition or 

deletion of the factors if necessary based on experts judgment 

D. Eliciting expert’s quantitative assessment on some of the parameters of the model 

E. Qualitative validation of the model by experts 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Modeling baseline 

Bayesian Belief Networks (BBNs): A brief introduction

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 
represented as nodes of the graph and the interaction between the variables (causality
arcs (directed edges) between the nodes. Any pair of unconnected nodes of such a graph 
indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
properties associated with the variables represented by nodes in the network. To specify 
the strengths of these dependence relations, we use 

In short, BBN is a directed acyclic graph that represents causality relationships betwee
variables and consists of: 

 

A set of variables 

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 
influence on Y (we call X the parent node and Y the child node)

Each node has a conditional probability table 
the child node 

 

 

 

 

 

0.95No

0.05Yes

Probability of Fever

0.95No

0.05Yes

Probability of Fever

251 

Modeling baseline risk of specific adverse events: 

Line Infection – Model Validation 

Interview Guide for First Round  

Bayesian Belief Networks (BBNs): A brief introduction

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 

of the graph and the interaction between the variables (causality
between the nodes. Any pair of unconnected nodes of such a graph 

indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
roperties associated with the variables represented by nodes in the network. To specify 

the strengths of these dependence relations, we use conditional probabilities

In short, BBN is a directed acyclic graph that represents causality relationships betwee
variables and consists of:  

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 
influence on Y (we call X the parent node and Y the child node) 

Each node has a conditional probability table that quantifies the effects of the parents on 

Fever

Measles

Spots

0.001NoNo

0.9YesNo

0.3NoYes

9.99YesYes

Probability of MeaslesFeverSpots

0.95

0.05

Probability of Fever

0.995No

0.005Yes

Probability of Spots

Fever

Measles

Spots

0.001NoNo

0.9YesNo

0.3NoYes

9.99YesYes

Probability of MeaslesFeverSpots

0.95

0.05

Probability of Fever

0.995No

0.005Yes

Probability of Spots

Bayesian Belief Networks (BBNs): A brief introduction 

Bayesian Belief Networks are a specific form of influence diagrams. BBNs are graphical 
models of causal relations among a set of variables (factors), where variables are 

of the graph and the interaction between the variables (causality) as 
between the nodes. Any pair of unconnected nodes of such a graph 

indicates independence between the variables represented by nodes. Hence, BBNs, or 
probabilistic networks in general, capture a set of dependence and independence 
roperties associated with the variables represented by nodes in the network. To specify 

conditional probabilities.  

In short, BBN is a directed acyclic graph that represents causality relationships between 

A set of directed arcs linking pairs of nodes; an arc from X to Y means that X has a direct 

that quantifies the effects of the parents on 
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Background 

What is your position or role in …………………………… (Your organization)?  Please 
describe your daily work and/or responsibilities in your current role. 

How long have you worked in the …………………………. (Your unit)? 

What is your professional/educational background? 

Model 2-line infection 

As you know, every hospitalized patient is venerable to a certain level of risk 
experiencing line infection. Factors that influence this risk can be categorized into: 

 

Patient level factors (relating to patient’s conditions) 

Physician-Patient level factors (relating to the treatment of the patient) 

From your perspective what are the most important factors that influence the risk of 
experiencing line infection, while a patient is in the hospital? Based on the brief 
introduction provided on influence diagrams could you please sketch a diagram that 
shows these important factors and how they impact the risk of experiencing line 
infection? 

Response to Base Model  

Take a look at this diagram. Based on the influence diagram you provided, let’s fill in 
parts that you mentioned, but that are missing from this model. Also, I see a few events in 
this diagram that you didn’t mention.  

[Interviewer will iteratively work with the interviewee/subject to incorporate or exclude 
specific variables from the base model] 
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Attributes:  

Completeness: From your perspective, to what extent does this model capture all 
important and relevant phenomena for the particular problem that we are studying? On a 
scale from 0 to 100, 0 would correspond to a model that does not include some important 
and relevant details, whereas 100 would correspond to a model that includes all details 
that you consider important. What number would you assign?  

Accuracy: From your perspective, how accurately or realistically does the model depict 
important factors that influence risk of experiencing pressure ulcer? On a scale from 0 to 
100, 0 would correspond to a model that is unrealistic, over-idealized or inaccurate, 
whereas 100 would correspond to a model that is realistic and accurate. What number 
would you assign? 

Ease of understanding: From your perspective, how easy is it to understand the overall 
logic of the model. On a scale from 0 to 100, 0 would correspond to a model that is 
difficult to follow, even with extensive explanation, and a 100 would correspond to a 
model that is readily understandable. What number would you assign? 

Perceived predictive validity: From your perspective, if you were to use this model, how 
well could you predict the risk of pressure ulcer?  On a scale from 0 to 100, 0 would 
correspond to a model that does not help at all with predicting effects, and a 100 would 
correspond to a model that predicts the effects very well. What number would you 
assign?  

Final Comments 

Do you have any other comments that you want to make? Feel free to elaborate on 
anything that we have already discussed.
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Appendix C. Model Validation Interview Guide, System Dynamics Model; 
Round 1&2 

 
 

Purpose:  

 

A. Introducing experts to the concept of dynamics modeling; the structure 

and the concept of building blocks of system dynamics 

B. Introducing the hypothesis and the preliminary SD model for capturing 

organizational level contributors to the risk of adverse events 

C. Eliciting expert’s opinion about the factors and relations in the model, 

addition or deletion of the factors if necessary based on experts judgment 

D. Eliciting expert’s assessment on the shape and forms of the soft factors in 

the model (i.e. pressure functions) 

E. Qualitative validation of the model by experts 
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Modeling dynamic aspects of adverse events risk: 

Model Validation 

Interview Guide-Round 1&2 

 

Background 

What is your position or role in …………………………… (Your organization)?  Please 
describe your daily work and/or responsibilities in your current role. 

How long have you worked in the …………………………. (Your unit)? 

What is your professional/educational background? 

System Dynamics-A brief introduction  

SD is an approach to modeling systems and how they change overtime. It is a simulation 
based, differential equation modeling tool that is used when: 

Formal model is complex  

Analytical solution is impossible or very difficult to obtain  

It has been used in variety of problems such as corporate strategy, dynamics of diabetes, 
cold war arm race, HIV combat with human immune system . 

The building blocks of a SD model: 

 

Stocks: accumulation of a measureable entity 

People, parts, money or intangibles such as happiness (Ford,99) 

Population
Birth Death

Birth Rate Deat Rate
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Characterize the state of the system  

Generate information for decision making 

Flows:  Physical or conceptual entities that enter or exit system 

Feedback Loops 

 

 

 

 

 

 

 

Model 3-SD 

 

Response to Integrated Model –System Dynamics Model 

 

Please take a look at this diagram. This model captures the overall responses/decisions to 
revenue gap in US hospitals and their effect on risk of experiencing specific adverse 
events. It also captures the feedback effect of this risk on the same revenue gap that 
triggered this process. I will ask you to grade the model along several dimensions. 
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General questions: 

Ordering of these policies 

Target revenue 
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Reimburesement-Cost

Pressure to Maximize
Differential

Reimbursement Cost

Pressure to Reduce
LOS to Minimum

Requiered

Pressure to Reduce
Operational Cost

Willingness to Commit
to Safety Investments

Increase in the risk
of Adverse Event

-

+ + +

+
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+

-

R

R
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Cost Reimbursment

Differenitial Reimbursment and
Cost
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Differential
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Proactive Safety
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Staffing
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Attributes: 

Completeness: From your perspective, to what extent does this model capture all 
important and relevant phenomena for the particular problem that we are studying? On a 
scale from 0 to 100, 0 would correspond to a model that does not include some important 
and relevant details, whereas 100 would correspond to a model that includes all details 
that you consider important. What number would you assign? 

Accuracy: From your perspective, how accurately or realistically does the model depict 
important feedback effects, and causal chains that influence risk of experiencing adverse 
events? On a scale from 0 to 100, 0 would correspond to a model that is unrealistic, over-
idealized or inaccurate, whereas 100 would correspond to a model that is realistic and 
accurate. What number would you assign? 

Ease of understanding: From your perspective, how easy is it to understand the overall 
logic of the model. On a scale from 0 to 100, 0 would correspond to a model that is 
difficult to follow, even with extensive explanation, and a 100 would correspond to a 
model that is readily understandable. What number would you assign? 

Perceived predictive validity: From your perspective, if you were to use this model, how 
well could you predict the change in the risk of specific adverse events as a function of the 
organizational factors/decisions that influence risk of AEs?  On a scale from 0 to 100, 0 
would correspond to a model that does not help at all with predicting effects, and a 100 
would correspond to a model that predicts the effects very well. What number would you 
assign? 

 

 

 

 

 

Final Comments 

Do you have any other comments that you want to make? Feel free to elaborate on 
anything that we have already discussed. 
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Appendix D. Model Validation Interview Guide, System Dynamics Model; 
Round 3 

 

 

Purpose:  

 

A. Eliciting expert’s quantitative assessment on some of the parameters of the  

system dynamics model 
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Modeling dynamic aspects of adverse events risk: 

Model Validation 

Interview Guide-Round 3 

You have previously expressed your opinion about the way the revenue gap creates the 
pressure to close this gap throughout the organization, and how this pressure manifests 
itself in the forms of “Pressure to Optimize LOS”, “Pressure to Reduce Operational 
Costs” and” Willingness to Invest in Proactive Safety Investments”. Considering the 
model above, please answer the following questions. 

As was discussed in other rounds of interview, the pressure to optimize LOS, may affect 
risk of adverse events in two ways, first, it may increase the probability of experiencing 
an adverse events, because some patient’s LOS may be too short to meet all his/her 
needs. Second, it may reduce the probability of some adverse events because it simply 
reduces the exposure and if the pressure to optimize LOS is too small, some patients may 
stay in the hospital longer than they really need and be exposed to certain adverse events. 

To your experience at what level (range) of pressure to optimize LOS, we might start to 
see the effect of this pressure on risk, because the pressure is too high that some patients 
may be discharged a bit prematurely? 

 

To your experience at what level (range) of pressure to optimize LOS, we might start to 
see the effect of this pressure on risk, because the pressure is too low that some patients 
may stay longer than they really need to which may increase their risk of being exposed 
to and experiencing certain adverse events? 

 

 

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1



    

 

 

2- The pressure to reduce operational costs, may affect risk of adverse events due to 
understaffing. 

To your experience at what level (range) of pressure to reduce operational costs are great 
enough such that some patients may experience an adverse event because the unit is not 
sufficiently staffed (either due to lower numbers of staff, or lower quality

*You may use an arrow to indicate a precise point or circle one of the ranges above to 
indicate a broader range estimate.

 

The idea is that the impact of lower staffing numbers and/or less experienced staff may 
depend on the complexity of 
take the average of the complexity scores across all units in the hospital and all inpatient 
days. Please indicate in the table below, where the pressure to reduce operational 
costs/staffing begins to influence the probability of an adverse event as a function of the 
complexity of the patient population.

 

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3

 

 

The pressure to reduce operational costs, may affect risk of adverse events due to 

To your experience at what level (range) of pressure to reduce operational costs are great 
enough such that some patients may experience an adverse event because the unit is not 
sufficiently staffed (either due to lower numbers of staff, or lower quality

*You may use an arrow to indicate a precise point or circle one of the ranges above to 
indicate a broader range estimate. 

The idea is that the impact of lower staffing numbers and/or less experienced staff may 
depend on the complexity of the case mix. With this assumption in mind, suppose we 
take the average of the complexity scores across all units in the hospital and all inpatient 
days. Please indicate in the table below, where the pressure to reduce operational 

influence the probability of an adverse event as a function of the 
complexity of the patient population. 

0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1

266 

The pressure to reduce operational costs, may affect risk of adverse events due to 

To your experience at what level (range) of pressure to reduce operational costs are great 
enough such that some patients may experience an adverse event because the unit is not 
sufficiently staffed (either due to lower numbers of staff, or lower quality of staff?) 

*You may use an arrow to indicate a precise point or circle one of the ranges above to 

 

The idea is that the impact of lower staffing numbers and/or less experienced staff may 
the case mix. With this assumption in mind, suppose we 

take the average of the complexity scores across all units in the hospital and all inpatient 
days. Please indicate in the table below, where the pressure to reduce operational 

influence the probability of an adverse event as a function of the 

Max Pressure =1



    

 

Assume that the pressure to reduce the revenue gap, will affect the level of 
willingness/ability to invest in proactive safety investments. The wors
situation gets, the less investments are made in safety programs.  Assume that the more 
we spend on safety the less the chances of experiencing adverse events will be. If this 
willingness to invest in safety is a scale between 0
invest in safety, and 1 meaning highest level of ability/willingness to invest in proactive 
safety interventions);  

 Based on your experience at what level (range) of this willingness do we start to 
see changes in the risk of ad

*You may use an arrow to indicate a precise point or circle one of the ranges above to 
indicate a broader range estimate.

Based on your experience, what is the magnitude of change in the risk of adverse events 
when there is an increase or d
Use the table below to indicate the relationship between changes in investments and 
magnitude of effect on risk of adverse events.

 

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5
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Lowest Pressure =0

No Pressure=0 0-0.1 0.1-0.2 0.2-0.3

 

 

Assume that the pressure to reduce the revenue gap, will affect the level of 
willingness/ability to invest in proactive safety investments. The worse the financial 
situation gets, the less investments are made in safety programs.  Assume that the more 
we spend on safety the less the chances of experiencing adverse events will be. If this 
willingness to invest in safety is a scale between 0-1 (0 meaning no ability/willingness to 
invest in safety, and 1 meaning highest level of ability/willingness to invest in proactive 

Based on your experience at what level (range) of this willingness do we start to 
see changes in the risk of adverse event?  

*You may use an arrow to indicate a precise point or circle one of the ranges above to 
indicate a broader range estimate. 

 

Based on your experience, what is the magnitude of change in the risk of adverse events 
when there is an increase or decrease in investment in elective/proactive safety programs? 
Use the table below to indicate the relationship between changes in investments and 
magnitude of effect on risk of adverse events. 

0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Highest Pressure =1

0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Max Pressure =1
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Assume that the pressure to reduce the revenue gap, will affect the level of 
e the financial 

situation gets, the less investments are made in safety programs.  Assume that the more 
we spend on safety the less the chances of experiencing adverse events will be. If this 

g no ability/willingness to 
invest in safety, and 1 meaning highest level of ability/willingness to invest in proactive 

Based on your experience at what level (range) of this willingness do we start to 

*You may use an arrow to indicate a precise point or circle one of the ranges above to 

Based on your experience, what is the magnitude of change in the risk of adverse events 
ecrease in investment in elective/proactive safety programs? 

Use the table below to indicate the relationship between changes in investments and 
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